Sample records for assisted precipitation method

  1. Synthesis of Calcite Nano Particles from Natural Limestone assisted with Ultrasonic Technique

    NASA Astrophysics Data System (ADS)

    Handayani, M.; Sulistiyono, E.; Firdiyono, F.; Fajariani, E. N.

    2018-03-01

    This article represents a precipitation method assisted with ultrasonic process to synthesize precipitated calcium carbonate nano particles from natural limestone. The synthesis of nanoparticles material of precipitated calcium carbonate from commercial calcium carbonate was done for comparison. The process was performed using ultrasonic waves at optimum condition, that is, at temperature of 80oC for 10 minutes with various amplitudes. Synthesized precipitated calcium carbonate nanoparticles were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Particle Size Analyzer (PSA). The result of PSA measurements showed that precipitated calcium carbonate nano particles was obtained with the average size of 109 nm.

  2. Ultrasound assisted co-precipitation of nanostructured CuO-ZnO-Al2O3 over HZSM-5: effect of precursor and irradiation power on nanocatalyst properties and catalytic performance for direct syngas to DME.

    PubMed

    Allahyari, Somaiyeh; Haghighi, Mohammad; Ebadi, Amanollah; Hosseinzadeh, Shahin

    2014-03-01

    Nanostructured CuO-ZnO-Al2O3/HZSM-5 was synthesized from nitrate and acetate precursors using ultrasound assisted co-precipitation method under different irradiation powers. The CuO-ZnO-Al2O3/HZSM-5 nanocatalysts were characterized using XRD, FESEM, BET, FTIR and EDX Dot-mapping analyses. The results indicated precursor type and irradiation power have significant influences on phase structure, morphology, surface area and functional groups. It was observed that the acetate formulated CuO-ZnO-Al2O3/HZSM-5 nanocatalyst have smaller CuO crystals with better dispersion and stronger interaction between components in comparison to nitrate based nanocatalysts. Ultrasound assisted co-precipitation synthesis method resulted in nanocatalyst with more uniform morphology compared to conventional method and increasing irradiation power yields smaller particles with better dispersion and higher surface area. Additionally the crystallinity of CuO is lower at high irradiation powers leading to stronger interaction between metal oxides. The nanocatalysts performance were tested at 200-300 °C, 10-40 bar and space velocity of 18,000-36,000 cm(3)/g h with the inlet gas composition of H2/CO = 2/1 in a stainless steel autoclave reactor. The acetate based nanocatalysts irradiated with higher levels of power exhibited better reactivity in terms of CO conversion and DME yield. While there is an optimal temperature for CO conversion and DME yield in direct synthesis of DME, CO conversion and DME yield both increase with the pressure increase. Furthermore ultrasound assisted co-precipitation method yields more stable CuO-ZnO-Al2O3/HZSM-5 nanocatalyst while conventional precipitated nanocatalyst lost their activity ca. 18% and 58% in terms of CO conversion and DME yield respectively in 24 h time on stream test.

  3. A new Grid Product of Tropical Cyclone Precipitation (TCP) for North America from 1930 to 2013

    NASA Astrophysics Data System (ADS)

    Zhu, L.

    2015-12-01

    We first developed a new method that collects daily TCP by using historical storm tracks and precipitation observation based on daily rain gauges in both U.S. and Mexico and calibrated it with satellite precipitation observation. We used a parametrized wind field to correct the possible under-estimations of precipitation in rain gauges. Grid interpolation parameters were optimized by testing different historical rain gauge densities and comparing our grid estimation of TCP and the observation from TRMM Multi-satellite Precipitation Analysis (3B42) by for the data available period from 1998 to 2013. The calibrated method was then used for the whole 94 years of TCP estimation. The preliminary result shows that the frequency of TCP events does not have significant change but the TCP intensity has significant increasing trends, especially in certain locations in North Carolina and Yucatan Peninsula in Mexico. This new long term TCP climatology can potentially assist model calibration and disaster prevention/mitigation.

  4. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    NASA Astrophysics Data System (ADS)

    Chongad, L. S.; Sharma, A.; Banerjee, M.; Jain, A.

    2016-10-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H2S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD.

  5. RAPID METHOD FOR DETERMINATION OF RADIOSTRONTIUM IN EMERGENCY MILK SAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.; Culligan, B.

    2008-07-17

    A new rapid separation method for radiostrontium in emergency milk samples was developed at the Savannah River Site (SRS) Environmental Bioassay Laboratory (Aiken, SC, USA) that will allow rapid separation and measurement of Sr-90 within 8 hours. The new method uses calcium phosphate precipitation, nitric acid dissolution of the precipitate to coagulate residual fat/proteins and a rapid strontium separation using Sr Resin (Eichrom Technologies, Darien, IL, USA) with vacuum-assisted flow rates. The method is much faster than previous method that use calcination or cation exchange pretreatment, has excellent chemical recovery, and effectively removes beta interferences. When a 100 ml samplemore » aliquot is used, the method has a detection limit of 0.5 Bq/L, well below generic emergency action levels.« less

  6. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.

    PubMed

    Saji, Viswanathan S; Song, Hyun-Kon

    2015-01-01

    Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.

  7. Simple Sodium Dodecyl Sulfate-Assisted Sample Preparation Method for LC-MS-based Proteomic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jianying; Dann, Geoffrey P.; Shi, Tujin

    2012-03-10

    Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for highly efficient biological sample extraction; however, SDS presents a significant challenge to LC-MS-based proteomic analyses due to its severe interference with reversed-phase LC separations and electrospray ionization interfaces. This study reports a simple SDS-assisted proteomic sample preparation method facilitated by a novel peptide-level SDS removal protocol. After SDS-assisted protein extraction and digestion, SDS was effectively (>99.9%) removed from peptides through ion substitution-mediated DS- precipitation with potassium chloride (KCl) followed by {approx}10 min centrifugation. Excellent peptide recovery (>95%) was observed for less than 20 {mu}g of peptides.more » Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage from this SDS-assisted protocol was comparable to or better than those obtained from other standard proteomic preparation methods in both mammalian tissues and bacterial samples. These results suggest that this SDS-assisted protocol is a practical, simple, and broadly applicable proteomic sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.« less

  8. Comparison Of Downscaled CMIP5 Precipitation Datasets For Projecting Changes In Extreme Precipitation In The San Francisco Bay Area.

    NASA Technical Reports Server (NTRS)

    Milesi, Cristina; Costa-Cabral, Mariza; Rath, John; Mills, William; Roy, Sujoy; Thrasher, Bridget; Wang, Weile; Chiang, Felicia; Loewenstein, Max; Podolske, James

    2014-01-01

    Water resource managers planning for the adaptation to future events of extreme precipitation now have access to high resolution downscaled daily projections derived from statistical bias correction and constructed analogs. We also show that along the Pacific Coast the Northern Oscillation Index (NOI) is a reliable predictor of storm likelihood, and therefore a predictor of seasonal precipitation totals and likelihood of extremely intense precipitation. Such time series can be used to project intensity duration curves into the future or input into stormwater models. However, few climate projection studies have explored the impact of the type of downscaling method used on the range and uncertainty of predictions for local flood protection studies. Here we present a study of the future climate flood risk at NASA Ames Research Center, located in South Bay Area, by comparing the range of predictions in extreme precipitation events calculated from three sets of time series downscaled from CMIP5 data: 1) the Bias Correction Constructed Analogs method dataset downscaled to a 1/8 degree grid (12km); 2) the Bias Correction Spatial Disaggregation method downscaled to a 1km grid; 3) a statistical model of extreme daily precipitation events and projected NOI from CMIP5 models. In addition, predicted years of extreme precipitation are used to estimate the risk of overtopping of the retention pond located on the site through simulations of the EPA SWMM hydrologic model. Preliminary results indicate that the intensity of extreme precipitation events is expected to increase and flood the NASA Ames retention pond. The results from these estimations will assist flood protection managers in planning for infrastructure adaptations.

  9. An efficient microwave-assisted synthesis method for the production of water soluble amine-terminated Si nanoparticles.

    PubMed

    Atkins, Tonya M; Louie, Angelique Y; Kauzlarich, Susan M

    2012-07-27

    Silicon nanoparticles can be considered a green material, especially when prepared via a microwave-assisted method without the use of highly reactive reducing agents or hydrofluoric acid. A simple solution synthesis of hydrogen-terminated Si- and Mn-doped Si nanoparticles via microwave-assisted synthesis is demonstrated. The reaction of the Zintl salt, Na(4)Si(4), or Mn-doped Na(4)Si(4), Na(4)Si(4(Mn)), with ammonium bromide, NH(4)Br, produces small dispersible nanoparticles along with larger particles that precipitate. Allylamine and 1-amino-10-undecene were reacted with the hydrogen-terminated Si nanoparticles to provide water solubility and stability. A one-pot, single-reaction process and a one-pot, two-step reaction process were investigated. Details of the microwave-assisted process are provided, with the optimal synthesis being the one-pot, two-step reaction procedure and a total time of about 15 min. The nanoparticles were characterized by transmission electron microscopy (TEM), x-ray diffraction, and fluorescence spectroscopies. The microwave-assisted method reliably produces a narrow size distribution of Si nanoparticles in solution.

  10. Preparation and characterization of nanocrystalline CuO powders with the different surfactants and complexing agent mediated precipitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendran, V.; Gajendiran, J., E-mail: gaja.nanotech@gmail.com

    2014-08-15

    Highlights: • CuO nanostructures by surfactants mediated method. • Structural and optical properties of CuO nanostructures changes under the effect of surface modifier. • Citric acid assisted is the best, in terms of size, morphology and optical properties than that of CTAB, SDS and PEG-400. - Abstract: Nanostructures of copper oxide (CuO) was synthesized into crystallite sized ranging from 20 to 50 nm in the presence of different surfactants, and complex agent such as cityl tri methyl ammonium bromide (CTAB), sodium do decyl sulfate (SDS), poly ethylene glycol (PEG-400) and citric acid via a precipitation route. Variations in several parametersmore » and their effects on the structural and optical properties of CuO nanostructures (crystallite size, morphology and band gap) were investigated by XRD, FTIR, SEM and UV analysis. The UV–visible absorption spectra of the different surfactants and complexing agent assisted CuO nanostructures indicates that the estimated optical band gap energy value (1.94–1.98 eV) is higher than that of the bulk CuO value (1.4 eV), which is attributed to the quantum confinement effect. The formation mechanism of different surfactants and complexing agent assisted CuO nanostructures is also proposed.« less

  11. Ultrafast synthesis and characterization of carbonated hydroxyapatite nanopowders via sonochemistry-assisted microwave process.

    PubMed

    Zou, Zhaoyong; Lin, Kaili; Chen, Lei; Chang, Jiang

    2012-11-01

    Herein, carbonated hydroxyapatite (CHAp) nanopowders were synthesized via sonochemistry-assisted microwave process. The influences of microwave and ultrasonic irradiation on the crystallinity, morphology, yield, Ca/P molar ratio, specific surface area and dispersibility were investigated and compared with the conventional precipitation method. The results showed that sonochemistry-assisted microwave process significantly increased the synthetic efficiency. The well-crystallized nanopowders could be obtained at high yield of 98.8% in ultra-short-period of 5min. In addition, the crystallization process was promoted with the increase of ultrasonic and microwave power and the reaction time during the sonochemistry-assisted microwave process. The sonochemistry assistance also remarkably increased the specific surface area and dispersibility of the as-obtained products. These results suggest that the sonochemistry-assisted microwave process is an effective approach to synthesize CHAp with high efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Preparation and characterization of polyol assisted ultrafine Cu-Ni-Mg-Ca mixed ferrite via co-precipitation method

    NASA Astrophysics Data System (ADS)

    Boobalan, T.; Pavithradevi, S.; Suriyanarayanan, N.; Manivel Raja, M.; Ranjith Kumar, E.

    2017-04-01

    Nanocrystalline spinel ferrite of composition Cu0.2Ni0.2Mg0.2Ca0.4Fe2O4 is synthesized by wet hydroxyl co-precipitation method in ethylene glycol as chelating agent and sodium hydroxide as precipitator at pH 8. Ethylene glycol is utilized as the medium which serves as the dissolvable and in addition a complexing specialist. The synthesized particles are annealed at various temperatures. Thermogravimetric investigation affirms that at 280 °C ethylene glycol is dissipated totally and stable phase arrangement happens over 680 °C. FTIR spectra of as synthesized and annealed at 1050 °C recorded between 400 cm-1 and 4000 cm-1. Structural characterizations of all the samples are carried out by X-ray diffraction (XRD) technique. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) affirm that the particles are spherical and cubic shape with the crystallite size of 12 nm to 32 nm. Magnetic measurements are performed utilizing vibrating sample magnetometer at room temperature.

  13. Controlling the size and magnetic properties of nano CoFe2O4 by microwave assisted co-precipitation method

    NASA Astrophysics Data System (ADS)

    Prabhakaran, T.; Mangalaraja, R. V.; Denardin, Juliano C.

    2018-02-01

    In this report, cobalt ferrite nanoparticles synthesized using microwave assisted co-precipitation method was reported. Efforts have been made to control the particles size, distribution, morphology and magnetic properties of cobalt ferrite nanoparticles by varying the concentration of NaOH solution and microwave irradiation time. It was observed that the rate of nucleation and crystal growth was influenced by the tuning parameters. In that way, the average crystallite size of single phase cobalt ferrite nanoparticles was controlled within 9-11 and 10-12 nm with an increase of base concentration and microwave irradiation time, respectively. A narrow size distribution of nearly spherical nanoparticles was achieved through the present procedure. A soft ferromagnetism at room temperature with the considerable saturation magnetization of 58.4 emu g-1 and coercivity of 262.7 Oe was obtained for the cobalt ferrites synthesized with 2.25 M of NaOH solution for 3 and 7 min of microwave irradiation time, respectively. The cobalt ferrite nanoparticles synthesized with a shorter reaction time of 3-7 min was found to be advantageous over other methods that involved conventional heating procedures and longer reaction time to achieve the better magnetic properties for the technological applications.

  14. Microwave-assisted extraction of pectin from cocoa peel

    NASA Astrophysics Data System (ADS)

    Sarah, M.; Hanum, F.; Rizky, M.; Hisham, M. F.

    2018-02-01

    Pectin is a polymer of d-galacturonate acids linked by β-1,4 glycosidic bond. This study isolates pectin from cocoa peel (Theobroma cacao) using citric acid as solvent by microwave-assisted extraction method. Cocoa peels (moisture content of 10%) with citric acid solution (pH of 1.5) irradiated by microwave energy at various microwave power (180, 300, 450 and 600 W) for 10, 15, 20, 25 and 30 minutes respectively. Pectin obtained from this study was collected and filtrated by adding 96% ethanol to precipitate the pectin. The best results obtained from extraction process using microwave power of 180 Watt for 30 minutes. This combination of power and time yielded 42.3% pectin with moisture content, ash content, weight equivalent, methoxyl content and galacturonate levels were 8.08%, 5%, 833.33 mg, 6.51% and 58,08%, respectively. The result finding suggested that microwave-assisted extraction method has a great potency on the commercial pectin production.

  15. Spatio-temporal characteristics of the extreme precipitation by L-moment-based index-flood method in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Yin, Yixing; Chen, Haishan; Xu, Chong-Yu; Xu, Wucheng; Chen, Changchun; Sun, Shanlei

    2016-05-01

    The regionalization methods, which "trade space for time" by pooling information from different locations in the frequency analysis, are efficient tools to enhance the reliability of extreme quantile estimates. This paper aims at improving the understanding of the regional frequency of extreme precipitation by using regionalization methods, and providing scientific background and practical assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region. To achieve the main goals, L-moment-based index-flood (LMIF) method, one of the most popular regionalization methods, is used in the regional frequency analysis of extreme precipitation with special attention paid to inter-site dependence and its influence on the accuracy of quantile estimates, which has not been considered by most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence, and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, generalized extreme-value (GEV) and generalized normal (GNO) distributions were identified as the best fitted distributions for most of the sub-regions, and estimated quantiles for each region were obtained. Monte Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root-mean-square errors (RMSEs) were bigger and the 90 % error bounds were wider with inter-site dependence than those without inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with a return period of 100 years were finally obtained which indicated that there are two regions with highest precipitation extremes and a large region with low precipitation extremes. However, the regions with low precipitation extremes are the most developed and densely populated regions of the country, and floods will cause great loss of human life and property damage due to the high vulnerability. The study methods and procedure demonstrated in this paper will provide useful reference for frequency analysis of precipitation extremes in large regions, and the findings of the paper will be beneficial in flood control and management in the study area.

  16. The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method.

    PubMed

    Barbosa, Michelle C; Messmer, Nigel R; Brazil, Tayra R; Marciano, Fernanda R; Lobo, Anderson O

    2013-07-01

    Nanohydroxyapatite (nHAp) powders were produced via aqueous precipitation by adopting four different experimental conditions, assisted or non-assisted by ultrasound irradiation (UI). The nHAp powders were characterized by X-ray diffraction, energy-dispersive X-ray fluorescence, Raman and attenuated total reflection Fourier transform infrared spectroscopies, which showed typical surface chemical compositions of nHAp. Analysis found strong connections between UI and the crystallization process, crystal growth properties, as well as correlations between calcination and substitution reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Benchmarking a geostatistical procedure for the homogenisation of annual precipitation series

    NASA Astrophysics Data System (ADS)

    Caineta, Júlio; Ribeiro, Sara; Henriques, Roberto; Soares, Amílcar; Costa, Ana Cristina

    2014-05-01

    The European project COST Action ES0601, Advances in homogenisation methods of climate series: an integrated approach (HOME), has brought to attention the importance of establishing reliable homogenisation methods for climate data. In order to achieve that, a benchmark data set, containing monthly and daily temperature and precipitation data, was created to be used as a comparison basis for the effectiveness of those methods. Several contributions were submitted and evaluated by a number of performance metrics, validating the results against realistic inhomogeneous data. HOME also led to the development of new homogenisation software packages, which included feedback and lessons learned during the project. Preliminary studies have suggested a geostatistical stochastic approach, which uses Direct Sequential Simulation (DSS), as a promising methodology for the homogenisation of precipitation data series. Based on the spatial and temporal correlation between the neighbouring stations, DSS calculates local probability density functions at a candidate station to detect inhomogeneities. The purpose of the current study is to test and compare this geostatistical approach with the methods previously presented in the HOME project, using surrogate precipitation series from the HOME benchmark data set. The benchmark data set contains monthly precipitation surrogate series, from which annual precipitation data series were derived. These annual precipitation series were subject to exploratory analysis and to a thorough variography study. The geostatistical approach was then applied to the data set, based on different scenarios for the spatial continuity. Implementing this procedure also promoted the development of a computer program that aims to assist on the homogenisation of climate data, while minimising user interaction. Finally, in order to compare the effectiveness of this methodology with the homogenisation methods submitted during the HOME project, the obtained results were evaluated using the same performance metrics. This comparison opens new perspectives for the development of an innovative procedure based on the geostatistical stochastic approach. Acknowledgements: The authors gratefully acknowledge the financial support of "Fundação para a Ciência e Tecnologia" (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 ("GSIMCLI - Geostatistical simulation with local distributions for the homogenization and interpolation of climate data").

  18. Non-Invasive Optical Characterization of Defects in Gallium Arsenide.

    NASA Astrophysics Data System (ADS)

    Cao, Xuezhong

    This work is concerned with the development of a non-invasive comprehensive defect analysis system based on computer-assisted near infrared (NIR) microscopy. Focus was placed on the development of software for quantitative image analysis, contrast enhancement, automated defects density counting, and two-dimensional defect density mapping. Bright field, dark field, phase contrast, and polarized light imaging modes were explored for the analysis of striations, precipitates, decorated and undecorated dislocations, surface and subsurface damage, and local residual strain in GaAs wafers. The origin of the contrast associated with defect image formation in NIR microscopy was analyzed. The local change in the index of refraction about a defect was modelled as a mini-lens. This model can explain reversal of image contrast for dislocations in heavily doped n-type GaAs during defocusing. Defect structures in GaAs crystals grown by the conventional liquid encapsulated Czochralski (LEC) method are found to differ significantly from those grown by the horizontal Bridgman (HB) or vertical gradient freeze (VGF) method. Dislocation densities in HB and VGF GaAs are one to two orders of magnitude lower compared to those in conventional LEC GaAs. The dislocations in HB and VGF GaAs remain predominantly on the {111}/<1 |10> primary slip system and tend to form small-angle subboundaries. Much more complicated dislocation structures are found in conventional LEC GaAs. Dislocation loops, dipoles, and helices were observed, indicating strong interaction between dislocations and point defects in these materials. Precipitates were observed in bulk GaAs grown by the LEC, HB, and VGF methods. Precipitation was found to occur predominantly along dislocation lines, however, discrete particles were also observed in dislocation-free regions of the GaAs matrix. The size of discrete precipitates is much smaller than that of the precipitates along dislocations. Quenching after high temperature annealing at 1150^ circC was found effective in dissolving the precipitates but glide dislocations are generated during the quenching process. STEM/EDX analysis showed that the precipitates are essentially pure arsenic in both undoped and doped GaAs. NIR phase contrast transmission microscopy was found to be very sensitive in detecting surface and subsurface damage on commercial GaAs wafers. Wafers from a number of GaAs manufacturers were examined. It was shown that some GaAs wafers exhibit perfect surface quality, but in many instances they exhibit, to various extents, subsurface damage. Computer-assisted NIR transmission microscopy in a variety of modes is found to be a rapid and non-invasive technique suitable for wafer characterization in a fabline environment. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened by UMI.).

  19. Room Temperature Magnetic Behavior In Nanocrystalline Ni-Doped Zro2 By Microwave-Assisted Polyol Synthesis

    NASA Astrophysics Data System (ADS)

    Parimita Rath, Pragyan; Parhi, Pankaj Kumar; Ranjan Panda, Sirish; Priyadarshini, Barsharani; Ranjan Sahoo, Tapas

    2017-08-01

    This article, deals with a microwave-assisted polyol method to demonstrate a low temperature route < 250°C, to prepare a high temperature cubic zirconia phase. Powder XRD pattern shows broad diffraction peaks suggesting nanometric size of the particles. Magnetic behavior of 1-5 at% Ni doped samples show a threshold for substitutional induced room temperature ferromagnetism up to 3 at% of Ni. TGA data reveals that Ni-doped ZrO2 polyol precursors decompose exothermically below 300°C. IR data confirms the reduction of Zr(OH)4 precipitates to ZrO2, in agreement with the conclusions drawn from the TGA analysis.

  20. Aeromedical aspects of findings from aircraft-assisted pilot suicides in the United States, 1993-2002.

    DOT National Transportation Integrated Search

    2006-03-01

    All aviation accidents are tragic, but few are more avoidable than aircraft-assisted suicide. Aircraft-assisted suicide may precipitate as a result of clinical depression, marital or financial difficulties, or numerous other problems. While aircraft-...

  1. Computer assisted screening, correction, and analysis of historical weather measurements

    NASA Astrophysics Data System (ADS)

    Burnette, Dorian J.; Stahle, David W.

    2013-04-01

    A computer program, Historical Observation Tools (HOB Tools), has been developed to facilitate many of the calculations used by historical climatologists to develop instrumental and documentary temperature and precipitation datasets and makes them readily accessible to other researchers. The primitive methodology used by the early weather observers makes the application of standard techniques difficult. HOB Tools provides a step-by-step framework to visually and statistically assess, adjust, and reconstruct historical temperature and precipitation datasets. These routines include the ability to check for undocumented discontinuities, adjust temperature data for poor thermometer exposures and diurnal averaging, and assess and adjust daily precipitation data for undercount. This paper provides an overview of the Visual Basic.NET program and a demonstration of how it can assist in the development of extended temperature and precipitation datasets using modern and early instrumental measurements from the United States.

  2. Synthesis and characterization of nano-sized zirconia powder synthesized by single emulsion-assisted direct precipitation.

    PubMed

    Chandra, Navin; Singh, Deepesh Kumar; Sharma, Meenakshi; Upadhyay, Ravi Kant; Amritphale, S S; Sanghi, S K

    2010-02-15

    For the first time, single reverse microemulsion-assisted direct precipitation route has been successfully used to synthesize tetragonal zirconia nanoparticles in narrow size range. The synthesized powder was characterized using FT-IR, XRD and HRTEM techniques. The zirconia nanoparticles obtained were spherical in shape and has narrow particle size distribution in the range of 13-31nm and crystallite size in the range of 13-23nm. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Facile solution-precipitation assisted synthesis and luminescence property of greenish-yellow emitting Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Haipeng; Huang, Zhaohui, E-mail: huang118@cugb.edu.cn; Xia, Zhiguo, E-mail: xiazg@ustb.edu.cn

    2016-03-15

    Highlights: • Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphor was prepared by the solution-precipitation assisted route. • The phosphors have satisfactory smooth grain surface and particle size. • It shows greenish-yellow color emission (maximum at 540 nm) upon blue light excitation. • Eu{sup 2+} is coordinated with isolated oxygen atoms and those from PO{sub 4} polyhedra. - Abstract: Greenish-yellow emitting microcrystalline Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphor was successfully prepared by a solution-precipitation assisted high temperature reaction method. Phase structure, morphology and/or luminescence properties of the precursor and the as-prepared phosphors were characterized. The phase-pure Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphorsmore » were obtained with smooth grain surface and particle size of 2–8 μm. Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} exhibits bright greenish-yellow color emission with its maximum at 540 nm upon UV-blue light excitation. The maximum position of the broad emission band is independent on the calcination temperature. The emission intensity increases with increasing calcination temperature due to improved crystallinity. Besides, the presence of two Eu{sup 2+} emission centers in the Ca{sub 6}Ba(PO{sub 4}){sub 4}O crystal lattice was confirmed and the coordination effects are considered concerning the roles of isolated O atoms and those from the PO{sub 4} tetrahedra.« less

  4. Carbon spheres-assisted strategy to prepare mesoporous manganese dioxide for supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Siheng; Graduate University of Chinese Academy of Sciences, Beijing 100039; Qi Li, E-mail: qil@ciac.jl.cn

    Mesoporous MnO{sub 2} microstructures with large specific surface area have been successfully synthesized by an in-situ redox precipitation method in the presence of colloidal carbon spheres. The samples of them had much higher specific surface area, pore size and pore volume than those obtained via routes without carbon spheres. The morphology, chemical compositions and porous nature of products were fully characterized. Electrochemical measurements showed that these mesoporous MnO{sub 2} could function well when used as positive electrode materials for supercapacitor. Ideal electrochemical capacitive performances and cyclic stability after 2000 galvanostatic charge-discharge cycles could be observed in 1 M neutral Na{submore » 2}SO{sub 4} aqueous electrolyte with a working voltage of 1.7 V. - Graphical Abstract: Mesoporous MnO{sub 2} microstructures with large S{sub BET} were successfully synthesized by in-situ redox precipitation method in the presence of colloidal carbon spheres. Electrochemical measurements showed that these mesoporous MnO{sub 2} could be well used as electrode materials for supercapacitor. Highlights: Black-Right-Pointing-Pointer Mesoporous MnO{sub 2} was prepared by in-situ redox method assisted by carbon spheres. Black-Right-Pointing-Pointer S{sub BET}, pore size and volume were higher than MnO{sub 2} obtained without carbon spheres. Black-Right-Pointing-Pointer They could function well when used as electrode materials for supercapacitor. Black-Right-Pointing-Pointer Ideal capacitive behaviors and long cycling life showed after 2000 charge-discharge.« less

  5. Structural, chemical and optical properties of SnO2 NPs obtained by three different synthesis routes

    NASA Astrophysics Data System (ADS)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Depciuch, Joanna; Budziak, Andrzej; Kowal, Andrzej; Parlinska-Wojtan, Magdalena

    2017-08-01

    Polyol (P), chemical precipitation (C) and microwave-assisted (M) syntheses were chosen to produce SnO2 nanoparticles with uniform size and minimum agglomeration. Their structural, chemical and optical properties were investigated using dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), Raman, Fourier Transform Infrared (FTIR) using the Attenuated Total Reflectance (ATR) technique and Ultraviolet-Visible (UV-Vis) spectroscopies. STEM observations showed that the SnO2(P) and SnO2(C) nanoparticles (NPs) are combined into larger agglomerates with heterogeneous thickness, while the microwave-assisted NPs form a uniform thin layer across the TEM grid. The strongest agglomeration of the SnO2(C) NPs, observed by DLS, STEM and UV-Vis is explained by the very moderate amount of water present on the surface of the NPs identified by FTIR spectroscopy. High resolution STEM combined with SAED and X-ray diffraction (XRD) patterns confirmed the crystalline character of the NPs. In the nanoparticles from polyol synthesis, chlorine from the remains of metal precursors during reduction was detected by energy dispersive spectroscopy (EDS), contrary to the NPs obtained by the chemical precipitation and microwave-assisted methods. All three syntheses routes lead to small, 2-10 nm SnO2 NPs, which were the result of the low concentration of Cl ions in the solutions.

  6. Electrostatic Precipitator (ESP) TRAINING MANUAL

    EPA Science Inventory

    The manual assists engineers in using a computer program, the ESPVI 4.0W, that models all elements of an electrostatic precipitator (ESP). The program is a product of the Electric Power Research Institute and runs in the Windows environment. Once an ESP is accurately modeled, the...

  7. Microwave assisted digestion followed by ICP-MS for determination of trace metals in atmospheric and lake ecosystem.

    PubMed

    Ahmed, Manan; Chin, Ying Hui; Guo, Xinxin; Zhao, Xing-Min

    2017-05-01

    The study of trace metals in the atmosphere and lake water is important due to their critical effects on humans, aquatic animals and the geochemical balance of ecosystems. The objective of this study was to investigate the concentration of trace metals in atmospheric and lake water samples during the rainy season (before and after precipitation) between November and December 2015. Typical methods of sample preparation for trace metal determination such as cloud point extraction, solid phase extraction and dispersive liquid-liquid micro-extraction are time-consuming and difficult to perform; therefore, there is a crucial need for development of more effective sample preparation procedure. A convection microwave assisted digestion procedure for extraction of trace metals was developed for use prior to inductively couple plasma-mass spectrometric determination. The result showed that metals like zinc (133.50-419.30μg/m 3 ) and aluminum (53.58-378.93μg/m 3 ) had higher concentrations in atmospheric samples as compared to lake samples before precipitation. On the other hand, the concentrations of zinc, aluminum, chromium and arsenic were significantly higher in lake samples after precipitation and lower in atmospheric samples. The relationship between physicochemical parameters (pH and turbidity) and heavy metal concentrations was investigated as well. Furthermore, enrichment factor analysis indicated that anthropogenic sources such as soil dust, biomass burning and fuel combustion influenced the metal concentrations in the atmosphere. Copyright © 2016. Published by Elsevier B.V.

  8. Determination of total acid content in biomass hydrolysates by solvent-assisted and reaction based headspace gas chromatography.

    PubMed

    Huang, Liu-Lian; Hu, Hui-Chao; Chen, Li-Hui

    2015-11-27

    This work reports on a novel method for the determination of total acid (TA) in biomass hydrolysates by a solvent-assisted and reaction-based headspace gas chromatography (HS-GC). The neutralization reaction between the acids in hydrolysates and bicarbonate in an ethanol (50%) aqueous solution was performed in a closed headspace sample vial, from which the carbon dioxide generated from the reaction was detected by HS-GC. It was found that the addition of ethanol can effectively eliminate the precipitation of some organic acids in the biomass hydrolysates. The results showed that the reaction and headspace equilibration can be achieved within 45min at 70°C; the method has a good precision (RSD<3.27%) and accuracy (recovery of 97.4-105%); the limit of quantification is 1.36μmol. The present method is quite suitable to batch analysis of TA content in hydrolysate for the biorefinery related research. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Nickel hydroxides and related materials: a review of their structures, synthesis and properties

    PubMed Central

    Hall, David S.; Lockwood, David J.; Bock, Christina; MacDougall, Barry R.

    2015-01-01

    This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries. First, the structures of the two known polymorphs, denoted as α-Ni(OH)2 and β-Ni(OH)2, are described. The various types of disorder, which are frequently present in nickel hydroxide materials, are discussed including hydration, stacking fault disorder, mechanical stresses and the incorporation of ionic impurities. Several related materials are discussed, including intercalated α-derivatives and basic nickel salts. Next, a number of methods to prepare, or synthesize, nickel hydroxides are summarized, including chemical precipitation, electrochemical precipitation, sol–gel synthesis, chemical ageing, hydrothermal and solvothermal synthesis, electrochemical oxidation, microwave-assisted synthesis, and sonochemical methods. Finally, the known physical properties of the nickel hydroxides are reviewed, including their magnetic, vibrational, optical, electrical and mechanical properties. The last section in this paper is intended to serve as a summary of both the potentially useful properties of these materials and the methods for the identification and characterization of ‘unknown’ nickel hydroxide-based samples. PMID:25663812

  10. Spatio-temporal analysis of the extreme precipitation by the L-moment-based index-flood method in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Yin, Yixing; Chen, Haishan; Xu, Chongyu; Xu, Wucheng; Chen, Changchun

    2014-05-01

    The regionalization methods which 'trade space for time' by including several at-site data records in the frequency analysis are an efficient tool to improve the reliability of extreme quantile estimates. With the main aims of improving the understanding of the regional frequency of extreme precipitation and providing scientific and practical background and assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region, in this paper, L-moment-based index-flood (LMIF) method, one of the popular regionalization methods, is used in the regional frequency analysis of extreme precipitation; attention was paid to inter-site dependence and its influence on the accuracy of quantile estimates, which hasn't been considered for most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, Generalized extreme-value (GEV) and Generalized Normal (GNO) distributions were identified as the best-fit distributions for most of the sub regions. Estimated quantiles for each region were further obtained. Monte-Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root mean square errors (RMSEs) were bigger and the 90% error bounds were wider with inter-site dependence than those with no inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with return period of 100 years were obtained which indicated that there are two regions with the highest precipitation extremes (southeastern coastal area of Zhejiang Province and the southwest part of Anhui Province) and a large region with low precipitation extremes in the north and middle parts of Zhejiang Province, Shanghai City and Jiangsu Province. However, the central areas with low precipitation extremes are the most developed and densely populated regions in the study area, thus floods will cause great loss of human life and property damage. These findings will contribute to formulating the regional development strategies for policymakers and stakeholders in water resource management against the menaces of frequently emerged floods.

  11. Evaluation of sample preparation methods for the analysis of papaya leaf proteins through two-dimensional gel electrophoresis.

    PubMed

    Rodrigues, Silas Pessini; Ventura, José Aires; Zingali, R B; Fernandes, P M B

    2009-01-01

    A variety of sample preparation protocols for plant proteomic analysis using two-dimensional gel electrophoresis (2-DE) have been reported. However, they usually have to be adapted and further optimised for the analysis of plant species not previously studied. This work aimed to evaluate different sample preparation protocols for analysing Carica papaya L. leaf proteins through 2-DE. Four sample preparation methods were tested: (1) phenol extraction and methanol-ammonium acetate precipitation; (2) no precipitation fractionation; and the traditional trichloroacetic acid-acetone precipitation either (3) with or (4) without protein fractionation. The samples were analysed for their compatibility with SDS-PAGE (1-DE) and 2-DE. Fifteen selected protein spots were trypsinised and analysed by matrix-assisted laser desorption/ionisation time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS), followed by a protein search using the NCBInr database to accurately identify all proteins. Methods number 3 and 4 resulted in large quantities of protein with good 1-DE separation and were chosen for 2-DE analysis. However, only the TCA method without fractionation (no. 4) proved to be useful. Spot number and resolution advances were achieved, which included having an additional solubilisation step in the conventional TCA method. Moreover, most of the theoretical and experimental protein molecular weight and pI data had similar values, suggesting good focusing and, most importantly, limited protein degradation. The described sample preparation method allows the proteomic analysis of papaya leaves by 2-DE and mass spectrometry (MALDI-TOF-MS/MS). The methods presented can be a starting point for the optimisation of sample preparation protocols for other plant species.

  12. Synthesis of WO{sub 3} nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-Martínez, D.; Martínez-de la Cruz, A., E-mail: azael70@yahoo.com.mx; López-Cuéllar, E.

    Graphical abstract: Display Omitted Highlights: ► WO{sub 3} nanoparticles were synthesized by a simple citric acid-assisted precipitation. ► WO{sub 3} photocatalyst was able to the partial mineralization of rhB, IC and MO. ► WO{sub 3} can be considered as a photocatalyst active under visible light irradiation. -- Abstract: WO{sub 3} nanoparticles were synthesized by citric acid-assisted precipitation method using a 1:1.5 molar ratio of ammonium paratungstate hydrate (H{sub 42}N{sub 10}O{sub 42}W{sub 12}·xH{sub 2}O):citric acid (C{sub 6}H{sub 8}O{sub 7}). The formation of monoclinic crystal structure of WO{sub 3} at different temperatures was confirmed by X-ray powder diffraction (XRD). The characterization ofmore » the samples synthesized was complemented by transmission electron microscopy (TEM), Brunauer–Emmitt–Teller surface area (BET) and diffuse reflectance spectroscopy (DRS). According to the thermal treatment followed during the synthesis of WO{sub 3}, the morphology of the nanoparticles formed was characterized by rectangular and ovoid shapes. The photocatalytic activity of WO{sub 3} obtained under different experimental conditions was evaluated in the degradation of rhodamine B (rhB), indigo carmine (IC), methyl orange (MO), and Congo red (CR) in aqueous solution under UV and UV–vis radiation. The highest photocatalytic activity was observed in the sample obtained by thermal treatment at 700 °C. In general, the sequence of degradation of the organic dyes was: indigo carmine (IC) > rhodamine B (rhB) > methyl orange (MO) > Congo red (CR). The mineralization degree of organic dyes by WO{sub 3} photocatalysts was determined by total organic carbon analysis (TOC) reaching percentages of mineralization of 82% (rhB), 85% (IC), 28% (MO), and 7% (CR) for 96 h of lamp irradiation.« less

  13. Ultrasensitive detection of nucleic acids and proteins using quartz crystal microbalance and surface plasmon resonance sensors based on target-triggering multiple signal amplification strategy.

    PubMed

    Sun, Wenbo; Song, Weiling; Guo, Xiaoyan; Wang, Zonghua

    2017-07-25

    In this study, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) sensors were combined with template enhanced hybridization processes (TEHP), rolling circle amplification (RCA) and biocatalytic precipitation (BCP) for ultrasensitive detection of DNA and protein. The DNA complementary to the aptamer was released by the specific binding of the aptamer to the target protein and then hybridized with the capture probe and the assistant DNA to form a ternary "Y" junction structure. The initiation chain was generated by the template-enhanced hybridization process which leaded to the rolling circle amplification reaction, and a large number of repeating unit sequences were formed. Hybridized with the enzyme-labeled probes, the biocatalytic precipitation reaction was further carried out, resulting in a large amount of insoluble precipitates and amplifying the detection signal. Under the optimum conditions, detection limits as low as 43 aM for target DNA and 53 aM for lysozyme were achieved. In addition, this method also showed good selectivity and sensitivity in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Hierarchically Superstructured Metal Sulfides: Facile Perturbation-Assisted Nanofusion Synthesis and Visible Light Photocatalytic Characterizations

    DOE PAGES

    Yue, Yanfeng; Li, Yunchao; Bridges, Craig A.; ...

    2016-11-29

    A novel and simple perturbation-assisted nanofusion (PNF) synthetic strategy was developed for the fabrication of stable hierarchically superstructured metal sulfides. This promising approach, based on a kinetically controlled precipitation to simultaneously condense and re-dissolve polymorphic nanocrystallites, provides the resultant samples with a unique mesoporous framework. This PNF approach is environmentally friendly, produces gram-scale products in a matter of hours, and is complimentary to traditional hard or soft templating methods for the construction of mesoporous metal sulfides. PNF derived hierarchical porous CdS exhibited a vastly improved photocatalytic performance over its commercial bulk counterpart under visible light irradiation, demonstrating the advantage ofmore » the porous morphology for photocatalysis resulting from the enlarged surface area and the easy accessibility of the mesopores.« less

  15. Synthesis of zirconium dioxide by ultrasound assisted precipitation: effect of calcination temperature.

    PubMed

    Prasad, Krishnamurthy; Pinjari, D V; Pandit, A B; Mhaske, S T

    2011-09-01

    Nanostructured zirconium dioxide was synthesized from zirconyl nitrate using both conventional and ultrasound assisted precipitation in alkaline medium. The synthesized samples were calcinated at temperatures ranging from 400°C to 900°C in steps of 100°C. The ZrO(2) specimens were characterized using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The thermal characteristics of the samples were studied via Differential Scanning Calorimetry-Thermo-Gravimetry Analysis (DSC-TGA). The influence of the calcination temperature on the phase transformation process from monoclinic to tetragonal to cubic zirconia and its consequent effect on the crystallite size and % crystallinity of the synthesized ZrO(2) was studied and interpreted. It was observed that the ultrasound assisted technique helped to hasten to the phase transformation and also at some point resulted in phase stabilization of the synthesized zirconia. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.

    PubMed

    Abuzar, Sharif Md; Hyun, Sang-Min; Kim, Jun-Hee; Park, Hee Jun; Kim, Min-Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2018-03-01

    Poor water solubility and poor bioavailability are problems with many pharmaceuticals. Increasing surface area by micronization is an effective strategy to overcome these problems, but conventional techniques often utilize solvents and harsh processing, which restricts their use. Newer, green technologies, such as supercritical fluid (SCF)-assisted particle formation, can produce solvent-free products under relatively mild conditions, offering many advantages over conventional methods. The antisolvent properties of the SCFs used for microparticle and nanoparticle formation have generated great interest in recent years, because the kinetics of the precipitation process and morphologies of the particles can be accurately controlled. The characteristics of the supercritical antisolvent (SAS) technique make it an ideal tool for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review article focuses on SCFs and their properties, as well as the fundamentals of overcoming poorly water-soluble drug properties by micronization, crystal morphology control, and formation of composite solid dispersion nanoparticles with polymers and/or surfactants. This article also presents an overview of the main aspects of the SAS-assisted particle precipitation process, its mechanism, and parameters, as well as our own experiences, recent advances, and trends in development. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Study of lattice strain and optical properties of nanocrystalline SnO2

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseem; Khan, Shakeel; Bhargava, Richa; Ansari, Mohd Mohsin Nizam

    2018-05-01

    Nanocrystalline SnO2 has been synthesized by co-precipitation method by using two solvents (water and ethylene glycol). The structure and surface morphology were investigated using XRD and scanning electron microscope (SEM). The optical properties were studied using diffused reflectance spectroscopy (DRS). From the XRD analysis, the prepared materials are found to be pure crystalline with tetragonal rutile structure. The lattice strain and crystallite size, were calculated using Williamson-Hall method, are found to be 0.00413 & 16.3 nm in water assisted SnO2 and 0.00495 & 35.6 nm for EG assisted SnO2. Study of surface morphology of the samples was carried out using SEM. It has been seen that the solvents which are used in synthesis can also alter the optical properties of the materials. The optical band gap of the water based SnO2 and EG based SnO2 are found to be 3.92eV and 3.86eV respectively.

  18. Optimisation of olive oil phenol extraction conditions using a high-power probe ultrasonication.

    PubMed

    Jerman Klen, T; Mozetič Vodopivec, B

    2012-10-15

    A new method of ultrasound probe assisted liquid-liquid extraction (US-LLE) combined with a freeze-based fat precipitation clean-up and HPLC-DAD-FLD-MS detection is described for extra virgin olive oil (EVOO) phenol analysis. Three extraction variables (solvent type; 100%, 80%, 50% methanol, sonication time; 5, 10, 20 min, extraction steps; 1-5) and two clean-up methods (n-hexane washing vs. low temperature fat precipitation) were studied and optimised with aim to maximise extracts' phenol recoveries. A three-step extraction of 10 min with pure methanol (5 mL) resulted in the highest phenol content of freeze-based defatted extracts (667 μg GAE g(-1)) from 10 g of EVOO, providing much higher efficiency (up to 68%) and repeatability (up to 51%) vs. its non-sonicated counterpart (LLE-agitation) and n-hexane washing. In addition, the overall method provided high linearity (r(2)≥0.97), precision (RSD: 0.4-9.3%) and sensitivity with LODs/LOQs ranging from 0.03 to 0.16 μg g(-1) and 0.10-0.51 μg g(-1) of EVOO, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Water-resources investigations in Wisconsin, 1999

    USGS Publications Warehouse

    Maertz, D. E.

    1999-01-01

    Low flows occurred at 21 gaging stations where the annual minimum 7-consecutive day average flows (Q7) had recurrence intervals of 5 or more years. Precipitation was well below normal from July through September in northern Wisconsin. Monthly precipitation values were 4.46, 5.69, and 4.24 inches below normal in northwestern, north central, and northeastern Wisconsin, respectively, in the July through September period (from tables provided by Lyle Anderson, Program Assistant, UW-Extension, Geological and Natural History Survey, written commun., 1999). The precipitation for the April to October period was

  20. Intercomparison of Total Atmospheric Precipitable Water Vapor Retrieval Products during the 2009 and 2010 CAPABLE Summer Intensives

    NASA Astrophysics Data System (ADS)

    Pippin, M. R.; Knepp, T. N.; Bedka, S.; Cowen, L.; Murray, J.; Deslover, D.; Feltz, W.; Yesalusky, M. A.; Smith, W.; Cede, A.; Abuhassan, N.; Herman, J. R.; Szykamn, J.

    2011-12-01

    In support of NASA's GEO-CAPE mission and Air Quality Applied Sciences, the Chemistry and Physics Atmospheric Boundary Layer Experiment (CAPABLE) site at NASA Langley Research Center has been established in coordination with Environmental Protection Agency (EPA) and Virginia Department of Environmental Quality (VA DEQ) to assess the relationship between high temporal resolution measurements from space and continuous in situ surface observations. During the 2009 and 2010 CAPABLE summer intensives, three methods for determining total atmospheric precipitable water vapor were utilized. Continuous total column measurements of water vapor were provided using a Pandora spectrometer, the DOE/NSTec Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) operated by the Hampton University and the University of Wisconsin Atmospheric Emitted Radiance Interferometer (AERI). Continuous meteorological parameters were measured on a 5m tower and rawinsondes were launched intermittently throughout both measurement periods. We present preliminary results of the intercomparison of total precipitable water vapor from the three instrumental methods and compare with estimated values from dew point temperature and satellite overpass data. Results from this study will have applications to satellite validation and Pandora retrieval algorithm development. Disclaimer: Although this work was reviewed by the U.S. Environmental Protection Agency and National Aeronautics and Space Administration, and approved for publication, it may not necessarily reflect official Agency policy.

  1. Effects of Synchronous Rolling on Microstructure, Hardness, and Wear Resistance of Laser Multilayer Cladding

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Zha, G. C.; Xi, M. Z.; Gao, S. Y.

    2018-03-01

    A synchronous rolling method was proposed to assist laser multilayer cladding, and the effects of this method on microstructure, microhardness, and wear resistance were studied. Results show that the microstructure and mechanical properties of the traditional cladding layer exhibit periodic inhomogeneity. Synchronous rolling breaks the columnar dendrite crystals to improve the uniformity of the organization, and the residual plastic energy promotes the precipitation of strengthening phases, as CrB, M7C3, etc. The hardness and wear resistance of the extruded cladding layer increase significantly because of the grain refinement, formation of dislocations, and dispersion strengthening. These positive significances of synchronous rolling provide a new direction for laser cladding technology.

  2. Simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese from electrolytic manganese residue by air under calcium oxide assist.

    PubMed

    Chen, Hongliang; Liu, Renlong; Shu, Jiancheng; Li, Wensheng

    2015-01-01

    Leaching tests of electrolytic manganese residue (EMR) indicated that high contents of soluble manganese and ammonia-nitrogen posed a high environmental risk. This work reports the results of simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese by air under calcium oxide assist. The ammonia-nitrogen stripping rate increased with the dosage of CaO, the air flow rate and the temperature of EMR slurry. Stripped ammonia-nitrogen was absorbed by a solution of sulfuric acid and formed soluble (NH4)2SO4 and (NH4)3H(SO4)3. The major parameters that effected soluble manganese precipitation were the dosage of added CaO and the slurry temperature. Considering these two aspects, the efficient operation conditions should be conducted with 8 wt.% added CaO, 60°C, 800 mL min(-1) air flow rate and 60-min reaction time. Under these conditions 99.99% of the soluble manganese was precipitated as Mn3O4, which was confirmed by XRD and SEM-EDS analyses. In addition, the stripping rate of ammonia-nitrogen was 99.73%. Leaching tests showed the leached toxic substances concentrations of the treated EMR met the integrated wastewater discharge standard of China (GB8978-1996).

  3. Biosurfactant assisted synthesis of Fe3O4@rhamnolipid@BiOBr and its behaviour in plasma discharge system

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yu, Zebin; Hou, Yanping; Peng, Zhenbo; Zhang, Li; Meng, Zhengcheng; Li, Fengyuan; He, Jun; Huang, Junlin

    2016-06-01

    A novel Fe3O4@rhamnolipid@BiOBr (FRB) was synthesized via a modified precipitation method and applied in the plasma discharge system. Rhamnolipid was used as biosurfactant to modify Fe3O4 by interacting with Fe3O4 via its aliphatic chain. The results show that the prepared FRB magnetic photocatalyst exhibited excellent photocatalytic activity and Fenton reaction behavior in the plasma discharge system. Meanwhile, the addition of FRB could improve energy efficiency of defluorination by 21.29 mg kW-1 h-1.

  4. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black.

    PubMed

    Wang, Feng-Lei; Zhang, Li-Ying; Zhang, Ya-Fei

    2008-11-22

    SiC nanowires have been synthesized at 1,600 degrees C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO(2) nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism.

  5. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol.

    PubMed

    Tabasso, Silvia; Grillo, Giorgio; Carnaroglio, Diego; Calcio Gaudino, Emanuela; Cravotto, Giancarlo

    2016-03-26

    The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating "greener" industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone), a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA)-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA) is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.

  6. Cellulase-assisted extraction of polysaccharides from Cucurbita moschata and their antibacterial activity.

    PubMed

    Qian, Zhi-Gang

    2014-01-30

    In this study, cellulase-assisted extraction of water soluble polysaccharides from pumpkin (Cucurbita moschata) and their antibacterial activity were investigated. The polysaccharides yield was monitored during the extraction process. The optimum extraction conditions were determined as follows: time, 40 min; temperature, 55°C; pH, 4.5; and cellulase amount, 4,000 U/g. The extracts were centrifuged, filtered, proteins removed by Sevag method, concentrated to approximately 15% (w/v), precipitated with 5 volumes of absolute ethanol, freeze-dried, and pulverized to yield a water soluble powder of pumpkin polysaccharides (PP). The sugar content of the product was 68.3%, and the yield was 17.34% (w/w), respectively. The PP had high antibacterial activity against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli at the concentration of 100 mg/mL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones

    NASA Astrophysics Data System (ADS)

    Jain, Divya; Seidman, David N.; Barrick, Erin J.; DuPont, John N.

    2018-04-01

    Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT-treated base-metal. While C in the QLT-treated base-metal is consumed primarily in MC and M2C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M2C carbide precipitates. The role of M2C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.

  8. Improved sample treatment for the determination of insoluble soap in sewage sludge samples by liquid chromatography with fluorescence detection.

    PubMed

    Cantarero, Samuel; Zafra-Gómez, A; Ballesteros, O; Navalón, A; Vílchez, J L; Crovetto, G; Verge, C; de Ferrer, J A

    2010-09-15

    A new selective and sensitive method for the determination of insoluble fatty acid salts (soap) in sewage sludge samples is proposed. The method involves a clean up of sample with petroleum ether, the conversion of calcium and magnesium insoluble salts into soluble potassium salts, potassium salts extraction with methanol, and a derivatization procedure previous to the liquid chromatography with fluorescence detection (LC-FLD) analysis. Three different extraction techniques (Soxhlet, microwave-assisted extraction and ultrasounds) were compared and microwave-assisted extraction (MAE) was selected as appropriate for our purpose. This allowed to reduce the extraction time and solvent waste (50 mL of methanol in contrast with 250 mL for Soxhlet procedure). The absence of matrix effect was demonstrated with two standards (C(13:0) and C(17:0)) that are not commercials and neither of them has been detected in sewage sludge samples. Therefore, it was possible to evaluate the matrix effect since both standards have similar environmental behaviour (adsorption and precipitation) to commercial soaps (C(10:0)-C(18:0)). The method was successfully applied to samples from different sources and consequently, with different composition. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ryu, Won-Hee; Lim, Sung-Jin; Kim, Won-Keun; Kwon, HyukSang

    2014-07-01

    Dumbbell-like microsphere carbonate precursors including multi-transition metal components (Ni1/3Mn1/3Co1/3CO3) assembled with nano-building blocks were synthesized by urea-assisted solvo/hydrothermal method, and layered cathode materials (LiNi1/3Mn1/3Co1/3O2) were subsequently prepared using the similarly shaped carbonate precursors for Li-ion batteries. For the synthesis of hierarchical microsphere structures, the partial addition of viscous organic solvent (e.g. ethylene glycol) in aqueous solution played a crucial role, not only in suppressing the sudden particle growth but also in regulating the directional crystallization of carbonate particles on the surface. The dumbbell-like LiNi1/3Mn1/3Co1/3O2 assembled with nanocubes prepared via the urea-assisted solvo/hydrothermal method exhibited better electrochemical characteristics, such as initial discharge capacity, cyclic performance, and rate-capability as a cathode material of Li-ion batteries, compared with the LiNi1/3Mn1/3Co1/3O2 materials prepared via the conventional co-precipitation method.

  10. Late-Eighteenth-Century Precipitation Reconstructions from James Madison's Montpelier Plantation.

    NASA Astrophysics Data System (ADS)

    Druckenbrod, Daniel L.; Mann, Michael E.; Stahle, David W.; Cleaveland, Malcolm K.; Therrell, Matthew D.; Shugart, Herman H.

    2003-01-01

    This study presents two independent reconstructions of precipitation from James Madison's Montpelier plantation at the end of the eighteenth century. The first is transcribed directly from meteorological diaries recorded by the Madison family for 17 years and reflects the scientific interests of James Madison and Thomas Jefferson. In his most active period as a scientist, Madison assisted Jefferson by observing the climate and fauna in Virginia to counter the contemporary scientific view that the humid, cold climate of the New World decreased the size and number of its species. The second reconstruction is generated using tree rings from a forest in the Montpelier plantation and connects Madison's era to the modern instrumental precipitation record. These trees provide a significant reconstruction of both early summer and prior fall precipitation. Comparison of the dendroclimatic and diary reconstructions suggests a delay in the seasonality of precipitation from Madison's era to the mid-twentieth century. Furthermore, the dendroclimatic reconstructions of early summer and prior fall precipitation appear to track this shift in seasonality.

  11. [Prof. Morawiecki: the oculist and outstanding expert in immunology, immunopathology and serology].

    PubMed

    Raczyńska, K; Iwaszkiewicz-Bilikiewicz, B

    2000-01-01

    Jerzy Morawiecki (1910-1997) was a man with versatile interests. Being an assistant of Professor Władysław Szumowski in the Jagiellonian University he published papers devoted to the history of medicine. After getting his medical degree in 1937 he worked in the Public Health Department in Warsaw under the very well known Ludwik Hirszfeld. There he carried out pioneer studies on the blood groups, the very beginning of a new science - immunology which moulded the scientific interests to which he was faithful for the rest of his life. Under the Nazi occupation of Warsaw he managed to send his paper on blood groups to Switzerland where it was published in 1941. Between 1946 and 1992 he published 18 papers in the field of immunology mainly of the eye. He did pioneer work on the precipitation of antigens and antibodies. The phenomenon of precipitation lines in the cornea is quoted in the literature as the "Morawiecki phenomenon" or as "Morawiecki' lines". He presented the original hypothesis of immunotherapy of intravitreal hemorrhages - the method of acceleration of hemorrhage absorption. The use of Anti-RhD antibodies subsequently became the most effective method of intraocular hemorrhages.

  12. Utilising monitoring and modelling of estuarine environments to investigate catchment conditions responsible for stratification events in a typically well-mixed urbanised estuary

    NASA Astrophysics Data System (ADS)

    Lee, Serena B.; Birch, Gavin F.

    2012-10-01

    Estuarine health is affected by contamination from stormwater, particularly in highly-urbanised environments. For systems where catchment monitoring is insufficient, novel techniques must be employed to determine the impact of urban runoff on receiving water bodies. In the present work, estuarine monitoring and modelling were successfully employed to determine stormwater runoff volumes and establish an appropriate rainfall/runoff relationship capable of replicating fresh-water discharge due to the full range of precipitation conditions in the Sydney Estuary, Australia. Using estuary response to determine relationships between catchment rainfall and runoff is a widely applicable method and may be of assistance in the study of waterways where monitoring fluvial discharges is not practical or is beyond the capacity of management authorities. For the Sydney Estuary, the SCS-CN method replicated rainfall/runoff and was applied in numerical modelling experiments investigating the hydrodynamic characteristics affecting stratification and estuary recovery following high precipitation. Numerical modelling showed stratification in the Sydney Estuary was dominated by fresh-water discharge. Spring tides and up-estuary winds contributed to mixing and neap tides and down-estuary winds enhanced stratification.

  13. WetNet: Using SSM/I data interactively for global distribution of tropical rainfall and precipitable water

    NASA Technical Reports Server (NTRS)

    Zipser, Edward J.; Mcguirk, James P.

    1993-01-01

    The research objectives were the following: (1) to use SSM/I to categorize, measure, and parameterize effects of rainfall systems around the globe, especially mesoscale convective systems; (2) to use SSM/I to monitor key components of the global hydrologic cycle, including tropical rainfall and precipitable water, and links to increasing sea surface temperatures; and (3) to assist in the development of efficient methods of exchange of massive satellite data bases and of analysis techniques, especially their use at a university. Numerous tasks have been initiated. First and foremost has been the integration and startup of the WetNet computer system into the TAMU computer network. Scientific activity was infeasible before completion of this activity. Final hardware delivery was not completed until October 1991, after which followed a period of identification and solution of several hardware and software and software problems. Accomplishments representing approximately four months work with the WetNEt system are presented.

  14. Microwave-assisted extraction at atmospheric pressure coupled to different clean-up methods for the determination of organophosphorus pesticides in olive and avocado oil.

    PubMed

    Fuentes, Edwar; Báez, María E; Díaz, Juan

    2009-12-18

    An effective extraction method was devised for the determination of organophosphorus pesticides (OPPs) in olive and avocado oil samples, using atmospheric pressure microwave-assisted liquid-liquid extraction (APMAE) and solid-phase extraction or low-temperature precipitation as clean-up step. A simple glass system equipped with an air-cooled condenser was designed as an extraction vessel. The pesticides were partitioned between acetonitrile and oil solution in hexane. Analytical determinations were carried out by gas chromatography-flame photometric detection and gas chromatography-tandem mass spectrometry, using a triple quadrupole mass analyzer, for confirmation purposes. Several factors influencing the extraction efficiency were investigated and optimized through fractional factorial design and Doehlert design. Under optimal conditions the recovery of pesticides from oil at 0.025 microg g(-1) ranged from 71% to 103%, except for fenthion in avocado oil, with RSDs < or = 13% (n=5). The LOQ for the entire method ranged from 0.004 to 0.015 microg g(-1). Finally, the proposed method was successfully applied to the extraction and determination of the selected pesticides in 20 commercially packed extra virgin olive oils and four commercially packed avocado oils produced in Chile. Detectable residues of different OPPs were observed in 85% of samples.

  15. Assessing North American multimodel ensemble (NMME) seasonal forecast skill to assist in the early warning of hydrometeorological extremes over East Africa

    USGS Publications Warehouse

    Shukla, Shraddhanand; Roberts, Jason B.; Hoell. Andrew,; Funk, Chris; Robertson, Franklin R.; Kirtmann, Benjamin

    2016-01-01

    The skill of North American multimodel ensemble (NMME) seasonal forecasts in East Africa (EA), which encompasses one of the most food and water insecure areas of the world, is evaluated using deterministic, categorical, and probabilistic evaluation methods. The skill is estimated for all three primary growing seasons: March–May (MAM), July–September (JAS), and October–December (OND). It is found that the precipitation forecast skill in this region is generally limited and statistically significant over only a small part of the domain. In the case of MAM (JAS) [OND] season it exceeds the skill of climatological forecasts in parts of equatorial EA (Northern Ethiopia) [equatorial EA] for up to 2 (5) [5] months lead. Temperature forecast skill is generally much higher than precipitation forecast skill (in terms of deterministic and probabilistic skill scores) and statistically significant over a majority of the region. Over the region as a whole, temperature forecasts also exhibit greater reliability than the precipitation forecasts. The NMME ensemble forecasts are found to be more skillful and reliable than the forecast from any individual model. The results also demonstrate that for some seasons (e.g. JAS), the predictability of precipitation signals varies and is higher during certain climate events (e.g. ENSO). Finally, potential room for improvement in forecast skill is identified in some models by comparing homogeneous predictability in individual NMME models with their respective forecast skill.

  16. Mass spectrometric identification of water-soluble gold nanocluster fractions from sequential size-selective precipitation.

    PubMed

    Yang, Xiupei; Su, Yan; Paau, Man Chin; Choi, Martin M F

    2012-02-07

    This paper presents a simple and convenient methodology to separate and characterize water-soluble gold nanocluster stabilized with penicillamine ligands (AuNC-SR) in aqueous medium by sequential size-selective precipitation (SSSP) and mass spectrometry (MS). The highly polydisperse crude AuNC-SR product with an average core diameter of 2.1 nm was initially synthesized by a one-phase solution method. AuNCs were then precipitated and separated successively from larger to smaller ones by progressively increasing the concentration of acetone in the aqueous AuNCs solution. The SSSP fractions were analyzed by UV-vis spectroscopy, matrix-assisted laser desorption/ionization time-of-flight-MS, and thermogravimetric analysis (TGA). The MS and TGA data confirmed that the fractions precipitated from 36, 54, 72, and 90% v/v acetone (F(36%), F(54%), F(72%), and F(90%)) comprised families of close core size AuNCs with average molecular formulas of Au(38)(SR)(18), Au(28)(SR)(15), Au(18)(SR)(12), and Au(11)(SR)(8), respectively. In addition, F(36%), F(54%), F(72%), and F(90%) contained also the typical magic-sized gold nanoparticles of Au(38), Au(25), Au(18), and Au(11), respectively, together with some other AuNCs. This study shed light on the potential use of SSSP for simple and large-scale preliminary separation of polydisperse water-soluble AuNCs into different fractions with a relatively narrower size distribution. © 2012 American Chemical Society

  17. A facile synthesis of strong near infrared fluorescent layered double hydroxide nanovehicles with an anticancer drug for tumor optical imaging and therapy

    NASA Astrophysics Data System (ADS)

    Chen, Chunping; Yee, Lee Kim; Gong, Hua; Zhang, Yong; Xu, Rong

    2013-05-01

    In this work, a new multifunctional nanovehicle for tumor optical imaging and therapy was developed using Y2O3:Er3+,Yb3+ nanoparticles as near infrared fluorescent nanophosphors, and MgAl-layered double hydroxide (LDH) nanosheets as anticancer drug nanovehicles. Monodispersed Y2O3:Er3+,Yb3+ nanophosphors were readily synthesized by the urea assisted homogenous precipitation method. Hierarchically structured LDH nanosheets intercalated with an anticancer drug, fluorouracil (5FU), were deposited on the surface of Y2O3:Er3+,Yb3+@SiO2 by a simple precipitation method followed by hydrothermal treatment. The resultant Y2O3:Er3+,Yb3+@SiO2@LDH-5FU nanovehicles exhibit strong red upconversion fluorescence under the excitation of a 980 nm laser, which allows tracking of the nanovehicles after localization in cancer cells. A better anticancer efficiency was obtained over the nanovehicles than the free drug which can be attributed to their positively charged surfaces for favorable interaction with the negatively charged cell membranes. The multifunctional nanovehicles designed in this work are expected to be promising material candidates for simultaneous tumor optical imaging and therapy.In this work, a new multifunctional nanovehicle for tumor optical imaging and therapy was developed using Y2O3:Er3+,Yb3+ nanoparticles as near infrared fluorescent nanophosphors, and MgAl-layered double hydroxide (LDH) nanosheets as anticancer drug nanovehicles. Monodispersed Y2O3:Er3+,Yb3+ nanophosphors were readily synthesized by the urea assisted homogenous precipitation method. Hierarchically structured LDH nanosheets intercalated with an anticancer drug, fluorouracil (5FU), were deposited on the surface of Y2O3:Er3+,Yb3+@SiO2 by a simple precipitation method followed by hydrothermal treatment. The resultant Y2O3:Er3+,Yb3+@SiO2@LDH-5FU nanovehicles exhibit strong red upconversion fluorescence under the excitation of a 980 nm laser, which allows tracking of the nanovehicles after localization in cancer cells. A better anticancer efficiency was obtained over the nanovehicles than the free drug which can be attributed to their positively charged surfaces for favorable interaction with the negatively charged cell membranes. The multifunctional nanovehicles designed in this work are expected to be promising material candidates for simultaneous tumor optical imaging and therapy. Electronic supplementary information (ESI) available: TEM images of Y2O3:Er3+,Yb3+@SiO2 synthesized by using different amounts of TEOS, and confocal scanning laser microscopy images (Z stack) of MCF-7 cells incubated with Y2O3:Er3+,Yb3+@SiO2@LDH-5FU for 30 min and 24 h. See DOI: 10.1039/c3nr00781b

  18. Field and modelling investigations of fresh-water plume behaviour in response to infrequent high-precipitation events, Sydney Estuary, Australia

    NASA Astrophysics Data System (ADS)

    B., Serena; Lee | Gavin, F.; Birch | Charles, J.; Lemckert

    2011-05-01

    Runoff from the urban environment is a major contributor of non-point source contamination for many estuaries, yet the ultimate fate of this stormwater within the estuary is frequently unknown in detail. The relationship between catchment rainfall and estuarine response within the Sydney Estuary (Australia) was investigated in the present study. A verified hydrodynamic model (Environmental Fluid Dynamics Computer Code) was utilised in concert with measured salinity data and rainfall measurements to determine the relationship between rainfall and discharge to the estuary, with particular attention being paid to a significant high-precipitation event. A simplified rational method for calculating runoff based upon daily rainfall, subcatchment area and runoff coefficients was found to replicate discharge into the estuary associated with the monitored event. Determining fresh-water supply based upon estuary conditions is a novel technique which may assist those researching systems where field-measured runoff data are not available and where minor field-measured information on catchment characteristics are obtainable. The study concluded that since the monitored fresh-water plume broke down within the estuary, contaminants associated with stormwater runoff due to high-precipitation events (daily rainfall > 50 mm) were retained within the system for a longer period than was previously recognised.

  19. Barrier Effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from Tracking MJO Precipitation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Ling, J.

    2016-12-01

    To advance the study of the barrier effect of the Indo-Pacific Maritime Continent (MC) on the MJO, we propose two criteria to judge explanations for this phenomenon. The first one is that such explanations should include specific features of the MC, namely, its intricate land-sea distributions and elevated terrains. The second is that they should include mechanisms for some MJO events to overcome the barrier effect as well as the barrier effect itself. Guided by these criteria, we have used a precipitation-tracking method to identify MJO events, distinguish those that propagate across the MC (MJO-C) from those that are blocked by the MC (MJO-B), and compare these two types of MJO events and their large-scale environments. The barrier effect cannot be explained in terms of the strength and horizontal scale or distributions of MJO convection as it approaches the MC from the Indian Ocean. A distinction between MJO-B and MJO-C is their ratios of precipitation over the sea vs. land in the MC. MJO events may propagate through the MC when their convection over the sea of the MC is sufficiently developed and dominates that over land. This may happen for two reasons. One is stronger precipitation over land that occurs before the arrival of MJO convection centers, which is assisted by greater low-level moisture flux convergence over the MC. This stronger "vanguard of precipitation" for MJO-C would make the ground wetter and thus reduce land-locked diurnal convection that has been proposed to be detrimental to MJO propagation through the MC. Another possible reason for the more vigorous development of MJO-C convection over the sea is higher SST in the MC before MJO convection centers enter the region.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Hongmei; Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zhu, Wei

    Highlights: {yields} Flower-like Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O was gained with Na{sub 3}Cit assisted precipitation method. {yields} The mechanism of the flower-like Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O formation was proposed. {yields} The Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O and Sm{sub 2}O{sub 3} samples exhibited obviously different PL spectra. {yields} Ln{sub 2}(C{sub 2}O{sub 4}){sub 3}.nH{sub 2}O (Ln = Gd, Dy, Lu, Y) also were achieved by the simple method. -- Abstract: Flower-like Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O had been synthesized by a facile complex agent assisted precipitation method. The flower-like Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O was characterizedmore » by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, thermogravimetry-differential thermal analysis and photoluminescence. The possible growth mechanism of the flower-like Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O was proposed. To extend this method, other Ln{sub 2}(C{sub 2}O{sub 4}){sub 3}.nH{sub 2}O (Ln = Gd, Dy, Lu, Y) with different morphologies also had been prepared by adjusting different rare earth precursors. Further studies revealed that besides the reaction conditions and the additive amount of complex agents, the morphologies of the as-synthesised lanthanide oxalates were also determined by the rare earth ions. The Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O and Sm{sub 2}O{sub 3} samples exhibited different photoluminescence spectra, which was relevant to Sm{sup 3+} energy level structure of 4f electrons. The method may be applied in the synthesis of other lanthanide compounds, and the work could explore the potential optical materials.« less

  1. Clean Water State Revolving Fund (CWSRF): Water Conservation

    EPA Pesticide Factsheets

    The CWSRF can provide financial assistance for water conservation projects that reduce the demand for POTW capacity through reduced water consumption (i.e., water efficiency), as well as water reuse and precipitation harvesting.

  2. Selective catalytic reduction of NOx with NH3 over iron-cerium-tungsten mixed oxide catalyst prepared by different methods

    NASA Astrophysics Data System (ADS)

    Xiong, Zhi-bo; Liu, Jing; Zhou, Fei; Liu, Dun-yu; Lu, Wei; Jin, Jing; Ding, Shi-fa

    2017-06-01

    A series of magnetic Fe0.85Ce0.10W0.05Oz catalysts were synthesized by three different methods(Co-precipitation(Fe0.85Ce0.10W0.05Oz-CP), Hydrothermal treatment assistant critic acid sol-gel method(Fe0.85Ce0.10W0.05Oz-HT) and Microwave irradiation assistant critic acid sol-gel method(Fe0.85Ce0.10W0.05Oz-MW)), and the catalytic activity was evaluated for selective catalytic reduction of NO with NH3. The catalyst was characterized by XRD, N2 adsorption-desorption, XPS, H2-TPR and NH3-TPD. Among the tested catalysts, Fe0.85Ce0.10W0.05Oz-MW shows the highest NOx conversion over per gram in unit time with NOx conversion of 60.8% at 350 °C under a high gas hourly space velocity of 1,200,000 ml/(g h). Different from Fe0.85Ce0.10W0.05Oz-CP catalyst, there exists a large of iron oxide crystallite(γ-Fe2O3 and α-Fe2O3) scattered in Fe0.85Ce0.10W0.05Oz catalysts prepared through hydrothermal treatment or microwave irradiation assistant critic acid sol-gel method, and higher iron atomic concentration on their surface. And Fe0.85Ce0.10W0.05Oz-MW shows higher surface absorbed oxygen concentration and better dispersion compared with Fe0.85Ce0.10W0.05Oz-HT catalyst. These features were favorable for the high catalytic performance of NO reduction with NH3 over Fe0.85Ce0.10W0.05Oz-MW catalyst.

  3. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOEpatents

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  4. Free-standing ultrathin CoMn2O4 nanosheets anchored on reduced graphene oxide for high-performance supercapacitors.

    PubMed

    Gao, Guoxin; Lu, Shiyao; Xiang, Yang; Dong, Bitao; Yan, Wei; Ding, Shujiang

    2015-11-21

    Ultrathin CoMn2O4 nanosheets supported on reduced graphene oxide (rGO) are successfully synthesized through a simple co-precipitation method with a post-annealing treatment. With the assistance of citrate, the free-standing CoMn2O4 ultrathin nanosheets can form porous overlays on both sides of the rGO sheets. Such a novel hybrid nanostructure can effectively promote charge transport and accommodate volume variation upon prolonged charge/discharge cycling. When evaluated as a promising electrode for supercapacitors in a 6 M KOH solution electrolyte, the hybrid nanocomposites demonstrate highly enhanced capacitance and excellent cycling stability.

  5. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi, E-mail: ishiguro@rs.noda.tus.ac.jp

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  6. Synthesis and characterization of rod like C doped ZnO nanoparticles with enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Labhane, P. K.; Sapkal, B. M.; Sonawane, G. H.

    2018-05-01

    Carbon (C) doped ZnO rod like nanoparticles were prepared by simple co-precipitation method. The effect of C doping on ZnO has been evaluated by using XRD, Williamson-Hall Plot, FESEM and EDX data. UV light assisted photocatalytic activities of prepared samples were evaluated spectrophotometrically by the degradation of methylene blue (MB). C doped ZnO shows excellent catalytic efficiency compared to pure ZnO, degrading MB completely within 100 min under UV light. Photocatalysis follows the first order kinetics law and the calculated apparent reaction kinetics rate constant suggest the better activity of C-ZnO.

  7. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black

    PubMed Central

    2009-01-01

    SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism. PMID:20596456

  8. Temporal analyses of Salmonellae in a headwater spring ecosystem reveals the effects of precipitation and runoff events.

    PubMed

    Gaertner, James P; Garres, Tiffany; Becker, Jesse C; Jimenez, Maria L; Forstner, Michael R J; Hahn, Dittmar

    2009-03-01

    Sediments and water from the spring and slough arm of Spring Lake, the pristine headwaters of the San Marcos River, Texas, were analyzed for Salmonellae by culture and molecular techniques before and after three major precipitation events, each with intermediate dry periods. Polymerase chain reaction (PCR)-assisted analyses of enrichment cultures detected Salmonellae in samples after all three precipitation events, but failed to detect them immediately prior to the rainfall events. Detection among individual locations differed with respect to the precipitation event analyzed, and strains isolated were highly variable with respect to serovars. These results demonstrate that rainwater associated effects, most likely surface runoff, provide an avenue for short-term pollution of aquatic systems with Salmonellae that do not, however, appear to establish for the long-term in water nor sediments.

  9. Precipitation variability in the Four Corners region USA from 2002 to 2015

    NASA Astrophysics Data System (ADS)

    Tulley-Cordova, C. L.; Bowen, G. J.; Brady, I.; Bekis, J.

    2016-12-01

    Due to the arid climate, the Navajo Nation situated in the southwestern United States (US) is sensitive to small changes in precipitation. The Navajo Nation is the largest land based tribe in the US; Navajo residents, wildlife, livestock, and vegetation are highly dependent on water resources including precipitation, surface, ground, and spring waters for vitality. Changes in precipitation directly impacts the Navajo Nation's ecosystem including a variety of interconnected effects such as ground water recharge, frequency of dust migration and strength of winds, flow in ephemeral and perennial streams, plant and animal populations, wildfires, change in vegetative cover and possible alterations in species composition. This study examines hydroclimatic changes during months, seasons, and water years across the Navajo Nation from 2002 to 2015 and how Four Corners USA precipitation variability and trends compares to large-scale atmospheric circulation patterns. Examination of spatial and temporal trends of precipitation variability during this time period can be used to assist an area with limited water management infrastructure with future water planning and help understand a region that has been poorly studied in the past.

  10. Geophysical methods for monitoring soil stabilization processes

    NASA Astrophysics Data System (ADS)

    Saneiyan, Sina; Ntarlagiannis, Dimitrios; Werkema, D. Dale; Ustra, Andréa

    2018-01-01

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety of available methods carbonate precipitation is a very promising one, especially when it is being induced through common soil borne microbes (MICP - microbial induced carbonate precipitation). Such microbial mediated precipitation has the added benefit of not harming the environment as other methods can be environmentally detrimental. Carbonate precipitation, typically in the form of calcite, is a naturally occurring process that can be manipulated to deliver the expected soil strengthening results or permeability changes. This study investigates the ability of spectral induced polarization and shear-wave velocity for monitoring calcite driven soil strengthening processes. The results support the use of these geophysical methods as soil strengthening characterization and long term monitoring tools, which is a requirement for viable soil stabilization projects. Both tested methods are sensitive to calcite precipitation, with SIP offering additional information related to long term stability of precipitated carbonate. Carbonate precipitation has been confirmed with direct methods, such as direct sampling and scanning electron microscopy (SEM). This study advances our understanding of soil strengthening processes and permeability alterations, and is a crucial step for the use of geophysical methods as monitoring tools in microbial induced soil alterations through carbonate precipitation.

  11. Uncertainty in determining extreme precipitation thresholds

    NASA Astrophysics Data System (ADS)

    Liu, Bingjun; Chen, Junfan; Chen, Xiaohong; Lian, Yanqing; Wu, Lili

    2013-10-01

    Extreme precipitation events are rare and occur mostly on a relatively small and local scale, which makes it difficult to set the thresholds for extreme precipitations in a large basin. Based on the long term daily precipitation data from 62 observation stations in the Pearl River Basin, this study has assessed the applicability of the non-parametric, parametric, and the detrended fluctuation analysis (DFA) methods in determining extreme precipitation threshold (EPT) and the certainty to EPTs from each method. Analyses from this study show the non-parametric absolute critical value method is easy to use, but unable to reflect the difference of spatial rainfall distribution. The non-parametric percentile method can account for the spatial distribution feature of precipitation, but the problem with this method is that the threshold value is sensitive to the size of rainfall data series and is subjected to the selection of a percentile thus make it difficult to determine reasonable threshold values for a large basin. The parametric method can provide the most apt description of extreme precipitations by fitting extreme precipitation distributions with probability distribution functions; however, selections of probability distribution functions, the goodness-of-fit tests, and the size of the rainfall data series can greatly affect the fitting accuracy. In contrast to the non-parametric and the parametric methods which are unable to provide information for EPTs with certainty, the DFA method although involving complicated computational processes has proven to be the most appropriate method that is able to provide a unique set of EPTs for a large basin with uneven spatio-temporal precipitation distribution. The consistency between the spatial distribution of DFA-based thresholds with the annual average precipitation, the coefficient of variation (CV), and the coefficient of skewness (CS) for the daily precipitation further proves that EPTs determined by the DFA method are more reasonable and applicable for the Pearl River Basin.

  12. A simple method to prepare magnetic modified beer yeast and its application for cationic dye adsorption.

    PubMed

    Yu, Jun-Xia; Wang, Li-Yan; Chi, Ru-An; Zhang, Yue-Fei; Xu, Zhi-Gao; Guo, Jia

    2013-01-01

    The purpose of this research is to use a simple method to prepare magnetic modified biomass with good adsorption performances for cationic ions. The magnetic modified biomass was prepared by two steps: (1) preparation of pyromellitic dianhydride (PMDA) modified biomass in N, N-dimethylacetamide solution and (2) preparation of magnetic PMDA modified biomass by a situ co-precipitation method under the assistance of ultrasound irradiation in ammonia water. The adsorption potential of the as-prepared magnetic modified biomass was analyzed by using cationic dyes: methylene blue and basic magenta as model dyes. Optical micrograph and x-ray diffraction analyses showed that Fe(3)O(4) particles were precipitated on the modified biomass surface. The as-prepared biosorbent could be recycled easily by using an applied magnetic field. Titration analysis showed that the total concentration of the functional groups on the magnetic PMDA modified biomass was calculated to be 0.75 mmol g(-1) by using the first derivative method. The adsorption capacities (q(m)) of the magnetic PMDA modified biomass for methylene blue and basic magenta were 609.0 and 520.9 mg g(-1), respectively, according to the Langmuir equation. Kinetics experiment showed that adsorption could be completed within 150 min for both dyes. The desorption experiment showed that the magnetic sorbent could be used repeatedly after regeneration. The as-prepared magnetic modified sorbent had a potential in the dyeing industry wastewater treatment.

  13. Satellite and Model Analysis of the Atmospheric Moisture Budget in High Latitudes: High Resolution Precipitation Over Greenland Studied from Dynamic Method

    NASA Technical Reports Server (NTRS)

    Bromwich, David H.; Chen, Qiu-shi

    2002-01-01

    Observations of precipitation over Greenland are limited. Direct precipitation measurements for the whole ice sheet are impractical, and those in the coastal region have substantial uncertainty but may be correctable with some effort. However, the analyzed wind, geopotential height and moisture fields are available for recent years, and the precipitation is retrievable from these fields by a dynamic method. Based on recent Greenland precipitation from dynamic studies, several deficiencies in the precipitation spatial distributions from these dynamic methods were evaluated by Bromwich et al.

  14. Application of physical scaling towards downscaling climate model precipitation data

    NASA Astrophysics Data System (ADS)

    Gaur, Abhishek; Simonovic, Slobodan P.

    2018-04-01

    Physical scaling (SP) method downscales climate model data to local or regional scales taking into consideration physical characteristics of the area under analysis. In this study, multiple SP method based models are tested for their effectiveness towards downscaling North American regional reanalysis (NARR) daily precipitation data. Model performance is compared with two state-of-the-art downscaling methods: statistical downscaling model (SDSM) and generalized linear modeling (GLM). The downscaled precipitation is evaluated with reference to recorded precipitation at 57 gauging stations located within the study region. The spatial and temporal robustness of the downscaling methods is evaluated using seven precipitation based indices. Results indicate that SP method-based models perform best in downscaling precipitation followed by GLM, followed by the SDSM model. Best performing models are thereafter used to downscale future precipitations made by three global circulation models (GCMs) following two emission scenarios: representative concentration pathway (RCP) 2.6 and RCP 8.5 over the twenty-first century. The downscaled future precipitation projections indicate an increase in mean and maximum precipitation intensity as well as a decrease in the total number of dry days. Further an increase in the frequency of short (1-day), moderately long (2-4 day), and long (more than 5-day) precipitation events is projected.

  15. Can Regional Climate Models be used in the assessment of vulnerability and risk caused by extreme events?

    NASA Astrophysics Data System (ADS)

    Nunes, Ana

    2015-04-01

    Extreme meteorological events played an important role in catastrophic occurrences observed in the past over densely populated areas in Brazil. This motived the proposal of an integrated system for analysis and assessment of vulnerability and risk caused by extreme events in urban areas that are particularly affected by complex topography. That requires a multi-scale approach, which is centered on a regional modeling system, consisting of a regional (spectral) climate model coupled to a land-surface scheme. This regional modeling system employs a boundary forcing method based on scale-selective bias correction and assimilation of satellite-based precipitation estimates. Scale-selective bias correction is a method similar to the spectral nudging technique for dynamical downscaling that allows internal modes to develop in agreement with the large-scale features, while the precipitation assimilation procedure improves the modeled deep-convection and drives the land-surface scheme variables. Here, the scale-selective bias correction acts only on the rotational part of the wind field, letting the precipitation assimilation procedure to correct moisture convergence, in order to reconstruct South American current climate within the South American Hydroclimate Reconstruction Project. The hydroclimate reconstruction outputs might eventually produce improved initial conditions for high-resolution numerical integrations in metropolitan regions, generating more reliable short-term precipitation predictions, and providing accurate hidrometeorological variables to higher resolution geomorphological models. Better representation of deep-convection from intermediate scales is relevant when the resolution of the regional modeling system is refined by any method to meet the scale of geomorphological dynamic models of stability and mass movement, assisting in the assessment of risk areas and estimation of terrain stability over complex topography. The reconstruction of past extreme events also helps the development of a system for decision-making, regarding natural and social disasters, and reducing impacts. Numerical experiments using this regional modeling system successfully modeled severe weather events in Brazil. Comparisons with the NCEP Climate Forecast System Reanalysis outputs were made at resolutions of about 40- and 25-km of the regional climate model.

  16. Influence of surfactants on the microstructure and electrochemical performance of the tin oxide anode in lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yan-Hui, E-mail: sunyanhui0102@163.com; Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006; Dong, Pei-Pei

    2016-02-15

    Highlights: • CTAB and SDS alter the formation of SnO{sub 2} from nanosheets to nanocubes during oxalate precipitation. • The CTAB concentration affects the SnO{sub 2} crystal growth direction, morphology and size. • The SnO{sub 2} anode synthesized using CTAB exhibited superior electrochemical performance. • Proposed a mechanism of influence of surfactant on SnO{sub 2} in the precipitation and annealing process. - Abstract: Different SnO{sub 2} micro–nano structures are prepared by precipitation using a surfactant-assisted process. The surfactants, such as cetyltriethylammonium bromide (CTAB) or sodium dodecyl benzene sulfonate (SDBS), can change the crystal growth direction and microstructure of SnO{sub 2}more » primary and secondary particles. Larger SnO{sub 2} nanosheets were synthesized without surfactant, and micro-fragments composed of small nanospheres or nanocubes were synthesized using CTAB and SDBS. The CTAB-assisted process resulted in smaller primary particles and larger specific surface area and larger pore volume, as a lithium-ion-battery anode that exhibits superior electrochemical performance compared to the other two anodes. Further investigation showed that the concentration of CTAB had a substantial influence on the growth of the crystal face, morphology and size of the SnO{sub 2} secondary particles, which influenced the electrochemical performance of the anode. A simple mechanism for the influence of surfactants on SnO{sub 2} morphology and size in the precipitation and annealing process is proposed.« less

  17. Renewable Lignosulfonate-Assisted Synthesis of Hierarchical Nanoflake-Array-Flower ZnO Nanomaterials in Mixed Solvents and Their Photocatalytic Performance

    NASA Astrophysics Data System (ADS)

    Li, Yue; Zuo, Hong-Fen; Guo, Yuan-Ru; Miao, Ting-Ting; Pan, Qing-Jiang

    2016-05-01

    With the assistance of sodium lignosulfonate, hierarchical nanoflake-array-flower nanostructure of ZnO has been fabricated by a facile precipitation method in mixed solvents. The sodium lignosulfonate amount used in our synthetic route is able to fine-tune ZnO morphology and an abundance of pores have been observed in the nanoflake-array-flower ZnO, which result in specific surface area reaching as high as 82.9 m2 · g-1. The synthesized ZnO exhibits superior photocatalytic activity even under low-power UV illumination (6 W). It is conjectured that both nanoflake-array structure and plenty of pores embedded in ZnO flakes may provide scaffold microenvironments to enhance photocatalytic activity. Additionally, this catalyst can be used repeatedly without a significant loss in photocatalytic activity. The low-cost, simple synthetic approach as well as high photocatalytic and recycling efficiency of our ZnO nanomaterials allows for application to treat wastewater containing organic pollutants in an effective way.

  18. Ascorbic Acid-Assisted Eco-friendly Synthesis of NiCo2O4 Nanoparticles as an Anode Material for High-Performance Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Karunakaran, Gopalu; Maduraiveeran, Govindhan; Kolesnikov, Evgeny; Balasingam, Suresh Kannan; Viktorovich, Lysov Dmitry; Ilinyh, Igor; Gorshenkov, Mikhail V.; Sasidharan, Manickam; Kuznetsov, Denis; Kundu, Manab

    2018-05-01

    We have synthesized NiCo2O4 nanoparticles (NCO NPs) using an ascorbic acid-assisted co-precipitation method for the first time. When NCO NPs are used as an anode material for lithium-ion batteries, the cell exhibits superior lithium storage properties, such as high capacity (700 mA h g-1 after 300 cycles at 200 mA g-1), excellent rate capabilities (applied current density range 100-1200 mA g-1), and impressive cycling stability (at 1200 mA g-1 up to 650 cycles). The enhanced electrochemical properties of NCO NPs are due to the nanometer dimensions which not only offers a smooth charge-transport pathway and short diffusion paths of the lithium ions but also adequate spaces for volume expansion during Li storage. Hence, this eco-friendly synthesis approach will provide a new strategy for the synthesis of various nanostructured metal oxide compounds, for energy conversion and storage systems applications.

  19. Multiscale Characterization of PM2.5 in Southern Taiwan based on Noise-assisted Multivariate Empirical Mode Decomposition and Time-dependent Intrinsic Correlation

    NASA Astrophysics Data System (ADS)

    Hsiao, Y. R.; Tsai, C.

    2017-12-01

    As the WHO Air Quality Guideline indicates, ambient air pollution exposes world populations under threat of fatal symptoms (e.g. heart disease, lung cancer, asthma etc.), raising concerns of air pollution sources and relative factors. This study presents a novel approach to investigating the multiscale variations of PM2.5 in southern Taiwan over the past decade, with four meteorological influencing factors (Temperature, relative humidity, precipitation and wind speed),based on Noise-assisted Multivariate Empirical Mode Decomposition(NAMEMD) algorithm, Hilbert Spectral Analysis(HSA) and Time-dependent Intrinsic Correlation(TDIC) method. NAMEMD algorithm is a fully data-driven approach designed for nonlinear and nonstationary multivariate signals, and is performed to decompose multivariate signals into a collection of channels of Intrinsic Mode Functions (IMFs). TDIC method is an EMD-based method using a set of sliding window sizes to quantify localized correlation coefficients for multiscale signals. With the alignment property and quasi-dyadic filter bank of NAMEMD algorithm, one is able to produce same number of IMFs for all variables and estimates the cross correlation in a more accurate way. The performance of spectral representation of NAMEMD-HSA method is compared with Complementary Empirical Mode Decomposition/ Hilbert Spectral Analysis (CEEMD-HSA) and Wavelet Analysis. The nature of NAMAMD-based TDICC analysis is then compared with CEEMD-based TDIC analysis and the traditional correlation analysis.

  20. The Prediction of the Risk Level of Pulmonary Embolism and Deep Vein Thrombosis through Artificial Neural Network

    PubMed Central

    Agharezaei, Laleh; Agharezaei, Zhila; Nemati, Ali; Bahaadinbeigy, Kambiz; Keynia, Farshid; Baneshi, Mohammad Reza; Iranpour, Abedin; Agharezaei, Moslem

    2016-01-01

    Background: Venous thromboembolism is a common cause of mortality among hospitalized patients and yet it is preventable through detecting the precipitating factors and a prompt diagnosis by specialists. The present study has been carried out in order to assist specialists in the diagnosis and prediction of the risk level of pulmonary embolism in patients, by means of artificial neural network. Method: A number of 31 risk factors have been used in this study in order to evaluate the conditions of 294 patients hospitalized in 3 educational hospitals affiliated with Kerman University of Medical Sciences. Two types of artificial neural networks, namely Feed-Forward Back Propagation and Elman Back Propagation, were compared in this study. Results: Through an optimized artificial neural network model, an accuracy and risk level index of 93.23 percent was achieved and, subsequently, the results have been compared with those obtained from the perfusion scan of the patients. 86.61 percent of high risk patients diagnosed through perfusion scan diagnostic method were also diagnosed correctly through the method proposed in the present study. Conclusions: The results of this study can be a good resource for physicians, medical assistants, and healthcare staff to diagnose high risk patients more precisely and prevent the mortalities. Additionally, expenses and other unnecessary diagnostic methods such as perfusion scans can be efficiently reduced. PMID:28077893

  1. Evaluation of three methods for the concentration of poliovirus from oysters.

    PubMed

    Bouchriti, N; Goyal, S M

    1992-10-01

    Three methods for the concentration of poliovirus from oyster homogenates were compared. The adsorption-elution-precipitation method gave the lowest average virus recovery (24.1%), while the beef extract elution-acid precipitation method and the non-fat dry milk elution-acid precipitation methods gave recoveries of 47.2% and 39.6%, respectively. Although the overall recovery rates with these methods were lower than those reported in previous studies, recoveries of 40-47% obtained with the elution-precipitation methods used in the present study are considered to be above average in terms of recovery efficiency.

  2. Photocatalytic degradation of lignin on synthesized Ag-AgCl/ZnO nanorods under solar light and preliminary trials for methane fermentation.

    PubMed

    Li, Huifang; Lei, Zhongfang; Liu, Chunguang; Zhang, Zhenya; Lu, Baowang

    2015-01-01

    New photocatalysts, Ag-AgCl/ZnO nanorods, were successfully synthesized in this study by using microwave assisted chemical precipitation and deposition-precipitation-photoreduction methods. The optimal preparation condition was determined as pH 9 in distilled water and 40min for UV light photoreduction of Ag (i.e. Ag40-AgCl/ZnO) by degradation of methyl orange. This work investigated the feasibility of using Ag40-AgCl/ZnO to degrade lignin under natural solar light and then subsequent methane production with influencing factors like solution pH, dosage of catalyst and initial lignin concentration being considered. OH radicals were found to play the most important role in the photocatalytic process, and the new prepared catalyst possessed stable photocatalytic activity after 7 cycles' utilization. During the subsequent biogasification, the degraded lignin obtained from 120min photocatalysis yielded 184ml methane and 325ml biogas for per gram of removed total organic carbon, increased by 10.9% and 23.1%, respectively compared to the control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Critical Issues in Hydrogen Assisted Cracking of Structural Alloys

    DTIC Science & Technology

    2006-01-01

    does not precipitate ? Does the HEAC mechanism explain environment-assisted (stress corrosion ) crack growth in high strength alloys stressed in moist...superalloys were cracked in high pressure (100-200 M~a) H2, while maraging and tempered-martensitic steels were cracked in low pressure (-100 kPa) H2...of IRAC in ultra-high strength AerMet®l00 steel demonstrates the role of crack tip stress in promoting H accumulation and embrittlement. The cracking

  4. An optimal merging technique for high-resolution precipitation products: OPTIMAL MERGING OF PRECIPITATION METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Roshan; Houser, Paul R.; Anantharaj, Valentine G.

    2011-04-01

    Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP), a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutionsmore » and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS) system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.« less

  5. Mid-Western US heavy summer-precipitation in regional and global climate models: the impact on model skill and consensus through an analogue lens

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Schlosser, C. Adam

    2018-04-01

    Regional climate models (RCMs) can simulate heavy precipitation more accurately than general circulation models (GCMs) through more realistic representation of topography and mesoscale processes. Analogue methods of downscaling, which identify the large-scale atmospheric conditions associated with heavy precipitation, can also produce more accurate and precise heavy precipitation frequency in GCMs than the simulated precipitation. In this study, we examine the performances of the analogue method versus direct simulation, when applied to RCM and GCM simulations, in detecting present-day and future changes in summer (JJA) heavy precipitation over the Midwestern United States. We find analogue methods are comparable to MERRA-2 and its bias-corrected precipitation in characterizing the occurrence and interannual variations of observed heavy precipitation events, all significantly improving upon MERRA precipitation. For the late twentieth-century heavy precipitation frequency, RCM precipitation improves upon the corresponding driving GCM with greater accuracy yet comparable inter-model discrepancies, while both RCM- and GCM-based analogue results outperform their model-simulated precipitation counterparts in terms of accuracy and model consensus. For the projected trends in heavy precipitation frequency through the mid twenty-first century, analogue method also manifests its superiority to direct simulation with reduced intermodel disparities, while the RCM-based analogue and simulated precipitation do not demonstrate a salient improvement (in model consensus) over the GCM-based assessment. However, a number of caveats preclude any overall judgement, and further work—over any region of interest—should include a larger sample of GCMs and RCMs as well as ensemble simulations to comprehensively account for internal variability.

  6. Optimization of tetanus toxoid ammonium sulfate precipitation process using response surface methodology.

    PubMed

    Brgles, Marija; Prebeg, Pero; Kurtović, Tihana; Ranić, Jelena; Marchetti-Deschmann, Martina; Allmaier, Günter; Halassy, Beata

    2016-10-02

    Tetanus toxoid (TTd) is a highly immunogenic, detoxified form of tetanus toxin, a causative agent of tetanus disease, produced by Clostridium tetani. Since tetanus disease cannot be eradicated but is easily prevented by vaccination, the need for the tetanus vaccine is permanent. The aim of this work was to investigate the possibility of optimizing TTd purification, i.e., ammonium sulfate precipitation process. The influence of the percentage of ammonium sulfate, starting amount of TTd, buffer type, pH, temperature, and starting purity of TTd on the purification process were investigated using optimal design for response surface models. Responses measured for evaluation of the ammonium sulfate precipitation process were TTd amount (Lf/mL) and total protein content. These two parameters were used to calculate purity (Lf/mgPN) and the yield of the process. Results indicate that citrate buffer, lower temperature, and lower starting amount of TTd result in higher purities of precipitates. Gel electrophoresis combined with matrix-assisted laser desorption ionization-mass spectrometric analysis of precipitates revealed that there are no inter-protein cross-links and that all contaminating proteins have pIs similar to TTd, so this is most probably the reason for the limited success of purification by precipitation.

  7. Method of precipitating uranium from an aqueous solution and/or sediment

    DOEpatents

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  8. Calcite phase determination of CaCO3 nanoparticles synthesized by one step drying method

    NASA Astrophysics Data System (ADS)

    Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.

    2018-05-01

    Calcium Carbonate (CaCO3) is a type of carbonic salt. It exist naturally as white odourless solid and may also be synthesized by chemical reactions. This work studies one-step precipitation of CaCO3 that was prepared by novel method of one-step precipitation method. The method was then proceeded by different types of drying. The first type is by normal drying in oven whereas the second type is with the presence of hydrothermal influence. From the results, precipitated CaCO3 dried by normal drying method produces CaCO3 with two polymorphs present; calcite and vaterite. Normal drying at 500°C has no vaterite phase left. Drying by hydrothermal precipitated CaCO3 has Nitrogen (N) left on the surfaces of the precipitated CaCO3. This work successfully identified calcite phase in the precipitated CaCO3.

  9. Hydrogenolysis of Glycerol to Propylene Glycol on Nanosized Cu-Zn-Al Catalysts Prepared Using Microwave Process.

    PubMed

    Kim, Dong Won; Ha, Sang Ho; Moon, Myung Jun; Lim, Kwon Taek; Ryu, Young Bok; Lee, Sun Do; Lee, Man Sig; Hong, Seong-Soo

    2015-01-01

    Cu-Zn-Al catalysts were prepared using microwave-assisted process and co-precipitation methods. The prepared catalysts were characterized by XRD, BET, XPS and TPD of ammonia and their catalytic activity for the hydrogenolysis of glycerol to propylene glycol was also examined. The XRD patterns of Cu/Zn/Al mixed catalysts show CuO and ZnO crystalline phase regardless of preparation method. The highest glycerol hydrogenolysis conversion is obtained with the catalyst having a Cu/Zn/Al ratio of 2:2:1. Hydrogen pre-reduction of catalysts significantly enhanced both glycerol conversions and selectivity to propylene glycol. The glycerol conversion increased with an increase of reaction temperature. However, the selectivity to propylene glycol increased with an increase of temperature, and then declined to 30.5% at 523 K.

  10. Temporal and spatial characteristics of extreme precipitation events in the Midwest of Jilin Province based on multifractal detrended fluctuation analysis method and copula functions

    NASA Astrophysics Data System (ADS)

    Guo, Enliang; Zhang, Jiquan; Si, Ha; Dong, Zhenhua; Cao, Tiehua; Lan, Wu

    2017-10-01

    Environmental changes have brought about significant changes and challenges to water resources and management in the world; these include increasing climate variability, land use change, intensive agriculture, and rapid urbanization and industrial development, especially much more frequency extreme precipitation events. All of which greatly affect water resource and the development of social economy. In this study, we take extreme precipitation events in the Midwest of Jilin Province as an example; daily precipitation data during 1960-2014 are used. The threshold of extreme precipitation events is defined by multifractal detrended fluctuation analysis (MF-DFA) method. Extreme precipitation (EP), extreme precipitation ratio (EPR), and intensity of extreme precipitation (EPI) are selected as the extreme precipitation indicators, and then the Kolmogorov-Smirnov (K-S) test is employed to determine the optimal probability distribution function of extreme precipitation indicators. On this basis, copulas connect nonparametric estimation method and the Akaike Information Criterion (AIC) method is adopted to determine the bivariate copula function. Finally, we analyze the characteristics of single variable extremum and bivariate joint probability distribution of the extreme precipitation events. The results show that the threshold of extreme precipitation events in semi-arid areas is far less than that in subhumid areas. The extreme precipitation frequency shows a significant decline while the extreme precipitation intensity shows a trend of growth; there are significant differences in spatiotemporal of extreme precipitation events. The spatial variation trend of the joint return period gets shorter from the west to the east. The spatial distribution of co-occurrence return period takes on contrary changes and it is longer than the joint return period.

  11. Solvent shift method for anti-precipitant screening of poorly soluble drugs using biorelevant medium and dimethyl sulfoxide.

    PubMed

    Yamashita, Taro; Ozaki, Shunsuke; Kushida, Ikuo

    2011-10-31

    96-well plate based anti-precipitant screening using bio-relevant medium FaSSIF (fasted-state simulated small intestinal fluid) is a useful technique for discovering anti-precipitants that maintain supersaturation of poorly soluble drugs. In a previous report, two disadvantages of the solvent evaporation method (solvent casting method) were mentioned: precipitation during the evaporation process and the use of volatile solvents to dissolve compounds. In this report, we propose a solvent shift method using DMSO (dimethyl sulfoxide). Initially, the drug substance was dissolved in DMSO at a high concentration and diluted with FaSSIF that contained anti-precipitants. To evaluate the validity of the method, itraconazole (ITZ) was used as the poorly soluble model drug. The solvent shift method resolved the disadvantages of the evaporation method, and AQOAT (HPMC-AS) was found as the most appropriate anti-precipitant for ITZ in a facile and expeditious manner when compared with the solvent evaporation method. In the large scale JP paddle method, AQOAT-based solid dispersion maintained a higher concentration than Tc-5Ew (HPMC)-based formulation; this result corresponded well with the small scale of the solvent shift method. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems

    USGS Publications Warehouse

    Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William

    2016-01-01

    Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.

  13. Processing of next generation weather radar-multisensor precipitation estimates and quantitative precipitation forecast data for the DuPage County streamflow simulation system

    USGS Publications Warehouse

    Bera, Maitreyee; Ortel, Terry W.

    2018-01-12

    The U.S. Geological Survey, in cooperation with DuPage County Stormwater Management Department, is testing a near real-time streamflow simulation system that assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek and West Branch DuPage River drainage basins in DuPage County, Illinois. As part of this effort, the U.S. Geological Survey maintains a database of hourly meteorological and hydrologic data for use in this near real-time streamflow simulation system. Among these data are next generation weather radar-multisensor precipitation estimates and quantitative precipitation forecast data, which are retrieved from the North Central River Forecasting Center of the National Weather Service. The DuPage County streamflow simulation system uses these quantitative precipitation forecast data to create streamflow predictions for the two simulated drainage basins. This report discusses in detail how these data are processed for inclusion in the Watershed Data Management files used in the streamflow simulation system for the Salt Creek and West Branch DuPage River drainage basins.

  14. Simulations of Precipitate Microstructure Evolution during Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wu, Kaisheng; Sterner, Gustaf; Chen, Qing; Jou, Herng-Jeng; Jeppsson, Johan; Bratberg, Johan; Engström, Anders; Mason, Paul

    Precipitation, a major solid state phase transformation during heat treatment processes, has for more than one century been intensively employed to improve the strength and toughness of various high performance alloys. Recently, sophisticated precipitation reaction models, in assistance with well-developed CALPHAD databases, provide an efficient and cost-effective way to tailor precipitate microstructures that maximize the strengthening effect via the optimization of alloy chemistries and heat treatment schedules. In this presentation, we focus on simulating precipitate microstructure evolution in Nickel-base superalloys under arbitrary heat treatment conditions. The newly-developed TC-PRISMA program has been used for these simulations, with models refined especially for non-isothermal conditions. The effect of different cooling profiles on the formation of multimodal microstructures has been thoroughly examined in order to understand the underlying thermodynamics and kinetics. Meanwhile, validations against several experimental results have been carried out. Practical issues that are critical to the accuracy and applicability of the current simulations, such as modifications that overcome mean-field approximations, compatibility between CALPHAD databases, selection of key parameters (particularly interfacial energy and nucleation site densities), etc., are also addressed.

  15. Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Kochendorfer, J.

    2014-12-01

    The effects of evaporation on precipitation measurements have been understood to bias total precipitation lower. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants with frequent observations. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at US Climate Reference Network (USCRN) stations. Collocated Geonor gauges with (nonEvap) and without (evap) an evaporative suppressant were compared to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. However, the impact of evaporation on precipitation measurements was sensitive to calculation methods. In general, methods that utilized a longer time series to smooth out sensor noise were more sensitive to gauge (-4.6% bias with respect to control) evaporation than methods computing depth change without smoothing (< +1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates computational methods can influence the magnitude of evaporation bias on precipitation measurements. It is hoped this study will advance QA techniques that mitigate the impact of evaporation biases on precipitation measurements from other automated networks.

  16. How does bias correction of RCM precipitation affect modelled runoff?

    NASA Astrophysics Data System (ADS)

    Teng, J.; Potter, N. J.; Chiew, F. H. S.; Zhang, L.; Vaze, J.; Evans, J. P.

    2014-09-01

    Many studies bias correct daily precipitation from climate models to match the observed precipitation statistics, and the bias corrected data are then used for various modelling applications. This paper presents a review of recent methods used to bias correct precipitation from regional climate models (RCMs). The paper then assesses four bias correction methods applied to the weather research and forecasting (WRF) model simulated precipitation, and the follow-on impact on modelled runoff for eight catchments in southeast Australia. Overall, the best results are produced by either quantile mapping or a newly proposed two-state gamma distribution mapping method. However, the difference between the tested methods is small in the modelling experiments here (and as reported in the literature), mainly because of the substantial corrections required and inconsistent errors over time (non-stationarity). The errors remaining in bias corrected precipitation are typically amplified in modelled runoff. The tested methods cannot overcome limitation of RCM in simulating precipitation sequence, which affects runoff generation. Results further show that whereas bias correction does not seem to alter change signals in precipitation means, it can introduce additional uncertainty to change signals in high precipitation amounts and, consequently, in runoff. Future climate change impact studies need to take this into account when deciding whether to use raw or bias corrected RCM results. Nevertheless, RCMs will continue to improve and will become increasingly useful for hydrological applications as the bias in RCM simulations reduces.

  17. Superparamagnetic Fe3 O4 @SiO2 core-shell composite nanoparticles for the mixed hemimicelle solid-phase extraction of benzodiazepines from hair and wastewater samples before high-performance liquid chromatography analysis.

    PubMed

    Esmaeili-Shahri, Effat; Es'haghi, Zarrin

    2015-12-01

    Magnetic Fe3 O4 /SiO2 composite core-shell nanoparticles were synthesized, characterized, and applied for the surfactant-assisted solid-phase extraction of five benzodiazepines diazepam, oxazepam, clonazepam, alprazolam, and midazolam, from human hair and wastewater samples before high-performance liquid chromatography with diode array detection. The nanocomposite was synthesized in two steps. First, Fe3 O4 nanoparticles were prepared by the chemical co-precipitation method of Fe(III) and Fe(II) as reaction substrates and NH3 /H2 O as precipitant. Second, the surface of Fe3 O4 nanoparticles was modified with shell silica by Stober method using tetraethylorthosilicate. The Fe3 O4 /SiO2 composite were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. To enhance their adsorptive tendency toward benzodiazepines, cetyltrimethylammonium bromide was added, which was adsorbed on the surface of the Fe3 O4 /SiO2 nanoparticles and formed mixed hemimicelles. The main parameters affecting the efficiency of the method were thoroughly investigated. Under optimum conditions, the calibration curves were linear in the range of 0.10-15 μgmL(-1) . The relative standard deviations ranged from 2.73 to 7.07%. The correlation coefficients varied from 0.9930 to 0.9996. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Two-steps extraction of essential oil, polysaccharides and biphenyl cyclooctene lignans from Schisandra chinensis Baill fruits.

    PubMed

    Cheng, Zhenyu; Yang, Yingjie; Liu, Yan; Liu, Zhigang; Zhou, Hongli; Hu, Haobin

    2014-08-05

    A method for two-steps extraction of essential oil, polysaccharides and lignans from Schisandra chinensis Baill had been established. Firstly, S. chinensis was extracted by hydro-distillation, the extracted solution was separated from the water-insoluble residue and precipitated by adding dehydrated alcohol after the essential oil was collected, and then the precipitate as polysaccharide was collected. Finally, second extraction was performed to obtained lignans from the water-insoluble residue with ultrasonic-microwave assisted extraction (UMAE) method. Response surface methodology was employed to optimize the UMAE parameters, the optimal conditions were as follows: microwave power 430W, ethanol concentration 84%, particle size of sample 120-mesh sieves, ratio of water to raw material 15 and extraction time 2.1min. Under these optimized conditions, the total extraction yields of five lignans (Schisandrol A, Schisantherin A, Deoxyschisandrin, Schisandrin B and Schisandrin C) had reached 14.22±0.135mg/g. Compared with the traditional method of direct extraction of different bioactive components in respective procedure, the extraction yields of polysaccharides and the five lignans had reached 99% and 95%, respectively. The mean recoveries of the 5 lignan compounds and polysaccharides were 97.75-101.08% and their RSD value was less than 3.88%.The approach proposed in this study not only improved the extraction yield of lignans, but also elevated the utilization of Schisandra resources. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Watershed Data Management (WDM) Database for Salt Creek Streamflow Simulation, DuPage County, Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Ishii, Audrey L.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with DuPage County Department of Engineering, Stormwater Management Division, maintains a database of hourly meteorologic and hydrologic data for use in a near real-time streamflow simulation system, which assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek watershed in DuPage County, Illinois. The majority of the precipitation data are collected from a tipping-bucket rain-gage network located in and near DuPage County. The other meteorologic data (wind speed, solar radiation, air temperature, and dewpoint temperature) are collected at Argonne National Laboratory in Argonne, Illinois. Potential evapotranspiration is computed from the meteorologic data. The hydrologic data (discharge and stage) are collected at USGS streamflow-gaging stations in DuPage County. These data are stored in a Watershed Data Management (WDM) database. This report describes a version of the WDM database that was quality-assured and quality-controlled annually to ensure the datasets were complete and accurate. This version of the WDM database contains data from January 1, 1997, through September 30, 2004, and is named SEP04.WDM. This report provides a record of time periods of poor data for each precipitation dataset and describes methods used to estimate the data for the periods when data were missing, flawed, or snowfall-affected. The precipitation dataset data-filling process was changed in 2001, and both processes are described. The other meteorologic and hydrologic datasets in the database are fully described in the annual U.S. Geological Survey Water Data Report for Illinois and, therefore, are described in less detail than the precipitation datasets in this report.

  20. Particle-Size-Grouping Model of Precipitation Kinetics in Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Thomas, Brian G.

    2012-03-01

    The formation, growth, and size distribution of precipitates greatly affects the microstructure and properties of microalloyed steels. Computational particle-size-grouping (PSG) kinetic models based on population balances are developed to simulate precipitate particle growth resulting from collision and diffusion mechanisms. First, the generalized PSG method for collision is explained clearly and verified. Then, a new PSG method is proposed to model diffusion-controlled precipitate nucleation, growth, and coarsening with complete mass conservation and no fitting parameters. Compared with the original population-balance models, this PSG method saves significant computation and preserves enough accuracy to model a realistic range of particle sizes. Finally, the new PSG method is combined with an equilibrium phase fraction model for plain carbon steels and is applied to simulate the precipitated fraction of aluminum nitride and the size distribution of niobium carbide during isothermal aging processes. Good matches are found with experimental measurements, suggesting that the new PSG method offers a promising framework for the future development of realistic models of precipitation.

  1. Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Kochendorfer, J.

    2015-06-01

    Evaporation from a precipitation gauge can cause errors in the amount of measured precipitation. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants and frequent observations to limit these biases. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at U.S. Climate Reference Network (USCRN) stations. Two Geonor gauges were collocated, with one gauge using an evaporative suppressant (referred to as Geonor-NonEvap) and the other with no suppressant (referred to as Geonor-Evap) to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the Geonor-Evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. The impact of evaporation on precipitation measurements was sensitive to the choice of calculation method. In general, the pairwise method that utilized a longer time series to smooth out sensor noise was more sensitive to gauge evaporation (-4.6% bias with respect to control) than the weighted-average method that calculated depth change over a smaller window (<+1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates, computational methods also influence the magnitude of evaporation biases on precipitation measurements. This study can be used to advance quality insurance (QA) techniques used in other automated networks to mitigate the impact of evaporation biases on precipitation measurements.

  2. Orthotopic heart transplant versus left ventricular assist device: A national comparison of cost and survival

    PubMed Central

    Mulloy, Daniel P.; Bhamidipati, Castigliano M.; Stone, Matthew L.; Ailawadi, Gorav; Kron, Irving L.; Kern, John A.

    2012-01-01

    Objectives Orthotopic heart transplantation is the standard of care for end-stage heart disease. Left ventricular assist device implantation offers an alternative treatment approach. Left ventricular assist device practice has changed dramatically since the 2008 Food and Drug Administration approval of the HeartMate II (Thoratec, Pleasanton, Calif), but at what societal cost? The present study examined the cost and efficacy of both treatments over time. Methods All patients who underwent either orthotopic heart transplantation (n = 9369) or placement of an implantable left ventricular assist device (n = 6414) from 2005 to 2009 in the Nationwide Inpatient Sample were selected. The trends in treatment use, mortality, and cost were analyzed. Results The incidence of orthotopic heart transplantation increased marginally within a 5-year period. In contrast, the annual left ventricular assist device implantation rates nearly tripled. In-hospital mortality from left ventricular assist device implantation decreased precipitously, from 42% to 17%. In-hospital mortality for orthotopic heart transplantation remained relatively stable (range, 3.8%–6.5%). The mean cost per patient increased for both orthotopic heart transplantation and left ventricular assist device placement (40% and 17%, respectively). With the observed increase in both device usage and cost per patient, the cumulative Left ventricular assist device cost increased 232% within 5 years (from $143 million to $479 million). By 2009, Medicare and Medicaid were the primary payers for nearly one half of all patients (orthotopic heart transplantation, 45%; left ventricular assist device, 51%). Conclusions Since Food and Drug Administration approval of the HeartMate II, mortality after left ventricular assist device implantation has decreased rapidly, yet has remained greater than that after orthotopic heart transplantation. The left ventricular assist device costs have continued to increase and have been significantly greater than those for orthotopic heart transplantation. Because of the evolving healthcare economics climate, with increasing emphasis on the costs and comparative effectiveness, a concerted effort at LVAD cost containment and judicious usage is essential to preserve the viability of this invaluable treatment. PMID:23246055

  3. Method development aspects for the quantitation of pharmaceutical compounds in human plasma with a matrix-assisted laser desorption/ionization source in the multiple reaction monitoring mode.

    PubMed

    Kovarik, Peter; Grivet, Chantal; Bourgogne, Emmanuel; Hopfgartner, Gérard

    2007-01-01

    The present work investigates various method development aspects for the quantitative analysis of pharmaceutical compounds in human plasma using matrix-assisted laser desorption/ionization and multiple reaction monitoring (MALDI-MRM). Talinolol was selected as a model analyte. Liquid-liquid extraction (LLE) and protein precipitation were evaluated regarding sensitivity and throughput for the MALDI-MRM technique and its applicability without and with chromatographic separation. Compared to classical electrospray liquid chromatography/mass spectrometry (LC/ESI-MS) method development, with MALDI-MRM the tuning of the analyte in single MS mode is more challenging due to interfering matrix background ions. An approach is proposed using background subtraction. With LLE and using a 200 microL human plasma aliquot acceptable precision and accuracy could be obtained in the range of 1 to 1000 ng/mL without any LC separation. Approximately 3 s were required for one analysis. A full calibration curve and its quality control samples (20 samples) can be analyzed within 1 min. Combining LC with the MALDI analysis allowed improving the linearity down to 50 pg/mL, while reducing the throughput potential only by two-fold. Matrix effects are still a significant issue with MALDI but can be monitored in a similar way to that used for LC/ESI-MS analysis.

  4. The Prediction of the Risk Level of Pulmonary Embolism and Deep Vein Thrombosis through Artificial Neural Network.

    PubMed

    Agharezaei, Laleh; Agharezaei, Zhila; Nemati, Ali; Bahaadinbeigy, Kambiz; Keynia, Farshid; Baneshi, Mohammad Reza; Iranpour, Abedin; Agharezaei, Moslem

    2016-10-01

    Venous thromboembolism is a common cause of mortality among hospitalized patients and yet it is preventable through detecting the precipitating factors and a prompt diagnosis by specialists. The present study has been carried out in order to assist specialists in the diagnosis and prediction of the risk level of pulmonary embolism in patients, by means of artificial neural network. A number of 31 risk factors have been used in this study in order to evaluate the conditions of 294 patients hospitalized in 3 educational hospitals affiliated with Kerman University of Medical Sciences. Two types of artificial neural networks, namely Feed-Forward Back Propagation and Elman Back Propagation, were compared in this study. Through an optimized artificial neural network model, an accuracy and risk level index of 93.23 percent was achieved and, subsequently, the results have been compared with those obtained from the perfusion scan of the patients. 86.61 percent of high risk patients diagnosed through perfusion scan diagnostic method were also diagnosed correctly through the method proposed in the present study. The results of this study can be a good resource for physicians, medical assistants, and healthcare staff to diagnose high risk patients more precisely and prevent the mortalities. Additionally, expenses and other unnecessary diagnostic methods such as perfusion scans can be efficiently reduced.

  5. Microwave-assisted hydrothermal synthesis of Ag₂(W(1-x)Mox)O₄ heterostructures: Nucleation of Ag, morphology, and photoluminescence properties.

    PubMed

    Silva, M D P; Gonçalves, R F; Nogueira, I C; Longo, V M; Mondoni, L; Moron, M G; Santana, Y V; Longo, E

    2016-01-15

    Ag2W(1-x)MoxO4 (x=0.0 and 0.50) powders were synthesized by the co-precipitation (drop-by-drop) method and processed using a microwave-assisted hydrothermal method. We report the real-time in situ formation and growth of Ag filaments on the Ag2W(1-x)MoxO4 crystals using an accelerated electron beam under high vacuum. Various techniques were used to evaluate the influence of the network-former substitution on the structural and optical properties, including photoluminescence (PL) emission, of these materials. X-ray diffraction results confirmed the phases obtained by the synthesis methods. Raman spectroscopy revealed significant changes in local order-disorder as a function of the network-former substitution. Field-emission scanning electron microscopy was used to determine the shape as well as dimensions of the Ag2W(1-x)MoxO4 heterostructures. The PL spectra showed that the PL-emission intensities of Ag2W(1-x)MoxO4 were greater than those of pure Ag2WO4, probably because of the increase of intermediary energy levels within the band gap of the Ag2W(1-x)MoxO4 heterostructures, as evidenced by the decrease in the band-gap values measured by ultraviolet-visible spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    2003-01-01

    A method and apparatus for dynamically controlling the crystallization of molecules including a crystallization chamber (14) or chambers for holding molecules in a precipitant solution, one or more precipitant solution reservoirs (16, 18), communication passages (17, 19) respectively coupling the crystallization chamber(s) with each of the precipitant solution reservoirs, and transfer mechanisms (20, 21, 22, 24, 26, 28) configured to respectively transfer precipitant solution between each of the precipitant solution reservoirs and the crystallization chamber(s). The transfer mechanisms are interlocked to maintain a constant volume of precipitant solution in the crystallization chamber(s). Precipitant solutions of different concentrations are transferred into and out of the crystallization chamber(s) to adjust the concentration of precipitant in the crystallization chamber(s) to achieve precise control of the crystallization process. The method and apparatus can be used effectively to grow crystals under reduced gravity conditions such as microgravity conditions of space, and under conditions of reduced or enhanced effective gravity as induced by a powerful magnetic field.

  7. PREGRIDBAL 1.0: towards a high-resolution rainfall atlas for the Balearic Islands (1950-2009)

    NASA Astrophysics Data System (ADS)

    López Mayol, Toni; Homar, Víctor; Ramis, Climent; Guijarro, José Antonio

    2017-07-01

    This work presents a catalog of daily precipitation fields in the Balearic Islands created with data from AEMET (State Meteorological Agency) assistant observations, including records from 1912. The original digital daily data file has been interpolated onto a regular 100 m-resolution grid (namely PREGRIDBAL), defined with the aim of becoming a valid standard for future methodological improvements and catalog upgrades. Daily precipitation amounts on each grid point are calculated using an analysis method based on ordinary kriging, using the daily anomaly with respect to the annual mean for all available observations each day. Due to quality concerns, the time span for products derived from the catalog is limited to the 1950-2009 period, when the number of operating stations reached 200. Therefore, from the time series of daily maps, monthly-, annual-, quinquennial-, and decadal-accumulations are produced. Similarly, the catalog allowed for quantification of climate trends in rainfall amounts in the Balearic Islands, with the significant advantage of minimizing the biases originated from heterogeneities in the spatial distribution of stations across the archipelago. Results show a general decrease in precipitation during the 1950-2009 period. From 1950 to 1979, the average annual precipitation across the islands was 624.3 mm, while from 1980 to 2009 it diminished to 555.36 mm. Changes in precipitation patterns, which vary among the different areas, are also detected. The most significant reductions are found in the northern half of the archipelago and especially in Mallorca, where the Tramuntana mountain range stands out. All seasonal trends show a decrease, with values ranging between 1 and 3 mm decade-1, with the exception of autumn, which reaches a positive trend up to 7 mm decade-1. October shows the most dramatic decrease (-10. 34 mm decade-1) and, conversely, September and November show an increase in precipitation (3.28 and 1.82 mm decade-1, respectively) with a statistical significance above 85 % across almost the entire archipelago, and even exceeding 95 % in Eivissa and Formentera.

  8. Femtosecond laser filament induced condensation and precipitation in a cloud chamber

    PubMed Central

    Ju, Jingjing; Liu, Jiansheng; Liang, Hong; Chen, Yu; Sun, Haiyi; Liu, Yonghong; Wang, Jingwei; Wang, Cheng; Wang, Tiejun; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2016-01-01

    A unified picture of femtosecond laser induced precipitation in a cloud chamber is proposed. Among the three principal consequences of filamentation from the point of view of thermodynamics, namely, generation of chemicals, shock waves and thermal air flow motion (due to convection), the last one turns out to be the principal cause. Much of the filament induced chemicals would stick onto the existing background CCN’s (Cloud Condensation Nuclei) through collision making the latter more active. Strong mixing of air having a large temperature gradient would result in supersaturation in which the background CCN’s would grow efficiently into water/ice/snow. This conclusion was supported by two independent experiments using pure heating or a fan to imitate the laser-induced thermal effect or the strong air flow motion, respectively. Without the assistance of any shock wave and chemical CCN’s arising from laser filament, condensation and precipitation occurred. Meanwhile we believe that latent heat release during condensation /precipitation would enhance the air flow for mixing. PMID:27143227

  9. Computer Series, 15: Bits and Pieces, 4.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1981-01-01

    Supplies short descriptions of several computer applications in the college science classroom and laboratory, including: applications; interfacing and data collection with the TRS-80; programs for activity corrections in acid/base and precipitation titration curve calculations; computer-assisted data analysis of enzyme kinetics; and microcomputer…

  10. Cu assisted stabilization and nucleation of L1 2 precipitates in Al 0.3 CuFeCrNi 2 fcc-based high entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwalani, B.; Choudhuri, D.; Soni, V.

    2017-05-01

    A detailed investigation of precipitation of the ordered L12 (γ’) phase in a Al0.3CrCuFeNi2 high entropy alloy (HEA), more generally referred to as a complex concentrated alloy (CCA), reveals the role of copper (Cu) on stabilization and precipitation of the ordered L12 ( γ’) phase. Detailed characterization via coupling of scanning and transmission electron microscopy, and atom probe tomography revealed novel insights into Cu clustering within the face-centered cubic matrix of this HEA, leading to heterogeneous nucleation sites for the γ’ precipitates. The subsequent partitioning of Cu into the γ’ precipitates indicates their stabilization is due to Cu addition. Themore » γ’ order-disorder transition temperature was determined to be ~930 _C in this alloy, based on synchrotron diffraction experiments, involving in situ annealing. The growth and high temperature stability of the γ’ precipitates was also confirmed via systematic scanning electron microscopy investigations of samples annealed at temperatures in the range of 700-900 oC. The role of Cu revealed by this study can be employed in the design of precipitation strengthened HEAs, as well as in a more general sense applied to other types of superalloys, with the objective of potentially enhancing their mechanical properties at room and elevated temperatures« less

  11. Quantitative Assessment of In-solution Digestion Efficiency Identifies Optimal Protocols for Unbiased Protein Analysis*

    PubMed Central

    León, Ileana R.; Schwämmle, Veit; Jensen, Ole N.; Sprenger, Richard R.

    2013-01-01

    The majority of mass spectrometry-based protein quantification studies uses peptide-centric analytical methods and thus strongly relies on efficient and unbiased protein digestion protocols for sample preparation. We present a novel objective approach to assess protein digestion efficiency using a combination of qualitative and quantitative liquid chromatography-tandem MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein fractions. We evaluated nine trypsin-based digestion protocols, based on standard in-solution or on spin filter-aided digestion, including new optimized protocols. We investigated various reagents for protein solubilization and denaturation (dodecyl sulfate, deoxycholate, urea), several trypsin digestion conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents before analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative liquid chromatography-tandem MS workflow quantified over 3700 distinct peptides with 96% completeness between all protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows for efficient, unbiased generation and recovery of peptides from all protein classes, including membrane proteins. This deoxycholate-assisted protocol was also optimal for spin filter-aided digestions as compared with existing methods. PMID:23792921

  12. How does bias correction of regional climate model precipitation affect modelled runoff?

    NASA Astrophysics Data System (ADS)

    Teng, J.; Potter, N. J.; Chiew, F. H. S.; Zhang, L.; Wang, B.; Vaze, J.; Evans, J. P.

    2015-02-01

    Many studies bias correct daily precipitation from climate models to match the observed precipitation statistics, and the bias corrected data are then used for various modelling applications. This paper presents a review of recent methods used to bias correct precipitation from regional climate models (RCMs). The paper then assesses four bias correction methods applied to the weather research and forecasting (WRF) model simulated precipitation, and the follow-on impact on modelled runoff for eight catchments in southeast Australia. Overall, the best results are produced by either quantile mapping or a newly proposed two-state gamma distribution mapping method. However, the differences between the methods are small in the modelling experiments here (and as reported in the literature), mainly due to the substantial corrections required and inconsistent errors over time (non-stationarity). The errors in bias corrected precipitation are typically amplified in modelled runoff. The tested methods cannot overcome limitations of the RCM in simulating precipitation sequence, which affects runoff generation. Results further show that whereas bias correction does not seem to alter change signals in precipitation means, it can introduce additional uncertainty to change signals in high precipitation amounts and, consequently, in runoff. Future climate change impact studies need to take this into account when deciding whether to use raw or bias corrected RCM results. Nevertheless, RCMs will continue to improve and will become increasingly useful for hydrological applications as the bias in RCM simulations reduces.

  13. Tannic acid assisted synthesis of flake-like hydroxyapatite nanostructures at room temperature

    NASA Astrophysics Data System (ADS)

    Vázquez, Maricela Santana; Estevez, O.; Ascencio-Aguirre, F.; Mendoza-Cruz, R.; Bazán-Díaz, L.; Zorrila, C.; Herrera-Becerra, R.

    2016-09-01

    A simple and non-expensive procedure was performed to synthesize hydroxyapatite (HAp) flake-like nanostructures, by using a co-precipitation method with tannic acid as stabilizing agent at room temperature and freeze drying. Samples were synthesized with two different salts, Ca(NO3)2 and CaCl2. X-ray diffraction analysis, Raman spectroscopy, scanning and transmission electron microscopy characterizations reveal Ca10(PO4)6(OH)2 HAp particles with hexagonal structure and P63/m space group in both cases. In addition, the particle size was smaller than 20 nm. The advantage of this method over the works reported to date lies in the ease for obtaining HAp particles with a single morphology (flakes), in high yield. This opens the possibility of expanding the view to the designing of new composite materials based on the HAp synthesized at room temperature.

  14. MnFe2O4: Synthesis, morphology and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shrikant; Thombare, Balu; Patil, Shankar

    2017-05-01

    MnFe2O4 has been synthesized by simple ammonia assisted co-precipitation method to obtain nanocrystalline powder. X-ray diffraction studies confirmed its crystallinity and phase purity. The MnFe2O4 calcined at 1000°C for 4 h has spinel crystal structure with Fd3m space group and lattice constant 8.511 Å. The electrode was prepared by dip coating method on stainless steel substrate and fired at 600°C for 2 h. Random shape grains of 0.2 to 1.5 micron with pores of 1-2 micron dimensions were observed in SEM images. The electrochemical studies of MnFe2O4 were carried out with 1 mole Na2SO4 electrolyte. The MnFe2O4 electrode shows highest specific capacitance of 27.53 F.g-1 and interfacial capacitance of 0.83 F.cm-2.

  15. Multi-scale fluctuation analysis of precipitation in Beijing by Extreme-point Symmetric Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Li, Jiqing; Duan, Zhipeng; Huang, Jing

    2018-06-01

    With the aggravation of the global climate change, the shortage of water resources in China is becoming more and more serious. Using reasonable methods to study changes in precipitation is very important for planning and management of water resources. Based on the time series of precipitation in Beijing from 1951 to 2015, the multi-scale features of precipitation are analyzed by the Extreme-point Symmetric Mode Decomposition (ESMD) method to forecast the precipitation shift. The results show that the precipitation series have periodic changes of 2.6, 4.3, 14 and 21.7 years, and the variance contribution rate of each modal component shows that the inter-annual variation dominates the precipitation in Beijing. It is predicted that precipitation in Beijing will continue to decrease in the near future.

  16. Studying precipitation recycling over the Tibetan Plateau using evaporation-tagging and back-trajectory analysis

    NASA Astrophysics Data System (ADS)

    Gao, Y.

    2017-12-01

    Regional precipitation recycling (i.e., the contribution of local evaporation to local precipitation) is an important component of water cycle over the Tibetan Plateau (TP). Two methods were used to investigate regional precipitation recycling: 1) tracking of tagged atmospheric water parcels originating from evaporation in a source region (i.e., E-tagging), and 2) back-trajectory approach to track the evaporative sources contributed to precipitation in a specific region. These two methods were applied to Weather Research and Forecasting (WRF) regional climate simulations to quantify the precipitation recycling ratio in the TP for three selected years: climatologically normal, dry and wet year. The simulation region is characterized by high average elevation above 4000 m and complex terrain. The back-trajectory approach is also calculated over three sub-regions over the TP: namely western, northeastern and southeastern TP, and the E-tagging approach could provide recycling-ratio distributions over the whole TP. Three aspects are investigated to characterize the precipitation recycling: annual mean, seasonal variations and spatial distributions. Averaged over the TP, the precipitation recycling ratio estimated by the E-tagging approach is higher than that from the back-trajectory method. The back-trajectory approach uses a precipitation threshold as total precipitation in five days divided by a random number, and this number was set to 500 as a tread off between equilibrium and computational efficiency. Lower recycling ratio derived from the back-trajectory approach is related to the precipitation threshold used. The E-tagging, however, tracks every air parcel of evaporation regardless of the precipitation amount. There is no obvious seasonal variation in the recycling ratio using both methods. The E-tagging approach shows high recycling ratios in the center TP, indicating stronger land-atmospheric interactions than elsewhere.

  17. Development and Validation of HPLC Method for Determination of Crocetin, a constituent of Saffron, in Human Serum Samples

    PubMed Central

    Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein

    2013-01-01

    Objective(s): The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. Materials and Methods: The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. Results: The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 – 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. Conclusion: The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study. PMID:23638292

  18. Synthesis and characterization of Ni doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.

    2018-05-01

    In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.

  19. GPS-based PWV for precipitation forecasting and its application to a typhoon event

    NASA Astrophysics Data System (ADS)

    Zhao, Qingzhi; Yao, Yibin; Yao, Wanqiang

    2018-01-01

    The temporal variability of precipitable water vapour (PWV) derived from Global Navigation Satellite System (GNSS) observations can be used to forecast precipitation events. A number of case studies of precipitation events have been analysed in Zhejiang Province, and a forecasting method for precipitation events was proposed. The PWV time series retrieved from the Global Positioning System (GPS) observations was processed by using a least-squares fitting method, so as to obtain the line tendency of ascents and descents over PWV. The increment of PWV for a short time (two to six hours) and PWV slope for a longer time (a few hours to more than ten hours) during the PWV ascending period are considered as predictive factors with which to forecast the precipitation event. The numerical results show that about 80%-90% of precipitation events and more than 90% of heavy rain events can be forecasted two to six hours in advance of the precipitation event based on the proposed method. 5-minute PWV data derived from GPS observations based on real-time precise point positioning (RT-PPP) were used for the typhoon event that passed over Zhejiang Province between 10 and 12 July, 2015. A good result was acquired using the proposed method and about 74% of precipitation events were predicted at some ten to thirty minutes earlier than their onset with a false alarm rate of 18%. This study shows that the GPS-based PWV was promising for short-term and now-casting precipitation forecasting.

  20. Fibrin-based tissue engineering: comparison of different methods of autologous fibrinogen isolation.

    PubMed

    Dietrich, Maren; Heselhaus, Johanna; Wozniak, Justyna; Weinandy, Stefan; Mela, Petra; Tschoeke, Beate; Schmitz-Rode, Thomas; Jockenhoevel, Stefan

    2013-03-01

    This study is focussed on the optimal method of autologous fibrinogen isolation with regard to the yield and the use as a scaffold material. This is particularly relevant for pediatric patients with strictly limited volumes of blood. The following isolation methods were evaluated: cryoprecipitation, ethanol (EtOH) precipitation, ammonium sulfate [(NH(4))(2)SO(4))] precipitation, ammonium sulfate precipitation combined with cryoprecipitation, and polyethylene glycol precipitation combined with cryoprecipitation. Fibrinogen yields were quantified spectrophotometrically and by electrophoretic analyses. To test the influence of the different isolation methods on the microstructure of the fibrin gels, scanning electron microscopy (SEM) was used and the mechanical strength of the cell-free and cell-seeded fibrin gels was tested by burst strength measurements. Cytotoxicity assays were performed to analyze the effect of various fibrinogen isolation methods on proliferation, apoptosis, and necrosis. Tissue development and cell migration were analyzed in all samples using immunohistochemical techniques. The synthesis of collagen as an extracellular matrix component by human umbilical cord artery smooth muscle cells in fibrin gels was measured using hydroxyproline assay. Compared to cryoprecipitation, all other considered methods were superior in quantitative analyses, with maximum fibrinogen yields of ∼80% of total plasma fibrinogen concentration using ethanol precipitation. SEM imaging demonstrated minor differences in the gel microstructure. Ethanol-precipitated fibrin gels exhibited the best mechanical properties. None of the isolation methods had a cytotoxic effect on the cells. Collagen production was similar in all gels except those from ammonium sulfate precipitation. Histological analysis showed good cell compatibility for ethanol-precipitated gels. The results of the present study demonstrated that ethanol precipitation is a simple and effective method for isolation of fibrinogen and a suitable alternative to cryoprecipitation. This technique allows minimization of the necessary blood volume for fibrinogen isolation, particularly important for pediatric applications, and also has no negative influence on microstructure, mechanical properties, cell proliferation, or tissue development.

  1. Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Yanjie; Wang, Lincai; Cao, Peiqi; Cai, Chuanlin; Fu, Yanbao; Ma, Xiaohua

    2016-02-01

    A simple co-precipitation method utilizing SDS (sodium dodecyl sulfate) as template and ammonia as precipitant is successfully employed to synthesize nickel cobalt oxide/graphene oxide (NiCo2O4/GO) composite. The as-prepared composite (NCG-10) exhibits a high capacitance of 1211.25 F g-1, 687 F g-1 at the current density of 1 A g-1, 10 A g-1 and good cycling ability which renders NCG-10 as promising electrode material for supercapacitors. An asymmetric supercapacitor (ASC) (full button cell) has been constructed with NCG-10 as positive electrode and lab-made reduced graphene oxide (rGO) as negative electrode. The fabricated NCG-10//rGO with an extended stable operational voltage of 1.6 V can deliver a high specific capacitance of 144.45 F g-1 at a current density of 1 A g-1. The as-prepared NCG-10//rGO demonstrates remarkable energy density (51.36 W h kg-1 at 1 A g-1), high power density (50 kW kg-1 at 20 A g-1). The retention of capacitance is 88.6% at the current density of 8 A g-1 after 2000 cycles. The enhanced capacitive performance can be attributed to the improved specific surface area and 3D open area of NCG-10 generated by the pores and channels with the substantial function of SDS.

  2. A novel strategy for phosphopeptide enrichment using lanthanide phosphate co-precipitation.

    PubMed

    Mirza, Munazza Raza; Rainer, Matthias; Güzel, Yüksel; Choudhary, Iqbal M; Bonn, Günther K

    2012-08-01

    Reversible phosphorylation of proteins is a common theme in the regulation of important cellular functions such as growth, metabolism, and differentiation. The comprehensive understanding of biological processes requires the characterization of protein phosphorylation at the molecular level. Although, the number of cellular phosphoproteins is relatively high, the phosphorylated residues themselves are generally of low abundance due to the sub-stoichiometric nature. However, low abundance of phosphopeptides and low degree of phosphorylation typically necessitates isolation and concentration of phosphopeptides prior to mass spectrometric analysis. In this study, we used trivalent lanthanide ions (LaCl(3), CeCl(3), EuCl(3), TbCl(3), HoCl(3), ErCl(3), and TmCl(3)) for phosphopeptide enrichment and cleaning-up. Due to their low solubility product, lanthanide ions form stable complexes with the phosphate groups of phosphopeptides and precipitate out of solution. In a further step, non-phosphorylated compounds can easily be removed by simple centrifugation and washing before mass spectrometric analysis using Matrix-assisted laser desorption/ionisation-time of flight. The precipitation method was applied for the isolation of phosphopeptides from standard proteins such as ovalbumin, α-casein, and β-casein. High enrichment of phosphopeptides could also be achieved for real samples such as fresh milk and egg white. The technology presented here represents an excellent and highly selective tool for phosphopeptide recovery; it is easily applicable and shows several advantages as compared with standard approaches such as TiO(2) or IMAC.

  3. Geographically weighted regression based methods for merging satellite and gauge precipitation

    NASA Astrophysics Data System (ADS)

    Chao, Lijun; Zhang, Ke; Li, Zhijia; Zhu, Yuelong; Wang, Jingfeng; Yu, Zhongbo

    2018-03-01

    Real-time precipitation data with high spatiotemporal resolutions are crucial for accurate hydrological forecasting. To improve the spatial resolution and quality of satellite precipitation, a three-step satellite and gauge precipitation merging method was formulated in this study: (1) bilinear interpolation is first applied to downscale coarser satellite precipitation to a finer resolution (PS); (2) the (mixed) geographically weighted regression methods coupled with a weighting function are then used to estimate biases of PS as functions of gauge observations (PO) and PS; and (3) biases of PS are finally corrected to produce a merged precipitation product. Based on the above framework, eight algorithms, a combination of two geographically weighted regression methods and four weighting functions, are developed to merge CMORPH (CPC MORPHing technique) precipitation with station observations on a daily scale in the Ziwuhe Basin of China. The geographical variables (elevation, slope, aspect, surface roughness, and distance to the coastline) and a meteorological variable (wind speed) were used for merging precipitation to avoid the artificial spatial autocorrelation resulting from traditional interpolation methods. The results show that the combination of the MGWR and BI-square function (MGWR-BI) has the best performance (R = 0.863 and RMSE = 7.273 mm/day) among the eight algorithms. The MGWR-BI algorithm was then applied to produce hourly merged precipitation product. Compared to the original CMORPH product (R = 0.208 and RMSE = 1.208 mm/hr), the quality of the merged data is significantly higher (R = 0.724 and RMSE = 0.706 mm/hr). The developed merging method not only improves the spatial resolution and quality of the satellite product but also is easy to implement, which is valuable for hydrological modeling and other applications.

  4. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-A review

    NASA Astrophysics Data System (ADS)

    Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.

    2016-10-01

    Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.

  5. Development and Validation of HPLC Method for Determination of Crocetin, a constituent of Saffron, in Human Serum Samples.

    PubMed

    Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein

    2013-01-01

    The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 - 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study.

  6. Capacitive behaviour of MnF2 and CoF2 submicro/nanoparticles synthesized via a mild ionic liquid-assisted route

    NASA Astrophysics Data System (ADS)

    Ma, Ruguang; Zhou, Yao; Yao, Lin; Liu, Guanghui; Zhou, Zhenzhen; Lee, Jong-Min; Wang, Jiacheng; Liu, Qian

    2016-01-01

    Submicro-/nano-sized MnF2 rods and hierarchical CoF2 cuboids are respectively synthesized via a facile precipitation method assisted by ionic liquid under a mild condition. The as-prepared MF2 (M = Mn, Co) submicro/nanoparticles exhibit impressive specific capacitance in 1.0 M KOH aqueous solution, especially at relatively high current densities, e.g. 91.2, 68.7 and 56.4 F g-1 for MnF2, and 81.7, 70.6 and 63.0 F g-1 for CoF2 at 5, 8 and 10 A g-1, respectively. The mechanism of striking capacitance of MF2 is clarified on the basis of analysing the cycled electrodes by different characterization techniques. Such remarkable capacitance is ascribed to the redox reactions between MF2 and MOOH in aqueous alkaline electrolytes, which can not be obtained in aqueous neutral electrolytes. This study for the first time provides direct evidences on the pseudocapacitance mechanism of MF2 in alkaline electrolytes and paves the way of application of transition metal fluorides as electrodes in supercapacitors.

  7. Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods.

    PubMed

    Arroyo, Fátima; Font, Oriol; Fernández-Pereira, Constantino; Querol, Xavier; Juan, Roberto; Ruiz, Carmen; Coca, Pilar

    2009-08-15

    In this study the purity of the germanium end-products obtained by two different precipitation methods carried out on germanium-bearing solutions was evaluated as a last step of a hydrometallurgy process for the recovery of this valuable element from the Puertollano Integrated Gasification Combined Cycle (IGCC) fly ash. Since H(2)S is produced as a by-product in the gas cleaning system of the Puertollano IGCC plant, precipitation of germanium as GeS(2) was tested by sulfiding the Ge-bearing solutions. The technological and hazardous issues that surround H(2)S handling conducted to investigate a novel precipitation procedure: precipitation as an organic complex by adding 1,2-dihydroxy benzene pyrocatechol (CAT) and cetyltrimethylammonium bromide (CTAB) to the Ge-bearing solutions. Relatively high purity Ge end-products (90 and 93% hexagonal-GeO(2) purity, respectively) were obtained by precipitating Ge from enriched solutions, as GeS(2) sulfiding the solutions with H(2)S, or as organic complex with CAT/CTAB mixtures and subsequent roasting of the precipitates. Both methods showed high efficiency (>99%) to precipitate selectively Ge using a single precipitation stage from germanium-bearing solutions.

  8. Pseudomonas, Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone.

    PubMed

    Daskalakis, M I; Magoulas, A; Kotoulas, G; Catsikis, I; Bakolas, A; Karageorgis, A P; Mavridou, A; Doulia, D; Rigas, F

    2013-08-01

    Bacterially induced calcium carbonate precipitation from various isolates was investigated aiming at developing an environmentally friendly technique for ornamental stone protection and restoration. Micro-organisms isolated from stone samples and identified using 16S rDNA and biochemical tests promoted calcium carbonate precipitation in solid and novel liquid growth media. Biomineral morphology was studied on marble samples with scanning electron microscopy. Most isolates demonstrated specimen weight increase, covering partially or even completely the marble surfaces mainly with vaterite. The conditions under which vaterite precipitated and its stability throughout the experimental runs are presented. A growth medium that facilitated bacterial growth of different species and promoted biomineralization was formulated. Most isolates induced biomineralization of CaCO3 . Micro-organisms may actually be a milestone in the investigation of vaterite formation facilitating our understanding of geomicrobiological interactions. Pseudomonas, Pantoea and Cupriavidus strains could be candidates for bioconsolidation of ornamental stone protection. Characterization of biomineralization capacity of different bacterial species improves understanding of the bacterially induced mineralization processes and enriches the list of candidates for biorestoration applications. Knowledge of biomineral morphology assists in differentiating mineral from biologically induced precipitates. © 2013 The Society for Applied Microbiology.

  9. Statistical simulation of ensembles of precipitation fields for data assimilation applications

    NASA Astrophysics Data System (ADS)

    Haese, Barbara; Hörning, Sebastian; Chwala, Christian; Bárdossy, András; Schalge, Bernd; Kunstmann, Harald

    2017-04-01

    The simulation of the hydrological cycle by models is an indispensable tool for a variety of environmental challenges such as climate prediction, water resources management, or flood forecasting. One of the crucial variables within the hydrological system, and accordingly one of the main drivers for terrestrial hydrological processes, is precipitation. A correct reproduction of the spatio-temporal distribution of precipitation is crucial for the quality and performance of hydrological applications. In our approach we stochastically generate precipitation fields conditioned on various precipitation observations. Rain gauges provide high-quality information for a specific measurement point, but their spatial representativeness is often rare. Microwave links, e. g. from commercial cellular operators, on the other hand can be used to estimate line integrals of near-surface rainfall information. They provide a very dense observational system compared to rain gauges. A further prevalent source of precipitation information are weather radars, which provide rainfall pattern informations. In our approach we derive precipitation fields, which are conditioned on combinations of these different observation types. As method to generate precipitation fields we use the random mixing method. Following this method a precipitation field is received as a linear combination of unconditional spatial random fields, where the spatial dependence structure is described by copulas. The weights of the linear combination are chosen in the way that the observations and the spatial structure of precipitation are reproduced. One main advantage of the random mixing method is the opportunity to consider linear and non-linear constraints. For a demonstration of the method we use virtual observations generated from a virtual reality of the Neckar catchment. These virtual observations mimic advantages and disadvantages of real observations. This virtual data set allows us to evaluate simulated precipitation fields in a very detailed manner as well as to quantify uncertainties which are conveyed by measurement inaccuracies. In a further step we use real observations as a basis for the generation of precipitation fields. The resulting ensembles of precipitation fields are used for example for data assimilation applications or as input data for hydrological models.

  10. The influence of non-ionisable excipients on precipitation parameters measured using the CheqSol method.

    PubMed

    Etherson, Kelly; Halbert, Gavin; Elliott, Moira

    2016-09-01

    The aim of this study was to determine the influence of non-ionisable excipients hydroxypropyl-β-cyclodextrin (HPβCD) and poloxamers 407 and 188 on the supersaturation and precipitation kinetics of ibuprofen, gliclazide, propranolol and atenolol induced through solution pH shifts using the CheqSol method. The drug's kinetic and intrinsic aqueous solubilities were measured in the presence of increasing excipient concentrations using the CheqSol method. Experimental data rate of change of pH with time was also examined to determine excipient-induced parachute effects and influence on precipitation rates. The measured kinetic and intrinsic solubilities provide a determination of the influence of each excipient on supersaturation index, and the area under the CheqSol curve can measure the parachute capability of excipients. The excipients influence on precipitation kinetics can be measured with novel parameters; for example, the precipitation pH or percentage ionised drug at the precipitation point, which provide further information on the excipient-induced changes in precipitation performance. This method can therefore be employed to measure the influence of non-ionisable excipients on the kinetic solubility behaviour of supersaturated solutions of ionisable drugs and to provide data, which discriminates between excipient systems during precipitation. © 2016 Royal Pharmaceutical Society.

  11. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.

    PubMed

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  12. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite

    PubMed Central

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN usingimages of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN. PMID:26447470

  13. [Comparison of acetonitrile, ethanol and chromatographic column to eliminate high-abundance proteins in human serum].

    PubMed

    Li, Yin; Liao, Ming; He, Xiao; Zhou, Yi; Luo, Rong; Li, Hongtao; Wang, Yun; He, Min

    2012-11-01

    To compare the effects of acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal to eliminate high-abundance proteins in human serum. Elimination of serum high-abundance proteins performed with acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal. Bis-Tris Mini Gels electrophoresis and two-dimensional gel electrophoresis to detect the effect. Grey value analysis from 1-DE figure showed that after serum processed by acetonitrile method, multiple affinity chromatography column Human 14 removal method and ethanol method, the grey value of albumin changed into 157.2, 40.8 and 8.2 respectively from the original value of 19. 2-DE analysis results indicated that using multiple affinity chromatography column Human 14 method, the protein points noticeable increased by 137 compared to the original serum. After processed by acetonitrile method and ethanol method, the protein point reduced, but the low abundance protein point emerged. The acetonitrile precipitation could eliminate the vast majority of high abundance proteins in serum and gain more proteins of low molecular weight, ethanol precipitation could eliminate part of high abundance proteins in serum, but low abundance proteins less harvested, and multiple affinity chromatography column Human 14 method could effectively removed the high abundance proteins, and keep a large number of low abundance proteins.

  14. A Statistical Method for Reducing Sidelobe Clutter for the Ku-Band Precipitation Radar on Board the GPM Core Observatory

    NASA Technical Reports Server (NTRS)

    Kubota, Takuji; Iguchi, Toshio; Kojima, Masahiro; Liao, Liang; Masaki, Takeshi; Hanado, Hiroshi; Meneghini, Robert; Oki, Riko

    2016-01-01

    A statistical method to reduce the sidelobe clutter of the Ku-band precipitation radar (KuPR) of the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory is described and evaluated using DPR observations. The KuPR sidelobe clutter was much more severe than that of the Precipitation Radar on board the Tropical Rainfall Measuring Mission (TRMM), and it has caused the misidentification of precipitation. The statistical method to reduce sidelobe clutter was constructed by subtracting the estimated sidelobe power, based upon a multiple regression model with explanatory variables of the normalized radar cross section (NRCS) of surface, from the received power of the echo. The saturation of the NRCS at near-nadir angles, resulting from strong surface scattering, was considered in the calculation of the regression coefficients.The method was implemented in the KuPR algorithm and applied to KuPR-observed data. It was found that the received power from sidelobe clutter over the ocean was largely reduced by using the developed method, although some of the received power from the sidelobe clutter still remained. From the statistical results of the evaluations, it was shown that the number of KuPR precipitation events in the clutter region, after the method was applied, was comparable to that in the clutter-free region. This confirms the reasonable performance of the method in removing sidelobe clutter. For further improving the effectiveness of the method, it is necessary to improve the consideration of the NRCS saturation, which will be explored in future work.

  15. Global Precipitation Measurement: Methods, Datasets and Applications

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco; Turk, Francis J.; Petersen, Walt; Hou, Arthur Y.; Garcia-Ortega, Eduardo; Machado, Luiz, A. T.; Angelis, Carlos F.; Salio, Paola; Kidd, Chris; Huffman, George J.; hide

    2011-01-01

    This paper reviews the many aspects of precipitation measurement that are relevant to providing an accurate global assessment of this important environmental parameter. Methods discussed include ground data, satellite estimates and numerical models. First, the methods for measuring, estimating, and modeling precipitation are discussed. Then, the most relevant datasets gathering precipitation information from those three sources are presented. The third part of the paper illustrates a number of the many applications of those measurements and databases. The aim of the paper is to organize the many links and feedbacks between precipitation measurement, estimation and modeling, indicating the uncertainties and limitations of each technique in order to identify areas requiring further attention, and to show the limits within which datasets can be used.

  16. Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kai

    Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cutmore » by the foil surface. The method can be performed on a regular foil specimen with a modern LaB{sub 6} or field-emission-gun transmission electron microscope. Precisions around ± 16% have been obtained for precipitate volume fractions of needle-like β″/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is close to that directly obtained using 3DAP analysis by a misfit of 4.5%, and the estimated precision for number density measurement is about ± 11%. The limitations of the method are also discussed. - Highlights: •A facile method for measuring volume fraction of nano-precipitates based on CBED •An equation to compensate for small invisible precipitates, with 3DAP verification •Precisions around ± 16% for volume fraction and ± 11% for number density.« less

  17. A precipitation regionalization and regime for Iran based on multivariate analysis

    NASA Astrophysics Data System (ADS)

    Raziei, Tayeb

    2018-02-01

    Monthly precipitation time series of 155 synoptic stations distributed over Iran, covering 1990-2014 time period, were used to identify areas with different precipitation time variability and regimes utilizing S-mode principal component analysis (PCA) and cluster analysis (CA) preceded by T-mode PCA, respectively. Taking into account the maximum loading values of the rotated components, the first approach revealed five sub-regions characterized by different precipitation time variability, while the second method delineated eight sub-regions featured with different precipitation regimes. The sub-regions identified by the two used methods, although partly overlapping, are different considering their areal extent and complement each other as they are useful for different purposes and applications. Northwestern Iran and the Caspian Sea area were found as the two most distinctive Iranian precipitation sub-regions considering both time variability and precipitation regime since they were well captured with relatively identical areas by the two used approaches. However, the areal extents of the other three sub-regions identified by the first approach were not coincident with the coverage of their counterpart sub-regions defined by the second approach. Results suggest that the precipitation sub-region identified by the two methods would not be necessarily the same, as the first method which accounts for the variance of the data grouped stations with similar temporal variability while the second one which considers a fixed climatology defined by the average over the period 1990-2014 clusters stations having a similar march of monthly precipitation.

  18. Classification and global distribution of ocean precipitation types based on satellite passive microwave signatures

    NASA Astrophysics Data System (ADS)

    Gautam, Nitin

    The main objectives of this thesis are to develop a robust statistical method for the classification of ocean precipitation based on physical properties to which the SSM/I is sensitive and to examine how these properties vary globally and seasonally. A two step approach is adopted for the classification of oceanic precipitation classes from multispectral SSM/I data: (1)we subjectively define precipitation classes using a priori information about the precipitating system and its possible distinct signature on SSM/I data such as scattering by ice particles aloft in the precipitating cloud, emission by liquid rain water below freezing level, the difference of polarization at 19 GHz-an indirect measure of optical depth, etc.; (2)we then develop an objective classification scheme which is found to reproduce the subjective classification with high accuracy. This hybrid strategy allows us to use the characteristics of the data to define and encode classes and helps retain the physical interpretation of classes. The classification methods based on k-nearest neighbor and neural network are developed to objectively classify six precipitation classes. It is found that the classification method based neural network yields high accuracy for all precipitation classes. An inversion method based on minimum variance approach was used to retrieve gross microphysical properties of these precipitation classes such as column integrated liquid water path, column integrated ice water path, and column integrated min water path. This classification method is then applied to 2 years (1991-92) of SSM/I data to examine and document the seasonal and global distribution of precipitation frequency corresponding to each of these objectively defined six classes. The characteristics of the distribution are found to be consistent with assumptions used in defining these six precipitation classes and also with well known climatological patterns of precipitation regions. The seasonal and global distribution of these six classes is also compared with the earlier results obtained from Comprehensive Ocean Atmosphere Data Sets (COADS). It is found that the gross pattern of the distributions obtained from SSM/I and COADS data match remarkably well with each other.

  19. Analysis of the Nonlinear Trends and Non-Stationary Oscillations of Regional Precipitation in Xinjiang, Northwestern China, Using Ensemble Empirical Mode Decomposition

    PubMed Central

    Guo, Bin; Chen, Zhongsheng; Guo, Jinyun; Liu, Feng; Chen, Chuanfa; Liu, Kangli

    2016-01-01

    Changes in precipitation could have crucial influences on the regional water resources in arid regions such as Xinjiang. It is necessary to understand the intrinsic multi-scale variations of precipitation in different parts of Xinjiang in the context of climate change. In this study, based on precipitation data from 53 meteorological stations in Xinjiang during 1960–2012, we investigated the intrinsic multi-scale characteristics of precipitation variability using an adaptive method named ensemble empirical mode decomposition (EEMD). Obvious non-linear upward trends in precipitation were found in the north, south, east and the entire Xinjiang. Changes in precipitation in Xinjiang exhibited significant inter-annual scale (quasi-2 and quasi-6 years) and inter-decadal scale (quasi-12 and quasi-23 years). Moreover, the 2–3-year quasi-periodic fluctuation was dominant in regional precipitation and the inter-annual variation had a considerable effect on the regional-scale precipitation variation in Xinjiang. We also found that there were distinctive spatial differences in variation trends and turning points of precipitation in Xinjiang. The results of this study indicated that compared to traditional decomposition methods, the EEMD method, without using any a priori determined basis functions, could effectively extract the reliable multi-scale fluctuations and reveal the intrinsic oscillation properties of climate elements. PMID:27007388

  20. Bayesian Non-Stationary Index Gauge Modeling of Gridded Precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Verdin, A.; Bracken, C.; Caldwell, J.; Balaji, R.; Funk, C. C.

    2017-12-01

    We propose a Bayesian non-stationary model to generate watershed scale gridded estimates of extreme precipitation return levels. The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset is used to obtain gridded seasonal precipitation extremes over the Taylor Park watershed in Colorado for the period 1981-2016. For each year, grid cells within the Taylor Park watershed are aggregated to a representative "index gauge," which is input to the model. Precipitation-frequency curves for the index gauge are estimated for each year, using climate variables with significant teleconnections as proxies. Such proxies enable short-term forecasting of extremes for the upcoming season. Disaggregation ratios of the index gauge to the grid cells within the watershed are computed for each year and preserved to translate the index gauge precipitation-frequency curve to gridded precipitation-frequency maps for select return periods. Gridded precipitation-frequency maps are of the same spatial resolution as CHIRPS (0.05° x 0.05°). We verify that the disaggregation method preserves spatial coherency of extremes in the Taylor Park watershed. Validation of the index gauge extreme precipitation-frequency method consists of ensuring extreme value statistics are preserved on a grid cell basis. To this end, a non-stationary extreme precipitation-frequency analysis is performed on each grid cell individually, and the resulting frequency curves are compared to those produced by the index gauge disaggregation method.

  1. Precipitation forecast using artificial neural networks. An application to the Guadalupe Valley, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Herrera-Oliva, C. S.

    2013-05-01

    In this work we design and implement a method for the determination of precipitation forecast through the application of an elementary neuronal network (perceptron) to the statistical analysis of the precipitation reported in catalogues. The method is limited mainly by the catalogue length (and, in a smaller degree, by its accuracy). The method performance is measured using grading functions that evaluate a tradeoff between positive and negative aspects of performance. The method is applied to the Guadalupe Valley, Baja California, Mexico. Using consecutive intervals of dt=0.1 year, employing the data of several climatological stations situated in and surrounding this important wine industries zone. We evaluated the performance of different models of ANN, whose variables of entrance are the heights of precipitation. The results obtained were satisfactory, except for exceptional values of rain. Key words: precipitation forecast, artificial neural networks, statistical analysis

  2. Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung

    2010-08-01

    Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.

  3. Analysis of an ethanol precipitate from ileal digesta: evaluation of a method to determine mucin.

    PubMed

    Miner-Williams, Warren M; Moughan, Paul J; Fuller, Malcolm F

    2013-11-06

    The precipitation of mucin using high concentrations of ethanol has been used by many researchers while others have questioned the validity of the technique. In this study, analysis of an ethanol precipitate, from the soluble fraction of ileal digesta from pigs was undertaken using molecular weight profiling and polyacrylamide gel electrophoresis. The precipitate contained 201 mg·g⁻¹ protein, 87% of which had a molecular weight >20 KDa. Polyacrylamide gel electrophoresis stained with Coomassie blue and periodic acid/Schiff, revealed that most glycoprotein had a molecular weight between 37-100 KDa. The molecular weight of glycoprotein in the precipitate was therefore lower than that of intact mucin. These observations indicated that the glycoprotein in the ethanol precipitate was significantly degraded. The large amount of protein and carbohydrate in the supernatant from ethanol precipitation indicated that the precipitation of glycoprotein was incomplete. As a method for determining the concentration of mucin in digesta, ethanol precipitation is unreliable.

  4. Scale transition using dislocation dynamics and the nudged elastic band method

    DOE PAGES

    Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...

    2017-08-01

    Microstructural features such as precipitates or irradiation-induced defects impede dislocation motion and directly influence macroscopic mechanical properties such as yield point and ductility. In dislocation-defect interactions both atomic scale and long range elastic interactions are involved. Thermally assisted dislocation bypass of obstacles occurs when thermal fluctuations and driving stresses contribute sufficient energy to overcome the energy barrier. The Nudged Elastic Band (NEB) method is typically used in the context of atomistic simulations to quantify the activation barriers for a given reaction. In this work, the NEB method is generalized to coarse-grain continuum representations of evolving microstructure states beyond the discretemore » particle descriptions of first principles and atomistics. The method we employed enables the calculation of activation energies for a View the MathML source glide dislocation bypassing a [001] self-interstitial atom loop of size in the range of 4-10 nm with a spacing larger than 150nm in α-iron for a range of applied stresses and interaction geometries. This study is complemented by a comparison between atomistic and continuum based prediction of barriers.« less

  5. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries

    NASA Astrophysics Data System (ADS)

    Yan, Jianfeng; Heckman, Nathan M.; Velasco, Leonardo; Hodge, Andrea M.

    2016-05-01

    The sensitization and subsequent intergranular corrosion of Al-5.3 wt.% Mg alloy has been shown to be an important factor in stress corrosion cracking of Al-Mg alloys. Understanding sensitization requires the review of grain boundary character on the precipitation process which can assist in developing and designing alloys with improved corrosion resistance. This study shows that the degree of precipitation in Al-Mg alloy is dependent on grain boundary misorientation angle, adjacent grain boundary planes and grain boundary types. The results show that the misorientation angle is the most important factor influencing precipitation in grain boundaries of the Al-Mg alloy. Low angle grain boundaries (≤15°) have better immunity to precipitation and grain boundary acid attack. High angle grain boundaries (>15°) are vulnerable to grain boundary acid attack. Grain boundaries with adjacent plane orientations near to {100} have potential for immunity to precipitation and grain boundary acid attack. This work shows that low Σ (Σ ≤ 29) coincident site lattice (CSL) grain boundaries have thinner β precipitates. Modified nitric acid mass loss test and polarization test demonstrated that the global corrosion resistance of sputtered Al-Mg alloy is enhanced. This may be attributed to the increased fractions of low Σ (Σ ≤ 29) CSL grain boundaries after sputtering.

  6. Sample preparation methods for scanning electron microscopy of homogenized Al-Mg-Si billets: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Österreicher, Johannes Albert; Kumar, Manoj

    Characterization of Mg-Si precipitates is crucial for optimizing the homogenization heat treatment of Al-Mg-Si alloys. Although sample preparation is key for high quality scanning electron microscopy imaging, most common methods lead to dealloying of Mg-Si precipitates. In this article we systematically evaluate different sample preparation methods: mechanical polishing, etching with various reagents, and electropolishing using different electrolytes. We demonstrate that the use of a nitric acid and methanol electrolyte for electropolishing a homogenized Al-Mg-Si alloy prevents the dissolution of Mg-Si precipitates, resulting in micrographs of higher quality. This preparation method is investigated in depth and the obtained scanning electron microscopymore » images are compared with transmission electron micrographs: the shape and size of Mg-Si precipitates appear very similar in either method. The scanning electron micrographs allow proper identification and measurement of the Mg-Si phases including needles with lengths of roughly 200 nm. These needles are β″ precipitates as confirmed by high resolution transmission electron microscopy. - Highlights: •Secondary precipitation in homogenized 6xxx Al alloys is crucial for extrudability. •Existing sample preparation methods for SEM are improvable. •Electropolishing with nitric acid/methanol yields superior quality in SEM. •The obtained micrographs are compared to TEM micrographs.« less

  7. Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics

    NASA Astrophysics Data System (ADS)

    Westerberg, I.; Walther, A.; Guerrero, J.-L.; Coello, Z.; Halldin, S.; Xu, C.-Y.; Chen, D.; Lundin, L.-C.

    2010-08-01

    An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913-2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gap-filling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4-5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitation-generating mechanisms and the need for an improved monitoring network.

  8. Calibration of collection procedures for the determination of precipitation chemistry

    Treesearch

    James N. Galloway; Gene E. Likens

    1976-01-01

    Precipitation is currently collected by several methods, including several different designs of collection apparatus. We are investigating these differing methods and designs to determine which gives the most representative sample of precipitation for the analysis of some 25 chemical parameters. The experimental site, located in Ithaca, New York, has 22 collectors of...

  9. Evaluation of the light scattering and the turbidity microtiter plate-based methods for the detection of the excipient-mediated drug precipitation inhibition.

    PubMed

    Petruševska, Marija; Urleb, Uroš; Peternel, Luka

    2013-11-01

    The excipient-mediated precipitation inhibition is classically determined by the quantification of the dissolved compound in the solution. In this study, two alternative approaches were evaluated, one is the light scattering (nephelometer) and other is the turbidity (plate reader) microtiter plate-based methods which are based on the quantification of the compound precipitate. Following the optimization of the nephelometer settings (beam focus, laser gain) and the experimental conditions, the screening of 23 excipients on the precipitation inhibition of poorly soluble fenofibrate and dipyridamole was performed. The light scattering method resulted in excellent correlation (r>0.91) between the calculated precipitation inhibitor parameters (PIPs) and the precipitation inhibition index (PI(classical)) obtained by the classical approach for fenofibrate and dipyridamole. Among the evaluated PIPs AUC100 (nephelometer) resulted in only four false positives and lack of false negatives. In the case of the turbidity-based method a good correlation of the PI(classical) was obtained for the PIP maximal optical density (OD(max), r=0.91), however, only for fenofibrate. In the case of the OD(max) (plate reader) five false positives and two false negatives were identified. In conclusion, the light scattering-based method outperformed the turbidity-based one and could be reliably used for identification of novel precipitation inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. genRE: A Method to Extend Gridded Precipitation Climatology Data Sets in Near Real-Time for Hydrological Forecasting Purposes

    NASA Astrophysics Data System (ADS)

    van Osnabrugge, B.; Weerts, A. H.; Uijlenhoet, R.

    2017-11-01

    To enable operational flood forecasting and drought monitoring, reliable and consistent methods for precipitation interpolation are needed. Such methods need to deal with the deficiencies of sparse operational real-time data compared to quality-controlled offline data sources used in historical analyses. In particular, often only a fraction of the measurement network reports in near real-time. For this purpose, we present an interpolation method, generalized REGNIE (genRE), which makes use of climatological monthly background grids derived from existing gridded precipitation climatology data sets. We show how genRE can be used to mimic and extend climatological precipitation data sets in near real-time using (sparse) real-time measurement networks in the Rhine basin upstream of the Netherlands (approximately 160,000 km2). In the process, we create a 1.2 × 1.2 km transnational gridded hourly precipitation data set for the Rhine basin. Precipitation gauge data are collected, spatially interpolated for the period 1996-2015 with genRE and inverse-distance squared weighting (IDW), and then evaluated on the yearly and daily time scale against the HYRAS and EOBS climatological data sets. Hourly fields are compared qualitatively with RADOLAN radar-based precipitation estimates. Two sources of uncertainty are evaluated: station density and the impact of different background grids (HYRAS versus EOBS). The results show that the genRE method successfully mimics climatological precipitation data sets (HYRAS/EOBS) over daily, monthly, and yearly time frames. We conclude that genRE is a good interpolation method of choice for real-time operational use. genRE has the largest added value over IDW for cases with a low real-time station density and a high-resolution background grid.

  11. Identification and root cause analysis of cell culture media precipitates in the viral deactivation treatment with high-temperature/short-time method.

    PubMed

    Cao, Xiaolin; Stimpfl, Gregory; Wen, Zai-Qing; Frank, Gregory; Hunter, Glenn

    2013-01-01

    High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the biopharmaceutical manufacturing industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating and pumping the media continuously through the preset high-temperature holding tubes to achieve a specified period of time at a specific temperature. Recently, during the evaluation and implementation of HTST method in multiple Amgen, Inc. manufacturing facilities, media precipitates were observed in the tests of HTST treatments. The media precipitates may have adverse consequences such as clogging the HTST system, altering operating conditions and compromising the efficacy of viral deactivation, and ultimately affecting the media composition and cell growth. In this study, we report the identification of the composition of media precipitates from multiple media HTST runs using combined microspectroscopic methods including Raman, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The major composition in the precipitates was determined to be metal phosphates, including calcium phosphate, magnesium phosphate, and iron (III) phosphate. Based on the composition, stoichiometry, and root-cause study of media precipitations, methods were implemented for the mitigation and prevention of the occurrence of the media precipitation. Viral contamination in cell culture media is an important issue in the biopharmaceutical manufacturing industry and may have serious consequences on product quality, efficacy, and safety. High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating at preset conditions. This paper provides the identification and root-cause study of the media precipitates that adversely affected the HTST process and discusses the possible solutions to mitigate the precipitation problem.

  12. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  13. Policy and strategy considerations for assisted migration on USDA Forest Service lands

    Treesearch

    Randy Johnson; Sandy Boyce; Leslie Brandt; Vicky Erickson; Louis Iverson; Greg Kujawa; Borys Tkacz

    2013-01-01

    Due to increased temperatures and shifts in precipitation patterns associated with climate change, bioclimatic zones that provide habitat for many species are expected to expand, contract, disappear, shift poleward, or move towards higher elevations (WGA 2008). Species will respond to changing climate and disturbance regimes individually, with some species moving...

  14. Mexico’s Financial Crisis: Origins, Awareness, Assistance, and Initial Efforts to Recover.

    DTIC Science & Technology

    1996-02-01

    Mexico’s devaluation of the peso in December 1994 precipitated a crisis in Mexico’s financial institutions and markets that continued into 1995...to meet the demand of investors seeking to convert pesos to U.S. dollars. In response to this crisis, the United States organized a financial

  15. Domestic Violence. Technical Assistance Packet.

    ERIC Educational Resources Information Center

    Join Together, Boston, MA.

    Substance abuse has long been recognized as a precipitating factor in many domestic violence incidents. The main type of substance abuse is alcohol usage. Forty-six percent of the offenders reported being dependent on or abusing alcohol, while another 28% were found to be dependent on opiates, cocaine, marijuana, or inhalants. Nearly two-fifths of…

  16. Ultrasonication Assisted Production of Biodiesel from Sunflower Oil by Using CuO: Mg Heterogeneous Nanocatalyst

    NASA Astrophysics Data System (ADS)

    Varghese, Rintu; Jose, Sony; Joyprabu, H.; Johnson, I.

    2017-08-01

    Biodiesel is a clean, renewable, biodegradable, eco-friendly and alternative fuel used in the diesel engine. The present work was carried out at constant operational conditions such as methanol to oil molar ratio 6:1, catalyst concentration 0.25%, 30 minute reaction time and the reaction temperature at 60°C. Biodiesel was synthesized by transesterification of sunflower oil (SFO) with methanol, using CuO: Mgas nanocatalyst. This nanocatalyst was prepared by quick precipitation method. The biodiesel yield of 71.78% was achieved under reaction condition. The presence of methyl ester groups at the produced biodiesel was confirmed using the Gas Chromatography-Mass Spectrometry (GC-MS). The FAME conversion yield up to 82.83 % could be obtained under the operating conditions.

  17. A simple and rapid method to isolate purer M13 phage by isoelectric precipitation.

    PubMed

    Dong, Dexian; Sutaria, Sanjana; Hwangbo, Je Yeol; Chen, P

    2013-09-01

    M13 virus (phage) has been extensively used in phage display technology and nanomaterial templating. Our research aimed to use M13 phage to template sulfur nanoparticles for making lithium ion batteries. Traditional methods for harvesting M13 phage from Escherichia coli employ polyethylene glycol (PEG)-based precipitation, and the yield is usually measured by plaque counting. With this method, PEG residue is present in the M13 phage pellet and is difficult to eliminate. To resolve this issue, a method based on isoelectric precipitation was introduced and tested. The isoelectric method resulted in the production of purer phage with a higher yield, compared to the traditional PEG-based method. There is no significant variation in infectivity of the phage prepared using isoelectric precipitation, and the dynamic light scattering data indirectly prove that the phage structure is not damaged by pH adjustment. To maximize phage production, a dry-weight yield curve of M13 phage for various culture times was produced. The yield curve is proportional to the growth curve of E. coli. On a 200-mL culture scale, 0.2 g L(-1) M13 phage (dry-weight) was produced by the isoelectric precipitation method.

  18. Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water

    NASA Astrophysics Data System (ADS)

    Fournier, L.; Savoie, M.; Delafosse, D.

    2007-06-01

    The low cycle fatigue (LCF) behaviour of precipitation-strengthened A-286 austenitic stainless steel was first investigated at room temperature under 0.2% plastic strain control. LCF led to hardening for the first 20 cycles and then to significant softening. LCF-induced dislocation microstructure was characterized using both bright and dark-field imaging techniques in transmission electron microscopy. Cycling softening was correlated with the formation of precipitate-free localized deformation bands. The effect of these precipitate-free localized deformation bands on A-286 stress corrosion cracking (SCC) behaviour in PWR primary water was then examined by means of constant extension rate tensile (CERT) tests at 320 °C and 360 °C. Comparative CERT tests were performed on companion specimens with similar yield stress but pre-fatigued to a few cycles (4-8) or between 125 and 200 cycles. Specimens pre-fatigued to a few cycles with no precipitate-free localized deformation bands exhibited little susceptibility to intergranular SCC (IGSCC). In contrast, the presence of precipitate-free localized deformation bands formed by pre-fatigue to between 125 and 200 cycles strongly promoted IGSCC. The interest of the approach used in this study is to provide insight into the role of localized deformation in irradiation assisted stress corrosion cracking.

  19. A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.

    Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionosphericmore » altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25–26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients D αα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as “diffusion coefficient method”) and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as “lifetime method”). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. Furthermore, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.« less

  20. A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model

    DOE PAGES

    Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; ...

    2016-09-01

    Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionosphericmore » altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25–26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients D αα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as “diffusion coefficient method”) and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as “lifetime method”). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. Furthermore, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.« less

  1. Temporal Clustering of Regional-Scale Extreme Precipitation Events in Southern Switzerland

    NASA Astrophysics Data System (ADS)

    Barton, Yannick; Giannakaki, Paraskevi; Von Waldow, Harald; Chevalier, Clément; Pfhal, Stephan; Martius, Olivia

    2017-04-01

    Temporal clustering of extreme precipitation events on subseasonal time scales is a form of compound extremes and is of crucial importance for the formation of large-scale flood events. Here, the temporal clustering of regional-scale extreme precipitation events in southern Switzerland is studied. These precipitation events are relevant for the flooding of lakes in southern Switzerland and northern Italy. This research determines whether temporal clustering is present and then identifies the dynamics that are responsible for the clustering. An observation-based gridded precipitation dataset of Swiss daily rainfall sums and ECMWF reanalysis datasets are used. To analyze the clustering in the precipitation time series a modified version of Ripley's K function is used. It determines the average number of extreme events in a time period, to characterize temporal clustering on subseasonal time scales and to determine the statistical significance of the clustering. Significant clustering of regional-scale precipitation extremes is found on subseasonal time scales during the fall season. Four high-impact clustering episodes are then selected and the dynamics responsible for the clustering are examined. During the four clustering episodes, all heavy precipitation events were associated with an upperlevel breaking Rossby wave over western Europe and in most cases strong diabatic processes upstream over the Atlantic played a role in the amplification of these breaking waves. Atmospheric blocking downstream over eastern Europe supported this wave breaking during two of the clustering episodes. During one of the clustering periods, several extratropical transitions of tropical cyclones in the Atlantic contributed to the formation of high-amplitude ridges over the Atlantic basin and downstream wave breaking. During another event, blocking over Alaska assisted the phase locking of the Rossby waves downstream over the Atlantic.

  2. Analysis of aerosol-cloud-precipitation interactions based on MODIS data

    NASA Astrophysics Data System (ADS)

    Cheng, Feng; Zhang, Jiahua; He, Junliang; Zha, Yong; Li, Qiannan; Li, Yunmei

    2017-01-01

    Aerosols exert an indirect impact on climate change via its impact on clouds by altering its radiative and optical properties which, in turn, changes the process of precipitation. Over recent years how to study the indirect climate effect of aerosols has become an important research topic. In this study we attempted to understand the complex mutual interactions among aerosols, clouds and precipitation through analysis of the spatial correlation between aerosol optical depth (AOD), cloud effective radius (CER) and precipitation during 2000-2012 in central-eastern China that has one of the highest concentrations of aerosols globally. With the assistance of moderate resolution imaging spectroradiometer (MODIS)-derived aerosol and cloud product data, this analysis focuses on regional differentiation and seasonal variation of the correlation in which in situ observed precipitation was incorporated. On the basis of the achieved results, we proposed four patterns depicting the mutual interactions between aerosols, clouds and precipitation. They characterize the indirect effects of aerosols on the regional scale. These effects can be summarized as complex seasonal variations and north-south regional differentiation over the study area. The relationship between AOD and CER is predominated mostly by the first indirect effect (the negative correlation between AOD and CER) in the north of the study area in the winter and spring seasons, and over the entire study area in the summer season. The relationship between CER and precipitation is dominated chiefly by the second indirect effect (the positive correlation between CER and precipitation) in the northern area in summer and over the entire study area in autumn. It must be noted that aerosols are not the factor affecting clouds and rainfall singularly. It is the joint effect of aerosols with other factors such as atmospheric dynamics that governs the variation in clouds and rainfall.

  3. Effect of the precipitation interpolation method on the performance of a snowmelt runoff model

    NASA Astrophysics Data System (ADS)

    Jacquin, Alexandra

    2014-05-01

    Uncertainties on the spatial distribution of precipitation seriously affect the reliability of the discharge estimates produced by watershed models. Although there is abundant research evaluating the goodness of fit of precipitation estimates obtained with different gauge interpolation methods, few studies have focused on the influence of the interpolation strategy on the response of watershed models. The relevance of this choice may be even greater in the case of mountain catchments, because of the influence of orography on precipitation. This study evaluates the effect of the precipitation interpolation method on the performance of conceptual type snowmelt runoff models. The HBV Light model version 4.0.0.2, operating at daily time steps, is used as a case study. The model is applied in Aconcagua at Chacabuquito catchment, located in the Andes Mountains of Central Chile. The catchment's area is 2110[Km2] and elevation ranges from 950[m.a.s.l.] to 5930[m.a.s.l.] The local meteorological network is sparse, with all precipitation gauges located below 3000[m.a.s.l.] Precipitation amounts corresponding to different elevation zones are estimated through areal averaging of precipitation fields interpolated from gauge data. Interpolation methods applied include kriging with external drift (KED), optimal interpolation method (OIM), Thiessen polygons (TP), multiquadratic functions fitting (MFF) and inverse distance weighting (IDW). Both KED and OIM are able to account for the existence of a spatial trend in the expectation of precipitation. By contrast, TP, MFF and IDW, traditional methods widely used in engineering hydrology, cannot explicitly incorporate this information. Preliminary analysis confirmed that these methods notably underestimate precipitation in the study catchment, while KED and OIM are able to reduce the bias; this analysis also revealed that OIM provides more reliable estimations than KED in this region. Using input precipitation obtained by each method, HBV parameters are calibrated with respect to Nash-Sutcliffe efficiency. The performance of HBV in the study catchment is not satisfactory. Although volumetric errors are modest, efficiency values are lower than 70%. Discharge estimates resulting from the application of TP, MFF and IDW obtain similar model efficiencies and volumetric errors. These error statistics moderately improve if KED or OIM are used instead. Even though the quality of precipitation estimates of distinct interpolation methods is dissimilar, the results of this study show that these differences do not necessarily produce noticeable changes in HBV's model performance statistics. This situation arises because the calibration of the model parameters allows some degree of compensation of deficient areal precipitation estimates, mainly through the adjustment of model simulated evaporation and glacier melt, as revealed by the analysis of water balances. In general, even if there is a good agreement between model estimated and observed discharge, this information is not sufficient to assert that the internal hydrological processes of the catchment are properly simulated by a watershed model. Other calibration criteria should be incorporated if a more reliable representation of these processes is desired. Acknowledgements: This research was funded by FONDECYT, Research Project 1110279. The HBV Light software used in this study was kindly provided by J. Seibert, Department of Geography, University of Zürich.

  4. Associating extreme precipitation events to parent cyclones in gridded data

    NASA Astrophysics Data System (ADS)

    Rhodes, Ruari; Shaffrey, Len; Gray, Sue

    2015-04-01

    When analysing the relationship of regional precipitation to its parent cyclone, it is insufficient to consider the cyclone's region of influence as a fixed radius from the centre due to the irregular shape of rain bands. A new method is therefore presented which allows the use of objective feature tracking data in the analysis of regional precipitation. Utilising the spatial extent of precipitation in gridded datasets, the most appropriate cyclone(s) may be associated with regional precipitation events. This method is applied in the context of an analysis of the influence of clustering and stalling of extra-tropical cyclones in the North Atlantic on total precipitation accumulations over England and Wales. Cyclone counts and residence times are presented for historical records (ERA-Interim) and future projections (HadGEM2-ES) of extreme (> 98th percentile) precipitation accumulations over England and Wales, for accumulation periods ranging from one day to one month.

  5. Fe 3 O 4 Nanoparticles Anchored on Carbon Serve the Dual Role of Catalyst and Magnetically Recoverable Entity in the Aerobic Oxidation of Alcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Longlong; Zheng, Bin; Wang, Xiang

    2016-01-13

    Carbon supported γ-Fe2O3 nanoparticle (γ-Fe2O3/C) possessing both superparamagnetism and activating molecular oxygen properties were prepared by an ammonia-assisted precipitation method. It could catalyze the selective oxidation of various benzyl alcohols with air as oxidant source, and could be easily recycled with an external magnet separation. The correlation between the intrinsic properties of γ-Fe2O3 nanoparticles and the catalytic performance was investigated with a series of characterizations. It shows that the oxidation state of γ-Fe2O3 nanoparticles were facile to be changed, which should be related to its inverse spinel type crystal structure with vacant cation sites. These γ-Fe2O3 nanoparticles should be themore » active sites and responsible for the high activity of γ-Fe2O3/C in the air oxidation of alcohols. The formation of γ-Fe2O3 nanoparticle was controlled by precipitation agent and carbon support. Using ammonia ethanol solution as precipitation agent, the hydrolysis rate of iron species could be decreased. The surface functional groups of carbon support could act as chelating sites for iron species, controlling the nucleation and growth of the γ-Fe2O3 nanoparticles in the preparation process. Dr. Xiang Wang gratefully acknowledges the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division for the support of this work.« less

  6. Evaluating the performance of real-time streamflow forecasting using multi-satellite precipitation products in the Upper Zambezi, Africa

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Valdes, J. B.; Wi, S.; Serrat-Capdevila, A.; Valdés-Pineda, R.; Durcik, M.

    2016-12-01

    In under-instrumented basins around the world, accurate and timely forecasts of river streamflows have the potential of assisting water and natural resource managers in their management decisions. The Upper Zambezi river basin is the largest basin in southern Africa and its water resources are critical to sustainable economic growth and poverty reduction in eight riparian countries. We present a real-time streamflow forecast for the basin using a multi-model-multi-satellite approach that allows accounting for model and input uncertainties. Three distributed hydrologic models with different levels of complexity: VIC, HYMOD_DS, and HBV_DS are setup at a daily time step and a 0.25 degree spatial resolution for the basin. The hydrologic models are calibrated against daily observed streamflows at the Katima-Mulilo station using a Genetic Algorithm. Three real-time satellite products: Climate Prediction Center's morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and Tropical Rainfall Measuring Mission (TRMM-3B42RT) are bias-corrected with daily CHIRPS estimates. Uncertainty bounds for predicted flows are estimated with the Inverse Variance Weighting method. Because concentration times in the basin range from a few days to more than a week, we include the use of precipitation forecasts from the Global Forecasting System (GFS) to predict daily streamflows in the basin with a 10-days lead time. The skill of GFS-predicted streamflows is evaluated and the usefulness of the forecasts for short term water allocations is presented.

  7. Reference values assessment in a Mediterranean population for small dense low-density lipoprotein concentration isolated by an optimized precipitation method.

    PubMed

    Fernández-Cidón, Bárbara; Padró-Miquel, Ariadna; Alía-Ramos, Pedro; Castro-Castro, María José; Fanlo-Maresma, Marta; Dot-Bach, Dolors; Valero-Politi, José; Pintó-Sala, Xavier; Candás-Estébanez, Beatriz

    2017-01-01

    High serum concentrations of small dense low-density lipoprotein cholesterol (sd-LDL-c) particles are associated with risk of cardiovascular disease (CVD). Their clinical application has been hindered as a consequence of the laborious current method used for their quantification. Optimize a simple and fast precipitation method to isolate sd-LDL particles and establish a reference interval in a Mediterranean population. Forty-five serum samples were collected, and sd-LDL particles were isolated using a modified heparin-Mg 2+ precipitation method. sd-LDL-c concentration was calculated by subtracting high-density lipoprotein cholesterol (HDL-c) from the total cholesterol measured in the supernatant. This method was compared with the reference method (ultracentrifugation). Reference values were estimated according to the Clinical and Laboratory Standards Institute and The International Federation of Clinical Chemistry and Laboratory Medicine recommendations. sd-LDL-c concentration was measured in serums from 79 subjects with no lipid metabolism abnormalities. The Passing-Bablok regression equation is y = 1.52 (0.72 to 1.73) + 0.07 x (-0.1 to 0.13), demonstrating no significant statistical differences between the modified precipitation method and the ultracentrifugation reference method. Similarly, no differences were detected when considering only sd-LDL-c from dyslipidemic patients, since the modifications added to the precipitation method facilitated the proper sedimentation of triglycerides and other lipoproteins. The reference interval for sd-LDL-c concentration estimated in a Mediterranean population was 0.04-0.47 mmol/L. An optimization of the heparin-Mg 2+ precipitation method for sd-LDL particle isolation was performed, and reference intervals were established in a Spanish Mediterranean population. Measured values were equivalent to those obtained with the reference method, assuring its clinical application when tested in both normolipidemic and dyslipidemic subjects.

  8. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling.

    PubMed

    Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen

    2015-01-01

    Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.

  9. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling

    PubMed Central

    Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen

    2015-01-01

    Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method. PMID:25893432

  10. Affinity-based precipitation via a bivalent peptidic hapten for the purification of monoclonal antibodies.

    PubMed

    Handlogten, Michael W; Stefanick, Jared F; Deak, Peter E; Bilgicer, Basar

    2014-09-07

    In a previous study, we demonstrated a non-chromatographic affinity-based precipitation method, using trivalent haptens, for the purification of mAbs. In this study, we significantly improved this process by using a simplified bivalent peptidic hapten (BPH) design, which enables facile and rapid purification of mAbs while overcoming the limitations of the previous trivalent design. The improved affinity-based precipitation method (ABP(BPH)) combines the simplicity of salt-induced precipitation with the selectivity of affinity chromatography for the purification of mAbs. The ABP(BPH) method involves 3 steps: (i) precipitation and separation of protein contaminants larger than immunoglobulins with ammonium sulfate; (ii) selective precipitation of the target-antibody via BPH by inducing antibody-complex formation; (iii) solubilization of the antibody pellet and removal of BPH with membrane filtration resulting in the pure antibody. The ABP(BPH) method was evaluated by purifying the pharmaceutical antibody trastuzumab from common contaminants including CHO cell conditioned media, DNA, ascites fluid, other antibodies, and denatured antibody with >85% yield and >97% purity. Importantly, the purified antibody demonstrated native binding activity to cell lines expressing the target protein, HER2. Combined, the ABP(BPH) method is a rapid and scalable process for the purification of antibodies with the potential to improve product quality while decreasing purification costs.

  11. Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches.

    PubMed

    Maryam Sadeghi, S; Vanpeteghem, Guillaumme; Neto, Isabel F F; Soares, Helena M V M

    2017-02-01

    The main aim of this work was to evaluate the possibility of using microwave or ultrasound to assist the efficient and selective leaching of Zn from spent alkaline batteries and compare the results with those obtained using the conventional method. Two different strategies were applied: acid leaching of a washed residue and alkaline leaching of the original residue. In both (acid and alkaline) approaches, the use of microwave- or ultrasound-assisted leaching increased the extraction of Zn compared with the best results obtained using conventional leaching [acid leaching (1.5mol/L H 2 SO 4 , 3h, 80°C), 90% of Zn extracted; alkaline leaching (6mol/L NaOH, 3h, 80°C), 42% of Zn extracted]. With acid leaching, 94% of the Zn was extracted using microwave-assisted leaching (1 cycle, 30s, 1mol/L H 2 SO 4 ), and 92% of the Zn was extracted using ultrasound-assisted leaching (2min, 0.1p, 20% amplitude, 1mol/L H 2 SO 4 ). Ultrasound-assisted leaching resulted in a more selective (Zn/Mn ratio of 5.1) Zn extraction than microwave-assisted leaching (Zn/Mn ratio of 3.5); both processes generated a concentrated Zn solution (⩾18.7g/L) with a purity (83.3% and 77.7%, respectively) that was suitable for electrowinning. With alkaline leaching, microwave- (1 cycle, 3 min, 4mol/L NaOH) and ultrasound-assisted (14min, 0.1p, 20% amplitude, 4mol/L NaOH) leaching extracted about 80% of the Zn and less than 0.01% of the Mn, which resulted in lesser concentrated Zn solutions (approximately 16.5g/L) but with high purity (>99.5%) that was suitable for the recovery of Zn by precipitation. The microwave- and ultrasound-assisted leaching strategies used in this work proved to be efficient and environmentally-friendly approaches for the extraction of Zn from spent alkaline residues since a concentrated Zn solution with adequate purity for subsequent Zn recovery was obtained using significantly decreased leaching times and concentrations of chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Effectiveness of Using Limited Gauge Measurements for Bias Adjustment of Satellite-Based Precipitation Estimation over Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alharbi, Raied; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan

    2018-01-01

    Precipitation is a key input variable for hydrological and climate studies. Rain gauges are capable of providing reliable precipitation measurements at point scale. However, the uncertainty of rain measurements increases when the rain gauge network is sparse. Satellite -based precipitation estimations appear to be an alternative source of precipitation measurements, but they are influenced by systematic bias. In this study, a method for removing the bias from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping, climate classification, and inverse-weighted distance method. Daily PERSIANN-CCS is selected to test the capability of the method for removing the bias over Saudi Arabia during the period of 2010 to 2016. The first six years (2010 - 2015) are calibrated years and 2016 is used for validation. The results show that the yearly correlation coefficient was enhanced by 12%, the yearly mean bias was reduced by 93% during validated year. Root mean square error was reduced by 73% during validated year. The correlation coefficient, the mean bias, and the root mean square error show that the proposed method removes the bias on PERSIANN-CCS effectively that the method can be applied to other regions where the rain gauge network is sparse.

  13. Encapsulation of albumin in self-assembled layer-by-layer microcapsules: comparison of co-precipitation and adsorption techniques.

    PubMed

    Labala, Suman; Mandapalli, Praveen Kumar; Bhatnagar, Shubhmita; Venuganti, Venkata Vamsi Krishna

    2015-01-01

    The objective of this study is to prepare and characterize polymeric self-assembled layer-by-layer microcapsules (LbL-MC) to deliver a model protein, bovine serum albumin (BSA). The aim is to compare the BSA encapsulation in LbL-MC using co-precipitation and adsorption methods. In co-precipitation method, BSA was co-precipitated with growing calcium carbonate particles to form a core template. Later, poly(styrene sulfonate) and poly(allylamine hydrochloride) were sequentially adsorbed onto the CaCO3 templates. In adsorption method, preformed LbL-MC were incubated with BSA and encapsulation efficiency is optimized for pH and salt concentration. Free and BSA-encapsulated LbL-MC were characterized using Zetasizer, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and differential scanning calorimeter. Later, in vitro release studies were performed using dialysis membrane method at pH 4, 7.4 and 9. Results from Zetasizer and SEM showed free LbL-MC with an average size and zeta-potential of 2.0 ± 0.6 μm and 8.1 ± 1.9 mV, respectively. Zeta-potential of BSA-loaded LbL-MC was (-)7.4 ± 0.7 mV and (-)5.7 ± 1.0 mV for co-precipitation and adsorption methods, respectively. In adsorption method, BSA encapsulation in LbL-MC was found to be greater at pH 6.0 and 0.2 M NaCl. Co-precipitation method provided four-fold greater encapsulation efficiency (%) of BSA in LbL-MC compared with adsorption method. At pH 4, the BSA release from LbL-MC was extended up to 120 h. Polyacrylamide gel electrophoresis showed that BSA encapsulated in LBL-MC through co-precipitation is stable toward trypsin treatment. In conclusion, co-precipitation method provided greater encapsulation of BSA in LbL-MC. Furthermore, LbL-MC can be developed as carriers for pH-controlled protein delivery.

  14. Relevance of the correlation between precipitation and the 0 °C isothermal altitude for extreme flood estimation

    NASA Astrophysics Data System (ADS)

    Zeimetz, Fraenz; Schaefli, Bettina; Artigue, Guillaume; García Hernández, Javier; Schleiss, Anton J.

    2017-08-01

    Extreme floods are commonly estimated with the help of design storms and hydrological models. In this paper, we propose a new method to take into account the relationship between precipitation intensity (P) and air temperature (T) to account for potential snow accumulation and melt processes during the elaboration of design storms. The proposed method is based on a detailed analysis of this P-T relationship in the Swiss Alps. The region, no upper precipitation intensity limit is detectable for increasing temperature. However, a relationship between the highest measured temperature before a precipitation event and the duration of the subsequent event could be identified. An explanation for this relationship is proposed here based on the temperature gradient measured before the precipitation events. The relevance of these results is discussed for an example of Probable Maximum Precipitation-Probable Maximum Flood (PMP-PMF) estimation for the high mountainous Mattmark dam catchment in the Swiss Alps. The proposed method to associate a critical air temperature to a PMP is easily transposable to similar alpine settings where meteorological soundings as well as ground temperature and precipitation measurements are available. In the future, the analyses presented here might be further refined by distinguishing between precipitation event types (frontal versus orographic).

  15. Extraction, purification, characterization and antioxidant activities of polysaccharides from Cistanche tubulosa.

    PubMed

    Zhang, Wiejie; Huang, Jing; Wang, Wei; Li, Qian; Chen, Yao; Feng, Weiwei; Zheng, Daheng; Zhao, Ting; Mao, Guanghua; Yang, Liuqing; Wu, Xiangyang

    2016-12-01

    An efficient ultrasonic-cellulase-assisted extraction (UCE) of Cistanche tubulosa polysaccharide (CTP) was established. The response surface methodology based on Box-Behnken Design was employed to further optimize extraction conditions. After quaternary ammonium salt precipitation, the polysaccharide of C. tubulosa was characterized by different techniques. The results showed that a maximum polysaccharide yield of 22.31±0.45% was achieved at a pH of 5.2 for 31.5min at 54.1°C. Compared to hot water extraction, the yield of CTP in UCE and polysaccharide content increased to 44.96% and 70.13±2.19%, respectively. There was no marked difference among polysaccharides extracted using different methods from the infrared spectrum. Ultrasonic-cellulase-assisted extraction polysaccharide showed a fibrous structure from scanning electron microscopy and was composed of rhamnose, mannose, glucose, and galactose in a molar ratio of 2.18:1:28.29:1.43 by gas chromatography. The circular dichroism results indicated that polysaccharides had a maximum positive peak around 210nm with different peak values. The thermogravimetric analysis and differential scanning calorimetry were used to test the thermostability of CTP. Besides, CTP demonstrated appreciable antioxidant potential on antioxidant experiments in vitro. The results suggested that UCE is an effective method for CTP extraction and its polysaccharide showed appreciable antioxidant activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Relative importance of precipitation frequency and intensity in inter-annual variation of precipitation in Singapore during 1980-2013

    NASA Astrophysics Data System (ADS)

    Li, Xin; Babovic, Vladan

    2017-04-01

    Observed studies on inter-annual variation of precipitation provide insight into the response of precipitation to anthropogenic climate change and natural climate variability. Inter-annual variation of precipitation results from the concurrent variations of precipitation frequency and intensity, understanding of the relative importance of frequency and intensity in the variability of precipitation can help fathom its changing properties. Investigation of the long-term changes of precipitation schemes has been extensively carried out in many regions across the world, however, detailed studies of the relative importance of precipitation frequency and intensity in inter-annual variation of precipitation are still limited, especially in the tropics. Therefore, this study presents a comprehensive framework to investigate the inter-annual variation of precipitation and the dominance of precipitation frequency and intensity in a tropical urban city-state, Singapore, based on long-term (1980-2013) daily precipitation series from 22 rain gauges. First, an iterative Mann-Kendall trend test method is applied to detect long-term trends in precipitation total, frequency and intensity at both annual and seasonal time scales. Then, the relative importance of precipitation frequency and intensity in inducing the inter-annual variation of wet-day precipitation total is analyzed using a dominance analysis method based on linear regression. The results show statistically significant upward trends in wet-day precipitation total, frequency and intensity at annual time scale, however, these trends are not evident during the monsoon seasons. The inter-annual variation of wet-day precipitation is mainly dominated by precipitation intensity for most of the stations at annual time scale and during the Northeast monsoon season. However, during the Southwest monsoon season, the inter-annual variation of wet-day precipitation is mainly dominated by precipitation frequency. These results have implications for water resources management practices in Singapore.

  17. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Sutton, J.B.

    1958-02-18

    This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.

  18. Simulation of Water Sources and Precipitation Recycling for the MacKenzie, Mississippi and Amazon River Basins

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Chern, Jiun-Dar

    2005-01-01

    An atmospheric general circulation model simulation for 1948-1997 of the water budgets for the MacKenzie, Mississippi and Amazon River basins is presented. In addition to the water budget, we include passive tracers to identify the geographic sources of water for the basins, and the analysis focuses on the mechanisms contributing to precipitation recycling in each basin. While each basin s precipitation recycling has a strong dependency on evaporation during the mean annual cycle, the interannual variability of the recycling shows important relationships with the atmospheric circulation. The MacKenzie River basin has only a weak interannual dependency on evaporation, where the variations in zonal moisture transport from the Pacific Ocean can affect the basin water cycle. On the other hand, the Mississippi River basin has strong interannual dependencies on evaporation. While the precipitation recycling weakens with increased low level jet intensity, the evaporation variations exert stronger influence in providing water vapor for convective precipitation at the convective cloud base. High precipitation recycling is also found to be partly connected to warm SSTs in the tropical Pacific Ocean. The Amazon River basin evaporation exhibits small interannual variations, so that the interannual variations of precipitation recycling are related to atmospheric moisture transport from the tropical south Atlantic Ocean. Increasing SSTs over the 50-year period are causing increased easterly transport across the basin. As moisture transport increases, the Amazon precipitation recycling decreases (without real time varying vegetation changes). In addition, precipitation recycling from a bulk diagnostic method is compared to the passive tracer method used in the analysis. While the mean values are different, the interannual variations are comparable between each method. The methods also exhibit similar relationships to the terms of the basin scale water budgets.

  19. Indirect downscaling of global circulation model data based on atmospheric circulation and temperature for projections of future precipitation in hourly resolution

    NASA Astrophysics Data System (ADS)

    Beck, F.; Bárdossy, A.

    2013-07-01

    Many hydraulic applications like the design of urban sewage systems require projections of future precipitation in high temporal resolution. We developed a method to predict the regional distribution of hourly precipitation sums based on daily mean sea level pressure and temperature data from a Global Circulation Model. It is an indirect downscaling method avoiding uncertain precipitation data from the model. It is based on a fuzzy-logic classification of atmospheric circulation patterns (CPs) that is further subdivided by means of the average daily temperature. The observed empirical distributions at 30 rain gauges to each CP-temperature class are assumed as constant and used for projections of the hourly precipitation sums in the future. The method was applied to the CP-temperature sequence derived from the 20th century run and the scenario A1B run of ECHAM5. According to ECHAM5, the summers in southwest Germany will become progressively drier. Nevertheless, the frequency of the highest hourly precipitation sums will increase. According to the predictions, estival water stress and the risk of extreme hourly precipitation will both increase simultaneously during the next decades.

  20. Statistical-Dynamical Seasonal Forecasts of Central-Southwest Asian Winter Precipitation.

    NASA Astrophysics Data System (ADS)

    Tippett, Michael K.; Goddard, Lisa; Barnston, Anthony G.

    2005-06-01

    Interannual precipitation variability in central-southwest (CSW) Asia has been associated with East Asian jet stream variability and western Pacific tropical convection. However, atmospheric general circulation models (AGCMs) forced by observed sea surface temperature (SST) poorly simulate the region's interannual precipitation variability. The statistical-dynamical approach uses statistical methods to correct systematic deficiencies in the response of AGCMs to SST forcing. Statistical correction methods linking model-simulated Indo-west Pacific precipitation and observed CSW Asia precipitation result in modest, but statistically significant, cross-validated simulation skill in the northeast part of the domain for the period from 1951 to 1998. The statistical-dynamical method is also applied to recent (winter 1998/99 to 2002/03) multimodel, two-tier December-March precipitation forecasts initiated in October. This period includes 4 yr (winter of 1998/99 to 2001/02) of severe drought. Tercile probability forecasts are produced using ensemble-mean forecasts and forecast error estimates. The statistical-dynamical forecasts show enhanced probability of below-normal precipitation for the four drought years and capture the return to normal conditions in part of the region during the winter of 2002/03.May Kabul be without gold, but not without snow.—Traditional Afghan proverb

  1. Tracking and nowcasting convective precipitation cells at European scale for transregional warnings

    NASA Astrophysics Data System (ADS)

    Meyer, Vera; Tüchler, Lukas

    2013-04-01

    A transregional overview of the current weather situation is considered as highly valuable information to assist forecasters as well as official authorities for disaster management in their decision making processes. The development of the European-wide radar composite OPERA enables for the first time a coherent object-oriented tracking and nowcasting of intense precipitation cells in real time at continental scale and at a resolution of 2 x 2 km² and 15 minutes. Recently, the object-oriented cell-tracking tool A-TNT (Austrian Thunderstorm Nowcasting Tool) has been developed at ZAMG. A-TNT utilizes the method of ec-TRAM [1]. It consists of two autonomously operating routines, which identify, track and nowcast radar- and lightning-cells separately. The two independent outputs are combined to a coherent storm monitoring and nowcasting in a final step. Within the framework of HAREN (Hazard Assessment based on Rainfall European Nowcasts), which is a project funded by the EC Directorate General for Humanitarian Aid and Civil Protection, A-TNT has been adapted to OPERA radar data. The objective of HAREN is the support of forecasters and official authorities in their decision-making processes concerning precipitation induced hazards with pan-European information. This study will present (1) the general performance of the object-oriented approach for thunderstorm tracking and nowcasting on continental scale giving insight into its current capabilities and limitations and (2) the utilization of object-oriented cell information for automated precipitation warnings carried out within the framework of HAREN. Data collected from April to October 2012 are used to assess the performance of cell-tracking based on radar data. Furthermore, the benefit of additional lightning information provided by the European Cooperation for Lightning Detection (EUCLID) for thunderstorm tracking and nowcasting will be summarized in selected analyses. REFERENCES: [1] Meyer, V. K., H. Höller, and H. D. Betz 2012: Automated thunderstorm tracking and nowcasting: utilization of three-dimensional lightning and radar data. Manuscript accepted for publication in ACPD.

  2. Evaluation of multiple precipitation products across Mainland China using the triple collocation method without ground truth

    NASA Astrophysics Data System (ADS)

    Tang, G.; Li, C.; Hong, Y.; Long, D.

    2017-12-01

    Proliferation of satellite and reanalysis precipitation products underscores the need to evaluate their reliability, particularly over ungauged or poorly gauged regions. However, it is really challenging to perform such evaluations over regions lacking ground truth data. Here, using the triple collocation (TC) method that is capable of evaluating relative uncertainties in different products without ground truth, we evaluate five satellite-based precipitation products and comparatively assess uncertainties in three types of independent precipitation products, e.g., satellite-based, ground-observed, and model reanalysis over Mainland China, including a ground-based precipitation dataset (the gauge based daily precipitation analysis, CGDPA), the latest version of the European reanalysis agency reanalysis (ERA-interim) product, and five satellite-based products (i.e., 3B42V7, 3B42RT of TMPA, IMERG, CMORPH-CRT, PERSIANN-CDR) on a regular 0.25° grid at the daily timescale from 2013 to 2015. First, the effectiveness of the TC method is evaluated by comparison with traditional methods based on ground observations in a densely gauged region. Results show that the TC method is reliable because the correlation coefficient (CC) and root mean square error (RMSE) are close to those based on the traditional method with a maximum difference only up to 0.08 and 0.71 (mm/day) for CC and RMSE, respectively. Then, the TC method is applied to Mainland China and the Tibetan Plateau (TP). Results indicate that: (1) the overall performance of IMERG is better than the other satellite products over Mainland China; (2) over grid cells without rain gauges in the TP, IMERG and ERA show better performance than CGDPA, indicating the potential of remote sensing and reanalysis data over these regions and the inherent uncertainty of CGDPA due to interpolation using sparsely gauged data; (3) both TMPA-3B42 and CMORPH-CRT have some unexpected CC values over certain grid cells that contain water bodies, reaffirming the overestimation of precipitation over inland water bodies. Overall, the TC method provides not only reliable cross-validation results of precipitation estimates over Mainland China but also a new perspective as to compressively assess multi-source precipitation products, particularly over poorly gauged regions.

  3. Satellite and Model Analysis of the Atmospheric Moisture Budget in High Latitudes

    NASA Technical Reports Server (NTRS)

    Bromwich, David H.; Chen, Qui-Shi

    2001-01-01

    In order to understand variations of accumulation over Greenland, it is necessary to investigate precipitation and its variations. Observations of precipitation over Greenland are limited and generally inaccurate, but the analyzed wind, geopotential height, and moisture fields are available for recent years. The objective of this study is to enhance the dynamic method for retrieving high resolution precipitation over Greenland from the analyzed fields. The dynamic method enhanced in this study is referred to as the improved dynamic method.

  4. Acute Precipitants of Physical Elder Abuse: Qualitative Analysis of Legal Records From Highly Adjudicated Cases.

    PubMed

    Rosen, Tony; Bloemen, Elizabeth M; LoFaso, Veronica M; Clark, Sunday; Flomenbaum, Neal E; Breckman, Risa; Markarian, Arlene; Riffin, Catherine; Lachs, Mark S; Pillemer, Karl

    2016-08-01

    Elder abuse is a common phenomenon with potentially devastating consequences for older adults. Although researchers have begun to identify predisposing risk factors for elder abuse victims and abusers, little is known about the acute precipitants that lead to escalation to physical violence. We analyzed legal records from highly adjudicated cases to describe these acute precipitants for physical elder abuse. In collaboration with a large, urban district attorney's office, we qualitatively evaluated legal records from 87 successfully prosecuted physical elder abuse cases from 2003 to 2015. We transcribed and analyzed narratives of the events surrounding physical abuse within victim statements, police reports, and prosecutor records. We identified major themes using content analysis. We identified 10 categories of acute precipitants that commonly triggered physical elder abuse, including victim attempting to prevent the abuser from entering or demanding that he or she leave, victim threatening or attempting to leave/escape, threat or perception that the victim would involve the authorities, conflict about a romantic relationship, presence during/intervention in ongoing family violence, issues in multi-generational child rearing, conflict about the abuser's substance abuse, confrontation about financial exploitation, dispute over theft/destruction of property, and disputes over minor household issues. Common acute precipitants of physical elder abuse may be identified. Improved understanding of these acute precipitants for escalation to physical violence and their contribution to elder abuse may assist in the development of prevention and management strategies.

  5. Acute Precipitants of Physical Elder Abuse: Qualitative Analysis of Legal Records From Highly Adjudicated Cases

    PubMed Central

    Rosen, Tony; Bloemen, Elizabeth M.; LoFaso, Veronica M.; Clark, Sunday; Flomenbaum, Neal E.; Breckman, Risa; Markarian, Arlene; Riffin, Catherine; Lachs, Mark S.; Pillemer, Karl

    2016-01-01

    Elder abuse is a common phenomenon with potentially devastating consequences for older adults. Although researchers have begun to identify predisposing risk factors for elder abuse victims and abusers, little is known about the acute precipitants that lead to escalation to physical violence. We analyzed legal records from highly adjudicated cases to describe these acute precipitants for physical elder abuse. In collaboration with a large, urban district attorney’s office, we qualitatively evaluated legal records from 87 successfully prosecuted physical elder abuse cases from 2003 to 2015. We transcribed and analyzed narratives of the events surrounding physical abuse within victim statements, police reports, and prosecutor records. We identified major themes using content analysis. We identified 10 categories of acute precipitants that commonly triggered physical elder abuse, including victim attempting to prevent the abuser from entering or demanding that he or she leave, victim threatening or attempting to leave/escape, threat or perception that the victim would involve the authorities, conflict about a romantic relationship, presence during/intervention in ongoing family violence, issues in multi-generational child rearing, conflict about the abuser’s substance abuse, confrontation about financial exploitation, dispute over theft/destruction of property, and disputes over minor household issues. Common acute precipitants of physical elder abuse may be identified. Improved understanding of these acute precipitants for escalation to physical violence and their contribution to elder abuse may assist in the development of prevention and management strategies. PMID:27506228

  6. Future Projection of Summer Extreme Precipitation from High Resolution Multi-RCMs over East Asia

    NASA Astrophysics Data System (ADS)

    Kim, Gayoung; Park, Changyong; Cha, Dong-Hyun; Lee, Dong-Kyou; Suh, Myoung-Seok; Ahn, Joong-Bae; Min, Seung-Ki; Hong, Song-You; Kang, Hyun-Suk

    2017-04-01

    Recently, the frequency and intensity of natural hazards have been increasing due to human-induced climate change. Because most damages of natural hazards over East Asia have been related to extreme precipitation events, it is important to estimate future change in extreme precipitation characteristics caused by climate change. We investigate future changes in extremal values of summer precipitation simulated by five regional climate models participating in the CORDEX-East Asia project (i.e., HadGEM3-RA, RegCM4, MM5, WRF, and GRIMs) over East Asia. 100-year return value calculated from the generalized extreme value (GEV) parameters is analysed as an indicator of extreme intensity. In the future climate, the mean values as well as the extreme values of daily precipitation tend to increase over land region. The increase of 100-year return value can be significantly associated with the changes in the location (intensity) and scale (variability) GEV parameters for extreme precipitation. It is expected that the results of this study can be used as fruitful references when making the policy of disaster management. Acknowledgements The research was supported by the Ministry of Public Safety and Security of Korean government and Development program under grant MPSS-NH-2013-63 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.

  7. Separation of strontium from fecal matter

    DOEpatents

    Kester, D.K.

    1995-01-03

    A method is presented of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.

  8. Separation of strontium from fecal matter

    DOEpatents

    Kester, Dianne K.

    1995-01-01

    A method of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.

  9. Phosphates behaviours in conversion of FP chlorides

    NASA Astrophysics Data System (ADS)

    Amamoto, I.; Kofuji, H.; Myochin, M.; Takasaki, Y.; Terai, T.

    2009-06-01

    The spent electrolyte of the pyroprocessing by metal electrorefining method should be considered for recycling after removal of fission products (FP) such as, alkali metals (AL), alkaline earth metals (ALE), and/or rare earth elements (REE), to reduce the volume of high-level radioactive waste. Among the various methods suggested for this purpose is precipitation by converting FP from chlorides to phosphates. Authors have been carrying out the theoretical analysis and experiment showing the behaviours of phosphate precipitates so as to estimate the feasibility of this method. From acquired results, it was found that AL except lithium and ALE are unlikely to form phosphate precipitates. However their conversion behaviours including REE were compatible with the theoretical analysis; in the case of LaPO 4 as one of the REE precipitates, submicron-size particles could be observed while that of Li 3PO 4 was larger; the precipitates were apt to grow larger at higher temperature; etc.

  10. Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esmaeili, Shahrzad; Lloyd, David J.

    2005-11-15

    Differential scanning calorimetry is used to quantify the evolution of the volume fraction of precipitates during age hardening in AlMgSiCu alloys. The calorimetry tests are run on alloy samples after aging for various times at 180 deg. C and the change in the collective heat effects from the major precipitation and dissolution processes in each run are used to determine the precipitation state of the samples. The method is implemented on alloys with various thermal histories prior to artificial aging, including commercial pre-aging histories. The estimated values for the relative volume fraction of precipitates are compared with the results frommore » a newly developed analytical method using isothermal calorimetry and a related quantitative transmission electron microscopy work. Excellent agreement is obtained between the results from various methods.« less

  11. Multisite stochastic simulation of daily precipitation from copula modeling with a gamma marginal distribution

    NASA Astrophysics Data System (ADS)

    Lee, Taesam

    2018-05-01

    Multisite stochastic simulations of daily precipitation have been widely employed in hydrologic analyses for climate change assessment and agricultural model inputs. Recently, a copula model with a gamma marginal distribution has become one of the common approaches for simulating precipitation at multiple sites. Here, we tested the correlation structure of the copula modeling. The results indicate that there is a significant underestimation of the correlation in the simulated data compared to the observed data. Therefore, we proposed an indirect method for estimating the cross-correlations when simulating precipitation at multiple stations. We used the full relationship between the correlation of the observed data and the normally transformed data. Although this indirect method offers certain improvements in preserving the cross-correlations between sites in the original domain, the method was not reliable in application. Therefore, we further improved a simulation-based method (SBM) that was developed to model the multisite precipitation occurrence. The SBM preserved well the cross-correlations of the original domain. The SBM method provides around 0.2 better cross-correlation than the direct method and around 0.1 degree better than the indirect method. The three models were applied to the stations in the Nakdong River basin, and the SBM was the best alternative for reproducing the historical cross-correlation. The direct method significantly underestimates the correlations among the observed data, and the indirect method appeared to be unreliable.

  12. A methodology for investigation of the seasonal evolution in proglacial hydrograph form

    NASA Astrophysics Data System (ADS)

    Hannah, David M.; Gurnell, Angela M.; McGregor, Glenn R.

    1999-11-01

    This paper advances an objective method of diurnal hydrograph classification as an aid to exploring changes in the hydrological functioning of glacierized catchments over the ablation season. The temporal sequencing of different hydrograph classes allows identification of seasonal evolution in hydrograph form and also assists delimitation of hydrologically-meaningful time periods of similar diurnal discharge response. The effectiveness of this approach is illustrated by applying it to two contrasting summer discharge records for a small cirque basin. By comparing the results with patterns of surface energy receipt and glacier ablation, the seasonally transient relative influences of: (i) surface meltwater production and (ii) meltwater routing and storage conditions within the intervening glacier drainage system in determining runoff are elucidated. The method successfully characterizes distinct seasonal-scale changes in the diurnal outflow hydrograph during the ablation-dominated 1995 melt season but is also able to reveal underlying trends and short-term fluctuations in the precipitation-dominated, poorly ablation-regulated 1996 melt season. The limitations and benefits of this hydrograph classification technique are evaluated.

  13. Analysis of the evolution of precipitation in the Haihe river basin of China under changing environment

    NASA Astrophysics Data System (ADS)

    Ding, Xiangyi; Liu, Jiahong; Gong, Jiaguo

    2018-02-01

    Precipitation is one of the important factors of water cycle and main sources of regional water resources. It is of great significance to analyze the evolution of precipitation under changing environment for identifying the evolution law of water resources, thus can provide a scientific reference for the sustainable utilization of water resources and the formulation of related policies and measures. Generally, analysis of the evolution of precipitation consists of three levels: analysis the observed precipitation change based on measured data, explore the possible factors responsible for the precipitation change, and estimate the change trend of precipitation under changing environment. As the political and cultural centre of China, the climatic conditions in the Haihe river basin have greatly changed in recent decades. This study analyses the evolution of precipitation in the basin under changing environment based on observed meteorological data, GCMs and statistical methods. Firstly, based on the observed precipitation data during 1961-2000 at 26 meteorological stations in the basin, the actual precipitation change in the basin is analyzed. Secondly, the observed precipitation change in the basin is attributed using the fingerprint-based attribution method, and the causes of the observed precipitation change is identified. Finally, the change trend of precipitation in the basin under climate change in the future is predicted based on GCMs and a statistical downscaling model. The results indicate that: 1) during 1961-2000, the precipitation in the basin showed a decreasing trend, and the possible mutation time was 1965; 2) natural variability may be the factor responsible for the observed precipitation change in the basin; 3) under climate change in the future, precipitation in the basin will slightly increase by 4.8% comparing with the average, and the extremes will not vary significantly.

  14. Ultrasonically assisted solvothermal synthesis of novel Ni/Al layered double hydroxide for capturing of Cd(II) from contaminated water

    NASA Astrophysics Data System (ADS)

    Rahmanian, Omid; Maleki, Mohammad Hassan; Dinari, Mohammad

    2017-11-01

    A novel adsorbent of nickel aluminum layered double hydroxide (Ni/Al-LDH) was prepared through the precipitation of metal nitrates by ultrasonically assisted solvothermal method. The surface morphology, chemical structure and thermal properties of this compound were examined by X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) techniques. The XRD, TEM and FE-SEM results established that the synthesized LDH have a well-ordered layer structure with good crystalline nature. Then it was applied to remove excessive Cd(II) ions from water and the effects of contact time, pH and adsorbent dose were examined at initial Cd(II) concentration of 10 mg/L. Results show that the time required to reach equilibrium was fast (40 min) and working pH solution was neutral (pH 7). Langmuir and Freundlich model of adsorption isotherms were explored; the results show that the Freundlich model was better fitted than that Langmuir model. This results predicting a multilayer adsorption of Cd(II) on LDH. The equilibrium kinetic adsorption data were fixed to the pseudo-second order kinetic equation.

  15. Preparation of immunoglobulin Y from egg yolk using ammonium sulfate precipitation and ion exchange chromatography.

    PubMed

    Ko, K Y; Ahn, D U

    2007-02-01

    The objective of this study was to develop an economical, simple, and large-scale separation method for IgY from egg yolk. Egg yolk diluted with 9 volumes of cold water was centrifuged after adjusting the pH to 5.0. The supernatant was added with 0.01% charcoal or 0.01% carrageenan and centrifuged at 2,800 x g for 30 min. The supernatant was filtered through a Whatman no. 1 filter paper and then the filtrate was concentrated to 20% original volume using ultrafiltration. The concentrated solution was further purified using either cation exchange chromatography or ammonium sulfate precipitation. For the cation exchange chromatography method, the concentrated sample was loaded onto a column equilibrated with 20 mM citrate-phosphate buffer at pH 4.8 and eluted with 200 mM citrate-phosphate buffer at pH 6.4. For the ammonium sulfate precipitation method, the concentrated sample was twice precipitated with 40% ammonium sulfate solution at pH 9.0. The yield and purity of IgY were determined by ELISA and electrophoresis. The yield of IgY from the cation exchange chromatography method was 30 to 40%, whereas that of the ammonium sulfate precipitation was 70 to 80%. The purity of IgY from the ammonium sulfate method was higher than that of the cation exchange chromatography. The cation exchange chromatography could handle only a small amount of samples, whereas the ammonium sulfate precipitation could handle a large volume of samples. This suggests that ammonium sulfate precipitation was a more efficient and useful purification method than cation exchange chromatography for the large-scale preparation of IgY from egg yolk.

  16. Simultaneous LC-MS/MS determination of 40 legal and illegal psychoactive drugs in breast and bovine milk.

    PubMed

    López-García, Ester; Mastroianni, Nicola; Postigo, Cristina; Valcárcel, Yolanda; González-Alonso, Silvia; Barceló, Damia; López de Alda, Miren

    2018-04-15

    This work presents a fast, sensitive and reliable multi-residue methodology based on fat and protein precipitation and liquid chromatography-tandem mass spectrometry for the determination of common legal and illegal psychoactive drugs, and major metabolites, in breast milk. One-fourth of the 40 target analytes is investigated for the first time in this biological matrix. The method was validated in breast milk and also in various types of bovine milk, as tranquilizers are occasionally administered to food-producing animals. Absolute recoveries were satisfactory for 75% of the target analytes. The use of isotopically labeled compounds assisted in correcting analyte losses due to ionization suppression matrix effects (higher in whole milk than in the other investigated milk matrices) and ensured the reliability of the results. Average method limits of quantification ranged between 0.4 and 6.8 ng/mL. Application of the developed method showed the presence of caffeine in breast milk samples (12-179 ng/mL). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Spatial distribution of precipitation extremes in Norway

    NASA Astrophysics Data System (ADS)

    Verpe Dyrrdal, Anita; Skaugen, Thomas; Lenkoski, Alex; Thorarinsdottir, Thordis; Stordal, Frode; Førland, Eirik J.

    2015-04-01

    Estimates of extreme precipitation, in terms of return levels, are crucial in planning and design of important infrastructure. Through two separate studies, we have examined the levels and spatial distribution of daily extreme precipitation over catchments in Norway, and hourly extreme precipitation in a point. The analyses were carried out through the development of two new methods for estimating extreme precipitation in Norway. For daily precipitation we fit the Generalized Extreme Value (GEV) distribution to areal time series from a gridded dataset, consisting of daily precipitation during the period 1957-today with a resolution of 1x1 km². This grid-based method is more objective and less manual and time-consuming compared to the existing method at MET Norway. In addition, estimates in ungauged catchments are easier to obtain, and the GEV approach includes a measure of uncertainty, which is a requirement in climate studies today. Further, we go into depth on the debated GEV shape parameter, which plays an important role for longer return periods. We show that it varies according to dominating precipitation types, having positive values in the southeast and negative values in the southwest. We also find indications that the degree of orographic enhancement might affect the shape parameter. For hourly precipitation, we estimate return levels on a 1x1 km² grid, by linking GEV distributions with latent Gaussian fields in a Bayesian hierarchical model (BHM). Generalized linear models on the GEV parameters, estimated from observations, are able to incorporate location-specific geographic and meteorological information and thereby accommodate these effects on extreme precipitation. Gaussian fields capture additional unexplained spatial heterogeneity and overcome the sparse grid on which observations are collected, while a Bayesian model averaging component directly assesses model uncertainty. We find that mean summer precipitation, mean summer temperature, latitude, longitude, mean annual precipitation and elevation are good covariate candidates for hourly precipitation in our model. Summer indices succeed because hourly precipitation extremes often occur during the convective season. The spatial distribution of hourly and daily precipitation differs in Norway. Daily precipitation extremes are larger along the southwestern coast, where large-scale frontal systems dominate during fall season and the mountain ridge generates strong orographic enhancement. The largest hourly precipitation extremes are mostly produced by intense convective showers during summer, and are thus found along the entire southern coast, including the Oslo-region.

  18. Template-free synthesis of cube-like Ag/AgCl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts.

    PubMed

    Zhu, Mingshan; Chen, Penglei; Ma, Wanhong; Lei, Bin; Liu, Minghua

    2012-11-01

    In this paper, we report that cube-like Ag/AgCl nanostructures could be facilely fabricated in a one-pot manner through a direct-precipitation protocol under ambient conditions, wherein no additional issues such as external energy (e.g., high temperature or high pressure), surfactants, or reducing agents are required. In terms of using sodium chloride (NaCl) as chlorine source and silver acetate (CH₃COOAg) as silver source, it is disclosed that simply by adding an aqueous solution of NaCl into an aqueous solution of CH₃COOAg, Ag/AgCl nanostructures with a cube-like geometry, could be successfully formulated. We show that thus-formulated cube-like Ag/AgCl nanospecies could be used as high-performance yet durable visible-light-driven or sunlight-driven plasmonic photocatalysts for the photodegradation of methyl orange (MO) and 4-chlorophenol (4-CP) pollutants. Compared with the commercially available P25-TiO₂, and the Ag/AgCl nanospheres previously fabricated via a surfactant-assisted method, our current cube-like Ag/AgCl nanostructures could exhibit much higher photocatalytic performance. Our template free protocol might open up new and varied opportunities for an easy synthesis of cube-like Ag/AgCl-based high-performance sunlight-driven plasmonic photocatalysts for organic pollutant elimination.

  19. Precipitation of anion inclusions and plasticity under hydrostatic pressure in II-VI crystals

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Weinstein, B. A.

    2016-10-01

    Precipitation of anion nanocrystals (NCs) in initially stoichiometric II-VI crystals under hydrostatic pressure and light exposure is explored by Raman spectroscopy, and the mechanism for this effect is analyzed by model calculations. ZnSe, ZnTe, and CdSe crystals are studied in bulk and/or epitaxial-film forms. Se and Te NCs in the trigonal (t) phase precipitate in ZnSe and ZnTe, but the effect is absent or minimal in CdSe. The precipitation is induced by pressure and assisted by sub-band-gap light. In ZnSe, t-Se NCs appear for pressure exceeding 4.8 GPa and light flux above 50 -70 W /m m2 . In ZnTe, the precipitation of t-Te NCs requires less pressure to initiate, and there is a clear upper-pressure limit for t-Te nuclei to form. We find also that ZnTe samples with cleavage damage or elevated zinc-vacancy content are more prone to form t-Te NCs at lower pressures (even 1 atm in some cases) and lower flux. The precipitation seen in ZnSe and ZnTe occurs at pressures far below their phase transitions, and cannot be due to those transitions. Rather, we propose that the NCs nucleate on dislocations that arise from hydrostatic-pressure induced plastic flow triggered by noncubic defect sites. Calculations of the kinetic barrier for growth of an optimally shaped nucleus are performed, including hydrostatic pressure in the energy minimization scheme. Using sensible values for the model parameters related to the cohesive energies of Se and Te, the calculations account for our main observations, including the existence of an upper pressure limit for precipitation, and the absence of precipitation in CdSe. We consider the effects of pressure-induced precipitate formation on the I-II phase transitions in a variety of binary semiconductors and make predictions of when this effect should be important.

  20. Physical retrieval of precipitation water contents from Special Sensor Microwave/Imager (SSM/I) data. Part 2: Retrieval method and applications (report version)

    NASA Technical Reports Server (NTRS)

    Olson, William S.

    1990-01-01

    A physical retrieval method for estimating precipitating water distributions and other geophysical parameters based upon measurements from the DMSP-F8 SSM/I is developed. Three unique features of the retrieval method are (1) sensor antenna patterns are explicitly included to accommodate varying channel resolution; (2) precipitation-brightness temperature relationships are quantified using the cloud ensemble/radiative parameterization; and (3) spatial constraints are imposed for certain background parameters, such as humidity, which vary more slowly in the horizontal than the cloud and precipitation water contents. The general framework of the method will facilitate the incorporation of measurements from the SSMJT, SSM/T-2 and geostationary infrared measurements, as well as information from conventional sources (e.g., radiosondes) or numerical forecast model fields.

  1. 21st Century Changes in Precipitation Extremes Based on Resolved Atmospheric Patterns

    NASA Astrophysics Data System (ADS)

    Gao, X.; Schlosser, C. A.; O'Gorman, P. A.; Monier, E.

    2014-12-01

    Global warming is expected to alter the frequency and/or magnitude of extreme precipitation events. Such changes could have substantial ecological, economic, and sociological consequences. However, climate models in general do not correctly reproduce the frequency distribution of precipitation, especially at the regional scale. In this study, a validated analogue method is employed to diagnose the potential future shifts in the probability of extreme precipitation over the United States under global warming. The method is based on the use of the resolved large-scale meteorological conditions (i.e. flow features, moisture supply) to detect the occurrence of extreme precipitation. The CMIP5 multi-model projections have been compiled for two radiative forcing scenarios (Representative Concentration Pathways 4.5 and 8.5). We further analyze the accompanying circulation features and their changes that may be responsible for shifts in extreme precipitation in response to changed climate. The application of such analogue method to detect other types of hazard events, i.e. landslides is also explored. The results from this study may guide hazardous weather watches and help society develop adaptive strategies for preventing catastrophic losses.

  2. CO-PRECIPITATION IN QUANTITATIVE ANALYSIS. COMMUNICATION V. THE INFLUENCE EXERCISED BY COMPLEXION UPON THE PRECIPITATION OF ZIRCONIUM PHOSPHATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babko, A.K.; Shtokalo, M.I.

    The influence exercised by ethylenediamino-tetraacetic acid upon some processes of precipitation was investigated. A sharp mopdification of the form of precipitate as well as a decrease of coprecipitation was ium and titanium by means of the phosphate ;method are given. (TCO-W.D.M.)

  3. Application of hierarchical clustering method to classify of space-time rainfall patterns

    NASA Astrophysics Data System (ADS)

    Yu, Hwa-Lung; Chang, Tu-Je

    2010-05-01

    Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.

  4. Assessment of Drought Severity Using Normal Precipitation Index (Case Study: Sistan and Baluchistan Province)

    NASA Astrophysics Data System (ADS)

    Rahimi, D.; Movahedi, S.

    2009-04-01

    In the last decades, water crisis is one of the most important critical phenomenons in the environment planning and human society's management which affecting on development aspects in the international, national and regional levels. In this research, have been considered the Drought as the main parameter in water rare serious. For drought assessment, can treat the different methods, such as statistical model, meteorological and hydrological methods. In this research, have been used the Normal Precipitation index to meteorological analysis of drought severity in Sistan and Baluchistan province with high drought severity during recent years. According to the obtained result, the annual precipitation of studied area was between 36 to 52 percent more than mean precipitation of province. 10%-23 percent of precipitation amount involved the drought threshold border, 3%-13 percent of precipitations contain the weakness drought, 6.7% -23 percent were considered for moderate drought, 6%-20 percent involved the severe drought and ultimately, 6.7% to 23 percent of precipitations were considered as very severe drought. Keywords: Drought, Normal index, precipitation, Sistan and Baluchistan

  5. Development of the Ion Exchange-Gravimetric Method for Sodium in Serum as a Definitive Method

    PubMed Central

    Moody, John R.; Vetter, Thomas W.

    1996-01-01

    An ion exchange-gravimetric method, previously developed as a National Committee for Clinical Laboratory Standards (NCCLS) reference method for the determination of sodium in human serum, has been re-evaluated and improved. Sources of analytical error in this method have been examined more critically and the overall uncertainties decreased. Additionally, greater accuracy and repeatability have been achieved by the application of this definitive method to a sodium chloride reference material. In this method sodium in serum is ion-exchanged, selectively eluted and converted to a weighable precipitate as Na2SO4. Traces of sodium eluting before or after the main fraction, and precipitate contaminants are determined instrumentally. Co-precipitating contaminants contribute less than 0.1 % while the analyte lost to other eluted ion-exchange fractions contributes less than 0.02 % to the total precipitate mass. With improvements, the relative expanded uncertainty (k = 2) of the method, as applied to serum, is 0.3 % to 0.4 % and is less than 0.1 % when applied to a sodium chloride reference material. PMID:27805122

  6. Extraction of rare earth elements from low-grade Bauxite via precipitation reaction

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Nurani, Y.; Bahari, ZJ

    2018-03-01

    The aim of this research was to determine the optimum hydrometallurgical parameters to extract the rare earth elements (REE) from low-grade bauxite through acid leaching and precipitation reaction. REE or lanthanide recovery by a precipitation method with sodium sulphate and sodium phosphate as precipitation agents is reported where the effect of pH and recovery of REE are described. The metal composition of REE in low-grade bauxite after treatment were analyzed by ICP-OES. The total recovery values of REE elements at the first precipitation reaction using sodium sulphate as the precipitation agent at pH 3.5 showed ~68.2% of lanthanum, ~18.9% cerium, and ~7.8% yttrium. Lanthanum was the rare-earth element present at the highest concentration in the low-grade bauxite after the series treatments. An optimum pH of 3.5 for precipitation of rare-earth elements using sodium sulphate was demonstrated where this method is recommended for the extraction of REE elements from low-grade bauxite.

  7. The effect of precipitants on Ni-Al2O3 catalysts prepared by a co-precipitation method for internal reforming in molten carbonate fuel cells

    PubMed Central

    Jung, You-Shick; Yoon, Wang-Lai; Seo, Yong-Seog; Rhee, Young-Woo

    2012-01-01

    Ni-Al2O3 catalysts are prepared via the co-precipitation method using various precipitants: urea, Na2CO3, NaOH, K2CO3, KOH and NH4OH. The effects of the precipitants on the physicochemical properties and catalytic activities of the Ni-Al2O3 catalysts are investigated. The Ni50-urea catalyst displays the largest specific surface area and the highest pore volume. This catalyst also exhibits the highest Ni dispersion and the largest Ni surface area. Ni50-urea catalyst prepared with urea as precipitant and Ni50-K2CO3 catalyst prepared with K2CO3 as precipitant exhibit high pore volumes and good catalytic activities for methane steam reforming. The Ni50-urea catalyst exhibits the best physicochemical properties and shows good catalytic activity and a strong resistance to electrolyte contamination. PMID:22962548

  8. Method for determining processability of a hydrocarbon containing feedstock

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.

    2013-09-10

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  9. SELECTIVE SEPARATION OF URANIUM FROM THORIUM, PROTACTINIUM AND FISSION PRODUCTS BY PEROXIDE DISSOLUTION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-08-18

    A method is described for separating U/sup 233/ from thorium and fission products. The separation is effected by forming a thorium-nitric acid solution of about 3 pH, adding hydrogen peroxide to precipitate uranium and thorium peroxide, treating the peroxides with sodium hydroxide to selectively precipitate the uranium peroxide, and reacting the separated solution with nitric acid to re- precipitate the uranium peroxide.

  10. Method for the decontamination of metallic surfaces

    DOEpatents

    Purohit, Ankur; Kaminski, Michael D.; Nunez, Luis

    2003-01-01

    A method of decontaminating a radioactively contaminated oxide on a surface. The radioactively contaminated oxide is contacted with a diphosphonic acid solution for a time sufficient to dissolve the oxide and subsequently produce a precipitate containing most of the radioactive values. Thereafter, the diphosphonic solution is separated from the precipitate. HEDPA is the preferred diphosphonic acid and oxidizing and reducing agents are used to initiate precipitation. SFS is the preferred reducing agent.

  11. METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM

    DOEpatents

    Koshland, D.E. Jr.; Willard, J.E.

    1961-08-01

    A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)

  12. Assessment of Areal Recharge to the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Bartolino, James R.

    2007-01-01

    A numerical flow model of the Spokane Valley-Rathdrum Prairie aquifer currently (2007) being developed requires the input of values for areally-distributed recharge, a parameter that is often the most uncertain component of water budgets and ground-water flow models because it is virtually impossible to measure over large areas. Data from six active weather stations in and near the study area were used in four recharge-calculation techniques or approaches; the Langbein method, in which recharge is estimated on the basis of empirical data from other basins; a method developed by the U.S. Department of Agriculture (USDA), in which crop consumptive use and effective precipitation are first calculated and then subtracted from actual precipitation to yield an estimate of recharge; an approach developed as part of the Eastern Snake Plain Aquifer Model (ESPAM) Enhancement Project in which recharge is calculated on the basis of precipitation-recharge relations from other basins; and an approach in which reference evapotranspiration is calculated by the Food and Agriculture Organization (FAO) Penman-Monteith equation, crop consumptive use is determined (using a single or dual coefficient approach), and recharge is calculated. Annual recharge calculated by the Langbein method for the six weather stations was 4 percent of annual mean precipitation, yielding the lowest values of the methods discussed in this report, however, the Langbein method can be only applied to annual time periods. Mean monthly recharge calculated by the USDA method ranged from 53 to 73 percent of mean monthly precipitation. Mean annual recharge ranged from 64 to 69 percent of mean annual precipitation. Separate mean monthly recharge calculations were made with the ESPAM method using initial input parameters to represent thin-soil, thick-soil, and lava-rock conditions. The lava-rock parameters yielded the highest recharge values and the thick-soil parameters the lowest. For thin-soil parameters, calculated monthly recharge ranged from 10 to 29 percent of mean monthly precipitation and annual recharge ranged from 16 to 23 percent of mean annual precipitation. For thick-soil parameters, calculated monthly recharge ranged from 1 to 5 percent of mean monthly precipitation and mean annual recharge ranged from 2 to 4 percent of mean annual precipitation. For lava-rock parameters, calculated mean monthly recharge ranged from 37 to 57 percent of mean monthly precipitation and mean annual recharge ranged from 45 to 52 percent of mean annual precipitation. Single-coefficient (crop coefficient) FAO Penman-Monteith mean monthly recharge values were calculated for Spokane Weather Service Office (WSO) Airport, the only station for which the necessary meteorological data were available. Grass-referenced values of mean monthly recharge ranged from 0 to 81 percent of mean monthly precipitation and mean annual recharge was 21 percent of mean annual precipitation; alfalfa-referenced values of mean monthly recharge ranged from 0 to 85 percent of mean monthly precipitation and mean annual recharge was 24 percent of mean annual precipitation. Single-coefficient FAO Penman-Monteith calculations yielded a mean monthly recharge of zero during the eight warmest and driest months of the year (March-October). In order to refine the mean monthly recharge estimates, dual-coefficient (basal crop and soil evaporation coefficients) FAO Penman-Monteith dual-crop evapotranspiration and deep-percolation calculations were applied to daily values from the Spokane WSO Airport for January 1990 through December 2005. The resultant monthly totals display a temporal variability that is absent from the mean monthly values and demonstrate that the daily amount and timing of precipitation dramatically affect calculated recharge. The dual-coefficient FAO Penman-Monteith calculations were made for the remaining five stations using wind-speed values for Spokane WSO Airport and other assumptions regarding

  13. Computation of rainfall erosivity from daily precipitation amounts.

    PubMed

    Beguería, Santiago; Serrano-Notivoli, Roberto; Tomas-Burguera, Miquel

    2018-10-01

    Rainfall erosivity is an important parameter in many erosion models, and the EI30 defined by the Universal Soil Loss Equation is one of the best known erosivity indices. One issue with this and other erosivity indices is that they require continuous breakpoint, or high frequency time interval, precipitation data. These data are rare, in comparison to more common medium-frequency data, such as daily precipitation data commonly recorded by many national and regional weather services. Devising methods for computing estimates of rainfall erosivity from daily precipitation data that are comparable to those obtained by using high-frequency data is, therefore, highly desired. Here we present a method for producing such estimates, based on optimal regression tools such as the Gamma Generalised Linear Model and universal kriging. Unlike other methods, this approach produces unbiased and very close to observed EI30, especially when these are aggregated at the annual level. We illustrate the method with a case study comprising more than 1500 high-frequency precipitation records across Spain. Although the original records have a short span (the mean length is around 10 years), computation of spatially-distributed upscaling parameters offers the possibility to compute high-resolution climatologies of the EI30 index based on currently available, long-span, daily precipitation databases. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Examining the Stationarity Assumption for Statistically Downscaled Climate Projections of Precipitation

    NASA Astrophysics Data System (ADS)

    Wootten, A.; Dixon, K. W.; Lanzante, J. R.; Mcpherson, R. A.

    2017-12-01

    Empirical statistical downscaling (ESD) approaches attempt to refine global climate model (GCM) information via statistical relationships between observations and GCM simulations. The aim of such downscaling efforts is to create added-value climate projections by adding finer spatial detail and reducing biases. The results of statistical downscaling exercises are often used in impact assessments under the assumption that past performance provides an indicator of future results. Given prior research describing the danger of this assumption with regards to temperature, this study expands the perfect model experimental design from previous case studies to test the stationarity assumption with respect to precipitation. Assuming stationarity implies the performance of ESD methods are similar between the future projections and historical training. Case study results from four quantile-mapping based ESD methods demonstrate violations of the stationarity assumption for both central tendency and extremes of precipitation. These violations vary geographically and seasonally. For the four ESD methods tested the greatest challenges for downscaling of daily total precipitation projections occur in regions with limited precipitation and for extremes of precipitation along Southeast coastal regions. We conclude with a discussion of future expansion of the perfect model experimental design and the implications for improving ESD methods and providing guidance on the use of ESD techniques for impact assessments and decision-support.

  15. THE DETERMINATION OF THE MAJOR CONSTITUENTS OTHER THAN URANIUM IN BELGIAN CONGO ORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, A.B.; Wright, J.S.; Bradfield, E.G.

    1953-12-22

    Methods for determining the major constituents of Belgian Congo ore other than uranium are reviewed. A method is given for the determination of cobalt by precipitation with potassium ethyl xanthate from a nitric acid solution of the ore. After wet oxidation of the precipitate, it is titrated potentiometrically in ammoniacal citrate solution with potassium ferricyanide. A method for the determination of silicon is given in which the silica is dehydrated by fuming with perchloric acid. After filtration and ignition, it is volatized as the fluoride, and the silica is deternfined from weight loss. Nickel is determined from a solution ofmore » the ore in nitric acid by double precipitation with dimethyl glyoxime after addition of citrate ion, hydroxylamine, and ammonia. Molybdenum is determined by precipitation as lead molybdate after preliminary separation with benzoin oxime. Aluminum is determined by precipitation as the benzoate, thioglycolic acid being used to complex the iron. The aluminum is then estimated gravimetrically with oxime. A composite method is presented for the deterndnation of lead, iron, alununum, calciuna, and magnesium. (C.J.G.)« less

  16. A new approach for assimilation of two-dimensional radar precipitation in a high resolution NWP model

    NASA Astrophysics Data System (ADS)

    Korsholm, Ulrik; Petersen, Claus; Hansen Sass, Bent; Woetman, Niels; Getreuer Jensen, David; Olsen, Bjarke Tobias; GIll, Rasphal; Vedel, Henrik

    2014-05-01

    The DMI nowcasting system has been running in a pre-operational state for the past year. The system consists of hourly simulations with the High Resolution Limited Area weather model combined with surface and three-dimensional variational assimilation at each restart and nudging of satellite cloud products and radar precipitation. Nudging of a two-dimensional radar reflectivity CAPPI product is achieved using a new method where low level horizontal divergence is nudged towards pseudo observations. Pseudo observations are calculated based on an assumed relation between divergence and precipitation rate and the strength of the nudging is proportional to the offset between observed and modelled precipitation leading to increased moisture convergence below cloud base if there is an under-production of precipitation relative to the CAPPI product. If the model over-predicts precipitation, the low level moisture source is reduced, and in-cloud moisture is nudged towards environmental values. In this talk results will be discussed based on calculation of the fractions skill score in cases with heavy precipitation over Denmark. Furthermore, results from simulations combining reflectivity nudging and extrapolation of reflectivity will be shown. Results indicate that the new method leads to fast adjustment of the dynamical state of the model to facilitate precipitation release when the model precipitation intensity is too low. Removal of precipitation is also shown to be of importance and strong improvements were found in the position of the precipitation systems. Bias is reduced for low and extreme precipitation rates.

  17. Expression, crystallization and phasing of vacuolar H(+)-ATPase subunit C (Vma5p) of Saccharomyces cerevisiae.

    PubMed

    Drory, Omri; Mor, Adi; Frolow, Felix; Nelson, Nathan

    2004-10-01

    The expression, crystallization and phasing of subunit C (Vma5p) of the yeast (Saccharomyces cerevisiae) vacuolar proton-translocating ATPase (V-ATPase) is described. The expressed protein consists of 412 residues: 392 from the reading frame of Vma5p and 20 N-terminal residues originating from the plasmid. Diffraction-quality crystals were obtained using the hanging-drop and sitting-drop vapour-diffusion methods assisted by streak-seeding, with PEG 3350 as precipitant. The crystals formed in hanging drops diffracted to 1.80 A and belong to space group P4(3)2(1)2(1), with unit-cell parameters a = b = 62.54, c = 327.37 A, alpha = beta = gamma = 90 degrees. The structure was solved using SIRAS with a Lu(O2C2H3)2 heavy-atom derivative.

  18. A novel approach to validate satellite soil moisture retrievals using precipitation data

    NASA Astrophysics Data System (ADS)

    Karthikeyan, L.; Kumar, D. Nagesh

    2016-10-01

    A novel approach is proposed that attempts to validate passive microwave soil moisture retrievals using precipitation data (applied over India). It is based on the concept that the expectation of precipitation conditioned on soil moisture follows a sigmoidal convex-concave-shaped curve, the characteristic of which was recently shown to be represented by mutual information estimated between soil moisture and precipitation. On this basis, with an emphasis over distribution-free nonparametric computations, a new measure called Copula-Kernel Density Estimator based Mutual Information (CKDEMI) is introduced. The validation approach is generic in nature and utilizes CKDEMI in tandem with a couple of proposed bootstrap strategies, to check accuracy of any two soil moisture products (here Advanced Microwave Scanning Radiometer-EOS sensor's Vrije Universiteit Amsterdam-NASA (VUAN) and University of Montana (MONT) products) using precipitation (India Meteorological Department) data. The proposed technique yields a "best choice soil moisture product" map which contains locations where any one of the two/none of the two/both the products have produced accurate retrievals. The results indicated that in general, VUA-NASA product has performed well over University of Montana's product for India. The best choice soil moisture map is then integrated with land use land cover and elevation information using a novel probability density function-based procedure to gain insight on conditions under which each of the products has performed well. Finally, the impact of using a different precipitation (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources) data set over the best choice soil moisture product map is also analyzed. The proposed methodology assists researchers and practitioners in selecting the appropriate soil moisture product for various assimilation strategies at both basin and continental scales.

  19. Global modeling of land water and energy balances. Part III: Interannual variability

    USGS Publications Warehouse

    Shmakin, A.B.; Milly, P.C.D.; Dunne, K.A.

    2002-01-01

    The Land Dynamics (LaD) model is tested by comparison with observations of interannual variations in discharge from 44 large river basins for which relatively accurate time series of monthly precipitation (a primary model input) have recently been computed. When results are pooled across all basins, the model explains 67% of the interannual variance of annual runoff ratio anomalies (i.e., anomalies of annual discharge volume, normalized by long-term mean precipitation volume). The new estimates of basin precipitation appear to offer an improvement over those from a state-of-the-art analysis of global precipitation (the Climate Prediction Center Merged Analysis of Precipitation, CMAP), judging from comparisons of parallel model runs and of analyses of precipitation-discharge correlations. When the new precipitation estimates are used, the performance of the LaD model is comparable to, but not significantly better than, that of a simple, semiempirical water-balance relation that uses only annual totals of surface net radiation and precipitation. This implies that the LaD simulations of interannual runoff variability do not benefit substantially from information on geographical variability of land parameters or seasonal structure of interannual variability of precipitation. The aforementioned analyses necessitated the development of a method for downscaling of long-term monthly precipitation data to the relatively short timescales necessary for running the model. The method merges the long-term data with a reference dataset of 1-yr duration, having high temporal resolution. The success of the method, for the model and data considered here, was demonstrated in a series of model-model comparisons and in the comparisons of modeled and observed interannual variations of basin discharge.

  20. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography.

    PubMed

    Al-Kassab, T; Kompatscher, M; Kirchheim, R; Kostorz, G; Schönfeld, B

    2014-09-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3 at.% Ti were investigated, the states selected from the decomposition path were the metastable γ″ and γ' states introduced on the basis of small-angle neutron scattering (SANS) and the two-phase model for evaluation. The composition values of the precipitates in these states could not be confirmed by APT data as the interface of the ordered precipitates may not be neglected. The present results rather suggest to apply a three-phase model for the interpretation of SANS measurements, in which the width of the interface remains nearly unchanged and the L12 structure close to 3:1 stoichiometry is maintained in the core of the precipitates from the γ″ to the γ' state. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Identifying and Analyzing Uncertainty Structures in the TRMM Microwave Imager Precipitation Product over Tropical Ocean Basins

    NASA Technical Reports Server (NTRS)

    Liu, Jianbo; Kummerow, Christian D.; Elsaesser, Gregory S.

    2016-01-01

    Despite continuous improvements in microwave sensors and retrieval algorithms, our understanding of precipitation uncertainty is quite limited, due primarily to inconsistent findings in studies that compare satellite estimates to in situ observations over different parts of the world. This study seeks to characterize the temporal and spatial properties of uncertainty in the Tropical Rainfall Measuring Mission Microwave Imager surface rainfall product over tropical ocean basins. Two uncertainty analysis frameworks are introduced to qualitatively evaluate the properties of uncertainty under a hierarchy of spatiotemporal data resolutions. The first framework (i.e. 'climate method') demonstrates that, apart from random errors and regionally dependent biases, a large component of the overall precipitation uncertainty is manifested in cyclical patterns that are closely related to large-scale atmospheric modes of variability. By estimating the magnitudes of major uncertainty sources independently, the climate method is able to explain 45-88% of the monthly uncertainty variability. The percentage is largely resolution dependent (with the lowest percentage explained associated with a 1 deg x 1 deg spatial/1 month temporal resolution, and highest associated with a 3 deg x 3 deg spatial/3 month temporal resolution). The second framework (i.e. 'weather method') explains regional mean precipitation uncertainty as a summation of uncertainties associated with individual precipitation systems. By further assuming that self-similar recurring precipitation systems yield qualitatively comparable precipitation uncertainties, the weather method can consistently resolve about 50 % of the daily uncertainty variability, with only limited dependence on the regions of interest.

  2. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Weiwei; Liu, Tiangui, E-mail: tianguiliu@gmail.com; Cao, Shiyi

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancementmore » for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.« less

  3. Using precipitated Cr on the surface of Cu-Cr alloy powders as catalyst synthesizing CNTs/Cu composite powders by water-assisted CVD

    NASA Astrophysics Data System (ADS)

    Zhou, Honglei; Liu, Ping; Chen, Xiaohong; Bi, Liming; Zhang, Ke; Liu, Xinkuan; Li, Wei; Ma, Fengcang

    2018-02-01

    Given that the conventional catalyst is easily soluble in the matrix to result in the poor performance of the CNTs/Cu composite materials, the Cr nano-particles precipitated on the surface of Cu-Cr particles are first used as catalysts to prepare the CNTs/Cu composite powders by means of water-assisted chemical vapor deposition in situ synthesis. The results show that the morphological difference of the precipitated Cr nano-particle is obvious with the change of solution and aging treatment, and the morphology, length and diameter of the synthetic CNTs are also different. The catalyst of Cr nano-particle has the best morphology and the synthesized CNTs had a good wettability with Cu particles when the Cu-Cr composite powders was solution-treated at 1023 K for 60 min and then was aged at 723 K for 120 min. The length, diameter, yield and purity of the synthesized CNTs can be also affected by the moisture content in the reaction gas. It is the most suitable for the growth of CNTs when the moisture content is 0.4%, and the high purity and defect-free CNTs with the smooth pipe wall, a diameter of 20 ˜ 30 nm and a length of up to 1800 nm can be obtained. The yield of CNTs with the moisture content of 0.4% reached to 138%, which was increased by 119% to compare with that without moisture. In this paper, a feasible technology was offered for the preparation of high performance CNTs/Cu composites.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Min; Kollias, Pavlos; Feng, Zhe

    The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification ismore » equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.« less

  5. Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortuna, S. V., E-mail: s-fortuna@ispms.ru; Ivanov, K. V., E-mail: ikv@ispms.ru; Eliseev, A. A., E-mail: alan@ispms.ru

    2015-10-27

    This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.

  6. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, Jackson E.; Lorensen, Lyman E.; Locke, Frank E.

    1982-01-01

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds.

  7. Evaluation of Fuzzy-Logic Framework for Spatial Statistics Preserving Methods for Estimation of Missing Precipitation Data

    NASA Astrophysics Data System (ADS)

    El Sharif, H.; Teegavarapu, R. S.

    2012-12-01

    Spatial interpolation methods used for estimation of missing precipitation data at a site seldom check for their ability to preserve site and regional statistics. Such statistics are primarily defined by spatial correlations and other site-to-site statistics in a region. Preservation of site and regional statistics represents a means of assessing the validity of missing precipitation estimates at a site. This study evaluates the efficacy of a fuzzy-logic methodology for infilling missing historical daily precipitation data in preserving site and regional statistics. Rain gauge sites in the state of Kentucky, USA, are used as a case study for evaluation of this newly proposed method in comparison to traditional data infilling techniques. Several error and performance measures will be used to evaluate the methods and trade-offs in accuracy of estimation and preservation of site and regional statistics.

  8. Application of zinc chloride precipitation method for rapid isolation and concentration of infectious Pectobacterium spp. and Dickeya spp. lytic bacteriophages from surface water and plant and soil extracts.

    PubMed

    Czajkowski, Robert; Ozymko, Zofia; Lojkowska, Ewa

    2016-01-01

    This is the first report describing precipitation of bacteriophage particles with zinc chloride as a method of choice to isolate infectious lytic bacteriophages against Pectobacterium spp. and Dickeya spp. from environmental samples. The isolated bacteriophages are ready to use to study various (ecological) aspects of bacteria-bacteriophage interactions. The method comprises the well-known precipitation of phages from aqueous extracts of the test material by addition of ZnCl2, resuscitation of bacteriophage particles in Ringer's buffer to remove the ZnCl2 excess and a soft agar overlay assay with the host bacterium to isolate infectious individual phage plaques. The method requires neither an enrichment step nor other steps (e. g., PEG precipitation, ultrafiltration, or ultracentrifugation) commonly used in other procedures and results in isolation of active viable bacteriophage particles.

  9. Responses of switchgrass to precipitation changes: Nonlinear and asymmetric?

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods: Climate changes, including chronic changes in precipitation amounts, will influence plant physiology, biomass and productivity, and soil respiration. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. Two preci...

  10. A data centred method to estimate and map how the local distribution of daily precipitation is changing

    NASA Astrophysics Data System (ADS)

    Chapman, Sandra; Stainforth, David; Watkins, Nick

    2014-05-01

    Estimates of how our climate is changing are needed locally in order to inform adaptation planning decisions. This requires quantifying the geographical patterns in changes at specific quantiles in distributions of variables such as daily temperature or precipitation. Here we focus on these local changes and on a method to transform daily observations of precipitation into patterns of local climate change. We develop a method[1] for analysing local climatic timeseries to assess which quantiles of the local climatic distribution show the greatest and most robust changes, to specifically address the challenges presented by daily precipitation data. We extract from the data quantities that characterize the changes in time of the likelihood of daily precipitation above a threshold and of the relative amount of precipitation in those days. Our method is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of precipitation distributions are changing. This involves both determining which quantiles and geographical locations show the greatest change but also, those at which any change is highly uncertain. We demonstrate this approach using E-OBS gridded data[2] timeseries of local daily precipitation from specific locations across Europe over the last 60 years. We treat geographical location and precipitation as independent variables and thus obtain as outputs the pattern of change at a given threshold of precipitation and with geographical location. This is model- independent, thus providing data of direct value in model calibration and assessment. Our results show regionally consistent patterns of systematic increase in precipitation on the wettest days, and of drying across all days which is of potential value in adaptation planning. [1] S C Chapman, D A Stainforth, N W Watkins, 2013, On Estimating Local Long Term Climate Trends, Phil. Trans. R. Soc. A, 371 20120287; D. A. Stainforth, 2013, S. C. Chapman, N. W. Watkins, Mapping climate change in European temperature distributions, Environ. Res. Lett. 8, 034031 [2] Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119

  11. Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO2 nanotubes by ultrasound-assisted pulse electrodeposition.

    PubMed

    Fathyunes, Leila; Khalil-Allafi, Jafar; Sheykholeslami, Seyed Omid Reza; Moosavifar, Maryam

    2018-06-01

    In this study, the ultrasound-assisted pulse electrodeposition was introduced to fabricate the graphene oxide (GO)-hydroxyapatite (HA) coating on TiO 2 nanotubes. The results of the X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR), Transmission Electron Microscope (TEM) and micro-Raman spectroscopy showed the successful synthesis of GO. The Scanning Electron Microscope (SEM) images revealed that in the presence of ultrasonic waves and GO sheets a more compact HA-based coating with refined microstructure could be formed on the pretreated titanium. The results of micro-Raman analysis confirmed the successful incorporation of the reinforcement filler of GO into the coating electrodeposited by the ultrasound-assisted method. The FTIR analysis showed that the GO-HA coating was consisted predominantly of the B-type carbonated HA (CHA) phase. The pretreatment of the substrate and incorporation of the GO sheets into the HA coating had a significant effect on improving the bonding strength at the coating-substrate interface. Moreover, the results of the fibroblast cell culture and 3‑(4,5‑dimethylthiazolyl‑2)‑2, 5‑diphenyltetrazolium bromide (MTT) assay after 2 days demonstrated a higher percentage of cell activity for the GO-HA coated sample. Finally, the 7-day exposure to simulated body fluid (SBF) showed a faster rate of apatite precipitation on the GO-HA coating, as compared to the HA coating and pretreated titanium. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A multi-source precipitation approach to fill gaps over a radar precipitation field

    NASA Astrophysics Data System (ADS)

    Tesfagiorgis, K. B.; Mahani, S. E.; Khanbilvardi, R.

    2012-12-01

    Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products. The present work develops an approach to seamlessly blend satellite, radar, climatological and gauge precipitation products to fill gaps over ground-based radar precipitation fields. To mix different precipitation products, the bias of any of the products relative to each other should be removed. For bias correction, the study used an ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar rainfall product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. A weighted Successive Correction Method (SCM) is proposed to make the merging between error corrected satellite and radar rainfall estimates. In addition to SCM, we use a Bayesian spatial method for merging the gap free radar with rain gauges, climatological rainfall sources and SPEs. We demonstrate the method using SPE Hydro-Estimator (HE), radar- based Stage-II, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over three different geographical locations of the United States. Results show that: the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements. The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the scientific community.

  13. Sensitivity of snow process simulations to precipitation-phase transition method in forested and open areas

    NASA Astrophysics Data System (ADS)

    Lundberg, A.; Gustafsson, D.

    2009-04-01

    Modeling of forest snow processes is complicated and especially problematic seems to be the separation of precipitation phase in climates where a large part of the precipitation falls at temperatures near zero degrees Celsius. When the precipitation is classified as snow, the tree crowns can carry an order of magnitude more canopy storage as compared to when the precipitation is classified as rain, and snow in the trees also alters the albedo of the forest while rain does not. Many different schemes for the precipitation phase separation are used by various snow models. Some models use just one air temperature threshold (TR/S) below which all precipitation is assumed to be snow and above which all precipitation is classified as rain. A more common approach for forest snow models is to use two temperature thresholds. The snow fraction (SF) is then set to one below the snow threshold (TS) and to zero above the rain threshold (TR) and SF is assumed to decrease linearly between these two thresholds. Also more sophisticated schemes exist, but three seems to be a lack of agreement on how the precipitation phase separations should be performed. The aim with this study is to use a hydrological model including canopy snow processes to illustrate the sensitivity for different formulations of the precipitation phase separation on a) the simulated maximum snow pack storage b) the interception evaporation loss and c) snow melt runoff. In other words, to investigate of the choice of precipitation phase separation has an impact on the simulated wintertime water balance. Simulations are made for sites in different climates and for both open fields and forest sites in different regions of Sweden from north to south. In general, precipitation phase separation methods that classified snowfall at higher temperatures resulted in a larger proportion of the precipitation lost by interception evaporation as a result of the increased interception capacity. However, the maximum snow accumulation was also increased in some cases due to the overall increased snowfall, depending on canopy density and precipitation and temperature regimes. Results show that the choice of precipitation phase separation method can have an significant impact on the simulated wintertime water balance, especially in forested regions.

  14. Determination of Lead in Blood by Atomic Absorption Spectrophotometry1

    PubMed Central

    Selander, Stig; Cramér, Kim

    1968-01-01

    Lead in blood was determined by atomic absorption spectrophotometry, using a wet ashing procedure and a procedure in which the proteins were precipitated with trichloroacetic acid. In both methods the lead was extracted into isobutylmethylketone before measurement, using ammonium pyrrolidine dithiocarbamate as chelator. The simpler precipitation procedure was shown to give results identical with those obtained with the ashing technique. In addition, blood specimens were examined by the precipitation method and by spectral analysis, which method includes wet ashing of the samples, with good agreement. All analyses were done on blood samples from `normal' persons or from lead-exposed workers, and no additions of inorganic lead were made. The relatively simple protein precipitation technique gave accurate results and is suitable for the large-scale control of lead-exposed workers. PMID:5663425

  15. A review of statistical methods to analyze extreme precipitation and temperature events in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Lazoglou, Georgia; Anagnostopoulou, Christina; Tolika, Konstantia; Kolyva-Machera, Fotini

    2018-04-01

    The increasing trend of the intensity and frequency of temperature and precipitation extremes during the past decades has substantial environmental and socioeconomic impacts. Thus, the objective of the present study is the comparison of several statistical methods of the extreme value theory (EVT) in order to identify which is the most appropriate to analyze the behavior of the extreme precipitation, and high and low temperature events, in the Mediterranean region. The extremes choice was made using both the block maxima and the peaks over threshold (POT) technique and as a consequence both the generalized extreme value (GEV) and generalized Pareto distributions (GPDs) were used to fit them. The results were compared, in order to select the most appropriate distribution for extremes characterization. Moreover, this study evaluates the maximum likelihood estimation, the L-moments and the Bayesian method, based on both graphical and statistical goodness-of-fit tests. It was revealed that the GPD can characterize accurately both precipitation and temperature extreme events. Additionally, GEV distribution with the Bayesian method is proven to be appropriate especially for the greatest values of extremes. Another important objective of this investigation was the estimation of the precipitation and temperature return levels for three return periods (50, 100, and 150 years) classifying the data into groups with similar characteristics. Finally, the return level values were estimated with both GEV and GPD and with the three different estimation methods, revealing that the selected method can affect the return level values for both the parameter of precipitation and temperature.

  16. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.

    PubMed

    Flaibani, Marina; Elvassore, Nicola

    2012-08-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10-15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177-0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (~70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Selection of an Appropriate Protein Extraction Method to Study the Phosphoproteome of Maize Photosynthetic Tissue

    PubMed Central

    Luís, Inês M.; Alexandre, Bruno M.; Oliveira, M. Margarida

    2016-01-01

    Often plant tissues are recalcitrant and, due to that, methods relying on protein precipitation, such as TCA/acetone precipitation and phenol extraction, are usually the methods of choice for protein extraction in plant proteomic studies. However, the addition of precipitation steps to protein extraction methods may negatively impact protein recovery, due to problems associated with protein re-solubilization. Moreover, we show that when working with non-recalcitrant plant tissues, such as young maize leaves, protein extraction methods with precipitation steps compromise the maintenance of some labile post-translational modifications (PTMs), such as phosphorylation. Therefore, a critical issue when studying PTMs in plant proteins is to ensure that the protein extraction method is the most appropriate, both at qualitative and quantitative levels. In this work, we compared five methods for protein extraction of the C4-photosynthesis related proteins, in the tip of fully expanded third-leaves. These included: TCA/Acetone Precipitation; Phenol Extraction; TCA/Acetone Precipitation followed by Phenol Extraction; direct extraction in Lysis Buffer (a urea-based buffer); and direct extraction in Lysis Buffer followed by Cleanup with a commercial kit. Protein extraction in Lysis Buffer performed better in comparison to the other methods. It gave one of the highest protein yields, good coverage of the extracted proteome and phosphoproteome, high reproducibility, and little protein degradation. This was also the easiest and fastest method, warranting minimal sample handling. We also show that this method is adequate for the successful extraction of key enzymes of the C4-photosynthetic metabolism, such as PEPC, PPDK, PEPCK, and NADP-ME. This was confirmed by MALDI-TOF/TOF MS analysis of excised spots of 2DE analyses of the extracted protein pools. Staining for phosphorylated proteins in 2DE revealed the presence of several phosphorylated isoforms of PEPC, PPDK, and PEPCK. PMID:27727304

  18. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, J.E.; Lorensen, L.E.; Locke, F.E.

    1980-06-13

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds is described.

  19. METHOD OF PREPARING PROTACTINIUM VALUES

    DOEpatents

    Katzin, L.I.; Larson, R.G.; Thompson, R.C.; Van Winkle, Q.

    1959-05-19

    Separation and purification from initial acid leaches of pitchblende of Pa is described. This supernatant acid solution is treated with alkali metal carbonates to precipitate Pa. Silica is removed from the precipitate by hydroxide treatment. The Pa residue is dissolved in HNO/sub 3/ and Pa is concentrated by cyclic precipitations with MnO/sub 2/. The last solution is hydrolyzed to precipitate Pa. The Pa precipitate contains Ti and Zr which are removed by ion exchange. (T.R.H.)

  20. Monitoring Rainfall by Combining Ground-based Observed Precipitation and PERSIANN Satellite Product (Case Study Area: Lake Urmia Basin)

    NASA Astrophysics Data System (ADS)

    Abrishamchi, A.; Mirshahi, A.

    2015-12-01

    The global coverage, quick access, and appropriate spatial-temporal resolution of satellite precipitation data renders the data appropriate for hydrologic studies, especially in regions with no sufficient rain-gauge network. On the other hand, satellite precipitation products may have major errors. The present study aims at reduction of estimation error of the PERSIANN satellite precipitation product. Bayesian logic employed to develop a statistical relationship between historical ground-based and satellite precipitation data. This relationship can then be used to reduce satellite precipitation product error in near real time, when there is no ground-based precipitation observation. The method was evaluated in the Lake Urmia basin with a monthly time scale; November to May of 2000- 2008 for the purpose of model development and two years of 2009 and 2010 for the validation of the established relationships. Moreover, Kriging interpolation method was employed to estimate the average rainfall in the basin. Furthermore, to downscale the satellite precipitation product from 0.25o to 0.05o, data-location downscaling algorithm was used. In 76 percent of months, the final product, compared with the satellite precipitation, had less error during the validation period. Additionally, its performance was marginally better than adjusted PERSIANN product.

  1. METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE

    DOEpatents

    Faris, B.F.

    1961-04-25

    Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

  2. CONCENTRATION OF Pu USING AN IODATE PRECIPITATE

    DOEpatents

    Fries, B.A.

    1960-02-23

    A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.

  3. A simple and effective method for detecting precipitated proteins in MALDI-TOF MS.

    PubMed

    Oshikane, Hiroyuki; Watabe, Masahiko; Nakaki, Toshio

    2018-04-01

    MALDI-TOF MS has developed rapidly into an essential analytical tool for the life sciences. Cinnamic acid derivatives are generally employed in routine molecular weight determinations of intact proteins using MALDI-TOF MS. However, a protein of interest may precipitate when mixed with matrix solution, perhaps preventing MS detection. We herein provide a simple approach to enable the MS detection of such precipitated protein species by means of a "direct deposition method" -- loading the precipitant directly onto the sample plate. It is thus expected to improve routine MS analysis of intact proteins. Copyright © 2018. Published by Elsevier Inc.

  4. Evaluation of TRMM multi-satellite precipitation analysis (TMPA) against terrestrial measurement over a humid sub-tropical basin, India

    NASA Astrophysics Data System (ADS)

    Kumar, Dheeraj; Gautam, Amar Kant; Palmate, Santosh S.; Pandey, Ashish; Suryavanshi, Shakti; Rathore, Neha; Sharma, Nayan

    2017-08-01

    To support the GPM mission which is homologous to its predecessor, the Tropical Rainfall Measuring Mission (TRMM), this study has been undertaken to evaluate the accuracy of Tropical Rainfall Measuring Mission multi-satellite precipitation analysis (TMPA) daily-accumulated precipitation products for 5 years (2008-2012) using the statistical methods and contingency table method. The analysis was performed on daily, monthly, seasonal and yearly basis. The TMPA precipitation estimates were also evaluated for each grid point i.e. 0.25° × 0.25° and for 18 rain gauge stations of the Betwa River basin, India. Results indicated that TMPA precipitation overestimates the daily and monthly precipitation in general, particularly for the middle sub-basin in the non-monsoon season. Furthermore, precision of TMPA precipitation estimates declines with the decrease of altitude at both grid and sub-basin scale. The study also revealed that TMPA precipitation estimates provide better accuracy in the upstream of the basin compared to downstream basin. Nevertheless, the detection capability of daily TMPA precipitation improves with increase in altitude for drizzle rain events. However, the detection capability decreases during non-monsoon and monsoon seasons when capturing moderate and heavy rain events, respectively. The veracity of TMPA precipitation estimates was improved during the rainy season than during the dry season at all scenarios investigated. The analyses suggest that there is a need for better precipitation estimation algorithm and extensive accuracy verification against terrestrial precipitation measurement to capture the different types of rain events more reliably over the sub-humid tropical regions of India.

  5. Syzygies, Pluricanonical Maps, and the Birational Geometry of Varieties of Maximal Albanese Dimension

    NASA Astrophysics Data System (ADS)

    Tesfagiorgis, Kibrewossen B.

    Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products in mountainous regions. The present work develops an approach to seamlessly blend satellite, available radar, climatological and gauge precipitation products to fill gaps in ground-based radar precipitation field. To mix different precipitation products, the error of any of the products relative to each other should be removed. For bias correction, the study uses a new ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar-gauge precipitation product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. In addition to biases, sometimes there is also spatial error between the radar and satellite precipitation estimates; one of them has to be geometrically corrected with reference to the other. A set of corresponding raining points between SPE and radar products are selected to apply linear registration using a regularized least square technique to minimize the dislocation error in SPEs with respect to available radar products. A weighted Successive Correction Method (SCM) is used to make the merging between error corrected satellite and radar precipitation estimates. In addition to SCM, we use a combination of SCM and Bayesian spatial method for merging the rain gauges and climatological precipitation sources with radar and SPEs. We demonstrated the method using two satellite-based, CPC Morphing (CMORPH) and Hydro-Estimator (HE), two radar-gauge based, Stage-II and ST-IV, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over different geographical locations of the United States. Results show that: (a) the method of ensembles helped reduce biases in SPEs significantly; (b) the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements .The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the operational meteorology and hydrology community.

  6. Precipitation-Frequency and Discharge-Frequency Relations for Basins Less than 32 Square Miles in Kansas

    USGS Publications Warehouse

    Perry, Charles A.

    2008-01-01

    Precipitation-frequency and discharge-frequency relations for small drainage basins with areas less than 32 square miles in Kansas were evaluated to reduce the uncertainty of discharge-frequency estimates. Gaged-discharge records were used to develop discharge-frequency equations for the ratio of discharge to drainage area (Q/A) values using data from basins with variable soil permeability, channel slope, and mean annual precipitation. Soil permeability and mean annual precipitation are the dominant basin characteristics in the multiple linear regression analyses. In addition, 28 discharge measurements at ungaged sites by indirect surveying methods and by velocity meters also were used in this analysis to relate precipitation-recurrence interval to discharge-recurrence interval. Precipitation-recurrence interval for each of these discharge measurements were estimated from weather-radar estimates of precipitation and from nearby raingages. Time of concentration for each basin for each of the ungaged sites was computed and used to determine the precipitation-recurrence interval based on precipitation depth and duration. The ratio of discharge/drainage area (Q/A) value for each event was then assigned to that precipitation-recurrence interval. The relation between the ratio of discharge/drainage area (Q/A) and precipitation-recurrence interval for all 28 measured events resulted in a correlation coefficient of 0.79. Using basins less than 5.4 mi2 only, the correlation decreases to 0.74. However, when basins greater than 5.4 and less than 32 mi2 are examined the relation improves to a correlation coefficient of 0.95. There were a sufficient number of discharge and radar-measured precipitation events for both the 5-year (8 events) and the 100-year (11 events) recurrence intervals to examine the effect of basin characteristics on the Q/A values for basins less than 32 mi2. At the 5-year precipitation-/discharge-recurrence interval, channel slope was a significant predictor (r=0.99) of Q/A. Permeability (r=0.68) also had a significant effect on Q/A values for the 5-year recurrence interval. At the 100-year recurrence interval, permeability, channel slope, and mean annual precipitation did not have a significant effect on Q/A; however, time of concentration was a significant factor in determining Q/A for the 100-year events with greater times of concentration resulting in lower Q/A values. Additional high-recurrence interval (5-, 10-, 25-, 50-, and 100-year) precipitation/discharge data are needed to confirm these relations suggested above. Discharge data with attendant basin-wide precipitation data from precipitation-radar estimates provides a unique opportunity to study the effects of basin characteristics on the relation between precipitation recurrence interval and discharge-recurrence interval. Discharge-frequency values from the Q/A equations, the rational method, and the Kansas discharge-frequency equations (KFFE) were compared to 28 measured weather-radar precipitation-/discharge-frequency values. The association between precipitation frequency from weather-radar estimates and the frequency of the resulting discharge was shown in these comparisons. The measured and Q/A equation computed discharges displayed the best equality from low to high discharges of the three methods. Here the slope of the line was nearly 1:1 (y=0.9844x0.9677). Comparisons with the rational method produced a slope greater than 1:1 (y=0.0722x1.235), and the KFFE equations produced a slope less than 1:1 (y=5.9103x0.7475). The Q/A equation standard error of prediction averaged 0.1346 log units for the 5.4-to 32-square-mile group and 0.0944 log units for the less than 5.4-square mile group. The KFFE standard error averaged 0.2107 log units for the less-than-30-square-mile equations. Using the Q/A equations for determining discharge frequency values for ungaged sites thus appears to be a good alternative to the other two methods because of this s

  7. Assessment of the uncertainty in future projection for summer climate extremes over the East Asia

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Min, Seung-Ki; Cha, Dong-Hyun

    2017-04-01

    Future projections of climate extremes in regional and local scales are essential information needed for better adapting to climate changes. However, future projections hold larger uncertainty factors arising from internal and external processes which reduce the projection confidence. Using CMIP5 (Coupled Model Intercomparison Project Phase 5) multi-model simulations, we assess uncertainties in future projections of the East Asian temperature and precipitation extremes focusing on summer. In examining future projection, summer mean and extreme projections of the East Asian temperature and precipitation would be larger as time. Moreover, uncertainty cascades represent wider scenario difference and inter-model ranges with increasing time. A positive mean-extreme relation is found in projections for both temperature and precipitation. For the assessment of uncertainty factors for these projections, dominant uncertainty factors from temperature and precipitation change as time. For uncertainty of mean and extreme temperature, contributions of internal variability and model uncertainty declines after mid-21st century while role of scenario uncertainty grows rapidly. For uncertainty of mean precipitation projections, internal variability is more important than the scenario uncertainty. Unlike mean precipitation, extreme precipitation shows that the scenario uncertainty is expected to be a dominant factor in 2090s. The model uncertainty holds as an important factor for both mean and extreme precipitation until late 21st century. The spatial changes for the uncertainty factors of mean and extreme projections generally are expressed according to temporal changes of the fraction of total variance from uncertainty factors in many grids of the East Asia. ACKNOWLEDGEMENTS The research was supported by the Korea Meteorological Administration Research and Development program under grant KMIPA 2015-2083 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.

  8. The stability of thermodynamically metastable phases in a Zr-Sn-Nb-Mo alloy: Effects of alloying elements, morphology and applied stress/strain

    NASA Astrophysics Data System (ADS)

    Yu, Hongbing; Yao, Zhongwen; Daymond, Mark R.

    2017-09-01

    In this paper, a dual phase Zr-Sn-Nb-Mb alloy was studied with TEM after thermal treatment and high-temperature tensile deformation. Plate and pressure tube material, manufactured through different processing routes, were used in this study. The overall average concentrations of Mo and Nb in the β phase are higher in the pressure tube than in the plate. It was revealed that these concentrations have significant effects on the subsequent stability of the β and ω phases as well as on the precipitation behavior of the α phase from the β phase. That is, the higher the concentrations, the more stable the β and ω phases are, and hence there is a reduced tendency for precipitation of α phase. Aging treatments cause the transformation of athermal ω to isothermal ω, as expected. The most striking finding is the product of the decomposition of the isothermal ω particles during aging treatment is determined as not being α phase, even though the structure of it is, as-yet, not fully determined. The non-uniform morphology of the β grains in the plate material provides us a unique opportunity to investigate the effects of morphology on the aging response of the β phase. It was found that thin β filaments suppress the precipitation of isothermal ω particles but enhance the precipitation of α phase at α/β interfaces. The effect of the Burgers orientation relationship between α and β grains on the precipitation of the α phase at the α/β interface is discussed. Applied high-temperature stress/strain has been found to enhance the decomposition of isothermal ω phase but suppress α precipitation inside the β grains. The suppression of α precipitation by applied stress/strain is discussed in terms of the ω assisted α precipitation. Implications of these findings for the in-service application of the alloy are discussed.

  9. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.

    PubMed

    Xia, Dengning; Gan, Yong; Cui, Fude

    2014-01-01

    This review focuses on using precipitation (bottom-up) method to produce water-insoluble drug nanocrystals, and the stability issues of nanocrystals. The precipitation techniques for production of ultra-fine particles have been widely researched for last few decades. In these techniques, precipitation of solute is achieved by addition of a non-solvent for solute called anti-solvent to decrease the solvent power for the solute dissolved in a solution. The anti-solvent can be water, organic solvents or supercritical fluids. In this paper, efforts have been made to review the precipitation techniques involving the anti-solvent precipitation by simple mixing, impinging jet mixing, multi-inlet vortex mixing, the using of high-gravity, ultrasonic waves and supercritical fluids. The key to the success of yielding stable nanocrystals in these techniques is to control the nucleation kinetics and particle growth through mixing during precipitation based on crystallization theories. The stability issues of the nanocrystals, such as sedimentation, Ostwald ripening, agglomeration and cementing of crystals, change of crystalline state, and the approaches to stabilizing nanocrystals are also discussed in detail.

  10. Precipitating Condensation Clouds in Substellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Marley, Mark S.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and precipitation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with previous methods. An adjustable parameter describing the efficiency of precipitation allows the new model to span the range of predictions from previous models. Calculations for the Jovian ammonia cloud are found to be consistent with observational constraints. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet.

  11. Highly transparent cerium doped gadolinium gallium aluminum garnet ceramic prepared with precursors fabricated by ultrasonic enhanced chemical co-precipitation.

    PubMed

    Zhang, Ji-Yun; Luo, Zhao-Hua; Jiang, Hao-Chuan; Jiang, Jun; Chen, Chun-Hua; Zhang, Jing-Xian; Gui, Zhen-Zhen; Xiao, Na

    2017-11-01

    Cerium doped gadolinium gallium aluminum garnet (GGAG:Ce) ceramic precursors have been synthesized with an ultrasonic chemical co-precipitation method (UCC) and for comparison with a traditional chemical co-precipitation method (TCC). The effect of ultra-sonication on the morphology of powders and the transmittance of GGAG:Ce ceramics are studied. The results indicate that the UCC method can effectively improve the homogenization and sinterability of GGAG:Ce powders, which contribute to obtain high transparent GGAG ceramic with the highest transmittance of 81%. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. PLUTONIUM CARRIER METATHESIS WITH ORGANIC REAGENT

    DOEpatents

    Thompson, S.G.

    1958-07-01

    A method is described for converting a plutonium containing bismuth phosphate carrier precipitate Into a compositton more readily soluble in acid. The method consists of dissolving the bismuth phosphate precipitate in an aqueous solution of alkali metal hydroxide, and adding one of a certaia group of organic compounds, e.g., polyhydric alcohols or a-hydrorycarboxylic acids. The mixture is then heated causiing formation of a bismuth hydroxide precipitate containing plutonium which may be readily dissolved in nitric acid for further processing.

  13. Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Ben; Lynch, Cary; Hartin, Corinne

    Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less

  14. Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models

    DOE PAGES

    Kravitz, Ben; Lynch, Cary; Hartin, Corinne; ...

    2017-05-12

    Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less

  15. ANPP-precipitation relationships in multi-year drought experiments in natural ecosystems

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods Predicting the effects of a reduction in precipitations on ecosystem productivity confronts an uncertainty: the relationship between aboveground net primary productivity (ANPP) and precipitation differs if the focus is spatial, driven by the climatic mean annual precipi...

  16. Impacts of precipitation and potential evapotranspiration patterns on downscaling soil moisture in regions with large topographic relief

    NASA Astrophysics Data System (ADS)

    Cowley, Garret S.; Niemann, Jeffrey D.; Green, Timothy R.; Seyfried, Mark S.; Jones, Andrew S.; Grazaitis, Peter J.

    2017-02-01

    Soil moisture can be estimated at coarse resolutions (>1 km) using satellite remote sensing, but that resolution is poorly suited for many applications. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution soil moisture using fine-resolution topographic, vegetation, and soil data to produce fine-resolution (10-30 m) estimates of soil moisture. The EMT+VS model performs well at catchments with low topographic relief (≤124 m), but it has not been applied to regions with larger ranges of elevation. Large relief can produce substantial variations in precipitation and potential evapotranspiration (PET), which might affect the fine-resolution patterns of soil moisture. In this research, simple methods to downscale temporal average precipitation and PET are developed and included in the EMT+VS model, and the effects of spatial variations in these variables on the surface soil moisture estimates are investigated. The methods are tested against ground truth data at the 239 km2 Reynolds Creek watershed in southern Idaho, which has 1145 m of relief. The precipitation and PET downscaling methods are able to capture the main features in the spatial patterns of both variables. The space-time Nash-Sutcliffe coefficients of efficiency of the fine-resolution soil moisture estimates improve from 0.33 to 0.36 and 0.41 when the precipitation and PET downscaling methods are included, respectively. PET downscaling provides a larger improvement in the soil moisture estimates than precipitation downscaling likely because the PET pattern is more persistent through time, and thus more predictable, than the precipitation pattern.

  17. Accuracy evaluation of ClimGen weather generator and daily to hourly disaggregation methods in tropical conditions

    NASA Astrophysics Data System (ADS)

    Safeeq, Mohammad; Fares, Ali

    2011-12-01

    Daily and sub-daily weather data are often required for hydrological and environmental modeling. Various weather generator programs have been used to generate synthetic climate data where observed climate data are limited. In this study, a weather data generator, ClimGen, was evaluated for generating information on daily precipitation, temperature, and wind speed at four tropical watersheds located in Hawai`i, USA. We also evaluated different daily to sub-daily weather data disaggregation methods for precipitation, air temperature, dew point temperature, and wind speed at Mākaha watershed. The hydrologic significance values of the different disaggregation methods were evaluated using Distributed Hydrology Soil Vegetation Model. MuDRain and diurnal method performed well over uniform distribution in disaggregating daily precipitation. However, the diurnal method is more consistent if accurate estimates of hourly precipitation intensities are desired. All of the air temperature disaggregation methods performed reasonably well, but goodness-of-fit statistics were slightly better for sine curve model with 2 h lag. Cosine model performed better than random model in disaggregating daily wind speed. The largest differences in annual water balance were related to wind speed followed by precipitation and dew point temperature. Simulated hourly streamflow, evapotranspiration, and groundwater recharge were less sensitive to the method of disaggregating daily air temperature. ClimGen performed well in generating the minimum and maximum temperature and wind speed. However, for precipitation, it clearly underestimated the number of extreme rainfall events with an intensity of >100 mm/day in all four locations. ClimGen was unable to replicate the distribution of observed precipitation at three locations (Honolulu, Kahului, and Hilo). ClimGen was able to reproduce the distributions of observed minimum temperature at Kahului and wind speed at Kahului and Hilo. Although the weather data generation and disaggregation methods were concentrated in a few Hawaiian watersheds, the results presented can be used to similar mountainous location settings, as well as any specific locations aimed at furthering the site-specific performance evaluation of these tested models.

  18. Scaling Linguistic Characterization of Precipitation Variability

    NASA Astrophysics Data System (ADS)

    Primo, C.; Gutierrez, J. M.

    2003-04-01

    Rainfall variability is influenced by changes in the aggregation of daily rainfall. This problem is of great importance for hydrological, agricultural and ecological applications. Rainfall averages, or accumulations, are widely used as standard climatic parameters. However different aggregation schemes may lead to the same average or accumulated values. In this paper we present a fractal method to characterize different aggregation schemes. The method provides scaling exponents characterizing weekly or monthly rainfall patterns for a given station. To this aim, we establish an analogy with linguistic analysis, considering precipitation as a discrete variable (e.g., rain, no rain). Each weekly, or monthly, symbolic precipitation sequence of observed precipitation is then considered as a "word" (in this case, a binary word) which defines a specific weekly rainfall pattern. Thus, each site defines a "language" characterized by the words observed in that site during a period representative of the climatology. Then, the more variable the observed weekly precipitation sequences, the more complex the obtained language. To characterize these languages, we first applied the Zipf's method obtaining scaling histograms of rank ordered frequencies. However, to obtain significant exponents, the scaling must be maintained some orders of magnitude, requiring long sequences of daily precipitation which are not available at particular stations. Thus this analysis is not suitable for applications involving particular stations (such as regionalization). Then, we introduce an alternative fractal method applicable to data from local stations. The so-called Chaos-Game method uses Iterated Function Systems (IFS) for graphically representing rainfall languages, in a way that complex languages define complex graphical patterns. The box-counting dimension and the entropy of the resulting patterns are used as linguistic parameters to quantitatively characterize the complexity of the patterns. We illustrate the high climatological discrimination power of the linguistic parameters in the Iberian peninsula, when compared with other standard techniques (such as seasonal mean accumulated precipitation). As an example, standard and linguistic parameters are used as inputs for a clustering regionalization method, comparing the resulting clusters.

  19. Precipitation phase separation schemes in the Naqu River basin, eastern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Liu, Shaohua; Yan, Denghua; Qin, Tianling; Weng, Baisha; Lu, Yajing; Dong, Guoqiang; Gong, Boya

    2018-01-01

    Precipitation phase has a profound influence on the hydrological processes in the Naqu River basin, eastern Tibetan plateau. However, there are only six meteorological stations with precipitation phase (rainfall/snowfall/sleet) before 1979 within and around the basin. In order to separate snowfall from precipitation, a new separation scheme with S-shaped curve of snowfall proportion as an exponential function of daily mean temperature was developed. The determinations of critical temperatures in the single/two temperature threshold (STT/TTT2) methods were explored accordingly, and the temperature corresponding to the 50 % snowfall proportion (SP50 temperature) is an efficiently critical temperature for the STT, and two critical temperatures in TTT2 can be determined based on the exponential function and SP50 temperature. Then, different separation schemes were evaluated in separating snowfall from precipitation in the Naqu River basin. The results show that the S-shaped curve methods outperform other separation schemes. Although the STT and TTT2 slightly underestimate and overestimate the snowfall when the temperature is higher and colder than SP50 temperature respectively, the monthly and annual separation snowfalls are generally consistent with the observed snowfalls. On the whole, S-shaped curve methods, STT, and TTT2 perform well in separating snowfall from precipitation with the Pearson correlation coefficient of annual separation snowfall above 0.8 and provide possible approaches to separate the snowfall from precipitation for hydrological modelling.

  20. A comparison of monthly precipitation point estimates at 6 locations in Iran using integration of soft computing methods and GARCH time series model

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2017-11-01

    Precipitation plays an important role in determining the climate of a region. Precise estimation of precipitation is required to manage and plan water resources, as well as other related applications such as hydrology, climatology, meteorology and agriculture. Time series of hydrologic variables such as precipitation are composed of deterministic and stochastic parts. Despite this fact, the stochastic part of the precipitation data is not usually considered in modeling of precipitation process. As an innovation, the present study introduces three new hybrid models by integrating soft computing methods including multivariate adaptive regression splines (MARS), Bayesian networks (BN) and gene expression programming (GEP) with a time series model, namely generalized autoregressive conditional heteroscedasticity (GARCH) for modeling of the monthly precipitation. For this purpose, the deterministic (obtained by soft computing methods) and stochastic (obtained by GARCH time series model) parts are combined with each other. To carry out this research, monthly precipitation data of Babolsar, Bandar Anzali, Gorgan, Ramsar, Tehran and Urmia stations with different climates in Iran were used during the period of 1965-2014. Root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute error (MAE) and determination coefficient (R2) were employed to evaluate the performance of conventional/single MARS, BN and GEP, as well as the proposed MARS-GARCH, BN-GARCH and GEP-GARCH hybrid models. It was found that the proposed novel models are more precise than single MARS, BN and GEP models. Overall, MARS-GARCH and BN-GARCH models yielded better accuracy than GEP-GARCH. The results of the present study confirmed the suitability of proposed methodology for precise modeling of precipitation.

  1. Spatiotemporal variations of the twentieth century Tibetan Plateau precipitation based on the monthly 2.5° reconstructed data

    NASA Astrophysics Data System (ADS)

    Shen, Samuel S. P.; Clarke, Gregori; Shen, Bo-Wen; Yao, Tandong

    2017-12-01

    This paper studies the spatiotemporal variations of precipitation over the Tibetan Plateau (TP) region with latitude and longitude ranges of (25° N, 45° N) and (65° E, 105° E) of the twentieth century from January 1901-December 2000. A long-term (January 1901-December 2009) TP monthly precipitation dataset with 2.5° latitude-longitude resolution is generated in this paper using spectral optimal gridding (SOG) method. The method uses the Global Precipitation Climatology Center (GPCC) ground station data to anchor the basis of empirical orthogonal functions (EOFs) computed from the Global Precipitation Climatology Project (GPCP) data. Our gridding takes teleconnection into account and uses data from stations both within and outside of the TP region. While the annual total precipitation increased at an approximate rate of 2.6 mm per decade in the period of 1971-2000 exists, no significant increase of TP precipitation from 1901 to 2000 was found. Our rate is less than those of previous publications based only on the TP stations because our data consider the entire TP region, including desert and high-altitude areas. An analysis of extremes and spatiotemporal patterns of our data shows that our reconstructed data can properly quantify the reported disasters of flooding and droughts in India, Bangladesh, and China for the following events: flooding in 1988 and 1998 and drought in 1972. Our time-frequency analysis using the empirical mode decomposition method shows that our nonlinear trend agrees well with the linear trend in the period from 1971 to 2000. The spatiotemporal variation characteristics documented in this paper can help understand atmospheric circulations on TP precipitation and validate the TP precipitation in climate models.

  2. The contributions of local and remote atmospheric moisture fluxes to East Asian precipitation and its variability

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Klingaman, Nicholas P.; Demory, Marie-Estelle; Vidale, Pier Luigi; Turner, Andrew G.; Stephan, Claudia C.

    2018-01-01

    We investigate the contribution of the local and remote atmospheric moisture fluxes to East Asia (EA) precipitation and its interannual variability during 1979-2012. We use and expand the Brubaker et al. (J Clim 6:1077-1089,1993) method, which connects the area-mean precipitation to area-mean evaporation and the horizontal moisture flux into the region. Due to its large landmass and hydrological heterogeneity, EA is divided into five sub-regions: Southeast (SE), Tibetan Plateau (TP), Central East (CE), Northwest (NW) and Northeast (NE). For each region, we first separate the contributions to precipitation of local evaporation from those of the horizontal moisture flux by calculating the precipitation recycling ratio: the fraction of precipitation over a region that originates as evaporation from the same region. Then, we separate the horizontal moisture flux across the region's boundaries by direction. We estimate the contributions of the horizontal moisture fluxes from each direction, as well as the local evaporation, to the mean precipitation and its interannual variability. We find that the major contributors to the mean precipitation are not necessarily those that contribute most to the precipitation interannual variability. Over SE, the moisture flux via the southern boundary dominates the mean precipitation and its interannual variability. Over TP, in winter and spring, the moisture flux via the western boundary dominates the mean precipitation; however, variations in local evaporation dominate the precipitation interannual variability. The western moisture flux is the dominant contributor to the mean precipitation over CE, NW and NE. However, the southern or northern moisture flux or the local evaporation dominates the precipitation interannual variability over these regions, depending on the season. Potential mechanisms associated with interannual variability in the moisture flux are identified for each region. The methods and results presented in this study can be readily applied to model simulations, to identify simulation biases in precipitation that relate to the simulated moisture supplies and transport.

  3. Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France

    NASA Astrophysics Data System (ADS)

    Caillouet, Laurie; Vidal, Jean-Philippe; Sauquet, Eric; Graff, Benjamin

    2015-04-01

    This work proposes a daily high-resolution probabilistic reconstruction of precipitation and temperature fields in France over the last century built on the NOAA 20th century global extended atmospheric reanalysis (20CR, Compo et al., 2011). It aims at delivering appropriate meteorological forcings for continuous distributed hydrological modelling over the last 140 years. The longer term objective is to improve our knowledge of major historical hydrometeorological events having occurred outside of the last 50-year period, over which comprehensive reconstructions and observations are available. It would constitute a perfect framework for assessing the recent observed events but also future events projected by climate change impact studies. The Sandhy (Stepwise ANalogue Downscaling method for Hydrology) statistical downscaling method (Radanovics et al., 2013), initially developed for quantitative precipitation forecast, is used here to bridge the scale gap between 20CR predictors - temperature, geopotential shape, vertical velocity and relative humidity - and local predictands - precipitation and temperature - relevant for catchment-scale hydrology. Multiple predictor domains for geopotential shape are retained from a local optimisation over France using the Safran near-surface reanalysis (Vidal et al., 2010). Sandhy gives an ensemble of 125 equally plausible gridded precipitation and temperature time series over the whole 1871-2012 period. Previous studies showed that Sandhy precipitation outputs are very slightly biased at the annual time scale. Nevertheless, the seasonal precipitation signal for areas with a high interannual variability is not well simulated. Moreover, winter and summer temperatures are respectively over- and underestimated. Reliable seasonal precipitation and temperature signals are however necessary for hydrological modelling, especially for evapotranspiration and snow accumulation/snowmelt processes. Two different post-processing methods are considered to correct monthly precipitation and temperature time series. The first one applies two new analogy steps, using the sea surface temperature (SST) and the large-scale two-meter temperature. The second method is a calendar selection that keeps the closest analogue dates in the year for each target date. A sensitivity study has been performed to assess the final number of analogues dates to retain for each method. A comparison to Safran over 1958-2010 shows that biases on the interannual cycle of precipitation and temperature are strongly reduced with both methods. Using two supplementary analogy levels moreover leads to a large improvement of correlation in seasonal temperature time series. These two methods have also been validated before 1958 thanks to both raw observations and homogenized time series. The two post-processing methods come with some advantages and drawbacks. The calendar selection allows to slightly better correct for seasonal biases in precipitation and is therefore adapted in a forecasting context. The selection with two supplementary analogy levels would allow for possible season shifts and SST trends and is therefore better suited for climate reconstruction and climate change studies. Compo, G. P. et al. (2011). The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal Meteorological Society, 137:1-28. doi: 10.1002/qj.776 Radanovics, S., Vidal, J.-P., Sauquet, E., Ben Daoud, A., and Bontron, G. (2013). Optimising predictor domains for spatially coherent precipitation downscaling. Hydrology and Earth System Sciences, 17:4189-4208. doi:10.5194/hess-17-4189-2013 Vidal, J.-P ., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.-M. (2010). A 50-year high-resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology, 30:1627-1644. doi:10.1002/joc.2003

  4. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China

    NASA Astrophysics Data System (ADS)

    Fang, G. H.; Yang, J.; Chen, Y. N.; Zammit, C.

    2015-06-01

    Water resources are essential to the ecosystem and social economy in the desert and oasis of the arid Tarim River basin, northwestern China, and expected to be vulnerable to climate change. It has been demonstrated that regional climate models (RCMs) provide more reliable results for a regional impact study of climate change (e.g., on water resources) than general circulation models (GCMs). However, due to their considerable bias it is still necessary to apply bias correction before they are used for water resources research. In this paper, after a sensitivity analysis on input meteorological variables based on the Sobol' method, we compared five precipitation correction methods and three temperature correction methods in downscaling RCM simulations applied over the Kaidu River basin, one of the headwaters of the Tarim River basin. Precipitation correction methods applied include linear scaling (LS), local intensity scaling (LOCI), power transformation (PT), distribution mapping (DM) and quantile mapping (QM), while temperature correction methods are LS, variance scaling (VARI) and DM. The corrected precipitation and temperature were compared to the observed meteorological data, prior to being used as meteorological inputs of a distributed hydrologic model to study their impacts on streamflow. The results show (1) streamflows are sensitive to precipitation, temperature and solar radiation but not to relative humidity and wind speed; (2) raw RCM simulations are heavily biased from observed meteorological data, and its use for streamflow simulations results in large biases from observed streamflow, and all bias correction methods effectively improved these simulations; (3) for precipitation, PT and QM methods performed equally best in correcting the frequency-based indices (e.g., standard deviation, percentile values) while the LOCI method performed best in terms of the time-series-based indices (e.g., Nash-Sutcliffe coefficient, R2); (4) for temperature, all correction methods performed equally well in correcting raw temperature; and (5) for simulated streamflow, precipitation correction methods have more significant influence than temperature correction methods and the performances of streamflow simulations are consistent with those of corrected precipitation; i.e., the PT and QM methods performed equally best in correcting flow duration curve and peak flow while the LOCI method performed best in terms of the time-series-based indices. The case study is for an arid area in China based on a specific RCM and hydrologic model, but the methodology and some results can be applied to other areas and models.

  5. A Data Centred Method to Estimate and Map Changes in the Full Distribution of Daily Precipitation and Its Exceedances

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Stainforth, D. A.; Watkins, N. W.

    2014-12-01

    Estimates of how our climate is changing are needed locally in order to inform adaptation planning decisions. This requires quantifying the geographical patterns in changes at specific quantiles or thresholds in distributions of variables such as daily temperature or precipitation. We develop a method[1] for analysing local climatic timeseries to assess which quantiles of the local climatic distribution show the greatest and most robust changes, to specifically address the challenges presented by 'heavy tailed' distributed variables such as daily precipitation. We extract from the data quantities that characterize the changes in time of the likelihood of daily precipitation above a threshold and of the relative amount of precipitation in those extreme precipitation days. Our method is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of precipitation distributions are changing. This involves both determining which quantiles and geographical locations show the greatest change but also, those at which any change is highly uncertain. We demonstrate this approach using E-OBS gridded data[2] timeseries of local daily precipitation from specific locations across Europe over the last 60 years. We treat geographical location and precipitation as independent variables and thus obtain as outputs the pattern of change at a given threshold of precipitation and with geographical location. This is model- independent, thus providing data of direct value in model calibration and assessment. Our results identify regionally consistent patterns which, dependent on location, show systematic increase in precipitation on the wettest days, shifts in precipitation patterns to less moderate days and more heavy days, and drying across all days which is of potential value in adaptation planning. [1] S C Chapman, D A Stainforth, N W Watkins, 2013 Phil. Trans. R. Soc. A, 371 20120287; D. A. Stainforth, S. C. Chapman, N. W. Watkins, 2013 Environ. Res. Lett. 8, 034031 [2] Haylock et al. 2008 J. Geophys. Res (Atmospheres), 113, D20119

  6. Characteristics of people with self-reported stress-precipitated seizures.

    PubMed

    Privitera, Michael; Walters, Michael; Lee, Ikjae; Polak, Emily; Fleck, Adrienne; Schwieterman, Donna; Haut, Sheryl R

    2014-12-01

    Stress is the most common patient-reported seizure precipitant. We aimed to determine mood and epilepsy characteristics of people who report stress-precipitated seizures. Sequential patients at a tertiary epilepsy center were surveyed about stress as a seizure precipitant. We asked whether acute (lasting minutes-hours) or chronic (lasting days-months) stress was a seizure precipitant, whether stress reduction had been tried, and what effect stress reduction had on seizure frequency. We collected information on antiepileptic drugs, history of depression and anxiety disorder, prior or current treatment for depression or anxiety, and scores on the Neurological Disorders Depression Inventory (NDDI-E) and Generalized Anxiety Disorders-7 (GAD-7) instruments, which are administered at every visit in our Epilepsy Center. We also asked whether respondents thought that they could predict their seizures to determine if stress as a seizure precipitant was correlated with seizure self-prediction. Two hundred sixty-six subjects were included: 219 endorsed stress as a seizure precipitant [STRESS (+)] and 47 did not [STRESS (-)]. Among STRESS (+) subjects, 85% endorsed chronic stress as a seizure precipitant, and 68% endorsed acute stress as a seizure precipitant. In STRESS (+) subjects, 57% had used some type of relaxation or stress reduction method (most commonly yoga, exercise and meditation), and, of those who tried, 88% thought that these methods improved seizures. Among STRESS (-) subjects, 25% had tried relaxation or stress reduction, and 71% thought that seizures improved. Although univariate analysis showed multiple associations with stress as a seizure precipitant, in the multivariable logistic regression, only the GAD-7 score was associated with STRESS (+) (OR = 1.18 [1.03-1.35], p = 0.017). Subjects who reported stress as a seizure precipitant were more likely to report an ability to self-predict seizures (p < 0.001). Stress-precipitated seizures are commonly reported by patients, may be associated with either acute stress or chronic stress, and are associated with higher scores on anxiety tests. Patients frequently use stress reduction methods to self-treat and report high success rates. A prospective, randomized trial of stress reduction for seizures is indicated. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. METHOD OF SEPARATION OF PLUTONIUM FROM CARRIER PRECIPITATES

    DOEpatents

    Dawson, I.R.

    1959-09-22

    The recovery of plutonium from fluoride carrier precipitates is described. The precipitate is dissolved in zirconyl nitrate, ferric nitrate, aluminum nitrate, or a mixture of these complexing agents, and the plutonium is then extracted from the aqueous solution formed with a water-immiscible organic solvent.

  8. Preparation of LuAG Powders with Single Phase and Good Dispersion for Transparent Ceramics Using Co-Precipitation Method

    PubMed Central

    Pan, Liangjie; Jiang, Benxue; Fan, Jintai; Yang, Qiuhong; Zhou, Chunlin; Zhang, Pande; Mao, Xiaojian; Zhang, Long

    2015-01-01

    The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG) powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC) was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h) with high terminal pH value (>7.80) resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders. PMID:28793510

  9. System for recovery of daughter isotopes from a source material

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Lewis, Leroy C [Idaho Falls, ID; Henscheid, Joseph P [Idaho Falls, ID

    2009-08-04

    A method of separating isotopes from a mixture containing at least two isotopes in a solution is disclosed. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material containing thorium-229 and thorium-232, and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the thorium iodate precipitate. The thorium iodate precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid, which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. A system for producing an actinium-225/bismuth-213 product is also disclosed.

  10. Preparation of LuAG Powders with Single Phase and Good Dispersion for Transparent Ceramics Using Co-Precipitation Method.

    PubMed

    Pan, Liangjie; Jiang, Benxue; Fan, Jintai; Yang, Qiuhong; Zhou, Chunlin; Zhang, Pande; Mao, Xiaojian; Zhang, Long

    2015-08-19

    The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG) powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC) was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h) with high terminal pH value (>7.80) resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders.

  11. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods.

    PubMed

    Balcha, Abebe; Yadav, Om Prakash; Dey, Tania

    2016-12-01

    Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10 -3 and 12.4 × 10 -3  min -1 , respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).

  12. Will the warmer temperature bring the more intensity precipitation?

    NASA Astrophysics Data System (ADS)

    Yutong, Z., II; Wang, T.

    2017-12-01

    Will the warmer temperature bring the more intensity precipitation?Over the past several decades, changes in climate are amplified over the Tibetan Plateau(TP), with warming trend almost being twice as large as the global average. In sharp contrast, there is a large spatial discrepancy of the variations in precipitation extremes, with increasing trends found in the southern and decreasing trends in central TP. These features motivate are urgent need for an observation-based understanding of how precipitation extremes respond to climate change. Here we examine the relation between precipitation intensity with atmospheric temperature, dew point temperature (Td) and convective available potential energy (CAPE) in Tibet Plateau. Owing to the influences of the westerlies and Indian monsoon on Tibetan climate, the stations can be divided into three sub-regions in TP: the westerlies region (north of 35°N, N = 28), the monsoon region (south of 30°N in TP, N = 31), and the transition region (located between 30°N and 35°N, N = 48). We found that the intensity precipitation does not follow the C-C relation and there is a mix of positive and negative slope. To better understand why different scaling occurs with temperature in district region, using the dew point temperature replace the temperature, although there is significant variability in relative humidity values, at most stations, there appears to be a general increase in relative humidity associated. It is likely that the observed rise in relative humidity can assist in explaining the negative scaling of extreme precipitation at westerlies domain and monsoon domain, with the primary reason why precipitation extremes expected to increase follows from the fact that a warmer atmosphere can "hold" more moisture. This suggests that not only on how much the moisture the atmosphere can hold, but on how much moisture exits in atmosphere. To understand the role of dynamic on extreme precipitation, we repeat the precipitation intense analysis using ln(CAPE) as regression. The CAPE is the vertical integral of parcel buoyancy between the level of free convection and level of neutral buoyancy. We find almost all pixels are positive and pass through the 0.05 confidence limit. We can conclude that the intensity of moist convection is an important for the extreme precipitation.

  13. Taking it to the streets: recording medical outreach data on personal digital assistants.

    PubMed

    Buck, David S; Rochon, Donna; Turley, James P

    2005-01-01

    Carrying hundreds of patient files in a suitcase makes medical street outreach to the homeless clumsy and difficult. Healthcare for the Homeless--Houston (HHH) began a case study under the assumption that tracking patient information with a personal digital assistant (PDA) would greatly simplify the process. Equipping clinicians with custom-designed software loaded onto Palm V Handheld Computers (palmOne, Inc, Milpitas, CA), Healthcare for the Homeless--Houston assessed how this type of technology augmented medical care during street outreach to the homeless in a major metropolitan area. Preliminary evidence suggests that personal digital assistants free clinicians to focus on building relationships instead of recreating documentation during patient encounters. However, the limits of the PDA for storing and retrieving data made it impractical long-term. This outcome precipitated a new study to test the feasibility of tablet personal computers loaded with a custom-designed software application specific to the needs of homeless street patients.

  14. Method for the preparation of thallium-containing superconducting materials by precipitation

    DOEpatents

    Bunker, Bruce C.; Lamppa, Diana L.; Voigt, James A.

    1991-01-01

    This invention provides improved methods for the preparation of precursor powders that are used in the preparation of superconducting ceramic materials that contain thallium. A first solution that contains the hydrogen peroxide and metal cations, other than thallium, that will be part of the ceramic is quickly mixed with a second solution that contains precipitating anions and thallium (I) to form a precipitate which is dried to yield precursor powders. The precursor powders are calcined an sintered to produce superconducting materials that contain thallium.

  15. SEPARATING PROTOACTINIUM WITH MANGANESE DIOXIDE

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-04-22

    The preparation of U/sup 235/ and an improved method for isolating Pa/ sup 233/ from foreign products present in neutronirradiated thorium is described. The method comprises forming a solution of neutron-irradiated thorium together with a manganous salt, then adding potassium permanganate to precipitate the manganese as manganese dioxide whereby protoactinium is carried down with the nnanganese dioxide dissolving the precipitate, adding a soluble zirconium salt, and adding phosphate ion to precipitate zirconium phosphate whereby protoactinium is then carried down with the zirconium phosphate to effect a further concentration.

  16. Sensitivity of WRF precipitation field to assimilation sources in northeastern Spain

    NASA Astrophysics Data System (ADS)

    Lorenzana, Jesús; Merino, Andrés; García-Ortega, Eduardo; Fernández-González, Sergio; Gascón, Estíbaliz; Hermida, Lucía; Sánchez, José Luis; López, Laura; Marcos, José Luis

    2015-04-01

    Numerical weather prediction (NWP) of precipitation is a challenge. Models predict precipitation after solving many physical processes. In particular, mesoscale NWP models have different parameterizations, such as microphysics, cumulus or radiation schemes. These facilitate, according to required spatial and temporal resolutions, precipitation fields with increasing reliability. Nevertheless, large uncertainties are inherent to precipitation forecasting. Consequently, assimilation methods are very important. The Atmospheric Physics Group at the University of León in Spain and the Castile and León Supercomputing Center carry out daily weather prediction based on the Weather Research and Forecasting (WRF) model, covering the entire Iberian Peninsula. Forecasts of severe precipitation affecting the Ebro Valley, in the southern Pyrenees range of northeastern Spain, are crucial in the decision-making process for managing reservoirs or initializing runoff models. These actions can avert floods and ensure uninterrupted economic activity in the area. We investigated a set of cases corresponding to intense or severe precipitation patterns, using a rain gauge network. Simulations were performed with a dual objective, i.e., to analyze forecast improvement using a specific assimilation method, and to study the sensitivity of model outputs to different types of assimilation data. A WRF forecast model initialized by an NCEP SST analysis was used as the control run. The assimilation was based on the Meteorological Assimilation Data Ingest System (MADIS) developed by NOAA. The MADIS data used were METAR, maritime, ACARS, radiosonde, and satellite products. The results show forecast improvement using the suggested assimilation method, and differences in the accuracy of forecast precipitation patterns varied with the assimilation data source.

  17. Effect of cocrystallization techniques on compressional properties of caffeine/oxalic acid 2:1 cocrystal.

    PubMed

    Aher, Suyog; Dhumal, Ravindra; Mahadik, Kakasaheb; Ketolainen, Jarkko; Paradkar, Anant

    2013-02-01

    Caffeine/oxalic acid 2:1 cocrystal exhibited superior stability to humidity over caffeine, but compressional behavior is not studied yet. To compare compressional properties of caffeine/oxalic acid 2:1 cocrystal obtained by different cocrystallization techniques. Cocrystal was obtained by solvent precipitation and ultrasound assisted solution cocrystallization (USSC) and characterized by X-ray powder diffraction and scanning electron microscopy. Compaction study was carried out at different compaction forces. Compact crushing strength, thickness and elastic recovery were determined. Compaction was in order, caffeine > solvent precipitation cocrystal > USSC cocrystal. Caffeine exhibited sticking and lamination, where solvent precipitation compacts showed advantage. Caffeine and solvent precipitation compacts showed sudden drop in compactability, higher elastic recovery with severe lamination at 20,000 N. This was due to overcompaction. Crystal habit of two cocrystal products was same, but USSC cocrystals were difficult to compact. Uniform needle shaped USSC cocrystals must be difficult to orient in different direction and fracture during compression. Elastic recovery of USSC cocrystals was also more compared to other powders indicating less fracture and poor bonding between particles resulting in poor compaction. Cocrystal formation did not improve compressional property of caffeine. Cocrystals exposed to different crystallization environments in two techniques may have resulted in generation of different surface properties presenting different compressional properties.

  18. Dual salt precipitation for the recovery of a recombinant protein from Escherichia coli.

    PubMed

    Balasundaram, Bangaru; Sachdeva, Soam; Bracewell, Daniel G

    2011-01-01

    When considering worldwide demand for biopharmaceuticals, it becomes necessary to consider alternative process strategies to improve the economics of manufacturing such molecules. To address this issue, the current study investigates precipitation to selectively isolate the product or remove contaminants and thus assist the initial purification of a intracellular protein. The hypothesis tested was that the combination of two or more precipitating agents will alter the solubility profile of the product through synergistic or antagonistic effects. This principle was investigated through several combinations of ammonium sulfate and sodium citrate at different ratios. A synergistic effect mediated by a known electrostatic interaction of citrate ions with Fab' in addition to the typical salting-out effects was observed. On the basis of the results of the solubility studies, a two step primary recovery route was investigated. In the first step termed conditioning, post-homogenization and before clarification, addition of 0.8 M ammonium sulfate extracted 30% additional product. Clarification performance measured using a scale-down disc stack centrifugation mimic determined a four-fold reduction in centrifuge size requirements. Dual salt precipitation in the second step resulted in >98% recovery of Fab' while removing 36% of the contaminant proteins simultaneously. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  19. Application of deep learning in determining IR precipitation occurrence: a Convolutional Neural Network model

    NASA Astrophysics Data System (ADS)

    Wang, C.; Hong, Y.

    2017-12-01

    Infrared (IR) information from Geostationary satellites can be used to retrieve precipitation at pretty high spatiotemporal resolutions. Traditional artificial intelligence (AI) methodologies, such as artificial neural networks (ANN), have been designed to build the relationship between near-surface precipitation and manually derived IR features in products including PERSIANN and PERSIANN-CCS. This study builds an automatic precipitation detection model based on IR data using Convolutional Neural Network (CNN) which is implemented by the newly developed deep learning framework, Caffe. The model judges whether there is rain or no rain at pixel level. Compared with traditional ANN methods, CNN can extract features inside the raw data automatically and thoroughly. In this study, IR data from GOES satellites and precipitation estimates from the next generation QPE (Q2) over the central United States are used as inputs and labels, respectively. The whole datasets during the study period (June to August in 2012) are randomly partitioned to three sub datasets (train, validation and test) to establish the model at the spatial resolution of 0.08°×0.08° and the temporal resolution of 1 hour. The experiments show great improvements of CNN in rain identification compared to the widely used IR-based precipitation product, i.e., PERSIANN-CCS. The overall gain in performance is about 30% for critical success index (CSI), 32% for probability of detection (POD) and 12% for false alarm ratio (FAR). Compared to other recent IR-based precipitation retrieval methods (e.g., PERSIANN-DL developed by University of California Irvine), our model is simpler with less parameters, but achieves equally or even better results. CNN has been applied in computer vision domain successfully, and our results prove the method is suitable for IR precipitation detection. Future studies can expand the application of CNN from precipitation occurrence decision to precipitation amount retrieval.

  20. The Incorporation and Initialization of Cloud Water/ice in AN Operational Forecast Model

    NASA Astrophysics Data System (ADS)

    Zhao, Qingyun

    Quantitative precipitation forecasts have been one of the weakest aspects of numerical weather prediction models. Theoretical studies show that the errors in precipitation calculation can arise from three sources: errors in the large-scale forecasts of primary variables, errors in the crude treatment of condensation/evaporation and precipitation processes, and errors in the model initial conditions. A new precipitation parameterization scheme has been developed to investigate the forecast value of improved precipitation physics via the introduction of cloud water and cloud ice into a numerical prediction model. The main feature of this scheme is the explicit calculation of cloud water and cloud ice in both the convective and stratiform precipitation parameterization. This scheme has been applied to the eta model at the National Meteorological Center. Four extensive tests have been performed. The statistical results showed a significant improvement in the model precipitation forecasts. Diagnostic studies suggest that the inclusion of cloud ice is important in transferring water vapor to precipitation and in the enhancement of latent heat release; the latter subsequently affects the vertical motion field significantly. Since three-dimensional cloud data is absent from the analysis/assimilation system for most numerical models, a method has been proposed to incorporate observed precipitation and nephanalysis data into the data assimilation system to obtain the initial cloud field for the eta model. In this scheme, the initial moisture and vertical motion fields are also improved at the same time as cloud initialization. The physical initialization is performed in a dynamical initialization framework that uses the Newtonian dynamical relaxation method to nudge the model's wind and mass fields toward analyses during a 12-hour data assimilation period. Results from a case study showed that a realistic cloud field was produced by this method at the end of the data assimilation period. Precipitation forecasts have been significantly improved as a result of the improved initial cloud, moisture and vertical motion fields.

  1. A MATHEMATICAL MODEL FOR CALCULATING ELECTRICAL CONDITIONS IN WIRE-DUCT ELECTROSTATIC PRECIPITATION DEVICES

    EPA Science Inventory

    The article reports the development of a new method of calculating electrical conditions in wire-duct electrostatic precipitation devices. The method, based on a numerical solution to the governing differential equations under a suitable choice of boundary conditions, accounts fo...

  2. Preparation and characterization of nanoparticles of carboxymethyl cellulose acetate butyrate containing acyclovir

    NASA Astrophysics Data System (ADS)

    Vedula, Venkata Bharadwaz; Chopra, Maulick; Joseph, Emil; Mazumder, Sonal

    2016-02-01

    Nanoparticles of carboxymethyl cellulose acetate butyrate complexed with the poorly soluble antiviral drug acyclovir (ACV) were produced by precipitation process and the formulation process and properties of nanoparticles were investigated. Two different particle synthesis methods were explored—a conventional precipitation method and a rapid precipitation in a multi-inlet vortex mixer. The particles were processed by rotavap followed by freeze-drying. Particle diameters as measured by dynamic light scattering were dependent on the synthesis method used. The conventional precipitation method did not show desired particle size distribution, whereas particles prepared by the mixer showed well-defined particle size ~125-450 nm before and after freeze-drying, respectively, with narrow polydispersity indices. Fourier transform infrared spectroscopy showed chemical stability and intactness of entrapped drug in the nanoparticles. Differential scanning calorimetry showed that the drug was in amorphous state in the polymer matrix. ACV drug loading was around 10 wt%. The release studies showed increase in solution concentration of drug from the nanoparticles compared to the as-received crystalline drug.

  3. Detection of the relationship between peak temperature and extreme precipitation

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, J.; Zhiyong, Y.

    2017-12-01

    Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.

  4. Significantly enhanced photocatalytic activity of visible light responsive AgBr/Bi2Sn2O7 heterostructured composites

    NASA Astrophysics Data System (ADS)

    Hu, Chaohao; Zhuang, Jing; Zhong, Liansheng; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying

    2017-12-01

    Heterostructured AgBr/Bi2Sn2O7 photocatalysts were synthesized successfully via the ultrasonic-assisted chemical precipitation method. XRD, FT-IR, FE-SEM, TEM, XPS, UV-vis-DRS and PL spectroscopy were used to characterize the phase structure, morphology, chemical composition, oxidation state, and optical properties of AgBr/Bi2Sn2O7 heterojunction. The photocatalytic activity of as-prepared catalysts was evaluated by the degradation of RhB under visible light irradiation. The obtained AgBr/Bi2Sn2O7 composite with the 1:1 molar ratio exhibited significantly enhanced photocatalytic performance. Further first-principles calculations indicated that the hybridization interaction between Ag and O atoms at AgBr/Bi2Sn2O7 interface is expected to be beneficial for enhancing the charge transfer and improving the photocatalytic activity of heterostructured composites.

  5. Electrolysis of Titanium Oxide to Titanium in Molten Cryolite Salt

    NASA Astrophysics Data System (ADS)

    Yan, Bennett Chek Kin

    Cost-effective production of titanium is becoming a challenge being tackled in the metallurgical and sustainability sector and technological advancements are required to effectively separate the metal from its oxide. The existing methods of Ti production are extremely energy intensive and slow. This proof-of-concept study investigated the feasibility of separating and capturing Ti from TiO2 through electrolysis after it has been dissolved in a cryolite bath at 1050°C. XRD and SEM/EDS results verified that TiO 2 is only partially reduced. However, addition of Al assisted in the precipitation of Ti in the form of TiAl and TiAl3. Parameters such as electrolysis time, concentration of TiO2, and electrolysis potential were explored. The experiments that were run for 4h, with TiO2 <15wt% of the total bath gave promising results as there was intermetallic formation without the excessive evaporation of cryolite.

  6. ZnO supported CoFe2O4 nanophotocatalysts for the mineralization of Direct Blue 71 in aqueous environments.

    PubMed

    Sathishkumar, Panneerselvam; Pugazhenthiran, Nalenthiran; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M; Anandan, Sambandam

    2013-05-15

    In this study, an attempt was made to render both the magnetic and photocatalytic properties in a semiconductor material to enhance the efficiency of degradation and recycling possibility of magnetic nanophotocatalysts. CoFe2O4 and CoFe2O4 loaded ZnO nanoparticles were prepared by a simple co-precipitation method and characterized using various analytical tools and in addition to check its visible light assisted photocatalytic activity. CoFe2O4/ZnO nanocatalyst coupled with acceptor, peroxomonosulphate (PMS) showed 1.69-fold enhancement in Direct Blue 71 (triazo dye; DB71) mineralization within 5h. The accomplished enrichment in decolorization was due to the production of more number of non-selective and active free radicals at the catalyst surface. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Synthesis of Er(III)/Yb(III)-doped BiF3 upconversion nanoparticles for use in optical thermometry.

    PubMed

    Du, Peng; Yu, Jae Su

    2018-03-23

    The authors describe an ethylene glycol assisted precipitation method for synthesis of Er(III)/Yb(III)-doped BiF 3 nanoparticles (NPs) at room temperature. Under 980-nm light irradiation, the NPs emit upconversion (UC) emission of Er(III) ions as a result of a two-photon absorption process. The temperature-dependent green emissions (peaking at 525 and 545 nm) are used to establish an unambiguous relationship between the ratio of fluorescence intensities and temperature. The NPs have a maximum sensitivity of 6.5 × 10 -3  K -1 at 619 K and can be applied over the 291-691 K temperature range. The results indicate that these NPs are a promising candidate for optical thermometry. Graphical abstract Schematic of the room-temperature preparation of Er(III)/Yb(III)-doped BiF 3 nanoparticles with strongly temperature-dependent upconversion emission.

  8. Study on treatment technology of wastewater from hydrolysis of acid oil

    NASA Astrophysics Data System (ADS)

    Li, Yuejin; Lin, Zhiyong; Han, Yali

    2017-06-01

    In this paper, the degumming of ferric chloride, calcium hydroxide after the removal of acid acidification hydrolysis of waste oil as raw material, through the treatment process to purify the wastewater. Choose different chemical additives, investigation of different temperature, pH value and other factors, find the best extraction condition. Through the orthogonal test of sodium carbonate, sodium oxalate, barium carbonate, compared with three kinds of chemical additives. The best chemical assistant is sodium carbonate, the best treatment temperature is 80 degrees Celsius, pH value is 8.0. After the reaction, the content of calcium and iron ions were determined by suitable methods. The removal rate of calcium ion is 98%, the removal rate of iron ion is 99%, and the effect of calcium and iron ion precipitation on the subsequent evaporation operation is reduced. Finally, the comparison is made to clarify the Dilute Glycerol water solution.

  9. Characterization of mixing of suspension in a mechanically stirred precipitation system

    NASA Astrophysics Data System (ADS)

    Farkas, B.; Blickle, T.; Ulbert, Zs.; Hasznos-Nezdei, M.

    1996-09-01

    In the case of precipitational crystallization, the particle size distribution of the resulting product is greatly influenced by the mixing rate of the system. We have worked out a method of characterizing the mixing of precipitated suspensions by applying a function of mean residence time and particle size distribution. For the experiments a precipitated suspension of β-lactam-type antibiotic has been used in a mechanically stirred tank.

  10. Use of the Box-Cox Transformation in Detecting Changepoints in Daily Precipitation Data Series

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Chen, H.; Wu, Y.; Pu, Q.

    2009-04-01

    This study integrates a Box-Cox power transformation procedure into two statistical tests for detecting changepoints in Gaussian data series, to make the changepoint detection methods applicable to non-Gaussian data series, such as daily precipitation amounts. The detection power aspects of transformed methods in a common trend two-phase regression setting are assessed by Monte Carlo simulations for data of a log-normal or Gamma distribution. The results show that the transformed methods have increased the power of detection, in comparison with the corresponding original (untransformed) methods. The transformed data much better approximate to a Gaussian distribution. As an example of application, the new methods are applied to a series of daily precipitation amounts recorded at a station in Canada, showing satisfactory detection power.

  11. Method for rapid screening analysis of Sr-90 in edible plant samples collected near Fukushima, Japan.

    PubMed

    Amano, Hikaru; Sakamoto, Hideaki; Shiga, Norikatsu; Suzuki, Kaori

    2016-06-01

    A screening method for measuring (90)Sr in edible plant samples by focusing on (90)Y in equilibrium with (90)Sr is reported. (90)Y was extracted from samples with acid, co-precipitated with iron hydroxide, and precipitated with oxalic acid. The dissolved oxalate precipitate was loaded on an extraction chromatography resin, and the (90)Y-enriched eluate was analyzed by Cherenkov counting with a TDCR liquid scintillation counter. (90)Sr ((90)Y) concentration was determined in plant samples collected near the damaged Fukushima Daiichi Nuclear Power Plants with this method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Facile synthesis of hierarchical porous γ-Al2O3 hollow microspheres for water treatment.

    PubMed

    Li, Mingyang; Si, Zhichun; Wu, Xiaodong; Weng, Duan; Kang, Feiyu

    2014-03-01

    Hierarchical porous γ-Al2O3 hollow microspheres were synthesized by a modified spray drying method. Ageing the precipitated precursor and spray-drying assisted by NH4Cl salts are considered as two key steps for the synthesis of γ-Al2O3 hollow microspheres. The mechanism of the formation of hierarchical porous γ-Al2O3 hollow microsphere was proposed involving phase transformation from aluminum hydroxide to laminar boehmite during ageing and a following self-assembling process with NH4Cl as the template during spray drying. The meso-/macro-pores in γ-Al2O3 mainly arise from the stacking of the laminar boehmites which are obtained by ageing the precipitated precursors at 90°C. NH4Cl, which was the byproduct from the reaction between AlCl3·6H2O and NH3·H2O, was demonstrated to be an excellent template to act as the core and the barrier for separation of laminar boehmites. No extra NH4Cl was added. The as-synthesized hierarchical porous γ-Al2O3 hollow microsphere presented remarkably higher adsorption capacity, which is thirty times higher adsorption rate for Congo Red than the solid microsphere containing only small mesopores. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area

    NASA Astrophysics Data System (ADS)

    Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei

    2018-03-01

    Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.

  14. Soil modulates the effect of precipitation seasonality on bioenergy crop production

    USDA-ARS?s Scientific Manuscript database

    Background/Questions/Methods Future climate change scenarios remain uncertain with respect to precipitation amounts and variability. In the U.S. Great Plains, spring precipitation is expected to decrease in the lower Great Plains but increase 20%–40% in the upper Mississippi Valley, suggesting pot...

  15. Growth and physiological plasticity among differentially adapted genotypes of a widespread C4 grass under altered precipitation

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods Variation in precipitation expected with climate change may impact plant fitness and alter ecosystem dynamics by modifying species phenology, productivity, and physiology. Species responses to varied precipitation will depend in part on plastic responses of genotypes ad...

  16. Processes for making dense, spherical active materials for lithium-ion cells

    DOEpatents

    Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  17. Joint distribution of temperature and precipitation in the Mediterranean, using the Copula method

    NASA Astrophysics Data System (ADS)

    Lazoglou, Georgia; Anagnostopoulou, Christina

    2018-03-01

    This study analyses the temperature and precipitation dependence among stations in the Mediterranean. The first station group is located in the eastern Mediterranean (EM) and includes two stations, Athens and Thessaloniki, while the western (WM) one includes Malaga and Barcelona. The data was organized in two time periods, the hot-dry period and the cold-wet one, composed of 5 months, respectively. The analysis is based on a new statistical technique in climatology: the Copula method. Firstly, the calculation of the Kendall tau correlation index showed that temperatures among stations are dependant during both time periods whereas precipitation presents dependency only between the stations located in EM or WM and only during the cold-wet period. Accordingly, the marginal distributions were calculated for each studied station, as they are further used by the copula method. Finally, several copula families, both Archimedean and Elliptical, were tested in order to choose the most appropriate one to model the relation of the studied data sets. Consequently, this study achieves to model the dependence of the main climate parameters (temperature and precipitation) with the Copula method. The Frank copula was identified as the best family to describe the joint distribution of temperature, for the majority of station groups. For precipitation, the best copula families are BB1 and Survival Gumbel. Using the probability distribution diagrams, the probability of a combination of temperature and precipitation values between stations is estimated.

  18. MANGANESE DIOXIDE METHOD FOR PREPARATION OF PROTACTINIUM

    DOEpatents

    Katzin, L.I.

    1958-08-12

    A method of obtaining U/sup 233/ is described. An aqueous solution of neutriln irradiated thoriunn is treated by forming tberein a precipitate of manganese dioxide which carries and thus separates the Pa/sup 233/ from the solution. The carrier precipitate so formed is then dissolved in an acidic solution containing a reducing agent sufficiently electronegative to reduce the tetravalent manganese to the divalent state. Further purification of the Pa/sup 233/ may be obtained by forming another manganese dioxide carrier precipitate and subsequently dissolving it. Ater a sufficient number of such cycles have brought the Pa/sup 233/ to the desired purity, the solution is aged, allowing the formation ot U/sup 233/ by radioaetive decay. A manganese dioxide precipitate is then formed in the U/sup 233/ containing solution. This precipitate carries down any remaining Pa/sup 233/ thus leaving the separated U/sup 233/solution, from whieh it may be easily recovered.

  19. CARBONATE METHOD OF SEPARATION OF TETRAVALENT PLUTONIUM FROM FISSION PRODUCT VALUES

    DOEpatents

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    It has been found that plutonium forms an insoluble precipitate with carbonate ion when the carbonate ion is present in stoichiometric proportions, while an excess of the carbonate ion complexes plutonium and renders it soluble. A method for separating tetravalent plutonium from lanthanum-group rare earths has been based on this discovery, since these rare earths form insoluble carbonates in approximately neutral solutions. According to the process the pH is adjusted to between 5 and 7, and approximately stoichiometric amounts of carbonate ion are added to the solution causing the formation of a precipitate of plutonium carbonate and the lanthanum-group rare earth carbonates. The precipitate is then separated from the solution and contacted with a carbonate solution of a concentration between 1 M and 3 M to complex and redissolve the plutonium precipitate, and thus separate it from the insoluble rare earth precipitate.

  20. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties.

    PubMed

    He, Yuxin; Yang, Song; Liu, Hu; Shao, Qian; Chen, Qiuyu; Lu, Chang; Jiang, Yuanli; Liu, Chuntai; Guo, Zhanhu

    2018-05-01

    The epoxy nanocomposites with ordered multi-walled carbon nanotubes (MWCNTs) were used to influence the micro-cracks resistance of carbon fiber reinforced epoxy (CF/EP) laminate at 77 K, Oxidized MWCNTs functionalized with Fe 3 O 4 (Fe 3 O 4 /O-MWCNTs) with good magnetic properties were prepared by co-precipitation method and used to modify epoxy (EP) for cryogenic applications. Fe 3 O 4 /O-MWCNTs reinforced carbon fiber epoxy composites were also prepared through vacuum-assisted resin transfer molding (VARTM). The ordered Fe 3 O 4 /O-MWCNTs were observed to have effectively improved the mechanical properties of epoxy (EP) matrix at 77 K and reduce the coefficient of thermal expansion (CTE) of EP matrix. The ordered Fe 3 O 4 /O-MWCNTs also obviously improved the micro-cracks resistance of CF/EP composites at 77 K. Compared to neat EP, the CTE of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites was decreased 37.6%. Compared to CF/EP composites, the micro-cracks density of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites at 77 K was decreased 37.2%. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. UV-light-assisted ethanol sensing characteristics of g-C3N4/ZnO composites at room temperature

    NASA Astrophysics Data System (ADS)

    Zhai, Jiali; Wang, Tao; Wang, Chuang; Liu, Dechen

    2018-05-01

    A highly efficient UV-light-assisted room temperature sensor based on g-C3N4/ZnO composites were prepared by an in situ precipitation method. The thermostability, composition, structure, and morphology properties of the as-prepared g-C3N4/ZnO composites were characterized by TGA, XRD, FT-IR, TEM, and XPS, respectively. And then, we studied the ethanol (C2H5OH) sensing performance of the g-C3N4/ZnO composites at the room temperature. Compared with pure ZnO and g-C3N4, the gas sensing activity of g-C3N4/ZnO composites was greatly improved at room temperature, for example, the g-C3N4/ZnO-8% composites showed an obvious response of 121-40 ppm C2H5OH at room temperature, which was 60 times higher than the pure ZnO based on the sensors under the same condition. The great enhancement of the C2H5OH sensing properties of composites can be understood by the efficient separation of photogenerated charge carriers of g-C3N4/ZnO heterogeneous and the UV-light catalytic effect. Finally, a possible mechanism for the gas sensing activity was proposed.

  2. The SL-assisted synthesis of hierarchical ZnO nanostructures and their enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Miao, Ting-Ting; Guo, Yuan-Ru; Pan, Qing-Jiang

    2013-06-01

    Hierarchical ZnO nanoparticle-bar, nanomesh-lamina, and quasi-nanosphere structures have been successfully synthesized by the precipitation method with assistance of sodium lignosulphonate (SL). It is shown that the obtained ZnO nanomaterials are well crystallized and possess hexagonal wurtzite structure after calcination. Morphologies of ZnO with particle sizes ranging from 50 to 200 nm can be fabricated by tuning the SL amount in our synthetic route. Plenty of pores have been observed both in nanoparticle-bar and nanomesh-lamina ZnO. This may provide scaffold microenvironments to enhance their photocatalytic activity. It is evident that the synthesized ZnO exhibits good photocatalytic activity of degrading methylene blue, even under a very low-power UV illumination, which allows for the treatment of wastewater containing organic pollutants in an effective way. Among our synthesized nanomaterials, the nanomesh-lamina ZnO has the highest photodegradation efficiency, achieving nearly 100 % degradation only within 1.5 h (UV irradiation power of 12 W). As these ZnO nanomaterials are simply synthesized using SL which is a pulp industry by-product and their intrinsic hierarchical nanostructures show outstanding photocatalytic behavior, we expect the present controllable, environment-friendly, and cost-effective approach to be applied in the synthesis of small-sized ZnO materials.

  3. Structural, optical, magnetic and electrical properties of hematite (α-Fe2O3) nanoparticles synthesized by two methods: polyol and precipitation

    NASA Astrophysics Data System (ADS)

    Mansour, Houda; Letifi, Hanen; Bargougui, Radhouane; De Almeida-Didry, Sonia; Negulescu, Beatrice; Autret-Lambert, Cécile; Gadri, Abdellatif; Ammar, Salah

    2017-12-01

    Hematite (α-Fe2O3) nanoparticles have been successfully synthesized via two methods: (1) polyol and (2) precipitation in water. The influence of synthesis methods on the crystalline structure, morphological, optical, magnetic and electrical properties were investigated using X-ray diffraction, RAMAN spectroscopy, scanning electron microscopy, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy (UV-vis DRS), superconducting quantum interference device and impedance spectroscopy. The structural properties showed that the obtained hematite α-Fe2O3 nanoparticles with two preparation methods exhibit hexagonal phase with high crystallinity and high-phase stability at room temperature. It was found that the average hematite nanoparticle size is estimated to be 36.86 nm for the sample synthesized by precipitation and 54.14 nm for the sample synthesized by polyol. Moreover, the optical properties showed that the band gap energy value of α-Fe2O3 synthesized by precipitation (2.07 eV) was higher than that of α-Fe2O3 synthesized by polyol (1.97 eV) and they showed a red shift to the visible region. Furthermore, the measurements of magnetic properties indicated a magnetization loop typical of ferromagnetic systems at room temperature. Measurements of electrical properties show higher dielectric permittivity (5.64 × 103) and relaxation phenomenon for α-Fe2O3 issued from the precipitation method than the other sample.

  4. Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method.

    PubMed

    Kim, Yu Ji; Lee, Hye Min; Wang, Yiming; Wu, Jingni; Kim, Sang Gon; Kang, Kyu Young; Park, Ki Hun; Kim, Yong Chul; Choi, In Soo; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2013-07-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant plant leaf protein, hampering deep analysis of the leaf proteome. Here, we describe a novel protamine sulfate precipitation (PSP) method for the depletion of RuBisCO. For this purpose, soybean leaf total proteins were extracted using Tris-Mg/NP-40 extraction buffer. Obtained clear supernatant was subjected to the PSP method, followed by 13% SDS-PAGE analysis of total, PS-supernatant and -precipitation derived protein samples. In a dose-dependent experiment, 0.1% w/v PS was found to be sufficient for precipitating RuBisCO large and small subunits (LSU and SSU). Western blot analysis confirmed no detection of RuBisCO LSU in the PS-supernatant proteins. Application of this method to Arabidopsis, rice, and maize leaf proteins revealed results similar to soybean. Furthermore, 2DE analyses of PS-treated soybean leaf displayed enriched protein profile for the protein sample derived from the PS-supernatant than total proteins. Some enriched 2D spots were subjected to MALDI-TOF-TOF analysis and were successfully assigned for their protein identity. Hence, the PSP method is: (i) simple, fast, economical, and reproducible for RuBisCO precipitation from the plant leaf sample; (ii) applicable to both dicot and monocot plants; and (iii) suitable for downstream proteomics analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Selective Precipitation and Purification of Monovalent Proteins Using Oligovalent Ligands and Ammonium Sulfate

    PubMed Central

    Mirica, Katherine A.; Lockett, Matthew R.; Snyder, Phillip W.; Shapiro, Nathan D.; Mack, Eric T.; Nam, Sarah; Whitesides, George M.

    2012-01-01

    This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: i) the removal of high-molecular weight impurities through the addition of ammonium sulfate to the crude cell lysate; ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins—for which appropriate oligovalent ligands can be synthesized—and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation. PMID:22188202

  6. Selective precipitation and purification of monovalent proteins using oligovalent ligands and ammonium sulfate.

    PubMed

    Mirica, Katherine A; Lockett, Matthew R; Snyder, Phillip W; Shapiro, Nathan D; Mack, Eric T; Nam, Sarah; Whitesides, George M

    2012-02-15

    This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: (i) the removal of high-molecular-weight impurities through the addition of ammonium sulfate to the crude cell lysate; (ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and (iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins--for which appropriate oligovalent ligands can be synthesized--and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation.

  7. Determining the composition of small features in atom probe: bcc Cu-rich precipitates in an Fe-rich matrix.

    PubMed

    Morley, A; Sha, G; Hirosawa, S; Cerezo, A; Smith, G D W

    2009-04-01

    Aberrations in the ion trajectories near the specimen surface are an important factor in the spatial resolution of the atom probe technique. Near the boundary between two phases with dissimilar evaporation fields, ion trajectory overlaps may occur, leading to a biased measurement of composition in the vicinity of this interface. In the case of very small second-phase precipitates, the region affected by trajectory overlaps may extend to the centre of the precipitate prohibiting a direct measurement of composition. A method of quantifying the aberrant matrix contribution and thus estimating the underlying composition is presented. This method is applied to the Fe-Cu-alloy system, where the precipitation of low-nanometre size Cu-rich precipitates is of considerable technical importance in a number of materials applications. It is shown definitively that there is a non-zero underlying level of Fe within precipitates formed upon thermal ageing, which is augmented and masked by trajectory overlaps. The concentration of Fe in the precipitate phase is shown to be a function of ageing temperature. An estimate of the underlying Fe level is made, which is at lower levels than commonly reported by atom probe investigations.

  8. Investigation of Nd xY 0.25-xZr 0.75O 1.88 inert matrix fuel materials made by a co-precipitation synthetic route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, John R.; Grosvenor, Andrew P.

    Yttria-stabilized zirconia (YSZ) is a material that we are considering in our inert matrix fuel nuclear reactors, but a complete characterization of these materials is required for them to be licensed for use. A series of NdxY0.25–xZr0.75O1.88 materials have been synthesized using a co-precipitation method, and the thermal stability of these materials has been studied by annealing them at 1400 and 1500 °C. (Nd was used as surrogate for Am.) The long-range and local structures of the materials were characterized via powder X-ray diffraction, scanning electron microscopy, wavelength dispersive spectroscopy, and X-ray absorption spectroscopy at the Zr K- and Ymore » K-edges. These results were compared with the previous characterization of Nd-YSZ materials synthesized using a ceramic method. Moreover, the results indicated that the ordering in the local metal–oxygen polyhedral remains relatively unaffected by the synthetic method, but there was increased long-range disorder in the materials prepared by the co-precipitation method. Further, it was found that the materials produced by the co-precipitation method were unexpectedly unstable when annealed at high temperature. This study highlights the importance of determining the effect of synthetic method on material properties and demonstrates how the co-precipitation route could be used to produce inert matrix fuels.« less

  9. Applying complex networks to evaluate precipitation patterns over South America

    NASA Astrophysics Data System (ADS)

    Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique; Kurths, Jürgen; Rammig, Anja

    2016-04-01

    The climate of South America exhibits pronounced differences between the wet- and the dry-season, which are accompanied by specific synoptic events like changes in the location of the South American Low Level Jet (SALLJ) and the establishment of the South American Convergence Zone (SACZ). The onset of these events can be related to the presence of typical large-scale precipitation patterns over South America, as previous studies have shown[1,2]. The application of complex network methods to precipitation data recently received increased scientific attention for the special case of extreme events, as it is possible with such methods to analyze the spatiotemporal correlation structure as well as possible teleconnections of these events[3,4]. In these approaches the correlation between precipitation datasets is calculated by means of Event Synchronization which restricts their applicability to extreme precipitation events. In this work, we propose a method which is able to consider not only extreme precipitation but complete time series. A direct application of standard similarity measures in order to correlate precipitation time series is impossible due to their intricate statistical properties as the large amount of zeros. Therefore, we introduced and evaluated a suitable modification of Pearson's correlation coefficient to construct spatial correlation networks of precipitation. By analyzing the characteristics of spatial correlation networks constructed on the basis of this new measure, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections of correlated areas, and detect central regions for precipitation correlation. By analyzing the change of the network over the year[5], we are also able to determine local and global changes in precipitation correlation patterns. Additionally, global network characteristics as the network connectivity yield indications for beginning and end of wet- and dry season. In order to identify large-scale synoptic events like the SACZ and SALLJ onset, detecting the changes of correlation over time between certain regions is of significant relevance. [1] Nieto-Ferreira et al. Quarterly Journal of the Royal Meteorological Society (2011) [2] Vera et al. Bulletin of the American Meteorological Society (2006) [3] Quiroga et al. Physical review E (2002) [4] Boers et al. nature communications (2014) [5] Radebach et al. Physical review E (2013)

  10. On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Højberg, A. L.; Troldborg, L.; Refsgaard, J. C.; Christensen, B. S. B.; Olsen, M.; Henriksen, H. J.

    2012-11-01

    Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM) and the time-space variable (TSV) correction, resulted in different winter precipitation rates for the period 1990-2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model), revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests). We conclude that TSV precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid) fluctuate significantly, causing climatological mean correction factors to be inadequate.

  11. Effect of Various Retrogression Regimes on Aging Behavior and Precipitates Characterization of a High Zn-Containing Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Wen, Kai; Xiong, Baiqing; Zhang, Yongan; Li, Zhihui; Li, Xiwu; Huang, Shuhui; Yan, Lizhen; Yan, Hongwei; Liu, Hongwei

    2018-03-01

    In the present work, the influence of various retrogression treatments on hardness, electrical conductivity and mechanical properties of a high Zn-containing Al-Zn-Mg-Cu alloy is investigated and several retrogression regimes subjected to a same strength level are proposed. The precipitates are qualitatively investigated by means of transmission electron microscopy (TEM) and high-resolution transmission electron microscopy techniques. Based on the matrix precipitate observations, the distributions of precipitate size and nearest inter-precipitate distance are extracted from bright-field TEM images projected along <110>Al orientation with the aid of an imaging analysis and an arithmetic method. The results show that GP zones and η' precipitates are the major precipitates and the precipitate size and its distribution range continuously enlarge with the retrogression regime expands to an extent of high temperature. The nearest inter-precipitate distance ranges obtained are quite the same and the average distance of nearest inter-precipitates show a slight increase. The influence of precipitates on mechanical properties is discussed through the interaction relationship between precipitates and dislocations.

  12. Effect of Various Retrogression Regimes on Aging Behavior and Precipitates Characterization of a High Zn-Containing Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Wen, Kai; Xiong, Baiqing; Zhang, Yongan; Li, Zhihui; Li, Xiwu; Huang, Shuhui; Yan, Lizhen; Yan, Hongwei; Liu, Hongwei

    2018-05-01

    In the present work, the influence of various retrogression treatments on hardness, electrical conductivity and mechanical properties of a high Zn-containing Al-Zn-Mg-Cu alloy is investigated and several retrogression regimes subjected to a same strength level are proposed. The precipitates are qualitatively investigated by means of transmission electron microscopy (TEM) and high-resolution transmission electron microscopy techniques. Based on the matrix precipitate observations, the distributions of precipitate size and nearest inter-precipitate distance are extracted from bright-field TEM images projected along <110>Al orientation with the aid of an imaging analysis and an arithmetic method. The results show that GP zones and η' precipitates are the major precipitates and the precipitate size and its distribution range continuously enlarge with the retrogression regime expands to an extent of high temperature. The nearest inter-precipitate distance ranges obtained are quite the same and the average distance of nearest inter-precipitates show a slight increase. The influence of precipitates on mechanical properties is discussed through the interaction relationship between precipitates and dislocations.

  13. Structural, spectroscopic, and magnetic properties of Eu3+-doped GdVO4 nanocrystals synthesized by a hydrothermal method.

    PubMed

    Szczeszak, Agata; Grzyb, Tomasz; Śniadecki, Zbigniew; Andrzejewska, Nina; Lis, Stefan; Matczak, Michał; Nowaczyk, Grzegorz; Jurga, Stefan; Idzikowski, Bogdan

    2014-12-01

    New interesting aspects of the spectroscopic properties, magnetism, and method of synthesis of gadolinium orthovanadates doped with Eu(3+) ions are discussed. Gd(1-x)Eu(x)VO4 (x = 0, 0.05, 0.2) bifunctional luminescent materials with complex magnetic properties were synthesized by a microwave-assisted hydrothermal method. Products were formed in situ without previous precipitation. The crystal structures and morphologies of the obtained nanomaterials were analyzed by X-ray diffraction and transmission and scanning electron microscopy. Crystallographic data were analyzed using Rietveld refinement. The products obtained were nanocrystalline with average grain sizes of 70-80 nm. The qualitative and quantitative elemental composition as well as mapping of the nanocrystals was proved using energy-dispersive X-ray spectroscopy. The spectroscopic properties of red-emitting nanophosphors were characterized by their excitation and emission spectra and luminescence decays. Magnetic measurements were performed by means of vibrating sample magnetometry. GdVO4 and Gd0.8Eu0.2VO4 exhibited paramagnetic behavior with a weak influence of antiferromagnetic couplings between rare-earth ions. In the substituted sample, an additional magnetic contribution connected with the population of low-lying excited states of europium was observed.

  14. Biomimetic Hydrogel Composites for Soil Stabilization and Contaminant Mitigation.

    PubMed

    Zhao, Zhi; Hamdan, Nasser; Shen, Li; Nan, Hanqing; Almajed, Abdullah; Kavazanjian, Edward; He, Ximin

    2016-11-15

    We have developed a novel method to synthesize a hyper-branched biomimetic hydrogel network across a soil matrix to improve the mechanical strength of the loose soil and simultaneously mitigate potential contamination due to excessive ammonium. This method successfully yielded a hierarchical structure that possesses the water retention, ion absorption, and soil aggregation capabilities of plant root systems in a chemically controllable manner. Inspired by the robust organic-inorganic composites found in many living organisms, we have combined this hydrogel network with a calcite biomineralization process to stabilize soil. Our experiments demonstrate that poly(acrylic acid) (PAA) can work synergistically with enzyme-induced carbonate precipitation (EICP) to render a versatile, high-performance soil stabilization method. PAA-enhanced EICP provides multiple benefits including lengthening of water supply time, localization of cementation reactions, reduction of harmful byproduct ammonium, and achievement of ultrahigh soil strength. Soil crusts we have obtained can sustain up to 4.8 × 10 3 kPa pressure, a level comparable to cementitious materials. An ammonium removal rate of 96% has also been achieved. These results demonstrate the potential for hydrogel-assisted EICP to provide effective soil improvement and ammonium mitigation for wind erosion control and other applications.

  15. Peculiarities of Crystallization of the Restriction Endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpove, Elizaveta; Pusey, M.arc L.

    1998-01-01

    Nucleases interfere with most standard molecular biology procedures. We have purified and crystallized the restriction endonuclease EcoRII, which belongs to the type II of restriction- modification enzyme, to study the protein crystallization process using a "non standard" macromolecule. A procedure for the purification of EcoRII was developed and 99% pure protein as determined by SDS PAGE electrophoresis obtained. Light scattering experiments were performed to assist in screening protein suitable crystallization conditions. The second virial coefficient was determined as a function of precipitating salt concentration, using sodium chloride, ammonium sulfate, and sodium sulfate. Small (maximum size approximately 0.2 mm) well shaped crystals have been obtained. Larger poorly formed crystals (ca 0.5 mm) have also been obtained, but we have been unable to mount them for diff-raction analysis due to their extreme fragility. Crystallization experiments with PEG have shown that using this precipitant, the best crystals are obtained from slightly over-saturated solutions. Use of higher precipitant concentration leads to dendritic crystal formation. EcoRII is difficult to solubilize and meticulous attention must be paid to the presence of reducing agents.

  16. Porous SiO2 nanofiber grafted novel bioactive glass-ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant.

    PubMed

    Das, Indranee; De, Goutam; Hupa, Leena; Vallittu, Pekka K

    2016-05-01

    A composite bioactive glass-ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. An Open Pit Nanofluidic Tool: Localized Chemistry Assisted by Mesoporous Thin Film Infiltration.

    PubMed

    Mercuri, Magalí; Pierpauli, Karina A; Berli, Claudio L A; Bellino, Martín G

    2017-05-17

    Nanofluidics based on nanoscopic porous structures has emerged as the next evolutionary milestone in the construction of versatile nanodevices with unprecedented applications. However, the straightforward development of nanofluidically interconnected systems is crucial for the production of practical devices. Here, we demonstrate that spontaneous infiltration into supramolecularly templated mesoporous oxide films at the edge of a sessile drop in open air can be used to connect pairs of landmarks. The liquids from the drops can then join through the nanoporous network to guide a localized chemical reaction at the nanofluid-front interface. This method, here named "open-pit" nanofluidics, allows mixing reagents from nanofluidically connected droplet reservoirs that can be used as reactors to conduct reactions and precipitation processes. From the fundamental point of view, the work contributes to unveiling subtle phenomena during spontaneous infiltration of fluids in bodies with nanoscale dimensions such as the front broadening effect and the oscillatory behavior of the infiltration-evaporation front. The approach has distinctive advantages such as easy fabrication, low cost, and facility of scaling up for future development of ultrasensitive detection, controlled nanomaterial synthesis, and novel patterning methods.

  18. Cupriavidus metallidurans biomineralization ability and its application as a bioconsolidation enhancer for ornamental marble stone.

    PubMed

    Daskalakis, Markos I; Magoulas, Antonis; Kotoulas, Georgios; Katsikis, Ioannis; Bakolas, Asterios; Karageorgis, Aristomenis P; Mavridou, Athena; Doulia, Danae; Rigas, Fotis

    2014-08-01

    Bacterially induced calcium carbonate precipitation of a Cupriavidus metallidurans isolate was investigated to develop an environmentally friendly method for restoration and preservation of ornamental stones. Biomineralization performance was carried out in a growth medium via a Design of Experiments (DoE) approach using, as design factors, the temperature, growth medium concentration, and inoculum concentration. The optimum conditions were determined with the aid of consecutive experiments based on response surface methodology (RSM) and were successfully validated thereafter. Statistical analysis can be utilized as a tool for screening bacterial bioprecipitation as it considerably reduced the experimental time and effort needed for bacterial evaluation. Analytical methods provided an insight to the biomineral characteristics, and sonication tests proved that our isolate could create a solid new layer of vaterite on marble substrate withstanding sonication forces. C. metallidurans ACA-DC 4073 provided a compact vaterite layer on the marble substrate with morphological characteristics that assisted in its differentiation. The latter proved valuable during spraying minimum amount of inoculated media on marble substrate under conditions close to an in situ application. A sufficient and clearly distinguishable layer was identified.

  19. A perturbation approach for assessing trends in precipitation extremes across Iran

    NASA Astrophysics Data System (ADS)

    Tabari, Hossein; AghaKouchak, Amir; Willems, Patrick

    2014-11-01

    Extreme precipitation events have attracted a great deal of attention among the scientific community because of their devastating consequences on human livelihood and socio-economic development. To assess changes in precipitation extremes in a given region, it is essential to analyze decadal oscillations in precipitation extremes. This study examines temporal oscillations in precipitation data in several sub-regions of Iran using a novel quantile perturbation method during 1980-2010. Precipitation data from NASA's Modern-Era Retrospective Analysis for Research and Applications-Land (MERRA-Land) are used in this study. The results indicate significant anomalies in precipitation extremes in the northwest and southeast regions of Iran. Analysis of extreme precipitation perturbations reveals that perturbations for the monthly aggregation level are generally lower than the annual perturbations. Furthermore, high-oscillation and low-oscillation periods are found in extreme precipitation quantiles across different seasons. In all selected regions, a significant anomaly (i.e., extreme wet/dry conditions) in precipitation extremes is observed during spring.

  20. Development of a Video-Microscopic Tool To Evaluate the Precipitation Kinetics of Poorly Water Soluble Drugs: A Case Study with Tadalafil and HPMC.

    PubMed

    Christfort, Juliane Fjelrad; Plum, Jakob; Madsen, Cecilie Maria; Nielsen, Line Hagner; Sandau, Martin; Andersen, Klaus; Müllertz, Anette; Rades, Thomas

    2017-12-04

    Many drug candidates today have a low aqueous solubility and, hence, may show a low oral bioavailability, presenting a major formulation and drug delivery challenge. One way to increase the bioavailability of these drugs is to use a supersaturating drug delivery strategy. The aim of this study was to develop a video-microscopic method, to evaluate the effect of a precipitation inhibitor on supersaturated solutions of the poorly soluble drug tadalafil, using a novel video-microscopic small scale setup. Based on preliminary studies, a degree of supersaturation of 29 was chosen for the supersaturation studies with tadalafil in FaSSIF. Different amounts of hydroxypropyl methyl cellulose (HPMC) were predissolved in FaSSIF to give four different concentrations, and the supersaturated system was then created using a solvent shift method. Precipitation of tadalafil from the supersaturated solutions was monitored by video-microscopy as a function of time. Single-particle analysis was possible using commercially available software; however, to investigate the entire population of precipitating particles (i.e., their number and area covered in the field of view), an image analysis algorithm was developed (multiparticle analysis). The induction time for precipitation of tadalafil in FaSSIF was significantly prolonged by adding 0.01% (w/v) HPMC to FaSSIF, and the maximum inhibition was reached at 0.1% (w/v) HPMC, after which additional HPMC did not further increase the induction time. The single-particle and multiparticle analyses yielded the same ranking of the HPMC concentrations, regarding the inhibitory effect on precipitation. The developed small scale method to assess the effect of precipitation inhibitors can speed up the process of choosing the right precipitation inhibitor and the concentration to be used.

  1. Precipitation Estimate Using NEXRAD Ground-Based Radar Images: Validation, Calibration and Spatial Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuesong

    2012-12-17

    Precipitation is an important input variable for hydrologic and ecological modeling and analysis. Next Generation Radar (NEXRAD) can provide precipitation products that cover most of the continental United States with a high resolution display of approximately 4 × 4 km2. Two major issues concerning the applications of NEXRAD data are (1) lack of a NEXRAD geo-processing and geo-referencing program and (2) bias correction of NEXRAD estimates. In this chapter, a geographic information system (GIS) based software that can automatically support processing of NEXRAD data for hydrologic and ecological models is presented. Some geostatistical approaches to calibrating NEXRAD data using rainmore » gauge data are introduced, and two case studies on evaluating accuracy of NEXRAD Multisensor Precipitation Estimator (MPE) and calibrating MPE with rain-gauge data are presented. The first case study examines the performance of MPE in mountainous region versus south plains and cold season versus warm season, as well as the effect of sub-grid variability and temporal scale on NEXRAD performance. From the results of the first case study, performance of MPE was found to be influenced by complex terrain, frozen precipitation, sub-grid variability, and temporal scale. Overall, the assessment of MPE indicates the importance of removing bias of the MPE precipitation product before its application, especially in the complex mountainous region. The second case study examines the performance of three MPE calibration methods using rain gauge observations in the Little River Experimental Watershed in Georgia. The comparison results show that no one method can perform better than the others in terms of all evaluation coefficients and for all time steps. For practical estimation of precipitation distribution, implementation of multiple methods to predict spatial precipitation is suggested.« less

  2. Spatio-temporal changes in precipitation over Beijing-Tianjin-Hebei region, China

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Yue, Tianxiang; Li, Han; Zhang, Lili; Yin, Xiaozhe; Liu, Yi

    2018-04-01

    Changes in precipitation have a large effect on human society and are of primary importance for many scientific fields such as hydrology, agriculture and eco-environmental sciences. The present study intended to investigate the spatio-temporal characteristics of precipitation in Beijing-Tianjin-Hebei (BTH) region by using 316 meteorological stations during the period 1965-2014. Geographical Weighted Regression (GWR) method and High Accuracy Surface Modeling (HASM) method were applied to produce the precipitation patterns at different time scales. Mann-Kendall (MK) statistical test was applied to analyze the precipitation temporal variations. Results indicated that annual precipitation over the past 50 years appeared to be a non-periodic oscillation phenomenon; the number of wet years was approximately the same as that of dry years; significant positive trends were observed in spring during 1978-2014 and summer during 1996-2014; on the whole, precipitation in May, June, September, and December showed increasing trends at the 95% confidence level; and significant positive trends were also identified in July during 2000-2013 and August during 1997-2010, while slight decreasing trends were observed in February and November. Summer (June, July, and August) was the wettest season, accounting for 68.73% of annual totals in BTH. In general, northeastern BTH received the highest range of precipitation while northwestern area had the lowest. It was found that precipitation variation in this region had been closely linked to latitude, Digital Elevation Model (DEM), distance to the sea, and urbanization rate. In addition, land use played an important role in the decadal precipitation changes in BTH.

  3. Identification of Tropical-Extratropical Interactions and Extreme Precipitation Events in the Middle East Based On Potential Vorticity and Moisture Transport

    NASA Astrophysics Data System (ADS)

    de Vries, A. J.; Ouwersloot, H. G.; Feldstein, S. B.; Riemer, M.; El Kenawy, A. M.; McCabe, M. F.; Lelieveld, J.

    2018-01-01

    Extreme precipitation events in the otherwise arid Middle East can cause flooding with dramatic socioeconomic impacts. Most of these events are associated with tropical-extratropical interactions, whereby a stratospheric potential vorticity (PV) intrusion reaches deep into the subtropics and forces an incursion of high poleward vertically integrated water vapor transport (IVT) into the Middle East. This study presents an object-based identification method for extreme precipitation events based on the combination of these two larger-scale meteorological features. The general motivation for this approach is that precipitation is often poorly simulated in relatively coarse weather and climate models, whereas the synoptic-scale circulation is much better represented. The algorithm is applied to ERA-Interim reanalysis data (1979-2015) and detects 90% (83%) of the 99th (97.5th) percentile of extreme precipitation days in the region of interest. Our results show that stratospheric PV intrusions and IVT structures are intimately connected to extreme precipitation intensity and seasonality. The farther south a stratospheric PV intrusion reaches, the larger the IVT magnitude, and the longer the duration of their combined occurrence, the more extreme the precipitation. Our algorithm detects a large fraction of the climatological rainfall amounts (40-70%), heavy precipitation days (50-80%), and the top 10 extreme precipitation days (60-90%) at many sites in southern Israel and the northern and western parts of Saudi Arabia. This identification method provides a new tool for future work to disentangle teleconnections, assess medium-range predictability, and improve understanding of climatic changes of extreme precipitation in the Middle East and elsewhere.

  4. Reclaiming metallic material from an article comprising a non-metallic friable substrate

    DOEpatents

    Bohland, John Raphael; Anisimov, Igor Ivanovich; Dapkus, Todd James; Sasala, Richard Anthony; Smigielski, Ken Alan; Kamm, Kristin Danielle

    2000-01-01

    A method for reclaiming a metallic material from a article including a non-metallic friable substrate. The method comprising crushing the article into a plurality of pieces. An acidic solution capable of dissolving the metallic material is provided dissolving the metallic material in the acidic material to form an etchant effluent. The etchant effluent is separated from the friable substrate. A precipitation agent, capable of precipitating the metallic material, is added to the etchant effluent to precipitate out the metallic material from the etchant effluent. The metallic material is then recovered.

  5. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  6. Method for removing trace pollutants from aqueous solutions

    DOEpatents

    Silver, Gary L.

    1986-01-01

    A method of substantially removing a trace metallic contaminant from a liquid containing the same comprises, adding an oxidizing agent to a liquid containing a trace amount of a metallic contaminant of a concentration of up to about 10.sup.-1 ppm, the oxidizing agent being one which oxidizes the contaminant to form an oxidized product which is insoluble in the liquid and precipitates therefrom, and the conditions of the addition being selected to ensure that the precipitation of the oxidized product is homogeneous, and separating the homogeneously precipitated product from the liquid.

  7. Rainfall frequency analysis for ungauged sites using satellite precipitation products

    NASA Astrophysics Data System (ADS)

    Gado, Tamer A.; Hsu, Kuolin; Sorooshian, Soroosh

    2017-11-01

    The occurrence of extreme rainfall events and their impacts on hydrologic systems and society are critical considerations in the design and management of a large number of water resources projects. As precipitation records are often limited or unavailable at many sites, it is essential to develop better methods for regional estimation of extreme rainfall at these partially-gauged or ungauged sites. In this study, an innovative method for regional rainfall frequency analysis for ungauged sites is presented. The new method (hereafter, this is called the RRFA-S) is based on corrected annual maximum series obtained from a satellite precipitation product (e.g., PERSIANN-CDR). The probability matching method (PMM) is used here for bias correction to match the CDF of satellite-based precipitation data with the gauged data. The RRFA-S method was assessed through a comparative study with the traditional index flood method using the available annual maximum series of daily rainfall in two different regions in USA (11 sites in Colorado and 18 sites in California). The leave-one-out cross-validation technique was used to represent the ungauged site condition. Results of this numerical application have found that the quantile estimates obtained from the new approach are more accurate and more robust than those given by the traditional index flood method.

  8. Variation of Runoff and Precipitation in the Hekou-Longmen Region of the Yellow River Based on Elasticity Analysis

    PubMed Central

    Li, Erhui; Mu, Xingmin; Zhao, Guangju; Gao, Peng; Shao, Hongbo

    2014-01-01

    Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan watershed (from 1954 to 2010), and Yanhe watershed (from 1952 to 2010) in the middle reaches of the Yellow River. The results showed that runoff appeared a significant decreasing trend (P = 0.01) while it was not significant in precipitation in all study areas. In particular, the reductions of average annual runoff in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed were 72.7%, 87.5%, and 32.2%, respectively, during 2000–2010 compared to the 1950s. There existed two abrupt change points of the runoff in the Hekou-Longmen region and Huangfuchuan watershed, which were detected in 1979 and 1998. But in the Yanhe watershed only one abrupt change point was found in 1996. The precipitation elasticities of runoff were 1.11, 1.09, and 1.26, respectively, and the contributions of precipitation on runoff reduction were 26.4%, 17.9%, and 31.6%, respectively, in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed. PMID:24955424

  9. Variation of runoff and precipitation in the Hekou-Longmen region of the Yellow River based on elasticity analysis.

    PubMed

    Li, Erhui; Mu, Xingmin; Zhao, Guangju; Gao, Peng; Shao, Hongbo

    2014-01-01

    Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan watershed (from 1954 to 2010), and Yanhe watershed (from 1952 to 2010) in the middle reaches of the Yellow River. The results showed that runoff appeared a significant decreasing trend (P = 0.01) while it was not significant in precipitation in all study areas. In particular, the reductions of average annual runoff in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed were 72.7%, 87.5%, and 32.2%, respectively, during 2000-2010 compared to the 1950s. There existed two abrupt change points of the runoff in the Hekou-Longmen region and Huangfuchuan watershed, which were detected in 1979 and 1998. But in the Yanhe watershed only one abrupt change point was found in 1996. The precipitation elasticities of runoff were 1.11, 1.09, and 1.26, respectively, and the contributions of precipitation on runoff reduction were 26.4%, 17.9%, and 31.6%, respectively, in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed.

  10. Extraction of Ni (II) from Spent Hydrodesulfurization HDS Catalyst Through Leaching and Electroless Precipitation of Ni(OH)2

    NASA Astrophysics Data System (ADS)

    Pradhan, Sangita R.; Dash, Barsha; Sanjay, Kali; Subbaiah, T.

    2013-04-01

    The extraction of nickel (II) from a spent hydro-desulfurization catalyst containing 11.6 pct Ni was carried out through sulfuric acid leaching. Variations of parameters such as the concentration of acid, temperature, and time, were studied and optimized. Nickel hydroxide was precipitated from the leach liquor via neutralization with 1 M sodium hydroxide up to pH 12 in three different methods: normal neutralization precipitation, and then neutralization precipitation followed by aging at 353 K (80 °C) for 4 hours and neutralization of the leach liquor with 10 pct (v/v) of 0.1 N sodium lauryl sulfate. X-ray diffraction (XRD) and transmission electron microscopy (TEM) microanalysis shows a difference in crystallinity with the method of precipitation. The nickel hydroxide contains Cu(II), Co(II), Zn(II), and Mn(II) as trace impurities. The discharge capacities of the precipitated nickel hydroxides were 120 mAhg-1, 140.72 mAhg-1, and 145.2 mAhg-1 for aged sample, sample without surfactant, and with surfactant respectively.

  11. Precipitation Interpolation by Multivariate Bayesian Maximum Entropy Based on Meteorological Data in Yun- Gui-Guang region, Mainland China

    NASA Astrophysics Data System (ADS)

    Wang, Chaolin; Zhong, Shaobo; Zhang, Fushen; Huang, Quanyi

    2016-11-01

    Precipitation interpolation has been a hot area of research for many years. It had close relation to meteorological factors. In this paper, precipitation from 91 meteorological stations located in and around Yunnan, Guizhou and Guangxi Zhuang provinces (or autonomous region), Mainland China was taken into consideration for spatial interpolation. Multivariate Bayesian maximum entropy (BME) method with auxiliary variables, including mean relative humidity, water vapour pressure, mean temperature, mean wind speed and terrain elevation, was used to get more accurate regional distribution of annual precipitation. The means, standard deviations, skewness and kurtosis of meteorological factors were calculated. Variogram and cross- variogram were fitted between precipitation and auxiliary variables. The results showed that the multivariate BME method was precise with hard and soft data, probability density function. Annual mean precipitation was positively correlated with mean relative humidity, mean water vapour pressure, mean temperature and mean wind speed, negatively correlated with terrain elevation. The results are supposed to provide substantial reference for research of drought and waterlog in the region.

  12. Microstructure, microtexture and precipitation in the ultrafine-grained surface layer of an Al-Zn-Mg-Cu alloy processed by sliding friction treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanxia

    2017-01-15

    Precipitate redistribution and texture evolution are usually two concurrent aspects accompanying grain refinement induced by various surface treatment. However, the detailed precipitate redistribution characteristics and process, as well as crystallographic texture in the surface refined grain layer, are still far from full understanding. In this study, we focused on the microstructural and crystallographic features of the sliding friction treatment (SFT) induced surface deformation layer in a 7050 aluminum alloy. With the combination of transmission electron microscopy (TEM) and high angle angular dark field scanning TEM (HAADF-STEM) observations, a surface ultrafine grain (UFG) layer composed of both equiaxed and lamellar ultrafinemore » grains and decorated by high density of coarse grain boundary precipitates (GBPs) were revealed. Further precession electron diffraction (PED) assisted orientation mapping unraveled that high angle grain boundaries rather than low angle grain boundaries are the most favorable nucleation sites for GBPs. The prominent precipitate redistribution can be divided into three successive and interrelated stages, i.e. the mechanically induced precipitate dissolution, solute diffusion and reprecipitation. The quantitative prediction based on pipe diffusion along dislocations and grain boundary diffusion proved the distribution feasibility of GBPs around UFGs. Based on PED and electron backscatter diffraction (EBSD) analyses, the crystallographic texture of the surface UFG layer was identified as a shear texture composed of major rotated cube texture (001) 〈110〉 and minor (111) 〈112〉, while that of the adjoining lamellar coarse grained matrix was pure brass. The SFT induced surface severe shear deformation is responsible for texture evolution. - Highlights: •The surface ultrafine grain layer in a 7050 aluminum alloy was focused. •Precipitate redistribution and texture evolution were discussed. •The quantitative prediction proved the distribution feasibility of GBPs. •Precession electron diffraction orientation mapping showed a shear texture.« less

  13. Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?

    NASA Astrophysics Data System (ADS)

    Manzanas, R.; Lucero, A.; Weisheimer, A.; Gutiérrez, J. M.

    2018-02-01

    Statistical downscaling methods are popular post-processing tools which are widely used in many sectors to adapt the coarse-resolution biased outputs from global climate simulations to the regional-to-local scale typically required by users. They range from simple and pragmatic Bias Correction (BC) methods, which directly adjust the model outputs of interest (e.g. precipitation) according to the available local observations, to more complex Perfect Prognosis (PP) ones, which indirectly derive local predictions (e.g. precipitation) from appropriate upper-air large-scale model variables (predictors). Statistical downscaling methods have been extensively used and critically assessed in climate change applications; however, their advantages and limitations in seasonal forecasting are not well understood yet. In particular, a key problem in this context is whether they serve to improve the forecast quality/skill of raw model outputs beyond the adjustment of their systematic biases. In this paper we analyze this issue by applying two state-of-the-art BC and two PP methods to downscale precipitation from a multimodel seasonal hindcast in a challenging tropical region, the Philippines. To properly assess the potential added value beyond the reduction of model biases, we consider two validation scores which are not sensitive to changes in the mean (correlation and reliability categories). Our results show that, whereas BC methods maintain or worsen the skill of the raw model forecasts, PP methods can yield significant skill improvement (worsening) in cases for which the large-scale predictor variables considered are better (worse) predicted by the model than precipitation. For instance, PP methods are found to increase (decrease) model reliability in nearly 40% of the stations considered in boreal summer (autumn). Therefore, the choice of a convenient downscaling approach (either BC or PP) depends on the region and the season.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.

    Here, as part of an international intercomparison project, a set of single-column models (SCMs) and cloud-resolving models (CRMs) are run under the weak-temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistentmore » implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.« less

  15. a Study of Precipitation Using Dual-Frequency and Interferometric Doppler Radars.

    NASA Astrophysics Data System (ADS)

    Chilson, Phillip Bruce

    The primary focus of this dissertation involves the investigation of precipitation using Doppler radar but using distinctly different methods. Each method will be treated separately. The first part describes an investigation of a tropical thunderstorm that occurred in the summer of 1991 over the National Astronomy and Ionosphere Center in Arecibo, Puerto Rico. Observations were made using a vertically pointing, dual-wavelength, collinear beam Doppler radar which permits virtually simultaneous observations of the same pulse volume using transmission and reception of coherent UHF and VHF signals on alternate pulses. This made it possible to measure directly the vertical wind within the sampling volume using the VHF signal while using the UHF signal to study the nature of the precipitation. The observed storm showed strong similarities with systems observed in the Global Atmospheric Research Program's (GARP) Atlantic Tropical Experiment (GATE) study. The experiment provided a means of determining various parameters associated with the storm, such as the vertical air velocity, the mean fall speeds of the precipitation, and the reflectivity. Rogers proposed a means of deducing the mean fall speed of precipitation particles using the radar reflectivity factor. Using the data from our experiment, the mean precipitation fall speeds were calculated and compared with those that would be inferred from Rogers' method. The results suggest the Rogers method of estimating mean precipitation fall speeds to be unreliable in turbulent environments. The second part reports observations made with the 50 MHz Middle and Upper Atmosphere (MU) radar located at Shigaraki, Japan during May of 1992. The facility was operated in a spatial interferometry (SI) mode while observing frontal precipitation. The data suggest that the presence of precipitation can produce a bias in the SI cross-spectral phase that in turn creates an overestimation of the horizontal wind. The process is likened to turbulent fading which produces a temporal decorrelation in the time history of the complex radar voltages. In the case of precipitation, it is proposed that the size distribution of the hydrometeors produces a similar effect. This work examines the supposition by creating mathematical and computer simulations to test for any biases introduced by an exponential form of the drop-size distribution. The simulations were run for both the cases of Bragg scatter from turbulent variations in the refractive index and Rayleigh scatter from precipitation particles. Finally the simulation results were compared with actual radar data. It is shown that particle size distributions do indeed influence the cross -spectral phase which in turn leads to erroneous horizontal wind estimates.

  16. Alternate method of source preparation for alpha spectrometry: No electrodeposition, no hydrofluoric acid

    DOE PAGES

    Kurosaki, Hiromu; Mueller, Rebecca J.; Lambert, Susan B.; ...

    2016-07-15

    An alternate method of preparing actinide alpha counting sources was developed in place of electrodeposition or lanthanide fluoride micro-precipitation. The method uses lanthanide hydroxide micro-precipitation to avoid the use of hazardous hydrofluoric acid. Lastly, it provides a quicker, simpler, and safer way of preparing actinide alpha counting sources in routine, production-type laboratories that process many samples daily.

  17. Strengthening and Improving Yield Asymmetry of Magnesium Alloys by Second Phase Particle Refinement Under the Guidance of Integrated Computational Materials Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Lavender, Curt

    2015-05-08

    Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less

  18. Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80.

    PubMed

    Cheng, Yongfeng; Wei, Haiming; Sun, Rui; Tian, Zhigang; Zheng, Xiaodong

    2016-02-01

    Bradford assay is one of the most common methods for measuring protein concentrations. However, some pharmaceutical excipients, such as detergents, interfere with Bradford assay even at low concentrations. Protein precipitation can be used to overcome sample incompatibility with protein quantitation. But the rate of protein recovery caused by acetone precipitation is only about 70%. In this study, we found that sucrose not only could increase the rate of protein recovery after 1 h acetone precipitation, but also did not interfere with Bradford assay. So we developed a method for rapid protein quantitation in protein drugs even if they contained interfering substances. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A method for deterministic statistical downscaling of daily precipitation at a monsoonal site in Eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Yonghe; Feng, Jinming; Liu, Xiu; Zhao, Yadi

    2017-12-01

    Statistical downscaling (SD) is a method that acquires the local information required for hydrological impact assessment from large-scale atmospheric variables. Very few statistical and deterministic downscaling models for daily precipitation have been conducted for local sites influenced by the East Asian monsoon. In this study, SD models were constructed by selecting the best predictors and using generalized linear models (GLMs) for Feixian, a site in the Yishu River Basin and Shandong Province. By calculating and mapping Spearman rank correlation coefficients between the gridded standardized values of five large-scale variables and daily observed precipitation, different cyclonic circulation patterns were found for monsoonal precipitation in summer (June-September) and winter (November-December and January-March); the values of the gridded boxes with the highest absolute correlations for observed precipitation were selected as predictors. Data for predictors and predictands covered the period 1979-2015, and different calibration and validation periods were divided when fitting and validating the models. Meanwhile, the bootstrap method was also used to fit the GLM. All the above thorough validations indicated that the models were robust and not sensitive to different samples or different periods. Pearson's correlations between downscaled and observed precipitation (logarithmically transformed) on a daily scale reached 0.54-0.57 in summer and 0.56-0.61 in winter, and the Nash-Sutcliffe efficiency between downscaled and observed precipitation reached 0.1 in summer and 0.41 in winter. The downscaled precipitation partially reflected exact variations in winter and main trends in summer for total interannual precipitation. For the number of wet days, both winter and summer models were able to reflect interannual variations. Other comparisons were also made in this study. These results demonstrated that when downscaling, it is appropriate to combine a correlation-based predictor selection across a spatial domain with GLM modeling.

  20. The strength and dislocation microstructure evolution in superalloy microcrystals

    NASA Astrophysics Data System (ADS)

    Hussein, Ahmed M.; Rao, Satish I.; Uchic, Michael D.; Parthasarathay, Triplicane A.; El-Awady, Jaafar A.

    2017-02-01

    In this work, the evolution of the dislocations microstructure in single crystal two-phase superalloy microcrystals under monotonic loading has been studied using the three-dimensional discrete dislocation dynamics (DDD) method. The DDD framework has been extended to properly handle the collective behavior of dislocations and their interactions with large collections of arbitrary shaped precipitates. Few constraints are imposed on the initial distribution of the dislocations or the precipitates, and the extended DDD framework can support experimentally-obtained precipitate geometries. Full tracking of the creation and destruction of anti-phase boundaries (APB) is accounted for. The effects of the precipitate volume fraction, APB energy, precipitate size, and crystal size on the deformation of superalloy microcrystals have been quantified. Correlations between the precipitate microstructure and the dominant deformation features, such as dislocation looping versus precipitate shearing, are also discussed. It is shown that the mechanical strength is independent of the crystal size, increases linearly with increasing the volume fraction, follows a near square-root relationship with the APB energy and an inverse square-root relationship with the precipitate size. Finally, the flow strength in simulations having initial dislocation pair sources show a flow strength that is about one half of that predicted from simulations starting with single dislocation sources. The method developed can be used, with minimal extensions, to simulate dislocation microstructure evolution in general multiphase materials.

  1. 3800 Years of Quantitative Precipitation Reconstruction from the Northwest Yucatan Peninsula

    PubMed Central

    Carrillo-Bastos, Alicia; Islebe, Gerald A.; Torrescano-Valle, Nuria

    2013-01-01

    Precipitation over the last 3800 years has been reconstructed using modern pollen calibration and precipitation data. A transfer function was then performed via the linear method of partial least squares. By calculating precipitation anomalies, it is estimated that precipitation deficits were greater than surpluses, reaching 21% and <9%, respectively. The period from 50 BC to 800 AD was the driest of the record. The drought related to the abandonment of the Maya Preclassic period featured a 21% reduction in precipitation, while the drought of the Maya collapse (800 to 860 AD) featured a reduction of 18%. The Medieval Climatic Anomaly was a period of positive phases (3.8–7.6%). The Little Ice Age was a period of climatic variability, with reductions in precipitation but without deficits. PMID:24391940

  2. Estimation of groundwater recharge parameters by time series analysis

    USGS Publications Warehouse

    Naff, Richard L.; Gutjahr, Allan L.

    1983-01-01

    A model is proposed that relates water level fluctuations in a Dupuit aquifer to effective precipitaton at the top of the unsaturated zone. Effective precipitation, defined herein as that portion of precipitation which becomes recharge, is related to precipitation measured in a nearby gage by a two-parameter function. A second-order stationary assumption is used to connect the spectra of effective precipitation and water level fluctuations. Measured precipitation is assumed to be Gaussian, in order to develop a transfer function that relates the spectra of measured and effective precipitation. A nonlinear least squares technique is proposed for estimating parameters of the effective-precipitation function. Although sensitivity analyses indicate difficulties that may be encountered in the estimation procedure, the methods developed did yield convergent estimates for two case studies.

  3. METHOD OF FORMING PLUTONIUM-BEARING CARRIER PRECIPITATES AND WASHING SAME

    DOEpatents

    Faris, B.F.

    1959-02-24

    An improvement of the lanthanum fluoride carrier precipitation process for the recovery of plutonium is presented. In this process the plutonium is first segregated in the LaF/su precipitate and this precipitate is later dissolved and the plutonium reprecipitated as the peroxide. It has been found that the loss of plutonium by its remaining in the supernatant liquid associated with the peroxide precipitate is greatly reduced if, before dissolution, the LaF/ sub 3/ precipitate is subjected to a novel washing step which constitutes the improvement of this patent. The step consists in intimately contactifng the LaF/ sub 3/ precipitate with a 4 to 10 percent solution of sodium hydrogen sulfate at a temperature between 10 and 95 deg C for 1/2 to 3 hours.

  4. An evaluation of procedures to estimate monthly precipitation probabilities

    NASA Astrophysics Data System (ADS)

    Legates, David R.

    1991-01-01

    Many frequency distributions have been used to evaluate monthly precipitation probabilities. Eight of these distributions (including Pearson type III, extreme value, and transform normal probability density functions) are comparatively examined to determine their ability to represent accurately variations in monthly precipitation totals for global hydroclimatological analyses. Results indicate that a modified version of the Box-Cox transform-normal distribution more adequately describes the 'true' precipitation distribution than does any of the other methods. This assessment was made using a cross-validation procedure for a global network of 253 stations for which at least 100 years of monthly precipitation totals were available.

  5. Evaluation of an alternative extraction procedure for enterotoxin determination in dairy products.

    PubMed

    Meyrand, A; Atrache, V; Bavai, C; Montet, M P; Vernozy-Rozand, C

    1999-06-01

    A concentration protocol based on trichloroacetic acid precipitation was evaluated and compared with the reference method using dialysis concentration. Different quantities of purified staphylococcal enterotoxins were added to pasteurized Camembert-type cheeses. Detection of enterotoxins in these cheeses was performed using an automated detection system. Raw goat milk Camembert-type cheeses involved in a staphylococcal food poisoning were also tested. Both enterotoxin extraction methods allowed detection of the lowest enterotoxin concentration level used in this study (0.5 ng g-1). Compared with the dialysis concentration method, TCA precipitation of staphylococcal enterotoxins was 'user-friendly' and less time-consuming. These results suggest that TCA precipitation is a rapid (1 h), simple and reliable method of extracting enterotoxin from food which gives excellent recovery from dairy products.

  6. Inducing bioactivity of dental ceramic/bioactive glass composites by Nd:YAG laser.

    PubMed

    Beketova, Anastasia; Poulakis, Nikolaos; Bakopoulou, Athina; Zorba, Triantafillia; Papadopoulou, Lambrini; Christofilos, Dimitrios; Kantiranis, Nikolaos; Zachariadis, George A; Kontonasaki, Eleana; Kourouklis, Gerasimos A; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2016-11-01

    Aims of this study were to investigate the optimal conditions of laser irradiation of a novel Bioactive Glass/Dental Ceramic-BP67 composite for acceleration of hydroxyapatite-HA formation and to assess cellular responses on the precipitated HA region. BP67 (Bioactive Glass: 33.3%, Dental Ceramic: 66.7%) was fabricated by the sol-gel method. A laser assisted biomimetic-LAB process was applied to BP67 sintered specimens immersed in 1.5-times concentrated simulated body fluid-1.5×-SBF. The effect of various energy densities of pulsed nanosecond Nd-YAG (1064nm) laser and irradiation exposure times (30min, 1 and 3h) were evaluated for HA precipitation. The HA film was characterized by FTIR, XRD, SEM and micro Raman techniques. ICP-AES was used for revealing changes in chemical composition of the 1.5×-SBF during irradiation. Cell viability and morphological characteristics of periodontal ligament fibroblasts-PDLFs, human gingival fibroblasts-HGFs and SAOS-2 osteoblasts on the HA surface were evaluated by MTT assays and SEM. At optimal energy fluence of 1.52J/cm 2 and irradiation time for 3h followed by immersion in 1.5×-SBF at 60°C, a dense HA layer was formed on laser-irradiated BP67 within 7 days. The resulting HA film was tightly bonded to the underlying substrate and had mineral composition similar to cementum. MTT assay showed a consistent reduction of cell proliferation on the HA layer in comparison to conventional control ceramic and BP67 for all 3 cell lines studied. These findings suggest LAB is an effective method for acceleration of HA formation on materials with low bioactivity, while cellular responses need further investigation. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Synthesis and magnetic properties of superparamagnetic CoAs nanostructures

    NASA Astrophysics Data System (ADS)

    Desai, P.; Ashokaan, N.; Masud, J.; Pariti, A.; Nath, M.

    2015-03-01

    This article provides a comprehensive guide on the synthesis and characterization of superparamagnetic CoAs nanoparticles and elongated nanostructures with high blocking temperature, (TB), via hot-injection precipitation and solvothermal methods. Cobalt arsenides constitute an important family of magnetically active solids that find a variety of applications ranging from magnetic semiconductors to biomedical imaging. While the higher temperature hot-injection precipitation technique (300 °C) yields pure CoAs nanostructures, the lower temperature solvothermal method (200 °C) yields a mixture of CoAs nanoparticles along with other Co-based impurity phases. The synthesis in all these cases involved usage of triphenylarsine ((C6H5)3As) as the As precursor which reacts with solid Co2(CO)8 by ligand displacement to yield a single source precursor. The surfactant, hexadecylamine (HDA) further assists in controlling the morphology of the nanostructures. HDA also provides a basic medium and molten flux-like conditions for the redox chemistry to occur between Co and As at elevated temperatures. The influence of the length of reaction time was investigated by studying the evolution of product morphology over time. It was observed that while spontaneous nucleation at higher temperature followed by controlled growth led to the predominant formation of short nanorods, with longer reaction time, the nanorods were further converted to nanoparticles. The size of the nanoparticles obtained, was mostly in the range of 10-15 nm. The key finding of this work is exceptionally high coercivity in CoAs nanostructures for the first time. Coercivity observed was as high as 0.1 T (1000 Oe) at 2 K. These kinds of magnetic nanostructures find multiple applications in spintronics, whereas the superparamagnetic nanoparticles are viable for use in magnetic storage, ferrofluids and as contrast enhancing agents in MRI.

  8. Short-range quantitative precipitation forecasting using Deep Learning approaches

    NASA Astrophysics Data System (ADS)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2017-12-01

    Predicting short-range quantitative precipitation is very important for flood forecasting, early flood warning and other hydrometeorological purposes. This study aims to improve the precipitation forecasting skills using a recently developed and advanced machine learning technique named Long Short-Term Memory (LSTM). The proposed LSTM learns the changing patterns of clouds from Cloud-Top Brightness Temperature (CTBT) images, retrieved from the infrared channel of Geostationary Operational Environmental Satellite (GOES), using a sophisticated and effective learning method. After learning the dynamics of clouds, the LSTM model predicts the upcoming rainy CTBT events. The proposed model is then merged with a precipitation estimation algorithm termed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) to provide precipitation forecasts. The results of merged LSTM with PERSIANN are compared to the results of an Elman-type Recurrent Neural Network (RNN) merged with PERSIANN and Final Analysis of Global Forecast System model over the states of Oklahoma, Florida and Oregon. The performance of each model is investigated during 3 storm events each located over one of the study regions. The results indicate the outperformance of merged LSTM forecasts comparing to the numerical and statistical baselines in terms of Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), RMSE and correlation coefficient especially in convective systems. The proposed method shows superior capabilities in short-term forecasting over compared methods.

  9. A satellite simulator for TRMM PR applied to climate model simulations

    NASA Astrophysics Data System (ADS)

    Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.

    2017-12-01

    Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.

  10. ELECTROLYTIC PREPARATION OF UF$sub 4$

    DOEpatents

    Allen, A.L.; Anderson, R.W.; Powell, E.W.

    1958-11-01

    A method is presented for converting hexavalent aranium to uranium tetrafluoride. The method consists of electrolyzing a solution of uranyl fluoride in hydrofluoric acld at about 90 icient laborato C. The uranyl ions are reduced at the cathode and a hydrated uranium tetrafluoride precipitates. The precipitate is separated and subsequently dehydrated to UF/sub 4/.

  11. Localization of rainfall and determination its intensity in the lower layers of the troposphere from the measurements of local RF transmitter characteristics

    NASA Astrophysics Data System (ADS)

    Podhorský, Dušan; Fabo, Peter

    2016-12-01

    The article deals with a method of acquiring the temporal and spatial distribution of local precipitation from measurement of performance characteristics of local sources of high frequency electromagnetic radiation in the 1-3GHz frequency range in the lower layers of the troposphere up to 100 m. The method was experimentally proven by monitoring the GSM G2 base stations of cell phone providers in the frequency range of 920-960MHz using methods of frequential and spatial diversity reception. Modification of the SART method for localization of precipitation was also proposed. The achieved results allow us to obtain the timeframe of the intensity of local precipitation in the observed area with a temporal resolution of 10 sec. A spatial accuracy of 100m in localization of precipitation is expected, after a network of receivers is built. The acquired data can be used as one of the inputs for meteorological forecasting models, in agriculture, hydrology as a supplementary method to ombrograph stations and measurements for the weather radar network, in transportation as part of a warning system and in many other areas.

  12. Evaluation of global climate model on performances of precipitation simulation and prediction in the Huaihe River basin

    NASA Astrophysics Data System (ADS)

    Wu, Yenan; Zhong, Ping-an; Xu, Bin; Zhu, Feilin; Fu, Jisi

    2017-06-01

    Using climate models with high performance to predict the future climate changes can increase the reliability of results. In this paper, six kinds of global climate models that selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Path (RCP) 4.5 scenarios were compared to the measured data during baseline period (1960-2000) and evaluate the simulation performance on precipitation. Since the results of single climate models are often biased and highly uncertain, we examine the back propagation (BP) neural network and arithmetic mean method in assembling the precipitation of multi models. The delta method was used to calibrate the result of single model and multimodel ensembles by arithmetic mean method (MME-AM) during the validation period (2001-2010) and the predicting period (2011-2100). We then use the single models and multimodel ensembles to predict the future precipitation process and spatial distribution. The result shows that BNU-ESM model has the highest simulation effect among all the single models. The multimodel assembled by BP neural network (MME-BP) has a good simulation performance on the annual average precipitation process and the deterministic coefficient during the validation period is 0.814. The simulation capability on spatial distribution of precipitation is: calibrated MME-AM > MME-BP > calibrated BNU-ESM. The future precipitation predicted by all models tends to increase as the time period increases. The order of average increase amplitude of each season is: winter > spring > summer > autumn. These findings can provide useful information for decision makers to make climate-related disaster mitigation plans.

  13. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.

    PubMed

    Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G

    2012-08-28

    We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.

  14. Sampling and physico-chemical analysis of precipitation: a review.

    PubMed

    Krupa, Sagar V

    2002-01-01

    Wet deposition is one of two processes governing the transfer of beneficial and toxic chemicals from the atmosphere on to surfaces. Since the early 1970s, numerous investigators have sampled and analyzed precipitation for their chemical constituents, in the context of "acidic rain" and related atmospheric processes. Since then, significant advances have been made in our understanding of how to sample rain, cloud and fog water to preserve their physico-chemical integrity prior to analyses. Since the 1970s large-scale precipitation sampling networks have been in operation to broadly address regional and multi-regional issues. However, in examining the results from such efforts at a site-specific level, concerns have been raised about the accuracy and precision of the information gathered. There is mounting evidence to demonstrate the instability of precipitation samples (e.g. with N species) that have been subjected to prolonged ambient or field conditions. At the present time precipitation sampling procedures allow unrefrigerated or refrigerated collection of wet deposition from individual events, sequential fractions within events, in situ continuous chemical analyses in the field and even sampling of single or individual rain, cloud and fog droplets. Similarly analytical procedures of precipitation composition have advanced from time-consuming methods to rapid and simultaneous analyses of major anions and cations, from bulk samples to single droplets. For example, analytical techniques have evolved from colorimetry to ion chromatography to capillary electrophoresis. Overall, these advances allow a better understanding of heterogeneous reactions and atmospheric pollutant scavenging processes by precipitation. In addition, from an environmental perspective, these advances allow better quantification of semi-labile (e.g. NH4+, frequently its deposition values are underestimated) or labile species [e.g. S (IV)] in precipitation and measurements of toxic chemicals such as Hg and PCBs (polychlorinated biphenyls). Similarly, methods now exist for source-receptor studies, using for example, the characterization of reduced elemental states and/or the use of stable isotopes in precipitation as tracers. Future studies on the relationship between atmospheric deposition and environmental impacts must exploit these advances. This review provides a comprehensive and comparative treatment of the state of the art sampling methods of precipitation and its physico-chemical analysis.

  15. Stable Isotopic Composition of Precipitation from 2015-2016 Central Texas Rainfall Events

    NASA Astrophysics Data System (ADS)

    Maupin, C. R.; McChesney, C. L.; Roark, B.; Gorman, M. K.; Housson, A. L.

    2016-12-01

    Central Texas lies within the Southern Great Plains, a region where rainfall is of tremendous agricultural and associated socioeconomic importance. Paleoclimate records from speleothems in central Texas caves may assist in placing historical and recent drought and pluvial events in the context of natural variability. Effective interpretation of such records requires the nature and origin of variations in the meteoric δ18O signal transmitted from cloud to speleothem to be understood. Here we present a record of meteoric δ18O and δD from each individual precipitation event (δ18Op and δDp), collected by rain gauge in Austin, Texas, USA, from April 2015 through 2016. Backwards hybrid single-particle Lagrangian integrated trajectories (HYSPLITs) indicate the broader moisture source for each precipitation event during this time was the Gulf of Mexico. The local meteoric water line is within error of the global meteoric water line, suggesting minimal sourcing of evaporated continental vapor for precipitation. Total monthly rainfall followed the climatological pattern of a dual boreal spring and fall maximum, with highly variable event δ18Op and δDp values. Surface temperature during precipitation often exerts control over continental and mid latitude δ18Op values, but is not significantly correlated to study site δ18Op (p>0.10). Amount of rain falling during each precipitation event ("amount effect") explains a significant 18% of variance in δ18Op. We hypothesize that this relationship can be attributed to the following: 1) minimal recycling of continental water vapor during the study period; 2) the presence of synoptic conditions favoring intense boreal spring and fall precipitation, driven by a developing, and subsequently in-place, strong ENSO event coupled with a southerly flow from the open Gulf of Mexico; and 3) the meteorological nature of the predominant precipitating events over Texas during this time, mesoscale convective systems, which are known to produce an "amount effect" if effective in-storm downdraft-recycling is present. Continued rainfall monitoring and isotopic measurements are required to determine whether this relationship persists during years with synoptic conditions different from 2015-2016.

  16. Extreme daily precipitation in the Northern Sierra Precipitation 8-Station index: The combined impact of landfalling atmospheric rivers and the Sierra barrier jet

    NASA Astrophysics Data System (ADS)

    Cordeira, J. M.; Ralph, F. M.; Neiman, P. J.; Hughes, M.

    2014-12-01

    The Upper Sacramento River area is vital to California's water supply, and is susceptible to major floods. Recent studies indicate that orographic precipitation in this complex terrain involves both inland penetrating atmospheric rivers (ARs) and the Sierra barrier jet (SBJ). The southerly SBJ induces orographic precipitation along south-facing slopes in the Shasta region, whereas landfalling ARs ascend up and over the statically stable SBJ and induce orographic precipitation along west-facing upper slopes in the Northern Sierra Nevada. This paper explores the hypothesis that extreme daily precipitation here is controlled by the presence of both a landfalling AR and a SBJ. Three 10-year-long (2000-2011) observational datasets are used. ARs are identified from the Neiman et al. (2008) AR catalog that uses an SSM/I satellite-based AR-detection method from Ralph et al. (2004), whereas SBJ conditions are determined from Chico, CA wind profiler data using the method from Neiman et al. (2010). Extreme daily precipitation is identified from the average of 8 rain gauges spanning the region known as the "Northern Sierra 8-Station Index." The "index" is used by water managers to assess water supply. Extreme events are defined as the 50 largest daily precipitation totals in the index for the 10-year period (the top ~1.37%). These dates in the 8-station index are compared with the catalogs of landfalling ARs and SBJs. In summary, 46 of 50 (92%) extreme daily precipitation events are associated with landfalling ARs on either the day before or the day of precipitation, whereas 45 of 50 (90%) extreme daily precipitation events are associated with SBJ conditions. 38 of 50 (76%) extreme daily precipitation events are associated with both a landfalling AR and an SBJ. The 10 days with the largest daily precipitation in the index were all associated with both a landfalling AR and an SBJ. Thus, extreme daily precipitation in Northern California is strongly controlled by the presence of both a landfalling AR and a SBJ.

  17. Modeling the Spatial and Temporal Variation of Monthly and Seasonal Precipitation on the Nevada Test Site and Vicinity, 1960-2006

    USGS Publications Warehouse

    Blainey, Joan B.; Webb, Robert H.; Magirl, Christopher S.

    2007-01-01

    The Nevada Test Site (NTS), located in the climatic transition zone between the Mojave and Great Basin Deserts, has a network of precipitation gages that is unusually dense for this region. This network measures monthly and seasonal variation in a landscape with diverse topography. Precipitation data from 125 climate stations on or near the NTS were used to spatially interpolate precipitation for each month during the period of 1960 through 2006 at high spatial resolution (30 m). The data were collected at climate stations using manual and/or automated techniques. The spatial interpolation method, applied to monthly accumulations of precipitation, is based on a distance-weighted multivariate regression between the amount of precipitation and the station location and elevation. This report summarizes the temporal and spatial characteristics of the available precipitation records for the period 1960 to 2006, examines the temporal and spatial variability of precipitation during the period of record, and discusses some extremes in seasonal precipitation on the NTS.

  18. Synthesis of nano grade hollow silica sphere via a soft template method.

    PubMed

    Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu

    2008-06-01

    The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.

  19. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y., E-mail: thuzhangyu@foxmail.com; Huang, S. L., E-mail: huangsling@tsinghua.edu.cn; Wang, S.

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency formore » all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.« less

  20. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals.

    PubMed

    Zhang, Y; Huang, S L; Wang, S; Zhao, W

    2016-05-01

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.

  1. Non-pulsed electrochemical impregnation of flexible metallic battery plaques

    DOEpatents

    Maskalick, Nicholas J.

    1982-01-01

    A method of loading active battery material into porous, flexible, metallic battery plaques, comprises the following steps: precipitating nickel hydroxide active material within the plaque, by making the plaque cathodic, at a high current density, in an electro-precipitation cell also containing a consumable nickel anode and a solution comprising nickel nitrate, having a pH of between 2.0 and 2.8; electrochemically oxidizing the precipitate in caustic formation solution; and repeating the electro-precipitation step at a low current density.

  2. METHOD FOR REMOVING CONTAMINATION FROM PRECIPITATES

    DOEpatents

    Stahl, G.W.

    1959-01-01

    An improvement in the bismuth phosphate carrier precipitation process is presented for the recovery and purification of plutonium. When plutonium, in the tetravalent state, is carried on a bismuth phosphate precipitate, amounts of centain of the fission products are carried along with the plutonium. The improvement consists in washing such fission product contaminated preeipitates with an aqueous solution of ammonium hydrogen fluoride. since this solution has been found to be uniquely effective in washing fission production contamination from the bismuth phosphate precipitate.

  3. A Bayesian kriging approach for blending satellite and ground precipitation observations

    USGS Publications Warehouse

    Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.

    2015-01-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution of the “true” observed precipitation value at each grid cell.

  4. Identification of the atmospheric river drivers key on local flood generating mechanism and its sensitivity under the climate change

    NASA Astrophysics Data System (ADS)

    Lorente-Plazas, Raquel; Mauger, Guillaume; Salathé, Eric; Mitchell, Todd P.

    2017-04-01

    Flooding is one of the natural hazard that causes the significant economic, ecosystem and human losses every year. Large percentage of floodings in the western of the US caused by heavy precipitation events are associated to atmospheric rivers (ARs). With the warmer climate is expected an increase of saturated water pressure which could increase the intensity and frequency of the ARs. In this work we attend to address two questions: 1) what are the large-scale drivers that promotes differences in ARs promoting heavy precipitation at different locations and 2) how climate change will influence on ARs and extreme precipitation. The methods applied in our analysis consist on a dynamical downscaling using the Weather Research and Forecasting (WRF) model. The target region is the western coastline U.S. on a domain with 12-km grid spacing. Regional climate simulations (RCM) encompass a historical period (1970-2010) and future projections (2020-2060) using NNRP and ECHAM as initial and boundary conditions. Clustering methods are applied to the RCM to identify regions with similar precipitation variability. At each region, the extreme events of precipitation according to 99 percentile are identified and associated to integrated vapor transport (ITV). Results show how heaviest precipitation in each region is associated to different AR patterns. When an AR impacts coastline, the direction and intensity of the IVT determine the areas affected by heavy precipitation. Coastal mountains play a key role intensifying the precipitation in the coastline and avoiding the inland penetration of the IVT. The shape of the atmospheric rivers is related to differences in 500 hPa geopotential between the mean and the extreme precipitation. Areas with heaviest precipitation are located in the interface of Z500 differences.

  5. Interpolating precipitation and its relation to runoff and non-point source pollution.

    PubMed

    Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L

    2005-01-01

    When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.

  6. AJIPHASE®: A Highly Efficient Synthetic Method for One-Pot Peptide Elongation in the Solution Phase by an Fmoc Strategy.

    PubMed

    Takahashi, Daisuke; Inomata, Tatsuji; Fukui, Tatsuya

    2017-06-26

    We previously reported an efficient peptide synthesis method, AJIPHASE®, that comprises repeated reactions and isolations by precipitation. This method utilizes an anchor molecule with long-chain alkyl groups as a protecting group for the C-terminus. To further improve this method, we developed a one-pot synthesis of a peptide sequence wherein the synthetic intermediates were isolated by solvent extraction instead of precipitation. A branched-chain anchor molecule was used in the new process, significantly enhancing the solubility of long peptides and the operational efficiency compared with the previous method, which employed precipitation for isolation and a straight-chain aliphatic group. Another prerequisite for this solvent-extraction-based strategy was the use of thiomalic acid and DBU for Fmoc deprotection, which facilitates the removal of byproducts, such as the fulvene adduct. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Recent developments in the behavioural and pharmacological enhancement of extinction of drug seeking.

    PubMed

    Chesworth, Rose; Corbit, Laura H

    2017-01-01

    One of the principal barriers to overcoming addiction is the propensity to relapse, even after months or years of abstinence. Relapse can be precipitated by cues and contexts associated with drug use; thus, decreasing the conditioned properties of these cues and contexts may assist in preventing relapse. The predictive power of drug cues and contexts can be reduced by repeatedly presenting them in the absence of the drug reinforcer, a process known as extinction. The potential of extinction to limit relapse has generated considerable interest and research over the past few decades. While pre-clinical animal models suggest extinction learning assists relapse prevention, treatment efficacy is often lacking when extinction learning principles are translated into clinical trials. Conklin and Tiffany (Addiction, 2002) suggest the lack of efficacy in clinical practice may be due to limited translation of procedures demonstrated through animal research and propose several methodological improvements to enhance extinction learning for drug addiction. This review will examine recent advances in the behavioural and pharmacological manipulation of extinction learning, based on research from pre-clinical models. In addition, the translation of pre-clinical findings-both those suggested by Conklin and Tiffany () and novel demonstrations from the past 13 years-into clinical trials and the efficacy of these methods in reducing craving and relapse, where available, will be discussed. Finally, we highlight areas where promising pre-clinical models have not yet been integrated into current clinical practice but, if applied, could improve upon existing behavioural and pharmacological methods. © 2015 Society for the Study of Addiction.

  8. Alpine biodiversity and assisted migration: The case of the American pika (Ochotona princeps)

    USGS Publications Warehouse

    Wilkening, Jennifer L.; Ray, Chris; Ramsay, Nathan G.; Klingler, Kelly

    2015-01-01

    Alpine mammals are predicted to be among the species most threatened by climate change, due to the projected loss and further fragmentation of alpine habitats. As temperature or precipitation regimes change, alpine mammals may also be faced with insurmountable barriers to dispersal. The slow rate or inability to adjust to rapidly shifting environmental conditions may cause isolated alpine species to become locally extirpated, resulting in reduced biodiversity. One proposed method for mitigating the impacts of alpine species loss is assisted migration. This method, which involves translocating a species to an area with more favourable climate and habitat characteristics, has become the subject of debate and controversy in the conservation community. The uncertainty associated with climate change projections, coupled with the thermal sensitivity of many alpine mammals, makes it difficult to a priori assess the efficacy of this technique as a conservation management tool. Here we present the American pika (Ochotona princeps) as a case study. American pikas inhabit rocky areas throughout the western US, and populations in some mountainous areas have become locally extirpated in recent years. We review known climatic and habitat requirements for this species, and also propose protocols designed to reliably identify favourable relocation areas. We present data related to the physiological constraints of this species and outline specific requirements which must be addressed for translocation of viable populations, including wildlife disease and genetic considerations. Finally, we discuss potential impacts on other alpine species and alpine communities, and overall implications for conserving alpine biodiversity in a changing climate.

  9. Solutions Network Formulation Report. The Potential Contribution of the International GPM Program to the NOAA Estuarine Reserves Division's System-wide Monitoring Program

    NASA Technical Reports Server (NTRS)

    Hilbert, Kent; Anderson, Daniel; Lewis, David

    2007-01-01

    Data collected via the International GPM Program could be used to provide a solution for the NOAA Estuarine Reserves Division s System-wide Monitoring Program by augmenting in situ rainfall measurements with data acquired via future satellite-acquired precipitation data. This Candidate Solution is in alignment with the Coastal Management National Application and will benefit society by assisting in estuary preservation.

  10. Environmental Definition Program Cross Sectional Analysis; Summary of Data and Analysis Techniques

    DTIC Science & Technology

    1975-12-31

    selected locations, and to characterize cloud and precipitation systems during certain tests and experiments conducted at Wallops Flight Center and at...values. The LWCA was on- site at Wallops Flight Center assisting the special Elight measurements. Other computer programs developed were designed to...550581 N 37025, E Kiev 50024 N 30027 E Simferopol 45001, N 33059! E Perm 58001, N 56018, E Aktyubinsk 50020, N 570131 E Semipalatinsk 50021! N 80015

  11. Climatological Downscaling and Evaluation of AGRMET Precipitation Analyses Over the Continental U.S.

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Peters-Lidard, C. D.; Eylander, J. B.; Daly, C.; Tian, Y.; Zeng, J.

    2007-05-01

    The spatially distributed application of a land surface model (LSM) over a region of interest requires the application of similarly distributed precipitation fields that can be derived from various sources, including surface gauge networks, surface-based radar, and orbital platforms. The spatial variability of precipitation influences the spatial organization of soil temperature and moisture states and, consequently, the spatial variability of land- atmosphere fluxes. The accuracy of spatially-distributed precipitation fields can contribute significantly to the uncertainty of model-based hydrological states and fluxes at the land surface. Collaborations between the Air Force Weather Agency (AFWA), NASA, and Oregon State University have led to improvements in the processing of meteorological forcing inputs for the NASA-GSFC Land Information System (LIS; Kumar et al. 2006), a sophisticated framework for LSM operation and model coupling experiments. Efforts at AFWA toward the production of surface hydrometeorological products are currently in transition from the legacy Agricultural Meteorology modeling system (AGRMET) to use of the LIS framework and procedures. Recent enhancements to meteorological input processing for application to land surface models in LIS include the assimilation of climate-based information for the spatial interpolation and downscaling of precipitation fields. Climatological information included in the LIS-based downscaling procedure for North America is provided by a monthly high-resolution PRISM (Daly et al. 1994, 2002; Daly 2006) dataset based on a 30-year analysis period. The combination of these sources and methods attempts to address the strengths and weaknesses of available legacy products, objective interpolation methods, and the PRISM knowledge-based methodology. All of these efforts are oriented on an operational need for timely estimation of spatial precipitation fields at adequate spatial resolution for customer dissemination and near-real-time simulations in regions of interest. This work focuses on value added to the AGRMET precipitation product by the inclusion of high-quality climatological information on a monthly time scale. The AGRMET method uses microwave-based satellite precipitation estimates from various polar-orbiting platforms (NOAA POES and DMSP), infrared-based estimates from geostationary platforms (GOES, METEOSAT, etc.), related cloud analysis products, and surface gauge observations in a complex and hierarchical blending process. Results from processing of the legacy AGRMET precipitation products over the U.S. using LIS-based methods for downscaling, both with and without climatological factors, are evaluated against high-resolution monthly analyses using the PRISM knowledge- based method (Daly et al. 2002). It is demonstrated that the incorporation of climatological information in a downscaling procedure can significantly enhance the accuracy, and potential utility, of AFWA precipitation products for military and civilian customer applications.

  12. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    PubMed

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-05-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation.

  13. Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Marlot, Caroline; Barraud, Elodie; Le Gallet, Sophie; Eichhorn, Marc; Bernard, Frédéric

    2012-07-01

    YAG nanopowders with an average grain size of 30 nm have been successfully synthesized by the co-precipitation method using nitrates with precipitant of ammonium hydrogen carbonate. The influence of precipitation conditions such as pH, aging time and calcination temperature on the formation of secondary phases has been studied. The accurate control of pH value at every stage of precipitation process is crucial to avoid the presence of YAM (Yttrium Aluminium Monoclinic, Y4Al2O9) and yttrium oxide (Y2O3) after calcination. The reaction mechanisms have been investigated using different techniques such as infrared spectroscopy, x-ray diffraction and thermal analyses. The YAG phase is formed around 1050 °C passing through an intermediate phase called YAP (Yttrium Aluminium Perovskite, YAlO3). Local chemical heterogeneities are responsible for the deviation of the Y:Al ratio and the formation of YAP during heat treatment.

  14. Electron Impact Ionization: A New Parameterization for 100 eV to 1 MeV Electrons

    NASA Technical Reports Server (NTRS)

    Fang, Xiaohua; Randall, Cora E.; Lummerzheim, Dirk; Solomon, Stanley C.; Mills, Michael J.; Marsh, Daniel; Jackman, Charles H.; Wang, Wenbin; Lu, Gang

    2008-01-01

    Low, medium and high energy electrons can penetrate to the thermosphere (90-400 km; 55-240 miles) and mesosphere (50-90 km; 30-55 miles). These precipitating electrons ionize that region of the atmosphere, creating positively charged atoms and molecules and knocking off other negatively charged electrons. The precipitating electrons also create nitrogen-containing compounds along with other constituents. Since the electron precipitation amounts change within minutes, it is necessary to have a rapid method of computing the ionization and production of nitrogen-containing compounds for inclusion in computationally-demanding global models. A new methodology has been developed, which has parameterized a more detailed model computation of the ionizing impact of precipitating electrons over the very large range of 100 eV up to 1,000,000 eV. This new parameterization method is more accurate than a previous parameterization scheme, when compared with the more detailed model computation. Global models at the National Center for Atmospheric Research will use this new parameterization method in the near future.

  15. Sodium bicarbonate secretion indicated by ultrastructural cytochemical localization of HCO3(-), Cl-, and Na+ ions on rat bile duct brush cells.

    PubMed

    Ogata, Takuro

    2005-12-01

    Brush cells are widely distributed in the digestive and respiratory apparatus, but their function is still unknown. Because brush cells (BC) are found in organs secreting NaHCO3, it was hypothesized that these cells may secrete NaHCO3. To test this possibility, rat common bile duct epithelia were examined by ultrastructural cytochemical methods for localizing HCO3(-), Cl-, and Na+ ions. All three ion precipitates were few in or on BCs of rats without stimulation. Lead carbonate precipitates, which localized HCO3(-) ions by the lead nitrate-osmium method, increased markedly on the surface of the microvilli (MV) of BCs after secretin or meal stimulation, but similar precipitates were few on the luminal surface of principal cells (PCs). Silver chloride precipitates, which indicate the presence of Cl- ions by the silver-osmium method, increased in the apical cytoplasm and in MV of BCs after secretin or meal stimulation, but they were few in PCs. Sodium pyroantimonate precipitates, which localize Na+ ions by the potassium pyroantimonate-osmium method, increased on the surface of the MV, along the basolateral membrane, and in the apical cytoplasm of BCs after secretin or meal stimulation, but they were few in PCs. These results strongly suggest that BCs may be a significant source of NaHCO3 secretion.

  16. A comparative verification of high resolution precipitation forecasts using model output statistics

    NASA Astrophysics Data System (ADS)

    van der Plas, Emiel; Schmeits, Maurice; Hooijman, Nicolien; Kok, Kees

    2017-04-01

    Verification of localized events such as precipitation has become even more challenging with the advent of high-resolution meso-scale numerical weather prediction (NWP). The realism of a forecast suggests that it should compare well against precipitation radar imagery with similar resolution, both spatially and temporally. Spatial verification methods solve some of the representativity issues that point verification gives rise to. In this study a verification strategy based on model output statistics is applied that aims to address both double penalty and resolution effects that are inherent to comparisons of NWP models with different resolutions. Using predictors based on spatial precipitation patterns around a set of stations, an extended logistic regression (ELR) equation is deduced, leading to a probability forecast distribution of precipitation for each NWP model, analysis and lead time. The ELR equations are derived for predictands based on areal calibrated radar precipitation and SYNOP observations. The aim is to extract maximum information from a series of precipitation forecasts, like a trained forecaster would. The method is applied to the non-hydrostatic model Harmonie (2.5 km resolution), Hirlam (11 km resolution) and the ECMWF model (16 km resolution), overall yielding similar Brier skill scores for the 3 post-processed models, but larger differences for individual lead times. Besides, the Fractions Skill Score is computed using the 3 deterministic forecasts, showing somewhat better skill for the Harmonie model. In other words, despite the realism of Harmonie precipitation forecasts, they only perform similarly or somewhat better than precipitation forecasts from the 2 lower resolution models, at least in the Netherlands.

  17. Molten tin reprocessing of spent nuclear fuel elements

    DOEpatents

    Heckman, Richard A.

    1983-01-01

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  18. Epidemiological investigation of a youth suicide cluster: Delaware 2012.

    PubMed

    Fowler, Katherine A; Crosby, Alexander E; Parks, Sharyn E; Ivey, Asha Z; Silverman, Paul R

    2013-01-01

    In the first quarter of 2012, eight youth (aged 13-21 years) were known to have died by suicide in Kent and Sussex counties, Delaware, twice the typical median yearly number. State and local officials invited the Centers for Disease Control and Prevention to assist with an epidemiological investigation of fatal and nonfatal youth suicidal behaviors in the first quarter of 2012, to examine risk factors, and to recommend prevention strategies. Data were obtained from the Delaware Office of the Medical Examiner, law enforcement, emergency departments, and inpatient records. Key informants from youth-serving organizations in the community were interviewed to better understand local context and perceptions of youth suicide. Eleven fatal and 116 nonfatal suicide attempts were identified for the first quarter of 2012 in Kent and Sussex counties. The median age was higher for the fatalities (18 years) than the nonfatal attempts (16 years). More males died by suicide, and more females nonfatally attempted suicide. Fatal methods were either hanging or firearm, while nonfatal methods were diverse, led by overdose/poisoning and cutting. All decedents had two or more precipitating circumstances. Seventeen of 116 nonfatal cases reported that a peer/friend recently died by or attempted suicide. Local barriers to youth services and suicide prevention were identified. Several features were similar to previous clusters: Occurrence among vulnerable youth, rural or suburban setting, and precipitating negative life events. Distribution by sex and method were consistent with national trends for both fatalities and nonfatalities. References to the decedents in the context of nonfatal attempts support the concept of 'point clusters' (social contiguity to other suicidal youth as a risk factor for vulnerable youth) as a framework for understanding clustering of youth suicidal behavior. Recommended prevention strategies included: Training to identify at-risk youth and guide them to services; development of youth programs; monitoring trends in youth suicidal behaviors; reviewing evidence-based suicide prevention strategies; and continued implementation of CDC media guidelines for reporting on suicide.

  19. Optimal ranking regime analysis of U.S. climate variablility. Part II: Precipitation and streamflow

    USDA-ARS?s Scientific Manuscript database

    In a preceding companion paper the Optimal Ranking Regime (ORR) method was used to identify intra- to multi-decadal (IMD) regimes in U.S. climate division temperature data during 1896-2012. Here, the method is used to test for annual and seasonal precipitation regimes during that same period. In add...

  20. Superconductor precursor mixtures made by precipitation method

    DOEpatents

    Bunker, Bruce C.; Lamppa, Diana L.; Voigt, James A.

    1989-01-01

    Method and apparatus for preparing highly pure homogeneous precursor powder mixtures for metal oxide superconductive ceramics. The mixes are prepared by instantaneous precipitation from stoichiometric solutions of metal salts such as nitrates at controlled pH's within the 9 to 12 range, by addition of solutions of non-complexing pyrolyzable cations, such as alkyammonium and carbonate ions.

  1. Method of producing .sup.67 Cu

    DOEpatents

    O'Brien, Jr., Harold A.; Barnes, John W.; Taylor, Wayne A.; Thomas, Kenneth E.; Bentley, Glenn E.

    1984-01-01

    A method of producing carrier-free .sup.67 Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including .sup.67 Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.

  2. Method for producing /sup 67/Cu

    DOEpatents

    O'Brien, H.A. Jr.; Barnes, J.W.; Taylor, W.A.; Thomas, K.E.; Bentley, G.E.

    A method of producing carrier-free /sup 67/Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including /sup 67/Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.

  3. Rapid determination of tannins in tanning baths by adaptation of BSA method.

    PubMed

    Molinari, R; Buonomenna, M G; Cassano, A; Drioli, E

    2001-01-01

    A rapid and reproducible method for the determination of tannins in vegetable tanning baths is proposed as a modification of the BSA method for grain tannins existing in literature. The protein BSA was used instead of leather powder employed in the Filter Method, which is adopted in Italy and various others countries of Central Europe. In this rapid method the tannin contents is determined by means a spectrophotometric reading and not by means a gravimetric analysis of the Filter Method. The BSA method, which belongs to mixed methods (which use both precipitation and complexation of tannins), consists of selective precipitation of tannin from a solution containing also non tannins by BSA, the dissolution of precipitate and the quantification of free tannin amount by its complexation with Fe(III) in hydrochloric solutions. The absorbance values, read at 522 nm, have been expressed in terms of tannic acid concentration by using a calibration curve made with standard solutions of tannic acid; these have been correlated with the results obtained by using the Filter Method.

  4. Micro and colloidal stickie pacification with precipitated calcium carbonate

    Treesearch

    John H. Klungness; Roland L. Gleisner; Marguerite S. Sykes

    2002-01-01

    Colloidal stickies that build up in mill process water during pulping are problematic and difficult to remove. We examined precipitated calcium carbonate (PCC) as a means to ameliorate process water stickies. The effectiveness of PCC added directly into a slurry of deinked pulp was compared with in situ precipitation of PCC by the fiber loading method. We found that...

  5. An "Ensemble Approach" to Modernizing Extreme Precipitation Estimation for Dam Safety Decision-Making

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Mahoney, K. M.; Webb, R. S.; McCormick, B.

    2017-12-01

    To ensure structural and operational safety of dams and other water management infrastructure, water resources managers and engineers require information about the potential for heavy precipitation. The methods and data used to estimate extreme rainfall amounts for managing risk are based on 40-year-old science and in need of improvement. The need to evaluate new approaches based on the best science available has led the states of Colorado and New Mexico to engage a body of scientists and engineers in an innovative "ensemble approach" to updating extreme precipitation estimates. NOAA is at the forefront of one of three technical approaches that make up the "ensemble study"; the three approaches are conducted concurrently and in collaboration with each other. One approach is the conventional deterministic, "storm-based" method, another is a risk-based regional precipitation frequency estimation tool, and the third is an experimental approach utilizing NOAA's state-of-the-art High Resolution Rapid Refresh (HRRR) physically-based dynamical weather prediction model. The goal of the overall project is to use the individual strengths of these different methods to define an updated and broadly acceptable state of the practice for evaluation and design of dam spillways. This talk will highlight the NOAA research and NOAA's role in the overarching goal to better understand and characterizing extreme precipitation estimation uncertainty. The research led by NOAA explores a novel high-resolution dataset and post-processing techniques using a super-ensemble of hourly forecasts from the HRRR model. We also investigate how this rich dataset may be combined with statistical methods to optimally cast the data in probabilistic frameworks. NOAA expertise in the physical processes that drive extreme precipitation is also employed to develop careful testing and improved understanding of the limitations of older estimation methods and assumptions. The process of decision making in the midst of uncertainty is a major part of this study. We will speak to how the ensemble approach may be used in concert with one another to manage risk and enhance resiliency in the midst of uncertainty. Finally, the presentation will also address the implications of including climate change in future extreme precipitation estimation studies.

  6. Discriminating the precipitation phase based on different temperature thresholds in the Songhua River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhong, Keyuan; Zheng, Fenli; Xu, Ximeng; Qin, Chao

    2018-06-01

    Different precipitation phases (rain, snow or sleet) differ greatly in their hydrological and erosional processes. Therefore, accurate discrimination of the precipitation phase is highly important when researching hydrologic processes and climate change at high latitudes and mountainous regions. The objective of this study was to identify suitable temperature thresholds for discriminating the precipitation phase in the Songhua River Basin (SRB) based on 20-year daily precipitation collected from 60 meteorological stations located in and around the basin. Two methods, the air temperature method (AT method) and the wet bulb temperature method (WBT method), were used to discriminate the precipitation phase. Thirteen temperature thresholds were used to discriminate snowfall in the SRB. These thresholds included air temperatures from 0 to 5.5 °C at intervals of 0.5 °C and the wet bulb temperature (WBT). Three evaluation indices, the error percentage of discriminated snowfall days (Ep), the relative error of discriminated snowfall (Re) and the determination coefficient (R2), were applied to assess the discrimination accuracy. The results showed that 2.5 °C was the optimum threshold temperature for discriminating snowfall at the scale of the entire basin. Due to differences in the landscape conditions at the different stations, the optimum threshold varied by station. The optimal threshold ranged 1.5-4.0 °C, and 19 stations, 17 stations and 18 stations had optimal thresholds of 2.5 °C, 3.0 °C, and 3.5 °C respectively, occupying 90% of all stations. Compared with using a single suitable temperature threshold to discriminate snowfall throughout the basin, it was more accurate to use the optimum threshold at each station to estimate snowfall in the basin. In addition, snowfall was underestimated when the temperature threshold was the WBT and when the temperature threshold was below 2.5 °C, whereas snowfall was overestimated when the temperature threshold exceeded 4.0 °C at most stations. The results of this study provide information for climate change research and hydrological process simulations in the SRB, as well as provide reference information for discriminating precipitation phase in other regions.

  7. Intercomparison of methods of coupling between convection and large-scale circulation. 1. Comparison over uniform surface conditions

    DOE PAGES

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.; ...

    2015-10-24

    Here, as part of an international intercomparison project, a set of single-column models (SCMs) and cloud-resolving models (CRMs) are run under the weak-temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistentmore » implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.« less

  8. Basic Requirements for Collecting, Documenting, and Reporting Precipitation and Stormwater-Flow Measurements

    USGS Publications Warehouse

    Church, Peter E.; Granato, Gregory E.; Owens, David W.

    1999-01-01

    Accurate and representative precipitation and stormwater-flow data are crucial for use of highway- or urban-runoff study results, either individually or in a regional or national synthesis of stormwater-runoff data. Equally important is information on the level of accuracy and representativeness of this precipitation and stormwaterflow data. Accurate and representative measurements of precipitation and stormwater flow, however, are difficult to obtain because of the rapidly changing spatial and temporal distribution of precipitation and flows during a storm. Many hydrologic and hydraulic factors must be considered in performing the following: selecting sites for measuring precipitation and stormwater flow that will provide data that adequately meet the objectives and goals of the study, determining frequencies and durations of data collection to fully characterize the storm and the rapidly changing stormwater flows, and selecting methods that will yield accurate data over the full range of both rainfall intensities and stormwater flows. To ensure that the accuracy and representativeness of precipitation and stormwater-flow data can be evaluated, decisions as to (1) where in the drainage system precipitation and stormwater flows are measured, (2) how frequently precipitation and stormwater flows are measured, (3) what methods are used to measure precipitation and stormwater flows, and (4) on what basis are these decisions made, must all be documented and communicated in an accessible format, such as a project description report, a data report or an appendix to a technical report, and (or) archived in a State or national records center. A quality assurance/quality control program must be established to ensure that this information is documented and reported, and that decisions made in the design phase of a study are continually reviewed, internally and externally, throughout the study. Without the supporting data needed to evaluate the accuracy and representativeness of the precipitation and stormwater-flow measurements, the data collected and interpretations made may have little meaning.

  9. An In Situ Method for Sizing Insoluble Residues in Precipitation and Other Aqueous Samples

    PubMed Central

    Axson, Jessica L.; Creamean, Jessie M.; Bondy, Amy L.; Capracotta, Sonja S.; Warner, Katy Y.; Ault, Andrew P.

    2015-01-01

    Particles are frequently incorporated into clouds or precipitation, influencing climate by acting as cloud condensation or ice nuclei, taking up coatings during cloud processing, and removing species through wet deposition. Many of these particles, particularly ice nuclei, can remain suspended within cloud droplets/crystals as insoluble residues. While previous studies have measured the soluble or bulk mass of species within clouds and precipitation, no studies to date have determined the number concentration and size distribution of insoluble residues in precipitation or cloud water using in situ methods. Herein, for the first time we demonstrate that Nanoparticle Tracking Analysis (NTA) is a powerful in situ method for determining the total number concentration, number size distribution, and surface area distribution of insoluble residues in precipitation, both of rain and melted snow. The method uses 500 μL or less of liquid sample and does not require sample modification. Number concentrations for the insoluble residues in aqueous precipitation samples ranged from 2.0–3.0(±0.3)×108 particles cm−3, while surface area ranged from 1.8(±0.7)–3.2(±1.0)×107 μm2 cm−3. Number size distributions peaked between 133–150 nm, with both single and multi-modal character, while surface area distributions peaked between 173–270 nm. Comparison with electron microscopy of particles up to 10 μm show that, by number, > 97% residues are <1 μm in diameter, the upper limit of the NTA. The range of concentration and distribution properties indicates that insoluble residue properties vary with ambient aerosol concentrations, cloud microphysics, and meteorological dynamics. NTA has great potential for studying the role that insoluble residues play in critical atmospheric processes. PMID:25705069

  10. Methods and systems for utilizing carbide lime or slag

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devenney, Martin; Fernandez, Miguel; Chen, Irvin

    Provided herein are methods comprising a) treating a slag solid or carbide lime suspension with an ammonium salt in water to produce an aqueous solution comprising calcium salt, ammonium salt, and solids; b) contacting the aqueous solution with carbon dioxide from an industrial process under one or more precipitation conditions to produce a precipitation material comprising calcium carbonate and a supernatant aqueous solution wherein the precipitation material and the supernatant aqueous solution comprise residual ammonium salt; and c) removing and optionally recovering ammonia and/or ammonium salt using one or more steps of (i) recovering a gas exhaust stream comprising ammoniamore » during the treating and/or the contacting step; (ii) recovering the residual ammonium salt from the supernatant aqueous solution; and (iii) removing and optionally recovering the residual ammonium salt from the precipitation material.« less

  11. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  12. Objective classification of atmospheric circulation over southern Scandinavia

    NASA Astrophysics Data System (ADS)

    Linderson, Maj-Lena

    2001-02-01

    A method for calculating circulation indices and weather types following the Lamb classification is applied to southern Scandinavia. The main objective is to test the ability of the method to describe the atmospheric circulation over the area, and to evaluate the extent to which the pressure patterns determine local precipitation and temperature in Scania, southernmost Sweden. The weather type classification method works well and produces distinct groups. However, the variability within the group is large with regard to the location of the low pressure centres, which may have implications for the precipitation over the area. The anticyclonic weather type dominates, together with the cyclonic and westerly types. This deviates partly from the general picture for Sweden and may be explained by the southerly location of the study area. The cyclonic type is most frequent in spring, although cloudiness and amount of rain are lowest during this season. This could be explained by the occurrence of weaker cyclones or low air humidity during this time of year. Local temperature and precipitation were modelled by stepwise regression for each season, designating weather types as independent variables. Only the winter season-modelled temperature and precipitation show a high and robust correspondence to the observed temperature and precipitation, even though <60% of the precipitation variance is explained. In the other seasons, the connection between atmospheric circulation and the local temperature and precipitation is low. Other meteorological parameters may need to be taken into account. The time and space resolution of the mean sea level pressure (MSLP) grid may affect the results, as many important features might not be covered by the classification. Local physiography may also influence the local climate in a way that cannot be described by the atmospheric circulation pattern alone, stressing the importance of using more than one observation series.

  13. The relationship between low-level convergence and precipitation in CMIP5 current and future climates

    NASA Astrophysics Data System (ADS)

    Weller, Evan; Jakob, Christian; Reeder, Michael

    2017-04-01

    Precipitation is often organized along coherent lines of low-level convergence, which at longer time and space scales form well-known convergence zones over the tropical oceans. Here, an automated, objective method is used to identify instantaneous low-level convergence lines in the current climate of CMIP5 models and compared with reanalysis data results. Identified convergence lines are combined with precipitation to assess the extent to which precipitation around the globe is associated with convergence in the lower troposphere. Differences between the current climate of the models and observations are diagnosed in terms of the frequency and intensity of both precipitation associated with convergence lines and that which is not. Future changes in frequency and intensity of convergence lines, and associated precipitation, are also investigated for their contribution to the simulated future changes in total precipitation.

  14. Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes

    NASA Astrophysics Data System (ADS)

    Iizumi, Toshichika; Takikawa, Hiroki; Hirabayashi, Yukiko; Hanasaki, Naota; Nishimori, Motoki

    2017-08-01

    The use of different bias-correction methods and global retrospective meteorological forcing data sets as the reference climatology in the bias correction of general circulation model (GCM) daily data is a known source of uncertainty in projected climate extremes and their impacts. Despite their importance, limited attention has been given to these uncertainty sources. We compare 27 projected temperature and precipitation indices over 22 regions of the world (including the global land area) in the near (2021-2060) and distant future (2061-2100), calculated using four Representative Concentration Pathways (RCPs), five GCMs, two bias-correction methods, and three reference forcing data sets. To widen the variety of forcing data sets, we developed a new forcing data set, S14FD, and incorporated it into this study. The results show that S14FD is more accurate than other forcing data sets in representing the observed temperature and precipitation extremes in recent decades (1961-2000 and 1979-2008). The use of different bias-correction methods and forcing data sets contributes more to the total uncertainty in the projected precipitation index values in both the near and distant future than the use of different GCMs and RCPs. However, GCM appears to be the most dominant uncertainty source for projected temperature index values in the near future, and RCP is the most dominant source in the distant future. Our findings encourage climate risk assessments, especially those related to precipitation extremes, to employ multiple bias-correction methods and forcing data sets in addition to using different GCMs and RCPs.

  15. Assessing the Resolution Adaptability of the Zhang-McFarlane Cumulus Parameterization With Spatial and Temporal Averaging: RESOLUTION ADAPTABILITY OF ZM SCHEME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Yuxing; Fan, Jiwen; Xiao, Heng

    Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32more » km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.« less

  16. Multi-site precipitation downscaling using a stochastic weather generator

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Chen, Hua; Guo, Shenglian

    2018-03-01

    Statistical downscaling is an efficient way to solve the spatiotemporal mismatch between climate model outputs and the data requirements of hydrological models. However, the most commonly-used downscaling method only produces climate change scenarios for a specific site or watershed average, which is unable to drive distributed hydrological models to study the spatial variability of climate change impacts. By coupling a single-site downscaling method and a multi-site weather generator, this study proposes a multi-site downscaling approach for hydrological climate change impact studies. Multi-site downscaling is done in two stages. The first stage involves spatially downscaling climate model-simulated monthly precipitation from grid scale to a specific site using a quantile mapping method, and the second stage involves the temporal disaggregating of monthly precipitation to daily values by adjusting the parameters of a multi-site weather generator. The inter-station correlation is specifically considered using a distribution-free approach along with an iterative algorithm. The performance of the downscaling approach is illustrated using a 10-station watershed as an example. The precipitation time series derived from the National Centers for Environment Prediction (NCEP) reanalysis dataset is used as the climate model simulation. The precipitation time series of each station is divided into 30 odd years for calibration and 29 even years for validation. Several metrics, including the frequencies of wet and dry spells and statistics of the daily, monthly and annual precipitation are used as criteria to evaluate the multi-site downscaling approach. The results show that the frequencies of wet and dry spells are well reproduced for all stations. In addition, the multi-site downscaling approach performs well with respect to reproducing precipitation statistics, especially at monthly and annual timescales. The remaining biases mainly result from the non-stationarity of NCEP precipitation. Overall, the proposed approach is efficient for generating multi-site climate change scenarios that can be used to investigate the spatial variability of climate change impacts on hydrology.

  17. Transition Metal Nanomaterials by Bacterial Precipitation: Synthesis and Characterization of Cadmium Sulfide Quantum Dots

    NASA Astrophysics Data System (ADS)

    Marusak, Katherine Elizabeth

    We present a new method to fabricate semiconducting, transition metal nanoparticles (NPs) with tunable bandgap energies using engineered Escherichia coli. These bacteria overexpress the Treponema denticola cysteine desulfhydrase gene to facilitate precipitation of cadmium sulfide (CdS) NPs. Multiple characterization techniques reveal that the bacterially precipitated NPs are agglomerates of mostly quantum dots, with diameters that can range from 3 to 15 nm, embedded in a carbon-rich matrix. Notably, the measured photoelectrochemical current generated by these NPs is comparable to values reported in the literature and higher than that of synthesized chemical bath deposited CdS NPs. We showed that we can manipulate the bandgap energy of the NPs by controlling their size through varying the precursor concentrations. Our calculated bandgap energies ranged between 2.67 eV (i.e., quantum confined CdS) to 2.36 eV ( i.e., bulk CdS). By adding the CdCl2 precursor at a specific stage of the bacterial growth cycle, we were able to induce extracellular CdS NP precipitation. Additionally, we adapted extracellular precipitation strategies to form CdS NPs on surfaces as bacterial/PC membrane composites and characterized them by spectroscopic and imaging methods, including energy dispersive spectroscopy, and scanning and transmission electron microscopy. This method allowed us to control the localization of NP precipitation throughout the layered bacterial/membrane composite, by varying the timing of the cadmium precursor addition. Additionally, we demonstrated the photodegradation of methyl orange using the CdS functionalized porous membranes, thus confirming the photocatalytic properties of our composites for eventual translation to device development. We finally also explored the precipitation of other metallic NPs using our bacterial system, using enzyme extracted from our bacterial system, and using commercially available, his-tagged enzyme. We hope to extend this research to tethering enzymes on surfaces to direct NP precipitation. Taken all together, our results show the great promise bacteria have for the fabrication of tunable, transition metal NPs with useful electronic properties.

  18. Downscaling RCP8.5 daily temperatures and precipitation in Ontario using localized ensemble optimal interpolation (EnOI) and bias correction

    NASA Astrophysics Data System (ADS)

    Deng, Ziwang; Liu, Jinliang; Qiu, Xin; Zhou, Xiaolan; Zhu, Huaiping

    2017-10-01

    A novel method for daily temperature and precipitation downscaling is proposed in this study which combines the Ensemble Optimal Interpolation (EnOI) and bias correction techniques. For downscaling temperature, the day to day seasonal cycle of high resolution temperature of the NCEP climate forecast system reanalysis (CFSR) is used as background state. An enlarged ensemble of daily temperature anomaly relative to this seasonal cycle and information from global climate models (GCMs) are used to construct a gain matrix for each calendar day. Consequently, the relationship between large and local-scale processes represented by the gain matrix will change accordingly. The gain matrix contains information of realistic spatial correlation of temperature between different CFSR grid points, between CFSR grid points and GCM grid points, and between different GCM grid points. Therefore, this downscaling method keeps spatial consistency and reflects the interaction between local geographic and atmospheric conditions. Maximum and minimum temperatures are downscaled using the same method. For precipitation, because of the non-Gaussianity issue, a logarithmic transformation is used to daily total precipitation prior to conducting downscaling. Cross validation and independent data validation are used to evaluate this algorithm. Finally, data from a 29-member ensemble of phase 5 of the Coupled Model Intercomparison Project (CMIP5) GCMs are downscaled to CFSR grid points in Ontario for the period from 1981 to 2100. The results show that this method is capable of generating high resolution details without changing large scale characteristics. It results in much lower absolute errors in local scale details at most grid points than simple spatial downscaling methods. Biases in the downscaled data inherited from GCMs are corrected with a linear method for temperatures and distribution mapping for precipitation. The downscaled ensemble projects significant warming with amplitudes of 3.9 and 6.5 °C for 2050s and 2080s relative to 1990s in Ontario, respectively; Cooling degree days and hot days will significantly increase over southern Ontario and heating degree days and cold days will significantly decrease in northern Ontario. Annual total precipitation will increase over Ontario and heavy precipitation events will increase as well. These results are consistent with conclusions in many other studies in the literature.

  19. Isothermal Time-Temperature-Precipitation Diagram for an Aluminum Alloy 6005A by In Situ DSC Experiments

    PubMed Central

    Milkereit, Benjamin; Giersberg, Lydia; Kessler, Olaf; Schick, Christoph

    2014-01-01

    Time-temperature-precipitation (TTP) diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies. PMID:28788587

  20. Effect of synthesizing method on the properties of LiFePO4/C composite for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yoon, Man-Soon; Islam, Mobinul; Park, Young Min; Ur, Soon-Chul

    2013-03-01

    Olivine-type LiFePO4/C cathode materials are fabricated with FePO4 powders that are pre-synthesized by two different processes from iron chloride solution. Process I is a modified precipitation method which is implemented by the pH control of a solution using NH4OH to form FePO4 precipitates at room temperature. Process II is a conventional precipitation method, of which H3PO4 (85%) solution is gradually added to a FeCl3 solution during the process to maintain a designated mole ratio. The solution is subsequently aged at 90°C in a water bath until FePO4 precipitates appear. In order to synthesize LiFePO4/C composites, each batch of FePO4 powders is then mixed with pre-milled lithium carbonate and glucose (8 wt. %) as a carbon source in a ball-mill. The structural characteristics of both LiFePO4/C composites fabricated using iron phospates from two different routes have been examined employing XRD and SEM. The modified precipitation process is considered to be a relatively simple and effective process for the preparation of LiFePO4/C composites owing to their excellent electrochemical properties and rate capabilities.

  1. Surface Runoff Estimation Using SMOS Observations, Rain-gauge Measurements and Satellite Precipitation Estimations. Comparison with Model Predictions

    NASA Astrophysics Data System (ADS)

    Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy

    Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.

  2. Isothermal Time-Temperature-Precipitation Diagram for an Aluminum Alloy 6005A by In Situ DSC Experiments.

    PubMed

    Milkereit, Benjamin; Giersberg, Lydia; Kessler, Olaf; Schick, Christoph

    2014-03-28

    Time-temperature-precipitation (TTP) diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e ., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies.

  3. QPF verification using different radar-based analyses: a case study

    NASA Astrophysics Data System (ADS)

    Moré, J.; Sairouni, A.; Rigo, T.; Bravo, M.; Mercader, J.

    2009-09-01

    Verification of QPF in NWP models has been always challenging not only for knowing what scores are better to quantify a particular skill of a model but also for choosing the more appropriate methodology when comparing forecasts with observations. On the one hand, an objective verification technique can provide conclusions that are not in agreement with those ones obtained by the "eyeball" method. Consequently, QPF can provide valuable information to forecasters in spite of having poor scores. On the other hand, there are difficulties in knowing the "truth" so different results can be achieved depending on the procedures used to obtain the precipitation analysis. The aim of this study is to show the importance of combining different precipitation analyses and verification methodologies to obtain a better knowledge of the skills of a forecasting system. In particular, a short range precipitation forecasting system based on MM5 at 12 km coupled with LAPS is studied in a local convective precipitation event that took place in NE Iberian Peninsula on October 3rd 2008. For this purpose, a variety of verification methods (dichotomous, recalibration and object oriented methods) are used to verify this case study. At the same time, different precipitation analyses are used in the verification process obtained by interpolating radar data using different techniques.

  4. Measurement of gamma' precipitates in a nickel-based superalloy using energy-filtered transmission electron microscopy coupled with automated segmenting techniques.

    PubMed

    Tiley, J S; Viswanathan, G B; Shiveley, A; Tschopp, M; Srinivasan, R; Banerjee, R; Fraser, H L

    2010-08-01

    Precipitates of the ordered L1(2) gamma' phase (dispersed in the face-centered cubic or FCC gamma matrix) were imaged in Rene 88 DT, a commercial multicomponent Ni-based superalloy, using energy-filtered transmission electron microscopy (EFTEM). Imaging was performed using the Cr, Co, Ni, Ti and Al elemental L-absorption edges in the energy loss spectrum. Manual and automated segmentation procedures were utilized for identification of precipitate boundaries and measurement of precipitate sizes. The automated region growing technique for precipitate identification in images was determined to measure accurately precipitate diameters. In addition, the region growing technique provided a repeatable method for optimizing segmentation techniques for varying EFTEM conditions. (c) 2010 Elsevier Ltd. All rights reserved.

  5. Molten tin reprocessing of spent nuclear fuel elements. [Patent application; continuous process

    DOEpatents

    Heckman, R.A.

    1980-12-19

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support te liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  6. Precipitation of molybdenum(V) as the hydroxide and its separation from rhenium.

    PubMed

    Yatirajam, V; Ahuja, U; Kakkar, L R

    1975-03-01

    A study of the conditions for precipitation of molybdenum(V) hydroxide shows that for Mo concentration 1 mg ml about 97.5% of the Mo can be precipitated between pH 5 and 5.8. Lower concentrations of molybdenum(V) or molybdenum(VI) can be precipitated quantitatively by using 20 times the amount of zirconium as collector, at the same pH. On this basis, a simple method is given for quantitative separation of rhenium from large amounts of molybdenum and is attested by analysis of synthetic and molybdenite samples.

  7. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Duffield, R.B.

    1959-02-24

    S>A method is described for separating plutonium, in a valence state of less than five, from an aqueous solution in which it is dissolved. The niethod consists in adding potassium and sulfate ions to such a solution while maintaining the solution at a pH of less than 7.1, and isolating the precipitate of potassium plutonium sulfate thus formed.

  8. A modified method for determining tannin-protein precipitation capacity using accelerated solvent extraction (ASE) and microplate gel filtration.

    PubMed

    McArt, Scott H; Spalinger, Donald E; Kennish, John M; Collins, William B

    2006-06-01

    The protein precipitation assay used by Robbins et al., (1987) Ecology 68:98-107 has been shown to predict successfully the reduction in protein availability to some ruminants due to tannins. The procedure, however, is expensive and laborious, which limits its utility, especially for quantitative ecological or nutritional applications where large numbers of assays may be required. We have modified the method to decrease its cost and increase laboratory efficiency by: (1) automating the extraction by using Accelerated Solvent Extraction (ASE); and (2) by scaling and automating the precipitation reaction, chromatography, and spectrometry with microplate gel filtration and an automated UV-VIS microplate spectrometer. ASE extraction is shown to be as effective at extracting tannins as the hot methanol technique. Additionally, the microplate assay is sensitive and precise. We show that the results from the new technique correspond in a nearly 1:1 relationship to the results of the previous technique. Hence, this method could reliably replace the older method with no loss in relevance to herbivore protein digestion. Moreover, the ASE extraction technique should be applicable to other tannin-protein precipitation assays and possibly other phenolic assays.

  9. Precipitation intensity probability distribution modelling for hydrological and construction design purposes

    NASA Astrophysics Data System (ADS)

    Koshinchanov, Georgy; Dimitrov, Dobri

    2008-11-01

    The characteristics of rainfall intensity are important for many purposes, including design of sewage and drainage systems, tuning flood warning procedures, etc. Those estimates are usually statistical estimates of the intensity of precipitation realized for certain period of time (e.g. 5, 10 min., etc) with different return period (e.g. 20, 100 years, etc). The traditional approach in evaluating the mentioned precipitation intensities is to process the pluviometer's records and fit probability distribution to samples of intensities valid for certain locations ore regions. Those estimates further become part of the state regulations to be used for various economic activities. Two problems occur using the mentioned approach: 1. Due to various factors the climate conditions are changed and the precipitation intensity estimates need regular update; 2. As far as the extremes of the probability distribution are of particular importance for the practice, the methodology of the distribution fitting needs specific attention to those parts of the distribution. The aim of this paper is to make review of the existing methodologies for processing the intensive rainfalls and to refresh some of the statistical estimates for the studied areas. The methodologies used in Bulgaria for analyzing the intensive rainfalls and produce relevant statistical estimates: The method of the maximum intensity, used in the National Institute of Meteorology and Hydrology to process and decode the pluviometer's records, followed by distribution fitting for each precipitation duration period; As the above, but with separate modeling of probability distribution for the middle and high probability quantiles. Method is similar to the first one, but with a threshold of 0,36 mm/min of intensity; Another method proposed by the Russian hydrologist G. A. Aleksiev for regionalization of estimates over some territory, improved and adapted by S. Gerasimov for Bulgaria; Next method is considering only the intensive rainfalls (if any) during the day with the maximal annual daily precipitation total for a given year; Conclusions are drown on the relevance and adequacy of the applied methods.

  10. The green tea polyphenol (-)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health.

    PubMed

    Hara, Kumiko; Ohara, Masaru; Hayashi, Ikue; Hino, Takamune; Nishimura, Rumi; Iwasaki, Yoriko; Ogawa, Tetsuji; Ohyama, Yoshihiko; Sugiyama, Masaru; Amano, Hideaki

    2012-04-01

    Green tea is a popular drink throughout the world, and it contains various components, including the green tea polyphenol (-)-epigallocatechin gallate (EGCG). Tea interacts with saliva upon entering the mouth, so the interaction between saliva and EGCG interested us, especially with respect to EGCG-protein binding. SDS-PAGE revealed that several salivary proteins were precipitated after adding EGCG to saliva. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting indicated that the major proteins precipitated by EGCG were alpha-amylase, S100, and cystatins. Surface plasmon resonance revealed that EGCG bound to alpha-amylase at dissociation constant (K(d)) = 2.74 × 10(-6) M, suggesting that EGCG interacts with salivary proteins with a relatively strong affinity. In addition, EGCG inhibited the activity of alpha-amylase by non-competitive inhibition, indicating that EGCG is effective at inhibiting the formation of fermentable carbohydrates involved in caries formation. Interestingly, alpha-amylase reduced the antimicrobial activity of EGCG against the periodontal bacterium Aggregatibacter actinomycetemcomitans. Therefore, we considered that EGCG-salivary protein interactions might have both protective and detrimental effects with respect to oral health. © 2012 Eur J Oral Sci.

  11. Nonlinear Advection of Tropospheric Humidity and Cloud and Evaporation Feedbacks in the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Sugiyama, M.; Emanuel, K.; Stone, P.

    2006-05-01

    Despite active research on the Madden-Julian Oscillation (MJO), general circulation models (GCMs) continue to suffer from poor simulations of this tropical intraseasonal variability, and the theory on the MJO remains elusive. To assist model development and deepen our understanding, we develop a simple new model of the MJO, using the Quasiequilibrium Tropical Circulation Model of Neelin and Zeng. The MJO-like disturbance develops as a single-column instability because of cloud-radiative and surface flux feedbacks, a mechanism identified by Sobel and Gildor in their study on a tropical hot spot. Two processes contribute to the eastward movement: Nonlinear advection of the tropospheric humidity to the west, and convergence-induced moistening to the east. The key to the model disturbance is the interplay between tropospheric humidity and precipitation, moisture-convection feedback. As the humidity field propagates eastward by advection and convergence-induced moistening, the precipitation field follows. This study points to possible research areas on GCM parameterizations: 1) the effect of tropospheric humidity on moist convection; 2) the impact of downdraft-enhanced gustiness on surface heat flux; and 3) relationship between precipitation and cloud-radiative forcing.

  12. Humate-assisted Synthesis of MoS2/C Nanocomposites via Co-Precipitation/Calcination Route for High Performance Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Geng, Qin; Tong, Xin; Wenya, Gideon Evans; Yang, Chao; Wang, Jide; Maloletnev, A. S.; Wang, Zhiming M.; Su, Xintai

    2018-04-01

    A facile, cost-effective, non-toxic, and surfactant-free route has been developed to synthesize MoS2/carbon (MoS2/C) nanocomposites. Potassium humate consists of a wide variety of oxygen-containing functional groups, which is considered as promising candidates for functionalization of graphene. Using potassium humate as carbon source, two-dimensional MoS2/C nanosheets with irregular shape were synthesized via a stabilized co-precipitation/calcination process. Electrochemical performance of the samples as an anode of lithium ion battery was measured, demonstrating that the MoS2/C nanocomposite calcinated at 700 °C (MoS2/C-700) electrode showed outstanding performance with a high discharge capacity of 554.9 mAh g- 1 at a current density of 100 mA g- 1 and the Coulomb efficiency of the sample maintained a high level of approximately 100% after the first 3 cycles. Simultaneously, the MoS2/C-700 electrode exhibited good cycling stability and rate performance. The success in synthesizing MoS2/C nanocomposites via co-precipitation/calcination route may pave a new way to realize promising anode materials for high-performance lithium ion batteries.

  13. Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations

    NASA Astrophysics Data System (ADS)

    Pettersen, Claire; Bennartz, Ralf; Merrelli, Aronne J.; Shupe, Matthew D.; Turner, David D.; Walden, Von P.

    2018-04-01

    A novel method for classifying Arctic precipitation using ground based remote sensors is presented. Using differences in the spectral variation of microwave absorption and scattering properties of cloud liquid water and ice, this method can distinguish between different types of snowfall events depending on the presence or absence of condensed liquid water in the clouds that generate the precipitation. The classification reveals two distinct, primary regimes of precipitation over the Greenland Ice Sheet (GIS): one originating from fully glaciated ice clouds and the other from mixed-phase clouds. Five years of co-located, multi-instrument data from the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit (ICECAPS) are used to examine cloud and meteorological properties and patterns associated with each precipitation regime. The occurrence and accumulation of the precipitation regimes are identified and quantified. Cloud and precipitation observations from additional ICECAPS instruments illustrate distinct characteristics for each regime. Additionally, reanalysis products and back-trajectory analysis show different synoptic-scale forcings associated with each regime. Precipitation over the central GIS exhibits unique microphysical characteristics due to the high surface elevations as well as connections to specific large-scale flow patterns. Snowfall originating from the ice clouds is coupled to deep, frontal cloud systems advecting up and over the southeast Greenland coast to the central GIS. These events appear to be associated with individual storm systems generated by low pressure over Baffin Bay and Greenland lee cyclogenesis. Snowfall originating from mixed-phase clouds is shallower and has characteristics typical of supercooled cloud liquid water layers, and slowly propagates from the south and southwest of Greenland along a quiescent flow above the GIS.

  14. Precipitation Nowcast using Deep Recurrent Neural Network

    NASA Astrophysics Data System (ADS)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2016-12-01

    An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.

  15. Assessing non-linear variation of temperature and precipitation for different growth periods of maize and their impacts on phenology in the Midwest of Jilin Province, China

    NASA Astrophysics Data System (ADS)

    Guo, Enliang; Zhang, Jiquan; Wang, Yongfang; Alu, Si; Wang, Rui; Li, Danjun; Ha, Si

    2018-05-01

    In the past two decades, the regional climate in China has undergone significant change, resulting in crop yield reduction and complete failure. The goal of this study is to detect the variation of temperature and precipitation for different growth periods of maize and assess their impact on phenology. The daily meteorological data in the Midwest of Jilin Province during 1960-2014 were used in the study. The ensemble empirical mode decomposition method was adopted to analyze the non-linear trend and fluctuation in temperature and precipitation, and the sensitivity of the length of the maize growth period to temperature and precipitation was analyzed by the wavelet cross-transformation method. The results show that the trends of temperature and precipitation change are non-linear for different growth periods of maize, and the average temperature in the sowing-jointing stage was different from that in the other growth stages, showing a slight decrease trend, while the variation amplitude of maximum temperature is smaller than that of the minimum temperature. This indicates that the temperature difference between day and night shows a gradually decreasing trend. Precipitation in the growth period also showed a decreasing non-linear trend, while the inter-annual variability with period of quasi-3-year and quasi-6-year dominated the variation of temperature and precipitation. The whole growth period was shortened by 10.7 days, and the sowing date was advanced by approximately 11 days. We also found that there was a significant resonance period among temperature, precipitation, and phenology. Overall, a negative correlation between phenology and temperature is evident, while a positive correlation with precipitation is exhibited. The results illustrate that the climate suitability for maize has reduced over the past decades.

  16. USSR and Eastern Europe Scientific Abstracts Geophysics, Astronomy and Space No. 404

    DTIC Science & Technology

    1977-09-01

    atmospheric circulation. A reliable linear correlation was established between the monthly fallout activity of 10^Ru + -^Rh and monthly precipitation and...therefore the washing out of this radionuclide from tropospheric air by precipitation is more important for its fallout. [153] ANALYTICAL...development of some methods for predicting definite weather phenomena (such as precipitation ), taking into account the evolution of the

  17. Gamma prime precipitation modeling and strength responses in powder metallurgy superalloys

    NASA Astrophysics Data System (ADS)

    Mao, Jian

    Precipitation-hardened nickel-based superalloys have been widely used as high temperature structural materials in gas turbine engine applications for more than 50 years. Powder metallurgy (P/M) technology was introduced as an innovative manufacturing process to overcome severe segregation and poor workability of alloys with high alloying contents. The excellent mechanical properties of P/M superalloys also depend upon the characteristic microstructures, including grain size and size distribution of gamma' precipitates. Heat treatment is the most critical processing step that has ultimate influences on the microstructure, and hence, on the mechanical properties of the materials. The main objective of this research was to study the gamma ' precipitation kinetics in various cooling circumstances and also study the strength response to the cooling history in two model alloys, Rne88DT and U720LI. The research is summarized below: (1) An experimental method was developed to allow accurate simulation and control of any desired cooling profile. Two novel cooling methods were introduced: continuous cooling and interrupt cooling. Isothermal aging was also carried out. (2) The growth and coarsening kinetics of the cooling gamma' precipitates were experimentally studied under different cooling and aging conditions, and the empirical equations were established. It was found that the cooling gamma' precipitate versus the cooling rate follows a power law. The gamma' precipitate size versus aging time obeys the LSW cube law for coarsening. (3) The strengthening of the material responses to the cooling rate and the decreasing temperature during cooling was investigated in both alloys. The tensile strength increases with the cooling rate. In addition, the non-monotonic response of strength versus interrupt temperature is of great interest. (4) An energy-driven model integrated with the classic growth and coarsen theories was successfully embedded in a computer program developed to simulate the cooling gamma ' precipitation based on the first principle of thermodynamics. The combination of the thermodynamic and the kinetic approaches provided a more practical method to determine the critical nucleation energy. (5) The simulation results proved the gamma' burst theory and the existence of the multi-stage burst of gamma' precipitates, which shows good agreement with the experimental data in a variety of aspects.

  18. Coercivity enhancement in Mn-Al-Cu flakes produced by surfactant-assisted milling

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Hsu, Jen-Hwa; Vinod, V. T. P.; Černík, Miroslav; Kamat, S. V.

    2015-11-01

    We herein report the achievement of exceptionally high coercivity (Hc) values: 9.92 and 5.86 kOe at 5 and 300 K, respectively, for Mn55Al43Cu2 flakes produced by surfactant-assisted milling process without employing any heat-treatment. The use of surfactants such as oleic acid and oleylamine during milling yielded high-aspect ratio flakes for the Mn-Al-Cu alloy. Structural studies confirmed the presence of τ- and β-phases as the major constituents in the Mn-Al-Cu flakes. The observed Hc enhancement is due to the increase in anisotropy field and structural defects, which is hypothesized to originate from the domain-wall pinning as a consequence of precipitation of fine Cu-particles present at the grain boundaries.

  19. Long-term variability and changes of the precipitation regime in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Mian Sabir; Lee, Seungho

    2014-05-01

    This paper presents an examination of precipitation amounts in Pakistan. For this purpose, the annual precipitation and the annual number of precipitation days have been calculated, and a study aimed at investigating precipitation intensity and decadal changes was conducted. Precipitation trends have been calculated using a simple linear regression method and Kendall's tau-based test. To assess stability and differences, a 10-year span was determined for each precipitation region for the period of 1951-2010. This study focused on the three CLINO (Climatological Normal) periods, namely 1961-1990, 1971-2000, and 1981-2010 (the latest global standard normal period). Results confirm the gradual increase of annual precipitation in southwestern coastal areas of Pakistan and Cholistan desert. With regard to annual number of precipitation days, in the central part of the country negative trends were evident for wet days (with precipitation ≧ 0.1 mm), while the number of rainy days (with precipitation ≧ 1 mm) displayed a prominent positive trend. The series of the precipitation intensity gives evidence of a minor decrease in the Baluchistan Plateau, sub-Himalayas, and Potwar Plateau during the study period. Examination of secular trends evidenced that the Murree hills, the upper Indus plain, and the northwestern Baluchistan plateau have had shifts in their precipitation regime towards drier conditions, while the central plain, the northwestern mountains, and the southern part of the country are shifting in their precipitation regime towards wetter conditions. Description among the means of precipitation amounts suggests that "normal" precipitation data for various national projects should be calculated for the last 30 years.

  20. Microgravity

    NASA Image and Video Library

    1995-09-12

    DCAM, developed by MSFC, grows crystals by the dialysis and liquid-liquid diffusion methods. In both methods, protein crystal growth is induced by changing conditions in the protein. In dialysis, a semipermeable membrane retains the protein solution in one compartment, while allowing molecules of precipitant to pass freely through the membrane from an adjacent compartment. As the precipitant concentration increases within the protein compartment, crystallization begins. In liquid-liquid diffusion, a protein solution and a precipitant solution are layered in a container and allowed to diffuse into each other. This leads to conditions which may induce crystallization of the protein. Liquid-liquid diffusion is difficult on Earth because density and temperature differences cause the solutions to mix rapidly.

  1. A new and fast method for preparing high quality lambda DNA suitable for sequencing.

    PubMed Central

    Manfioletti, G; Schneider, C

    1988-01-01

    A method is described for the rapid purification of high quality lambda DNA. The method can be used from either liquid or plate lysates and on a small scale or a large scale. It relies on the preadsobtion of all polyanions present in the lysate to an "insoluble" anion-exchange matrix (DEAE or TEAE). Phage particles are then disrupted by combined treatment with EDTA/proteinase K and the resulting DNA is precipitated by the addition of the cationic detergent cetyl (or hexadecyl)-trimethyl ammonium bromide-CTAB ("soluble" anion-exchange matrix). The precipitated CTAB-DNA complex is then exchanged to Na-DNA and ethanol precipitated. The resultant purified DNA is suitable for enzymatic reactions and provides a high quality template for dideoxy-sequence analysis. Images PMID:2966928

  2. Determination of papaverine and cocaine by use of a precipitation system coupled on-line to an atomic absorption spectrometer.

    PubMed

    Eisman, M; Gallego, M; Varcárcel, M

    1994-02-01

    A continuous-precipitation flame-atomization atomic absorption spectrometric method for the determination of papaverine and cocaine hydrochlorides is proposed. The method is based on the precipitation of reineckates by injection of Reinecke's salt into a carrier containing the alkaloids and their subsequent retention on a stainless steel filter. In this way, papaverine and cocaine hydrochlorides can be determine over the ranges 5-85 and 50-850 micrograms ml-1 with a relative standard deviation of 1.3 and 3.2%, respectively, and a sampling frequency of 150 h-1. The proposed method is more sensitive and selective for papaverine than it is for cocaine and can be applied to the determination of papaverine HCl in pharmaceutical preparations.

  3. High-throughput protein concentration and buffer exchange: comparison of ultrafiltration and ammonium sulfate precipitation.

    PubMed

    Moore, Priscilla A; Kery, Vladimir

    2009-01-01

    High-throughput protein purification is a complex, multi-step process. There are several technical challenges in the course of this process that are not experienced when purifying a single protein. Among the most challenging are the high-throughput protein concentration and buffer exchange, which are not only labor-intensive but can also result in significant losses of purified proteins. We describe two methods of high-throughput protein concentration and buffer exchange: one using ammonium sulfate precipitation and one using micro-concentrating devices based on membrane ultrafiltration. We evaluated the efficiency of both methods on a set of 18 randomly selected purified proteins from Shewanella oneidensis. While both methods provide similar yield and efficiency, the ammonium sulfate precipitation is much less labor intensive and time consuming than the ultrafiltration.

  4. On the usage of divergence nudging in the DMI nowcasting system

    NASA Astrophysics Data System (ADS)

    Korsholm, Ulrik; Petersen, Claus; Hansen Sass, Bent; Woetmann Nielsen, Niels; Getreuer Jensen, David; Olsen, Bjarke Tobias; Vedel, Henrik

    2014-05-01

    DMI has recently proposed a new method for nudging radar reflectivity CAPPI products into their operational nowcasting system. The system is based on rapid update cycles (with hourly frequency) with the High Resolution Limited Area Model combined with surface and upper air analysis at each initial time. During the first 1.5 hours of a simulation the model dynamical state is nudged in accordance with the CAPPI product after which a free forecast is produced with a forecast length of 12 hours. The nudging method is based on the assumption that precipitation is forced by low level moisture convergence and an enhanced moisture source will lead to convective triggering of the model cloud scheme. If the model under-predicts precipitation before cut-off horizontal low level divergence is nudged towards an estimated value. These pseudo observations are calculated from the CAPPI product by assuming a specific vertical profile of the change in divergence field. The strength of the nudging is proportional to the difference between observed and modelled precipitation. When over-predicting, the low level moisture source is reduced, and in-cloud moisture is nudged towards environmental values. Results have been analysed in terms of the fractions skill score and the ability of the nudging method to position the precipitation cells correctly is discussed. The ability of the model to retain memory of the precipitation systems in the free forecast has also been investigated and examples of combining the nudging method with extrapolated reflectivity fields are also shown.

  5. PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS

    DOEpatents

    Faris, B.F.

    1960-04-01

    A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.

  6. Precipitation Estimates for Hydroelectricity

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco J.; Hou, Arthur Y.; de Castro, Manuel; Checa, Ramiro; Cuartero, Fernando; Barros, Ana P.

    2011-01-01

    Hydroelectric plants require precise and timely estimates of rain, snow and other hydrometeors for operations. However, it is far from being a trivial task to measure and predict precipitation. This paper presents the linkages between precipitation science and hydroelectricity, and in doing so it provides insight into current research directions that are relevant for this renewable energy. Methods described include radars, disdrometers, satellites and numerical models. Two recent advances that have the potential of being highly beneficial for hydropower operations are featured: the Global Precipitation Measuring (GPM) mission, which represents an important leap forward in precipitation observations from space, and high performance computing (HPC) and grid technology, that allows building ensembles of numerical weather and climate models.

  7. Impact of the North Atlantic Oscillation on winter precipitation totals in Slovakia

    NASA Astrophysics Data System (ADS)

    Leskova, Livia; Stastny, Pavel

    2013-04-01

    The North Atlantic Oscillation (NAO) is the most important circulation mode in the Northern Hemisphere, which impacts climate in Europe in various ways. The strongest impacts of oscillation on air temperature and precipitation regime are detected in Scandinavia and Mediterranean region, but impacts have opposite effect. Therefore, assessment of the relation between NAO and precipitation totals seems to be interesting in Slovakia, because of the country location in the centre between above mentioned regions. Our former research detected only the relation between NAO and a winter precipitation totals in Slovakia. More detailed aspects of this relation is analysed in this paper. A correlation method was used at two resolution levels, which detected opposite spatial impact of NAO on above mentioned seasonal precipitation. The first generalised level was based on the precipitation regions, which were distinguished on the base of characteristic precipitation regime of individual regions. The second level was more detailed and the correlation method was applied on data of every individual rain gauge station from the set of 202 rain gauge stations with complete data for period 1901 - 2010 in Slovakia. In the northern part of the country (Orava and Kysuce regions), there was found the positive correlation. Increase in the winter precipitation totals was recorded in the same regions and general precipitation trend in this area was similar to the trend in used Hurrell oscillation index. It means, following the increasing trend in oscillation course, we can also expect the increase in precipitation totals in these regions in the near future. In a southward direction, this correlation changed to the negative values and the most negative correlation coefficients were reached in the lowland regions (Podunajská and Východoslovenská nížina) and in the region of Juhoslovenská kotlina. This last mentioned region is located in multiple precipitation shadow of Carpathians, whereas the precipitation shadow is lower in other regions. Therefore, we suppose, the impact of NAO is strongly influenced by barrier effect of Carpathian Mountains. It can also be expected the important impact of Mediterranean oscillation in the last mentioned regions. ACKNOWLEDGEMENT The article was prepared with the support of grant VEGA 1/1155/12.

  8. A low-cost hierarchical nanostructured beta-titanium alloy with high strength

    PubMed Central

    Devaraj, Arun; Joshi, Vineet V.; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A.; Lavender, Curt

    2016-01-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti–1Al–8V–5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications. PMID:27034109

  9. Dissolution-Assisted Pattern Formation During Olivine Carbonation

    NASA Astrophysics Data System (ADS)

    Lisabeth, Harrison; Zhu, Wenlu; Xing, Tiange; De Andrade, Vincent

    2017-10-01

    Olivine and pyroxene-bearing rocks in the oceanic crust react with hydrothermal fluids producing changes in the physical characteristics and behaviors of the altered rocks. Notably, these reactions tend to increase solid volume, reducing pore volume, permeability, and available reactive surface area, yet entirely hydrated and/or carbonated rocks are commonly observed in the field. We investigate the evolution of porosity and permeability of fractured dunites reacted with CO2-rich solutions in laboratory experiments. The alteration of crack surfaces changes the mechanical and transport properties of the bulk samples. Analysis of three-dimensional microstructural data shows that although precipitation of secondary minerals causes the total porosity of the sample to decrease, an interconnected network of porosity is maintained through channelized dissolution and coupled carbonate precipitation. The observed microstructure appears to be the result of chemo-mechanical coupling, which may provide a mechanism of porosity maintenance without the need to invoke reaction-driven cracking.

  10. Dissolution-Assisted Pattern Formation During Olivine Carbonation

    DOE PAGES

    Lisabeth, Harrison; Zhu, Wenlu; Xing, Tiange; ...

    2017-08-31

    Olivine and pyroxene bearing rocks in the oceanic crust react with hydrothermal fluids producing changes in the physical characteristics and behaviors of the altered rocks. Notably, these reactions tend to increase solid volume, reducing pore volume, permeability and available reactive surface area; yet, entirely hydrated and/or carbonated rocks are commonly observed in the field. We investigate the evolution of porosity and permeability of fractured dunites reacted with CO 2-rich solutions in laboratory experiments. The alteration of crack surfaces changes the mechanical and transport properties of the bulk samples. Analysis of three-dimensional microstructural data shows that although precipitation of secondary mineralsmore » causes the total porosity of the sample to decrease, an interconnected network of porosity is maintained through channelized dissolution and coupled carbonate precipitation. Lastly, the observed microstructure appears to be the result of chemo-mechanical coupling, which may provide a mechanism of porosity maintenance without the need to invoke reaction-driven cracking.« less

  11. Experimental postseismic recovery of fractured rocks assisted by calcite sealing

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M.-L.; Gratier, J.-P.; Renard, F.

    2017-07-01

    Postseismic recovery within fault damage zones involves slow healing of coseismic fractures leading to permeability reduction and strength increase with time. To better understand this process, experiments were performed by long-term fluid percolation with calcite precipitation through predamaged quartz-monzonite samples subjected to upper crustal conditions of stress and temperature. This resulted in a P wave velocity recovery of 50% of its initial drop after 64 days. In contrast, the permeability remained more or less constant for the duration of the experiment. Microstructures, fluid chemistry, and X-ray microtomography demonstrate that incipient calcite sealing and asperity dissolution are responsible for the P wave velocity recovery. The permeability is unaffected because calcite precipitates outside of the main flow channels. The highly nonparallel evolution of strength recovery and permeability suggests that fluid conduits within fault damage zones can remain open fluid conduits after an earthquake for much longer durations than suggested by the seismic monitoring of fault healing.

  12. Surfactant-assisted synthesis of mono-dispersed cubic BaTiO{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai, Chunxi; Inukai, Koji; Takahashi, Yosuke

    2014-09-15

    Mono-dispersed BaTiO{sub 3} nanoparticles have been prepared via the assistance of capping agent poly(vinylpyrrolidone) (PVP). - Highlights: • BaTiO{sub 3} nanoparticles with single cubic crystal structure. • Poor dispersibility of nanoparticles has been overcome by in situ modification way. • Growth competition between BaTiO3 core and polymer shell. - Abstract: In this study, poly(vinylpyrrolidone)-assisted synthesis of mono-dispersed BaTiO{sub 3} nanoparticles have been reported. The various processing parameters, namely, refluxing temperature, KOH concentration, and poly(vinylpyrrolidone) concentration, have been varied, and the effects on the growth of BaTiO{sub 3} particles have been analyzed systematically. X-ray diffraction studies indicated that poly(vinylpyrrolidone) did notmore » affect the crystal structure, but rather influenced the crystal lattice structure. In addition, the use of surfactant poly(vinylpyrrolidone) hindered the agglomeration of the nanoparticles, and facilitated the formation of mono-dispersed core–shell organic/inorganic hybrid nanocomposite. Furthermore, the mineralizer KOH promoted the dissolution of reactants and promoted the crystallization of BaTiO{sub 3} particles. Accordingly, the dissolution-precipitation scheme was believed to be the mechanism underlying the formation of BaTiO{sub 3} particles. This was further substantiated by the experimental observations, which indicated that the nucleation and crystallization of the particles was affected by the KOH concentration in the reaction system. Finally, the formation of mono-dispersed core–shell nanocomposites proceeded via reaction limited cluster aggregation. We believe that the method proposed in this study could be extended for the synthesis of mono-dispersed nanoparticles for industrial applications.« less

  13. Impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Li, Chao; Brissette, François P.; Chen, Hua; Wang, Mingna; Essou, Gilles R. C.

    2018-05-01

    Bias correction is usually implemented prior to using climate model outputs for impact studies. However, bias correction methods that are commonly used treat climate variables independently and often ignore inter-variable dependencies. The effects of ignoring such dependencies on impact studies need to be investigated. This study aims to assess the impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling. To this end, a joint bias correction (JBC) method which corrects the joint distribution of two variables as a whole is compared with an independent bias correction (IBC) method; this is considered in terms of correcting simulations of precipitation and temperature from 26 climate models for hydrological modeling over 12 watersheds located in various climate regimes. The results show that the simulated precipitation and temperature are considerably biased not only in the individual distributions, but also in their correlations, which in turn result in biased hydrological simulations. In addition to reducing the biases of the individual characteristics of precipitation and temperature, the JBC method can also reduce the bias in precipitation-temperature (P-T) correlations. In terms of hydrological modeling, the JBC method performs significantly better than the IBC method for 11 out of the 12 watersheds over the calibration period. For the validation period, the advantages of the JBC method are greatly reduced as the performance becomes dependent on the watershed, GCM and hydrological metric considered. For arid/tropical and snowfall-rainfall-mixed watersheds, JBC performs better than IBC. For snowfall- or rainfall-dominated watersheds, however, the two methods behave similarly, with IBC performing somewhat better than JBC. Overall, the results emphasize the advantages of correcting the P-T correlation when using climate model-simulated precipitation and temperature to assess the impact of climate change on watershed hydrology. However, a thorough validation and a comparison with other methods are recommended before using the JBC method, since it may perform worse than the IBC method for some cases due to bias nonstationarity of climate model outputs.

  14. A global satellite assisted precipitation climatology

    USGS Publications Warehouse

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate Hazards Group's Precipitation Climatology version 1 (CHPclim v.1.0,http://dx.doi.org/10.15780/G2159X), is shown to compare favorably with similar global climatology products, especially in areas with complex terrain and low station densities.

  15. A global satellite-assisted precipitation climatology

    NASA Astrophysics Data System (ADS)

    Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.

    2015-10-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate Hazards Group's Precipitation Climatology version 1 (CHPclim v.1.0, doi:10.15780/G2159X), is shown to compare favorably with similar global climatology products, especially in areas with complex terrain and low station densities.

  16. Matrix precipitation: a general strategy to eliminate matrix interference for pharmaceutical toxic impurities analysis.

    PubMed

    Yang, Xiaojing; Xiong, Xuewu; Cao, Ji; Luan, Baolei; Liu, Yongjun; Liu, Guozhu; Zhang, Lei

    2015-01-30

    Matrix interference, which can lead to false positive/negative results, contamination of injector or separation column, incompatibility between sample solution and the selected analytical instrument, and response inhibition or even quenching, is commonly suffered for the analysis of trace level toxic impurities in drug substance. In this study, a simple matrix precipitation strategy is proposed to eliminate or minimize the above stated matrix interference problems. Generally, a sample of active pharmaceutical ingredients (APIs) is dissolved in an appropriate solvent to achieve the desired high concentration and then an anti-solvent is added to precipitate the matrix substance. As a result, the target analyte is extracted into the mixed solution with very less residual of APIs. This strategy has the characteristics of simple manipulation, high recovery and excellent anti-interference capability. It was found that the precipitation ratio (R, representing the ability to remove matrix substance) and the proportion of solvent (the one used to dissolve APIs) in final solution (P, affecting R and also affecting the method sensitivity) are two important factors of the precipitation process. The correlation between R and P was investigated by performing precipitation with various APIs in different solvent/anti-solvent systems. After a detailed mathematical reasoning process, P=20% was proved to be an effective and robust condition to perform the precipitation strategy. The precipitation method with P=20% can be used as a general strategy for toxic impurity analysis in APIs. Finally, several typical examples are described in this article, where the challenging matrix interference issues have been resolved successfully. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Sea surface salinity and temperature-based predictive modeling of southwestern US winter precipitation: improvements, errors, and potential mechanisms

    NASA Astrophysics Data System (ADS)

    Liu, T.; Schmitt, R. W.; Li, L.

    2017-12-01

    Using 69 years of historical data from 1948-2017, we developed a method to globally search for sea surface salinity (SSS) and temperature (SST) predictors of regional terrestrial precipitation. We then applied this method to build an autumn (SON) SSS and SST-based 3-month lead predictive model of winter (DJF) precipitation in southwestern United States. We also find that SSS-only models perform better than SST-only models. We previously used an arbitrary correlation coefficient (r) threshold, |r| > 0.25, to define SSS and SST predictor polygons for best subset regression of southwestern US winter precipitation; from preliminary sensitivity tests, we find that |r| > 0.18 yields the best models. The observed below-average precipitation (0.69 mm/day) in winter 2015-2016 falls within the 95% confidence interval of the prediction model. However, the model underestimates the anomalous high precipitation (1.78 mm/day) in winter 2016-2017 by more than three-fold. Moisture transport mainly attributed to "pineapple express" atmospheric rivers (ARs) in winter 2016-2017 suggests that the model falls short on a sub-seasonal scale, in which case storms from ARs contribute a significant portion of seasonal terrestrial precipitation. Further, we identify a potential mechanism for long-range SSS and precipitation teleconnections: standing Rossby waves. The heat applied to the atmosphere from anomalous tropical rainfall can generate standing Rossby waves that propagate to higher latitudes. SSS anomalies may be indicative of anomalous tropical rainfall, and by extension, standing Rossby waves that provide the long-range teleconnections.

  18. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    USGS Publications Warehouse

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  19. AI-based (ANN and SVM) statistical downscaling methods for precipitation estimation under climate change scenarios

    NASA Astrophysics Data System (ADS)

    Mehrvand, Masoud; Baghanam, Aida Hosseini; Razzaghzadeh, Zahra; Nourani, Vahid

    2017-04-01

    Since statistical downscaling methods are the most largely used models to study hydrologic impact studies under climate change scenarios, nonlinear regression models known as Artificial Intelligence (AI)-based models such as Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been used to spatially downscale the precipitation outputs of Global Climate Models (GCMs). The study has been carried out using GCM and station data over GCM grid points located around the Peace-Tampa Bay watershed weather stations. Before downscaling with AI-based model, correlation coefficient values have been computed between a few selected large-scale predictor variables and local scale predictands to select the most effective predictors. The selected predictors are then assessed considering grid location for the site in question. In order to increase AI-based downscaling model accuracy pre-processing has been developed on precipitation time series. In this way, the precipitation data derived from various GCM data analyzed thoroughly to find the highest value of correlation coefficient between GCM-based historical data and station precipitation data. Both GCM and station precipitation time series have been assessed by comparing mean and variances over specific intervals. Results indicated that there is similar trend between GCM and station precipitation data; however station data has non-stationary time series while GCM data does not. Finally AI-based downscaling model have been applied to several GCMs with selected predictors by targeting local precipitation time series as predictand. The consequences of recent step have been used to produce multiple ensembles of downscaled AI-based models.

  20. Two case studies on NARCCAP precipitation extremes

    NASA Astrophysics Data System (ADS)

    Weller, Grant B.; Cooley, Daniel; Sain, Stephan R.; Bukovsky, Melissa S.; Mearns, Linda O.

    2013-09-01

    We introduce novel methodology to examine the ability of six regional climate models (RCMs) in the North American Regional Climate Change Assessment Program (NARCCAP) ensemble to simulate past extreme precipitation events seen in the observational record over two different regions and seasons. Our primary objective is to examine the strength of daily correspondence of extreme precipitation events between observations and the output of both the RCMs and the driving reanalysis product. To explore this correspondence, we employ methods from multivariate extreme value theory. These methods require that we account for marginal behavior, and we first model and compare climatological quantities which describe tail behavior of daily precipitation for both the observations and model output before turning attention to quantifying the correspondence of the extreme events. Daily precipitation in a West Coast region of North America is analyzed in two seasons, and it is found that the simulated extreme events from the reanalysis-driven NARCCAP models exhibit strong daily correspondence to extreme events in the observational record. Precipitation over a central region of the United States is examined, and we find some daily correspondence between winter extremes simulated by reanalysis-driven NARCCAP models and those seen in observations, but no such correspondence is found for summer extremes. Furthermore, we find greater discrepancies among the NARCCAP models in the tail characteristics of the distribution of daily summer precipitation over this region than seen in precipitation over the West Coast region. We find that the models which employ spectral nudging exhibit stronger tail dependence to observations in the central region.

  1. Predicting and downscaling ENSO impacts on intraseasonal precipitation statistics in California: The 1997/98 event

    USGS Publications Warehouse

    Gershunov, A.; Barnett, T.P.; Cayan, D.R.; Tubbs, T.; Goddard, L.

    2000-01-01

    Three long-range forecasting methods have been evaluated for prediction and downscaling of seasonal and intraseasonal precipitation statistics in California. Full-statistical, hybrid-dynamical - statistical and full-dynamical approaches have been used to forecast El Nin??o - Southern Oscillation (ENSO) - related total precipitation, daily precipitation frequency, and average intensity anomalies during the January - March season. For El Nin??o winters, the hybrid approach emerges as the best performer, while La Nin??a forecasting skill is poor. The full-statistical forecasting method features reasonable forecasting skill for both La Nin??a and El Nin??o winters. The performance of the full-dynamical approach could not be evaluated as rigorously as that of the other two forecasting schemes. Although the full-dynamical forecasting approach is expected to outperform simpler forecasting schemes in the long run, evidence is presented to conclude that, at present, the full-dynamical forecasting approach is the least viable of the three, at least in California. The authors suggest that operational forecasting of any intraseasonal temperature, precipitation, or streamflow statistic derivable from the available records is possible now for ENSO-extreme years.

  2. Confounding factors in determining causal soil moisture-precipitation feedback

    NASA Astrophysics Data System (ADS)

    Tuttle, Samuel E.; Salvucci, Guido D.

    2017-07-01

    Identification of causal links in the land-atmosphere system is important for construction and testing of land surface and general circulation models. However, the land and atmosphere are highly coupled and linked by a vast number of complex, interdependent processes. Statistical methods, such as Granger causality, can help to identify feedbacks from observational data, independent of the different parameterizations of physical processes and spatiotemporal resolution effects that influence feedbacks in models. However, statistical causal identification methods can easily be misapplied, leading to erroneous conclusions about feedback strength and sign. Here, we discuss three factors that must be accounted for in determination of causal soil moisture-precipitation feedback in observations and model output: seasonal and interannual variability, precipitation persistence, and endogeneity. The effect of neglecting these factors is demonstrated in simulated and observational data. The results show that long-timescale variability and precipitation persistence can have a substantial effect on detected soil moisture-precipitation feedback strength, while endogeneity has a smaller effect that is often masked by measurement error and thus is more likely to be an issue when analyzing model data or highly accurate observational data.

  3. Application of supercritical fluid chromatography coupled to mass spectrometry to the determination of fat-soluble vitamins in selected food products.

    PubMed

    Oberson, Jean-Marie; Campos-Giménez, Esther; Rivière, Johann; Martin, Frédéric

    2018-06-01

    In the present manuscript, we describe a fully optimized and validated method suitable to analyse nine compounds (retinyl acetate, retinyl palmitate, retinol, α-tocopherol, α-tocopheryl acetate, cholecalciferol, ergocalciferol, phylloquinone, menaquinone-4) representing the major contributors to the fat-soluble vitamin activity of selected food products (infant formulas, adult nutritionals, infant cereals and mixed meals). Sample preparation involves direct solvent extraction using enzyme-assisted matrix disintegration and methanolic protein precipitation. Direct injection of the extract allows quantification of vitamins A, E and K in only 7 min, while vitamin D is determined after fast derivatization of the extract. Separation is achieved by supercritical fluid chromatography and detection performed by tandem mass spectrometry in positive Atmospheric Pressure Chemical Ionization mode. Results on a Standard Reference Material (SRM 1849a Infant/Adult Nutritional) were not statistically different from reference values. Full validation of the method showed excellent overall performance. Average recovery rate was between 90 and 110% for all vitamins and matrixes. The methodology shows enhanced safety and reduced cost as compared with previously published methods, together with potential for application to more complex matrixes. The full procedure can be easily applied in control laboratories dramatically increasing sample throughput and reducing solvent consumption. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. PRMS-IV, the precipitation-runoff modeling system, version 4

    USGS Publications Warehouse

    Markstrom, Steven L.; Regan, R. Steve; Hay, Lauren E.; Viger, Roland J.; Webb, Richard M.; Payn, Robert A.; LaFontaine, Jacob H.

    2015-01-01

    Computer models that simulate the hydrologic cycle at a watershed scale facilitate assessment of variability in climate, biota, geology, and human activities on water availability and flow. This report describes an updated version of the Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of various combinations of climate and land use on streamflow and general watershed hydrology. Several new model components were developed, and all existing components were updated, to enhance performance and supportability. This report describes the history, application, concepts, organization, and mathematical formulation of the Precipitation-Runoff Modeling System and its model components. This updated version provides improvements in (1) system flexibility for integrated science, (2) verification of conservation of water during simulation, (3) methods for spatial distribution of climate boundary conditions, and (4) methods for simulation of soil-water flow and storage.

  5. Plutonium Extraction by the Formation of Insoluble Salts; EXTRACTION DU PLUTONIUM PAR FORMATION DE SELS INSOLUBLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganivet, M.

    1960-06-29

    The aim of this work is to convert Pu IV nitrate in solution into an insoluble salt. Three methods have been studied: 1) the conventional oxalic acid method was improved; 2) precipitation with 8-hydroxyquinoline was tried; 3) the hydrogen peroxide method was adapted to the eluates of the ionic resins from Marcoule. The yield from the oxalic process has been increased (loss of Pu in the mother-liquor brought from 200 mg/l to 20 mg/l). The study of Pu IV precipitation by 8-hydroxyquinoline has shown that the yield is excellent (Pu concentration in the mother-liquor less than 5 mg/h), but decontaminationmore » from impurities is nil. Finally, experiments on the precipitation by hydrogen peroxide of Pu IV solutions at the concentrations normally obtained from the anionic resins at Marcoule have given us good yields (Pu concentration in the mother-liquor less than 7 mg/l), and the purification is better than that obtained by oxalic acid (1000 ppm total impurities after a precipitation). (author)« less

  6. Rainfall assimilation in RAMS by means of the Kuo parameterisation inversion: method and preliminary results

    NASA Astrophysics Data System (ADS)

    Orlandi, A.; Ortolani, A.; Meneguzzo, F.; Levizzani, V.; Torricella, F.; Turk, F. J.

    2004-03-01

    In order to improve high-resolution forecasts, a specific method for assimilating rainfall rates into the Regional Atmospheric Modelling System model has been developed. It is based on the inversion of the Kuo convective parameterisation scheme. A nudging technique is applied to 'gently' increase with time the weight of the estimated precipitation in the assimilation process. A rough but manageable technique is explained to estimate the partition of convective precipitation from stratiform one, without requiring any ancillary measurement. The method is general purpose, but it is tuned for geostationary satellite rainfall estimation assimilation. Preliminary results are presented and discussed, both through totally simulated experiments and through experiments assimilating real satellite-based precipitation observations. For every case study, Rainfall data are computed with a rapid update satellite precipitation estimation algorithm based on IR and MW satellite observations. This research was carried out in the framework of the EURAINSAT project (an EC research project co-funded by the Energy, Environment and Sustainable Development Programme within the topic 'Development of generic Earth observation technologies', Contract number EVG1-2000-00030).

  7. Estimating contamination potential at waste-disposal sites using a natural tracer

    NASA Astrophysics Data System (ADS)

    Stone, William J.

    1992-05-01

    Chloride is a conservative, natural tracer found in precipitation, soil water, and groundwater. The chloride mass-balance approach, long used to estimate groundwater recharge, also provides a downward flux of moisture and solute at sites where there is a potential for groundwater contamination. The flux is obtained by dividing the product of the mean annual precipitation and total annual chloride input (via precipitation and dust) by the mean soil-water chloride content. Chlorideversusdepth profiles can also be used to determine optimum depth of waste burial to minimize deterioration of waste containers. The method has been applied to three sites in arid alluvial-basin settings in New Mexico, U.S.A.: a proposed landfill, a battery recycling plant, and a hazardous-waste disposal facility. It is concluded that the method is reliable, economical, and practical. Furthermore, it can be applied at any stage in the development of a site. The chloride method should apply in any recharge area where the base of the root zone is separated from the water table by at least 3 m or so and chloride in soil water comes only from precipitation and dust.

  8. Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caillouet, Laurie; Vidal, Jean -Philippe; Sauquet, Eric

    This work proposes a daily high-resolution probabilistic reconstruction of precipitation and temperature fields in France over the 1871–2012 period built on the NOAA Twentieth Century global extended atmospheric reanalysis (20CR). The objective is to fill in the spatial and temporal data gaps in surface observations in order to improve our knowledge on the local-scale climate variability from the late nineteenth century onwards. The SANDHY (Stepwise ANalogue Downscaling method for HYdrology) statistical downscaling method, initially developed for quantitative precipitation forecast, is used here to bridge the scale gap between large-scale 20CR predictors and local-scale predictands from the Safran high-resolution near-surface reanalysis,more » available from 1958 onwards only. SANDHY provides a daily ensemble of 125 analogue dates over the 1871–2012 period for 608 climatically homogeneous zones paving France. Large precipitation biases in intermediary seasons are shown to occur in regions with high seasonal asymmetry like the Mediterranean. Moreover, winter and summer temperatures are respectively over- and under-estimated over the whole of France. Two analogue subselection methods are therefore developed with the aim of keeping the structure of the SANDHY method unchanged while reducing those seasonal biases. The calendar selection keeps the analogues closest to the target calendar day. The stepwise selection applies two new analogy steps based on similarity of the sea surface temperature (SST) and the large-scale 2 m temperature ( T). Comparisons to the Safran reanalysis over 1959–2007 and to homogenized series over the whole twentieth century show that biases in the interannual cycle of precipitation and temperature are reduced with both methods. The stepwise subselection moreover leads to a large improvement of interannual correlation and reduction of errors in seasonal temperature time series. When the calendar subselection is an easily applicable method suitable in a quantitative precipitation forecast context, the stepwise subselection method allows for potential season shifts and SST trends and is therefore better suited for climate reconstructions and climate change studies. Furthermore, the probabilistic downscaling of 20CR over the period 1871–2012 with the SANDHY probabilistic downscaling method combined with the stepwise subselection thus constitutes a perfect framework for assessing the recent observed meteorological events but also future events projected by climate change impact studies and putting them in a historical perspective.« less

  9. Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France

    DOE PAGES

    Caillouet, Laurie; Vidal, Jean -Philippe; Sauquet, Eric; ...

    2016-03-16

    This work proposes a daily high-resolution probabilistic reconstruction of precipitation and temperature fields in France over the 1871–2012 period built on the NOAA Twentieth Century global extended atmospheric reanalysis (20CR). The objective is to fill in the spatial and temporal data gaps in surface observations in order to improve our knowledge on the local-scale climate variability from the late nineteenth century onwards. The SANDHY (Stepwise ANalogue Downscaling method for HYdrology) statistical downscaling method, initially developed for quantitative precipitation forecast, is used here to bridge the scale gap between large-scale 20CR predictors and local-scale predictands from the Safran high-resolution near-surface reanalysis,more » available from 1958 onwards only. SANDHY provides a daily ensemble of 125 analogue dates over the 1871–2012 period for 608 climatically homogeneous zones paving France. Large precipitation biases in intermediary seasons are shown to occur in regions with high seasonal asymmetry like the Mediterranean. Moreover, winter and summer temperatures are respectively over- and under-estimated over the whole of France. Two analogue subselection methods are therefore developed with the aim of keeping the structure of the SANDHY method unchanged while reducing those seasonal biases. The calendar selection keeps the analogues closest to the target calendar day. The stepwise selection applies two new analogy steps based on similarity of the sea surface temperature (SST) and the large-scale 2 m temperature ( T). Comparisons to the Safran reanalysis over 1959–2007 and to homogenized series over the whole twentieth century show that biases in the interannual cycle of precipitation and temperature are reduced with both methods. The stepwise subselection moreover leads to a large improvement of interannual correlation and reduction of errors in seasonal temperature time series. When the calendar subselection is an easily applicable method suitable in a quantitative precipitation forecast context, the stepwise subselection method allows for potential season shifts and SST trends and is therefore better suited for climate reconstructions and climate change studies. Furthermore, the probabilistic downscaling of 20CR over the period 1871–2012 with the SANDHY probabilistic downscaling method combined with the stepwise subselection thus constitutes a perfect framework for assessing the recent observed meteorological events but also future events projected by climate change impact studies and putting them in a historical perspective.« less

  10. Toughening Mechanisms in Ultrahigh-Strength Steels

    DTIC Science & Technology

    1993-12-01

    coherent M2C carbide pre- cipitate with a transformation strain with three unequal eigenstrains in an elastically anisotropic AF1410 steel. The...a coherent ellipsoidal M2C carbide precipitate which has different elastic con- stants from the matrix. The eigenstrain method was used to... eigenstrain method. Here, "inhomogeneous*’ means that the elastic constants inside the precipitate are different from those of the ma- trix, and

  11. Nonaqueous purification of mixed nitrate heat transfer media

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1983-12-20

    A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.

  12. Three-dimensional characterization of BaHfO3 precipitates in GdBa2Cu3O7-y flim using STEM tomography.

    PubMed

    Nishiyama, T; Kaneko, K; Yamada, K; Teranishi, R; Kato, T; Hirayama, T; Tobita, H; Izumi, T; Shiohara, Y

    2014-11-01

    IntroductionSince the discovery of REBa2Cu3O7-y (RE: Rare Earth element, REBCO) superconductors, they have been expected as the best candidates for the power cable application due to its high critical temperature (Tc) and critical current density (Jc). Among those REBCO superconductors, GdBa2Cu3O7-y (GdBCO) have been receiving great interest because they have higher Tc and Jc than YBa2Cu3O7-y [1].GdBCO with various types of precipitates as artificial pinning centers (APCs) have been proposed to minimize the anisotropy of Jc characteristics under the magnetic field. Among those precipitates, BaHfO3 (BHO) was found most effective precipitates as APCs in GdBCO film prepared by pulsed laser deposition (PLD) method [2]. It is therefore necessary to investigate not only the morphologies but also the dispersion of BHO precipitates within the GdBCO, to understand the role of BHO for the superconducting characteristics. In this study, morphologies and dispersions of BHO precipitates were characterized three-dimensional by scanning transmission electron tomography ExperimentalBHO dispersed GdBCO films were fabricated on Hastelloy C-276TM substrates with buffer layers of CeO2/LaMnO3/MgO/ Gd2ZrO7 by PLD method.To observe microstructure of GdBCO film with BHO precipitates, cross-section TEM specimens were prepared by FIB method using Quanta 3D-200 (FEI, USA) with acceleration voltage from 2 to 30 kV. Three-dimensional information such as morphology and dispersion, of BHO precipitates were characterized by electron tomography using STEM-HAADF. Result and discussionFigure 1 shows three-dimensional reconstructed volume of BHO precipitates in GdBCO, which revealed that fine BHO precipitates have rod- and plate-like morphologies with homogeneous dispersion in GdBCO. In addition, growth directions of these precipitates were found with wide angular distributions from growth direction of GdBCO. Anisotropy of Jc in the magnetic fields was probably enhanced by various growth directions and homogeneous dispersion of nanosized BHO within GdBCO.jmicro;63/suppl_1/i26/DFU080F1F1DFU080F1Fig. 1.Three-dimensional reconstructed volume of BHO. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Precipitate statistics in an Al-Mg-Si-Cu alloy from scanning precession electron diffraction data

    NASA Astrophysics Data System (ADS)

    Sunde, J. K.; Paulsen, Ø.; Wenner, S.; Holmestad, R.

    2017-09-01

    The key microstructural feature providing strength to age-hardenable Al alloys is nanoscale precipitates. Alloy development requires a reliable statistical assessment of these precipitates, in order to link the microstructure with material properties. Here, it is demonstrated that scanning precession electron diffraction combined with computational analysis enable the semi-automated extraction of precipitate statistics in an Al-Mg-Si-Cu alloy. Among the main findings is the precipitate number density, which agrees well with a conventional method based on manual counting and measurements. By virtue of its data analysis objectivity, our methodology is therefore seen as an advantageous alternative to existing routines, offering reproducibility and efficiency in alloy statistics. Additional results include improved qualitative information on phase distributions. The developed procedure is generic and applicable to any material containing nanoscale precipitates.

  14. METHOD OF PREPARING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Beede, R.L.; Hopkins, H.H. Jr.

    1959-11-17

    C rystalline plutonium tetrafluoride is precipitated from aqueous up to 1.6 N mineral acid solutions of a plutorium (IV) salt with fluosilicic acid anions, preferably at room temperature. Hydrogen fluoride naay be added after precipitation to convert any plutonium fluosilicate to the tetrafluoride and any silica to fluosilicic acid. This process results in a purer product, especially as to iron and aluminum, than does the precipitation by the addition of hydrogen fluoride.

  15. Diabatic forcing and intialization with assimilation of cloud water and rainwater in a forecast model

    NASA Technical Reports Server (NTRS)

    Raymond, William H.; Olson, William S.; Callan, Geary

    1995-01-01

    In this study, diabatic forcing, and liquid water assimilation techniques are tested in a semi-implicit hydrostatic regional forecast model containing explicit representations of grid-scale cloud water and rainwater. Diabatic forcing, in conjunction with diabatic contributions in the initialization, is found to help the forecast retain the diabatic signal found in the liquid water or heating rate data, consequently reducing the spinup time associated with grid-scale precipitation processes. Both observational Special Sensor Microwave/Imager (SSM/I) and model-generated data are used. A physical retrieval method incorporating SSM/I radiance data is utilized to estimate the 3D distribution of precipitating storms. In the retrieval method the relationship between precipitation distributions and upwelling microwave radiances is parameterized, based upon cloud ensemble-radiative model simulations. Regression formulae relating vertically integrated liquid and ice-phase precipitation amounts to latent heating rates are also derived from the cloud ensemble simulations. Thus, retrieved SSM/I precipitation structures can be used in conjunction with the regression-formulas to infer the 3D distribution of latent heating rates. These heating rates are used directly in the forecast model to help initiate Tropical Storm Emily (21 September 1987). The 14-h forecast of Emily's development yields atmospheric precipitation water contents that compare favorably with coincident SSM/I estimates.

  16. High-resolution near real-time drought monitoring in South Asia

    NASA Astrophysics Data System (ADS)

    Aadhar, Saran; Mishra, Vimal

    2017-10-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning, and management of water resources at sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. We develop a high-resolution (0.05°) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat and cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature, which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05°. The bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub-basin levels.

  17. Stannic oxide spherical nanoparticles: an anode material with long-term cyclability for Li-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Kalubarme, Ramchandra S.; Kale, Bharat B.; Gosavi, Suresh W.

    2017-08-01

    Transition metal oxides are widely used in energy storage applications. Stannic oxide nanostructures are prepared using a controlled, NaOH assisted, simple precipitation method. The morphology of the prepared material confirms the formation of fine nanoparticles having a rutile stannic oxide (SnO2) phase, with cassiterite structure, and size distribution ~20 nm. On testing, as an anode material for a Li-ion battery, stannic oxide delivers a reversible charge capacity of 957 mAh g-1 at an applied current rate of C/10. The stannic oxide shows excellent rate performance displaying capacity of 577 mAh g-1 at 10 C and capacity of 919 mAh g-1 retained after 200 cycles at an applied current rate of C/2. The super performance of stannic oxide fine particles stem from both the effective diffusion of Li-ions to reaction sites through porous channels and weaker stress/strain during Li insertion/desertion owing to its fine size.

  18. Optimum Extraction, Characterization, and Antioxidant Activities of Polysaccharides from Flowers of Dendrobium devonianum

    PubMed Central

    Wang, Donghui; Fan, Bei; Wang, Yan; Zhang, Lijing

    2018-01-01

    Response surface methodology (RSM) was employed to optimize the conditions for the ultrasonic-assisted extraction (UAE) of polysaccharides from the flowers of Dendrobium devonianum. The optimal conditions for the maximum yields of DDFPs are as follows: an extraction temperature of 63.13°C, an extraction time of 53.10 min, and a water-to-raw material ratio of 22.11 mL/g. Furthermore, three fractions (DDFPs30, DDFPs50, and DDFPs70) were prepared from Dendrobium devonianum flowers polysaccharides (DDFPs) by the stepwise ethanol precipitation method. The DDFPs50 exhibited the highest antioxidant activity compared to the other fractions. The molecular weight, polydispersity, and conformation of these fractions were also characterized. In particular, the monosaccharide composition analysis of the DDFPs indicates that mannose and glucose are the primary components, similar to those of the D. officinale plant. This study provides a rapid extraction technology and essential information for the production of DDFPs, which could be potentially used as healthcare food. PMID:29581723

  19. Nanoporous PbSe-SiO2 Thermoelectric Composites.

    PubMed

    Wu, Chao-Feng; Wei, Tian-Ran; Sun, Fu-Hua; Li, Jing-Feng

    2017-11-01

    Nanoporous architecture has long been predicted theoretically for its proficiency in suppressing thermal conduction, but less concerned as a practical approach for better thermoelectric materials hitherto probably due to its technical challenges. This article demonstrates a study on nanoporous PbSe-SiO 2 composites fabricated by a facile method of mechanical alloying assisted by subsequent wet-milling and then spark plasma sintering. Owing to the formation of random nanopores and additional interface scattering, the lattice thermal conductivity is limited to a value as low as 0.56 W m -1 K -1 at above 600 K, almost the same low level achieved by introducing nanoscale precipitates. Besides, the room-temperature electrical transport is found to be dominated by the grain-boundary potential barrier scattering, whose effect fades away with increasing temperatures. Consequently, a maximum ZT of 1.15 at 823 K is achieved in the PbSe + 0.7 vol% SiO 2 composition with >20% increase in average ZT , indicating the great potential of nanoporous structuring toward high thermoelectric conversion efficiency.

  20. Amorphous cobalt potassium phosphate microclusters as efficient photoelectrochemical water oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Zhao, Chunsong; Dai, Xuezeng; Lin, Hong; Cui, Bai; Li, Jianbao

    2013-12-01

    A novel amorphous cobalt potassium phosphate hydrate compound (KCoPO4·H2O) is identified to be active photocatalyst for oxygen evolution reaction (OER) to facilitate hydrogen generation from water photolysis. It has been synthesized through a facile and cost-effective solution-based precipitation method using earth-abundant materials. Its highly porous structure and large surface areas are found to be responsible for the excellent electrochemical performance featuring a low OER onset at ∼550 mVSCE and high current density in alkaline condition. Unlike traditional cobalt-based spinel oxides (Co3O4, NiCo2O4) and phosphate (Co-Pi, Co(PO3)2) electrocatalysts, with proper energy band alignment for light-assisted water oxidation, cobalt potassium phosphate hydrate also exhibits robust visible-light response, generating a photocurrent density of ∼200 μA cm-2 at 0.7 VSCE. This catalyst could thus be considered as a promising candidate to perform photoelectrochemical water splitting.

  1. Validation of non-stationary precipitation series for site-specific impact assessment: comparison of two statistical downscaling techniques

    NASA Astrophysics Data System (ADS)

    Mullan, Donal; Chen, Jie; Zhang, Xunchang John

    2016-02-01

    Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.

  2. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    PubMed Central

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-01-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation. PMID:11359686

  3. Global Precipitation Measurement (GPM) Ground Validation: Plans and Preparations

    NASA Technical Reports Server (NTRS)

    Schwaller, M.; Bidwell, S.; Durning, F. J.; Smith, E.

    2004-01-01

    The Global Precipitation Measurement (GPM) program is an international partnership led by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM will improve climate, weather, and hydro-meteorological forecasts through more frequent and more accurate measurement of precipitation across the globe. This paper describes the concept, the planning, and the preparations for Ground Validation within the GPM program. Ground Validation (GV) plays an important role in the program by investigating and quantitatively assessing the errors within the satellite retrievals. These quantitative estimates of retrieval errors will assist the scientific community by bounding the errors within their research products. The two fundamental requirements of the GPM Ground Validation program are: (1) error characterization of the precipitation retrievals and (2) continual improvement of the satellite retrieval algorithms. These two driving requirements determine the measurements, instrumentation, and location for ground observations. This paper outlines GV plans for estimating the systematic and random components of retrieval error and for characterizing the spatial p d temporal structure of the error and plans for algorithm improvement in which error models are developed and experimentally explored to uncover the physical causes of errors within the retrievals. This paper discusses NASA locations for GV measurements as well as anticipated locations from international GPM partners. NASA's primary locations for validation measurements are an oceanic site at Kwajalein Atoll in the Republic of the Marshall Islands and a continental site in north-central Oklahoma at the U.S. Department of Energy's Atmospheric Radiation Measurement Program site.

  4. Regression-based season-ahead drought prediction for southern Peru conditioned on large-scale climate variables

    NASA Astrophysics Data System (ADS)

    Mortensen, Eric; Wu, Shu; Notaro, Michael; Vavrus, Stephen; Montgomery, Rob; De Piérola, José; Sánchez, Carlos; Block, Paul

    2018-01-01

    Located at a complex topographic, climatic, and hydrologic crossroads, southern Peru is a semiarid region that exhibits high spatiotemporal variability in precipitation. The economic viability of the region hinges on this water, yet southern Peru is prone to water scarcity caused by seasonal meteorological drought. Meteorological droughts in this region are often triggered during El Niño episodes; however, other large-scale climate mechanisms also play a noteworthy role in controlling the region's hydrologic cycle. An extensive season-ahead precipitation prediction model is developed to help bolster the existing capacity of stakeholders to plan for and mitigate deleterious impacts of drought. In addition to existing climate indices, large-scale climatic variables, such as sea surface temperature, are investigated to identify potential drought predictors. A principal component regression framework is applied to 11 potential predictors to produce an ensemble forecast of regional January-March precipitation totals. Model hindcasts of 51 years, compared to climatology and another model conditioned solely on an El Niño-Southern Oscillation index, achieve notable skill and perform better for several metrics, including ranked probability skill score and a hit-miss statistic. The information provided by the developed model and ancillary modeling efforts, such as extending the lead time of and spatially disaggregating precipitation predictions to the local level as well as forecasting the number of wet-dry days per rainy season, may further assist regional stakeholders and policymakers in preparing for drought.

  5. Preparations for Global Precipitation Measurement(GPM)Ground Validation

    NASA Technical Reports Server (NTRS)

    Bidwell, S. W.; Bibyk, I. K.; Duming, J. F.; Everett, D. F.; Smith, E. A.; Wolff, D. B.

    2004-01-01

    The Global Precipitation Measurement (GPM) program is an international partnership led by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM will improve climate, weather, and hydro-meterorological forecasts through more frequent and more accurate measurement of precipitation across the globe. This paper describes the concept and the preparations for Ground Validation within the GPM program. Ground Validation (GV) plays a critical role in the program by investigating and quantitatively assessing the errors within the satellite retrievals. These quantitative estimates of retrieval errors will assist the scientific community by bounding the errors within their research products. The two fundamental requirements of the GPM Ground Validation program are: (1) error characterization of the precipitation retrievals and (2) continual improvement of the satellite retrieval algorithms. These two driving requirements determine the measurements, instrumentation, and location for ground observations. This paper describes GV plans for estimating the systematic and random components of retrieval error and for characterizing the spatial and temporal structure of the error. This paper describes the GPM program for algorithm improvement in which error models are developed and experimentally explored to uncover the physical causes of errors within the retrievals. GPM will ensure that information gained through Ground Validation is applied to future improvements in the spaceborne retrieval algorithms. This paper discusses the potential locations for validation measurement and research, the anticipated contributions of GPM's international partners, and the interaction of Ground Validation with other GPM program elements.

  6. A Summary of Large Raindrop Observations from GPM GV Field Campaigns

    NASA Technical Reports Server (NTRS)

    Gatlin, Patrick N.; Petersen, Walter; Tokay, Ali; Thurai, Merhala; Bringi, V. N.; Carey, Lawrence; Wingo, Matthew

    2013-01-01

    NASA's Global Precipitation Measurement Mission (GPM) has conducted as series of Ground Validation (GV) studies to assist algorithm development for the GPM core satellite. Characterizing the drop size distribution (DSD) for different types of precipitation systems is critical in order to accurately estimate precipitation across the majority of the planet. Thus far, GV efforts have sampled DSDs in a variety of precipitation systems from Finland to Oklahoma. This dataset consists of over 33 million raindrops sampled by GPM GV's two-dimensional video disdrometers (2DVD) and includes RSD observations from the LPVEx, MC3E, GCPEx, HyMEx and IFloodS campaigns as well as from GV sites in Huntsville, AL and Wallops Island, VA. This study focuses on the larger end of the raindrop size spectrum, which greatly influences radar reflectivity and has implications for moment estimation. Thus knowledge of the maximum diameter is critical to GPM algorithm development. There are over 24,000 raindrops exceeding 5 mm in diameter contained within this disdrometer dataset. The largest raindrops in the 2DVD dataset (>7-8 mm in diameter) are found within intense convective thunderstorms, and their origins are believed to be hailstones. In stratiform rainfall, large raindrops have also been found to fall from lower and thicker melting layers. The 2DVD dataset will be combined with that collected by dual-polarimetric radar and aircraft particle imaging probes to "follow" the vertical evolution of the DSD tail (i.e., retrace the large drops from the surface to their origins aloft).

  7. Beneficial effects of restoration practices can be thwarted by climate extremes.

    PubMed

    Maccherini, Simona; Bacaro, Giovanni; Marignani, Michela

    2018-06-01

    The impacts of climate extremes on species, communities and ecosystems have become critical concerns to science and society. Under a changing climate, how restoration outcomes are affected by extreme climate variables is a largely unknown topic. We analyzed the effects of experimental factors (grazing and sowing of native species), extreme climate events (intense precipitation and extreme temperatures indexes) and their combination on the restoration progress of a dry, calcareous grassland in Tuscany (Italy) with a 1 year before/15 years continuous annual monitoring after, control/impact (BACI) experiment. Grazing had a beneficial effect on the diversity of the grassland, while sowing had a limited impact. The climatic index that most affected the entire plant community composition was the number of very heavy precipitation days. The interaction of grazing and extreme climatic indexes had a significant detrimental effect on restoration outcomes, increasing the cover of synanthropic and Cosmopolitan-Subcosmopolitan generalist species and decreasing the cover of more valuable species such endemic species. In the richest grazed plots, species richness showed a lower sensitivity to the average precipitation per wet day but in grazed site, restoration outcomes can be negatively influenced by the intensification of precipitation and temperature extremes. In a context of progressive tropicalization of the Mediterranean area, to assist managers setting achievable restoration goals, restoration practitioners should consider that climate extremes might interfere with the beneficial effects of restoration practices. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Stress as a seizure precipitant: Identification, associated factors, and treatment options.

    PubMed

    McKee, Heather R; Privitera, Michael D

    2017-01-01

    Stress is a common and important seizure precipitant reported by epilepsy patients. Studies to date have used different methodologies to identify relationships between epilepsy and stress. Several studies have identified anxiety, depression, and childhood trauma as being more common in patients with epilepsy who report stress as a seizure precipitant compared to patients with epilepsy who did not identify stress as a seizure precipitant. In one survey study it was found that a majority of patients with stress-triggered seizures had used some type of stress reduction method on their own and, of those who tried this, an even larger majority felt that these methods improved their seizures. Additionally, small to moderate sized prospective trials, including randomized clinical trials, using general stress reduction methods have shown promise in improving outcomes in patients with epilepsy, but results on seizure frequency have been inconsistent. Based on these studies, we recommend that when clinicians encounter patients who report stress as a seizure precipitant, these patients should be screened for a treatable mood disorder. Furthermore, although seizure reduction with stress reduction methods has not been proven in a randomized controlled trial, other important endpoints like quality of life were improved. Therefore, recommending stress reduction methods to patients with epilepsy appears to be a reasonable low risk adjunctive to standard treatments. The current review highlights the need for future research to help further clarify biological mechanisms of the stress-seizure relationship and emphasizes the need for larger randomized controlled trials to help develop evidence based treatment recommendations for our epilepsy patients. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  9. Predictability of monthly temperature and precipitation using automatic time series forecasting methods

    NASA Astrophysics Data System (ADS)

    Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris

    2018-02-01

    We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.

  10. Addressing extreme precipitation change under future climates in the Upper Yangtze River Basin

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Yuan, Z.; Gao, X.

    2017-12-01

    Investigating the impact of climate change on extreme precipitation accurately is of importance for application purposes such as flooding mitigation and urban drainage system design. In this paper, a systematical analysis framework to assess the impact of climate change on extreme precipitation events is developed and practiced in the Upper Yangtze River Basin (UYRB) in China. Firstly, the UYRB is gridded and five extreme precipitation indices (annual maximum 3- 5- 7- 15- and 30-day precipitation) are selected. Secondly, with observed precipitation from China's Ground Precipitation 0.5°×0.5° Gridded Dataset (V2.0) and simulated daily precipitation from ten general circulation models (GCMs) of CMIP5, A regionally efficient GCM is selected for each grid by the skill score (SS) method which maximizes the overlapped area of probability density functions of extreme precipitation indices between observations and simulations during the historical period. Then, simulations of assembled efficient GCMs are bias corrected by Equidistant Cumulative Distribution Function method. Finally, the impact of climate change on extreme precipitation is analyzed. The results show that: (1) the MRI-CGCM3 and MIROC-ESM perform better in the UYRB. There are 19.8 to 20.9% and 14.2 to 18.7% of all grids regard this two GCMs as regionally efficient GCM for the five indices, respectively. Moreover, the regionally efficient GCMs are spatially distributed. (2) The assembled GCM performs much better than any single GCM, with the SS>0.8 and SS>0.6 in more than 65 and 85 percent grids. (3) Under the RCP4.5 scenario, the extreme precipitation of 50-year and 100-year return period is projected to increase in most areas of the UYRB in the future period, with 55.0 to 61.3% of the UYRB increasing larger than 10 percent for the five indices. The changes are spatially and temporal distributed. The upstream region of the UYRB has a relatively significant increase compared to the downstream basin, while the increase for annual maximum 5- and 7-day precipitation are more significant than other indices. The results demonstrate the impact of climate change on extreme precipitation in the UYRB, which provides a support to manage the water resource in this area.

  11. Recent progress in the development of carbonate-intercalated Zn/Cr LDH as a novel photocatalyst for hydrogen evolution aimed at the utilization of solar light.

    PubMed

    Parida, Kulamani; Mohapatra, Lagnamayee

    2012-01-28

    A series of novel photocatalysts Zn/Cr LDH with different Zn/Cr molar ratios (2 : 1, 3 : 1, 4 : 1 and 2 : 1-CO(3)) were fabricated by a co-precipitation method and evaluated for photodecomposition of water using visible light irradiation. Various characterization methods were employed to investigate the structures, morphologies and photocatalytic properties. In comparison to Zn/Cr (2 : 1) LDH, Zn/Cr-CO(3) (2 : 1) LDH extends the absorption edges to the visible region and exhibits good photocatalytic activity, even without the assistance of co-catalysts. The visible light photocatalytic activity is ascribed to the charge transfer spectra of octahedral Cr ions in LDH. Zn/Cr-CO(3) LDH shows enhanced photocatalytic activities compared to Zn/Cr LDH as carbonate ions oxidise by holes to form carbonate radicals, inhibit the rapid recombination of e(-) and h(+) charge carriers and thereby suppress the backward reaction to some extent. This work provides a detailed understanding of the semiconductor properties of LDHs for photocatalytical hydrogen evolution.

  12. Hybrid nanomaterial for stabilizing the antibiofilm activity of Eugenia carryophyllata essential oil.

    PubMed

    Grumezescu, Alexandru Mihai; Chifiriuc, Mariana Carmen; Saviuc, Crina; Grumezescu, Valentina; Hristu, Radu; Mihaiescu, Dan Eduard; Stanciu, George A; Andronescu, Ecaterina

    2012-12-01

    The aim of the present study was to demonstrate that Fe(3)O(4)/oleic acid core/shell nanostructures could be used as systems for stabilizing the Eugenia carryophyllata essential oil (EO) on catheter surface pellicles, in order to improve their resistance to fungal colonization. EO microwave assisted extraction was performed in a Neo-Clevenger (related) device and its chemical composition was settled by GC-MS analysis. Fe(3)O(4)/oleic acid-core/shell nanoparticles (NP) were obtained by a precipitation method under microwave condition. High resolution transmission electron microscopy (HR-TEM) was used as a primary characterization method. The NPs were processed to achieve a core/shell/EO coated-shell nanosystem further used for coating the inner surface of central venous catheter samples. The tested fungal strains have been recently isolated from different clinical specimens. The biofilm architecture was assessed by confocal laser scanning microscopy (CLSM). Our results claim the usage of hybrid nanomaterial (core/shell/coated-shell) for the stabilization of E. carryophyllata EO, which prevented or inhibited the fungal biofilm development on the functionalized catheter, highlighting the opportunity of using these nanosystems to obtain improved, anti-biofilm coatings for biomedical applications.

  13. Particle size and shape modification of hydroxyapatite nanostructures synthesized via a complexing agent-assisted route.

    PubMed

    Mohandes, Fatemeh; Salavati-Niasari, Masoud

    2014-07-01

    In this work, hydroxyapatite (HAP), Ca10(PO4)6(OH)2, nanostructures including nanorods, nanobundles and nanoparticles have been prepared via a simple precipitation method. In the present method, Ca(NO3)2·4H2O and (NH4)2HPO4 were used as calcium and phosphorus precursors, respectively. Besides, the Schiff bases derived from 2-hydroxyacetophenone and different diamines were used as complexing agents for the in situ formation of Ca(2+) complexes. The formation mechanism of 0-D and 1-D nanostructures of HAP was also considered. When the complexing agents could coordinate to the Ca(2+) ions through N and O atoms to form the [CaN2O2](2+) complexes, HAP nanoparticles were generated. On the other hand, nanorods and nanobundles of HAP were obtained by forming the [CaN2](2+) as well as [CaO2](2+) complexes in the reaction solution. This work is the first successful synthesis of pure HAP nanostructures in the presence of Schiff bases instead of using the common surfactants. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fabrication and Characterization of Luminescent Magnetic Bifunctional Nanocomposite Based on TbPO4·H2O Nanowires and Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Huong, Nguyen Thanh; Hung, Nguyen Manh; Lien, Pham Thi; Van, Nguyen Duc; Nam, Pham Hong; Binh, Nguyen Thanh; Minh, Le Quoc

    2016-07-01

    The fabrication and properties of luminescent magnetic bifunctional nanocomposites comprised of TbPO4·H2O nanowires as a core and magnetite nanoparticles as a shell are presented. TbPO4·H2O nanowires were synthesized by a microwave-assisted method while the grafting process of freshly-formed superparamagnetic magnetite nanoparticles on the surface of luminescent nanowires was carried out by a co-precipitate method. The effects of the Fe3O4/TbPO4·H2O mass ratio on the luminescent and magnetic properties of the obtained nanocomposite were also investigated. The results showed that, for the optimized bifunctional nanocomposites, green luminescent emissions at 488 nm, 542 nm, 585 nm, 620 nm and superparamagnetic behavior with saturation magnetization M s of 6 emu/g were achieved. With a hyperthermia temperature of ~43.5°C under an alternating current (AC) magnetic field, the obtained TbPO4·H2O/Fe3O4 nanocomposite was expected to be used for both optical probing and hyperthermia cancer treatments in biomedical applications.

  15. Rapid determination of tafenoquine in small volume human plasma samples by high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Doyle, E; Fowles, S E; Summerfield, S; White, T J

    2002-03-25

    A method was developed for the determination of tafenoquine (I) in human plasma using high-performance liquid chromatography-tandem mass spectrometry. Prior to analysis, the protein in plasma samples was precipitated with methanol containing [2H3(15N)]tafenoquine (II) to act as an internal standard. The supernatant was injected onto a Genesis-C18 column without any further clean-up. The mass spectrometer was operated in the positive ion mode, employing a heat assisted nebulisation, electrospray interface. Ions were detected in multiple reaction monitoring mode. The assay required 50 microl of plasma and was precise and accurate within the range 2 to 500 ng/ml. The average within-run and between-run relative standard deviations were < 7% at 2 ng/ml and greater concentrations. The average accuracy of validation standards was generally within +/- 4% of the nominal concentration. There was no evidence of instability of I in human plasma following three complete freeze-thaw cycles and samples can safely be stored for at least 8 months at approximately -70 degrees C. The method was very robust and has been successfully applied to the analysis of clinical samples from patients and healthy volunteers dosed with I.

  16. Micelle-Assisted Synthesis of Al2O3 ·CaO Nanocatalyst: Optical Properties and Their Applications in Photodegradation of 2,4,6-Trinitrophenol

    PubMed Central

    Imtiaz, Ayesha; Khaleeq-ur-rahman, Muhammad; Adnan, Rohana

    2013-01-01

    Calcium oxide (CaO) nanoparticles are known to exhibit unique property due to their high adsorption capacity and good catalytic activity. In this work the CaO nanocatalysts were prepared by hydrothermal method using anionic surfactant, sodium dodecyl sulphate (SDS), as a templating agent. The as-synthesized nanocatalysts were further used as substrate for the synthesis of alumina doped calcium oxide (Al2O3 ·CaO) nanocatalysts via deposition-precipitation method at the isoelectric point of CaO. The Al2O3 ·CaO nanocatalysts were characterized by FTIR, XRD, TGA, TEM, and FESEM techniques. The catalytic efficiencies of these nanocatalysts were studied for the photodegradation of 2,4,6-trinitrophenol (2,4,6-TNP), which is an industrial pollutant, spectrophotometrically. The effect of surfactant and temperature on size of nanocatalysts was also studied. The smallest particle size and highest percentage of degradation were observed at critical micelle concentration of the surfactant. The direct optical band gap of the Al2O3 ·CaO nanocatalyst was found as 3.3 eV. PMID:24311980

  17. One-step synthesis of water-dispersible cysteine functionalized magnetic Fe3O4 nanoparticles for mercury(II) removal from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shen, Xiaofang; Wang, Qin; Chen, WenLing; Pang, Yuehong

    2014-10-01

    Cysteine functionalized Fe3O4 magnetic nanoparticles (Cys-Fe3O4 MNPs) were prepared facilely for Hg(II) removal from aqueous solutions. Using Fe2+ as precursors, air as oxidant and Cys as protectant, this novel material was one-pot synthesis at room temperature by oxidation-precipitation method with the assistance of sonication. The MNPs were characterized by TEM, VSM, FTIR, X-ray powder diffraction analysis (XRD) and TGA methods. Under the optimum experimental conditions, the removal efficiency was as high as 95% and the maximum sorption capacity is found to be 380 mg/mol for Hg(II). Study on adsorption kinetics shows that adsorption of Hg(II) onto Cys-Fe3O4 MNPs follows pseudo-first-order kinetic model and the adsorption rate constant was 0.22 min-1. Additionally, the Hg(II)-loaded Cys-Fe3O4 MNPs could be easily regenerated up to 95% using 1.0 M acetic acid. These results indicated that Cys-Fe3O4 MNPs is a potentially attractive material for the removal of Hg(II) from water.

  18. URANIUM RECOVERY PROCESS

    DOEpatents

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  19. Method for thermal processing alumina-enriched spinel single crystals

    DOEpatents

    Jantzen, Carol M.

    1995-01-01

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.

  20. Comparison of two methods for purification of enterocin B, a bacteriocin produced by Enterococcus faecium W3.

    PubMed

    Dündar, Halil; Atakay, Mehmet; Çelikbıçak, Ömür; Salih, Bekir; Bozoğlu, Faruk

    2015-01-01

    This study aimed to compare two different approaches for the purification of enterocin B from Enterococcus faecium strain W3 based on the observation that the bacteriocin was found both in cell associated form and in culture supernatant. The first approach employed ammonium sulfate precipitation, cation-exchange chromatography, and sequential reverse-phase high-performance liquid chromatography. The latter approach exploited a pH-mediated cell adsorption-desorption method to extract cell-bound bacteriocin, and one run of reverse-phase chromatography. The first method resulted in purification of enterocin B with a recovery of 4% of the initial bacteriocin activity found in culture supernatant. MALDI-TOF MS analysis and de novo peptide sequencing of the purified bacteriocin confirmed that the active peptide was enterocin B. The second method achieved the purification of enterocin B with a higher recovery (16%) and enabled us to achieve pure bacteriocin within a shorter period of time by avoiding time consuming purification protocols. The purity and identity of the active peptide were confirmed again by matrix-assisted laser desorption/ionization time-of flight (MALDI-TOF) mass spectrometry (MS) analysis. Although both approaches were satisfactory to obtain a sufficient amount of enterocin B for use in MS and amino acid sequence analysis, the latter was proved to be applicable in large-scale and rapid purification of enterocin B.

  1. A new precipitation-based method of baseflow separation and event identification for small watersheds (<50 km2)

    NASA Astrophysics Data System (ADS)

    Koskelo, Antti I.; Fisher, Thomas R.; Utz, Ryan M.; Jordan, Thomas E.

    2012-07-01

    SummaryBaseflow separation methods are often impractical, require expensive materials and time-consuming methods, and/or are not designed for individual events in small watersheds. To provide a simple baseflow separation method for small watersheds, we describe a new precipitation-based technique known as the Sliding Average with Rain Record (SARR). The SARR uses rainfall data to justify each separation of the hydrograph. SARR has several advantages such as: it shows better consistency with the precipitation and discharge records, it is easier and more practical to implement, and it includes a method of event identification based on precipitation and quickflow response. SARR was derived from the United Kingdom Institute of Hydrology (UKIH) method with several key modifications to adapt it for small watersheds (<50 km2). We tested SARR on watersheds in the Choptank Basin on the Delmarva Peninsula (US Mid-Atlantic region) and compared the results with the UKIH method at the annual scale and the hydrochemical method at the individual event scale. Annually, SARR calculated a baseflow index that was ˜10% higher than the UKIH method due to the finer time step of SARR (1 d) compared to UKIH (5 d). At the watershed scale, hydric soils were an important driver of the annual baseflow index likely due to increased groundwater retention in hydric areas. At the event scale, SARR calculated less baseflow than the hydrochemical method, again because of the differences in time step (hourly for hydrochemical) and different definitions of baseflow. Both SARR and hydrochemical baseflow increased with event size, suggesting that baseflow contributions are more important during larger storms. To make SARR easy to implement, we have written a MatLab program to automate the calculations which requires only daily rainfall and daily flow data as inputs.

  2. A quantitative comparison of precipitation forecasts between the storm-scale numerical weather prediction model and auto-nowcast system in Jiangsu, China

    NASA Astrophysics Data System (ADS)

    Wang, Gaili; Yang, Ji; Wang, Dan; Liu, Liping

    2016-11-01

    Extrapolation techniques and storm-scale Numerical Weather Prediction (NWP) models are two primary approaches for short-term precipitation forecasts. The primary objective of this study is to verify precipitation forecasts and compare the performances of two nowcasting schemes: a Beijing Auto-Nowcast system (BJ-ANC) based on extrapolation techniques and a storm-scale NWP model called the Advanced Regional Prediction System (ARPS). The verification and comparison takes into account six heavy precipitation events that occurred in the summer of 2014 and 2015 in Jiangsu, China. The forecast performances of the two schemes were evaluated for the next 6 h at 1-h intervals using gridpoint-based measures of critical success index, bias, index of agreement, root mean square error, and using an object-based verification method called Structure-Amplitude-Location (SAL) score. Regarding gridpoint-based measures, BJ-ANC outperforms ARPS at first, but then the forecast accuracy decreases rapidly with lead time and performs worse than ARPS after 4-5 h of the initial forecast. Regarding the object-based verification method, most forecasts produced by BJ-ANC focus on the center of the diagram at the 1-h lead time and indicate high-quality forecasts. As the lead time increases, BJ-ANC overestimates precipitation amount and produces widespread precipitation, especially at a 6-h lead time. The ARPS model overestimates precipitation at all lead times, particularly at first.

  3. Antibodies against toluene diisocyanate protein conjugates. Three methods of measurement.

    PubMed

    Patterson, R; Harris, K E; Zeiss, C R

    1983-12-01

    With the use of canine antisera against toluene diisocyanate (TDI)-dog serum albumin (DSA), techniques for measuring antibody against TDI-DSA were evaluated. The use of an ammonium sulfate precipitation assay showed suggestive evidence of antibody binding but high levels of TDI-DSA precipitation in the absence of antibody limit any usefulness of this technique. Double-antibody co-precipitation techniques will measure total antibody or Ig class antibody against 125I-TDI-DSA. These techniques are quantitative. The polystyrene tube radioimmunoassay is a highly sensitive method of detecting and quantitatively estimating IgG antibody. The enzyme linked immunosorbent assay is a rapidly adaptable method for the quantitative estimation of IgG, IgA, and IgM against TDI-homologous proteins. All these techniques were compared and results are demonstrated by using the same serum sample for analysis.

  4. Precipitation and Air Temperature Impact on Seasonal Variations of Groundwater Levels

    NASA Astrophysics Data System (ADS)

    Vitola, Ilva; Vircavs, Valdis; Abramenko, Kaspars; Lauva, Didzis; Veinbergs, Arturs

    2012-12-01

    The aim of this study is to clarify seasonal effects of precipitation and temperature on groundwater level changes in monitoring stations of the Latvia University of Agriculture - Mellupīte, Bērze and Auce. Groundwater regime and level fluctuations depend on climatic conditions such as precipitation intensity, evapotranspiration, surface runoff and drainage, as well as other hydrological factors. The relationship between precipitation, air temperature and groundwater level fluctuations could also lead and give different perspective of possible changes in groundwater quality. Using mathematical statistics and graphic-analytic methods it is concluded that autumn and winter precipitation has the dominant impact on groundwater level fluctuations, whereas spring and summer season fluctuations are more dependent on the air temperature.

  5. Commanders Responsibilities in the Operations Process During the 1864 Red River Expedition

    DTIC Science & Technology

    2015-05-21

    1999), 340. (Hereafter referred to as J.C.C.W.). 20 J.C.C.W., 278. 6 Major General Frederick Steele , 17,000 troops from the Department of the...Assistant Quartermaster Captain D .N. Welch noted “the navy is seizing all that cotton they can get hold of. Every gun -boat is loaded with cotton...then precipitated an increasing withdrawal, turned into an all-out rout, of the Union forces as “ Guns , knapsacks, blankets—everything was thrown away by

  6. Combining Hydrological Modeling and Remote Sensing Observations to Enable Data-Driven Decision Making for Devils Lake Flood Mitigation in a Changing Climate

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaodong; Kirilenko, Andrei; Lim, Howe; Teng, Williams

    2010-01-01

    This slide presentation reviews work to combine the hydrological models and remote sensing observations to monitor Devils Lake in North Dakota, to assist in flood damage mitigation. This reports on the use of a distributed rainfall-runoff model, HEC-HMS, to simulate the hydro-dynamics of the lake watershed, and used NASA's remote sensing data, including the TRMM Multi-Satellite Precipitation Analysis (TMPA) and AIRS surface air temperature, to drive the model.

  7. The Use of Convolutional Neural Network in Relating Precipitation to Circulation

    NASA Astrophysics Data System (ADS)

    Pan, B.; Hsu, K. L.; AghaKouchak, A.; Sorooshian, S.

    2017-12-01

    Precipitation prediction in dynamical weather and climate models depends on 1) the predictability of pressure or geopotential height for the forecasting period and 2) the successive work of interpreting the pressure field in terms of precipitation events. The later task is represented as parameterization schemes in numerical models, where detailed computing inevitably blurs the hidden cause-and-effect relationship in precipitation generation. The "big data" provided by numerical simulation, reanalysis and observation networks requires better causation analysis for people to digest and realize their use. While classic synoptical analysis methods are very-often insufficient for spatially distributed high dimensional data, a Convolutional Neural Network(CNN) is developed here to directly relate precipitation with circulation. Case study carried over west coast United States during boreal winter showed that CNN can locate and capture key pressure zones of different structures to project precipitation spatial distribution with high accuracy across hourly to monthly scales. This direct connection between atmospheric circulation and precipitation offers a probe for attributing precipitation to the coverage, location, intensity and spatial structure of characteristic pressure zones, which can be used for model diagnosis and improvement.

  8. Maximizing recovery of water-soluble proteins through acetone precipitation.

    PubMed

    Crowell, Andrew M J; Wall, Mark J; Doucette, Alan A

    2013-09-24

    Solvent precipitation is commonly used to purify protein samples, as seen with the removal of sodium dodecyl sulfate through acetone precipitation. However, in its current practice, protein loss is believed to be an inevitable consequence of acetone precipitation. We herein provide an in depth characterization of protein recovery through acetone precipitation. In 80% acetone, the precipitation efficiency for six of 10 protein standards was poor (ca. ≤15%). Poor recovery was also observed for proteome extracts, including bacterial and mammalian cells. As shown in this work, increasing the ionic strength of the solution dramatically improves the precipitation efficiency of individual proteins, and proteome mixtures (ca. 80-100% yield). This is obtained by including 1-30 mM NaCl, together with acetone (50-80%) which maximizes protein precipitation efficiency. The amount of salt required to restore the recovery correlates with the amount of protein in the sample, as well as the intrinsic protein charge, and the dielectric strength of the solution. This synergistic approach to protein precipitation in acetone with salt is consistent with a model of ion pairing in organic solvent, and establishes an improved method to recover proteins and proteome mixtures in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Measurement of precipitation using lysimeters

    NASA Astrophysics Data System (ADS)

    Fank, Johann; Klammler, Gernot

    2013-04-01

    Austria's alpine foothill aquifers contain important drinking water resources, but are also used intensively for agricultural production. These groundwater bodies are generally recharged by infiltrating precipitation. A sustainable water resources management of these aquifers requires quantifying real evapotranspiration (ET), groundwater recharge (GR), precipitation (P) and soil water storage change (ΔS). While GR and ΔS can be directly measured by weighable lysimeters and P by separate precipitation gauges, ET is determined by solving the climatic water balance ET = P GR ± ΔS. According to WMO (2008) measurement of rainfall is strongly influenced by precipitation gauge errors. Most significant errors result from wind loss, wetting loss, evaporation loss, and due to in- and out-splashing of water. Measuring errors can be reduced by a larger area of the measuring gaugés surface and positioning the collecting vessel at ground level. Modern weighable lysimeters commonly have a surface of 1 m², are integrated into their typical surroundings of vegetation cover (to avoid oasis effects) and allow scaling the mass change of monolithic soil columns in high measuring accuracy (0.01 mm water equivalent) and high temporal resolution. Thus, also precipitation can be quantified by measuring the positive mass changes of the lysimeter. According to Meissner et al. (2007) also dew, fog and rime can be determined by means of highly precise weighable lysimeters. Furthermore, measuring precipitation using lysimeters avoid common measuring errors (WMO 2008) at point scale. Though, this method implicates external effects (background noise, influence of vegetation and wind) which affect the mass time series. While the background noise of the weighing is rather well known and can be filtered out of the mass time series, the influence of wind, which blows through the vegetation and affects measured lysimeter mass, cannot be corrected easily since there is no clear relation between wind speeds and the measured outliers of lysimeter mass. Moreover, the influence of wind seems to be varying for different lysimeters. At the agricultural test site Wagna, Austria, two precipitation gauges in high temporal resolution (weighing-recording gauge and tipping-bucket gauge; both 200 cm² surface; measuring height 1.5 m) are installed. Furthermore, mass time series of various lysimeters cultivated with different vegetation is also available for the same location. Appropriate methods to compensate the influence of wind on measuring precipitation using lysimeters are investigated and results between the different measuring devices are compared. Results show that precipitation measured with lysimeters is generally higher, especially compared to the weighing-recording gauge. In addition it is detected that also the data interval of lysimeter mass time series used for quantifying precipitation (e.g., 1 day, 1 hour, 30 minutes, 10 minutes) is a crucial factor and influences the result. Summarizing, the potential of using highly precise weighable lysimeters for measuring precipitation at the point scale is rather high. However, methods used to compensate external effects on lysimeter weighing have to be enhanced for a global application of using lysimeters as precipitation gauges. Meissner, R., J. Seeger, H. Rupp, M. Seyfarth & H. Borg, 2007: Measurement of dew, fog, and rime with a high-precision gravitation Lysimeter. J. Plant Nutr. Soil Sci. 2007, 170, p. 335-344. WMO (World Meteorological Organization), 2008. Guide to Meteorological Instruments and Methods of Observation. WMO-No. 8, 140 pp.

  10. Sol-gel preparation of lead magnesium niobate (PMN) powders and thin films

    DOEpatents

    Boyle, T.J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films. 3 figs.

  11. PROCESS FOR PRODUCING URANIUM TETRAFLUORIDE

    DOEpatents

    Harvey, B.G.

    1954-09-14

    >This patent relates to improvements in the method for producing uranium tetrafluoride by treating an aqueous solutlon of a uranyl salt at an elevated temperature with a reducing agent effective in acld solutlon in the presence of hydrofluoric acid. Uranium tetrafluoride produced this way frequentiy contains impurities in the raw material serving as the source of uranium. Uranium tetrafluoride much less contaminated with impurities than when prepared by the above method can be prepared from materials containing such impurities by first adding a small proportion of reducing agent so as to cause a small fraction, for example 1 to 5% of the uranium tetrafluoride to be precipitated, rejecting such precipitate, and then precipitating and recovering the remainder of the uranium tetrafluoride.

  12. Sol-Gel Preparation Of Lead Magnesium Ni Obate (Pmn) Powdersand Thin Films

    DOEpatents

    Boyle, Timothy J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg.sub.1/3 Nb.sub.2/3)O.sub.3, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films.

  13. Physicochemical characteristics and biological activities of polysaccharide fractions from Phellinus baumii cultured with different methods.

    PubMed

    Li, Tingting; Yang, Yan; Liu, Yanfang; Zhou, Shuai; Yan, Meng Qiu; Wu, Di; Zhang, Jingsong; Tang, Chuanhong

    2015-11-01

    Nine polysaccharide fractions were obtained from the fruiting bodies, submerged mycelia, and solid state fermented products of Phellinus baumii using different concentrations of ethanol precipitation. The chemical characteristics and in vitro immunological activities of the nine polysaccharide fractions were compared and studied. Results indicated that the fractions precipitated with 50% ethanol had higher yields of polysaccharides and submerged mycelia contributed to high extraction yields of polysaccharides and possessed higher polysaccharide contents. HPSEC-MALLS-RI analysis showed that the molecular weight (Mw) of polysaccharide fractions from these three materials decreased with the increasing of precipitated ethanol concentration. The Mw of fruiting body polysaccharide fractions ranged from 1.98×10(4)Da to 1.89×10(6)Da. Large-molecular-weight polysaccharides (from 2.11×10(6)Da to 2.01×10(7)Da) were found in submerged mycelia. Some lower-molecular-weight polysaccharide components were found in solid fermented products. Different culture methods contributed to significant differences in monosaccharide components and molar ratios. The 50% ethanol precipitated fractions exhibited more complexity on monosaccharide compositions comparing with fractions precipitated with 30% and 70% ethanol. Polysaccharide fractions derived from submerged mycelia exhibited higher macrophages stimulation activities. Submerged culture was found to be a suitable method to prepare active polysaccharides because of its short culture span and reasonable cost. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Multiscale Modeling of Inclusions and Precipitation Hardening in Metal Matrix Composites: Application to Advanced High-Strength Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askari, Hesam; Zbib, Hussein M.; Sun, Xin

    In this study, the strengthening effect of inclusions and precipitates in metals is investigated within a multiscale approach that utilizes models at various length scales, namely, Molecular Mechanics (MM), discrete Dislocation Dynamics (DD), and an Eigenstrain Inclusion Method (EIM). Particularly, precipitates are modeled as hardsoft particles whose stress fields interact with dislocations. The stress field resulting from the elastic mismatch between the particles and the matrix is accounted for through the EIM. While the MM method is employed for the purpose of developing rules for DD for short range interaction between a single dislocation and an inclusion, the DD methodmore » is used to predict the strength of the composite resulting from the interaction between ensembles of dislocations and particles. As an application to this method, the mechanical behavior of Advanced High Strength Steel (AHSS) is investigated and the results are then compared to the experimental data. The results show that the finely dispersive precipitates can strengthen the material by pinning the dislocations up to a certain shear stress and retarding the recovery, as well as annihilation of dislocations. The DD results show that strengthening due to nano sized particles is a function of the density and size of the precipitates. This size effect is then explained using a mechanistic model developed based on dislocation-particle interaction.« less

  15. Interlaboratory comparability, bias, and precision for four laboratories measuring constituents in precipitation, November 1982-August 1983

    USGS Publications Warehouse

    Brooks, M.H.; Schroder, L.J.; Malo, B.A.

    1985-01-01

    Four laboratories were evaluated in their analysis of identical natural and simulated precipitation water samples. Interlaboratory comparability was evaluated using analysis of variance coupled with Duncan 's multiple range test, and linear-regression models describing the relations between individual laboratory analytical results for natural precipitation samples. Results of the statistical analyses indicate that certain pairs of laboratories produce different results when analyzing identical samples. Analyte bias for each laboratory was examined using analysis of variance coupled with Duncan 's multiple range test on data produced by the laboratories from the analysis of identical simulated precipitation samples. Bias for a given analyte produced by a single laboratory has been indicated when the laboratory mean for that analyte is shown to be significantly different from the mean for the most-probable analyte concentrations in the simulated precipitation samples. Ion-chromatographic methods for the determination of chloride, nitrate, and sulfate have been compared with the colorimetric methods that were also in use during the study period. Comparisons were made using analysis of variance coupled with Duncan 's multiple range test for means produced by the two methods. Analyte precision for each laboratory has been estimated by calculating a pooled variance for each analyte. Analyte estimated precisions have been compared using F-tests and differences in analyte precisions for laboratory pairs have been reported. (USGS)

  16. Effect of modification methods on the surface properties and n-butane isomerization performance of La/Ni-promoted SO42-/ZrO2-Al2O3

    NASA Astrophysics Data System (ADS)

    Wang, Pengzhao; Zhang, Jiaoyu; Han, Chaoyi; Yang, Chaohe; Li, Chunyi

    2016-08-01

    The La and/or Ni was introduced into alumina-promoted sulfated zirconia by impregnation and co-precipitation to improve the catalytic property of n-butane isomerization. Catalysts characterization shows that the addition of La/Ni has a remarkable influence on the surface and textual properties depending on the modification method. The impregnation of La/Ni facilitates the transformation of a small amount of tetragonal zirconia into monoclinic phase, while the co-precipitation improves the stability of tetragonal ZrO2. H2-TPR indicates that the addition of La/Ni changes the interaction between SO42- and supports, which affects the acidity on the surface. Specifically, the Lewis acidity is significantly enhanced by either modification method. The co-precipitation reserves almost all of the Brønsted acid sites, while the impregnation causes a remarkable decrease of Brønsted acid sites. Reaction results demonstrate that the co-precipitation exhibits a significant advantage over impregnation that the higher conversion of n-butane and selectivity to isobutane are obtained on the catalyst prepared by co-precipitation. The increase of catalytic activity is ascribed to the accelerated activation rate of n-butane molecules by hydride subtraction on the Lewis acid sites at higher reaction temperature. Furthermore, the addition of La/Ni improves the selectivity to isobutane by inhibiting the bimolecular reaction.

  17. New method to estimate paleoprecipitation using fossil amphibians and reptiles and the middle and late Miocene precipitation gradients in Europe

    NASA Astrophysics Data System (ADS)

    Böhme, M.; Ilg, A.; Ossig, A.; Küchenhoff, H.

    2006-06-01

    Existing methods for determining paleoprecipitation are subject to large errors (±350 400 mm or more using mammalian proxies), or are restricted to wet climate systems due to their strong facies dependence (paleobotanical proxies). Here we describe a new paleoprecipitation tool based on an indexing of ecophysiological groups within herpetological communities. In recent communities these indices show a highly significant correlation to annual precipitation (r2 = 0.88), and yield paleoprecipitation estimates with average errors of ±250 280 mm. The approach was validated by comparison with published paleoprecipitation estimates from other methods. The method expands the application of paleoprecipitation tools to dry climate systems and in this way contributes to the establishment of a more comprehensive paleoprecipitation database. This method is applied to two high-resolution time intervals from the European Neogene: the early middle Miocene (early Langhian) and the early late Miocene (early Tortonian). The results indicate that both periods show significant meridional precipitation gradients in Europe, these being stronger in the early Langhian (threefold decrease toward the south) than in the early Tortonian (twofold decrease toward the south). This pattern indicates a strengthening of climatic belts during the middle Miocene climatic optimum due to Southern Hemisphere cooling and an increased contribution of Arctic low-pressure cells to the precipitation from the late Miocene onward due to Northern Hemisphere cooling.

  18. Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region.

    PubMed

    Li, Tianyu; Meng, Qingmin

    2017-05-01

    The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.

  19. Extreme changes in stable hydrogen isotopes and precipitation characteristics in a landfalling Pacific storm

    USGS Publications Warehouse

    Coplen, T.B.; Neiman, P.J.; White, A.B.; Landwehr, J.M.; Ralph, F.M.; Dettinger, M.D.

    2008-01-01

    With a new automated precipitation collector we measured a remarkable decrease of 51??? in the hydrogen isotope ratio (?? 2H) of precipitation over a 60-minute period during the landfall of an extratropical cyclone along the California coast on 21 March 2005. The rapid drop in ??2H occurred as precipitation generation transitioned from a shallow to a much deeper cloud layer, in accord with synoptic-scale ascent and deep "seeder-feeder" precipitation. Such unexpected ?? 2H variations can substantially impact widely used isotope-hydrograph methods. From extreme ??2H values of -26 and -78???, we calculate precipitation temperatures of 9.7 and -4.2??C using an adiabatic condensation isotope model, in good agreement with temperatures estimated from surface observations and radar data. This model indicates that 60 percent of the moisture was precipitated during ascent as temperature decreased from 15??C at the ocean surface to -4??C above the measurement site.

  20. Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region

    NASA Astrophysics Data System (ADS)

    Li, Tianyu; Meng, Qingmin

    2017-05-01

    The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.

Top