Science.gov

Sample records for assisting gas optimization

  1. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible

  2. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Thaer N.N. Mahmoud; Wagirin Ruiz Paidin

    2006-01-01

    This report describes the progress of the project ''Development And Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the thirteenth project quarter (Oct 1, 2005 to Dec 30, 2005). There are three main tasks in this research project. Task 1 is a scaled physical model study of the GAGD process. Task 2 is further development of a vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. Section I reports experimental work designed to investigate wettability effects of porous medium, on secondary and tertiary mode GAGD performance. The experiments showed a significant improvement of oil recovery in the oil-wet experiments versus the water-wet runs, both in secondary as well as tertiary mode. When comparing experiments conducted in secondary mode to those run in tertiary mode an improvement in oil recovery was also evident. Additionally, this section summarizes progress made with regard to the scaled physical model construction and experimentation. The purpose of building a scaled physical model, which attempts to include various multiphase mechanics and fluid dynamic parameters operational in the field scale, was to incorporate visual verification of the gas front for viscous instabilities, capillary fingering, and stable displacement. Preliminary experimentation suggested that construction of the 2-D model from sintered glass beads was a feasible alternative. During this reporting quarter, several sintered glass mini-models were prepared and some preliminary experiments designed to visualize gas bubble development were completed. In Section II, the gas-oil interfacial tensions measured in decane-CO{sub 2} system at 100 F and live decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane against CO{sub 2} gas at 160 F have been modeled using the Parachor and newly proposed

  3. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases

  4. Response surface methodology for the modeling and optimization of oil-in-water emulsion separation using gas sparging assisted microfiltration.

    PubMed

    Fouladitajar, Amir; Zokaee Ashtiani, Farzin; Dabir, Bahram; Rezaei, Hamid; Valizadeh, Bardiya

    2015-02-01

    Response surface methodology (RSM) and central composite design (CCD) were used to develop models for optimization and modeling of a gas sparging assisted microfiltration of oil-in-water (o/w) emulsion. The effect of gas flow rate (Q G ), oil concentration (C oil ), transmembrane pressure (TMP), and liquid flow rate (Q L ) on the permeate flux and oil rejection were studied by RSM. Two sets of experiments were designed to investigate the effects of different gas-liquid two-phase flow regimes; low and high gas flow rates. Two separate RSM models were developed for each experimental set. The oil concentration and TMP were found to be the most significant factors influencing both permeate flux and rejection. Also, the interaction between these parameters was the most significant one. At low Q G , the more the gas flow rate, the higher the permeate flux; however, in the high gas flow rate region, higher Q G did not necessarily improve the permeate flux. In the case of rejection, gas and liquid flow rates were found to be insignificant. The optimum process conditions were found to be the following: Q G  = 1.0 (L/min), C oil  = 1,290 (mg/L), TMP = 1.58 (bar), and Q L  = 3.0 (L/min). Under these optimal conditions, maximum permeate flux and rejection (%) were 115.9 (L/m(2)h) and 81.1 %, respectively.

  5. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao

    2003-10-01

    This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and

  6. Orthogonal array optimization of microwave-assisted derivatization for determination of trace amphetamine and methamphetamine using negative chemical ionization gas chromatography-mass spectrometry.

    PubMed

    Chung, Li-Wen; Lin, Keh-Liang; Yang, Thomas Ching-Cherng; Lee, Maw-Rong

    2009-05-01

    An orthogonal array design (OAD) was applied to optimize microwave-assisted derivatization (MAD) for analysis of trace amphetamine (AM) and methamphetamine (MA) by negative chemical ionization gas chromatography-mass spectrometry (NCI GC-MS). The 2,3,4,5,6-pentafluorobenzoyl chloride (PFBC) was used as a derivatization reagent. Experimental factors including solvent, microwave power, and irradiation time at four-levels were studied in 16 trials by OAD(16) (4(4)). The significance of these factors was investigated using analysis of variance (ANOVA) and percent contribution (PC). Solvent is statistically demonstrated a chief factor; microwave power and irradiation time are secondary factors. Under the optimum condition, calibration curve of AM is linear over a range from 0.01 to 100 ng mL(-1) with correlation coefficient 0.9988, and MA from 0.1 to 1000 ng mL(-1) with correlation coefficient 0.9951. The limit of detection (LOD) is 1.20 pg mL(-1) for AM and 13.04 pg mL(-1) for MA. An applicability of the method was tested by analyzing urine samples from amphetamine-type stimulants (ATS)-abusing suspects. Consequently, the OAD method not only optimizes the MAD condition for determination of trace AM and MA, but identifies the effects of factor solvent, microwave power and irradiation time on the MAD performance.

  7. Optimized entanglement-assisted quantum error correction

    SciTech Connect

    Taghavi, Soraya; Brun, Todd A.; Lidar, Daniel A.

    2010-10-15

    Using convex optimization, we propose entanglement-assisted quantum error-correction procedures that are optimized for given noise channels. We demonstrate through numerical examples that such an optimized error-correction method achieves higher channel fidelities than existing methods. This improved performance, which leads to perfect error correction for a larger class of error channels, is interpreted in at least some cases by quantum teleportation, but for general channels this interpretation does not hold.

  8. Optimization of ultrasonic-assisted extraction of 3-monochloropropane-1,2-diol (MCPD) and analysis of its esters from edible oils by gas chromatography-mass spectrometry.

    PubMed

    Ma, Fei; Li, Peiwu; Matthäus, Bertrand; Zhang, Wen; Zhang, Qi

    2012-09-01

    In this paper, ultrasonic-assisted extraction of 3-chloropropane-1,2-diol and its esters from edible oils was studied with isotope dilution GC-MS. Effects of several experimental parameters, such as types and concentrations of extracting solvent, ratios of liquid to material, extraction temperature, time of ultrasonic treatment on the extraction efficiency of 3-chloropropane-1,2-diol and its esters from edible oils and sample preparation for calibration were compared and optimized. The optimal extraction conditions were suggested as 66 mg oil sample in mixture of 0.5 mL MTBE/ethyl acetate (20% v/v) and 0.5 mL of sulfuric acid/n-propanol (0.3% v/v), being extracted for 30 min at 45°C under ultrasonic irradiation. Good linearity was gained in the range of 0.020-5.000 μg/g with the limit of detection (LOD) of 0.006 μg/g (S/N = 3) and the limit of quantification (LOQ) of 0.020 μg/g (S/N = 10). The recoveries at five spiked concentrations were ranged from 91.9 to 109.3% with RSD less than 9.4%. The method was successfully applied to the determination of 3-chloropropane-1,2-diol and its esters amounts in rapeseed, sesame, peanut, camellia, and soybean oils. PMID:22888100

  9. TEA laser gas mixture optimization

    NASA Astrophysics Data System (ADS)

    Lipchak, W. Michael; Luck, Clarence F.

    1982-11-01

    The topographical plot of an optimized parameter, such as pulse energy or peak power, on the gas mixture plane is presented as a useful aid in realizing optimum mixtures of helium, carbon dioxide, and nitrogen, for operation of CO2 TEA lasers. A method for generating such a plot is discussed and an example is shown. The potential benefits of this graphical technique are also discussed.

  10. TEA laser gas mixture optimization

    SciTech Connect

    Lipchak, W.M.; Luck, C.F.

    1982-11-01

    The topographical plot of an optimized parameter, such as pulse energy or peak power, on the gas mixture plane is presented as a useful aid in realizing optimum mixtures of helium, carbon dioxide, and nitrogen, for operation of CO/sub 2/ TEA lasers. A method for generating such a plot is discussed and an example is shown. The potential benefits of this graphical technique are also discussed.

  11. Optimization of ultrasonic-assisted extraction for determination of polycyclic aromatic hydrocarbons in biochar-based fertilizer by gas chromatography-mass spectrometry.

    PubMed

    Chen, Ping; Sun, Mingxing; Zhu, Zhixiu; Zhang, Jidong; Shen, Guoqing

    2015-08-01

    Application of biochar-based fertilizers is increasingly being considered for its potential agronomic and environmental benefits. However, biochar may contain residues of polycyclic aromatic hydrocarbons (PAHs) as a result of its production by pyrolysis. The strong adsorption of PAHs to biochar makes extraction and analysis of biochar-based fertilizers difficult. This study optimizes the extraction of PAHs in biochar-based fertilizer samples by using an ultrasonic bath for quantification by gas chromatography-mass spectrometry. Among 12 solvents, acetone-cyclohexane (1:1) mixture was selected as the optimum solvent for extraction. Three variables affecting the extraction were studied by Box-Behnken design. The optimum conditions were 57 °C extraction temperature, 81 min extraction time, and two extraction cycles, which were validated by assessing the linearity of analysis, LOD, LOQ, recovery, and levels of PAHs in real biochar-based fertilizer samples. Results revealed that the 16 U.S. EPA PAHs had good linearity, with squared correlation coefficients greater than 0.99. LODs were low, ranging from 2.2 ng g(-1) (acenaphthene) to 23.55 ng g(-1) (indeno[1,2,3-cd]perylene), and LOQs varied from 7.51 ng g(-1) to 78.49 ng g(-1). The recoveries of 16 individual PAHs from the three biochar-based fertilizer samples were 81.8-109.4 %. Graphical Abstract Use of RSM to optimize UAE for extraction of the PAHs in biochar-based fertilizer.

  12. Natural gas-assisted steam electrolyzer

    DOEpatents

    Pham, Ai-Quoc; Wallman, P. Henrik; Glass, Robert S.

    2000-01-01

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  13. Offshore oil - growing optimism with gas

    SciTech Connect

    Pagano, S.S.

    1994-01-01

    The gas-rich Gulf of Mexico is on the rebound and there's growing optimism business conditions will continue to improve in 1994. Environmental regulations, such as the Clean Air Act and the Oil Pollution Act of 1990, are having a significant impact on oil an gas drilling and production. The Clean Air Act has increased the use of natural gas, which is helping bolster gas consumption from the Gulf of Mexico's reserves. In late December 1993, the Clinton administration unveiled its long-awaited gas and oil initiative aimed at boosting markets for domestic natural gas and oil while developing a long-term strategy to reduce the nation's dependence on imported energy. This article examines the political and economic issues of concern to the oil and gas industry, and how international competition affects development in the Gulf.

  14. Optimization at Wyoming gas plant improves profitability

    SciTech Connect

    Saha, L.E. ); Chontos, A.J. ); Hatch, D.R. )

    1990-05-28

    This paper reports on a computer-aided manufacturing system for on-line optimization implemented at the Painter complex (Wyoming) gas-processing plant. The system is based on rigorous process modeling techniques using real time data. Early results show significant potential for improving the plant's profitability.

  15. Laser assisted tunneling in a Tonks–Girardeau gas

    NASA Astrophysics Data System (ADS)

    Lelas, Karlo; Drpić, Nikola; Dubček, Tena; Jukić, Dario; Pezer, Robert; Buljan, Hrvoje

    2016-09-01

    We investigate the applicability of laser assisted tunneling in a strongly interacting one-dimensional (1D) Bose gas (the Tonks–Girardeau gas) in optical lattices. We find that the stroboscopic dynamics of the Tonks–Girardeau gas in a continuous Wannier–Stark-ladder potential, supplemented with laser assisted tunneling, effectively realizes the ground state of 1D hard-core bosons in a discrete lattice with nontrivial hopping phases. We compare observables that are affected by the interactions, such as the momentum distribution, natural orbitals and their occupancies, in the time-dependent continuous system, to those of the ground state of the discrete system. Stroboscopically, we find an excellent agreement, indicating that laser assisted tunneling is a viable technique for realizing novel ground states and phases with hard-core 1D Bose gases.

  16. Laser assisted tunneling in a Tonks-Girardeau gas

    NASA Astrophysics Data System (ADS)

    Lelas, Karlo; Drpić, Nikola; Dubček, Tena; Jukić, Dario; Pezer, Robert; Buljan, Hrvoje

    2016-09-01

    We investigate the applicability of laser assisted tunneling in a strongly interacting one-dimensional (1D) Bose gas (the Tonks-Girardeau gas) in optical lattices. We find that the stroboscopic dynamics of the Tonks-Girardeau gas in a continuous Wannier-Stark-ladder potential, supplemented with laser assisted tunneling, effectively realizes the ground state of 1D hard-core bosons in a discrete lattice with nontrivial hopping phases. We compare observables that are affected by the interactions, such as the momentum distribution, natural orbitals and their occupancies, in the time-dependent continuous system, to those of the ground state of the discrete system. Stroboscopically, we find an excellent agreement, indicating that laser assisted tunneling is a viable technique for realizing novel ground states and phases with hard-core 1D Bose gases.

  17. Requirement of Dissonance in Assisted Optimal State Discrimination

    PubMed Central

    Zhang, Fu-Lin; Chen, Jing-Ling; Kwek, L. C.; Vedral, Vlatko

    2013-01-01

    A fundamental problem in quantum information is to explore what kind of quantum correlations is responsible for successful completion of a quantum information procedure. Here we study the roles of entanglement, discord, and dissonance needed for optimal quantum state discrimination when the latter is assisted with an auxiliary system. In such process, we present a more general joint unitary transformation than the existing results. The quantum entanglement between a principal qubit and an ancilla is found to be completely unnecessary, as it can be set to zero in the arbitrary case by adjusting the parameters in the general unitary without affecting the success probability. This result also shows that it is quantum dissonance that plays as a key role in assisted optimal state discrimination and not quantum entanglement. A necessary criterion for the necessity of quantum dissonance based on the linear entropy is also presented. PACS numbers: 03.65.Ta, 03.67.Mn, 42.50.Dv. PMID:23823646

  18. [Optimizing performance documentation in gynecology--assistance from the internet].

    PubMed

    Woernle, F; Seufert, R; Brockerhoff, P; Lellé, R J

    1999-01-01

    The documentation of operations in the field of gynecology and obstetrics is regulated by social laws in Germany. Only by optimal encoding of diagnoses and procedures an efficient cashing with the health insurance's can be achieved. This requires profound knowledge of the invoice modalities and usually support by computer systems. The Internet offers in this respect some assistance, which in the following is pointed out and evaluated critically. PMID:10573827

  19. Optimization of enzyme assisted extraction of polysaccharides from Astragalus membranaceus.

    PubMed

    Chen, Huaguo; Zhou, Xin; Zhang, Junzeng

    2014-10-13

    Astragalus polysaccharide (APS) is known to have a variety of pharmacological activities. In the present study, enzyme assisted extraction of APS from Astragalus mongholicus using various enzymes were examined. Research found that glucose oxidase offered a better performance in enhancement of extraction yields of APS than other ones. Glucose oxidase assisted extraction process was further optimized by using response surface method (RSM) to obtain maximum yield of crude APS. The optimized extraction conditions were as follows: enzyme amount of 3.0%, enzyme treated time of 3.44 d, enzyme treated temperature of 56.9 °C and extraction solvent pH of 7.8. Under these conditions, the experimental yield was 29.96 ± 0.14%, which was well in close agreement with the value (30.19%) predicted by RSM model and increased more than 250% compared with none enzyme treated ones. Pharmacological test showed that enzyme assisted APS had a better antioxidant activity (about 2 times higher) than none enzyme treated ones.

  20. Assistance of Novel Artificial Intelligence in Optimization of Aluminum Matrix Nanocomposite by Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Mazahery, Ali; Shabani, Mohsen Ostad

    2012-12-01

    In this article, a genetic algorithm (GA) is used to predict the mechanical properties and to optimize the process conditions of Al nanocomposites. An artificial intelligence method is also implemented as an assisting tool for engineering tasks of GAs. The principle of the survival of the fittest is applied to produce successively superior approximations to a solution. A population of points at each iteration is generated. The population approaches an optimal solution. The next population by computations that involve random choices is selected. The optimal volume percentage of SiC, cooling rate, and temperature gradient are computed to be 2.84 pct, 283 K/s (10 °C/s), 1273 K/m (1000 °C/m), respectively.

  1. Optimization of ethyl ester production assisted by ultrasonic irradiation.

    PubMed

    Noipin, K; Kumar, S

    2015-01-01

    This study presents the optimization of the continuous flow potassium hydroxide-catalyzed synthesis of ethyl ester from palm oil with ultrasonic assistance. The process was optimized by application of factorial design and response surface methodology. The independent variables considered were ethanol to oil molar ratio, catalyst concentration, reaction temperature and ultrasonic amplitude; and the response was ethyl ester yield. The results show that ethanol to oil molar ratio, catalyst concentration, and ultrasonic amplitude have positive effect on ethyl ester yield, whereas reaction temperature has negative influence on ethyl ester yield. Second-order models were developed to predict the responses analyzed as a function of these three variables, and the developed models predicts the results in the experimental ranges studied adequately. This study shows that ultrasonic irradiation improved the ethyl ester production process to achieve ethyl ester yields above 92%. PMID:25116594

  2. Ultrasound assisted manufacturing of paraffin wax nanoemulsions: process optimization.

    PubMed

    Jadhav, A J; Holkar, C R; Karekar, S E; Pinjari, D V; Pandit, A B

    2015-03-01

    This work reports on the process optimization of ultrasound-assisted, paraffin wax in water nanoemulsions, stabilized by modified sodium dodecyl sulfate (SDS). This work focuses on the optimization of major emulsification process variables including sonication time, applied power and surfactant concentration. The effects of these variables were investigated on the basis of mean droplet diameter and stability of the prepared emulsion. It was found that the stable emulsion with droplet diameters about 160.9 nm could be formed with the surfactant concentration of 10 mg/ml and treated at 40% of applied power (power density: 0.61 W/ml) for 15 min. Scanning electron microscopy (SEM) was used to study the morphology of the emulsion droplets. The droplets were solid at room temperature, showing bright spots under polarized light and a spherical shape under SEM. The electrophoretic properties of emulsion droplets showed a negative zeta potential due to the adsorption of head sulfate groups of the SDS surfactant. For the sake of comparison, paraffin wax emulsion was prepared via emulsion inversion point method and was checked its intrinsic stability. Visually, it was found that the emulsion get separated/creamed within 30 min. while the emulsion prepared via ultrasonically is stable for more than 3 months. From this study, it was found that the ultrasound-assisted emulsification process could be successfully used for the preparation of stable paraffin wax nanoemulsions.

  3. Ultrasound assisted manufacturing of paraffin wax nanoemulsions: process optimization.

    PubMed

    Jadhav, A J; Holkar, C R; Karekar, S E; Pinjari, D V; Pandit, A B

    2015-03-01

    This work reports on the process optimization of ultrasound-assisted, paraffin wax in water nanoemulsions, stabilized by modified sodium dodecyl sulfate (SDS). This work focuses on the optimization of major emulsification process variables including sonication time, applied power and surfactant concentration. The effects of these variables were investigated on the basis of mean droplet diameter and stability of the prepared emulsion. It was found that the stable emulsion with droplet diameters about 160.9 nm could be formed with the surfactant concentration of 10 mg/ml and treated at 40% of applied power (power density: 0.61 W/ml) for 15 min. Scanning electron microscopy (SEM) was used to study the morphology of the emulsion droplets. The droplets were solid at room temperature, showing bright spots under polarized light and a spherical shape under SEM. The electrophoretic properties of emulsion droplets showed a negative zeta potential due to the adsorption of head sulfate groups of the SDS surfactant. For the sake of comparison, paraffin wax emulsion was prepared via emulsion inversion point method and was checked its intrinsic stability. Visually, it was found that the emulsion get separated/creamed within 30 min. while the emulsion prepared via ultrasonically is stable for more than 3 months. From this study, it was found that the ultrasound-assisted emulsification process could be successfully used for the preparation of stable paraffin wax nanoemulsions. PMID:25465097

  4. Optimization of microwave assisted extraction of pectin from orange peel.

    PubMed

    Prakash Maran, J; Sivakumar, V; Thirugnanasambandham, K; Sridhar, R

    2013-09-12

    In this study, microwave-assisted extraction was applied for pectin extraction from the dried orange peel and Box-Behnken response surface design was used to study and optimize the effects of processing variables (microwave power, irradiation time, pH and solid-liquid ratio) on the yield of pectin. The amount of pectin extracted increased with increasing microwave power, while it reduces as the time, pH and solid-liquid ratio increased. From the results, second order polynomial model was developed and it adequately explained the data variation and significantly represented the actual relationship between independent variables and the response. An optimization study using Derringer's desired function methodology was performed and optimal conditions based on both individual and combinations of all independent variables (microwave power of 422W, irradiation time of 169 s, pH of 1.4 and solid-liquid ratio of 1:16.9 g/ml) were determined with maximum pectin yield of 19.24%, which was confirmed through validation experiments.

  5. Performance optimization of water-jet assisted underwater laser cutting of AISI 304 stainless steel sheet

    NASA Astrophysics Data System (ADS)

    Mullick, Suvradip; Madhukar, Yuvraj K.; Roy, Subhransu; Nath, Ashish K.

    2016-08-01

    Recent development of water-jet assisted underwater laser cutting has shown some advantages over the gas assisted underwater laser cutting, as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. Scattering is reported to be a dominant loss mechanism, which depends on the growth of vapor layer at cut front and its removal by water-jet. Present study reports improvement in process efficiency by reducing the scattering loss using modulated laser power. Judicious control of laser pulse on- and off-time could improve process efficiency through restricting the vapor growth and its effective removal by water-jet within the laser on- and off-time, respectively. Effects of average laser power, duty cycle and modulation frequency on specific energy are studied to get an operating zone for maximum efficiency. Next, the variation in laser cut quality with different process parameters are studied within this operating zone using Design of experiment (DOE). Response surface methodology (RSM) is used by implementing three level Box-Behnken design to optimize the variation in cut quality, and to find out the optimal process parameters for desired quality. Various phenomena and material removal mechanism involved in this process are also discussed.

  6. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.

    PubMed

    Modares, Hamidreza; Ranatunga, Isura; Lewis, Frank L; Popa, Dan O

    2016-03-01

    An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.

  7. Optimization of the assisted bidirectional Glenn for single ventricle palliation

    NASA Astrophysics Data System (ADS)

    Marsden, Alison; Shang, Jessica; Esmaily-Moghadam, Mahdi; Figliola, Richard; Reinhartz, Olaf; Hsia, Tain-Yen

    2015-11-01

    For neonates with single ventricle physiology, a systemic-pulmonary shunt (e.g., a modified Blalock-Taussig shunt (mBTS)) is typically employed as an early-stage procedure in preparation for a later-stage bidirectional Glenn (BDG). Mortality rates with the mBTS are high, yet the BDG has poorer outcomes in neonates. The assisted bidirectional Glenn (ABG) augments the inadequate pulmonary flow associated with early BDG implementation in neonates through an additional shunt between the innominate artery and the superior vena cava (SVC). The shunt uses a nozzle to inject high-velocity flow to the SVC, elevating downstream pulmonary pressure. Previous simulations and animal studies verified feasibility and higher pulmonary flow rates. In numerical simulations, we explore shunt geometries and placements implanted into a 3D model of the aorta and pulmonary arteries, coupled with a lumped parameter network describing the remaining circulatory system. We seek an ABG shunt that optimizes hemodynamic variables such as pulmonary flow rate and oxygenation and constrains SVC pressure. The optimized ABG will be evaluated against the mBTS and the BDG in simulations and experiments. A successful implementation of the ABG would replace the mBTS and BDG procedures and reduce mortality rates. Burroughs Wellcome Fund, Leducq Foundation.

  8. Solar sailing trajectory optimization with planetary gravity assist

    NASA Astrophysics Data System (ADS)

    Cai, XingShan; Li, JunFeng; Gong, ShengPing

    2015-01-01

    Significant propellant mass saving can be obtained with the use of complex multiple intermediate flyby maneuvers for conventional propulsion systems, and trip time also decreases for a portion of the proper solar sail missions. This paper discusses the performance of gravity assist (GA) in the time-optimal control problem of solar sailing with respect to sail lightness number and the energy difference between the initial and final orbit in the rendezvous problem in a two-body model, in which the GA is modeled as a substantial change in the velocity of the sailcraft at the GA time. In addition, this paper presents a method to solve the time-optimal problem of solar sailing with GA in a full ephemeris model, which introduces the third body's gravity in a dynamic equation. This study builds a set of inner constraints that can describe the GA process accurately. Finally, this study presents an example for evaluating the accuracy and rationality of the two-body model's simplification of GA by comparison with the full ephemeris model.

  9. Microwave-assisted generation of standard gas mixtures.

    PubMed

    Xiong, Guohua; Pawliszyn, Janusz

    2002-05-15

    Microwave heating was employed for preparation of the standard gas of volatile organic compounds (VOCs) and semivolatile organic compounds (semi-VOCs) by using a 1000 W commercial domestic microwave oven and 1 L gas-sampling bulbs. The VOCs investigated were benzene, chloroform, 1,3-dichlorobenzene, tetrachloroethylene, toluene, and 1,1,2-trichloroethane, and the semi-VOCs used were the polychlorinated biphenyls (PCBs) PCB 1016 and PCB 1248. Since these weakly or nonpolar molecules are very poor absorbers of microwave energy, an appropriate amount of water was introduced to accept microwave radiation and act as the thermal source to accelerate their evaporation. The glass bulb may also contribute thermal energy to the VOCs/semi-VOCs by accepting microwave energy to a small degree. For 0.5 microL of liquid VOCs on 10 mg of glass wool, it was shown that 15 microL of H2O and 60 s of microwave heating yielded a very efficient evaporation [97.2-106.4%, compared with a classic method (Muller, L; Gorecki, T.; Pawliszyn, J. Fresenius' J. Anal. Chem. 1999, 364, 610-616)]. For 1 microL of PCB solution (1000 microg/mL in hexane), 15 microL of H2O and 90 s of microwave heating also provided a complete evaporation. The addition of water was particularly significant for microwave-assisted evaporation of PCBs because semi-VOCs are much more difficult to evaporate than VOCs. This developed microwave technique proved to be quite simple, powerful, rapid, accurate, and safe for the preparation of VOC/semi-VOC standard gas. Solid- phase microextraction combined with gas chromatography was used for the gas analysis.

  10. Optimization of buffer gas pressure for Rb atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Chen, Chang; Liu, Xiaohu; Qu, Tianliang; Yang, Kaiyong

    2015-08-01

    The optimization of buffer gas pressure is very important to improve the performance of the rubidium (Rb) atomic magnetometer. In this paper we briefly introduce the basic principle and the experimental method of the rubidium magnetometer based on Faraday rotation effect, and describe the factors affecting the magnetometer sensitivity, then analyze and summarize the mechanism of the influence of spin-exchange, spin-destruction collisions, radiation trapping and the spin diffusion on spin relaxation of Rb atoms. Based on this, the relationship between the rubidium magnetometer sensitivity, the spin relaxation rate and the gas chamber conditions (buffer gas pressure, the bubble radius, measuring temperature) is established. Doing calculations by the simulation software, how the magnetometer sensitivity and the relaxation rate vary with the gas chamber conditions can be seen; finally, the optimal values of the buffer gas pressure under certain gas chamber conditions are obtained. The work is significant for the engineering development of rubidium magnetometer.

  11. Optimization of wastewater treatment plant operation for greenhouse gas mitigation.

    PubMed

    Kim, Dongwook; Bowen, James D; Ozelkan, Ertunga C

    2015-11-01

    This study deals with the determination of optimal operation of a wastewater treatment system for minimizing greenhouse gas emissions, operating costs, and pollution loads in the effluent. To do this, an integrated performance index that includes three objectives was established to assess system performance. The ASMN_G model was used to perform system optimization aimed at determining a set of operational parameters that can satisfy three different objectives. The complex nonlinear optimization problem was simulated using the Nelder-Mead Simplex optimization algorithm. A sensitivity analysis was performed to identify influential operational parameters on system performance. The results obtained from the optimization simulations for six scenarios demonstrated that there are apparent trade-offs among the three conflicting objectives. The best optimized system simultaneously reduced greenhouse gas emissions by 31%, reduced operating cost by 11%, and improved effluent quality by 2% compared to the base case operation.

  12. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1999-06-01

    Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

  13. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1998-11-30

    The goal of the work this quarter has been to partition and high-grade the Greater Green River basin for exploration efforts in the Upper Cretaceous tight gas play and to initiate resource assessment of the basin. The work plan for the quarter of July 1-September 30, 1998 comprised three tasks: (1) Refining the exploration process for deep, naturally fractured gas reservoirs; (2) Partitioning of the basin based on structure and areas of overpressure; (3) Examination of the Kinney and Canyon Creek fields with respect to the Cretaceous tight gas play and initiation of the resource assessment of the Vermilion sub-basin partition (which contains these two fields); and (4) Initiation analysis of the Deep Green River Partition with respect to the Stratos well and assessment of the resource in the partition.

  14. Optimization of gas hydrate reactors with slug flow

    SciTech Connect

    Elperin, T.; Fominykh, A.

    1997-11-01

    A model of heat transfer during gas hydrate formation at a gas-liquid interface in gas-liquid slug flow with liquid plugs containing small bubbles is suggested. Under the assumption of perfect mixing of liquid in liquid plugs, recurrent relations for temperature in the n-th liquid plug and heat and mass fluxes from the n-th unit cell in a gas-liquid slug flow are derived. The ratio of the total mass flux during gas hydrate formation in a cluster with N unit cells to the mass flux in a cluster with an infinite number of unit cells is determined. The number of unit cells that yield 95% of the total amount of gas hydrates in an infinite cluster of unit cells is calculated and formula for an optimal length of a gas hydrate slug flow reactor is derived.

  15. Study on the gas-liquid interface and polymer melt front in gas-assisted injection molding

    SciTech Connect

    Shen, Y.K.

    1997-03-01

    The algorithms are developed to predict the gas-liquid interface in gas-assisted injection molding. The simulation of two-dimensional, transient, non-isothermal and high viscous flow between two parallel plates with the generalized Newtonian fluid is presented in detail. The model takes into account the effects of the gas-liquid interface and polymer melt front.

  16. Optimizing nanoporous materials for gas storage.

    PubMed

    Simon, Cory M; Kim, Jihan; Lin, Li-Chiang; Martin, Richard L; Haranczyk, Maciej; Smit, Berend

    2014-03-28

    In this work, we address the question of which thermodynamic factors determine the deliverable capacity of methane in nanoporous materials. The deliverable capacity is one of the key factors that determines the performance of a material for methane storage in automotive fuel tanks. To obtain insights into how the molecular characteristics of a material are related to the deliverable capacity, we developed several statistical thermodynamic models. The predictions of these models are compared with the classical thermodynamics approach of Bhatia and Myers [Bhatia and Myers, Langmuir, 2005, 22, 1688] and with the results of molecular simulations in which we screen the International Zeolite Association (IZA) structure database and a hypothetical zeolite database of over 100,000 structures. Both the simulations and our models do not support the rule of thumb that, for methane storage, one should aim for an optimal heat of adsorption of 18.8 kJ mol(-1). Instead, our models show that one can identify an optimal heat of adsorption, but that this optimal heat of adsorption depends on the structure of the material and can range from 8 to 23 kJ mol(-1). The different models we have developed are aimed to determine how this optimal heat of adsorption is related to the molecular structure of the material.

  17. Optimizing nanoporous materials for gas storage.

    PubMed

    Simon, Cory M; Kim, Jihan; Lin, Li-Chiang; Martin, Richard L; Haranczyk, Maciej; Smit, Berend

    2014-03-28

    In this work, we address the question of which thermodynamic factors determine the deliverable capacity of methane in nanoporous materials. The deliverable capacity is one of the key factors that determines the performance of a material for methane storage in automotive fuel tanks. To obtain insights into how the molecular characteristics of a material are related to the deliverable capacity, we developed several statistical thermodynamic models. The predictions of these models are compared with the classical thermodynamics approach of Bhatia and Myers [Bhatia and Myers, Langmuir, 2005, 22, 1688] and with the results of molecular simulations in which we screen the International Zeolite Association (IZA) structure database and a hypothetical zeolite database of over 100,000 structures. Both the simulations and our models do not support the rule of thumb that, for methane storage, one should aim for an optimal heat of adsorption of 18.8 kJ mol(-1). Instead, our models show that one can identify an optimal heat of adsorption, but that this optimal heat of adsorption depends on the structure of the material and can range from 8 to 23 kJ mol(-1). The different models we have developed are aimed to determine how this optimal heat of adsorption is related to the molecular structure of the material. PMID:24394864

  18. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1998-09-30

    During this quarter, work began on the regional structural and geologic analysis of the greater Green River basin (GGRB) in southwestern Wyoming, northwestern Colorado and northeastern Utah. The ultimate objective of the regional analysis is to apply the techniques developed and demonstrated during earlier phases of the project to sweet-spot delineation in a relatively new and underexplored play: tight gas from continuous-type Upper Cretaceous reservoirs of the GGRB. The primary goal of this work is to partition and high-grade the greater Green River basin for exploration efforts in the Cretaceous tight gas play. The work plan for the quarter of January 1, 1998--March 31, 1998 consisted of three tasks: (1) Acquire necessary data and develop base map of study area; (2) Process data for analysis; and (3) Initiate structural study. The first task and second tasks were completed during this reporting period. The third task was initiated and work continues.

  19. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    Decker, D.

    1995-05-01

    Exploration strategies are needed to identify subtle basement features critical to locating fractured regions in advance of drilling in tight gas reservoirs. The Piceance Basin served as a demonstration site for an analysis utilizing aeromagnetic surveys, remote sensing, Landsat Thematic Mapper, and Side Looking Airborne Radar imagery for the basin and surrounding areas. Spatially detailed aeromagnetic maps were used to to interpret zones of basement structure.

  20. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1999-04-30

    In March, work continued on characterizing probabilities for determining natural fracturing associated with the GGRB for the Upper Cretaceous tight gas plays. Structural complexity, based on potential field data and remote sensing data was completed. A resource estimate for the Frontier and Mesa Verde play was also completed. Further, work was also conducted to determine threshold economics for the play based on limited current production in the plays in the Wamsutter Ridge area. These analyses culminated in a presentation at FETC on 24 March 1999 where quantified natural fracture domains, mapped on a partition basis, which establish ''sweet spot'' probability for natural fracturing, were reviewed. That presentation is reproduced here as Appendix 1. The work plan for the quarter of January 1, 1999--March 31, 1999 comprised five tasks: (1) Evaluation of the GGRB partitions for structural complexity that can be associated with natural fractures, (2) Continued resource analysis of the balance of the partitions to determine areas with higher relative gas richness, (3) Gas field studies, (4) Threshold resource economics to determine which partitions would be the most prospective, and (5) Examination of the area around the Table Rock 4H well.

  1. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  2. Method for nonlinear optimization for gas tagging and other systems

    DOEpatents

    Chen, T.; Gross, K.C.; Wegerich, S.

    1998-01-06

    A method and system are disclosed for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established. 6 figs.

  3. Method for nonlinear optimization for gas tagging and other systems

    DOEpatents

    Chen, Ting; Gross, Kenny C.; Wegerich, Stephan

    1998-01-01

    A method and system for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established.

  4. Evacuation assistants: An extended model for determining effective locations and optimal numbers

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolu; Zheng, Xiaoping; Cheng, Yuan

    2012-03-01

    The present research presents an extended evacuation field model for simulating crowd emergency evacuation processes under the control of evacuation assistants. Furthermore, a communication field for describing the escape information transmission process and its effect on evacuees is introduced. The effective locations and optimal numbers of evacuation assistants as generated through the model are proposed in an effort to verify as well as enhance existing models. Results show the following. (1) Locating evacuation assistants near exits reduces the time delay for pre-evacuation. (2) There is an optimal number of evacuation assistants for achieving evacuation efficiency; having excessive numbers of evacuation assistants does not improve the evacuation efficiency, and they may result in evacuation time delay and hinder the evacuation efficiency. (3) As the number of evacuees increases, the number of evacuation assistants needed decreases.

  5. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1998-11-30

    The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and

  6. Optimizing Computer Assisted Instruction By Applying Principles of Learning Theory.

    ERIC Educational Resources Information Center

    Edwards, Thomas O.

    The development of learning theory and its application to computer-assisted instruction (CAI) are described. Among the early theoretical constructs thought to be important are E. L. Thorndike's concept of learning connectisms, Neal Miller's theory of motivation, and B. F. Skinner's theory of operant conditioning. Early devices incorporating those…

  7. Optimal Use of Wire-Assisted Techniques and Precut Sphincterotomy

    PubMed Central

    Lee, Tae Hoon; Park, Sang-Heum

    2016-01-01

    Various endoscopic techniques have been developed to overcome the difficulties in biliary or pancreatic access during endoscopic retrograde cholangiopancreatography, according to the preference of the endoscopist or the aim of the procedures. In terms of endoscopic methods, guidewire-assisted cannulation is a commonly used and well-known initial cannulation technique, or an alternative in cases of difficult cannulation. In addition, precut sphincterotomy encompasses a range of available rescue techniques, including conventional precut, precut fistulotomy, transpancreatic septotomy, and precut after insertion of pancreatic stent or pancreatic duct guidewire-guided septal precut. We present a literature review of guidewire-assisted cannulation as a primary endoscopic method and the precut technique for the facilitation of selective biliary access. PMID:27642848

  8. Shaper-assisted phase optimization of a broad "holey" spectrum.

    PubMed

    Zhi, Miaochan; Wang, Kai; Hua, Xia; Strycker, Benjamin D; Sokolov, Alexei V

    2011-11-01

    We develop a technique for optimizing the phase of broad spectrally-separated frequency sidebands-a "holey" spectrum. We use a source of multiple-order coherent Raman sidebands, obtained by crossing femtosecond pump and Stokes beams in synthetic single-crystal diamond. We combine the sidebands into a single beam and show the phase coherence among the sidebands by investigating the interference between them in groups of three while varying one sideband phase by an acousto-optics pulse shaper. We then show how we optimize the broad "holey" spectrum by overcoming the limited temporal shaping window of the pulse shaper. We also explore how the resultant second harmonic/sum frequency generation of the full combined broadband spectrum varies as we vary different sideband phases. This step-by-step phase optimization of the "holey" spectrum can be applied to sidebands with similar structure to synthesize arbitrary optical waveforms.

  9. Methods to optimize myxobacterial fermentations using off-gas analysis

    PubMed Central

    2012-01-01

    Background The influence of carbon dioxide and oxygen on microbial secondary metabolite producers and the maintenance of these two parameters at optimal levels have been studied extensively. Nevertheless, most studies have focussed on their influence on specific product formation and condition optimization of established processes. Considerably less attention has been paid to the influence of reduced or elevated carbon dioxide and oxygen levels on the overall metabolite profiles of the investigated organisms. The synergistic action of both gases has garnered even less attention. Results We show that the composition of the gas phase is highly important for the production of different metabolites and present a simple approach that enables the maintenance of defined concentrations of both O2 and CO2 during bioprocesses over broad concentration ranges with a minimal instrumental setup by using endogenously produced CO2. The metabolite profiles of a myxobacterium belonging to the genus Chondromyces grown under various concentrations of CO2 and O2 showed considerable differences. Production of two unknown, highly cytotoxic compounds and one antimicrobial substance was found to increase depending on the gas composition. In addition, the observation of CO2 and O2 in the exhaust gas allowed optimization and control of production processes. Conclusions Myxobacteria are becoming increasingly important due to their potential for bioactive secondary metabolite production. Our studies show that the influence of different gas partial pressures should not be underestimated during screening processes for novel compounds and that our described method provides a simple tool to investigate this question. PMID:22571441

  10. Quantitative determination of oil content in small quantity of oilseed rape by ultrasound-assisted extraction combined with gas chromatography.

    PubMed

    Wei, Fang; Gao, Gui-Zhen; Wang, Xin-Fa; Dong, Xu-Yan; Li, Ping-Ping; Hua, Wei; Wang, Xu; Wu, Xiao-Ming; Chen, Hong

    2008-09-01

    Accurately quantitative determination of oil content in oilseed rape plays an important role in varieties breeding for improving oil content in seeds. However, large quantity of oilseeds were needed in order to obtain accuracy and precision results by using standard Soxhlet extraction method, which may be a handicap in analysis of small, rare and precious samples in plant breeding. In the present work, ultrasound-assisted extraction was evaluated as a simpler and more effective alternative to conventional extraction method for the isolation of oil from small quantity of oilseed rape (<20 mg). The oil of oilseed rape samples was extracted by ultrasound-assisted method, and then the fatty acids and total oil content of the seeds were qualitatively and quantitatively determined by gas chromatography (GC). Extraction efficiency of total oil obtained by ultrasound-assisted extraction through an orthogonal experiment (L(9) (3(4))) were investigated to get the best extraction conditions. Statistical analysis showed that the variable with the largest effect was the ultrasound-assisted extraction time which was followed by the ultrasound-assisted extraction power, and the liquid:solid ratio. A liquid:solid ratio of 1:4 (L:g), an ultrasound-assisted extraction time of 60 min and an ultrasound-assisted extraction power of 500 W were found to be optimal for oil extraction from oilseed rape. By comparing with the conventional method, it was found that the ultrasound-assisted extraction of oil from oilseed rape was about five times faster than the traditional extraction method. By the use of ultrasound-assisted extraction combined with GC analysis, the fatty acids and total oil content in small quantity of seeds (<20 mg) were successfully qualitatively determined and the results are in agreement with that obtained by traditional standard method.

  11. Computer-Assisted Test Assembly Using Optimization Heuristics.

    ERIC Educational Resources Information Center

    Leucht, Richard M.

    1998-01-01

    Presents a variation of a "greedy" algorithm that can be used in test-assembly problems. The algorithm, the normalized weighted absolute-deviation heuristic, selects items to have a locally optimal fit to a moving set of average criterion values. Demonstrates application of the model. (SLD)

  12. Sensitivity and optimization analyses of the ``ACOGAS`` gas conditioning plant

    SciTech Connect

    Ochoa, D.; Cardenas, A.R.

    1995-11-01

    ACOGAS is a gas dew point control plant (water and hydrocarbons), operated by Lagoven S.A., a subsidiary of Petroleos de Venezuela S.A. (PDVSA). The ACOGAS plant located in Jusepin, Eastern Venezuela, produces stabilized condensate from an inlet gas stream which is a mixture of different gravity gases obtained by separation and compression from various oil production fields in the area. Sensitivity and optimization analyses of the plant and the stabilizer tower were carried out to evaluate the effects of: plant capacity reductions during shutdowns of some unspared systems of the plant; composition changes from original design basis; segregation of the lean gas currents from the inlet gas stream, reducing total flow but increasing GPM (C{sub 3}{sup +}) content; and incorporating condensate from the upstream compression processes in the inlet gas stream. It is shown that significant increases of stabilized condensate production could be obtained, while maintaining the quality for the condensate and lean residual gas within specifications, by various low cost modifications to the upstream processes and the stabilizer tower. Additionally, a change of the stabilizer tower valves could lower the minimum acceptable inlet flow, thereby increasing flexibility during shutdowns and low feed gas flows.

  13. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  14. Optimal Energy Consumption Analysis of Natural Gas Pipeline

    PubMed Central

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410

  15. Optimal energy consumption analysis of natural gas pipeline.

    PubMed

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent.

  16. Optimizing Noble Gas-Water Interactions via Monte Carlo Simulations.

    PubMed

    Warr, Oliver; Ballentine, Chris J; Mu, Junju; Masters, Andrew

    2015-11-12

    In this work we present optimized noble gas-water Lennard-Jones 6-12 pair potentials for each noble gas. Given the significantly different atomic nature of water and the noble gases, the standard Lorentz-Berthelot mixing rules produce inaccurate unlike molecular interactions between these two species. Consequently, we find simulated Henry's coefficients deviate significantly from their experimental counterparts for the investigated thermodynamic range (293-353 K at 1 and 10 atm), due to a poor unlike potential well term (εij). Where εij is too high or low, so too is the strength of the resultant noble gas-water interaction. This observed inadequacy in using the Lorentz-Berthelot mixing rules is countered in this work by scaling εij for helium, neon, argon, and krypton by factors of 0.91, 0.8, 1.1, and 1.05, respectively, to reach a much improved agreement with experimental Henry's coefficients. Due to the highly sensitive nature of the xenon εij term, coupled with the reasonable agreement of the initial values, no scaling factor is applied for this noble gas. These resulting optimized pair potentials also accurately predict partitioning within a CO2-H2O binary phase system as well as diffusion coefficients in ambient water. This further supports the quality of these interaction potentials. Consequently, they can now form a well-grounded basis for the future molecular modeling of multiphase geological systems. PMID:26452070

  17. Optimization of simultaneous tritium-radiocarbon internal gas proportional counting

    NASA Astrophysics Data System (ADS)

    Bonicalzi, R. M.; Aalseth, C. E.; Day, A. R.; Hoppe, E. W.; Mace, E. K.; Moran, J. J.; Overman, C. T.; Panisko, M. E.; Seifert, A.

    2016-03-01

    Specific environmental applications can benefit from dual tritium and radiocarbon measurements in a single compound. Assuming typical environmental levels, it is often the low tritium activity relative to the higher radiocarbon activity that limits the dual measurement. In this paper, we explore the parameter space for a combined tritium and radiocarbon measurement using a natural methane sample mixed with an argon fill gas in low-background proportional counters of a specific design. We present an optimized methane percentage, detector fill pressure, and analysis energy windows to maximize measurement sensitivity while minimizing count time. The final optimized method uses a 9-atm fill of P35 (35% methane, 65% argon), and a tritium analysis window from 1.5 to 10.3 keV, which stops short of the tritium beta decay endpoint energy of 18.6 keV. This method optimizes tritium-counting efficiency while minimizing radiocarbon beta-decay interference.

  18. Design Optimization of Gas Generator Hybrid Propulsion Boosters

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Phillips, Dwight; Fink, Larry

    1990-01-01

    A methodology used in support of a study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specific optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.

  19. Design optimization of gas generator hybrid propulsion boosters

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Phillips, Dwight U.; Fink, Lawrence E.

    1990-01-01

    A methodology used in support of a contract study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specified optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.

  20. Experimental investigation of the gas flow in gas-assisted laser cutting by means of geometrically similar models

    NASA Astrophysics Data System (ADS)

    Makashev, N. K.; Buzykin, O. G.; Asmolov, E. S.

    1996-03-01

    The gas flow in the system of nozzle-cut is investigated for the case of gas-assisted laser cutting of materials. The direct measurement of pressure fields is used with geometrically similar models which simulate the configuration forming during the laser cutting of metal sheet. The effect of geometric parameters of the system on the flow pattern in the kerf and on its features responsible for the cutting quality is analyzed. The choice and proper implementation of the assisting gas blowing to the cut front zone if of great importance for the gas-assisted laser cutting. There exist many various methods and facilities for the gas delivery. Nozzle configurations of many kinds and the peculiarities of free jet streams formed by them was the subject of extensive exploration. The efficiency of the nozzle under investigation was evaluated empirically or by the pressure exerted to the flat plate in the stagnation point of normally impinging jet. Recently the attention of investigators has been redirected to the details of the gas flow in the cut kerf. This activity is connected with the development of the theoretical models of gas-assisted laser cutting which serves to appreciate the role of the gas flow parameters in the phenomena responsible for the cutting efficiency. The efficiency of the gas delivery which is characterized by the cutting speed, the maximum thickness of the cut material, or the quality parameters of cut edges depends mainly on the flow features in the cut kerf. In the present paper these features are discussed closely. The results of the investigation provide the ability to choose purposefully the geometrical parameters of the nozzle facilities for laser cutter.

  1. Optimization of Gas Metal Arc Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Khurana, M. K.; Yadav, Pradeep K.

    2016-09-01

    This study presents the application of Taguchi method combined with grey relational analysis to optimize the process parameters of gas metal arc welding (GMAW) of AISI 1020 carbon steels for multiple quality characteristics (bead width, bead height, weld penetration and heat affected zone). An orthogonal array of L9 has been implemented to fabrication of joints. The experiments have been conducted according to the combination of voltage (V), current (A) and welding speed (Ws). The results revealed that the welding speed is most significant process parameter. By analyzing the grey relational grades, optimal parameters are obtained and significant factors are known using ANOVA analysis. The welding parameters such as speed, welding current and voltage have been optimized for material AISI 1020 using GMAW process. To fortify the robustness of experimental design, a confirmation test was performed at selected optimal process parameter setting. Observations from this method may be useful for automotive sub-assemblies, shipbuilding and vessel fabricators and operators to obtain optimal welding conditions.

  2. An asynchronous metamodel-assisted memetic algorithm for CFD-based shape optimization

    NASA Astrophysics Data System (ADS)

    Kontoleontos, Evgenia A.; Asouti, Varvara G.; Giannakoglou, Kyriakos C.

    2012-02-01

    This article presents an asynchronous metamodel-assisted memetic algorithm for the solution of CFD-based optimization problems. This algorithm is appropriate for use on multiprocessor platforms and may solve computationally expensive optimization problems in reduced wall-clock time, compared to conventional evolutionary or memetic algorithms. It is, in fact, a hybridization of non-generation-based (asynchronous) evolutionary algorithms, assisted by surrogate evaluation models, a local search method and the Lamarckian learning process. For the objective function gradient computation, in CFD applications, the adjoint method is used. Issues concerning the 'smart' implementation of local search in multi-objective problems are discussed. In this respect, an algorithmic scheme for reducing the number of calls to the adjoint equations to just one, irrespective of the number of objectives, is proposed. The algorithm is applied to the CFD-based shape optimization of the tubes of a heat exchanger and of a turbomachinery cascade.

  3. Response surface optimization of enzyme-assisted extraction polysaccharides from Dictyophora indusiata.

    PubMed

    Wu, Songhai; Gong, Guili; Wang, Yanyan; Li, Feng; Jia, Shaoyi; Qin, Fengxiang; Ren, Haitao; Liu, Yong

    2013-10-01

    An enzyme-assisted procedure for the extraction of the water-soluble polysaccharides from the stipe of Dictyophora indusiata was investigated using response surface methodology. The orthogonal array design was employed to optimize the concentration of three kinds of enzyme (cellulase, papain and pectolyase) and the optimal cellulose, papain and pectolyase concentration were 2.0% (wt.% of D. indusiata powder), 2.0% and 1.5%, respectively. And then the effect such as temperature, time and pH was studied based on a three-level three-factor Box-Behnken design. The optimized conditions were as follows: extraction temperature 52.5 °C, extraction time 105 min and pH 5.25. Under these conditions, the experimental yield of polysaccharides was 9.77±0.18%, which was well matched with the predictive yield of 9.87%. As it turned out, enzyme-assisted procedure was an effective method.

  4. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    SciTech Connect

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  5. On PDE solution in transient optimization of gas networks

    NASA Astrophysics Data System (ADS)

    Steinbach, Marc C.

    2007-06-01

    Operative planning in gas distribution networks leads to large-scale mixed-integer optimization problems involving a hyperbolic PDE defined on a graph. We consider the NLP obtained under prescribed combinatorial decisions--or as relaxation in a branch-and-bound framework, addressing in particular the KKT systems arising in primal-dual interior methods. We propose a custom solution algorithm using sparse projections locally in time, based on the KKT systems' structural properties in space as induced by the discretized gas flow equations in combination with the underlying network topology. The numerical efficiency and accuracy of the algorithm are investigated, and detailed computational comparisons with a previously developed control space method and with the multifrontal solver MA27 are provided.

  6. Improving Gas Storage Development Planning Through Simulation-Optimization

    SciTech Connect

    Johnson, V.M.; Ammer, J.; Trick, M.D.

    2000-07-25

    This is the first of two papers describing the application of simulator-optimization methods to a natural gas storage field development planning problem. The results presented here illustrate the large gains in cost-effectiveness that can be made by employing the reservoir simulator as the foundation for a wide-ranging search for solutions to management problems. The current paper illustrates the application of these techniques given a deterministic view of the reservoir. A companion paper will illustrate adaptations needed to accommodate uncertainties regarding reservoir properties.

  7. Optimizing quantum gas production by an evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Lausch, T.; Hohmann, M.; Kindermann, F.; Mayer, D.; Schmidt, F.; Widera, A.

    2016-05-01

    We report on the application of an evolutionary algorithm (EA) to enhance performance of an ultra-cold quantum gas experiment. The production of a ^{87}rubidium Bose-Einstein condensate (BEC) can be divided into fundamental cooling steps, specifically magneto-optical trapping of cold atoms, loading of atoms to a far-detuned crossed dipole trap, and finally the process of evaporative cooling. The EA is applied separately for each of these steps with a particular definition for the feedback, the so-called fitness. We discuss the principles of an EA and implement an enhancement called differential evolution. Analyzing the reasons for the EA to improve, e.g., the atomic loading rates and increase the BEC phase-space density, yields an optimal parameter set for the BEC production and enables us to reduce the BEC production time significantly. Furthermore, we focus on how additional information about the experiment and optimization possibilities can be extracted and how the correlations revealed allow for further improvement. Our results illustrate that EAs are powerful optimization tools for complex experiments and exemplify that the application yields useful information on the dependence of these experiments on the optimized parameters.

  8. Optimization of microwave-assisted extraction with saponification (MAES) for the determination of polybrominated flame retardants in aquaculture samples.

    PubMed

    Fajar, N M; Carro, A M; Lorenzo, R A; Fernandez, F; Cela, R

    2008-08-01

    The efficiency of microwave-assisted extraction with saponification (MAES) for the determination of seven polybrominated flame retardants (polybrominated biphenyls, PBBs; and polybrominated diphenyl ethers, PBDEs) in aquaculture samples is described and compared with microwave-assisted extraction (MAE). Chemometric techniques based on experimental designs and desirability functions were used for simultaneous optimization of the operational parameters used in both MAES and MAE processes. Application of MAES to this group of contaminants in aquaculture samples, which had not been previously applied to this type of analytes, was shown to be superior to MAE in terms of extraction efficiency, extraction time and lipid content extracted from complex matrices (0.7% as against 18.0% for MAE extracts). PBBs and PBDEs were determined by gas chromatography with micro-electron capture detection (GC-muECD). The quantification limits for the analytes were 40-750 pg g(-1) (except for BB-15, which was 1.43 ng g(-1)). Precision for MAES-GC-muECD (%RSD < 11%) was significantly better than for MAE-GC-muECD (%RSD < 20%). The accuracy of both optimized methods was satisfactorily demonstrated by analysis of appropriate certified reference material (CRM), WMF-01.

  9. Optimization of microwave-assisted extraction with saponification (MAES) for the determination of polybrominated flame retardants in aquaculture samples.

    PubMed

    Fajar, N M; Carro, A M; Lorenzo, R A; Fernandez, F; Cela, R

    2008-08-01

    The efficiency of microwave-assisted extraction with saponification (MAES) for the determination of seven polybrominated flame retardants (polybrominated biphenyls, PBBs; and polybrominated diphenyl ethers, PBDEs) in aquaculture samples is described and compared with microwave-assisted extraction (MAE). Chemometric techniques based on experimental designs and desirability functions were used for simultaneous optimization of the operational parameters used in both MAES and MAE processes. Application of MAES to this group of contaminants in aquaculture samples, which had not been previously applied to this type of analytes, was shown to be superior to MAE in terms of extraction efficiency, extraction time and lipid content extracted from complex matrices (0.7% as against 18.0% for MAE extracts). PBBs and PBDEs were determined by gas chromatography with micro-electron capture detection (GC-muECD). The quantification limits for the analytes were 40-750 pg g(-1) (except for BB-15, which was 1.43 ng g(-1)). Precision for MAES-GC-muECD (%RSD < 11%) was significantly better than for MAE-GC-muECD (%RSD < 20%). The accuracy of both optimized methods was satisfactorily demonstrated by analysis of appropriate certified reference material (CRM), WMF-01. PMID:18608498

  10. Naturally fractured tight gas - gas reservoir detection optimization. Quarterly report, June 1, 1996--September 30, 1996

    SciTech Connect

    Maxwell, J.M.; Ortoleva, P.; Payne, D.; Sibo, W.

    1996-11-15

    This document contains the status report for the Naturally Fractured Tight Gas-Gas Reservoir Detection Optimization project for the contract period 9/30/93 to 3/31/97. Data from seismic surveys are analyzed for structural imaging of reflector units. The data were stacked using the new, improved statics and normal moveout velocities. The 3-D basin modeling effort is continuing with code development. The main activities of this quarter were analysis of fluid pressure data, improved sedimentary history, lithologic unit geometry reconstruction algorithm and computer module, and further improvement, verification, and debugging of the basin stress and multi-phase reaction transport module.

  11. Optimal allocation of leaf epidermal area for gas exchange.

    PubMed

    de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J

    2016-06-01

    A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. PMID:26991124

  12. Response surface optimization of ultrasound assisted extraction of pectin from pomegranate peel.

    PubMed

    Moorthy, I Ganesh; Maran, J Prakash; Surya, S Muneeswari; Naganyashree, S; Shivamathi, C S

    2015-01-01

    Ultrasound assisted extraction of pectin from waste pomegranate peel was investigated and optimized using Box-Behnken response surface design coupled with numerical optimization technique. The individual and interactive effect of process variables (solid-liquid ratio, pH, extraction time and temperature) on the pectin yield was studied. The experimental data obtained were analyzed by Pareto analysis of variance (ANOVA) and second-order polynomial models were developed using multiple regression analysis. The models developed from the experimental design were predictive and good fit with the experimental data with high coefficient of determination (R(2)) value. The optimal extraction condition was found to be 1:17.52 g/ml of solid-liquid ratio, 1.27 of pH, 28.31 min of extraction time and 61.90 °C of extraction temperature respectively. Under the optimal conditions, experimental yield was very close to the predicted values.

  13. Solar assisted gas-fired absorption heat pump

    NASA Astrophysics Data System (ADS)

    Murphy, K. P.; Burke, J. C.; Phillips, B. A.

    1982-08-01

    An evaluation of the technical and economic feasibility of coupling an absorption heat pump and an active solar system for residential applications is discussed. The absorption heat pump is based on a new absorption working pair developed by Allied. Three basic modes of coupling were considered, a series arrangement, a parallel arrangement, and a solar drive arrangement. Little overall difference in performance was found for these three modes but the solar drive was chosen for detailed study. A preliminary design of a dual mode absorption generator was developed capable of using simultaneously heat from gas and solar. The performance of such a system was examined in three cities.

  14. When gas analysis assists with postmortem imaging to diagnose causes of death.

    PubMed

    Varlet, V; Smith, F; Giuliani, N; Egger, C; Rinaldi, A; Dominguez, A; Chevallier, C; Bruguier, C; Augsburger, M; Mangin, P; Grabherr, S

    2015-06-01

    Postmortem imaging consists in the non-invasive examination of bodies using medical imaging techniques. However, gas volume quantification and the interpretation of the gas collection results from cadavers remain difficult. We used whole-body postmortem multi-detector computed tomography (MDCT) followed by a full autopsy or external examination to detect the gaseous volumes in bodies. Gases were sampled from cardiac cavities, and the sample compositions were analyzed by headspace gas chromatography-mass spectrometry/thermal conductivity detection (HS-GC-MS/TCD). Three categories were defined according to the presumed origin of the gas: alteration/putrefaction, high-magnitude vital gas embolism (e.g., from scuba diving accident) and gas embolism of lower magnitude (e.g., following a traumatic injury). Cadaveric alteration gas was diagnosed even if only one gas from among hydrogen, hydrogen sulfide or methane was detected. In alteration cases, the carbon dioxide/nitrogen ratio was often >0.2, except in the case of advanced alteration, when methane presence was the best indicator. In the gas embolism cases (vital or not), hydrogen, hydrogen sulfide and methane were absent. Moreover, with high-magnitude vital gas embolisms, carbon dioxide content was >20%, and the carbon dioxide/nitrogen ratio was >0.2. With gas embolisms of lower magnitude (gas presence consecutive to a traumatic injury), carbon dioxide content was <20% and the carbon dioxide/nitrogen ratio was often <0.2. We found that gas analysis provided useful assistance to the postmortem imaging diagnosis of causes of death. Based on the quantifications of gaseous cardiac samples, reliable indicators were determined to document causes of death. MDCT examination of the body must be performed as quickly as possible, as does gas sampling, to avoid generating any artifactual alteration gases. Because of cardiac gas composition analysis, it is possible to distinguish alteration gases and gas embolisms of different

  15. When gas analysis assists with postmortem imaging to diagnose causes of death.

    PubMed

    Varlet, V; Smith, F; Giuliani, N; Egger, C; Rinaldi, A; Dominguez, A; Chevallier, C; Bruguier, C; Augsburger, M; Mangin, P; Grabherr, S

    2015-06-01

    Postmortem imaging consists in the non-invasive examination of bodies using medical imaging techniques. However, gas volume quantification and the interpretation of the gas collection results from cadavers remain difficult. We used whole-body postmortem multi-detector computed tomography (MDCT) followed by a full autopsy or external examination to detect the gaseous volumes in bodies. Gases were sampled from cardiac cavities, and the sample compositions were analyzed by headspace gas chromatography-mass spectrometry/thermal conductivity detection (HS-GC-MS/TCD). Three categories were defined according to the presumed origin of the gas: alteration/putrefaction, high-magnitude vital gas embolism (e.g., from scuba diving accident) and gas embolism of lower magnitude (e.g., following a traumatic injury). Cadaveric alteration gas was diagnosed even if only one gas from among hydrogen, hydrogen sulfide or methane was detected. In alteration cases, the carbon dioxide/nitrogen ratio was often >0.2, except in the case of advanced alteration, when methane presence was the best indicator. In the gas embolism cases (vital or not), hydrogen, hydrogen sulfide and methane were absent. Moreover, with high-magnitude vital gas embolisms, carbon dioxide content was >20%, and the carbon dioxide/nitrogen ratio was >0.2. With gas embolisms of lower magnitude (gas presence consecutive to a traumatic injury), carbon dioxide content was <20% and the carbon dioxide/nitrogen ratio was often <0.2. We found that gas analysis provided useful assistance to the postmortem imaging diagnosis of causes of death. Based on the quantifications of gaseous cardiac samples, reliable indicators were determined to document causes of death. MDCT examination of the body must be performed as quickly as possible, as does gas sampling, to avoid generating any artifactual alteration gases. Because of cardiac gas composition analysis, it is possible to distinguish alteration gases and gas embolisms of different

  16. Designing optimal greenhouse gas monitoring networks for Australia

    NASA Astrophysics Data System (ADS)

    Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.

    2016-01-01

    Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.

  17. Strategies to optimize the performance of Robotic-assisted ­laparoscopic hysterectomy

    PubMed Central

    Lambrou, N.; Diaz, R.E.; Hinoul, P.; Parris, D.; Shoemaker, K.; Yoo, A.; Schwiers, M.

    2014-01-01

    A hybrid technique of robot-assisted, laparoscopic hysterectomy using the ENSEAL® Tissue Sealing Device is described in a retrospective, consecutive, observational case series. Over a 45 month period, 590 robot-assisted total laparoscopic hysterectomies +/- oophorectomy for benign and malignant indications were performed by a single surgeon with a bedside assistant at a tertiary healthcare center. Patient demographics, indications for surgery, comorbidities, primary and secondary surgical procedures, total operative and surgical time, estimated blood loss (EBL), length of stay (LOS), complications, transfusions and subsequent readmissions were analyzed. The overall complication rate was 5.9% with 35 patients experiencing 69 complications. Mean (SD) surgery time, operating room (OR) time, EBL, and LOS for the entire cohort were 75.5 (39.42) minutes, 123.8 (41.15) minutes, 83.1 (71.29) millilitres, and 1.2 (0.93) days, respectively. Mean surgery time in the first year (2009) was 91.6 minutes, which declined significantly each year by 18.0, 19.0, and 24.3 minutes, respectively. EBL and LOS did not vary ­significantly across the entire series. Using the cumulative sum method, an optimization curve for surgery time was evaluated, with three distinct optimization phases observed. In summary, the use of an advanced laparoscopic tissue-sealing device by a bedside surgical assistant provided an improved operative efficiency and reliable vessel sealing during robotic hysterectomy. PMID:25374656

  18. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    SciTech Connect

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real time

  19. Simulation of gas-assisted injection mold-cooling process using line source model approach for gas channel

    SciTech Connect

    Chang, Y.P.; Hu, S.Y.; Chen, S.C.

    1998-10-01

    Gas-assisted injection molding (GAIM) process, being an innovative injection molding process, can substantially reduce production expenses through reduction in material cost, reduction in clamp tonnage and reduction in cycle time. Whether it is feasible to perform an integrated simulation for process simulation based on a unified CAE model for gas-assisted injection molding (GAIM) is a great concern. In the present study, numerical algorithms based on the same CAE model used for process simulation regarding filling and packaging stages were developed to simulate the cooling phase of GAIM using a cycle-averaged three-dimensional modified boundary element technique similar to that used for conventional injection molding. However, to use the current CAE model for analysis, gas channel was modeled by two-node elements using line source approach. It was found that this new modeling not only affects the mold wall temperature calculation very slightly but also reduces the computer time by 95% as compared with a full gas channel modeling required a lot of triangular elements on gas channel surface. This investigation indicates that it is feasible to achieve an integrated process simulation for GAIM under one CAE model resulting in great computational efficiency for industrial application.

  20. Iridium single atom tips fabricated by field assisted reactive gas etching

    NASA Astrophysics Data System (ADS)

    Wood, John A.; Urban, Radovan; Salomons, Mark; Cloutier, Martin; Wolkow, Robert A.; Pitters, Jason L.

    2016-03-01

    We present a simple, reliable method to fabricate Ir single atom tips (SATs) from polycrystalline wire. An electrochemical etch in CaCl2 solution is followed by a field assisted reactive gas etch in vacuum at room temperature using oxygen as an etching gas and neon as an imaging gas. Once formed, SATs are cooled to liquid nitrogen temperatures and their underlying structure is examined through evaporation of the apex atoms. Furthermore, a method is developed to repair Ir SATs at liquid nitrogen temperatures when apex atoms evaporate. This method may be used to fabricate Ir SAT ion sources.

  1. Binary particle swarm optimization algorithm assisted to design of plasmonic nanospheres sensor

    NASA Astrophysics Data System (ADS)

    Kaboli, Milad; Akhlaghi, Majid; Shahmirzaee, Hossein

    2016-04-01

    In this study, a coherent perfect absorption (CPA)-type sensor based on plasmonic nanoparticles is proposed. It consists of a plasmonic nanospheres array on top of a quartz substrate. The refractive index changes above the sensor surface, which is due to the appearance of gas or the absorption of biomolecules, can be detected by measuring the resulting spectral shifts of the absorption coefficient. Since the CPA efficiency depends strongly on the number of plasmonic nanoparticles and the locations of nanoparticles, binary particle swarm optimization (BPSO) algorithm is used to design an optimized array of the plasmonic nanospheres. This optimized structure should be maximizing the absorption coefficient only in the one frequency. BPSO algorithm, a swarm of birds including a matrix with binary entries responsible for controlling nanospheres in the array, shows the presence with symbol of ('1') and the absence with ('0'). The sensor can be used for sensing both gas and low refractive index materials in an aqueous environment.

  2. Evaluation of Fiber Bundle Rotation for Enhancing Gas Exchange in a Respiratory Assist Catheter

    PubMed Central

    Eash, Heide J.; Mihelc, Kevin M.; Frankowski, Brain J.; Hattler, Brack G.; Federspiel, William J.

    2007-01-01

    Supplemental oxygenation and carbon dioxide removal through an intravenous respiratory assist catheter can be used as a means of treating patients with acute respiratory failure. We are beginning development efforts toward a new respiratory assist catheter with an insertional size <25F, which can be inserted percutaneously. In this study, we evaluated fiber bundle rotation as an improved mechanism for active mixing and enhanced gas exchange in intravenous respiratory assist catheters. Using a simple test apparatus of a rotating densely packed bundle of hollow fiber membranes, water and blood gas exchange levels were evaluated at various rotation speeds in a mock vena cava. At 12,000 RPM, maximum CO2 gas exchange rates were 449 and 523 mL/min per m², water and blood, respectively, but the rate of increase with increasing rotation rate diminished beyond 7500 RPM. These levels of gas exchange efficiency are two‐ to threefold greater than achieved in our previous respiratory catheters using balloon pulsation for active mixing. In preliminary hemolysis tests, which monitored plasma‐free hemoglobin levels in vitro over a period of 6 hours, we established that the rotating fiber bundle per se did not cause significant blood hemolysis compared with an intra‐aortic balloon pump. Accordingly, fiber bundle rotation appears to be a potential mechanism for increasing gas exchange and reducing insertional size in respiratory catheters. PMID:17515731

  3. Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in seawater samples by membrane-assisted solvent extraction combined with gas chromatography-electron capture detector and gas chromatography-tandem mass spectrometry.

    PubMed

    Shi, Xizhi; Tang, Zigang; Sun, Aili; Zhou, Lei; Zhao, Jian; Li, Dexiang; Chen, Jiong; Pan, Daodong

    2014-12-01

    A highly efficient and environment-friendly membrane-assisted solvent extraction system combined with gas chromatography-electron capture detector was applied in the simultaneous determination of 17 polychlorinated biphenyls and organochlorine pesticides in seawater samples. Variables affecting extraction efficiency, including extraction solvent used, stirring rate, extraction time, and temperature, were optimized extensively. Under optimal extraction conditions, recoveries between 76.9% and 104.6% in seawater samples were achieved, and relative standard deviation values below 10% were obtained. The limit of detection (signal-to-noise ratio=3) and limit of quantification (signal-to-noise ratio=10) of 17 polychlorinated biphenyls and organochlorine pesticides in seawater ranged from 0.14ngL(-1) to 0.36ngL(-1) and 0.46ngL(-1) to 1.19ngL(-1), respectively. Matrix effects on extraction efficiency were evaluated by comparing with the results obtained using tap water. The extraction effect of developed membrane-assisted solvent extraction method was further demonstrated by gas chromatography-tandem mass spectrometry which can provide structural information of the analytes for more accurate identification, and results identical to those produced by gas chromatography-electron capture detector were obtained. These findings demonstrate the applicability of the developed membrane-assisted solvent extraction determination method for coupling to gas chromatography-electron capture detector or tandem mass spectrometry for determining polychlorinated biphenyls and organochlorine pesticides in seawater samples.

  4. Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in seawater samples by membrane-assisted solvent extraction combined with gas chromatography-electron capture detector and gas chromatography-tandem mass spectrometry.

    PubMed

    Shi, Xizhi; Tang, Zigang; Sun, Aili; Zhou, Lei; Zhao, Jian; Li, Dexiang; Chen, Jiong; Pan, Daodong

    2014-12-01

    A highly efficient and environment-friendly membrane-assisted solvent extraction system combined with gas chromatography-electron capture detector was applied in the simultaneous determination of 17 polychlorinated biphenyls and organochlorine pesticides in seawater samples. Variables affecting extraction efficiency, including extraction solvent used, stirring rate, extraction time, and temperature, were optimized extensively. Under optimal extraction conditions, recoveries between 76.9% and 104.6% in seawater samples were achieved, and relative standard deviation values below 10% were obtained. The limit of detection (signal-to-noise ratio=3) and limit of quantification (signal-to-noise ratio=10) of 17 polychlorinated biphenyls and organochlorine pesticides in seawater ranged from 0.14ngL(-1) to 0.36ngL(-1) and 0.46ngL(-1) to 1.19ngL(-1), respectively. Matrix effects on extraction efficiency were evaluated by comparing with the results obtained using tap water. The extraction effect of developed membrane-assisted solvent extraction method was further demonstrated by gas chromatography-tandem mass spectrometry which can provide structural information of the analytes for more accurate identification, and results identical to those produced by gas chromatography-electron capture detector were obtained. These findings demonstrate the applicability of the developed membrane-assisted solvent extraction determination method for coupling to gas chromatography-electron capture detector or tandem mass spectrometry for determining polychlorinated biphenyls and organochlorine pesticides in seawater samples. PMID:25310709

  5. Gas-Assisted Annular Microsprayer for Sample Preparation for Time-Resolved Cryo-Electron Microscopy

    PubMed Central

    Lu, Zonghuan; Barnard, David; Shaikh, Tanvir R.; Meng, Xing; Mannella, Carmen A.; Yassin, Aymen; Agrawal, Rajendra; Wagenknecht, Terence; Lu, Toh-Ming

    2014-01-01

    Time-resolved cryo electron microscopy (TRCEM) has emerged as a powerful technique for transient structural characterization of isolated biomacromolecular complexes in their native state within the time scale of seconds to milliseconds. For TRCEM sample preparation, microfluidic device [9] has been demonstrated to be a promising approach to facilitate TRCEM biological sample preparation. It is capable of achieving rapidly aqueous sample mixing, controlled reaction incubation, and sample deposition on electron microscopy (EM) grids for rapid freezing. One of the critical challenges is to transfer samples to cryo-EM grids from the microfluidic device. By using microspraying method, the generated droplet size needs to be controlled to facilitate the thin ice film formation on the grid surface for efficient data collection, while not too thin to be dried out before freezing, i.e., optimized mean droplet size needs to be achieved. In this work, we developed a novel monolithic three dimensional (3D) annular gas-assisted microfluidic sprayer using 3D MEMS (MicroElectroMechanical System) fabrication techniques. The microsprayer demonstrated dense and consistent microsprays with average droplet size between 6-9 μm, which fulfilled the above droplet size requirement for TRCEM sample preparation. With droplet density of around 12-18 per grid window (window size is 58×58 μm), and the data collectible thin ice region of >50% total wetted area, we collected ~800-1000 high quality CCD micrographs in a 6-8 hour period of continuous effort. This level of output is comparable to what were routinely achieved using cryo-grids prepared by conventional blotting and manual data collection. In this case, weeks of data collection process with the previous device [9] has shortened to a day or two. And hundreds of microliter of valuable sample consumption can be reduced to only a small fraction. PMID:25530679

  6. Effect of Impeller Design and Spacing on Gas Exchange in a Percutaneous Respiratory Assist Catheter

    PubMed Central

    Jeffries, R. Garrett; Frankowski, Brian J.; Burgreen, Greg W.; Federspiel, William J.

    2014-01-01

    Providing partial respiratory assistance by removing carbon dioxide (CO2) can improve clinical outcomes in patients suffering from acute exacerbations of chronic obstructive pulmonary disease and acute respiratory distress syndrome. An intravenous respiratory assist device with a small (25 Fr) insertion diameter eliminates the complexity and potential complications associated with external blood circuitry and can be inserted by nonspecialized surgeons. The impeller percutaneous respiratory assist catheter (IPRAC) is a highly efficient CO2 removal device for percutaneous insertion to the vena cava via the right jugular or right femoral vein that utilizes an array of impellers rotating within a hollow-fiber membrane bundle to enhance gas exchange. The objective of this study was to evaluate the effects of new impeller designs and impeller spacing on gas exchange in the IPRAC using computational fluid dynamics (CFD) and in vitro deionized water gas exchange testing. A CFD gas exchange and flow model was developed to guide a progressive impeller design process. Six impeller blade geometries were designed and tested in vitro in an IPRAC device with 2- or 10-mm axial spacing and varying numbers of blades (2–5). The maximum CO2 removal efficiency (exchange per unit surface area) achieved was 573 ± 8 mL/min/m2 (40.1 mL/min absolute). The gas exchange rate was found to be largely independent of blade design and number of blades for the impellers tested but increased significantly (5–10%) with reduced axial spacing allowing for additional shaft impellers (23 vs. 14). CFD gas exchange predictions were within 2–13% of experimental values and accurately predicted the relative improvement with impellers at 2- versus 10-mm axial spacing. The ability of CFD simulation to accurately forecast the effects of influential design parameters suggests it can be used to identify impeller traits that profoundly affect facilitated gas exchange. PMID:24749994

  7. Optimization of microwave-assisted extraction of polysaccharide from Psidium guajava L. fruits.

    PubMed

    Amutha Gnana Arasi, Michael Antony Samy; Gopal Rao, Manchineela; Bagyalakshmi, Janardanan

    2016-10-01

    This study deals with the optimization of microwave assisted extraction of polysaccharide from Psidium guajava L. fruit using Response surface methodology. To evaluate the effect of three independent variables, Water to plant material ratio, microwave power used for extraction and Irradiation time, central composite design has been employed. The yield is considered as dependent variable. The design model estimated the optimum yield of 6.81677% at 200W microwave power level, 3:1 water to plant material ratio and 20min of irradiation time. Three factors three levels Central composite design coupled with RSM was used to model the extraction process. ANOVA was performed to find the significance of the model. The polysaccharide extracted using microwave assisted extraction process was analyzed using FTIR Spectroscopy. PMID:27180292

  8. Importance of realistic LVAD profiles for assisted aortic simulations: evaluation of optimal outflow anastomosis locations.

    PubMed

    Brown, Alistair Graham; Shi, Yubing; Arndt, Andreas; Müller, Jörg; Lawford, Patricia; Hose, David Rodney

    2012-01-01

    Left ventricular assist devices (LVADs) are carefully designed, but the significance of the implantation configuration and interaction with the vasculature is complex and not fully determined. The present study employs computational fluid dynamics to investigate the importance of applying a realistic LVAD profile when evaluating assisted aortic flow fields and subsequently compares a number of potential anastomosis locations in a patient-specific aortic geometry. The outflow profile of the Berlin Heart INCOR® device was provided by Berlin Heart GmbH (Berlin, Germany) and the cannula was attached at a number of locations on the aorta. Simulations were conducted to compare a flat profile against the real LVAD profile. The results illustrate the importance of applying an LVAD profile. It not only affects the magnitude and distribution of oscillatory shear index, but also the distribution of flow to the great arteries. The ascending aorta was identified as the optimal location for the anastomosis.

  9. 3D Numerical study on the hollow profile polymer extrusion forming based on the gas-assisted technique

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Huang, X. Y.; Liu, H. S.

    2016-07-01

    In this study, gas-assisted extrusion method was introduced into the extrusion of the hollow profiles. To validate the feasibility of the new extrusion method, 3D numerical simulation of the hollow profiles based on gas-assisted technique was carried out by using the finite element method. The Phan-Thien-Tanner (PTT) mode was selected as the construction equation. In the simulations, the physical field distributions of four different extrusion modes were obtained and analyzed. Results showed that the extrudate effect of traditional no gas- assisted mode was poor because the extrudate swell phenomenon is obvious and the physical field values are larger. For the gas-assisted of the inner wall, the extrudate swell of the melt was more obvious than that of the traditional no gas-assisted mode on account of the no-slip boundary condition on the outer wall. For the gas-assisted of the outer wall, the dimple effect of the inner wall is more obvious owing to the no-slip boundary condition on the inner wall. However, the extrusion effect of the double walls gas-assisted mode is very good because of the full-slip effect on the both walls.

  10. Optimal elastic cord assistance for sprinting in collegiate women soccer players.

    PubMed

    Bartolini, J Albert; Brown, Lee E; Coburn, Jared W; Judelson, Daniel A; Spiering, Barry A; Aguirre, Nick W; Carney, Keven R; Harris, Kenten B

    2011-05-01

    Overspeed exercises are commonly integrated into a training program to help athletes perform at a speed greater than what they are accustomed to when unassisted. However, the optimal assistance for maximal sprinting has not been determined. The purpose of this study was to determine the optimal elastic cord assistance for sprinting performance. Eighteen collegiate women soccer players completed 3 testing sessions, which consisted of a 5-minute warm-up, followed by 5 randomized experimental conditions of 0, 10, 20, 30, and 40% body weight assistance (BWA). In all BWA sessions, subjects wore a belt while attached to 2 elastic cords and performed 2 maximal sprints under each condition. Five minutes of rest was given between each sprint attempt and between conditions. Split times (0-5, 5-10, 10-15, 15-20, and 0-20 yd) for each condition were used for analysis. Results for 0-20 yd demonstrated a significant main effect for condition. Post hoc comparisons revealed that as BWA increased, sprint times decreased up to 30% BWA (0%: 3.20 ± 0.12 seconds; 10%: 3.07 ± 0.09 seconds; 20%: 2.96 ± 0.07 seconds; 30%: 2.81 ± 0.08 seconds; 40%: 2.77 ± 0.10 seconds); there was no difference between 30 and 40% BWA. There was also a main effect for condition when examining split times. Post hoc comparisons revealed that as BWA increased, sprint times decreased up to 30% BWA for distances up to 15 yd. These results demonstrate that 30% of BWA with elastic cords appears optimal in decreasing sprint times in collegiate women soccer players for distances up to 15 yd.

  11. An optimal controller for an electric ventricular-assist device: theory, implementation, and testing

    NASA Technical Reports Server (NTRS)

    Klute, G. K.; Tasch, U.; Geselowitz, D. B.

    1992-01-01

    This paper addresses the development and testing of an optimal position feedback controller for the Penn State electric ventricular-assist device (EVAD). The control law is designed to minimize the expected value of the EVAD's power consumption for a targeted patient population. The closed-loop control law is implemented on an Intel 8096 microprocessor and in vitro test runs show that this controller improves the EVAD's efficiency by 15-21%, when compared with the performance of the currently used feedforward control scheme.

  12. Gas-assisted dispersive liquid-phase microextraction using ionic liquid as extracting solvent for spectrophotometric speciation of copper.

    PubMed

    Akhond, Morteza; Absalan, Ghodratollah; Pourshamsi, Tayebe; Ramezani, Amir M

    2016-07-01

    Gas-assisted dispersive liquid-phase microextraction (GA-DLPME) has been developed for preconcentration and spectrophotometric determination of copper ion in different water samples. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate and argon gas, respectively, were used as the extracting solvent and disperser. The procedure was based on direct reduction of Cu(II) to Cu(I) by hydroxylamine hydrochloride, followed by extracting Cu(I) into ionic liquid phase by using neocuproine as the chelating agent. Several experimental variables that affected the GA-DLPME efficiency were investigated and optimized. Under the optimum experimental conditions (IL volume, 50µL; pH, 6.0; acetate buffer, 1.5molL(-1); reducing agent concentration, 0.2molL(-1); NC concentration, 120µgmL(-1); Ar gas bubbling time, 6min; argon flow rate, 1Lmin(-1); NaCl concentration, 6% w/w; and centrifugation time, 3min), the calibration graph was linear over the concentration range of 0.30-2.00µgmL(-1) copper ion with a limit of detection of 0.07µgmL(-1). Relative standard deviation for five replicate determinations of 1.0µgmL(-1) copper ion was found to be 3.9%. The developed method was successfully applied to determination of both Cu(I) and Cu(II) species in water samples.

  13. Argon-Hydrogen Shielding Gas Mixtures for Activating Flux-Assisted Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Huang, Her-Yueh

    2010-11-01

    Using activating flux for gas tungsten arc welding (GTAW) to improve penetration capability is a well-established technique. Argon is an inert gas and the one most widely used as a shielding gas for GTAW. For the most austenitic stainless steels, pure argon does not provide adequate weld penetration. Argon-hydrogen mixtures give a more even heat input to the workpiece, increasing the arc voltage, which tends to increase the volume of molten material in the weld pool as well as the weld depth-to-width ratio. Great interest has been shown in the interaction between activating flux and the hydrogen concentration in an argon-based shielding gas. In this study, the weld morphology, the arc profile, the retained delta ferrite content, the angular distortion, and the microstructures were examined. The application of an activating flux combining argon and hydrogen for GTAW is important in the industry. The results of this study are presented here.

  14. Optimization of diclofenac quantification from wastewater treatment plant sludge by ultrasonication assisted extraction.

    PubMed

    Topuz, Emel; Sari, Sevgi; Ozdemir, Gamze; Aydin, Egemen; Pehlivanoglu-Mantas, Elif; Okutman Tas, Didem

    2014-05-01

    A rapid quantification method of diclofenac from sludge samples through ultrasonication assisted extraction and solid phase extraction (SPE) was developed and used for the quantification of diclofenac concentrations in sludge samples with liquid chromatography/tandem mass spectrometry (LC-MS/MS). Although the concentration of diclofenac in sludge samples taken from different units of wastewater treatment plants in Istanbul was below the limit of quantification (LOQ; 5ng/g), an optimized method for sludge samples along with the total mass balances in a wastewater treatment plant can be used to determine the phase with which diclofenac is mostly associated. Hence, the results will provide information on fate and transport of diclofenac, as well as on the necessity of alternative removal processes. In addition, since the optimization procedure is provided in detail, it is possible for other researchers to use this procedure as a starting point for the determination of other emerging pollutants in wastewater sludge samples. PMID:24704687

  15. Computer-assisted multi-segment gradient optimization in ion chromatography.

    PubMed

    Tyteca, Eva; Park, Soo Hyun; Shellie, Robert A; Haddad, Paul R; Desmet, Gert

    2015-02-13

    This study reports simulation and optimization of ion chromatography separations using multi-segment gradient elution. First, an analytical expression for the gradient retention factor under these complex elution profiles was derived. This allows a rapid retention time prediction calculations under different gradient conditions, during computer-assisted method development. Next, these analytical expressions were implemented in an in-house written Matlab(®) routine that searches for the optimal (multi-segment) gradient conditions, either via a four-segment grid search or via the recently proposed one-segment-per-component search, in which the slope is adjusted after the elution of each individual component. Evaluation of the retention time simulation and optimization approaches was performed on a mixture of 18 inorganic anions and different subsets with varying number of compounds. The two considered multi-segment gradient optimization searches resulted in similar proposed gradient profiles, and corresponding chromatograms. Moreover, the resultant chromatograms were clearly superior to the chromatograms obtained from the best simple linear gradient profiles, found via a fine grid search. The proposed approach is useful for automated method development in ion chromatography in which complex elution profiles are often used to increase the separation power.

  16. Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill.

    PubMed

    Cheng, Zhenyu; Song, Haiyan; Yang, Yingjie; Liu, Yan; Liu, Zhigang; Hu, Haobin; Zhang, Yang

    2015-05-01

    A microwave-assisted enzymatic extraction (MAEE) method had been developed, which was optimized by response surface methodology (RSM) and orthogonal test design, to enhance the extraction of crude polysaccharides (CPS) from the fruit of Schisandra chinensis Baill. The optimum conditions were as follows: microwave irradiation time of 10 min, extraction pH of 4.21, extraction temperature of 47.58°C, extraction time of 3h and enzyme concentration of 1.5% (wt% of S. chinensis powder) for cellulase, papain and pectinase, respectively. Under these conditions, the extraction yield of CPS was 7.38 ± 0.21%, which was well in close agreement with the value predicted by the model. The three methods including heat-refluxing extraction (HRE), ultrasonic-assisted extraction (UAE) and enzyme-assisted extraction (EAE) for extracting CPS by RSM were further compared. Results indicated MAEE method had the highest extraction yields of CPS at lower temperature. It was indicated that the proposed approach in this study was a simple and efficient technique for extraction of CPS in S. chinensis Baill.

  17. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root.

    PubMed

    Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad

    2015-06-01

    In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.

  18. Optimization of ultrasound assisted dispersive liquid-liquid microextraction of six antidepressants in human plasma using experimental design.

    PubMed

    Fernández, P; Taboada, V; Regenjo, M; Morales, L; Alvarez, I; Carro, A M; Lorenzo, R A

    2016-05-30

    A simple Ultrasounds Assisted-Dispersive Liquid Liquid Microextraction (UA-DLLME) method is presented for the simultaneous determination of six second-generation antidepressants in plasma by Ultra Performance Liquid Chromatography with Photodiode Array Detector (UPLC-PDA). The main factors that potentially affect to DLLME were optimized by a screening design followed by a response surface design and desirability functions. The optimal conditions were 2.5 mL of acetonitrile as dispersant solvent, 0.2 mL of chloroform as extractant solvent, 3 min of ultrasounds stirring and extraction pH 9.8.Under optimized conditions, the UPLC-PDA method showed good separation of antidepressants in 2.5 min and good linearity in the range of 0.02-4 μg mL(-1), with determination coefficients higher than 0.998. The limits of detection were in the range 4-5 ng mL(-1). The method precision (n=5) was evaluated showing relative standard deviations (RSD) lower than 8.1% for all compounds. The average recoveries ranged from 92.5% for fluoxetine to 110% for mirtazapine. The applicability of DLLME/UPLC-PDA was successfully tested in twenty nine plasma samples from antidepressant consumers. Real samples were analyzed by the proposed method and the results were successfully submitted to comparison with those obtained by a Liquid Liquid Extraction-Gas Chromatography - Mass Spectrometry (LLE-GC-MS) method. The results confirmed the presence of venlafaxine in most cases (19 cases), followed by sertraline (3 cases) and fluoxetine (3 cases) at concentrations below toxic levels.

  19. Development of a Market Optimized Condensing Gas Water Heater

    SciTech Connect

    Peter Pescatore

    2006-01-11

    This program covered the development of a market optimized condensing gas water heater for residential applications. The intent of the program was to develop a condensing design that minimized the large initial cost premium associated with traditional condensing water heater designs. Equally important was that the considered approach utilizes design and construction methods that deliver the desired efficiency without compromising product reliability. Standard condensing water heater approaches in the marketplace utilize high cost materials such as stainless steel tanks and heat exchangers as well as expensive burner systems to achieve the higher efficiencies. The key in this program was to develop a water heater design that uses low-cost, available components and technologies to achieve higher efficiency at a modest cost premium. By doing this, the design can reduce the payback to a more reasonable length, increasing the appeal of the product to the marketplace. Condensing water heaters have been in existence for years, but have not been able to significantly penetrate the market. The issue has typically been cost. The high purchase price associated with existing condensing water heaters, sometimes as much as $2000, has been a very difficult hurdle to overcome in the marketplace. The design developed under this program has the potential to reduce the purchase price of this condensing design by as much as $1000 as compared to traditional condensing units. The condensing water heater design developed over the course of this program led to an approach that delivered the following performance attributes: 90%+ thermal efficiency; 76,000 Btu/hr input rate in a 50 gallon tank; First hour rating greater than 180 gph; Rapid recovery time; and Overall operating condition well matched to combination heat and hot water applications. Over the final three years of the program, TIAX worked very closely with A.O. Smith Water Products Company as our commercial partner to optimize

  20. Fast low-pressure microwave assisted extraction and gas chromatographic determination of polychlorinated biphenyls in soil samples.

    PubMed

    Bruzzoniti, M C; Maina, R; Tumiatti, V; Sarzanini, C; Rivoira, L; De Carlo, R M

    2012-11-23

    A new technology equipment for low-pressure microwave assisted extraction (usually employed for organic chemistry reactions), recently launched in the market, is used for the first time in environmental analysis for the extraction of commercial technical Aroclor mixtures from soil. Certified reference materials of Aroclor 1260, Aroclor 1254 and Aroclor 1242 in transformer oils were used to contaminate the soil samples and to optimize the extraction method as well as the subsequent gas chromatographic electron capture detection (GC-ECD) analytical method. The study was performed optimizing the extraction, the purification and the gas chromatographic separation conditions to enhance the resolution of difficult pairs of congeners (C28/31 and C141/179). After optimization, the recovery yields were included within the range 79-84%. The detection limits, evaluated for two different commercial polychlorinated biphenyl (PCB) mixtures (Aroclor 1260 and Aroclor 1242) were 0.056 ± 0.001 mg/kg and 0.290 ± 0.006 mg/kg, respectively. The method, validated with certified soil samples, was used to analyze a soil sample after an event of failure of a pole-mounted transformer which caused the dumping of PCB contaminated oil in soil. Moreover, the method provides simple sample handling, fast extraction with reduced amount of sample and solvents than usually required, and simple purification step involving the use of solvent (cyclohexane) volumes as low as 5 mL. Reliability and reproducibility of extraction conditions are ensured by direct and continuous monitoring of temperature and pressure conditions. PMID:23084486

  1. Fast low-pressure microwave assisted extraction and gas chromatographic determination of polychlorinated biphenyls in soil samples.

    PubMed

    Bruzzoniti, M C; Maina, R; Tumiatti, V; Sarzanini, C; Rivoira, L; De Carlo, R M

    2012-11-23

    A new technology equipment for low-pressure microwave assisted extraction (usually employed for organic chemistry reactions), recently launched in the market, is used for the first time in environmental analysis for the extraction of commercial technical Aroclor mixtures from soil. Certified reference materials of Aroclor 1260, Aroclor 1254 and Aroclor 1242 in transformer oils were used to contaminate the soil samples and to optimize the extraction method as well as the subsequent gas chromatographic electron capture detection (GC-ECD) analytical method. The study was performed optimizing the extraction, the purification and the gas chromatographic separation conditions to enhance the resolution of difficult pairs of congeners (C28/31 and C141/179). After optimization, the recovery yields were included within the range 79-84%. The detection limits, evaluated for two different commercial polychlorinated biphenyl (PCB) mixtures (Aroclor 1260 and Aroclor 1242) were 0.056 ± 0.001 mg/kg and 0.290 ± 0.006 mg/kg, respectively. The method, validated with certified soil samples, was used to analyze a soil sample after an event of failure of a pole-mounted transformer which caused the dumping of PCB contaminated oil in soil. Moreover, the method provides simple sample handling, fast extraction with reduced amount of sample and solvents than usually required, and simple purification step involving the use of solvent (cyclohexane) volumes as low as 5 mL. Reliability and reproducibility of extraction conditions are ensured by direct and continuous monitoring of temperature and pressure conditions.

  2. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 15: GAS-ASSISTED GLYCOL PUMPS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  3. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOEpatents

    Rao, Dandina N.

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  4. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology.

    PubMed

    Tabaraki, Reza; Nateghi, Ashraf

    2011-11-01

    Ultrasonic technology was applied for extraction of polyphenols and antioxidants from the rice bran using ethanol as a food grade solvent. Response surface methodology (RSM) was used to optimize experimental conditions for extraction of polyphenols and antioxidants. Three independent variables such as solvent percentage (%), temperature (°C) and time (min) were studied. Effect of ethanol concentration was found to be significant on all responses. Total phenolic content (TPC) varied from 2.37 to 6.35mg gallic acid equivalent/g of dry sample. Antioxidant activity of the extracts was determined by the ferric reducing antioxidant power (FRAP) assay and scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. FRAP and DPPH values varied from 31.74 to 57.23μmol Fe(2+)/g of dry sample and 16.88% to 55.61% inhibition, respectively. Extraction yields ranged from 11 to 20.2%. Optimal ultrasonic-assisted extraction (UAE) conditions were identified as 65-67% ethanol, 51-54°C, 40-45min. The experimental values agreed with those predicted by SRM models, thus indicating suitability of the model employed and the success of RSM in optimizing the extraction conditions.

  5. Fusion of Optimized Indicators from Advanced Driver Assistance Systems (ADAS) for Driver Drowsiness Detection

    PubMed Central

    Daza, Iván G.; Bergasa, Luis M.; Bronte, Sebastián; Yebes, J. Javier; Almazán, Javier; Arroyo, Roberto

    2014-01-01

    This paper presents a non-intrusive approach for monitoring driver drowsiness using the fusion of several optimized indicators based on driver physical and driving performance measures, obtained from ADAS (Advanced Driver Assistant Systems) in simulated conditions. The paper is focused on real-time drowsiness detection technology rather than on long-term sleep/awake regulation prediction technology. We have developed our own vision system in order to obtain robust and optimized driver indicators able to be used in simulators and future real environments. These indicators are principally based on driver physical and driving performance skills. The fusion of several indicators, proposed in the literature, is evaluated using a neural network and a stochastic optimization method to obtain the best combination. We propose a new method for ground-truth generation based on a supervised Karolinska Sleepiness Scale (KSS). An extensive evaluation of indicators, derived from trials over a third generation simulator with several test subjects during different driving sessions, was performed. The main conclusions about the performance of single indicators and the best combinations of them are included, as well as the future works derived from this study. PMID:24412904

  6. Fusion of optimized indicators from Advanced Driver Assistance Systems (ADAS) for driver drowsiness detection.

    PubMed

    Daza, Iván García; Bergasa, Luis Miguel; Bronte, Sebastián; Yebes, Jose Javier; Almazán, Javier; Arroyo, Roberto

    2014-01-09

    This paper presents a non-intrusive approach for monitoring driver drowsiness using the fusion of several optimized indicators based on driver physical and driving performance measures, obtained from ADAS (Advanced Driver Assistant Systems) in simulated conditions. The paper is focused on real-time drowsiness detection technology rather than on long-term sleep/awake regulation prediction technology. We have developed our own vision system in order to obtain robust and optimized driver indicators able to be used in simulators and future real environments. These indicators are principally based on driver physical and driving performance skills. The fusion of several indicators, proposed in the literature, is evaluated using a neural network and a stochastic optimization method to obtain the best combination. We propose a new method for ground-truth generation based on a supervised Karolinska Sleepiness Scale (KSS). An extensive evaluation of indicators, derived from trials over a third generation simulator with several test subjects during different driving sessions, was performed. The main conclusions about the performance of single indicators and the best combinations of them are included, as well as the future works derived from this study.

  7. Optimization of enzyme-assisted extraction and characterization of polysaccharides from Hericium erinaceus.

    PubMed

    Zhu, Yang; Li, Qian; Mao, Guanghua; Zou, Ye; Feng, Weiwei; Zheng, Daheng; Wang, Wei; Zhou, Lulu; Zhang, Tianxiu; Yang, Jun; Yang, Liuqing; Wu, Xiangyang

    2014-01-30

    The enzyme-assisted extraction (EAE) of polysaccharides from the fruits of Hericium erinaceus was studied. In this study, response surface methodology and the Box-Behnken design based on single-factor and orthogonal experiments were applied to optimize the EAE conditions. The optimal extraction conditions were as follows: a pH of 5.71, a temperature of 52.03°C and a time of 33.79 min. The optimal extraction conditions resulted in the highest H. erinaceus polysaccharides (HEP) yield, with a value 13.46 ± 0.37%, which represented an increase of 67.72% compared to hot water extraction (HWE). The polysaccharides were characterized by FT-IR, SEM, CD, AFM, and GC. The results showed that HEP was composed of mannose, glucose, xylose, and galactose in a molar ratio of 15.16:5.55:4.21:1. The functional groups of the H. erinaceus polysaccharides extracted by HWE and EAE were fundamentally identical but had apparent conformational changes.

  8. Optimizing ultrasound-assisted extraction of prodigiosin by response surface methodology.

    PubMed

    Sun, Shi-Qing; Wang, Yu-Jie; Xu, Wei; Zhu, Chang-Jun; Liu, Xiao-Xia

    2015-01-01

    Prodigiosin extraction from dried Serratia marcescens jx1 cells using ultrasound-assisted extraction was optimized. The experiment was carried out in accordance with a central composite design (CCD) three-level and single-variable approach. The extraction time, extraction temperature, and solute to solvent ratio with the application of ultrasonication were optimized using response surface methodology (RSM) to maximize the extraction of prodigiosin from dried S. marcescens jx1 cells. The response of prodigiosin was determined using spectrophotometry. A quadratic model was established to predict the prodigiosin extraction yield. The analysis of variance showed that the quadratic model significantly contributed to the response of prodigiosin. The optimal extraction parameters were an extraction time of 17.5 min, an extraction temperature of 23.4°C, and a solvent-to-solute ratio of 1:27.2. Under these optimum conditions, the average prodigiosin yield was 4.3 g±0.02 g from 100 g of dried cells, which matches the predicted values. The obtained optimum conditions for prodigiosin extraction provide a scientific basis for the economical large-scale production of prodigiosin. PMID:24372158

  9. Optimizing ultrasound-assisted extraction of prodigiosin by response surface methodology.

    PubMed

    Sun, Shi-Qing; Wang, Yu-Jie; Xu, Wei; Zhu, Chang-Jun; Liu, Xiao-Xia

    2015-01-01

    Prodigiosin extraction from dried Serratia marcescens jx1 cells using ultrasound-assisted extraction was optimized. The experiment was carried out in accordance with a central composite design (CCD) three-level and single-variable approach. The extraction time, extraction temperature, and solute to solvent ratio with the application of ultrasonication were optimized using response surface methodology (RSM) to maximize the extraction of prodigiosin from dried S. marcescens jx1 cells. The response of prodigiosin was determined using spectrophotometry. A quadratic model was established to predict the prodigiosin extraction yield. The analysis of variance showed that the quadratic model significantly contributed to the response of prodigiosin. The optimal extraction parameters were an extraction time of 17.5 min, an extraction temperature of 23.4°C, and a solvent-to-solute ratio of 1:27.2. Under these optimum conditions, the average prodigiosin yield was 4.3 g±0.02 g from 100 g of dried cells, which matches the predicted values. The obtained optimum conditions for prodigiosin extraction provide a scientific basis for the economical large-scale production of prodigiosin.

  10. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    NASA Astrophysics Data System (ADS)

    Ozcan, Ahmet S.; Lavoie, Christian; Alptekin, Emre; Jordan-Sweet, Jean; Zhu, Frank; Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M.

    2016-04-01

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  11. Gas chromatography-electron capture detection determination of Dacthal and its di-acid metabolite in soil after ultrasound-assisted extraction and in situ focused microwave-assisted derivatization.

    PubMed

    Caballo-López, A; Luque de Castro, M D

    2006-09-01

    A quantitative method for the determination of Dacthal and its di-acid metabolite in soil has been developed by coupling ultrasound-assisted extraction and microwave-assisted derivatization of the analytes prior to gas chromatography-electron capture detection for individual separation and measurement. The main factors affecting both extraction efficiency and derivatization were optimized by experimental design methodology. The proposed approach allows extraction of these pollutants from spiked sediment and soil with efficiencies similar to those provided by the reference method but with a drastic reduction of both the extraction and derivatization times. The repeatability of the analyses, expressed as RSD, of Dacthal and its di-acid metabolite was 4.6% and 5.4%, respectively; meanwhile, the RSD for within-laboratory reproducibility was 8.7% and 9.2%, respectively.

  12. Spectrum of temperature pulsations of the melt in gas-assisted cutting with fiber laser

    NASA Astrophysics Data System (ADS)

    Dubrov, Alexander V.; Zavalov, Yury N.; Dubrov, Vladimir D.; Grezev, Anatoly N.; Grezev, Nikolay V.; Makarova, Elena S.; Dubrovin, Nickolay G.

    2012-09-01

    Measurements of the temperature behavior in the zone of action of the laser-radiation on the molten metal have been performed using multichannel pyrometer. Measurements were carried out for test cutting of a 3-mm mild-steel plate with several values of cutting speed and pressure of assist gas (oxygen), using an 1800-watt Ytterbium fiber laser. It is shown that fluctuations of temperature are related to local melt's surface deformations due to unequal radiation absorption; thus the noise spectrum of temperature fluctuations reflects turbulent surface deformation caused by gas jet and capillary waves. The maximum density of turbulent energy dissipation ε depends on cutting conditions: its value rises with increasing cutting velocity and oxygen pressure in a described range of parameters. The maximum of ε is localized near depth of (1.2…1.5) mm along the cutting front. We can distinguish the specific radiation pulsation spectrum of laser cutting from other processes of radiation affection to the sample, including unwanted degrading of the quality of technological operations. The spectrum of capillary waves on the melt's surface is formed under the effect of assisted gas jet and has a function of ω-3, ω is cycle frequency. The results of this investigation can be useful for the development of monitoring and quality-control systems for the laser-cutting process.

  13. Determination of volatile organic compounds in water using ultrasound-assisted emulsification microextraction followed by gas chromatography.

    PubMed

    Leong, Mei-I; Huang, Shang-Da

    2012-03-01

    Volatile organic compounds (VOCs) are toxic compounds in the air, water and land. In the proposed method, ultrasound-assisted emulsification microextraction (USAEME) combined with gas chromatography-mass spectrometry (GC-MS) has been developed for the extraction and determination of eight VOCs in water samples. The influence of each experimental parameter of this method (the type of extraction solvent, volume of extraction solvent, salt addition, sonication time and extraction temperature) was optimized. The procedure for USAEME was as follows: 15 μL of 1-bromooctane was used as the extraction solvent; 10 mL sample solution in a centrifuge tube with a cover was then placed in an ultrasonic water bath for 3 min. After centrifugation, 2 μL of the settled 1-bromooctane extract was injected into the GC-MS for further analysis. The optimized results indicated that the linear range is 0.1-100.0 μg/L and the limits of detection (LODs) are 0.033-0.092 μg/L for the eight analytes. The relative standard deviations (RSD), enrichment factors (EFs) and relative recoveries (RR) of the method when used on lake water samples were 2.8-9.5, 96-284 and 83-110%. The performance of the proposed method was gauged by analyzing samples of tap water, lake water and river water samples. PMID:22271628

  14. Solar-assisted gas-energy water-heating feasibility for apartments

    NASA Technical Reports Server (NTRS)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  15. Total dissolved gas prediction and optimization in RiverWare

    SciTech Connect

    Stewart, Kevin M.; Witt, Adam M.; Hadjerioua, Boualem

    2015-09-01

    Management and operation of dams within the Columbia River Basin (CRB) provides the region with irrigation, hydropower production, flood control, navigation, and fish passage. These various system-wide demands can require unique dam operations that may result in both voluntary and involuntary spill, thereby increasing tailrace levels of total dissolved gas (TDG) which can be fatal to fish. Appropriately managing TDG levels within the context of the systematic demands requires a predictive framework robust enough to capture the operationally related effects on TDG levels. Development of the TDG predictive methodology herein attempts to capture the different modes of hydro operation, thereby making it a viable tool to be used in conjunction with a real-time scheduling model such as RiverWare. The end result of the effort will allow hydro operators to minimize system-wide TDG while meeting hydropower operational targets and constraints. The physical parameters such as spill and hydropower flow proportions, accompanied by the characteristics of the dam such as plant head levels and tailrace depths, are used to develop the empirically-based prediction model. In the broader study, two different models are developed a simplified and comprehensive model. The latter model incorporates more specific bubble physics parameters for the prediction of tailrace TDG levels. The former model is presented herein and utilizes an empirically based approach to predict downstream TDG levels based on local saturation depth, spillway and powerhouse flow proportions, and entrainment effects. Representative data collected from each of the hydro projects is used to calibrate and validate model performance and the accuracy of predicted TDG uptake. ORNL, in conjunction with IIHR - Hydroscience & Engineering, The University of Iowa, carried out model adjustments to adequately capture TDG levels with respect to each plant while maintaining a generalized model configuration. Validation results

  16. A new systems approach to optimizing investments in gas production and distribution

    SciTech Connect

    Dougherty, E.L.

    1983-03-01

    This paper presents a new analytical approach for determining the optimal sequence of investments to make in each year of an extended planning horizon in each of a group of reservoirs producing gas and gas liquids through an interconnected trunkline network and a gas processing plant. The optimality criterion is to maximize net present value while satisfying fixed offtake requirements for dry gas, but with no limits on gas liquids production. The planning problem is broken into n + 2 separate but interrelated subproblems; gas reservoir development and production, gas flow in a trunkline gathering system, and plant separation activities to remove undesirable gas (CO/sub 2/) or to recover valuable liquid components. The optimal solution for each subproblem depends upon the optimal solutions for all of the other subproblems, so that the overall optimal solution is obtained iteratively. The iteration technique used is based upon a combination of heuristics and the decompostion algorithm of mathematical programming. Each subproblem is solved once during each overall iteration. In addition to presenting some mathematical details of the solution approach, this paper describes a computer system which has been developed to obtain solutions.

  17. Assessment of solar-assisted gas-fired heat pump systems

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  18. Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel.

    PubMed

    Thirugnanasambandham, K; Sivakumar, V; Prakash Maran, J

    2014-11-01

    Microwave assisted extraction (MAE) technique was employed for the extraction of pectin from dragon fruit peel. The extracting parameters were optimized by using four-variable-three-level Box-Behnken design (BBD) coupled with response surface methodology (RSM). RSM analysis indicated good correspondence between experimental and predicted values. 3D response surface plots were used to study the interactive effects of process variables on extraction of pectin. The optimum extraction conditions for the maximum yield of pectin were power of 400 W, temperature of 45 °C, extracting time of 20 min and solid-liquid ratio of 24 g/mL. Under these conditions, 7.5% of pectin was extracted.

  19. MW-assisted synthesis of carboxymethyl tamarind kernel polysaccharide-g-polyacrylonitrile: optimization and characterization.

    PubMed

    Meenkashi; Ahuja, Munish; Verma, Purnima

    2014-11-26

    Microwave-assisted synthesis of graft copolymer of carboxymethyl tamarind seed polysaccharide and polyacrylonitrile was carried out. The effect of formulation and process variables on grafting efficiency of carboxymethyl tamarind kernel polysaccharide-g-poly(acrylonitrile) was studied using response surface methodology. The results revealed that the significant factors affecting grafting efficiency were concentrations of ammonium persulphate, acrylonitrile and interaction effects of ammonium persulphate and acrylonitrile concentrations. The optimal calculated parameters were found to be microwave exposure time-99.48 s, microwave exposure power-160 W, concentration of acrylonitrile-0.10% (w/v), concentration of ammonium persulphate--40 mmol/l, which provided graft copolymer with grafting efficiency of 96%. The formation of graft copolymer was confirmed by FT-IR studies and validated by scanning electron micrographs. Thermogravimetric analysis indicated higher thermal stability of graft copolymer and X-ray diffraction study revealed increase in crystallinity on graft polymerization. Further, the graft copolymer showed pH dependant swelling.

  20. Optimization of laser-assisted glass frit bonding process by response surface methodology

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Xiao, Yanyi; Wu, Xingyang; Zhang, Jianhua

    2016-03-01

    In this work, a systematic study on laser-assisted glass frit bonding process was carried out by response surface methodology (RSM). Laser power, sealing speed and spot diameter were considered as key bonding parameters. Combined with a central rotatable experimental design, RSM was employed to establish mathematical model to predict the relationship between the shear force after bonding and the bonding process parameters. The model was validated experimentally. Based on the model, the interaction effects of the process parameters on the shear force were analyzed and the optimum bonding parameters were achieved. The results indicate that the model can be used to illustrate the relationship between the shear force and the bonding parameters. The predicted results obtained under the optimized parameters by the models are consistent with the experimental results.

  1. Multiparticle quantum Szilard engine with optimal cycles assisted by a Maxwell's demon.

    PubMed

    Cai, C Y; Dong, H; Sun, C P

    2012-03-01

    We present a complete-quantum description of a multiparticle Szilard engine that consists of a working substance and a Maxwell's demon. The demon is modeled as a multilevel quantum system with specific quantum control, and the working substance consists of identical particles obeying Bose-Einstein or Fermi-Dirac statistics. In this description, a reversible scheme to erase the demon's memory by a lower-temperature heat bath is used. We demonstrate that (1) the quantum control of the demon can be optimized for a single-particle Szilard engine so that the efficiency of the demon-assisted thermodynamic cycle could reach the Carnot cycle's efficiency and (2) the low-temperature behavior of the working substance is very sensitive to the quantum statistics of the particles and the insertion position of the partition.

  2. Optimization of mask manufacturing rule check constraint for model based assist feature generation

    NASA Astrophysics Data System (ADS)

    Shim, Seongbo; Kim, Young-chang; Chun, Yong-jin; Lee, Seong-Woo; Lee, Suk-joo; Choi, Seong-woon; Han, Woo-sung; Chang, Seong-hoon; Yoon, Seok-chan; Kim, Hee-bom; Ki, Won-tai; Woo, Sang-gyun; Cho, Han-gu

    2008-11-01

    SRAF (sub-resolution assist feature) generation technology has been a popular resolution enhancement technique in photo-lithography past sub-65nm node. It helps to increase the process window, and these are some times called ILT(inverse lithography technology). Also, many studies have been presented on how to determine the best positions of SRAFs, and optimize its size. According to these reports, the generation of SRAF can be formulated as a constrained optimization problem. The constraints are the side lobe suppression and allowable minimum feature size or MRC (mask manufacturing rule check). As we know, bigger SRAF gives better contribution to main feature but susceptible to SRAF side lobe issue. Thus, we finally have no choice but to trade-off the advantages of the ideally optimized mask that contains very complicated SRAF patterns to the layout that has been MRC imposed applied to it. The above dilemma can be resolved by simultaneously using lower dose (high threshold) and cleaning up by smaller MRC. This solution makes the room between threshold (side lobe limitation) and MRC constraint (minimum feature limitation) wider. In order to use smaller MRC restriction without considering the mask writing and inspection issue, it is also appropriate to identify the exact mask writing limitation and find the smart mask constraints that well reflect the mask manufacturability and the e-beam lithography characteristics. In this article, we discuss two main topics on mask optimizations with SRAF. The first topic is on the experimental work to find what behavior of the mask writing ability is in term of several MRC parameters, and we propose more effective MRC constraint for aggressive generation of SRAF. The next topic is on finding the optimum MRC condition in practical case, 3X nm node DRAM contact layer. In fact, it is not easy to encompass the mask writing capability for very complicate real SRAF pattern by using the current MRC constraint based on the only width and

  3. Dynamic optimization of walker-assisted FES-activated paraplegic walking: simulation and experimental studies.

    PubMed

    Nekoukar, Vahab; Erfanian, Abbas

    2013-11-01

    In this paper, we propose a musculoskeletal model of walker-assisted FES-activated paraplegic walking for the generation of muscle stimulation patterns and characterization of the causal relationships between muscle excitations, multi-joint movement, and handle reaction force (HRF). The model consists of the lower extremities, trunk, hands, and a walker. The simulation of walking is performed using particle swarm optimization to minimize the tracking errors from the desired trajectories for the lower extremity joints, to reduce the stimulations of the muscle groups acting around the hip, knee, and ankle joints, and to minimize the HRF. The results of the simulation studies using data recorded from healthy subjects performing walker-assisted walking indicate that the model-generated muscle stimulation patterns are in agreement with the EMG patterns that have been reported in the literature. The experimental results on two paraplegic subjects demonstrate that the proposed methodology can improve walking performance, reduce HRF, and increase walking speed when compared to the conventional FES-activated paraplegic walking.

  4. Are there optimal numbers of oocytes, spermatozoa and embryos in assisted reproduction?

    PubMed

    Milachich, Tanya; Shterev, Atanas

    2016-01-01

    The aim of this overview is to discuss the current information about the search for the optimum yield of gametes in assisted reproduction, as one of the major pillars of IVF success. The first topic is focused on the number of male gametes and the possible impact of some genetic traits on these parameters. The number of spermatozoa did not seem to be crucial when there is no severe male factor of infertility. Genetic testing prior to using those sperm cells is very important. Different methods were applied in order to elect the "best" spermatozoa according to specific indications. The next problem discussed is the importance of the number of oocytes collected. Several studies have agreed that "15 oocytes is the perfect number," as the number of mature oocytes is more important. However, if elective single embryo transfer is performed, the optimal number of oocytes will enable a proper embryo selection. The third problem discussed concerns fertility preservation. Many educational programs promote and encourage procreation at maternal ages between 20-35 years, since assisted reproduction is unable to fully overcome the effects of female aging and fertility loss after that age. It is also strongly recommended to ensure a reasonable number of cryopreserved mature oocytes, preferably in younger ages (<35), for which an average of two stimulation cycles are likely required. For embryo cryopreservation, the "freeze all" strategy suggests the vitrification of good embryos, therefore quality is prior to number and patient recruitment for this strategy should be performed cautiously. PMID:27584608

  5. Cryotrapping assisted mass spectrometry for the analysis of complex gas mixtures

    SciTech Connect

    Ferreira, Jose A.; Tabares, Francisco L.

    2007-03-15

    A simple method is described for the unambiguous identification of the individual components in a gas mixture showing strong overlapping of their mass spectrometric cracking patterns. The method, herein referred to as cryotrapping assisted mass spectrometry, takes advantage of the different vapor pressure values of the individual components at low temperature (78 K for liquid nitrogen traps), and thus of the different depletion efficiencies and outgassing patterns during the fast cooling and slow warming up of the trap, respectively. Examples of the use of this technique for gas mixtures with application to plasma enhanced chemical vapor deposition of carbon and carbon-nitrogen hard films are shown. Detection of traces of specific C{sub 3} hydrocarbons (<50 ppm of initial methane) in methane/hydrogen plasmas and the possible trapping of thermally unstable C-N compounds in N{sub 2} containing deposition plasmas are addressed as representative examples of specific applications of the technique.

  6. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    SciTech Connect

    Nunez, L.; Kaminski, M.; Bradley, C.; Buchholz, B.A.; Aase, S.B.; Tuazon, H.E.; Vandegrift, G.F.; Landsberger, S.

    1995-05-01

    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration.

  7. Optimization of microwave-assisted calcium chloride pretreatment of corn stover.

    PubMed

    Li, Hongqiang; Xu, Jian

    2013-01-01

    A 62.5% (w/w) CaCl(2) solution was used in the microwave pretreatment of corn stover. The central composite design (CCD) of response surface methodology (RSM) was employed to design and optimize the CaCl(2)-assisted microwave pretreatment (CaCl(2)-pretreatment). Temperature and time were the main factors affecting the enzymatic digestibility of corn stover. After CaCl(2)-pretreatment, hemicellulose degradation reached 85.90%, the specific surface area (SSA) increased by 168.93%, cellulose crystallinity index (CrI) decreased by 13.91% compared to untreated corn stover. The optimal conditions for glucose production with the CaCl(2)-pretreatment obtained by CCD were, 162.1 °C, 12 min and solid-to-liquid ratio 10% (w/v). Under these conditions, the enzymatic hydrolysis ratio of cellulose was 90.66% and glucose recovery was 65.47%. This novel process achieved the temperature of about 160 °C necessary for lignocellulose pretreatment under atmospheric pressure using the cheap calcium chloride as the heating medium.

  8. Optimal dye concentration and power density for laser-assisted vascular anatomosis (LAVA)

    NASA Astrophysics Data System (ADS)

    Ren, Zhen; Furnary, Anthony; Xie, Hua; Lagerquist, Kathryn A.; Burke, Allen; Prahl, Scott A.; Gregory, Kenton W.

    2003-06-01

    Laser tissue welding with albumin solder/indocyanine green (ICG) dye is an effective technique in surgical reconstruction. This study was carried out in vitro to find optimal ICG concentration and power density (PD) in laser assisted vascular anastomosis (LAVA). Fresh porcine carotid arteries incised into vascular strips (n = 120) were welded by diode laser in end-to-end with 50% albumin solder of 0.01, 0.1, and 1.0 mM ICG and at power density of 27.7, 56.7, and 76.9 W/cm2. Direct temperature was measured by inserting thermocouples outside and inside vessel. Tensile strength was tested immediately and histological study was performed. Temperature (both outside and inside vessel) significantly gradually decreasd (p < 0.01) with the increasing of ICG concentration at PD 56.7 W/cm2. Tensile strength significantly gradually decreased (p < 0.01) with increasing of ICG concentration at PD 56.7 W/cm2. Histological study showed minimal thermal injury limited to adventitia of vessels and no appreciable difference in all groups. We find that ICG concentration within solder is most important factor affecting both tissue temperature and tensile strength during laser vessel welding. The optimal balance between stronger strength and minimal thermal injury of vessel may be achieved primarily by using PD 56.7 W/cm2 at 0.01 mM ICG within solder during LAVA.

  9. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil.

    PubMed

    Tian, Yuting; Xu, Zhenbo; Zheng, Baodong; Martin Lo, Y

    2013-01-01

    The effectiveness of ultrasonic-assisted extraction (UAE) of pomegranate seed oil (PSO) was evaluated using a variety of solvents. Petroleum ether was the most effective for oil extraction, followed by n-hexane, ethyl acetate, diethyl ether, acetone, and isopropanol. Several variables, such as ultrasonic power, extraction temperature, extraction time, and the ratio of solvent volume and seed weight (S/S ratio) were studied for optimization using response surface methodology (RSM). The highest oil yield, 25.11% (w/w), was obtained using petroleum ether under optimal conditions for ultrasonic power, extraction temperature, extraction time, and S/S ratio at 140 W, 40 °C, 36 min, and 10 ml/g, respectively. The PSO yield extracted by UAE was significantly higher than by using Soxhlet extraction (SE; 20.50%) and supercriti cal fluid extraction (SFE; 15.72%). The fatty acid compositions were significantly different among the PSO extracted by Soxhlet extraction, SFE, and UAE, with punicic acid (>65%) being the most dominant using UAE. PMID:22964031

  10. Optimization of ultrasound-assisted compound enzymatic extraction and characterization of polysaccharides from blackcurrant.

    PubMed

    Xu, Yaqin; Zhang, Ling; Yang, Yu; Song, Xiumei; Yu, Zeyuan

    2015-03-01

    In the present study, an efficient procedure for ultrasound-assisted compound enzymatic extraction of polysaccharides from blackcurrant fruits was investigated using response surface methodology (RSM). The Box-Behnken design was applied to optimize the effects of enzyme concentration (X1), pH (X2) and ultrasonic time (X3). The statistical analysis indicated that the independent variables (X1) and the quadratic terms (X1(2) and X3(2)) had significant effects on the yield of blackcurrant polysaccharides (BCP). The optimal conditions were: enzyme concentration 1.575%, pH 5.3, and ultrasonic time 25.6 min. The experimental yield of BCP was 14.28±0.06%, which was closely matched with the predicted yield of 14.31%. After preliminary purification, BCP I was obtained and characterized by GC, HPLC, and IR. BCP I comprised rhamnose, arabinose, xylose, mannose, glucose, and galactose in a molar ratio of 1.818:1.362:0.377:0.501:1.581:1.722 and its molecular weight was 8146 kDa. BCP I showed notable α-amylase inhibitory activity.

  11. Optimization of ultrasound-assisted extraction of phenolic compounds from Cimicifugae rhizoma with response surface methodology

    PubMed Central

    Liu, Lin; Shen, Bao-Jia; Xie, Dong-Hao; Cai, Bao-Chang; Qin, Kun-Ming; Cai, Hao

    2015-01-01

    Background: Cimicifugae rhizoma was a Ranunculaceae herb belonging to the composite family, and the roots of C. rhizoma have been widely used in tradition Chinese medicine. Materials and Methods: Ultrasound-assisted extraction (UAE) of phenolic compounds from C. rhizoma. Caffeic acid (CA), isoferulic acid (IA), ferulic acid (FA), and total phenols were quantified by high-performance liquid chromatography-diode array detection and ultraviolet-visible spectrophotometer. Effects of several experimental parameters, such as ultrasonic power (W), extraction temperature (°C), and ethanol concentration (%) on extraction efficiencies of phenolic compounds from C. rhizoma were evaluated. Results: The results showed that the optimal UAE condition was obtained with ultrasonic power of 377.35 W, extraction temperature of 70°C, and ethanol concentration of 58.37% for total phenols, and ultrasonic power of 318.28 W, extraction temperature of 59.65°C, and ethanol concentration of 64.43% for combination of CA, IA, FA. Conclusions: The experimental values under optimal conditions were in good consistent with the predicted values, which suggested UAE is more efficient for the extraction of phenolic compounds from plant materials. PMID:26600711

  12. Optimization of enzyme-assisted extraction of polysaccharides from alfalfa and its antioxidant activity.

    PubMed

    Wang, Shaopu; Dong, Xiaofang; Tong, Jianming

    2013-11-01

    In this present study, an efficient complex enzyme-assisted extraction technology was developed and optimized to extract polysaccharides from alfalfa using four factors at five levels central composite rotatable response surface design (CCRD). The experimental data was fitted to a second order polynomial equation with high coefficient of determination values (R(2)>0.95). The results of statistical analysis showed that the linear and quadratic terms of these four variables had significant effects (P<0.05) on the yield of polysaccharides from alfalfa. The optimum conditions were as follows: enzyme concentration of 2.5%, 2.0%, 3.0% (weight of alfalfa) of cellulase, papain and pectase, extraction temperature 52.7 °C, extraction pH 3.87, ratio of water to raw material 78.92 mL/g and extraction time 2.73 h. Under the optimal conditions, the experimental extraction yield of alfalfa polysaccharides was 5.05 ± 0.02%, which was well matched with the value (5.09%) predicted by the CCRD model. Moreover, evaluation of the antioxidant activity of polysaccharides from alfalfa in vitro suggested that the polysaccharides had good antioxidant effect, especially scavenging activity for hydroxyl radical and DPPH radical, which indicated that the polysaccharides from alfalfa may be explored as a novel natural antioxidant.

  13. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Son, Min; Ko, Sangho; Koo, Jaye

    2014-06-01

    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  14. High pressure test results of a catalytically assisted ceramic combustor for a gas turbine

    SciTech Connect

    Ozawa, Y.; Tochihara, Y.; Mori, N.; Yuri, I.; Kanazawa, T.; Sagimori, K.

    1999-07-01

    A catalytically assisted ceramic combustor for a gas turbine was designed to achieve low NOx emission under 5 ppm at a combustor outlet temperature over 1300 C. This combustor is composed of a burner system and a ceramic liner behind the burner system. The burner system consist of 6 catalytic combustor segments and 6 premixing nozzles, which are arranged in parallel and alternately. The ceramic liner is made up of the layer of outer metal wall, ceramic fiber, and inner ceramic tiles. Fuel flow rates for the catalysts and the premixing nozzles are controlled independently. Catalytic combustion temperature is controlled under 1000 C, premixed gas is injected from the premixing nozzles to the catalytic combustion gas and lean premixed combustion over 1300 C is carried out in the ceramic liner. This system was designed to avoid catalytic deactivation at high temperature and thermal and mechanical shock fracture of the honeycomb monolith of catalyst. A combustor for a 10 MW class, multican type gas turbine was tested under high pressure conditions using LNG fuel. Measurements of emission, temperature, etc. were made to evaluate combustor performance under various combustion temperatures and pressures. This paper presents the design features and the test results of this combustor.

  15. Simulation based flow distribution network optimization for vacuum assisted resin transfer moulding process

    NASA Astrophysics Data System (ADS)

    Hsiao, Kuang-Ting; Devillard, Mathieu; Advani, Suresh G.

    2004-05-01

    In the vacuum assisted resin transfer moulding (VARTM) process, using a flow distribution network such as flow channels and high permeability fabrics can accelerate the resin infiltration of the fibre reinforcement during the manufacture of composite parts. The flow distribution network significantly influences the fill time and fill pattern and is essential for the process design. The current practice has been to cover the top surface of the fibre preform with the distribution media with the hope that the resin will flood the top surface immediately and penetrate through the thickness. However, this approach has some drawbacks. One is when the resin finds its way to the vent before it has penetrated the preform entirely, which results in a defective part or resin wastage. Also, if the composite structure contains ribs or inserts, this approach invariably results in dry spots. Instead of this intuitive approach, we propose a science-based approach to design the layout of the distribution network. Our approach uses flow simulation of the resin into the network and the preform and a genetic algorithm to optimize the flow distribution network. An experimental case study of a co-cured rib structure is conducted to demonstrate the design procedure and validate the optimized flow distribution network design. Good agreement between the flow simulations and the experimental results was observed. It was found that the proposed design algorithm effectively optimized the flow distribution network of the part considered in our case study and hence should prove to be a useful tool to extend the VARTM process to manufacture of complex structures with effective use of the distribution network layup.

  16. Resolution improvement of isolated line pattern in quarter-micrometer level by layout-optimized assistant pattern method

    NASA Astrophysics Data System (ADS)

    Tounai, Keiichiro; Aizaki, Naoaki

    1996-06-01

    In the previous report, we showed the optimized results of off-axis illumination (OAI) for 0.25 micrometers resist patterning. Wide DOF was obtained for dense patterns like 1:1 L and S pattern, however, DOF was small for the sparse patterns. In order to widen the DOF for isolated line patterns under the OAI, we have examined the assistant pattern method, which needs the only unresolved additional patterns beside the isolated pattern. Optimization has been carried out by light intensity simulation under the following criteria; CD variation within plus or minus 10 percent, resist thickness loss of 10 percent and unresolved assistant patterns. CD value has been defined by the threshold method of aerial images. The evaluation method by aerial image is useful for rough estimate because the calculation is very rapid. However, the difference from the experimental results cannot be ignored in some cases, especially, in important CD- focus characteristics. For more accurate evaluation, we also investigated the result difference using a simplified resist development model. This model is useful for rapid calculation as light intensity calculation. From the evaluation of the exposure dose and focus latitude (EFL), the optimal layout must be decided considering exposure dose latitude decrease by resist development process. We have additionally investigated the combination effect of assistant pattern and halftone phase-shifting under OAI. EFL was improved a little by halftone phase- shifting mask without assistant patterns, on the other hand, EFL was improved by combination of HPSM and assistant patterns.

  17. Analysis of gas centrifuge cascade for separation of multicomponent isotopes and optimal feed position

    SciTech Connect

    Chuntong Ying; Hongjiang Wu; Mingsheng Zhou; Yuguang Nie; Guangjun Liu

    1997-10-01

    Analysis of the concentration distribution in a gas centrifuge cascade for separation of multicomponent isotope mixtures is different from that in a cascade for separation of two-component mixtures. This paper presents the governing equations for a multicomponent isotope separation cascade. Numerically predicted separation factors for the gas centrifuge cascade agree well with the experimental data. A theoretical optimal feed position is derived for a short square cascade for a two-component mixture in a close-separation case. The optimal feed position for a gas centrifuge cascade for separation of multicomponent mixture is discussed.

  18. Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study

    SciTech Connect

    Christopher Orme

    2012-08-01

    Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

  19. Optimization of Ultrasound-assisted Extraction of Phenolic Compounds from Myrcia amazonica DC. (Myrtaceae) Leaves

    PubMed Central

    de Morais Rodrigues, Mariana Cristina; Borges, Leonardo Luiz; Martins, Frederico Severino; Mourão, Rosa Helena V.; da Conceição, Edemilson Cardoso

    2016-01-01

    Background: Myrcia amazonica. DC is a species predominantly found in northern Brazil, and belongs to the Myrtaceae family, which possess various species used in folk medicine to treat gastrointestinal disorders, infectious diseases, and hemorrhagic conditions and are known for their essential oil contents. Materials and Methods: This study aimed applied the Box–Behnken design combined with response surface methodology to optimize ultrasound-assisted extraction of total polyphenols, total tannins (TT), and total flavonoids (TF) from M. amazonica DC. Results: The results indicated that the best conditions to obtain highest yields of TT were in lower levels of alcohol degree (65%), time (15 min), and also solid: Liquid ratio (solid to liquid ratio; 20 mg: 5 mL). The TF could be extracted with high amounts with higher extraction times (45 min), lower values of solid: Liquid ratio (20 mg: mL), and intermediate alcohol degree level. Conclusion: The exploitation of the natural plant resources present very important impact for the economic development, and also the valorization of great Brazilian biodiversity. The knowledge obtained from this work should be useful to further exploit and apply this raw material. SUMMARY Myrcia amazonica leaves possess phenolic compounds with biological applications;Lower levels of ethanolic strength are more suitable to obtain a igher levels of phenolic compouds such as tannins;Box-Behnken design indicates to be useful to explore the best conditions of ultrasound assisted extraction. Abbreviation used: Nomenclature ES: Ethanolic strength, ET: Extraction time, SLR: Solid to liquid ratio, TFc: Total flavonoid contents, TPc: Total polyphenol contents, TTc: Total tannin contents PMID:27019555

  20. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves.

    PubMed

    Dahmoune, Farid; Nayak, Balunkeswar; Moussi, Kamal; Remini, Hocine; Madani, Khodir

    2015-01-01

    Phytochemicals, such as phenolic compounds, are of great interest due to their health-benefitting antioxidant properties and possible protection against inflammation, cardiovascular diseases and certain types of cancer. Maximum retention of these phytochemicals during extraction requires optimised process parameter conditions. A microwave-assisted extraction (MAE) method was investigated for extraction of total phenolics from Myrtus communis leaves. The total phenolic capacity (TPC) of leaf extracts at optimised MAE conditions was compared with ultrasound-assisted extraction (UAE) and conventional solvent extraction (CSE). The influence of extraction parameters including ethanol concentration, microwave power, irradiation time and solvent-to-solid ratio on the extraction of TPC was modeled by using a second-order regression equation. The optimal MAE conditions were 42% ethanol concentration, 500 W microwave power, 62 s irradiation time and 32 mL/g solvent to material ratio. Ethanol concentration and liquid-to-solid ratio were the significant parameters for the extraction process (p<0.01). Under the MAE optimised conditions, the recovery of TPC was 162.49 ± 16.95 mg gallic acidequivalent/gdry weight(DW), approximating the predicted content (166.13 mg GAE/g DW). When bioactive phytochemicals extracted from Myrtus leaves using MAE compared with UAE and CSE, it was also observed that tannins (32.65 ± 0.01 mg/g), total flavonoids (5.02 ± 0.05 mg QE/g) and antioxidant activities (38.20 ± 1.08 μg GAE/mL) in MAE extracts were higher than the other two extracts. These findings further illustrate that extraction of bioactive phytochemicals from plant materials using MAE method consumes less extraction solvent and saves time.

  1. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  2. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    SciTech Connect

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Rack, Philip D.

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar–H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.

  3. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    DOE PAGES

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Rack, Philip D.

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar–H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some lossmore » of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less

  4. Synthesis of Diacid-Assisted Indium Oxide Nanoparticles and Its CO Gas Sensing Activity.

    PubMed

    Lee, Soo-Keun; Chang, Daeic; Yang, Seung Dae; Kim, Sang Wook

    2015-12-01

    Indium oxide (In2O3) is an extreme wide band-gap oxide material with unique electronic and optical properties that is used widely in solar cells, gas sensors and optoelectronic devices. In this study, two types of In2O3 nanostructures were prepared by a simple hydrothermal method using succinic acid (SA) or malonic acid (MA) as the assistant agents. The products were characterized by powder X-ray diffractions and scanning electron microscopy (SEM). SEM of the products showed that the In2O3 nanostructures prepared in the presence of SA have a typical cubic morphology with a length and height of -30 nm, whereas the In2O3 nanostructures synthesized in the presence of MA has an atypical rock shape, length and height of 30 -300 nm. Gas sensitivity measurements suggested that both In2O3 sensors (operated at 350 degrees C) have a good response to carbon monoxide (CO) compared to the commercial In2O3 nanoparticles. The SA-In2O3 sensor showed a shorter response time and stronger response than the MA-In2O3 sensor, suggesting that the improved gas sensing performance can be attributed mainly to the surface area. PMID:26682433

  5. Synthesis of Diacid-Assisted Indium Oxide Nanoparticles and Its CO Gas Sensing Activity.

    PubMed

    Lee, Soo-Keun; Chang, Daeic; Yang, Seung Dae; Kim, Sang Wook

    2015-12-01

    Indium oxide (In2O3) is an extreme wide band-gap oxide material with unique electronic and optical properties that is used widely in solar cells, gas sensors and optoelectronic devices. In this study, two types of In2O3 nanostructures were prepared by a simple hydrothermal method using succinic acid (SA) or malonic acid (MA) as the assistant agents. The products were characterized by powder X-ray diffractions and scanning electron microscopy (SEM). SEM of the products showed that the In2O3 nanostructures prepared in the presence of SA have a typical cubic morphology with a length and height of -30 nm, whereas the In2O3 nanostructures synthesized in the presence of MA has an atypical rock shape, length and height of 30 -300 nm. Gas sensitivity measurements suggested that both In2O3 sensors (operated at 350 degrees C) have a good response to carbon monoxide (CO) compared to the commercial In2O3 nanoparticles. The SA-In2O3 sensor showed a shorter response time and stronger response than the MA-In2O3 sensor, suggesting that the improved gas sensing performance can be attributed mainly to the surface area.

  6. Inert Gas Enhanced Laser-Assisted Purification of Platinum Electron-Beam-Induced Deposits.

    PubMed

    Stanford, Michael G; Lewis, Brett B; Noh, Joo Hyon; Fowlkes, Jason D; Rack, Philip D

    2015-09-01

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar-H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. A sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.

  7. Optimization of a large integrated area development of gas fields offshore Sarawak, Malaysia

    SciTech Connect

    Inyang, S.E.; Tak, A.N.H.; Costello, G.

    1995-10-01

    Optimizations of field development plans are routine in the industry. The size, schedule and nature of the upstream gas supply project to the second Malaysia LNG (MLNG Dua) plant in Bintulu, Sarawak made the need for extensive optimizations critical to realizing a robust and cost effective development scheme, and makes the work of more general interest. The project comprises the upstream development of 11 offshore fields for gas supply to MLNG Dua plant at an initial plateau production of 7.8 million tons per year of LNG. The gas fields span a large geographical area in medium water depths (up to 440 ft), and contain gas reserves of a distinctly variable gas quality. This paper describes the project optimization efforts aimed to ensure an upstream gas supply system effectiveness of over 99% throughout the project life while maintaining high safety and environmental standards and also achieving an economic development in an era of low hydrocarbon prices. Fifty percent of the first of the three phases of this gas supply project has already been completed and the first gas from these fields is scheduled to be available by the end of 1995.

  8. Optimize flue gas settings to promote microalgae growth in photobioreactors via computer simulations.

    PubMed

    He, Lian; Chen, Amelia B; Yu, Yi; Kucera, Leah; Tang, Yinjie

    2013-01-01

    Flue gas from power plants can promote algal cultivation and reduce greenhouse gas emissions(1). Microalgae not only capture solar energy more efficiently than plants(3), but also synthesize advanced biofuels(2-4). Generally, atmospheric CO2 is not a sufficient source for supporting maximal algal growth(5). On the other hand, the high concentrations of CO2 in industrial exhaust gases have adverse effects on algal physiology. Consequently, both cultivation conditions (such as nutrients and light) and the control of the flue gas flow into the photo-bioreactors are important to develop an efficient "flue gas to algae" system. Researchers have proposed different photobioreactor configurations(4,6) and cultivation strategies(7,8) with flue gas. Here, we present a protocol that demonstrates how to use models to predict the microalgal growth in response to flue gas settings. We perform both experimental illustration and model simulations to determine the favorable conditions for algal growth with flue gas. We develop a Monod-based model coupled with mass transfer and light intensity equations to simulate the microalgal growth in a homogenous photo-bioreactor. The model simulation compares algal growth and flue gas consumptions under different flue-gas settings. The model illustrates: 1) how algal growth is influenced by different volumetric mass transfer coefficients of CO2; 2) how we can find optimal CO2 concentration for algal growth via the dynamic optimization approach (DOA); 3) how we can design a rectangular on-off flue gas pulse to promote algal biomass growth and to reduce the usage of flue gas. On the experimental side, we present a protocol for growing Chlorella under the flue gas (generated by natural gas combustion). The experimental results qualitatively validate the model predictions that the high frequency flue gas pulses can significantly improve algal cultivation. PMID:24121788

  9. Optimize flue gas settings to promote microalgae growth in photobioreactors via computer simulations.

    PubMed

    He, Lian; Chen, Amelia B; Yu, Yi; Kucera, Leah; Tang, Yinjie

    2013-01-01

    Flue gas from power plants can promote algal cultivation and reduce greenhouse gas emissions(1). Microalgae not only capture solar energy more efficiently than plants(3), but also synthesize advanced biofuels(2-4). Generally, atmospheric CO2 is not a sufficient source for supporting maximal algal growth(5). On the other hand, the high concentrations of CO2 in industrial exhaust gases have adverse effects on algal physiology. Consequently, both cultivation conditions (such as nutrients and light) and the control of the flue gas flow into the photo-bioreactors are important to develop an efficient "flue gas to algae" system. Researchers have proposed different photobioreactor configurations(4,6) and cultivation strategies(7,8) with flue gas. Here, we present a protocol that demonstrates how to use models to predict the microalgal growth in response to flue gas settings. We perform both experimental illustration and model simulations to determine the favorable conditions for algal growth with flue gas. We develop a Monod-based model coupled with mass transfer and light intensity equations to simulate the microalgal growth in a homogenous photo-bioreactor. The model simulation compares algal growth and flue gas consumptions under different flue-gas settings. The model illustrates: 1) how algal growth is influenced by different volumetric mass transfer coefficients of CO2; 2) how we can find optimal CO2 concentration for algal growth via the dynamic optimization approach (DOA); 3) how we can design a rectangular on-off flue gas pulse to promote algal biomass growth and to reduce the usage of flue gas. On the experimental side, we present a protocol for growing Chlorella under the flue gas (generated by natural gas combustion). The experimental results qualitatively validate the model predictions that the high frequency flue gas pulses can significantly improve algal cultivation.

  10. Optimize Flue Gas Settings to Promote Microalgae Growth in Photobioreactors via Computer Simulations

    PubMed Central

    He, Lian; Chen, Amelia B; Yu, Yi; Kucera, Leah; Tang, Yinjie

    2013-01-01

    Flue gas from power plants can promote algal cultivation and reduce greenhouse gas emissions1. Microalgae not only capture solar energy more efficiently than plants3, but also synthesize advanced biofuels2-4. Generally, atmospheric CO2 is not a sufficient source for supporting maximal algal growth5. On the other hand, the high concentrations of CO2 in industrial exhaust gases have adverse effects on algal physiology. Consequently, both cultivation conditions (such as nutrients and light) and the control of the flue gas flow into the photo-bioreactors are important to develop an efficient “flue gas to algae” system. Researchers have proposed different photobioreactor configurations4,6 and cultivation strategies7,8 with flue gas. Here, we present a protocol that demonstrates how to use models to predict the microalgal growth in response to flue gas settings. We perform both experimental illustration and model simulations to determine the favorable conditions for algal growth with flue gas. We develop a Monod-based model coupled with mass transfer and light intensity equations to simulate the microalgal growth in a homogenous photo-bioreactor. The model simulation compares algal growth and flue gas consumptions under different flue-gas settings. The model illustrates: 1) how algal growth is influenced by different volumetric mass transfer coefficients of CO2; 2) how we can find optimal CO2 concentration for algal growth via the dynamic optimization approach (DOA); 3) how we can design a rectangular on-off flue gas pulse to promote algal biomass growth and to reduce the usage of flue gas. On the experimental side, we present a protocol for growing Chlorella under the flue gas (generated by natural gas combustion). The experimental results qualitatively validate the model predictions that the high frequency flue gas pulses can significantly improve algal cultivation. PMID:24121788

  11. Contact-assisted protein structure modeling by global optimization in CASP11.

    PubMed

    Joo, Keehyoung; Joung, InSuk; Cheng, Qianyi; Lee, Sung Jong; Lee, Jooyoung

    2016-09-01

    We have applied the conformational space annealing method to the contact-assisted protein structure modeling in CASP11. For Tp targets, where predicted residue-residue contact information was provided, the contact energy term in the form of the Lorentzian function was implemented together with the physical energy terms used in our template-free modeling of proteins. Although we observed some structural improvement of Tp models over the models predicted without the Tp information, the improvement was not substantial on average. This is partly due to the inaccuracy of the provided contact information, where only about 18% of it was correct. For Ts targets, where the information of ambiguous NOE (Nuclear Overhauser Effect) restraints was provided, we formulated the modeling in terms of the two-tier optimization problem, which covers: (1) the assignment of NOE peaks and (2) the three-dimensional (3D) model generation based on the assigned NOEs. Although solving the problem in a direct manner appears to be intractable at first glance, we demonstrate through CASP11 that remarkably accurate protein 3D modeling is possible by brute force optimization of a relevant energy function. For 19 Ts targets of the average size of 224 residues, generated protein models were of about 3.6 Å Cα atom accuracy. Even greater structural improvement was observed when additional Tc contact information was provided. For 20 out of the total 24 Tc targets, we were able to generate protein structures which were better than the best model from the rest of the CASP11 groups in terms of GDT-TS. Proteins 2016; 84(Suppl 1):189-199. © 2015 Wiley Periodicals, Inc.

  12. Optimization of silver-assisted nano-pillar etching process in silicon

    NASA Astrophysics Data System (ADS)

    Azhari, Ayu Wazira; Sopian, Kamaruzzaman; Desa, Mohd Khairunaz Mat; Zaidi, Saleem H.

    2015-12-01

    In this study, a respond surface methodology (RSM) model is developed using three-level Box-Behnken experimental design (BBD) technique. This model is developed to investigate the influence of metal-assisted chemical etching (MACE) process variables on the nanopillars profiles created in single crystalline silicon (Si) substrate. Design-Expert® software (version 7.1) is employed in formulating the RSM model based on five critical process variables: (A) concentration of silver (Ag), (B) concentration of hydrofluoric acid (HF), (C) concentration of hydrogen peroxide (H2O2), (D) deposition time, and (E) etching time. This model is supported by data from 46 experimental configurations. Etched profiles as a function of lateral etching rate, vertical etching rate, height, size and separation between the Si trenches and etching uniformity are characterized using field emission scanning electron microscope (FE-SEM). A quadratic regression model is developed to correlate critical process variables and is validated using the analysis of variance (ANOVA) methodology. The model exhibits near-linear dependence of lateral and vertical etching rates on both the H2O2 concentration and etching time. The predicted model is in good agreement with the experimental data where R2 is equal to 0.80 and 0.67 for the etching rate and lateral etching respectively. The optimized result shows minimum lateral etching with the average pore size of about 69 nm while the maximum etching rate is estimated at around 360 nm/min. The model demonstrates that the etching process uniformity is not influenced by either the etchant concentration or the etching time. This lack of uniformity could be attributed to the surface condition of the wafer. Optimization of the process parameters show adequate accuracy of the model with acceptable percentage errors of 6%, 59%, 1.8%, 38% and 61% for determination of the height, separation, size, the pore size and the etching rate respectively.

  13. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology.

    PubMed

    Kumar, Deepak; Prasad, Suresh; Murthy, Ganti S

    2014-02-01

    Okra (Abelmoschus esculentus) was dried to a moisture level of 0.1 g water/g dry matter using a microwave-assisted hot air dryer. Response surface methodology was used to optimize the drying conditions based on specific energy consumption and quality of dried okra. The drying experiments were performed using a central composite rotatable design for three variables: air temperature (40-70 °C), air velocity (1-2 m/s) and microwave power level (0.5-2.5 W/g). The quality of dried okra was determined in terms of color change, rehydration ratio and hardness of texture. A second-order polynomial model was well fitted to all responses and high R(2) values (>0.8) were observed in all cases. The color change of dried okra was found higher at high microwave power and air temperatures. Rehydration properties were better for okra samples dried at higher microwave power levels. Specific energy consumption decreased with increase in microwave power due to decrease in drying time. The drying conditions of 1.51 m/s air velocity, 52.09 °C air temperature and 2.41 W/g microwave power were found optimum for product quality and minimum energy consumption for microwave-convective drying of okra.

  14. Microwave assisted synthesis and optimization of Aegle marmelos-g-poly(acrylamide): release kinetics studies.

    PubMed

    Setia, A; Kumar, R

    2014-04-01

    Microwave assisted grafting of poly(acrylamide) on to Aegle marmelos gum was carried out employing 3-factor 3-level full factorial design. Microwave power, microwave exposure time and concentration of gum were selected as independent variable and grafting efficiency was taken as dependent variable. A. marmelos-g-poly(acrylamide) was characterized by FTIR, DSC, X-ray diffraction and scanning electron microscopy. Microwave power, microwave exposure time had synergistic effect on grafting efficiency where as concentration of the gum did not contributed much to grafting efficiency. Batch having microwave power - 80%, microwave exposure time -120 s and concentration of A. marmelos gum - 2% was selected as the optimized formulation. Comparative release behaviour of diclofenac sodium from the matrix tablets of A. marmelos gum and A. marmelos-g-polyacrylamide was evaluated. The results of kinetic studies revealed that the graft copolymer matrix, marketed tablets and polymer matrix tablets of A. marmelos gum released the drug by zero order kinetics and with n value greater than 1, indicating that the mechanism for release as super case II transport i.e. dominated by the erosion and swelling of the polymer.

  15. Areal density optimizations for heat-assisted magnetic recording of high-density media

    NASA Astrophysics Data System (ADS)

    Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter; Praetorius, Dirk

    2016-06-01

    Heat-assisted magnetic recording (HAMR) is hoped to be the future recording technique for high-density storage devices. Nevertheless, there exist several realization strategies. With a coarse-grained Landau-Lifshitz-Bloch model, we investigate in detail the benefits and disadvantages of a continuous and pulsed laser spot recording of shingled and conventional bit-patterned media. Additionally, we compare single-phase grains and bits having a bilayer structure with graded Curie temperature, consisting of a hard magnetic layer with high TC and a soft magnetic one with low TC, respectively. To describe the whole write process as realistically as possible, a distribution of the grain sizes and Curie temperatures, a displacement jitter of the head, and the bit positions are considered. For all these cases, we calculate bit error rates of various grain patterns, temperatures, and write head positions to optimize the achievable areal storage density. Within our analysis, shingled HAMR with a continuous laser pulse moving over the medium reaches the best results and thus has the highest potential to become the next-generation storage device.

  16. Modeling and optimization of ultrasound-assisted extraction of polysaccharide from Cucurbita moschata.

    PubMed

    Prakash Maran, J; Mekala, V; Manikandan, S

    2013-02-15

    Polysaccharides from pumpkin were extracted by ultrasound-assisted extraction technology using four factors at five levels central composite rotatable response surface design (CCRD). On using single factor analysis, process variables such as extraction temperature (50-70 °C), power of ultrasound (50-70 W), time (15-25 min) and solid-liquid ratio (1:10-1:20 g/ml) were selected. Experiments were conducted to evaluate the effects of four independent variables on the maximum extraction yield of polysaccharides. From the experimental data, second order polynomial mathematical model were developed with high coefficient of determination values (R(2)>0.96). From response surface plots, temperature and ultrasound power exhibited independent and interactive effects on the extraction yields. Extraction temperature of 70 °C, ultrasound power of 70 W, time of 23 min and solid-liquid ratio of 1:10 g/ml were determined as optimal conditions with a maximum polysaccharides yield of 16.21%, which was confirmed through the validation of the experiments.

  17. Optimal distribution of medical backpacks and health surveillance assistants in Malawi

    PubMed Central

    Van Itallie, Elizabeth S.; Wu, Duo

    2014-01-01

    Despite recent progress, Malawi continues to perform poorly on key health indicators such as child mortality and life expectancy. These problems are exacerbated by a severe lack of access to health care. Health Surveillance Assistants (HSAs) help bridge this gap by providing community-level access to basic health care services. However, the success of these HSAs is limited by a lack of supplies and long distances between HSAs and patients. To address this issue, we used large-scale weighted p-median and capacitated facility location problems to create a scalable, three-tiered plan for optimal allocation of HSAs, HSA designated medical backpacks, and backpack resupply centers. Our analysis uses real data on the location and characteristics of hospitals, health centers, and the general population. In addition to offering specific recommendations for HSA, backpack, and resupply center locations, it provides general insights into the scope of the proposed HSA backpack program scale-up. In particular, it demonstrates the importance of local health centers to the resupply network. The proposed assignments are robust to changes in the underlying population structure, and could significantly improve access to medical supplies for both HSAs and patients. PMID:24293077

  18. Microwave-assisted extraction of jujube polysaccharide: Optimization, purification and functional characterization.

    PubMed

    Rostami, Hosein; Gharibzahedi, Seyed Mohammad Taghi

    2016-06-01

    The operational parameters involved in microwave-assisted extraction (MAE) of jujube polysaccharide including microwave power, water to raw material ratio and extraction temperature and time were optimized by RSM. MAE at 400W, 75°C, 60 min, using 30 g water/g powdered jujube was the best condition for maximum yield (9.02%) of polysaccharide. Two novel water-soluble polysaccharides (JCP-1 and JCP-2) with average molecular weights of 9.1×10(4)-1.5×10(5)Da in term of the symmetrical narrow peaks were identified using the analytical purification procedures. The JCP-1 and JCP-2 mainly composed of glucose, arabinose, galactose and rhamnose in molar ratios of 1.4:2.1:4.2:0.9 and 1.2:1.8:4.1:1.1, respectively. The use of 1.5% JCP-1 led to a high emulsifying stability (95.5%) in a model oil-in-water type emulsion with a reduced surface tension (44.1 mN/m) and droplet size (1.32 μm), and an increased apparent viscosity (0.13 Pas) during 21-day cold storage. The antioxidant activities were increased in dose-dependent manners (25-200 μg/mL).

  19. Optimized ultrasound-assisted extraction of phenolic compounds from Polygonum cuspidatum.

    PubMed

    Kuo, Chia-Hung; Chen, Bao-Yuan; Liu, Yung-Chuan; Chang, Chieh-Ming J; Deng, Tzu-Shing; Chen, Jiann-Hwa; Shieh, Chwen-Jen

    2013-01-01

    In this study the phenolic compounds piceid, resveratrol and emodin were extracted from P. cuspidatum roots using ultrasound-assisted extraction. Multiple response surface methodology was used to optimize the extraction conditions of these phenolic compounds. A three-factor and three-level Box-Behnken experimental design was employed to evaluate the effects of the operation parameters, including extraction temperature (30-70 °C), ethanol concentration (40%-80%), and ultrasonic power (90-150 W), on the extraction yields of piceid, resveratrol, and emodin. The statistical models built from multiple response surface methodology were developed for the estimation of the extraction yields of multi-phenolic components. Based on the model, the extraction yields of piceid, resveratrol, and emodin can be improved by controlling the extraction parameters. Under the optimum conditions, the extraction yields of piceid, resveratrol and emodin were 10.77 mg/g, 3.82 mg/g and 11.72 mg/g, respectively. PMID:24362626

  20. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology.

    PubMed

    Kumar, Deepak; Prasad, Suresh; Murthy, Ganti S

    2014-02-01

    Okra (Abelmoschus esculentus) was dried to a moisture level of 0.1 g water/g dry matter using a microwave-assisted hot air dryer. Response surface methodology was used to optimize the drying conditions based on specific energy consumption and quality of dried okra. The drying experiments were performed using a central composite rotatable design for three variables: air temperature (40-70 °C), air velocity (1-2 m/s) and microwave power level (0.5-2.5 W/g). The quality of dried okra was determined in terms of color change, rehydration ratio and hardness of texture. A second-order polynomial model was well fitted to all responses and high R(2) values (>0.8) were observed in all cases. The color change of dried okra was found higher at high microwave power and air temperatures. Rehydration properties were better for okra samples dried at higher microwave power levels. Specific energy consumption decreased with increase in microwave power due to decrease in drying time. The drying conditions of 1.51 m/s air velocity, 52.09 °C air temperature and 2.41 W/g microwave power were found optimum for product quality and minimum energy consumption for microwave-convective drying of okra. PMID:24493879

  1. Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties.

    PubMed

    Hosseini, Seyed Saeid; Khodaiyan, Faramarz; Yarmand, Mohammad Saeid

    2016-04-20

    Microwave assisted extraction technique was used to extract pectin from sour orange peel. Box-Behnken design was used to study the effect of irradiation time, microwave power and pH on the yield and degree of esterification (DE) of pectin. The results showed that the optimum conditions for the highest yield of pectin (29.1%) were obtained at pH of 1.50, microwave power of 700W, and irradiation time of 3min. DE values of pectin ranged from 1.7% to 37.5%, indicating that the obtained pectin was low in methoxyl. Under optimal conditions, the galacturonic acid content and emulsifying activity were 71.0±0.8% and 40.7%, respectively. In addition, the emulsion stability value ranged from 72.1% to 83.4%. Viscosity measurement revealed that the solutions of pectin at low concentrations showed nearly Newtonian flow behavior, and as the concentration increased, pseudoplastic flow became dominant.

  2. Microwave assisted synthesis and optimization of Aegle marmelos-g-poly(acrylamide): release kinetics studies.

    PubMed

    Setia, A; Kumar, R

    2014-04-01

    Microwave assisted grafting of poly(acrylamide) on to Aegle marmelos gum was carried out employing 3-factor 3-level full factorial design. Microwave power, microwave exposure time and concentration of gum were selected as independent variable and grafting efficiency was taken as dependent variable. A. marmelos-g-poly(acrylamide) was characterized by FTIR, DSC, X-ray diffraction and scanning electron microscopy. Microwave power, microwave exposure time had synergistic effect on grafting efficiency where as concentration of the gum did not contributed much to grafting efficiency. Batch having microwave power - 80%, microwave exposure time -120 s and concentration of A. marmelos gum - 2% was selected as the optimized formulation. Comparative release behaviour of diclofenac sodium from the matrix tablets of A. marmelos gum and A. marmelos-g-polyacrylamide was evaluated. The results of kinetic studies revealed that the graft copolymer matrix, marketed tablets and polymer matrix tablets of A. marmelos gum released the drug by zero order kinetics and with n value greater than 1, indicating that the mechanism for release as super case II transport i.e. dominated by the erosion and swelling of the polymer. PMID:24530335

  3. MW-assisted synthesis of carboxymethyl tamarind kernel polysaccharide-g-polyacrylonitrile: optimization and characterization.

    PubMed

    Meenkashi; Ahuja, Munish; Verma, Purnima

    2014-11-26

    Microwave-assisted synthesis of graft copolymer of carboxymethyl tamarind seed polysaccharide and polyacrylonitrile was carried out. The effect of formulation and process variables on grafting efficiency of carboxymethyl tamarind kernel polysaccharide-g-poly(acrylonitrile) was studied using response surface methodology. The results revealed that the significant factors affecting grafting efficiency were concentrations of ammonium persulphate, acrylonitrile and interaction effects of ammonium persulphate and acrylonitrile concentrations. The optimal calculated parameters were found to be microwave exposure time-99.48 s, microwave exposure power-160 W, concentration of acrylonitrile-0.10% (w/v), concentration of ammonium persulphate--40 mmol/l, which provided graft copolymer with grafting efficiency of 96%. The formation of graft copolymer was confirmed by FT-IR studies and validated by scanning electron micrographs. Thermogravimetric analysis indicated higher thermal stability of graft copolymer and X-ray diffraction study revealed increase in crystallinity on graft polymerization. Further, the graft copolymer showed pH dependant swelling. PMID:25256516

  4. Optimal distribution of medical backpacks and health surveillance assistants in Malawi.

    PubMed

    Kunkel, Amber G; Van Itallie, Elizabeth S; Wu, Duo

    2014-09-01

    Despite recent progress, Malawi continues to perform poorly on key health indicators such as child mortality and life expectancy. These problems are exacerbated by a severe lack of access to health care. Health Surveillance Assistants (HSAs) help bridge this gap by providing community-level access to basic health care services. However, the success of these HSAs is limited by a lack of supplies and long distances between HSAs and patients. To address this issue, we used large-scale weighted p-median and capacitated facility location problems to create a scalable, three-tiered plan for optimal allocation of HSAs, HSA designated medical backpacks, and backpack resupply centers. Our analysis uses real data on the location and characteristics of hospitals, health centers, and the general population. In addition to offering specific recommendations for HSA, backpack, and resupply center locations, it provides general insights into the scope of the proposed HSA backpack program scale-up. In particular, it demonstrates the importance of local health centers to the resupply network. The proposed assignments are robust to changes in the underlying population structure, and could significantly improve access to medical supplies for both HSAs and patients.

  5. On the optimal partitioning of data with K-means, growing K-means, neural gas, and growing neural gas.

    PubMed

    Daszykowski, M; Walczak, B; Massart, D L

    2002-01-01

    In this paper, the performance of new clustering methods such as Neural Gas (NG) and Growing Neural Gas (GNG) is compared with the K-means method for real and simulated data sets. Moreover, a new algorithm called growing K-means, GK, is introduced as the alternative to Neural Gas and Growing Neural Gas. It has small input requirements and is conceptually very simple. The GK leads to nearly optimal values of the cost function, and, contrary to K-means, it is independent of the initial data set partition. The incremental property of GK additionally helps to estimate the number of "natural" clusters in data, i.e., the well-separated groups of objects in the data space. PMID:12444735

  6. Optimizing Natural Gas Networks through Dynamic Manifold Theory and a Decentralized Algorithm: Belgium Case Study

    NASA Astrophysics Data System (ADS)

    Koch, Caleb; Winfrey, Leigh

    2014-10-01

    Natural Gas is a major energy source in Europe, yet political instabilities have the potential to disrupt access and supply. Energy resilience is an increasingly essential construct and begins with transmission network design. This study proposes a new way of thinking about modelling natural gas flow. Rather than relying on classical economic models, this problem is cast into a time-dependent Hamiltonian dynamics discussion. Traditional Natural Gas constraints, including inelastic demand and maximum/minimum pipe flows, are portrayed as energy functions and built into the dynamics of each pipe flow. Doing so allows the constraints to be built into the dynamics of each pipeline. As time progresses in the model, natural gas flow rates find the minimum energy, thus the optimal gas flow rates. The most important result of this study is using dynamical principles to ensure the output of natural gas at demand nodes remains constant, which is important for country to country natural gas transmission. Another important step in this study is building the dynamics of each flow in a decentralized algorithm format. Decentralized regulation has solved congestion problems for internet data flow, traffic flow, epidemiology, and as demonstrated in this study can solve the problem of Natural Gas congestion. A mathematical description is provided for how decentralized regulation leads to globally optimized network flow. Furthermore, the dynamical principles and decentralized algorithm are applied to a case study of the Fluxys Belgium Natural Gas Network.

  7. Optimal diving behaviour and respiratory gas exchange in birds.

    PubMed

    Halsey, Lewis G; Butler, Patrick J

    2006-11-01

    This review discusses the advancements in our understanding of the physiology and behaviour of avian diving that have been underpinned by optimal foraging theory and the testing of optimal models. To maximise their foraging efficiency during foraging periods, diving birds must balance numerous factors that are directly or indirectly related to the replenishment of the oxygen stores and the removal of excess carbon dioxide. These include (1) the time spent underwater (which diminishes the oxygen supply, increases carbon dioxide levels and may even include a build up of lactate due to anaerobic metabolism), (2) the time spent at the surface recovering from the previous dive and preparing for the next (including reloading their oxygen supply, decreasing their carbon dioxide levels and possibly also metabolising lactate) and (3) the trade-off between maximising oxygen reserves for consumption underwater by taking in more air to the respiratory system, and minimising the energy costs of positive buoyancy caused by this air, to maximise the time available underwater to forage. Due to its importance in avian diving, replenishment of the oxygen stores has become integral to models of optimal diving, which predict the time budgeting of animals foraging underwater. While many of these models have been examined qualitatively, such tests of predictive trends appear fallible and only quantifiable support affords strong evidence of their predictive value. This review describes how the quantification of certain optimal diving models, using tufted ducks, indeed demonstrates some predictive success. This suggests that replenishment of the oxygen stores and removal of excess carbon dioxide have significant influences on the duration of the surface period between dives. Nevertheless, present models are too simplistic to be robust predictors of diving behaviour for individual animals and it is proposed that they require refinement through the incorporation of other variables that also

  8. Effect of He-Ar ratio of side assisting gas on plasma 3D formation during CO2 laser welding

    NASA Astrophysics Data System (ADS)

    Sun, Dawei; Cai, Yan; Wang, Yonggui; Wu, Yue; Wu, Yixiong

    2014-05-01

    Side assisting gas plays a very important role in the laser-induced plasma suppression and the gas mixture ratio directly influences the formation and behavior of the laser-induced plasma during the laser welding process. In this paper, a photography system was set up with three synchronous CCD cameras to record the plasma plume during CO2 laser welding under different He-Ar ratios for helium-argon mixed side assisting gas. Three-dimensional reconstruction of the laser-induced plasma based on the computed tomography (CT) technology was achieved from the images shot by the cameras. Four characteristics, including the volume, uniformity, parameter PA associated with plasma absorption and parameter PR associated with laser refraction, were extracted from the 3D plasma and analyzed to investigate the effect on the plasma plume morphology as well as the laser energy attenuation. The results indicated that the He-Ar ratio of the side assisting gas has a considerable influence on some characteristics while some other characteristics are not sensitive to the mixture ratio. In addition, the effect of He-Ar ratio on the laser-induced plasma varies a lot with the flow rate of the side assisting gas.

  9. Surface Defects Control for ZnO Nanorods Synthesized Through a Gas-Assisted Hydrothermal Process

    NASA Astrophysics Data System (ADS)

    Zhao, Limin; Shu, Changhua; Jia, Zhengfeng; Wang, Changzheng

    2016-08-01

    Oxygen vacancies in crystal have an important impact on the electronic properties of zinc oxide (ZnO). In this paper, ZnO nanorods with rich oxygen vacancies were prepared through a novel gas-assisted hydrothermal growth process. X-ray diffraction data showed that single-phase ZnO with the wurtzite crystal structure was obtained and the crystallite size decreased as the reaction atmosphere pressure increased. The oxygen vacancies of ZnO were confirmed using x-ray photoelectron spectroscopy and photoluminescence spectroscopy. The results showed that the concentration of oxygen vacancies could be regulated by both the atmosphere pressure and the atmosphere properties. The oxygen vacancies in ZnO samples were reduced when the pressure increase in the hydrogen reaction environment (reducing atmosphere) and the oxygen vacancies in ZnO samples were increased when the pressure increased in the oxygen reaction environment (oxidizing atmosphere).

  10. Optimization problems in natural gas transportation systems. A state-of-the-art review

    SciTech Connect

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    2015-03-24

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-term basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.

  11. Optimal design of a gas transmission network: A case study of the Turkish natural gas pipeline network system

    NASA Astrophysics Data System (ADS)

    Gunes, Ersin Fatih

    Turkey is located between Europe, which has increasing demand for natural gas and the geographies of Middle East, Asia and Russia, which have rich and strong natural gas supply. Because of the geographical location, Turkey has strategic importance according to energy sources. To supply this demand, a pipeline network configuration with the optimal and efficient lengths, pressures, diameters and number of compressor stations is extremely needed. Because, Turkey has a currently working and constructed network topology, obtaining an optimal configuration of the pipelines, including an optimal number of compressor stations with optimal locations, is the focus of this study. Identifying a network design with lowest costs is important because of the high maintenance and set-up costs. The quantity of compressor stations, the pipeline segments' lengths, the diameter sizes and pressures at compressor stations, are considered to be decision variables in this study. Two existing optimization models were selected and applied to the case study of Turkey. Because of the fixed cost of investment, both models are formulated as mixed integer nonlinear programs, which require branch and bound combined with the nonlinear programming solution methods. The differences between these two models are related to some factors that can affect the network system of natural gas such as wall thickness, material balance compressor isentropic head and amount of gas to be delivered. The results obtained by these two techniques are compared with each other and with the current system. Major differences between results are costs, pressures and flow rates. These solution techniques are able to find a solution with minimum cost for each model both of which are less than the current cost of the system while satisfying all the constraints on diameter, length, flow rate and pressure. These results give the big picture of an ideal configuration for the future state network for the country of Turkey.

  12. Efficient microwave assisted synthesis of metal-organic framework UiO-66: optimization and scale up.

    PubMed

    Taddei, Marco; Dau, Phuong V; Cohen, Seth M; Ranocchiari, Marco; van Bokhoven, Jeroen A; Costantino, Ferdinando; Sabatini, Stefano; Vivani, Riccardo

    2015-08-21

    A highly efficient and scalable microwave assisted synthesis of zirconium-based metal-organic framework UiO-66 was developed. In order to identify the best conditions for optimizing the process, a wide range of parameters was investigated. The efficiency of the process was evaluated with the aid of four quantitative indicators. The properties of the materials prepared by microwave irradiation were compared with those synthesized by conventional heating, and no significant effects on morphology, crystal size, or defects were found from the use of microwave assisted heating. Scale up was performed maintaining the high efficiency of the process.

  13. Naturally fractured tight gas reservoir detection optimization. Final report

    SciTech Connect

    1997-11-19

    This DOE-funded research into seismic detection of natural fractures is one of six projects within the DOE`s Detection and Analysis of Naturally Fractured Gas Reservoirs Program, a multidisciplinary research initiative to develop technology for prediction, detection, and mapping of naturally fractured gas reservoirs. The demonstration of successful seismic techniques to locate subsurface zones of high fracture density and to guide drilling orientation for enhanced fracture permeability will enable better returns on investments in the development of the vast gas reserves held in tight formations beneath the Rocky Mountains. The seismic techniques used in this project were designed to capture the azimuthal anisotropy within the seismic response. This seismic anisotropy is the result of the symmetry in the rock fabric created by aligned fractures and/or unequal horizontal stresses. These results may be compared and related to other lines of evidence to provide cross-validation. The authors undertook investigations along the following lines: Characterization of the seismic anisotropy in three-dimensional, P-wave seismic data; Characterization of the seismic anisotropy in a nine-component (P- and S-sources, three-component receivers) vertical seismic profile; Characterization of the seismic anisotropy in three-dimensional, P-to-S converted wave seismic data (P-wave source, three-component receivers); and Description of geological and reservoir-engineering data that corroborate the anisotropy: natural fractures observed at the target level and at the surface, estimation of the maximum horizontal stress in situ, and examination of the flow characteristics of the reservoir.

  14. Alternating Current Dielectrophoresis Optimization of Pt-Decorated Graphene Oxide Nanostructures for Proficient Hydrogen Gas Sensor.

    PubMed

    Wang, Jianwei; Rathi, Servin; Singh, Budhi; Lee, Inyeal; Joh, Han-Ik; Kim, Gil-Ho

    2015-07-01

    Alternating current dielectrophoresis (DEP) is an excellent technique to assemble nanoscale materials. For efficient DEP, the optimization of the key parameters like peak-to-peak voltage, applied frequency, and processing time is required for good device. In this work, we have assembled graphene oxide (GO) nanostructures mixed with platinum (Pt) nanoparticles between the micro gap electrodes for a proficient hydrogen gas sensors. The Pt-decorated GO nanostructures were well located between a pair of prepatterned Ti/Au electrodes by controlling the DEP technique with the optimized parameters and subsequently thermally reduced before sensing. The device fabricated using the DEP technique with the optimized parameters showed relatively high sensitivity (∼10%) to 200 ppm hydrogen gas at room temperature. The results indicates that the device could be used in several industry applications, such as gas storage and leak detection. PMID:26042360

  15. Dual gas-bubble-assisted solvothermal synthesis of magnetite with tunable size and structure.

    PubMed

    He, Quanguo; Wu, Zhaohui; Huang, Chunyan

    2011-10-01

    We present a facile solvothermal approach by employing ammonium bicarbonate (NH4HCO3) and ammonium acetate (NH4Ac) as dual gas-bubble-generating structure-directing agent to produce of magnetite (Fe3O4) particles with tunable size ranging from 90 nm to 400 nm and controllable structures including porous and hollow construction. The size, morphology and structure of the final products are achieved by simple adjustment of the molar ratio of NH4HCO3 and NH4Ac, ammonium ion concentration and the reaction time. The results reveal that the molar ratio of NH4HCO3 and NH4Ac strongly influenced the morphology and size of magnetite particles, even could decide the kind of architecture including solid, hollow and porous to form. Particularly, ammonium ion molar concentration plays a significant role in controlling size and magnetic property for magnetite particles. Simultaneously, prolonging the reaction time is beneficial to the magnetite particles growth and inner space escalation with altered reaction time at a certain concentration of ammonium and molar ratio of NH4HCO3 and NH4Ac. Such a design conception of dual gas-bubble-assistance used here is promisingly positive and significant for hollow magnetic particles fabrication and may be extended to other nano-scale hollow construction. PMID:22400226

  16. Dual gas-bubble-assisted solvothermal synthesis of magnetite with tunable size and structure.

    PubMed

    He, Quanguo; Wu, Zhaohui; Huang, Chunyan

    2011-10-01

    We present a facile solvothermal approach by employing ammonium bicarbonate (NH4HCO3) and ammonium acetate (NH4Ac) as dual gas-bubble-generating structure-directing agent to produce of magnetite (Fe3O4) particles with tunable size ranging from 90 nm to 400 nm and controllable structures including porous and hollow construction. The size, morphology and structure of the final products are achieved by simple adjustment of the molar ratio of NH4HCO3 and NH4Ac, ammonium ion concentration and the reaction time. The results reveal that the molar ratio of NH4HCO3 and NH4Ac strongly influenced the morphology and size of magnetite particles, even could decide the kind of architecture including solid, hollow and porous to form. Particularly, ammonium ion molar concentration plays a significant role in controlling size and magnetic property for magnetite particles. Simultaneously, prolonging the reaction time is beneficial to the magnetite particles growth and inner space escalation with altered reaction time at a certain concentration of ammonium and molar ratio of NH4HCO3 and NH4Ac. Such a design conception of dual gas-bubble-assistance used here is promisingly positive and significant for hollow magnetic particles fabrication and may be extended to other nano-scale hollow construction.

  17. [INVITED] Laser gas assisted treatment of Ti-alloy: Analysis of surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-04-01

    Laser gas assisted treatment of Ti6Al4V alloy surface is carried out and nitrogen/oxygen mixture with partial pressure of PO2/PN2=1/3 is introduced during the surface treatment process. Analytical tools are used to characterize the laser treated surfaces. The fracture toughness at the surface and the residual stress in the surface region of the laser treated layer are measured. Scratch tests are carried out to determine the friction coefficient of the treated surface. It is found that closely spaced regular laser scanning tracks generates a self-annealing effect in the laser treated layer while lowering the stress levels in the treated region. Introducing high pressure gas mixture impingement at the surface results in formation of oxide and nitride species including, TiO, TiO2, TiN and TiOxNy in the surface region. A dense layer consisting of fine size grains are formed in the surface region of the laser treated layer, which enhances the microhardness at the surface. The fracture toughness reduces after the laser treatment process because of the microhardness enhancement at the surface. The residual stress formed is comprehensive, which is in the order of -350 MPa.

  18. Naturally fractured tight gas reservoir detection optimization. Quarterly report, January 1, 1997--March 31, 1997

    SciTech Connect

    1998-04-01

    This document contains the quarterly report dated January 1-March 31, 1997 for the Naturally Fractured Tight Gas Reservoir Detection Optimization project. Topics covered in this report include AVOA modeling using paraxial ray tracing, AVOA modeling for gas- and water-filled fractures, 3-D and 3-C processing, and technology transfer material. Several presentations from a Geophysical Applications Workshop workbook, workshop schedule, and list of workshop attendees are also included.

  19. Naturally fractured tight gas reservoir detection optimization. Quarterly report, July 1, 1996--September 30, 1996

    SciTech Connect

    1998-12-31

    This document contains the status report for the Naturally Fractured Tight Gas-Gas Reservoir Detection Optimization project for the contract period July 1 to September 30, 1996. Data from seismic surveys are analyzed for structural imaging of reflector units as part of a 3-D basin modeling effort. The main activities of this quarter were 3-D, 3-C processing, correlation matrix, and paraxial ray-tracing modeling.

  20. Parametric modeling and optimization of laser scanning parameters during laser assisted machining of Inconel 718

    NASA Astrophysics Data System (ADS)

    Venkatesan, K.; Ramanujam, R.; Kuppan, P.

    2016-04-01

    This paper presents a parametric effect, microstructure, micro-hardness and optimization of laser scanning parameters (LSP) on heating experiments during laser assisted machining of Inconel 718 alloy. The laser source used for experiments is a continuous wave Nd:YAG laser with maximum power of 2 kW. The experimental parameters in the present study are cutting speed in the range of 50-100 m/min, feed rate of 0.05-0.1 mm/rev, laser power of 1.25-1.75 kW and approach angle of 60-90°of laser beam axis to tool. The plan of experiments are based on central composite rotatable design L31 (43) orthogonal array. The surface temperature is measured via on-line measurement using infrared pyrometer. Parametric significance on surface temperature is analysed using response surface methodology (RSM), analysis of variance (ANOVA) and 3D surface graphs. The structural change of the material surface is observed using optical microscope and quantitative measurement of heat affected depth that are analysed by Vicker's hardness test. The results indicate that the laser power and approach angle are the most significant parameters to affect the surface temperature. The optimum ranges of laser power and approach angle was identified as 1.25-1.5 kW and 60-65° using overlaid contour plot. The developed second order regression model is found to be in good agreement with experimental values with R2 values of 0.96 and 0.94 respectively for surface temperature and heat affected depth.

  1. Optimization of enzyme assisted extraction of Fructus Mori polysaccharides and its activities on antioxidant and alcohol dehydrogenase.

    PubMed

    Deng, Qingfang; Zhou, Xin; Chen, Huaguo

    2014-10-13

    In the present study, enzyme assisted extraction of Fructus Mori polysaccharides (FMPS) from F. mori using four kinds of enzymes and three compound enzymes were examined. Research found that glucose oxidase offered a better performance in enhancement of the extraction yields of FMPS, antioxidant and activate alcohol dehydrogenase activities. The glucose oxidase assisted extraction process was further optimized by using response surface method (RSM) to obtain maximum yield of crude FMPS. The results showed that optimized extraction conditions were ratio of enzyme amount 0.40%, enzyme treated time 38 min, treated temperature 58 °C and liquid-solid radio 11.0. Under these conditions, the mean experimental value of extraction yield (16.16 ± 0.14%) corresponded well with the predicted values and increased 160% than none enzyme treated ones. Pharmacological verification tests showed that F. mori crude polysaccharides had good antioxidant and activate alcohol dehydrogenase activities in vitro. PMID:25037415

  2. Optimization of enzyme assisted extraction of Fructus Mori polysaccharides and its activities on antioxidant and alcohol dehydrogenase.

    PubMed

    Deng, Qingfang; Zhou, Xin; Chen, Huaguo

    2014-10-13

    In the present study, enzyme assisted extraction of Fructus Mori polysaccharides (FMPS) from F. mori using four kinds of enzymes and three compound enzymes were examined. Research found that glucose oxidase offered a better performance in enhancement of the extraction yields of FMPS, antioxidant and activate alcohol dehydrogenase activities. The glucose oxidase assisted extraction process was further optimized by using response surface method (RSM) to obtain maximum yield of crude FMPS. The results showed that optimized extraction conditions were ratio of enzyme amount 0.40%, enzyme treated time 38 min, treated temperature 58 °C and liquid-solid radio 11.0. Under these conditions, the mean experimental value of extraction yield (16.16 ± 0.14%) corresponded well with the predicted values and increased 160% than none enzyme treated ones. Pharmacological verification tests showed that F. mori crude polysaccharides had good antioxidant and activate alcohol dehydrogenase activities in vitro.

  3. Naturally fractured tight gas reservoir detection optimization. Quaterly report, October 1, 1996--December 31, 1996

    SciTech Connect

    1998-12-31

    This document contains the status report for the Naturally Fractured Tight Gas-Gas Reservoir Detection Optimization project for the contract period October 1 to December 31, 1996. Data from seismic surveys are analyzed for structural imaging of reflector units as part of a 3-D basin modeling effort. The goal of this task is to assess the effects of structural complexity and regional anisotropy on a seismic attribute taken to indicate local fracturing and/or gas concentrations. The main activities of this quarter included basin modeling, 3-D, 3-C processing, correlation matrix, dipole sonic logging, and technology transfer.

  4. Gas pressure sintering of silicon nitride to optimize fracture toughness

    SciTech Connect

    Tiegs, T.N.; Nunn, S.D.; Beavers, T.M.; Menchhofer, P.A.; Barker, D.L.; Coffey, D.W.

    1995-06-01

    Gas-pressure sintering (GPS) can be used to densify silicon nitride containing a wide variety of sintering additives. Parameters affecting the sintering behavior include densification temperature, densification time, grain growth temperature, grain growth time and heating rates. The Si{sub 3}N{sub 4}-6% Y{sub 2}O{sub 3}-2% A1{sub 2}O{sub 3} samples sintered to high densities at all conditions used in the present study, whereas the Si{sub 3}N{sub 4}-Sr{sub 2}La{sub 4}Yb{sub 4}(SiO{sub 4}){sub 6}O{sub 2} samples required the highest temperatures and longest times to achieve densities {ge}98 % T. D. The main effect on the fracture toughness for Si{sub 3}N{sub 4}-6% Y{sub 2}O{sub 3}-2% A1{sub 2}O{sub 3} samples was the use of a lower densification temperature, which was 1900C in the present study. For the Si{sub 3}N{sub 4}-Sr{sub 2}La{sub 4}Yb{sub 4}SiO4{sub 4}){sub 6}O{sub 2} composition, fracture toughness was sensitive to and improved by a slower heating rate (10c/min), a lower densification temperature (1900`), a higher grain growth temperature (2000C), and a longer grain growth time (2 h).

  5. Optimal Capacity and Location Assessment of Natural Gas Fired Distributed Generation in Residential Areas

    NASA Astrophysics Data System (ADS)

    Khalil, Sarah My

    With ever increasing use of natural gas to generate electricity, installed natural gas fired microturbines are found in residential areas to generate electricity locally. This research work discusses a generalized methodology for assessing optimal capacity and locations for installing natural gas fired microturbines in a distribution residential network. The overall objective is to place microturbines to minimize the system power loss occurring in the electrical distribution network; in such a way that the electric feeder does not need any up-gradation. The IEEE 123 Node Test Feeder is selected as the test bed for validating the developed methodology. Three-phase unbalanced electric power flow is run in OpenDSS through COM server, and the gas distribution network is analyzed using GASWorkS. The continual sensitivity analysis methodology is developed to select multiple DG locations and annual simulation is run to minimize annual average losses. The proposed placement of microturbines must be feasible in the gas distribution network and should not result into gas pipeline reinforcement. The corresponding gas distribution network is developed in GASWorkS software, and nodal pressures of the gas system are checked for various cases to investigate if the existing gas distribution network can accommodate the penetration of selected microturbines. The results indicate the optimal locations suitable to place microturbines and capacity that can be accommodated by the system, based on the consideration of overall minimum annual average losses as well as the guarantee of nodal pressure provided by the gas distribution network. The proposed method is generalized and can be used for any IEEE test feeder or an actual residential distribution network.

  6. Gas separation using membranes. 1: Optimization of the separation process using new cost parameters

    SciTech Connect

    Hinchliffe, A.B.; Porter, K.E.

    1997-03-01

    This is the first in a series of papers presenting new concepts for the development of membranes for gas separation. In this paper two new cost parameters, which are useful for costing and optimization of membrane gas separation systems, are described. The new parameters, cost permeability and effective selectivity, can be used to show the direction to be taken in membrane research and development. The new parameters are shown to predict accurately the cost of membrane separation plant by correlating bids from membrane plant suppliers using the new parameters with cross-flow design equations. The parameters are used to optimize the membrane gas separation of hydrogen and carbon monoxide for two commercially available membrane systems. The membrane separation is compared with the currently used method, cryogenic flash distillation. Economic evaluation methods are developed to compare different separation methods so that the process as a whole can be optimized. The evaluation shows that, for membrane gas separation, it is important to find the optimum degree of separation; when membrane separation is evaluated at the separation specification for the established cryogenic method, membranes are not competitive; however, when the process is optimized for membrane separation, the cost of separation reduces to less than 60% of the cryogenic separation.

  7. On the Gas Optimization and Systematic Error for the Gas Pixel Detector

    NASA Astrophysics Data System (ADS)

    Feng, Hua; Costa, Enrico; Muleri, Fabio; Bellazzini, Ronaldo; Soffitta, Paolo; Zhang, Heng; Li, Hong

    2016-07-01

    The gas pixel detector (GPD) is selected as the focal plane polarimeter for the X-ray Imaging Polarimetry Explorer (XIPE). We calculated the detection efficiency of different gas mixtures, simulated the electron tracks and degree of modulation at different X-ray energies using packages like Geant4/Maxwell/Garfield. The simulated results are tested to be consistent with measurements. We will demonstrate how the choice of gas mixture influences the sensitivity in polarization. We will also show test results of the systematic error, which is the response of detector to unpolarized signals and determines the limiting sensitivity. Our measurements indicate that systematic error is well below 1% in degree of polarization for GPD.

  8. Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-08-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary-disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.

  9. Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-08-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary–disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.

  10. Optimization of hexametaphosphate-assisted extraction and functional characterization of palm kernel cake protein.

    PubMed

    Chee, Kah-Leong; Ayob, Mohd-Khan

    2013-04-01

    Response surface methodology was applied to study the optimization of palm kernel cake protein (PKCP) hexametaphosphate-assisted extraction. The optimum PKCP yield (28.37%) when extracted using 1.50% sodium hexametaphosphate (SHMP) of pH 10, at 50 °C, and the 1:70 (w/v) ratio of cake-to-solvent was significantly (P < 0.05) higher than the protein yield from an alkaline (pH 10) extraction (8.12 ± 0.24%). Differential scanning calorimetry (DSC) analysis showed a higher denatured temperature (99.78 °C) for PKCP as compared with alkaline extracted one (96.96 °C), suggesting that a less denatured protein population is obtained. Electrophoresis of the PKCP revealed that the protein has 11 bands with MW ranging from 2.11 to 83.19 kDa. Relative to soy protein isolate, PKCP showed higher surface hydrophobicity (165.96 vs. 51.51), better solubility at pH 7 (87.65% vs. 41.21%), oil-binding capacity (7.73 vs. 2.96 g/g) and emulsifying activity (178.50 vs. 32.57 m(2)/g), but lower water-binding capacity (0.36 vs. 11.70 g/g), emulsifying stability (32.24% vs. 43.08%), foaming capacity (20.8% vs. 100.0%) and foam stability (3.80 vs. 19.20 ml). PKCP contained the highest amount of glutamic acid (16.86 g/100 g protein) and followed by arginine (10.78 g/100 g protein). With respect to the 1991 standard of the FAO/WHO for preschool children, PKCP's essential amino acid profile showed deficiencies. Therefore, it can be used as a complementary protein source by supplementing with a tryptophan-rich source, as this was the limiting amino acid.

  11. Economic on-line optimization for liquids extraction and treating in gas processing plants

    SciTech Connect

    Berkowitz, P.N.; Gamez, J.P.

    1995-11-01

    Significant changes in the gas processing industry are driving processors to become more dependent on their ability to adapt plant operations to respond to changing third party contracts, wide variability of inlet conditions, plus the volatile market pricing of NGL`s and residue gas in order to remain competitive and profitable. The need for flexible operations at each facility requires an on-line, real time supervisory controller/optimizer that manipulates the process to achieve its economic optimum. Economic optimum does not equal process optimum and the traditional approach of only meeting the control objectives is insufficient for today`s gas plant operations. Because gas plants have no storage of products or residue gas, lost opportunity is immediate with no means to regain lost profitability. The nonlinear characteristics of the process makes typical available control technologies unacceptable for these applications. A new solution that incorporates economics, process dynamics and the economic arrangements of the gas processor has been developed with the cooperation of industry, the Gas Research Institute (GRI) and Continental Controls, Inc. (CCI). The objective function of this software solution is the maximization of profit for the plant and its co-owners. Thus, the optimum set of controlled variables is also dynamic, dependent on product price margins, variability of the inlet gas, and the cost of utilities. This simultaneous control and optimization solution has produced benefits that have paid for the project in as little as two and one half months and typically four to seven months depending on the gas throughput and its richness.

  12. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    SciTech Connect

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  13. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology

    PubMed Central

    Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan

    2015-01-01

    Objective: To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. Materials and Methods: The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20–60°C), time (20–40 min) and power (200–350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. Results: The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. Conclusion: The results of quantification showed that the guava leaves are the potential source of antioxidant compounds. PMID:26246720

  14. Optimization problems in natural gas transportation systems. A state-of-the-art review

    DOE PAGES

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    2015-03-24

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-termmore » basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.« less

  15. A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane.

    PubMed

    Hu, Song; Guan, Yu; Cai, Di; Li, Shufeng; Qin, Peiyong; Karim, M Nazmul; Tan, Tianwei

    2015-01-01

    Furfural is an important platform chemical with a wide range of applications. However, due to the low concentration of furfural in the hydrolysate, the conventional methods for furfural recovery are energy-intensive and environmentally unfriendly. Considering the disadvantages of pervaporation (PV) and distillation in furfural separation, a novel energy-efficient 'green technique', gas stripping assisted vapor permeation (GSVP), was introduced in this work. In this process, the polydimethylsiloxane (PDMS) membrane was prepared by employing water as solvent. Coking in pipe and membrane fouling was virtually non-existent in this new process. In addition, GSVP was found to achieve the highest pervaporation separation index of 216200 (permeate concentration of 71.1 wt% and furfural flux of 4.09 kg m(-2) h(-1)) so far, which was approximately 2.5 times higher than that found in pervaporation at 95°C for recovering 6.0 wt% furfural from water. Moreover, the evaporation energy required for GSVP decreased by 35% to 44% relative to that of PV process. Finally, GSVP also displayed more promising potential in industrial application than PV, especially when coupled with the hydrolysis process or fermentation in biorefinery industry. PMID:25819091

  16. A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane

    NASA Astrophysics Data System (ADS)

    Hu, Song; Guan, Yu; Cai, Di; Li, Shufeng; Qin, Peiyong; Karim, M. Nazmul; Tan, Tianwei

    2015-03-01

    Furfural is an important platform chemical with a wide range of applications. However, due to the low concentration of furfural in the hydrolysate, the conventional methods for furfural recovery are energy-intensive and environmentally unfriendly. Considering the disadvantages of pervaporation (PV) and distillation in furfural separation, a novel energy-efficient `green technique', gas stripping assisted vapor permeation (GSVP), was introduced in this work. In this process, the polydimethylsiloxane (PDMS) membrane was prepared by employing water as solvent. Coking in pipe and membrane fouling was virtually non-existent in this new process. In addition, GSVP was found to achieve the highest pervaporation separation index of 216200 (permeate concentration of 71.1 wt% and furfural flux of 4.09 kgm-2h-1) so far, which was approximately 2.5 times higher than that found in pervaporation at 95°C for recovering 6.0 wt% furfural from water. Moreover, the evaporation energy required for GSVP decreased by 35% to 44% relative to that of PV process. Finally, GSVP also displayed more promising potential in industrial application than PV, especially when coupled with the hydrolysis process or fermentation in biorefinery industry.

  17. A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane

    PubMed Central

    Hu, Song; Guan, Yu; Cai, Di; Li, Shufeng; Qin, Peiyong; Karim, M. Nazmul; Tan, Tianwei

    2015-01-01

    Furfural is an important platform chemical with a wide range of applications. However, due to the low concentration of furfural in the hydrolysate, the conventional methods for furfural recovery are energy-intensive and environmentally unfriendly. Considering the disadvantages of pervaporation (PV) and distillation in furfural separation, a novel energy-efficient ‘green technique’, gas stripping assisted vapor permeation (GSVP), was introduced in this work. In this process, the polydimethylsiloxane (PDMS) membrane was prepared by employing water as solvent. Coking in pipe and membrane fouling was virtually non-existent in this new process. In addition, GSVP was found to achieve the highest pervaporation separation index of 216200 (permeate concentration of 71.1 wt% and furfural flux of 4.09 kgm−2h−1) so far, which was approximately 2.5 times higher than that found in pervaporation at 95°C for recovering 6.0 wt% furfural from water. Moreover, the evaporation energy required for GSVP decreased by 35% to 44% relative to that of PV process. Finally, GSVP also displayed more promising potential in industrial application than PV, especially when coupled with the hydrolysis process or fermentation in biorefinery industry. PMID:25819091

  18. Determination of sulphur saturation in dolomitic sour gas reservoir using computer assisted tomography

    SciTech Connect

    Kantzas, A. )

    1991-01-01

    This paper reports on a number of very sour gas dolomitic reservoirs suspected of having large amounts of sulphur. This sulphur shows up on the form of inclusions in cores and thin-sections. There is no laboratory method currently available for the determination of the total sulphur in the reservoir rock. Solvent extraction was used for partial removal of the sulphur from two pieces of core. A preliminary project established the value of X-ray Computer Assisted Tomography (CAT) Scanning in determining residual sulphur after extraction. A procedure was established and used for the determination of the sulphur content in a number of core pieces of a target reservoir. The sulphur saturation was calculated using a computer model developed in-house. It is the first time such an approach has been attempted. The results showed a wide saturation range of the sulphur present in the core. The average sulphur saturation of eight core peices has been estimated at 34.1%. The core porosity was corrected to consider the volume occupied by the sulphur as part of the fluid volume.

  19. "Optimal" application of ventilatory assist in Cheyne-Stokes respiration: a simulation study.

    PubMed

    Khoo, M C; Benser, M E

    2005-01-01

    Although a variety of ventilator therapies have been employed to treat Cheyne-Stokes respiration (CSR), these modalities do not completely eliminate CSR. As well, most current strategies require that ventilatory assist be provided continuously. We used a computer model of the respiratory control system to determine whether a ventilatory assist strategy could be found that would substantially reduce the severity of CSR while minimizing the application of positive airway pressure. We assessed the effects of different levels of ventilatory assist applied during breaths that fell below selected hypopneic thresholds. These could be applied during the descending, ascending, or both phases of the CSR cycle. We found that ventilatory augmentation equal to 30-40% of eupneic drive, applied whenever ventilation fell below 70% of the eupneic level during the ascending or descending-and-ascending phases of CSR led to the greatest regularization of breathing with minimal ventilator intervention. Application of ventilatory assist during the descending phase produced little effect. PMID:17281585

  20. Adsorbed Natural Gas Storage in Optimized High Surface Area Microporous Carbon

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Rash, Tyler; Nordwald, Erik; Shocklee, Joshua Shawn; Wexler, Carlos; Pfeifer, Peter

    2011-03-01

    Adsorbed natural gas (ANG) is an attractive alternative technology to compressed natural gas (CNG) or liquefied natural gas (LNG) for the efficient storage of natural gas, in particular for vehicular applications. In adsorbants engineered to have pores of a few molecular diameters, a strong van der Walls force allows reversible physisorption of methane at low pressures and room temperature. Activated carbons were optimized for storage by varying KOH:C ratio and activation temperature. We also consider the effect of mechanical compression of powders to further enhance the volumetric storage capacity. We will present standard porous material characterization (BET surface area and pore-size distribution from subcritical N2 adsorption) and methane isotherms up to 250 bar at 293K. At sufficiently high pressure, specific surface area, methane binding energy and film density can be extracted from supercritical methane adsorption isotherms. Research supported by the California Energy Commission (500-08-022).

  1. Methodology for optimizing the development and operation of gas storage fields

    SciTech Connect

    Mercer, J.C.; Ammer, J.R.; Mroz, T.H.

    1995-04-01

    The Morgantown Energy Technology Center is pursuing the development of a methodology that uses geologic modeling and reservoir simulation for optimizing the development and operation of gas storage fields. Several Cooperative Research and Development Agreements (CRADAs) will serve as the vehicle to implement this product. CRADAs have been signed with National Fuel Gas and Equitrans, Inc. A geologic model is currently being developed for the Equitrans CRADA. Results from the CRADA with National Fuel Gas are discussed here. The first phase of the CRADA, based on original well data, was completed last year and reported at the 1993 Natural Gas RD&D Contractors Review Meeting. Phase 2 analysis was completed based on additional core and geophysical well log data obtained during a deepening/relogging program conducted by the storage operator. Good matches, within 10 percent, of wellhead pressure were obtained using a numerical simulator to history match 2 1/2 injection withdrawal cycles.

  2. Ultrasonic nebulization extraction assisted dispersive liquid-liquid microextraction followed by gas chromatography for the simultaneous determination of six parabens in cosmetic products.

    PubMed

    Wei, Hongmin; Yang, Jinjuan; Zhang, Hanqi; Shi, Yuhua

    2014-09-01

    A simple, rapid, and efficient method of ultrasonic nebulization extraction assisted dispersive liquid-liquid microextraction was developed for the simultaneous determination of six parabens in cosmetic products. The analysis was carried out by gas chromatography. Water was used as the dispersive solvent instead of traditional organic disperser. The experimental factors affecting the extraction yield, such as the extraction solvent and volume, extraction time, dispersive solvent and volume, ionic strength, and centrifuging condition were studied and optimized in detail. The limit of detections for the target analytes were in the range of 2.0-9.5 μg/g. Good linear ranges were obtained with the coefficients ranging from 0.9934 to 0.9969. The proposed method was successfully applied to the analysis of six parabens in 16 cosmetic products. The recoveries of the target analytes in real samples ranged from 81.9 to 108.7%, and the relative standard deviations were <5.3%.

  3. Nonlinear Resonant Oscillations of Gas in Optimized Acoustical Resonators and the Effect of Central Blockage

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Finkbeiner, Joshua; Raman, Ganesh; Daniels, Christopher; Steinetz, Bruce M.

    2003-01-01

    Optimizing resonator shapes for maximizing the ratio of maximum to minimum gas pressure at an end of the resonator is investigated numerically. It is well known that the resonant frequencies and the nonlinear standing waveform in an acoustical resonator strongly depend on the resonator geometry. A quasi-Newton type scheme was used to find optimized axisymmetric resonator shapes achieving the maximum pressure compression ratio with an acceleration of constant amplitude. The acoustical field was solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects were obtained through an automation scheme based on continuation method. Results are presented for optimizing three types of geometry: a cone, a horn-cone and a half cosine- shape. For each type, different optimized shapes were found when starting with different initial guesses. Further, the one-dimensional model was modified to study the effect of an axisymmetric central blockage on the nonlinear standing wave.

  4. Nonlinear Resonant Oscillations of Gas in Optimized Acoustical Resonators and the Effect of Central Blockage

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Finkbeiner, Joshua; Raman, Ganesh; Daniels, Christopher; Steinetz, Bruce M.

    2003-01-01

    Optimizing resonator shapes for maximizing the ratio of maximum to minimum gas pressure at an end of the resonator is investigated numerically. It is well known that the resonant frequencies and the nonlinear standing waveform in an acoustical resonator strongly depend on the resonator geometry. A quasi-Newton type scheme was used to find optimized axisymmetric resonator shapes achieving the maximum pressure compression ratio with an acceleration of constant amplitude. The acoustical field was solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects were obtained through an automation scheme based on continuation method. Results are presented for optimizing three types of geometry: a cone, a horn-cone and a half cosine-shape. For each type, different optimized shapes were found when starting with different initial guesses. Further, the one-dimensional model was modified to study the effect of an axisymmetric central blockage on the nonlinear standing wave.

  5. Trace gas retrieval for limb DOAS under changing atmospheric conditions: The X-gas scaling method vs optimal estimation

    NASA Astrophysics Data System (ADS)

    Hueneke, Tilman; Grossmann, Katja; Knecht, Matthias; Raecke, Rasmus; Stutz, Jochen; Werner, Bodo; Pfeilsticker, Klaus

    2016-04-01

    Changing atmospheric conditions during DOAS measurements from fast moving aircraft platforms pose a challenge for trace gas retrievals. Traditional inversion techniques to retrieve trace gas concentrations from limb scattered UV/vis spectroscopy, like optimal estimation, require a-priori information on Mie extinction (e.g., aerosol concentration and cloud cover) and albedo, which determine the atmospheric radiative transfer. In contrast to satellite applications, cloud filters can not be applied because they would strongly reduce the usable amount of expensively gathered measurement data. In contrast to ground-based MAX-DOAS applications, an aerosol retrieval based on O4 is not able to constrain the radiative transfer in air-borne applications due to the rapidly decreasing amount of O4 with altitude. Furthermore, the assumption of a constant cloud cover is not valid for fast moving aircrafts, thus requiring 2D or even 3D treatment of the radiative transfer. Therefore, traditional techniques are not applicable for most of the data gathered by fast moving aircraft platforms. In order to circumvent these limitations, we have been developing the so-called X-gas scaling method. By utilising a proxy gas X (e.g. O3, O4, …), whose concentration is either a priori known or simultaneously in-situ measured as well as remotely measured, an effective absorption length for the target gas is inferred. In this presentation, we discuss the strengths and weaknesses of the novel approach along with some sample cases. A particular strength of the X-gas scaling method is its insensitivity towards the aerosol abundance and cloud cover as well as wavelength dependent effects, whereas its sensitivity towards the profiles of both gases requires a priori information on their shapes.

  6. SDS-assisted hydrothermal synthesis of NiO flake-flower architectures with enhanced gas-sensing properties

    NASA Astrophysics Data System (ADS)

    Miao, Ruiyang; Zeng, Wen; Gao, Qi

    2016-10-01

    A facile hydrothermal route was developed for the preparation of well-aligned hierarchical flower-like NiO nanostructure with the assistance of SDS that served as a structure-directing agent as well as a capping agent in the process of aggregation and assembly. Notably, the NiO sensors exhibit enhanced gas-sensing performance towards ethanol, which could be explained in association with the ultrathin nanosheets that are close to Debye length (LD) scale and thus get the majority carriers fully depleted due to the ionization of adsorbed oxygen, abundant effective gas diffusion paths as well as high surface-to-volume ratio to promote sufficient contact and reaction between the NiO sample and ethanol molecules, and numerous miniature reaction rooms assembled with nanosheets to make the test gas molecules stay long enough for completed gas-sensing reactions. Besides, a novel growth mechanism with the passage of reaction time was also proposed in detail.

  7. Ultrasonically assisted hydrothermal synthesis of activated carbon-HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization.

    PubMed

    Azad, F Nasiri; Ghaedi, M; Dashtian, K; Hajati, S; Pezeshkpour, V

    2016-07-01

    Activated carbon (AC) composite with HKUST-1 metal organic framework (AC-HKUST-1 MOF) was prepared by ultrasonically assisted hydrothermal method and characterized by FTIR, SEM and XRD analysis and laterally was applied for the simultaneous ultrasound-assisted removal of crystal violet (CV), disulfine blue (DSB) and quinoline yellow (QY) dyes in their ternary solution. In addition, this material, was screened in vitro for their antibacterial actively against Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAO1) bacteria. In dyes removal process, the effects of important variables such as initial concentration of dyes, adsorbent mass, pH and sonication time on adsorption process optimized by Taguchi approach. Optimum values of 4, 0.02 g, 4 min, 10 mg L(-1) were obtained for pH, AC-HKUST-1 MOF mass, sonication time and the concentration of each dye, respectively. At the optimized condition, the removal percentages of CV, DSB and QY were found to be 99.76%, 91.10%, and 90.75%, respectively, with desirability of 0.989. Kinetics of adsorption processes follow pseudo-second-order model. The Langmuir model as best method with high applicability for representation of experimental data, while maximum mono layer adsorption capacity for CV, DSB and QY on AC-HKUST-1 estimated to be 133.33, 129.87 and 65.37 mg g(-1) which significantly were higher than HKUST-1 as sole material with Qm to equate 59.45, 57.14 and 38.80 mg g(-1), respectively.

  8. Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis.

    PubMed

    Bai, Xue-Lian; Yue, Tian-Li; Yuan, Ya-Hong; Zhang, Hua-Wei

    2010-12-01

    A simple and efficient microwave-assisted extraction of polyphenols from industrial apple pomace was developed and optimized by the maximization of the yield using response surface methodology. A Box-Behnken design was used to monitor the effect of microwave power, extraction time, ethanol concentration and ratio of solvent to raw material (g/mL) on the polyphenols yield. The results showed that the optimal conditions were as follows: microwave power 650.4 W, extraction time 53.7 s, ethanol concentration 62.1% and ratio of solvent to raw material 22.9:1. Validation tests indicated that the actual yield of polyphenols was 62.68±0.35 mg gallic acid equivalents per 100 g dry apple pomace with RSD=0.86% (n=5) under the optimal conditions, which was in good agreement with the predicted yield and higher than those of reflux and ultrasonic-assisted extraction methods. HPLC analysis indicated that the major polyphenols of apple pomace consisted of chlorogenic acid, caffeic acid, syrigin, procyanidin B2, (-)-epicatechin, cinnamic acid, coumaric acid, phlorizin and quercetin, of which procyanidin B2 had the highest content of 219.4 mg/kg.

  9. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods.

    PubMed

    Xu, Dong-Ping; Zheng, Jie; Zhou, Yue; Li, Ya; Li, Sha; Li, Hua-Bin

    2017-02-15

    Natural antioxidants are widely used as dietary supplements or food additives. An optimized method of ultrasound-assisted extraction (UAE) was proposed for the effective extraction of antioxidants from the flowers of Limonium sinuatum and evaluated by response surface methodology. In this study, ethanol concentration, ratio of solvent to solid, ultrasonication time and temperature were investigated and optimized using a central composite rotatable design. The optimum extraction conditions were as follows: ethanol concentration, 60%; ratio of solvent to solid, 56.9:1mL/g; ultrasonication time, 9.8min; and temperature, 40°C. Under the optimal UAE conditions, the experimental values (483.01±15.39μmolTrolox/gDW) matched with those predicted (494.13μmolTrolox/gDW) within a 95% confidence level. In addition, the antioxidant activities of UAE were compared with those of conventional maceration and Soxhlet extraction methods, and the ultrasound-assisted extraction could give higher yield of antioxidants and markedly reduce the extraction time. PMID:27664671

  10. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods.

    PubMed

    Xu, Dong-Ping; Zheng, Jie; Zhou, Yue; Li, Ya; Li, Sha; Li, Hua-Bin

    2017-02-15

    Natural antioxidants are widely used as dietary supplements or food additives. An optimized method of ultrasound-assisted extraction (UAE) was proposed for the effective extraction of antioxidants from the flowers of Limonium sinuatum and evaluated by response surface methodology. In this study, ethanol concentration, ratio of solvent to solid, ultrasonication time and temperature were investigated and optimized using a central composite rotatable design. The optimum extraction conditions were as follows: ethanol concentration, 60%; ratio of solvent to solid, 56.9:1mL/g; ultrasonication time, 9.8min; and temperature, 40°C. Under the optimal UAE conditions, the experimental values (483.01±15.39μmolTrolox/gDW) matched with those predicted (494.13μmolTrolox/gDW) within a 95% confidence level. In addition, the antioxidant activities of UAE were compared with those of conventional maceration and Soxhlet extraction methods, and the ultrasound-assisted extraction could give higher yield of antioxidants and markedly reduce the extraction time.

  11. Integration and optimization of the gas removal system for hybrid-cycle OTEC power plants

    SciTech Connect

    Rabas, T.J.; Panchal, C.B.; Stevens, H.C. )

    1990-02-01

    A preliminary design of the noncondensible gas removal system for a 10 mWe, land-based hybrid-cycle OTEC power plant has been developed and is presented herein. This gas removal system is very different from that used for conventional power plants because of the substantially larger and continuous noncondensible gas flow rates and lower condenser pressure levels which predicate the need for higher-efficiency components. Previous OTEC studies discussed the need for multiple high-efficiency compressors with intercoolers; however, no previous design effort was devoted to the details of the intercoolers, integration and optimization of the intercoolers with the compressors, and the practical design constraints and feasibility issues of these components. The resulting gas removal system design uses centrifugal (radial) compressors with matrix-type crossflow aluminum heat exchangers as intercoolers. Once-through boiling of ammonia is used as the heat sink for the cooling and condensing of the steam-gas mixture. A computerized calculation method was developed for the performance analysis and subsystem optimization. For a specific number of compressor units and the stream arrangement, the method is used to calculate the dimensions, speeds, power requirements, and costs of all the components.

  12. Multi-response optimization of factors affecting ultrasonic assisted extraction from Iranian basil using central composite design.

    PubMed

    Izadiyan, Parisa; Hemmateenejad, Bahram

    2016-01-01

    The present study reports on the extraction of antioxidant compounds from Iranian Ocimum basilicum. Central composite design (CCD) was used to investigate the effect of extraction variables on the ultrasound-assisted extraction (UAE). Three independent variables including temperature, methanol to water ratio percent, and sonication time were studied for simultaneous optimization of antioxidant capacity, total phenolic content and extraction yield. Both quantitative modeling and response surface methodology suggested that methanol to water ratio percent and extraction temperature were the most effective parameters of UAE process. However, sonication time was found out to be an insignificant factor in ultrasound-assisted extraction of antioxidant and total phenolic compounds of O. basilicum. The optimum conditions were determined as temperature of 59 °C, methanol to water ratio of 65.2% (v/v), and extraction time of 20 min.

  13. Optimization of wave rotors for use as gas turbine engine topping cycles

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Paxson, Daniel E.

    1995-01-01

    Use of a wave rotor as a topping cycle for a gas turbine engine can improve specific power and reduce specific fuel consumption. Maximum improvement requires the wave rotor to be optimized for best performance at the mass flow of the engine. The optimization is a trade-off between losses due to friction and passage opening time, and rotational effects. An experimentally validated, one-dimensional CFD code, which includes these effects, has been used to calculate wave rotor performance, and find the optimum configuration. The technique is described, and results given for wave rotors sized for engines with sea level mass flows of 4, 26, and 400 lb/sec.

  14. Computerized Optimization of the Process Parameters in Laser-Assisted Milling

    NASA Astrophysics Data System (ADS)

    Wiedenmann, R.; Langhorst, M.; Zaeh, M. F.

    Machining advanced materials, e.g. titanium alloys, usually results in a short tool life. Laser-assisted milling represents an innovative method to enhance machinability with less tool wear and an increased material removal rate. The material is heated locally and thereby softened before machining. This paper describes a thermo-mechanical simulation of a laser-assisted milling process in order to achieve a controlled heat impact. For that purpose the influence of different material parameters on the temperature field was analyzed computationally. The penetration depth of the laser induced heat and the thermally induced internal loads were investigated considering the loss of material and thus of heat during the milling process. Finally, the laser and the milling parameters were adapted for a real laser-assisted process.

  15. Rapid analysis of Fructus forsythiae essential oil by ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction followed by gas chromatography-mass spectrometry.

    PubMed

    Jiao, Jiao; Ma, Dan-Hui; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Fu, Yu-Jie; Ma, Wei

    2013-12-01

    A rapid, green and effective miniaturized sample preparation and analytical technique, i.e. ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction (ILAMD-HS-SDME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for the analysis of essential oil (EO) in Fructus forsythiae. In this work, ionic liquids (ILs) were not only used as the absorption medium of microwave irradiation but also as the destruction agent of plant cell walls. 1-Ethyl-3-methylimidazolium acetate ([C2mim]OAc) was chosen as the optimal ILs. Moreover, n-heptadecane (2.0 μL) was selected as the appropriate suspended solvent for the extraction and concentration of EO. Extraction conditions of the proposed method were optimized using the relative peak area of EO constituents as the index, and the optimal operational parameters were obtained as follows: irradiation power (300 W), sample mass (0.7 g), mass ratio of ILs to sample (2.4), temperature (78°C) and time (3.4 min). In comparison to previous reports, the proposed method was faster and required smaller sample amount but could equally monitor all EO constituents with no significant differences. PMID:24267075

  16. Naturally fractured tight gas: Gas reservoir detection optimization. Quarterly report, January 1--March 31, 1997

    SciTech Connect

    1997-12-31

    Economically viable natural gas production from the low permeability Mesaverde Formation in the Piceance Basin, Colorado requires the presence of an intense set of open natural fractures. Establishing the regional presence and specific location of such natural fractures is the highest priority exploration goal in the Piceance and other western US tight, gas-centered basins. Recently, Advanced Resources International, Inc. (ARI) completed a field program at Rulison Field, Piceance Basin, to test and demonstrate the use of advanced seismic methods to locate and characterize natural fractures. This project began with a comprehensive review of the tectonic history, state of stress and fracture genesis of the basin. A high resolution aeromagnetic survey, interpreted satellite and SLAR imagery, and 400 line miles of 2-D seismic provided the foundation for the structural interpretation. The central feature of the program was the 4.5 square mile multi-azimuth 3-D seismic P-wave survey to locate natural fracture anomalies. The interpreted seismic attributes are being tested against a control data set of 27 wells. Additional wells are currently being drilled at Rulison, on close 40 acre spacings, to establish the productivity from the seismically observed fracture anomalies. A similar regional prospecting and seismic program is being considered for another part of the basin. The preliminary results indicate that detailed mapping of fault geometries and use of azimuthally defined seismic attributes exhibit close correlation with high productivity gas wells. The performance of the ten new wells, being drilled in the seismic grid in late 1996 and early 1997, will help demonstrate the reliability of this natural fracture detection and mapping technology.

  17. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  18. Optimization for ultrasound-assisted extraction of polysaccharides with antioxidant activity in vitro from the aerial root of Ficus microcarpa.

    PubMed

    Jiang, Changxing; Li, Xia; Jiao, Yunpeng; Jiang, Dingyun; Zhang, Ling; Fan, Benxia; Zhang, Qianghua

    2014-09-22

    In this study, optimization of ultrasound-assisted extraction and antioxidant activity of polysaccharides from the aerial root of Ficus microcarpa (FMPS) were investigated. The optimal conditions for extraction of FMPS were determined as followings: ultrasound power 200 W, ultrasound temperature 70°C, extraction temperature 74°C, liquid-solid ratio 35, extraction time 238 min, ultrasound time 49 min. The experimental yield of FMPS (3.44%) obtained under these conditions was well agreement with the value predicted by the model. In addition, Fourier transform-infrared spectroscopy and antioxidant activity assays revealed that FMPS were acidic polysaccharides and had strong Fe2+ chelating activity and moderate hydrogen peroxide scavenging effect. Further work on the purification, structure characterization and antioxidant activity in vivo of FMPS is in progress. PMID:24906722

  19. Response surface modeling and optimization of ultrasound-assisted extraction of three flavonoids from tartary buckwheat (Fagopyrum tataricum)

    PubMed Central

    Peng, Lian-Xin; Zou, Liang; Zhao, Jiang-Lin; Xiang, Da-Bing; Zhu, Peng; Zhao, Gang

    2013-01-01

    Background: Buckwheat (Fagopyrum spp., Polygonaceae) is a widely planted food crop. Flavonoids, including quercetin, rutin, and kaempferol, are the main bioactive components in tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). From the nutriological and pharmacological perspectives, flavonoids have great value in controlling blood glucose and blood pressure levels, and they also have antioxidant properties. Objective: To optimize the conditions for extraction of quercetin, rutin, and kaempferol from F. tataricum. Materials and Methods: A combination of ultrasound-assisted extraction (UAE) and response surface methodology (RSM) was used for flavonoid extraction and yield assessment. The RSM was based on a three-level, three-variable Box-Behnken design. Results: Flavonoids were optimally extracted from F. tataricum by using 72% methanol, at 60°C, for 21 minutes. Under these conditions, the obtained extraction yield of the total flavonoids was 3.94%. Conclusion: The results indicated that the UAE method was effective for extraction of flavonoids from tartary buckwheat. PMID:23930003

  20. Multivariate statistical analysis and optimization of ultrasound-assisted extraction of natural pigments from waste red beet stalks.

    PubMed

    Maran, J Prakash; Priya, B

    2016-01-01

    In this study, ultrasound-assisted extraction (UAE) of natural pigment extraction from waste red beet stalks were optimized under four factors (extraction temperature, ultrasonic power, extraction time and solid-liquid ratio) by using three level Box-Behnken response surface design. Extraction temperature, ultrasonic power and solid-liquid ratio were significantly influenced the extraction yield of pigments. Extraction temperature of 53 °C, ultrasonic power of 89 w, extraction time of 35 min and SL ratio of 1:19 g/ml was identified as the optimal condition. Under this condition, the actual yield of (betacyanin of 1.28 ± 0.02 and betaxanthin of 5.31 ± 0.09 mg/g) pigments was well correlated with predicted values (betacyanin was 1.29 mg/g and betaxanthin was 5.32 mg/g). PMID:26788000

  1. Multivariate statistical analysis and optimization of ultrasound-assisted extraction of natural pigments from waste red beet stalks.

    PubMed

    Maran, J Prakash; Priya, B

    2016-01-01

    In this study, ultrasound-assisted extraction (UAE) of natural pigment extraction from waste red beet stalks were optimized under four factors (extraction temperature, ultrasonic power, extraction time and solid-liquid ratio) by using three level Box-Behnken response surface design. Extraction temperature, ultrasonic power and solid-liquid ratio were significantly influenced the extraction yield of pigments. Extraction temperature of 53 °C, ultrasonic power of 89 w, extraction time of 35 min and SL ratio of 1:19 g/ml was identified as the optimal condition. Under this condition, the actual yield of (betacyanin of 1.28 ± 0.02 and betaxanthin of 5.31 ± 0.09 mg/g) pigments was well correlated with predicted values (betacyanin was 1.29 mg/g and betaxanthin was 5.32 mg/g).

  2. Optimizing assisted communication devices for Children with motor impairments using a model of information rate and channel capacity.

    PubMed

    Sanger, Terence D; Henderson, Juliet

    2007-09-01

    For children who depend on devices to communicate, the rate of communication is a primary determinant of success. For children with motor impairments, the rate of communication may be limited by inability to contact buttons or cells rapidly or accurately. It is, therefore, essential to know how to adjust the device interface in order to maximize each child's rate of communication. The optimal rate of communication is determined by the channel capacity, which is the maximum value of the information rate for all possible keyboard button or cell layouts for the communication device. We construct a mathematical model for the information rate based on the relationship between movement time and the number of buttons per screen, the size of the buttons, and the length of a sequence of buttons that must be pressed to communicate each word in the vocabulary. We measure the parameters of the model using a custom-programmed touchscreen interface in 10 children with disorders of arm movement due to cerebral palsy who use a DynaVox communication device. We measure the same parameters in 20 healthy control subjects. We show that the model approximates the measured information rate and that the information rate is lower in children with motor impairments compared with control subjects. The theory predicts that for each child there is a combination of button size and number that maximizes the predicted information rate and thereby achieves communication at the optimal channel capacity. Programming communication devices with each child's predicted optimal parameters improved the communication rate in five of the ten children, compared with programming by professionals. Therefore, measurement of information rate may provide an assessment of the effect of motor disorders on success in assisted communication. Optimization of the information rate may be useful for programming assisted communication devices.

  3. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    SciTech Connect

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  4. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding.

    PubMed

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10-20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%.

  5. Variable-geometry turbocharger with asymmetric divided volute for engine exhaust gas pulse optimization

    DOEpatents

    Serres, Nicolas

    2010-11-09

    A turbine assembly for a variable-geometry turbocharger includes a turbine housing defining a divided volute having first and second scrolls, wherein the first scroll has a substantially smaller volume than the second scroll. The first scroll feeds exhaust gas to a first portion of a turbine wheel upstream of the throat of the wheel, while the second scroll feeds gas to a second portion of the wheel at least part of which is downstream of the throat. Flow from the second scroll is regulated by a sliding piston. The first scroll can be optimized for low-flow conditions such that the turbocharger can operate effectively like a small fixed-geometry turbocharger when the piston is closed. The turbine housing defines an inlet that is divided by a dividing wall into two portions respectively feeding gas to the two scrolls, a leading edge of the dividing wall being downstream of the inlet mouth.

  6. Identifying Optimal Zeolitic Sorbents for Sweetening of Highly Sour Natural Gas.

    PubMed

    Shah, Mansi S; Tsapatsis, Michael; Siepmann, J Ilja

    2016-05-10

    Raw natural gas is a complex mixture comprising methane, ethane, other hydrocarbons, hydrogen sulfide, carbon dioxide, nitrogen, and water. For sour gas fields, selective and energy-efficient removal of H2 S is one of the crucial challenges facing the natural-gas industry. Separation using nanoporous materials, such as zeolites, can be an alternative to energy-intensive amine-based absorption processes. Herein, the adsorption of binary H2 S/CH4 and H2 S/C2 H6 mixtures in the all-silica forms of 386 zeolitic frameworks is investigated using Monte Carlo simulations. Adsorption of a five-component mixture is utilized to evaluate the performance of the 16 most promising materials under close-to-real conditions. It is found that depending on the fractions of CH4 , C2 H6 , and CO2 , different sorbents allow for optimal H2 S removal and hydrocarbon recovery.

  7. A near optimal guidance algorithm for aero-assisted orbit transfer

    NASA Astrophysics Data System (ADS)

    Calise, Anthony J.; Bae, Gyoung H.

    The paper presents a near optimal guidance algorithm for aero-assited orbit plane change, based on minimizing the energy loss during the atmospheric portion of the maneuver. The guidance algorithm makes use of recent results obtained from energy state approximations and singular perturbation analysis of optimal heading change for a hypersonic gliding vehicle. This earlier work ignored the terminal constraint on altitude needed to insure that the vehicle exits that atmosphere. Thus, the resulting guidance algorithm was only appropriate for maneuvering reentry vehicle guidance. In the context of singular perturbation theory, a constraint on final altitude gives rise to a difficult terminal boundary layer problem, which cannot be solved in closed form. This paper will demonstrate the near optimality of a predictive/corrective guidance algorithm for the terminal maneuver. Comparisons are made to numerically optimized trajectories for a range or orbit plane angles.

  8. A near optimal guidance algorithm for aero-assisted orbit transfer

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Bae, Gyoung H.

    1988-01-01

    The paper presents a near optimal guidance algorithm for aero-assited orbit plane change, based on minimizing the energy loss during the atmospheric portion of the maneuver. The guidance algorithm makes use of recent results obtained from energy state approximations and singular perturbation analysis of optimal heading change for a hypersonic gliding vehicle. This earlier work ignored the terminal constraint on altitude needed to insure that the vehicle exits that atmosphere. Thus, the resulting guidance algorithm was only appropriate for maneuvering reentry vehicle guidance. In the context of singular perturbation theory, a constraint on final altitude gives rise to a difficult terminal boundary layer problem, which cannot be solved in closed form. This paper will demonstrate the near optimality of a predictive/corrective guidance algorithm for the terminal maneuver. Comparisons are made to numerically optimized trajectories for a range or orbit plane angles.

  9. Mass-based design and optimization of wave rotors for gas turbine engine enhancement

    NASA Astrophysics Data System (ADS)

    Chan, S.; Liu, H.

    2016-04-01

    An analytic method aiming at mass properties was developed for the preliminary design and optimization of wave rotors. In the present method, we introduce the mass balance principle into the design and thus can predict and optimize the mass qualities as well as the performance of wave rotors. A dedicated least-square method with artificial weighting coefficients was developed to solve the over-constrained system in the mass-based design. This method and the adoption of the coefficients were validated by numerical simulation. Moreover, the problem of fresh air exhaustion (FAE) was put forward and analyzed, and exhaust gas recirculation (EGR) was investigated. Parameter analyses and optimization elucidated which designs would not only achieve the best performance, but also operate with minimum EGR and no FAE.

  10. Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace.

    PubMed

    He, Bo; Zhang, Ling-Li; Yue, Xue-Yang; Liang, Jin; Jiang, Jun; Gao, Xue-Ling; Yue, Peng-Xiang

    2016-08-01

    Ultrasound-Assisted Extraction (UAE) of total anthocyanins (TA) and phenolics (TP) from Blueberry Wine Pomace (BWP) was optimized using Response Surface Methodology (RSM). A Box-Behnken design was used to predict that the optimized conditions were an extraction temperature of 61.03°C, a liquid-solid ratio of 21.70mL/g and a sonication time of 23.67min. Using the modeled optimized conditions, the predicted and experimental yields of TA and TP were within a 2% difference. The yields of TA and TP obtained through the optimized UAE method were higher than those using a Conventional Solvent Extraction (CSE) method. Seven anthocyanins, namely delphinidin-3-O-glucoside, delphindin-3-O-arabinoside, petunidin-3-O-glucoside, cyanidin-3-O-arabinoside, cyanidin-3-O-glucoside, malvidin-3-O-glucoside and malvidin-3-O-arabinoside, were found in the BWP extract from both the UAE and CSE methods. PMID:26988477

  11. Optimization of ultrasonic-assisted extraction of total saponins from Eclipta prostrasta L. using response surface methodology.

    PubMed

    Hu, Ting; Guo, Yan-Yun; Zhou, Qin-Fan; Zhong, Xian-Ke; Zhu, Liang; Piao, Jin-Hua; Chen, Jian; Jiang, Jian-Guo

    2012-09-01

    Eclipta prostrasta L. is a traditional Chinese medicine herb, which is rich in saponins and has strong antiviral and antitumor activities. An ultrasonic-assisted extraction (UAE) technique was developed for the fast extraction of saponins from E. prostrasta. The content of total saponins in E. prostrasta was determined using UV/vis spectrophotometric methods. Several influential parameters like ethanol concentration, extraction time, temperature, and liquid/solid ratio were investigated for the optimization of the extraction using single factor and Box-Behnken experimental designs. Extraction conditions were optimized for maximum yield of total saponins in E. prostrasta using response surface methodology (RSM) with 4 independent variables at 3 levels of each variable. Results showed that the optimization conditions for saponins extraction were: ethanol concentration 70%, extraction time 3 h, temperature 70 °C, and liquid/solid ratio 14:1. Corresponding saponins content was 2.096%. The mathematical model developed was found to fit well with the experimental data. Practical Application: Although there are wider applications of Eclipta prostrasta L. as a functional food or traditional medicine due to its various bioactivities, these properties are limited by its crude extracts. Total saponins are the main active ingredient of E. prostrasta. This research has optimized the extraction conditions of total saponins from E. prostrasta, which will provide useful reference information for further studies, and offer related industries with helpful guidance in practice.

  12. Optimization of enzyme-assisted extraction and characterization of collagen from Chinese sturgeon (Acipenser sturio Linnaeus) skin

    PubMed Central

    Feng, Weiwei; Zhao, Ting; Zhou, Ye; Li, Fang; Zou, Ye; Bai, Shiqi; Wang, Wei; Yang, Liuqing; Wu, Xiangyang

    2013-01-01

    Background: Sturgeon (Acipenser sturio Linnaeus) skin contains high amount of nutrients including unsaturated fatty acids and collagen. A pepsin-assisted extraction procedure was developed and optimized for the extraction of collagen from Chinese sturgeon (Acipenser sturio Linnaeus) skins. Objective: To determine the optimum conditions with the maximum yield of the pepsin-soluble collagen (PSC) extraction. Materials and Methods: The conditions of the extraction were optimized using response surface methodology. The Box–Behnken design was used to evaluate the effects of the three independent variables (extraction time, enzyme concentration, and solid–liquid ratio) on the PSC yield of the sturgeon skin. Results: The optimal conditions were: solid–liquid ratio of 1:11.88, enzyme concentration of 2.42%, and extraction time of 6.45 h. The maximum yield of 86.69% of PSC was obtained under the optimal conditions. This value was not significantly different from the predicted value (87.4%) of the RSM (P < 0.05). Conclusion: The results of this study indicated that the production of PSC from sturgeon skin is feasible and beneficial. The patterns of sodium dodecyl sulfate-polyacrylamide gel electrophoretic patterns (SDS-PAGE) indicated that the sturgeon skin contains type I collagen, which is made of α-chain and β-chain. The infrared spectra of the collagens also indicated that pepsin hydrolysis does not affect the secondary structure of collagen, especially triple-helical structure. PMID:24143042

  13. Optimized production of vanillin from green vanilla pods by enzyme-assisted extraction combined with pre-freezing and thawing.

    PubMed

    Zhang, Yanjun; Mo, Limei; Chen, Feng; Lu, Minquan; Dong, Wenjiang; Wang, Qinghuang; Xu, Fei; Gu, Fenglin

    2014-02-19

    Production of vanillin from natural green vanilla pods was carried out by enzyme-assisted extraction combined with pre-freezing and thawing. In the first step the green vanilla pods were pre-frozen and then thawed to destroy cellular compartmentation. In the second step pectinase from Aspergillus niger was used to hydrolyze the pectin between the glucovanillin substrate and β-glucosidase. Four main variables, including enzyme amount, reaction temperature, time and pH, which were of significance for the vanillin content were studied and a central composite design (CCD) based on the results of a single-factor tests was used. Response surface methodology based on CCD was employed to optimize the combination of enzyme amount, reaction temperature, time, and pH for maximum vanillin production. This resulted in the optimal condition in regards of the enzyme amount, reaction temperature, time, and pH at 84.2 mg, 49.5 °C, 7.1 h, and 4.2, respectively. Under the optimal condition, the experimental yield of vanillin was 4.63% ± 0.11% (dwb), which was in good agreement with the value predicted by the model. Compared to the traditional curing process (1.98%) and viscozyme extract (2.36%), the optimized method for the vanillin production significantly increased the yield by 133.85% and 96%, respectively.

  14. Optimization of the idler wavelength tunable cascaded optical parametric oscillator based on chirp-assisted aperiodically poled lithium niobate crystal

    NASA Astrophysics Data System (ADS)

    Tao, Chen; Rong, Shu; Ye, Ge; Zhuo, Chen

    2016-01-01

    We present the numerical results for the optimization of the pump-to-idler conversion efficiencies of nanosecond idler wavelength tunable cascaded optical parametric oscillators (OPO) in different wavelength tuning ranges, where the primary signals from the OPO process are recycled to enhance the pump-to-idler conversion efficiencies via the simultaneous difference frequency generation (DFG) process by monolithic aperiodically poled, magnesium oxide doped lithium niobate (APMgLN) crystals. The APMgLN crystals are designed with different chirp parameters for the DFG process to broaden their thermal acceptance bandwidths to different extents. The idler wavelength tuning of the cascaded OPO is realized by changing the temperature of the designed APMgLN crystal and the cascaded oscillation is achieved in a single pump pass singly resonant linear cavity. The pump-to-idler conversion efficiencies with respect to the pump pulse duration and ratio of OPO coefficient to DFG coefficient are calculated by numerically solving the coupled wave equations. The optimal working conditions of the tunable cascaded OPOs pumped by pulses with energies of 350 μJ and 700 μJ are compared to obtain the general rules of optimization. It is concluded that the optimization becomes the interplay between the ratio of OPO coefficient to DFG coefficient and the pump pulse duration when the idler wavelength tuning range and the pump pulse energy are fixed. Besides, higher pump pulse energy is beneficial for reaching higher optimal pump-to-idler conversion efficiency as long as the APMgLN crystal is optimized according to this pump condition. To the best of our knowledge, this is the first numerical analysis of idler wavelength tunable cascaded OPOs based on chirp-assisted APMgLN crystals. Project supported by the National Natural Science Foundation of China (Grant No. 61505236), the Innovation Program of Shanghai Institute of Technical Physics, China (Grant No. CX-2), and the Program of Shanghai

  15. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha integerrima by Response Surface Methodology.

    PubMed

    Xu, Dong-Ping; Zhou, Yue; Zheng, Jie; Li, Sha; Li, An-Na; Li, Hua-Bin

    2015-12-24

    An ultrasound-assisted extraction (UAE) method was developed for the efficient extraction of natural antioxidants from the flowers of Jatropha integerrima. Four independent variables, including ethanol concentration, solvent/material ratio, ultrasound irradiation time and temperature were studied by single factor experiments. Then, the central composite rotatable design and response surface methodology were employed to investigate the effect of three key parameters (ethanol concentration, solvent/material ratio, and ultrasound irradiation time) on the antioxidant activities of the flower extracts. The optimal extraction conditions were an ethanol concentration of 59.6%, solvent/material ratio of 50:1, ultrasound irradiation time of 7 min, and ultrasound irradiation temperature of 40 °C. Under these conditions, the optimized experimental value was 1103.38 ± 16.11 µmol Trolox/g dry weight (DW), which was in accordance with the predicted value (1105.49 µmol Trolox/g DW). Furthermore, the antioxidant activities of flower extracts obtained by UAE were compared with those produced by the traditional maceration and Soxhlet extraction methods, and UAE resulted in higher antioxidant activities after a shorter time at a lower temperature. The results obtained are helpful for the full utilization of Jatropha integerrima, and also indicate that ultrasound-assisted extraction is an efficient method for the extraction of natural antioxidants from plant materials.

  16. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha integerrima by Response Surface Methodology.

    PubMed

    Xu, Dong-Ping; Zhou, Yue; Zheng, Jie; Li, Sha; Li, An-Na; Li, Hua-Bin

    2015-01-01

    An ultrasound-assisted extraction (UAE) method was developed for the efficient extraction of natural antioxidants from the flowers of Jatropha integerrima. Four independent variables, including ethanol concentration, solvent/material ratio, ultrasound irradiation time and temperature were studied by single factor experiments. Then, the central composite rotatable design and response surface methodology were employed to investigate the effect of three key parameters (ethanol concentration, solvent/material ratio, and ultrasound irradiation time) on the antioxidant activities of the flower extracts. The optimal extraction conditions were an ethanol concentration of 59.6%, solvent/material ratio of 50:1, ultrasound irradiation time of 7 min, and ultrasound irradiation temperature of 40 °C. Under these conditions, the optimized experimental value was 1103.38 ± 16.11 µmol Trolox/g dry weight (DW), which was in accordance with the predicted value (1105.49 µmol Trolox/g DW). Furthermore, the antioxidant activities of flower extracts obtained by UAE were compared with those produced by the traditional maceration and Soxhlet extraction methods, and UAE resulted in higher antioxidant activities after a shorter time at a lower temperature. The results obtained are helpful for the full utilization of Jatropha integerrima, and also indicate that ultrasound-assisted extraction is an efficient method for the extraction of natural antioxidants from plant materials. PMID:26712723

  17. Kinetics of ultrasound-assisted extraction of antioxidant polyphenols from food by-products: Extraction and energy consumption optimization.

    PubMed

    Pradal, Delphine; Vauchel, Peggy; Decossin, Stéphane; Dhulster, Pascal; Dimitrov, Krasimir

    2016-09-01

    Ultrasound-assisted extraction (UAE) of antioxidant polyphenols from chicory grounds was studied in order to propose a suitable valorization of this food industry by-product. The main parameters influencing the extraction process were identified. A new mathematical model for multi-criteria optimization of UAE was proposed. This kinetic model permitted the following and the prediction of the yield of extracted polyphenols, the antioxidant activity of the obtained extracts and the energy consumption during the extraction process in wide ranges of temperature (20-60°C), ethanol content in the solvent (0-60% (vol.) in ethanol-water mixtures) and ultrasound power (0-100W). After experimental validation of the model, several simulations at different technological restrictions were performed to illustrate the potentiality of the model to find the optimal conditions for obtaining a given yield within minimal process duration or with minimal energy consumption. The advantage of ultrasound assistance was clearly demonstrated both for the reduction of extraction duration and for the reduction of energy consumption. PMID:27150754

  18. Accurate quadrupole MS peak reconstruction in optimized gas-flow comprehensive two-dimensional gas chromatography.

    PubMed

    Tranchida, Peter Quinto; Purcaro, Giorgia; Sciarrone, Danilo; Dugo, Paola; Dugo, Giovanni; Mondello, Luigi

    2010-09-01

    In the present research, a split-flow comprehensive 2-D GC-quadrupole MS (qMS) method was developed using: a primary apolar 30 m×0.25 mm id×0.25 μm d(f) capillary linked, via a T-union, to a secondary polar 1.0 m×0.05 mm id×0.05 μm d(f) capillary and to a 0.10 m×0.05 mm id×0.05 μm d(f) uncoated column segment. The GC×GC-qMS instrument was equipped with two GC ovens and a loop-type modulator. The polar column was connected to the MS, whereas the uncoated column directed most of the first-dimension effluent to waste and enabled the generation of optimum gas velocities in both dimensions, namely circa 20 and 80 cm/s in the first and second dimensions, respectively. The rapid-scanning qMS was operated at a scan speed of 10,000 amu/s, a 25-Hz data acquisition frequency (scan time+interscan time: 40 ms), and with a normal GC mass range (m/z 40-360). Chromatography bands at the second-dimension outlet were never less than 360 ms wide (6σ), enabling the acquisition of at least 10 spectra/peak.

  19. Optimizing power cylinder lubrication on a large bore natural gas engine

    NASA Astrophysics Data System (ADS)

    Luedeman, Matthew R.

    More than 6000 integral compressors, located along America's natural gas pipelines, pump natural gas across the United States. These compressors are powered by 2-stroke, large bore natural gas burning engines. Lowering the operating costs, reducing the emissions, and ensuring that these engines remain compliant with future emission regulations are the drivers for this study. Substantial research has focused on optimizing efficiency and reducing the fuel derived emissions on this class of engine. However, significantly less research has focused on the effect and reduction of lubricating oil derived emissions. This study evaluates the impact of power cylinder lubricating oil on overall engine emissions with an emphasis on reducing oxidation catalyst poisoning. A traditional power cylinder lubricator was analyzed; power cylinder lubricating oil was found to significantly impact exhaust emissions. Lubricating oil was identified as the primary contributor of particulate matter production in a large bore natural gas engine. The particulate matter was determined to be primarily organic carbon, and most likely direct oil carryover of small oil droplets. The particulate matter production equated to 25% of the injected oil at a nominal power cylinder lubrication rate. In addition, power cylinder friction is considered the primary contributor to friction loss in the internal combustion engine. This study investigates the potential for optimizing power cylinder lubrication by controlling power cylinder injection to occur at the optimal time in the piston cycle. By injecting oil directly into the ring pack, it is believed that emissions, catalyst poisoning, friction, and wear can all be reduced. This report outlines the design and theory of two electronically controlled lubrication systems. Experimental results and evaluation of one of the systems is included.

  20. COMETBOARDS Can Optimize the Performance of a Wave-Rotor-Topped Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.

    1997-01-01

    A wave rotor, which acts as a high-technology topping spool in gas turbine engines, can increase the effective pressure ratio as well as the turbine inlet temperature in such engines. The wave rotor topping, in other words, may significantly enhance engine performance by increasing shaft horse power while reducing specific fuel consumption. This performance enhancement requires optimum selection of the wave rotor's adjustable parameters for speed, surge margin, and temperature constraints specified on different engine components. To examine the benefit of the wave rotor concept in engine design, researchers soft coupled NASA Lewis Research Center's multidisciplinary optimization tool COMETBOARDS and the NASA Engine Performance Program (NEPP) analyzer. The COMETBOARDS-NEPP combined design tool has been successfully used to optimize wave-rotor-topped engines. For illustration, the design of a subsonic gas turbine wave-rotor-enhanced engine with four ports for 47 mission points (which are specified by Mach number, altitude, and power-setting combinations) is considered. The engine performance analysis, constraints, and objective formulations were carried out through NEPP, and COMETBOARDS was used for the design optimization. So that the benefits that accrue from wave rotor enhancement could be examined, most baseline variables and constraints were declared to be passive, whereas important parameters directly associated with the wave rotor were considered to be active for the design optimization. The engine thrust was considered as the merit function. The wave rotor engine design, which became a sequence of 47 optimization subproblems, was solved successfully by using a cascade strategy available in COMETBOARDS. The graph depicts the optimum COMETBOARDS solutions for the 47 mission points, which were normalized with respect to standard results. As shown, the combined tool produced higher thrust for all mission points than did the other solution, with maximum benefits

  1. Physical Sputtering vs. Gas Assisted Etching of Silicon Dioxide with a Gallium Focused Ion Beam: Elucidating Experiments via Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Timilsina, Rajendra; Tan, Shida; Livengood, Richard; Rack, Philip

    2015-03-01

    In order to increase ion beam nanomachining precision and improve imaging resolution, fine tuning of the ion beam profile is absolutely necessary. To understand the effects of ion beam tails, experiments and Monte Carlo simulations were conducted with a 40 keV gallium beam with and without gas assisted chemical etching. A gallium ion beam was scanned in an area of 25x25 nm2 on a silicon dioxide film with and without a localized XeF2 gas at 1pA current. Four different ion doses (0.23, 0.9, 1.8 and 3.6 nC/ μm2) were experimentally considered to study the sputtered and etched via profiles. Monte Carlo simulations using EnvizION program was performed to elucidate the sputtered and gas-assisted etch process. New features including gas-assisted etching by secondary electrons and a binary collision model to dissociate the precursor molecules were introduced. Sputtered via and gas assisted etching (XeF2 precursor gas) via profiles with various gas-assist pressures were studied to understand the experimental temporal behavior. Various contributions including sputtering from primary, forward scattered, backscattered ions as well as etching by recoiled atoms and secondary electrons will be discussed.

  2. A comparative study of expected improvement-assisted global optimization with different surrogates

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Ye, Fan; Li, Enying; Li, Guangyao

    2016-08-01

    Efficient global optimization (EGO) uses the surrogate uncertainty estimator called expected improvement (EI) to guide the selection of the next sampling candidates. Theoretically, any modelling methods can be integrated with the EI criterion. To improve the convergence ratio, a multi-surrogate efficient global optimization (MSEGO) was suggested. In practice, the EI-based optimization methods with different surrogates show widely divergent characteristics. Therefore, it is important to choose the most suitable algorithm for a certain problem. For this purpose, four single-surrogate efficient global optimizations (SSEGOs) and an MSEGO involving four surrogates are investigated. According to numerical tests, both the SSEGOs and the MSEGO are feasible for weak nonlinear problems. However, they are not robust for strong nonlinear problems, especially for multimodal and high-dimensional problems. Moreover, to investigate the feasibility of EGO in practice, a material identification benchmark is designed to demonstrate the performance of EGO methods. According to the tests in this study, the kriging EGO is generally the most robust method.

  3. Comparison and improvements of optimization methods for gas emission source identification

    NASA Astrophysics Data System (ADS)

    Ma, Denglong; Deng, Jianqiang; Zhang, Zaoxiao

    2013-12-01

    Identification of gas leakage source term is important for atmosphere safety. Optimization is one useful method to determine leakage source parameters. The performances of different optimization methods, including genetic algorithm (GA), simulated annealing (SA), pattern search (PS) method, Nelder-Mead simplex method (N-M simplex) and their hybrid optimization methods, were discussed. It was seen that GA-PS hybrid optimization has the best performance for location and source strength estimation while the hybrid methods with N-M simplex is the best one when time cost and robustness are added into consideration. Moreover, the performances of these optimization methods with different initial values, signal noise ratios (SNR), sensor numbers and sensor distribution forms were discussed. Further, experiment data test showed that the less deviation of forward simulation model from the real condition, the better performance of the source parameters determination method is. When two error correction coefficients were added to the Gaussian dispersion model, the accuracy of source strength and downwind distance estimation is increased. Other different cost functions were also applied to identify the source parameters. Finally, a new forward dispersion model based on radial basis function neural network and Gaussian model (Gaussian-RBF network) was presented and then it was applied to determine the leakage source parameters. The results showed that the performance of optimization method based on Gaussian-RBF network model is significantly improved, especially for location estimation. Therefore, the optimization method with a good selection of forward dispersion model and cost function will obtain a satisfactory estimation result.

  4. Optimization of solar assisted heat pump systems via a simple analytic approach

    SciTech Connect

    Andrews, J W

    1980-01-01

    An analytic method for calculating the optimum operating temperature of the collector/storage subsystem in a solar assisted heat pump is presented. A tradeoff exists between rising heat pump coefficient of performance and falling collector efficiency as this temperature is increased, resulting in an optimum temperature whose value increases with increasing efficiency of the auxiliary energy source. Electric resistance is shown to be a poor backup to such systems. A number of options for thermally coupling the system to the ground are analyzed and compared.

  5. Optimal placement of piezoelectric plates for active vibration control of gas turbine blades: experimental results

    NASA Astrophysics Data System (ADS)

    Botta, F.; Marx, N.; Gentili, S.; Schwingshackl, C. W.; Di Mare, L.; Cerri, G.; Dini, D.

    2012-04-01

    It is well known that the gas turbine blade vibrations can give rise to catastrophic failures and a reduction of the blades life because of fatigue related phenomena[1]-[3] . In last two decades, the adoption of piezoelectric elements, has received considerable attention by many researcher for its potential applicability to different areas of mechanical, aerospace, aeronautical and civil engineering. Recently, a number of studies of blades vibration control via piezoelectric plates and patches have been reported[4]-[6] . It was reported that the use of piezoelectric elements can be very effective in actively controlling vibrations. In one of their previous contributions[7] , the authors of the present manuscript studied a model to control the blade vibrations by piezoelectric elements and validated their results using a multi-physics finite elements package (COMSOL) and results from the literature. An optimal placement method of piezoelectric plate has been developed and applied to different loading scenarios for realistic configurations encountered in gas turbine blades. It has been demonstrated that the optimal placement depends on the spectrum of the load, so that segmented piezoelectric patches have been considered and, for different loads, an optimal combination of sequential and/or parallel actuation and control of the segments has been studied. In this paper, an experimental investigation carried out by the authors using a simplified beam configuration is reported and discussed. The test results obtained by the investigators are then compared with the numerical predictions [7] .

  6. Ultrasound-assisted extraction and purification of schisandrin B from Schisandra chinensis (Turcz.) Baill seeds: optimization by response surface methodology.

    PubMed

    Zhang, Y B; Wang, L H; Zhang, D Y; Zhou, L L; Guo, Y X

    2014-03-01

    The objective of this study is to develop a process consisting of ultrasonic-assisted extraction, silica-gel column chromatography and crystallization to optimize pilot scale recovery of schisandrin B (SAB) from Schisandra chinensis seeds. The effects of five independent variables including liquid-solid ratio, ethanol concentration, ultrasonic power, extraction time, and temperature on the SAB yield were evaluated with fractional factorial design (FFD). The FFD results showed that the ethanol concentration was the only significant factor for the yield of SAB. Then, with the liquid-solid ratio 5 (mL/g) and ultrasonic power 600 W, the other three parameters were further optimized by means of response surface methodology (RSM). The RSM results revealed that the optimal conditions consisted of 95% ethanol, 60 °C and 70 min. The average experimental SAB yield under the optimum conditions was found to be 5.80 mg/g, which was consistent with the predicted value of 5.83 mg/g. Subsequently, a silica gel chromatographic process was used to prepare the SAB-enriched extract with petroleum ether/acetone (95:5, v/v) as eluents. After final crystallization, 1.46 g of SAB with the purity of 99.4% and the overall recovery of 57.1% was obtained from 400 g seeds powder. This method provides an efficient and low-cost way for SAB purification for pharmaceutical industrial applications.

  7. Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models

    NASA Astrophysics Data System (ADS)

    Koziel, Slawomir; Bekasiewicz, Adrian

    2016-10-01

    Multi-objective optimization of antenna structures is a challenging task owing to the high computational cost of evaluating the design objectives as well as the large number of adjustable parameters. Design speed-up can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation models and design refinement methods permits identification of the Pareto-optimal set of designs within a reasonable timeframe. Here, a study concerning the scalability of surrogate-assisted multi-objective antenna design is carried out based on a set of benchmark problems, with the dimensionality of the design space ranging from six to 24 and a CPU cost of the EM antenna model from 10 to 20 min per simulation. Numerical results indicate that the computational overhead of the design process increases more or less quadratically with the number of adjustable geometric parameters of the antenna structure at hand, which is a promising result from the point of view of handling even more complex problems.

  8. NPK-10:26:26 complex fertilizer assisted optimal cultivation of Dunaliella tertiolecta using response surface methodology and genetic algorithm.

    PubMed

    Kumar, Anup; Pathak, Akhilendra K; Guria, Chandan

    2015-10-01

    A culture medium based on NPK-10:26:26 fertilizer was formulated for enhanced biomass and lipid production of Dunaliella tertiolecta by selecting appropriate nutrients and environmental parameters. Five-level-five-factor central composite design assisted response surface methodology was adopted for optimal cultivation of D. tertiolecta and results were compared with simple genetic algorithm (GA). Significant improvement in biomass and lipid production was obtained using newly formulated fertilizer medium over f/2 medium. Following optimal parameters [i.e., NaHCO3, (mM), NPK-10:26:26 (g L(-1)), NaCl (M), light intensity (μmol m(-2) s(-1)) and temperature (°C)] were obtained for maximum biomass (1.98 g L(-1)) and lipid production (0.76 g L(-1)): (42.50, 0.33, 1.09, 125, 25.13) and (38.44, 0.40, 1.25, 125, 24.5), respectively using GA. A multi-objective optimization was solved using non-dominated sorting GA to find best operating variables to maximize biomass and lipid production simultaneously. Effects of operating parameters and their interactions on algae and lipid productivity were successfully revealed. PMID:26188554

  9. RSM based optimized enzyme-assisted extraction of antioxidant phenolics from underutilized watermelon (Citrullus lanatus Thunb.) rind.

    PubMed

    Mushtaq, Muhammad; Sultana, Bushra; Bhatti, Haq Nawaz; Asghar, Muhammad

    2015-08-01

    Enzyme assisted solvent extraction (EASE) of phenolic compounds from watermelon (C. lanatus) rind (WMR) was optimized using Response Surface Methodology (RSM) with Rotatable Central Composite Design (RCCD). Four variables each at five levels i.e. enzyme concentration (EC) 0.5-6.5 %, pH 6-9, temperature (T) 25-75 °C and treatment time (t) 30-90 min, were augmented to get optimal yield of polyphenols with maximum retained antioxidant potential. The polyphenol extracts obtained under optimum conditions were evaluated for their in-vitro antioxidant activities and characterized for individual phenolic profile by RP-HPLC-DAD. The results obtained indicated that optimized EASE enhanced the liberation of antioxidant phenolics up to 3 folds on fresh weight basis (FW) as compared to conventional solvent extraction (CSE), with substantial level of total phenolics (173.70 mg GAE/g FW), TEAC 279.96 mg TE/g FW and DPPH radical scavenging ability (IC50) 112.27 mg/mL. Chlorogenic acid (115.60-1611.04), Vanillic acid (26.13-2317.01) and Sinapic acid (113.01-241.12 μg/g) were major phenolic acid found in EASEx of WMR. Overall, it was concluded that EASE might be efficient and green technique to revalorize under-utilized WMR into potent antioxidant phenolic for their further application in food and nutraceutical industries. PMID:26243925

  10. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from Sugar Apple (Annona squamosa L.) Peel Using Response Surface Methodology.

    PubMed

    Deng, Gui-Fang; Xu, Dong-Ping; Li, Sha; Li, Hua-Bin

    2015-11-17

    Sugar apple (Annona squamosa L.) is a popular tropical fruit and its peel is a municipal waste. An ultrasound-assisted extraction method was developed for the recovery of natural antioxidants from sugar apple peel. Central composite design was used to optimize solvent concentration (13.2%-46.8%), ultrasonic time (33.2-66.8 min), and temperature (43.2-76.8 °C) for the recovery of natural antioxidants from sugar apple peel. The second-order polynomial models demonstrated a good fit of the quadratic models with the experimental results in respect to total phenolic content (TPC, R²=0.9524, p<0.0001), FRAP (R²=0.9743, p<0.0001), and TEAC (R²=0.9610, p<0.0001) values. The optimal extraction conditions were 20:1 (mL/g) of solvent-to-solid ratio, 32.68% acetone, and 67.23 °C for 42.54 min under ultrasonic irradiation. Under these conditions, the maximal yield of total phenolic content was 26.81 (mg GA/g FW). The experimental results obtained under optimal conditions agreed well with the predicted results. The application of ultrasound markedly decreased extraction time and improved the extraction efficiency, compared with the conventional methods.

  11. RSM based optimized enzyme-assisted extraction of antioxidant phenolics from underutilized watermelon (Citrullus lanatus Thunb.) rind.

    PubMed

    Mushtaq, Muhammad; Sultana, Bushra; Bhatti, Haq Nawaz; Asghar, Muhammad

    2015-08-01

    Enzyme assisted solvent extraction (EASE) of phenolic compounds from watermelon (C. lanatus) rind (WMR) was optimized using Response Surface Methodology (RSM) with Rotatable Central Composite Design (RCCD). Four variables each at five levels i.e. enzyme concentration (EC) 0.5-6.5 %, pH 6-9, temperature (T) 25-75 °C and treatment time (t) 30-90 min, were augmented to get optimal yield of polyphenols with maximum retained antioxidant potential. The polyphenol extracts obtained under optimum conditions were evaluated for their in-vitro antioxidant activities and characterized for individual phenolic profile by RP-HPLC-DAD. The results obtained indicated that optimized EASE enhanced the liberation of antioxidant phenolics up to 3 folds on fresh weight basis (FW) as compared to conventional solvent extraction (CSE), with substantial level of total phenolics (173.70 mg GAE/g FW), TEAC 279.96 mg TE/g FW and DPPH radical scavenging ability (IC50) 112.27 mg/mL. Chlorogenic acid (115.60-1611.04), Vanillic acid (26.13-2317.01) and Sinapic acid (113.01-241.12 μg/g) were major phenolic acid found in EASEx of WMR. Overall, it was concluded that EASE might be efficient and green technique to revalorize under-utilized WMR into potent antioxidant phenolic for their further application in food and nutraceutical industries.

  12. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from Sugar Apple (Annona squamosa L.) Peel Using Response Surface Methodology.

    PubMed

    Deng, Gui-Fang; Xu, Dong-Ping; Li, Sha; Li, Hua-Bin

    2015-01-01

    Sugar apple (Annona squamosa L.) is a popular tropical fruit and its peel is a municipal waste. An ultrasound-assisted extraction method was developed for the recovery of natural antioxidants from sugar apple peel. Central composite design was used to optimize solvent concentration (13.2%-46.8%), ultrasonic time (33.2-66.8 min), and temperature (43.2-76.8 °C) for the recovery of natural antioxidants from sugar apple peel. The second-order polynomial models demonstrated a good fit of the quadratic models with the experimental results in respect to total phenolic content (TPC, R²=0.9524, p<0.0001), FRAP (R²=0.9743, p<0.0001), and TEAC (R²=0.9610, p<0.0001) values. The optimal extraction conditions were 20:1 (mL/g) of solvent-to-solid ratio, 32.68% acetone, and 67.23 °C for 42.54 min under ultrasonic irradiation. Under these conditions, the maximal yield of total phenolic content was 26.81 (mg GA/g FW). The experimental results obtained under optimal conditions agreed well with the predicted results. The application of ultrasound markedly decreased extraction time and improved the extraction efficiency, compared with the conventional methods. PMID:26593890

  13. Determination of volatile nitrosamines in meat products by microwave-assisted extraction and dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry.

    PubMed

    Campillo, Natalia; Viñas, Pilar; Martínez-Castillo, Nelson; Hernández-Córdoba, Manuel

    2011-04-01

    Microwave-assisted extraction (MAE) and dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) were evaluated for use in the extraction and preconcentration of volatile nitrosamines in meat products. Parameters affecting MAE, such as the extraction solvent used, and DLLME, including the nature and volume of the extracting and disperser solvents, extraction time, salt addition and centrifugation time, were optimized. In the MAE method, 0.25g of sample mass was extracted in 10mL NaOH (0.05M) in a closed-vessel system. For DLLME, 1.5mL of methanol (disperser solvent) containing 20μL of carbon tetrachloride (extraction solvent) was rapidly injected by syringe into 5mL of the sample extract solution (previously adjusted to pH 6), thereby forming a cloudy solution. Phase separation was performed by centrifugation, and a volume of 3μL of the sedimented phase was analyzed by GC-MS. The enrichment factors provided by DLLME varied from 220 to 342 for N-nitrosodiethylamine and N-nitrosopiperidine, respectively. The matrix effect was evaluated for different samples, and it was concluded that sample quantification can be carried out by aqueous calibration. Under the optimized conditions, detection limits ranged from 0.003 to 0.014ngmL(-1) for NPIP and NMEA, respectively (0.12-0.56ngg(-1) in the meat products). PMID:21376329

  14. [Determination of anilines in environmental water samples by simultaneous derivatization and ultrasound assisted emulsification microextraction combined with gas chromatography-flame ionization detectors].

    PubMed

    Tian, Li-Xun; Dai, Zhi-Xi; Wang, Guo-Dong; Weng, Huan-Xin

    2015-02-01

    This research demonstrated a new method, simultaneous derivatization and ultrasound assisted emulsification microextraction combined with gas chromatography-flame ionization detector (SD-USAEME-GC-FID), for the determination of anilines in environmental water samples. In this study, several factors, such as the volume of butylchloroformate (as derivatization agent/ extraction solvent), ultrasonication time, solution pH, salt addition, and centrifuging time and speed, were optimized in order to obtain good method performance. As a result, under the optimal conditions, the method showed good linearity in the concentration range of 6-60 000 μg x L(-1) with correlation coefficients (R2) ranging from 0.999 7 to 0.999 9 for the five target anilines. The limit of detection ( LOD) , based on signal to noise ratio of 3 , ranged from 1.1-4.1 μg x L(-1). The relative standard deviations (RSD) varied from 2.4% to 5.7% (n = 6) and the enrichment factors (EF) ranged from 317 to 846. The proposed method was also successfully applied to analyze seven environmental water samples, with the relative recoveries (RR) ranging from 86.8% to 105.5%. In a conclusion, this method was convenient, highly sensitive, inexpensive and environment-friendly, and therefore, the present method can be used as a preferred method for the determination of anilines in environmental water samples. PMID:26031106

  15. Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Mehanna Ismail, Mohammed Ali

    The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the

  16. Incidence and Outcomes of Anterior Chamber Gas Bubble during Femtosecond Flap Creation for Laser-Assisted In Situ Keratomileusis.

    PubMed

    Rush, Sloan W; Cofoid, Philip; Rush, Ryan B

    2015-01-01

    Purpose. To report the incidence and outcomes of anterior chamber gas bubble formation during femtosecond laser flap creation for laser-assisted in situ keratomileusis (LASIK). Methods. The charts of 2,886 consecutive eyes that underwent femtosecond LASIK from May 2011 through August 2014 were retrospectively reviewed. The incidence, preoperative characteristics, intraoperative details, and postoperative outcomes were analyzed in subjects developing anterior chamber gas bubble formation during the procedure. Results. A total of 4 cases (0.14%) developed anterior chamber gas bubble formation during femtosecond laser flap creation. In all four cases, the excimer laser was unable to successfully track the pupil immediately following the anterior chamber bubble formation, temporarily postponing the completion of the procedure. There was an ethnicity predilection of anterior chamber gas formation toward Asians (p = 0.0055). An uncorrected visual acuity of 20/20 was ultimately achieved in all four cases without further complications. Conclusions. Anterior chamber gas bubble formation during femtosecond laser flap creation for LASIK is an uncommon event that typically results in a delay in treatment completion; nevertheless, it does influence final positive visual outcome. PMID:25954511

  17. Incidence and Outcomes of Anterior Chamber Gas Bubble during Femtosecond Flap Creation for Laser-Assisted In Situ Keratomileusis.

    PubMed

    Rush, Sloan W; Cofoid, Philip; Rush, Ryan B

    2015-01-01

    Purpose. To report the incidence and outcomes of anterior chamber gas bubble formation during femtosecond laser flap creation for laser-assisted in situ keratomileusis (LASIK). Methods. The charts of 2,886 consecutive eyes that underwent femtosecond LASIK from May 2011 through August 2014 were retrospectively reviewed. The incidence, preoperative characteristics, intraoperative details, and postoperative outcomes were analyzed in subjects developing anterior chamber gas bubble formation during the procedure. Results. A total of 4 cases (0.14%) developed anterior chamber gas bubble formation during femtosecond laser flap creation. In all four cases, the excimer laser was unable to successfully track the pupil immediately following the anterior chamber bubble formation, temporarily postponing the completion of the procedure. There was an ethnicity predilection of anterior chamber gas formation toward Asians (p = 0.0055). An uncorrected visual acuity of 20/20 was ultimately achieved in all four cases without further complications. Conclusions. Anterior chamber gas bubble formation during femtosecond laser flap creation for LASIK is an uncommon event that typically results in a delay in treatment completion; nevertheless, it does influence final positive visual outcome.

  18. Optimization of ion assist beam deposition of magnesium oxide template films during initial nucleation and growth

    SciTech Connect

    Groves, James R; Matias, Vladimir; Stan, Liliana; De Paula, Raymond F; Hammond, Robert H; Clemens, Bruce M

    2010-01-01

    Recent efforts in investigating the mechanism of ion beam assisted deposition (IBAD) of biaxially textured thin films of magnesium oxide (MgO) template layers have shown that the texture develops suddenly during the initial 2 nm of deposition. To help understand and tune the behavior during this initial stage, we pre-deposited thin layers of MgO with no ion assist prior to IBAD growth of MgO. We found that biaxial texture develops for pre-deposited thicknesses < 2 nm, and that the thinnest layer tested, at 1 nm, resulted in the best qualitative RHEED image, indicative of good biaxial texture development. The texture developed during IBAD growth on the 1.5 nm pre-deposited layer is slightly worse and IBAD growth on the 2 nm pre-deposited layer produces a fiber texture. Application of these layers on an Al{sub 2}O{sub 3} starting surface, which has been shown to impede texture development, improves the overall quality of the IBAD MgO and has some of the characteristics of a biaxially texture RHEED pattern. It is suggested that the use of thin (<2 nm) pre-deposited layers may eliminate the need for bed layers like Si{sub 3}N{sub 4} and Y{sub 2}O{sub 3} that are currently thought to be required for proper biaxial texture development in IBAD MgO.

  19. Read buffer optimizations to support compiler-assisted multiple instruction retry

    NASA Technical Reports Server (NTRS)

    Alewine, N. J.; Fuchs, W. K.; Hwu, W. M.

    1993-01-01

    Multiple instruction retry is a recovery mechanism for transient processor faults. We previously developed a compiler-assisted approach to multiple instruction ferry in which a read buffer of size 2N (where N represents the maximum instruction rollback distance) was used to resolve some data hazards while the compiler resolved the remaining hazards. The compiler-assisted scheme was shown to reduce the performance overhead and/or hardware complexity normally associated with hardware-only retry schemes. This paper examines the size and design of the read buffer. We establish a practical lower bound and average size requirement for the read buffer by modifying the scheme to save only the data required for rollback. The study measures the effect on the performance of a DECstation 3100 running ten application programs using six read buffer configurations with varying read buffer sizes. Two alternative configurations are shown to be the most efficient and differed depending on whether split-cycle-saves are assumed. Up to a 55 percent read buffer size reduction is achievable with an average reduction of 39 percent given the most efficient read buffer configuration and a variety of applications.

  20. Optimization of Ultrasound Assisted Extraction of Functional Ingredients from Stevia Rebaudiana Bertoni Leaves

    NASA Astrophysics Data System (ADS)

    Šic Žlabur, Jana; Voća, Sandra; Dobričević, Nadica; Brnčić, Mladen; Dujmić, Filip; Rimac Brnčić, Suzana

    2015-04-01

    The aim of the present study was to reveal an effective extraction procedure for maximization of the yield of steviol glycosides and total phenolic compounds as well as antioxidant activity in stevia extracts. Ultrasound assisted extraction was compared with conventional solvent extraction. The examined solvents were water (100°C/24 h) and 70% ethanol (at 70°C for 30 min). Qualitative and quantitative analyses of steviol glycosides in the extracts obtained were performed using high performance liquid chromatography. Total phenolic compounds, flavonoids, and radical scavenging capacity by 2, 2-azino-di-3-ethylbenzothialozine- sulphonic acid) assay were also determined. The highest content of steviol glycosides, total phenolic compounds, and flavonoids in stevia extracts were obtained when ultrasound assisted extraction was used. The antioxidant activity of the extracts was correlated with the total amount of phenolic compounds. The results indicated that the examined sonication parameters represented as the probe diameter (7 and 22 mm) and treatment time (2, 4, 6, 8, and 10 min) significantly contributed to the yield of steviol glycosides, total phenolic compounds, and flavonoids. The optimum conditions for the maximum yield of steviol glycosides, total phenolic compounds, and flavonoids were as follows: extraction time 10 min, probe diameter 22 mm, and temperature 81.2°C.

  1. Optimization and Technological Development Strategies of an Antimicrobial Extract from Achyrocline alata Assisted by Statistical Design

    PubMed Central

    Demarque, Daniel P.; Fitts, Sonia Maria F.; Boaretto, Amanda G.; da Silva, Júlio César Leite; Vieira, Maria C.; Franco, Vanessa N. P.; Teixeira, Caroline B.; Toffoli-Kadri, Mônica C.; Carollo, Carlos A.

    2015-01-01

    Achyrocline alata, known as Jateí-ka-há, is traditionally used to treat several health problems, including inflammations and infections. This study aimed to optimize an active extract against Streptococcus mutans, the main bacteria that causes caries. The extract was developed using an accelerated solvent extraction and chemometric calculations. Factorial design and response surface methodologies were used to determine the most important variables, such as active compound selectivity. The standardized extraction recovered 99% of the four main compounds, gnaphaliin, helipyrone, obtusifolin and lepidissipyrone, which represent 44% of the extract. The optimized extract of A. alata has a MIC of 62.5 μg/mL against S. mutans and could be used in mouth care products. PMID:25710523

  2. Optimization and technological development strategies of an antimicrobial extract from Achyrocline alata assisted by statistical design.

    PubMed

    Demarque, Daniel P; Fitts, Sonia Maria F; Boaretto, Amanda G; da Silva, Júlio César Leite; Vieira, Maria C; Franco, Vanessa N P; Teixeira, Caroline B; Toffoli-Kadri, Mônica C; Carollo, Carlos A

    2015-01-01

    Achyrocline alata, known as Jateí-ka-há, is traditionally used to treat several health problems, including inflammations and infections. This study aimed to optimize an active extract against Streptococcus mutans, the main bacteria that causes caries. The extract was developed using an accelerated solvent extraction and chemometric calculations. Factorial design and response surface methodologies were used to determine the most important variables, such as active compound selectivity. The standardized extraction recovered 99% of the four main compounds, gnaphaliin, helipyrone, obtusifolin and lepidissipyrone, which represent 44% of the extract. The optimized extract of A. alata has a MIC of 62.5 μg/mL against S. mutans and could be used in mouth care products.

  3. Fast surrogate-assisted simulation-driven optimization of compact microwave hybrid couplers

    NASA Astrophysics Data System (ADS)

    Kurgan, Piotr; Koziel, Slawomir

    2016-07-01

    This work presents a robust methodology for expedited simulation-driven design optimization of compact microwave hybrid couplers. The technique relies on problem decomposition, and a bottom-up design strategy, starting from the level of basic building blocks of the coupler, and finishing with a tuning procedure that exploits a fast surrogate model of the entire structure. The latter is constructed by cascading local response surface approximations of coupler elementary elements. The cross-coupling effects within the structure are neglected in the first stage of the design process; however, they are accounted for in the tuning phase by means of space-mapping correction of the surrogate. The proposed approach is demonstrated through the design of a compact rat-race and two branch-line couplers. In all cases, the computational cost of the optimization process is very low and corresponds to just a few high-fidelity electromagnetic simulations of respective structures. Experimental validation is also provided.

  4. Response surface optimization of ultrasound-assisted polysaccharides extraction from pomegranate peel.

    PubMed

    Zhu, Cai-Ping; Zhai, Xi-Chuan; Li, Lin-Qiang; Wu, Xiao-Xia; Li, Bing

    2015-06-15

    Ultrasonic technique was employed to extract polysaccharides from pomegranate peel. The optimal conditions for ultrasonic extraction of pomegranate peel polysaccharide (PPP) were determined by response surface methodology. Box-Behnken design was applied to evaluate the effects of four independent variables (ratio of water to raw material, extraction time, extraction temperature, ultrasonic power) on the yield of PPP. The correlation analysis of mathematical-regression models indicated that quadratic polynomial model could be employed to optimize the ultrasonic extraction of PPP. The optimum extraction parameters were as follows: ratio of water to raw material, 24 ml/g; extraction time, 63 min; extraction temperature, 55°C; and ultrasonic power, 148 W. Under these conditions, the polysaccharide yield was 13.658 ± 0.133% for the pomegranate peel, which well matches with the predicted value. PMID:25660869

  5. Scanpaths in reading and picture viewing: computer-assisted optimization of display conditions.

    PubMed

    Krischer, C C; Zangemeister, W H

    2007-07-01

    A review of the literature shows that in reading and picture viewing cognitive skills play a key role along with visual acuity. Optimal processing conditions are reached only with letter and object sizes that match both cognitive skills and visual acuity. Beginning readers with normal vision need larger letters than skilled readers. In reading, eye movements step the fovea, a high-acuity region 2 degrees diameter, at the physiological pace of the visual system about 4 times per second. A simple computer-based procedure is described that determines the best acuity- and skill-matched letter (or object) sizes in the context of an optimal reading eye movement speed of 8 deg/s. PMID:17362903

  6. MULTI-SCALE MODELING AND APPROXIMATION ASSISTED OPTIMIZATION OF BARE TUBE HEAT EXCHANGERS

    SciTech Connect

    Bacellar, Daniel; Ling, Jiazhen; Aute, Vikrant; Radermacher, Reinhard; Abdelaziz, Omar

    2014-01-01

    Air-to-refrigerant heat exchangers are very common in air-conditioning, heat pump and refrigeration applications. In these heat exchangers, there is a great benefit in terms of size, weight, refrigerant charge and heat transfer coefficient, by moving from conventional channel sizes (~ 9mm) to smaller channel sizes (< 5mm). This work investigates new designs for air-to-refrigerant heat exchangers with tube outer diameter ranging from 0.5 to 2.0mm. The goal of this research is to develop and optimize the design of these heat exchangers and compare their performance with existing state of the art designs. The air-side performance of various tube bundle configurations are analyzed using a Parallel Parameterized CFD (PPCFD) technique. PPCFD allows for fast-parametric CFD analyses of various geometries with topology change. Approximation techniques drastically reduce the number of CFD evaluations required during optimization. Maximum Entropy Design method is used for sampling and Kriging method is used for metamodeling. Metamodels are developed for the air-side heat transfer coefficients and pressure drop as a function of tube-bundle dimensions and air velocity. The metamodels are then integrated with an air-to-refrigerant heat exchanger design code. This integration allows a multi-scale analysis of air-side performance heat exchangers including air-to-refrigerant heat transfer and phase change. Overall optimization is carried out using a multi-objective genetic algorithm. The optimal designs found can exhibit 50 percent size reduction, 75 percent decrease in air side pressure drop and doubled air heat transfer coefficients compared to a high performance compact micro channel heat exchanger with same capacity and flow rates.

  7. Note: Ultrasonic gas flowmeter based on optimized time-of-flight algorithms

    SciTech Connect

    Wang, X. F.; Tang, Z. A.

    2011-04-15

    A new digital signal processor based single path ultrasonic gas flowmeter is designed, constructed, and experimentally tested. To achieve high accuracy measurements, an optimized ultrasound driven method of incorporation of the amplitude modulation and the phase modulation of the transmit-receive technique is used to stimulate the transmitter. Based on the regularities among the received envelope zero-crossings, different received signal's signal-to-noise ratio situations are discriminated and optional time-of-flight algorithms are applied to take flow rate calculations. Experimental results from the dry calibration indicate that the designed flowmeter prototype can meet the zero-flow verification test requirements of the American Gas Association Report No. 9. Furthermore, the results derived from the flow calibration prove that the proposed flowmeter prototype can measure flow rate accurately in the practical experiments, and the nominal accuracies after FWME adjustment are lower than 0.8% throughout the calibration range.

  8. Note: ultrasonic gas flowmeter based on optimized time-of-flight algorithms.

    PubMed

    Wang, X F; Tang, Z A

    2011-04-01

    A new digital signal processor based single path ultrasonic gas flowmeter is designed, constructed, and experimentally tested. To achieve high accuracy measurements, an optimized ultrasound driven method of incorporation of the amplitude modulation and the phase modulation of the transmit-receive technique is used to stimulate the transmitter. Based on the regularities among the received envelope zero-crossings, different received signal's signal-to-noise ratio situations are discriminated and optional time-of-flight algorithms are applied to take flow rate calculations. Experimental results from the dry calibration indicate that the designed flowmeter prototype can meet the zero-flow verification test requirements of the American Gas Association Report No. 9. Furthermore, the results derived from the flow calibration prove that the proposed flowmeter prototype can measure flow rate accurately in the practical experiments, and the nominal accuracies after FWME adjustment are lower than 0.8% throughout the calibration range. PMID:21529053

  9. Note: Ultrasonic gas flowmeter based on optimized time-of-flight algorithms

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Tang, Z. A.

    2011-04-01

    A new digital signal processor based single path ultrasonic gas flowmeter is designed, constructed, and experimentally tested. To achieve high accuracy measurements, an optimized ultrasound driven method of incorporation of the amplitude modulation and the phase modulation of the transmit-receive technique is used to stimulate the transmitter. Based on the regularities among the received envelope zero-crossings, different received signal's signal-to-noise ratio situations are discriminated and optional time-of-flight algorithms are applied to take flow rate calculations. Experimental results from the dry calibration indicate that the designed flowmeter prototype can meet the zero-flow verification test requirements of the American Gas Association Report No. 9. Furthermore, the results derived from the flow calibration prove that the proposed flowmeter prototype can measure flow rate accurately in the practical experiments, and the nominal accuracies after FWME adjustment are lower than 0.8% throughout the calibration range.

  10. Optimization and analysis of mixed refrigerant composition for the PRICO natural gas liquefaction process

    NASA Astrophysics Data System (ADS)

    Xu, Xiongwen; Liu, Jinping; Cao, Le

    2014-01-01

    In this paper, the energy optimization of the PRICO natural gas liquefaction (LNG) process was performed with the genetic algorithm (GA) and the process simulation software Aspen Plus. Then the characteristics of the heat transfer composite curves of the cold box were obtained and analyzed. Based on it, the heat exchange process in the cold box was divided into three regions. At last, in order to find the relationship between the energy consumption and the composition of the mixed refrigerant, the effects of the refrigerant flow composition on the temperature difference and the pinch point location were deeply investigated, which would be useful to guide the refrigerant charging.

  11. An augmented reality framework for optimization of computer assisted navigation in endovascular surgery.

    PubMed

    Cheng, Irene; Shen, Rui; Moreau, Richard; Brizzi, Vicenzo; Rossol, Nathaniel; Basu, Anup

    2014-01-01

    Endovascular surgery is performed by placing a catheter through blood vessels. Due to the fragility of arteries and the difficulty in controlling a long elastic wire to reach the target region, training plays an extremely important role in helping a surgeon acquire the required complex skills. Virtual reality simulators and augmented reality systems have proven to be effective in minimally invasive surgical training. These systems, however, often employ pre-captured or computer-generated medical images. We have developed an augmented reality system for ultrasound-guided endovascular surgical training, where real ultrasound images captured during the procedure are registered with a pre-scanned phantom model to give the operator a realistic experience. Our goal is to extend the planning and training environment to deliver a system for computer assisted remote endovascular surgery where the navigation of a catheter can be controlled through a robotic device based on the guidance provided by an endovascular surgeon.

  12. Optimization of Ultrasonic-Assisted Extraction of Flavonoid Compounds and Antioxidants from Alfalfa Using Response Surface Method.

    PubMed

    Jing, Chang-Liang; Dong, Xiao-Fang; Tong, Jian-Ming

    2015-08-26

    Ultrasonic-assisted extraction (UAE) was used to extract flavonoid-enriched antioxidants from alfalfa aerial part. Response surface methodology (RSM), based on a four-factor, five-level central composite design (CCD), was employed to obtain the optimal extraction parameters, in which the flavonoid content was maximum and the antioxidant activity of the extracts was strongest. Radical scavenging capacity of the extracts, which represents the amounts of antioxidants in alfalfa, was determined by using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. The results showed good fit with the proposed models for the total flavonoid extraction (R² = 0.9849), for the antioxidant extraction assayed by ABTS method (R² = 0.9764), and by DPPH method (R² = 0.9806). Optimized extraction conditions for total flavonoids was a ratio of liquid to solid of 57.16 mL/g, 62.33 °C, 57.08 min, and 52.14% ethanol. The optimal extraction parameters of extracts for the highest antioxidant activity by DPPH method was a ratio of liquid to solid 60.3 mL/g, 54.56 °C, 45.59 min, and 46.67% ethanol, and by ABTS assay was a ratio of liquid to solid 47.29 mL/g, 63.73 °C, 51.62 min, and 60% ethanol concentration. Our work offers optimal extraction conditions for total flavonoids and antioxidants from alfalfa.

  13. Optimizing the specific surface area of fly ash-based sorbents for flue gas desulfurization.

    PubMed

    Lee, K T; Bhatia, S; Mohamed, A R; Chu, K H

    2006-01-01

    High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.

  14. Optimization of Sampling Positions for Measuring Ventilation Rates in Naturally Ventilated Buildings Using Tracer Gas

    PubMed Central

    Shen, Xiong; Zong, Chao; Zhang, Guoqiang

    2012-01-01

    Finding out the optimal sampling positions for measurement of ventilation rates in a naturally ventilated building using tracer gas is a challenge. Affected by the wind and the opening status, the representative positions inside the building may change dynamically at any time. An optimization procedure using the Response Surface Methodology (RSM) was conducted. In this method, the concentration field inside the building was estimated by a three-order RSM polynomial model. The experimental sampling positions to develop the model were chosen from the cross-section area of a pitched-roof building. The Optimal Design method which can decrease the bias of the model was adopted to select these sampling positions. Experiments with a scale model building were conducted in a wind tunnel to achieve observed values of those positions. Finally, the models in different cases of opening states and wind conditions were established and the optimum sampling position was obtained with a desirability level up to 92% inside the model building. The optimization was further confirmed by another round of experiments.

  15. Optimization of microwave-assisted extraction for six inorganic and organic arsenic species in chicken tissues using response surface methodology.

    PubMed

    Zhang, Wenfeng; Hu, Yuanan; Cheng, Hefa

    2015-09-01

    Response surface methodology was applied to optimize the parameters for microwave-assisted extraction of six major inorganic and organic arsenic species (As(III), As(V), dimethyl arsenic acid, monomethyl arsenic acid, p-arsanilic acid, and roxarsone) from chicken tissues, followed by detection using a high-performance liquid chromatography with inductively coupled mass spectrometry detection method, which allows the simultaneous analysis of both inorganic and organic arsenic species in the extract in a single run. Effects of extraction medium, solution pH, liquid-to-solid ratio, and the temperature and time of microwave-assisted extraction on the extraction of the targeted arsenic species were studied. The optimum microwave-assisted extraction conditions were: 100 mg of chicken tissue, extracted by 5 mL of 22% v/v methanol, 90 mmol/L (NH4 )2 HPO4 , and 0.07% v/v trifluoroacetic acid (with pH adjusted to 10.0 by ammonium hydroxide solution), ramping for 10 min to 71°C, and holding for 11 min. The method has good extraction performance for total arsenic in the spiked and nonspiked chicken tissues (104.0 ± 13.8% and 91.6 ± 7.8%, respectively), except for the ones with arsenic contents close to the quantitation limits. Limits of quantitation (S/N = 10) for As(III), As(V), dimethyl arsenic acid, monomethyl arsenic acid, p-arsanilic acid, and roxarsone in chicken tissues using this method were 0.012, 0.058, 0.039, 0.061, 0.102, and 0.240 mg/kg (dry weight), respectively.

  16. Optimization of Ultrasound-Assisted Extraction of Morphine from Capsules of Papaver somniferum by Response Surface Methodology

    PubMed Central

    Bulduk, Ibrahim; Gezer, Bahdışen; Cengiz, Mustafa

    2015-01-01

    In this study, amount of morphine from poppy capsules (Papaver somniferum) was investigated using ultrasonic assisted extraction (UAE). Response surface methodology was used to estimate effective experimental conditions on the content extraction of poppy capsules. For this purpose, solvent/solid ratio (10–20 mL/500 mg sample), pH (1–13), time (30–60 min), and temperature (30–50°C) were chosen as experimental variables. The affected response is extraction recovery values for morphine from poppy straw. For interpreting the relationship between experimental factors and response, a design table was established with combinations of three different concentrations levels of this compound in 29 trials. The second order quadratic model gave a satisfactory description of the experimental data. In our study, R-Squared (0.96), Adj-R-Squared (0.92), and Pred R-Squared (0.78) values for extraction yield display good accuracy of the derived model. The predicted optimal conditions for the highest morphine level (3.38 mg morphine/500 mg-sample) were found at 19.99 mL solvent/500 mg solid ratio, 59.94 min extraction time, 1.10 pH, and 42.36°C temperature. In the optimal extraction conditions, the experimental values are very close to the predicted values. Consequently, the response surface modeling can be achieved sufficiently to predict extraction yield from poppy straw by ultrasound assisted extraction. PMID:25861273

  17. Optimization of Ultrasound-Assisted Extraction of Morphine from Capsules of Papaver somniferum by Response Surface Methodology.

    PubMed

    Bulduk, Ibrahim; Gezer, Bahdışen; Cengiz, Mustafa

    2015-01-01

    In this study, amount of morphine from poppy capsules (Papaver somniferum) was investigated using ultrasonic assisted extraction (UAE). Response surface methodology was used to estimate effective experimental conditions on the content extraction of poppy capsules. For this purpose, solvent/solid ratio (10-20 mL/500 mg sample), pH (1-13), time (30-60 min), and temperature (30-50°C) were chosen as experimental variables. The affected response is extraction recovery values for morphine from poppy straw. For interpreting the relationship between experimental factors and response, a design table was established with combinations of three different concentrations levels of this compound in 29 trials. The second order quadratic model gave a satisfactory description of the experimental data. In our study, R-Squared (0.96), Adj-R-Squared (0.92), and Pred R-Squared (0.78) values for extraction yield display good accuracy of the derived model. The predicted optimal conditions for the highest morphine level (3.38 mg morphine/500 mg-sample) were found at 19.99 mL solvent/500 mg solid ratio, 59.94 min extraction time, 1.10 pH, and 42.36°C temperature. In the optimal extraction conditions, the experimental values are very close to the predicted values. Consequently, the response surface modeling can be achieved sufficiently to predict extraction yield from poppy straw by ultrasound assisted extraction.

  18. Employing response surface methodology for the optimization of ultrasound assisted extraction of lutein and β-carotene from spinach.

    PubMed

    Altemimi, Ammar; Lightfoot, David A; Kinsel, Mary; Watson, Dennis G

    2015-04-14

    The extraction of lutein and β-carotene from spinach (Spinacia oleracea L.) leaves is important to the dietary supplement industry. A Box-Behnken design and response surface methodology (RSM) were used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE) of lutein and β-carotene from spinach. Three independent variables, extraction temperature (°C), extraction power (%) and extraction time (min) were studied. Thin-layer chromatography (TLC) followed by UV visualization and densitometry was used as a simple and rapid method for both identification and quantification of lutein and β-carotene during UAE. Methanol extracts of leaves from spinach and authentic standards of lutein and β-carotene were separated by normal-phase TLC with ethyl acetate-acetone (5:4 (v/v)) as the mobile phase. In this study, the combination of TLC, densitometry, and Box-Behnken with RSM methods were effective for the quantitative analysis of lutein and β-carotene from spinach extracts. The resulting quadratic polynomial models for optimizing lutein and β-carotene from spinach had high coefficients of determination of 0.96 and 0.94, respectively. The optimal UAE settings for output of lutein and β-carotene simultaneously from spinach extracts were an extraction temperature of 40 °C, extraction power of 40% (28 W/cm3) and extraction time of 16 min. The identity and purity of each TLC spot was measured using time-of-flight mass spectrometry. Therefore, UAE assisted extraction of carotenes from spinach can provide a source of lutein and β-carotene for the dietary supplement industry.

  19. Optimization of Ultrasound-Assisted Extraction of Morphine from Capsules of Papaver somniferum by Response Surface Methodology.

    PubMed

    Bulduk, Ibrahim; Gezer, Bahdışen; Cengiz, Mustafa

    2015-01-01

    In this study, amount of morphine from poppy capsules (Papaver somniferum) was investigated using ultrasonic assisted extraction (UAE). Response surface methodology was used to estimate effective experimental conditions on the content extraction of poppy capsules. For this purpose, solvent/solid ratio (10-20 mL/500 mg sample), pH (1-13), time (30-60 min), and temperature (30-50°C) were chosen as experimental variables. The affected response is extraction recovery values for morphine from poppy straw. For interpreting the relationship between experimental factors and response, a design table was established with combinations of three different concentrations levels of this compound in 29 trials. The second order quadratic model gave a satisfactory description of the experimental data. In our study, R-Squared (0.96), Adj-R-Squared (0.92), and Pred R-Squared (0.78) values for extraction yield display good accuracy of the derived model. The predicted optimal conditions for the highest morphine level (3.38 mg morphine/500 mg-sample) were found at 19.99 mL solvent/500 mg solid ratio, 59.94 min extraction time, 1.10 pH, and 42.36°C temperature. In the optimal extraction conditions, the experimental values are very close to the predicted values. Consequently, the response surface modeling can be achieved sufficiently to predict extraction yield from poppy straw by ultrasound assisted extraction. PMID:25861273

  20. [Analysis of methylmercury in biological guano by the optimized atomic fluorescence spectrometry coupled with microwave assisted extraction].

    PubMed

    Chen, Qian-Qian; Liu, Xiao-Dong; Sun, Li-Guang; Jiang, Shan; Yan, Hong; Liu, Yi; Luo, Yu-Han; Huang, Jing

    2011-01-01

    The analytical method for the determination of methylmercury in seabird excrements was established using atomic fluorescence spectrometry coupled with microwave-assisted extraction In general, temperature and hydrochloric amount are the most important influencing factors on the extraction of MeHg in the samples, and the present paper optimized these two parameters. The result showed that 120 degrees C and 200 microL 6 mol x L(-1) hydrochloric acid are the best extraction conditions. Under these experimental conditions, the relative standard deviation (RSD) values of reduplicative analyses on standard reference material (human hair powder) and the same seabird excrement sample were 0.74% and 6.61% respectively, and their percent recoveries were over 90%. The combination of microwave-assisted extraction and atomic fluorescence spectrometry has many advantages such as simple operation, high sensitivity, low detection limit and low cost, therefore, it is suitable for rapid separation and analysis of trace methylmercury composition in the biological guanos. Using this method, we analyzed the methylmercury contents in the ancient and fresh seabird droppings taken from Xisha Islands of South China Sea, and the result showed that the Xisha guanos were rich in methylmercury and the large input of seabird guanos will cause serious environmental contamination in the remote island ecosystem of Xisha Islands.

  1. Rapid analysis of six phthalate esters in wine by ultrasound-vortex-assisted dispersive liquid-liquid micro-extraction coupled with gas chromatography-flame ionization detector or gas chromatography-ion trap mass spectrometry.

    PubMed

    Cinelli, Giuseppe; Avino, Pasquale; Notardonato, Ivan; Centola, Angela; Russo, Mario Vincenzo

    2013-03-26

    An Ultrasound-Vortex-Assisted Dispersive Liquid-Liquid Micro-Extraction (USVADLLME) procedure coupled with Gas Chromatography-Flame Ionization Detector (GC-FID) or Gas Chromatography-Ion Trap Mass Spectrometry (GC-IT/MS) is proposed for rapid analysis of six phthalate esters in hydroalcoholic beverages (alcohol by volume, alc vol(-1), ≤40%). Under optimal conditions, the enrichment factor of the six analytes ranges from 220- to 300-fold and the recovery from 85% to 100.5%. The limit of detection (LOD) and limit of quantification (LOQ) are ≥0.022 μg L(-1) and ≥0.075 μg L(-1), respectively. Intra-day and inter-day precisions expressed as relative standard deviation (RSD), are ≤8.2% and ≤7.0%, respectively. The whole proposed methodology has demonstrated to be simple, reproducible and sensible for the determination of trace phthalate esters in red and white wine samples. PMID:23498123

  2. Gas-assisted focused-ion-beam lithography of a diamond (100) surface

    NASA Astrophysics Data System (ADS)

    Datta, A.; Wu, Yuh-Renn; Wang, Y. L.

    1999-10-01

    A focused Ga-ion beam is used to conduct lithography on a diamond (100) surface with the assistance of various gases (Cl2, O2, and XeF2). The beam-induced dilation and sputtering of the surface are measured by atomic force microscope. The dilation is found to be insensitive to the presence of assisting gases at low doses, while the sputtering is enhanced by O2 and XeF2 at high doses. The topographic evolution as a function of the ion dose is well described by a proposed semiempirical equation. Combining physical sputtering and XeF2-assisted etching, the lithographic process has been used to fabricate submicron structures on diamond surfaces.

  3. Optimization of the Outflow Graft Position and Angle in a Left Ventricular Assist Device

    NASA Astrophysics Data System (ADS)

    McGah, Patrick; Prisco, Anthony; Beckman, Jennifer; Mokadam, Nahush; Mahr, Claudius; Aliseda, Alberto

    2015-11-01

    The placement of the outflow graft in the aorta plays a key role in the hemodynamics of Left Ventricle Assist Devices (LVAD), a medical device with a growing importance in the treatment of end-stage heart failure. We use a patient-specific computational model of the VAD and the ascending aorta to investigate the impact of VAD outflow graft configuration on the residence time and wall shear stresses along the ascending aorta and the ostia of the upper branches. The flow induced by the combination of VAD output through the graft anastomosed to the aorta and the limited cardiac output through intermittent opening of the aortic valve is studied to determine the nature of thrombogenic flow patterns. Outflow grafts are virtually anastomosed along the ascending aorta or subclavian artery of the patient-specific model at different positions and angles that are surgically-informed. Detailed markers of thrombosis, such as cell residence time, wall shear stress, and shear stress gradients are analyzed and compared for the different configurations. The angle of incidence of the outflow graft critically influences the volume of recirculating flow between aortic valve and anastomosis, and the aortic pressure acting against aortic valve opening.

  4. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology.

    PubMed

    Şahin, Selin; Samlı, Rüya

    2013-01-01

    In the present article, ultrasound-assisted extraction (UAE) of polyphenols from agricultural and industrial waste of olive oil and table oil productions, olive tree (Olea europaea) leaves were investigated. The aim of the study is to examine the extraction parameters such as solvent concentration (0-100% ethanol (EtOH), v/v), the ratio of solid to solvent (25-50mg/mL) and extraction time (20-60 min), and to obtain the best possible combinations of these parameters through response surface methodology (RSM). The extract yield was stated as mg extract per g of dried leaf (DL). Total phenolic content was expressed in gallic acid equivalent (GAE) per g of dried leaf. Free radical scavenging activity for the antioxidant capacity was tested by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical. The second order polynomial model gave a satisfactory description of the experimental data. 201.2158 mg extract/g DL, 25.0626 mg GAE/g DL, and 95.5610% in respect to inhibition of DPPH radical were predicted at the optimum operating conditions (500 mg solid to 10 mL solvent ratio, 60 min of extraction time and 50% EtOH composition), respectively. PMID:22964032

  5. Fuel-Optimal Trajectories in a Planet-Moon Environment Using Multiple Gravity Assists

    NASA Technical Reports Server (NTRS)

    Ross, Shane D.; Grover, Piyush

    2007-01-01

    For low energy spacecraft trajectories such as multi-moon orbiters for the Jupiter system, multiple gravity assists by moons could be used in conjunction with ballistic capture to drastically decrease fuel usage. In this paper, we outline a procedure to obtain a family of zero-fuel multi-moon orbiter trajectories, using a family of Keplerian maps derived by the first author previously. The maps capture well the dynamics of the full equations of motion; the phase space contains a connected chaotic zone where intersections between unstable resonant orbit manifolds provide the template for lanes of fast migration between orbits of different semimajor axes. Patched three body approach is used and the four body problem is broken down into two three-body problems, and the search space is considerably reduced by the use of properties of the Keplerian maps. We also introduce the notion of Switching Region where the perturbations due to the two perturbing moons are of comparable strength, and which separates the domains of applicability of the corresponding two Keplerian maps.

  6. Optimization of the ultrasound-assisted synthesis of lutein disuccinate using uniform design.

    PubMed

    Li, Da-Jing; Song, Jiang-Feng; Xu, Ai-Qin; Liu, Chun-Quan

    2014-01-01

    The ultrasound-assisted synthesis of lutein disuccinate from all-trans lutein (AL) and succinic anhydride (SA) was investigated in this study. Triethylamine was used as the catalyst. Based on the single-factor experiments, a 7-level-3-factor uniform design and response surface analysis were further employed to evaluate the effects of the selected variables including molar ratio of SA/AL, reaction time and ultrasonic power on the yield of lutein disuccinate. The results indicated that the data were adequately fitted into a second-order polynomial model; the molar ratio of SA/AL significantly affected the synthesis of lutein disuccinate, whereas reaction time and ultrasonic power did not. Based on ridge max analysis, the optimum condition for lutein disuccinate synthesis was predicted to be the molar ratio of SA/AL 265.3:1, ultrasonic power 300 W and reaction time 131.6 min with the lutein disuccinate yield of 80.53±0.18%, which give a 43.8% increase compared with the traditional method, and also significantly shorten the reaction time.

  7. Computerized optimization of flows and temperature gradient in flow modulated comprehensive two-dimensional gas chromatography.

    PubMed

    Májek, Pavel; Krupčík, Ján; Gorovenko, Roman; Špánik, Ivan; Sandra, Pat; Armstrong, Daniel W

    2014-07-01

    Informational entropy and syentropy percent were used to optimize the flows in the first (1D) and in the second (2D) dimension ((1)Fm and (2)Fm, respectively) as well as the temperature program rate (r) for the flow modulated GC×GC-FID separation of C6-C12 aromatic hydrocarbons in a low boiling petrochemical sample. The separations were performed on a column series consisting of a 25m×0.25mm i.d.×0.2μm df of the polar ionic liquid SLB-IL 100 (1,9-di(3-vinylimidazolium)nonane bis(trifluoromethylsulfonyl)imide) in the first dimension and 5m×0.25mm i.d.×0.25μm df apolar HP-5MS (5% phenyl-95% methylpolysiloxane) in the second dimension. A dependence of a distribution of individual aromatic hydrocarbons in the 2D retention plane on the carrier gas flows ((1)Fm, and (2)Fm,) and temperature gradient (r) was examined in this study. It was found that informational entropy and synentropy percent are advantageous criteria to characterize the distribution of peaks in the 2D retention plane. Maximum informational entropy and synentropy percents correspond to the maximum distribution of C6-C12 aromatic hydrocarbons in the corresponding 2D retention plane gained by the given separation using optimized values of individual carrier gas column volume flows and the temperature rate at the temperature programmed GC×GC separations.

  8. Optimized design of substrate-integrated hollow waveguides for mid-infrared gas analyzers

    NASA Astrophysics Data System (ADS)

    Fortes, Paula Regina; Flávio da Silveira Petruci, João; Wilk, Andreas; Alves Cardoso, Arnaldo; Milton Raimundo, Ivo, Jr.; Mizaikoff, Boris

    2014-09-01

    Design and analytical performance studies are presented for optimizing a new generation of hollow waveguides suitable for quantitative gas sensing—the so-called substrate-integrated hollow waveguide (iHWG). Taking advantage of a particularly compact Fourier transform infrared spectrometer optimized iHWG geometries are investigated toward the development of a multi-constituent breath analysis tool compatible for usage, e.g., in exhaled mouse breath analysis. Three different iHWG geometries were compared, i.e., straight, meandering one-turn and meandering two-turn waveguide channels aiming at maximizing the related analytical figures-of-merit including the achievable limits of detection for selected exemplary analytes. In addition, efficient coupling of infrared (IR) radiation into straight iHWGs was investigated using integrated optical funnel structures. Calibration functions of butane in nitrogen serving as IR-transparent matrix gas were established and compared for the various iHWG geometries. Given the tidal volume of exhaled breath (EB) samples ranging from a few hundreds of milliliters (human, swine) to a few hundreds of microliters (mouse), it is essential for any given analysis to select an appropriate waveguide geometry and volume yet maintaining (i) a compact footprint ensuring hand-held instrumentation, (ii) modular exchange of the iHWG according to the analysis requirement yet with constant device format, and (iii) enabling inline/online measurement capabilities toward continuous EB diagnostics.

  9. Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology.

    PubMed

    Celli, Giovana Bonat; Ghanem, Amyl; Brooks, Marianne Su-Ling

    2015-11-01

    Haskap berries (Lonicera caerulea L.) are a rich source of bioactive molecules. As such, the extraction of anthocyanins is important for the development of many value-added products and functional food ingredients. In this paper, the ultrasound-assisted extraction (UAE) of anthocyanins from haskap berries was investigated. Significant independent variables were screened and optimized using Plackett-Burman (PB) and Box-Behnken (BB) designs, respectively. The mathematical model showed a high coefficient of determination (R(2)=0.9396) and the optimum conditions for the extraction were as follows: liquid/solid ratio 25:1 (mL/g), solvent composition of 80% ethanol, addition of 0.5% formic acid, ultrasound bath temperature of 35°C for 20 min. Under these conditions, the total anthocyanin content of 22.73 mg cyaniding 3-glucoside equivalents (C3G)/g dry weight (DW) was consistent with the predicted response of 22.45 mg C3G/g DW from the model (mean error of 1.28%). Five anthocyanins were identified in the optimized extract, namely cyanidin 3,5-diglucoside, cyanidin 3-glucoside, cyanidin 3-rutinoside, pelargonidin 3-glucoside, and peonidin 3-glucoside. Thus, UAE is a suitable technique for the extraction of anthocyanins from haskap berries.

  10. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology.

    PubMed

    Kadam, Shekhar U; Tiwari, Brijesh K; Smyth, Thomas J; O'Donnell, Colm P

    2015-03-01

    The objective of this study was to investigate the effect of key extraction parameters of extraction time (5-25 min), acid concentration (0-0.06 M HCl) and ultrasound amplitude (22.8-114 μm) on yields of bioactive compounds (total phenolics, fucose and uronic acid) from Ascophyllumnodosum. Response surface methodology was employed to optimize the extraction variables for bioactive compounds' yield. A second order polynomial model was fitted well to the extraction experimental data with (R(2)>0.79). Extraction yields of 143.12 mgGAE/gdb, 87.06 mg/gdb and 128.54 mg/gdb were obtained for total phenolics, fucose and uronic acid respectively at optimized extraction conditions of extraction time (25 min), acid concentration (0.03 M HCl) and ultrasonic amplitude (114 μm). Mass spectroscopy analysis of extracts show that ultrasound enhances the extraction of high molecular weight phenolic compounds from A. nodosum. This study demonstrates that ultrasound assisted extraction (UAE) can be employed to enhance extraction of bioactive compounds from seaweed.

  11. Optimization of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Analysis for Bacterial Identification

    PubMed Central

    Khot, Prasanna D.; Couturier, Marc R.; Wilson, Andrew; Croft, Ann

    2012-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a relatively new addition to the clinical microbiology laboratory. The performance of the MALDI Biotyper system (Bruker Daltonics) was compared to those of phenotypic and genotypic identification methods for 690 routine and referred clinical isolates representing 102 genera and 225 unique species. We systematically compared direct-smear and extraction methods on a taxonomically diverse collection of isolates. The optimal score thresholds for bacterial identification were determined, and an approach to address multiple divergent results above these thresholds was evaluated. Analysis of identification scores revealed optimal species- and genus-level identification thresholds of 1.9 and 1.7, with 91.9% and 97.0% of isolates correctly identified to species and genus levels, respectively. Not surprisingly, routinely encountered isolates showed higher concordance than did uncommon isolates. The extraction method yielded higher scores than the direct-smear method for 78.3% of isolates. Incorrect species were reported in the top 10 results for 19.4% of isolates, and although there was no obvious cutoff to eliminate all of these ambiguities, a 10% score differential between the top match and additional species may be useful to limit the need for additional testing to reach single-species-level identifications. PMID:22993178

  12. Ultrasound-assisted heating extraction of pectin from grapefruit peel: optimization and comparison with the conventional method.

    PubMed

    Wang, Wenjun; Ma, Xiaobin; Xu, Yuting; Cao, Yongqiang; Jiang, Zhumao; Ding, Tian; Ye, Xingqian; Liu, Donghong

    2015-07-01

    The extraction of pectin from grapefruit peel by ultrasound-assisted heating extraction (UAHE) was investigated using response surface methodology and compared with the conventional heating extraction (CHE). The optimized conditions were power intensity of 12.56 W/cm(2), extraction temperature of 66.71°C, and sonication time of 27.95 min. The experimental optimized yield was 27.34%, which was well matched with the predicted value (27.46%). Compared with CHE, UAHE provided higher yield increased by 16.34% at the temperature lowered by 13.3°C and the time shortened by 37.78%. Image studies showed that pectin extracted by UAHE showed better color and more loosen microstructure compared to that extracted by CHE, although Fourier Transform Infrared Analysis indicated insignificant difference in their chemical structures. Furthermore, UAHE pectin possessed lower viscosity, molecular weight and degree of esterification, but higher degree of branching and purity than CHE pectin, indicating that the former was preliminarily modified during the extraction process.

  13. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology.

    PubMed

    Kadam, Shekhar U; Tiwari, Brijesh K; Smyth, Thomas J; O'Donnell, Colm P

    2015-03-01

    The objective of this study was to investigate the effect of key extraction parameters of extraction time (5-25 min), acid concentration (0-0.06 M HCl) and ultrasound amplitude (22.8-114 μm) on yields of bioactive compounds (total phenolics, fucose and uronic acid) from Ascophyllumnodosum. Response surface methodology was employed to optimize the extraction variables for bioactive compounds' yield. A second order polynomial model was fitted well to the extraction experimental data with (R(2)>0.79). Extraction yields of 143.12 mgGAE/gdb, 87.06 mg/gdb and 128.54 mg/gdb were obtained for total phenolics, fucose and uronic acid respectively at optimized extraction conditions of extraction time (25 min), acid concentration (0.03 M HCl) and ultrasonic amplitude (114 μm). Mass spectroscopy analysis of extracts show that ultrasound enhances the extraction of high molecular weight phenolic compounds from A. nodosum. This study demonstrates that ultrasound assisted extraction (UAE) can be employed to enhance extraction of bioactive compounds from seaweed. PMID:25453215

  14. Optimization for ultrasound-assisted extraction of polysaccharides with chemical composition and antioxidant activity from the Artemisia sphaerocephala Krasch seeds.

    PubMed

    Zheng, Quan; Ren, Daoyuan; Yang, Nana; Yang, Xingbin

    2016-10-01

    Artemisia sphaerocephala Krasch seeds polysaccharides have been reported to have a variety of important biological activities. However, effective extraction of Artemisia sphaerocephala Krasch seeds polysaccharides is still an unsolved issue. In this study, the orthogonal rotatable central composite design was employed to optimize ultrasound-assisted extraction conditions of Artemisia sphaerocephala Krasch seeds polysaccharides. Based on a single-factor analysis method, ultrasonic power, extraction time, solid-liquid ratio and extraction temperature were shown to significantly affect the yield of polysaccharides extracted from the A. sphaerocephala Krasch seeds. The optimal conditions for extraction of Artemisia sphaerocephala Krasch seeds polysaccharides were determined as following: ultrasonic power 243W, extraction time 125min, solid-liquid ratio 64:1 and extraction temperature 64°C, where the experimental yield was 14.78%, which was well matched with the predicted value of 14.81%. Furthermore, ASKP was identified as a typical heteropolysaccharide with d-galacturonic acid (38.8%) d-galactose (20.2%) and d-xylose (15.5%) being the main constitutive monosaccharides. Moreover, Artemisia sphaerocephala Krasch seeds polysaccharides exhibited high total reducing power and considerable scavenging activities on DPPH, hydroxyl and superoxide radicals, in a concentration-dependent manner in vitro. PMID:27316764

  15. Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology.

    PubMed

    Celli, Giovana Bonat; Ghanem, Amyl; Brooks, Marianne Su-Ling

    2015-11-01

    Haskap berries (Lonicera caerulea L.) are a rich source of bioactive molecules. As such, the extraction of anthocyanins is important for the development of many value-added products and functional food ingredients. In this paper, the ultrasound-assisted extraction (UAE) of anthocyanins from haskap berries was investigated. Significant independent variables were screened and optimized using Plackett-Burman (PB) and Box-Behnken (BB) designs, respectively. The mathematical model showed a high coefficient of determination (R(2)=0.9396) and the optimum conditions for the extraction were as follows: liquid/solid ratio 25:1 (mL/g), solvent composition of 80% ethanol, addition of 0.5% formic acid, ultrasound bath temperature of 35°C for 20 min. Under these conditions, the total anthocyanin content of 22.73 mg cyaniding 3-glucoside equivalents (C3G)/g dry weight (DW) was consistent with the predicted response of 22.45 mg C3G/g DW from the model (mean error of 1.28%). Five anthocyanins were identified in the optimized extract, namely cyanidin 3,5-diglucoside, cyanidin 3-glucoside, cyanidin 3-rutinoside, pelargonidin 3-glucoside, and peonidin 3-glucoside. Thus, UAE is a suitable technique for the extraction of anthocyanins from haskap berries. PMID:26186866

  16. Response Surface Optimization of a Rapid Ultrasound-Assisted Extraction Method for Simultaneous Determination of Tetracycline Antibiotics in Manure

    PubMed Central

    Li, Lanqing; Sun, Mingxing; Zhou, Hui; Zhou, Yun; Chen, Ping; Min, Hong; Shen, Guoqing

    2015-01-01

    A rapid and cleanup-free ultrasound-assisted extraction method is proposed for the simultaneous extraction of oxytetracycline, tetracycline, chlortetracycline, and doxycycline in manure. The analytes were determined using high-performance liquid chromatography with ultraviolet detector. The influence of several variables on the efficiency of the extraction procedure was investigated by single-factor experiments. The temperature, pH, and amount of extraction solution were selected for optimization experiment using response surface methodology. The calibration curves showed good linearity (R2 > 0.99) for all analytes in the range of 0.1–20 μg/mL. The four antibiotics were successfully extracted from manure with recoveries ranging from 81.89 to 92.42% and good reproducibility (RSD, <4.06%) under optimal conditions, which include 50 mL of McIlvaine buffer extraction solution (pH 7.15) mixed with 1 g of manure sample, extraction temperature of 40°C, extraction time of 10 min, and three extraction cycles. Method quantification limits of 1.75–2.32 mg/kg were obtained for the studied compounds. The proposed procedure demonstrated clear reductions in extraction time and elimination of cleanup steps. Finally, the applicability to tetracyclines antibiotics determination in real samples was evaluated through the successful determination of four target analytes in swine, cow manure, and mixture of animal manure with inorganic fertilizer. PMID:25922787

  17. Computer-Assisted Optimization of Electrodeposited Hydroxyapatite Coating Parameters on Medical Alloys

    NASA Astrophysics Data System (ADS)

    Coşkun, M. İbrahim; Karahan, İsmail H.; Yücel, Yasin; Golden, Teresa D.

    2016-04-01

    CoCrMo bio-metallic alloys were coated with a hydroxyapatite (HA) film by electrodeposition using various electrochemical parameters. Response surface methodology and central composite design were used to optimize deposition parameters such as electrolyte pH, deposition potential, and deposition time. The effects of the coating parameters were evaluated within the limits of solution pH (3.66 to 5.34), deposition potential (-1.13 to -1.97 V), and deposition time (6.36 to 73.64 minutes). A 5-level-3-factor experimental plan was used to determine ideal deposition parameters. Optimum conditions for the deposition parameters of the HA coating with high in vitro corrosion performance were determined as electrolyte pH of 5.00, deposition potential of -1.8 V, and deposition time of 20 minutes.

  18. Dynamic optimization of CELSS crop photosynthetic rate by computer-assisted feedback control.

    PubMed

    Chun, C; Mitchell, C A

    1997-01-01

    A procedure for dynamic optimization of net photosynthetic rate (Pn) for crop production in Controlled Ecological Life-Support Systems (CELSS) was developed using leaf lettuce as a model crop. Canopy Pn was measured in real time and fed back for environmental control. Setpoints of photosynthetic photon flux (PPF) and CO2 concentration for each hour of the crop-growth cycle were decided by computer to reach a targeted Pn each day. Decision making was based on empirical mathematical models combined with rule sets developed from recent experimental data. Comparisons showed that dynamic control resulted in better yield per unit energy input to the growth system than did static control. With comparable productivity parameters and potential for significant energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  19. Dynamic optimization of CELSS crop photosynthetic rate by computer-assisted feedback control

    NASA Astrophysics Data System (ADS)

    Chun, C.; Mitchell, C. A.

    1997-01-01

    A procedure for dynamic optimization of net photosynthetic rate (Pn) for crop production in Controlled Ecological Life-Support Systems (CELSS) was developed using leaf lettuce as a model crop. Canopy Pn was measured in real time and fed back for environmental control. Setpoints of photosynthetic photon flux (PPF) and CO_2 concentration for each hour of the crop-growth cycle were decided by computer to reach a targeted Pn each day. Decision making was based on empirical mathematical models combined with rule sets developed from recent experimental data. Comparisons showed that dynamic control resulted in better yield per unit energy input to the growth system than did static control. With comparable productivity parameters and potential for significant energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  20. Optimal classical-communication-assisted local model of n-qubit Greenberger-Horne-Zeilinger correlations

    SciTech Connect

    Tessier, Tracey E.; Caves, Carlton M.; Deutsch, Ivan H.; Eastin, Bryan; Bacon, Dave

    2005-09-15

    We present a model, motivated by the criterion of reality put forward by Einstein, Podolsky, and Rosen and supplemented by classical communication, which correctly reproduces the quantum-mechanical predictions for measurements of all products of Pauli operators on an n-qubit GHZ state (or 'cat state'). The n-2 bits employed by our model are shown to be optimal for the allowed set of measurements, demonstrating that the required communication overhead scales linearly with n. We formulate a connection between the generation of the local values utilized by our model and the stabilizer formalism, which leads us to conjecture that a generalization of this method will shed light on the content of the Gottesman-Knill theorem.

  1. Optimization-based decision support to assist in logistics planning for hospital evacuations.

    PubMed

    Glick, Roger; Bish, Douglas R; Agca, Esra

    2013-01-01

    The evacuation of the hospital is a very complex process and evacuation planning is an important part of a hospital's emergency management plan. There are numerous factors that affect the evacuation plan including the nature of threat, availability of resources and staff the characteristics of the evacuee population, and risk to patients and staff. The safety and health of patients is of fundamental importance, but safely moving patients to alternative care facilities while under threat is a very challenging task. This article describes the logistical issues and complexities involved in planning and execution of hospital evacuations. Furthermore, this article provides examples of how optimization-based decision support tools can help evacuation planners to better plan for complex evacuations by providing real-world solutions to various evacuation scenarios.

  2. Optimization of ultrasound-assisted hydroalcoholic extraction of phenolic compounds from walnut leaves using response surface methodology.

    PubMed

    Nour, Violeta; Trandafir, Ion; Cosmulescu, Sina

    2016-10-01

    Context Walnut leaves are highly appreciated for their pharmacological effects and therapeutic properties which are mainly attributed to their high content of phenolic compounds. Objective This study optimizes ultrasound assisted hydroalcoholic extraction (UAE) of phenolic compounds from dried walnut leaves by the maximization of total phenolics content (TPC) and total flavanoids content (TFC) of the extracts. Materials and methods Optimal conditions with regard to ethanol concentration (X1: 12.17-95.83% v/v), extraction time (X2: 8.17-91.83 min) and liquid-to-solid ratio (X3: 4.96-25.04 v/w) were identified using central composite design combined with response surface methodology. A high-performance liquid chromatography method with diode-array detection was used to quantify phenolic acids (gallic, vanillic, chlorogenic, caffeic, syringic, p-coumaric, ferulic, sinapic, salicylic, ellagic and trans-cinnamic), flavonoids (catechin, epicatechin, rutin, myricetin and quercetin) and juglone in the extracts. Results Liquid-to-solid ratio and ethanol concentration proved to be the primary factors affecting the extraction efficiency. The maximum predicted TPC, under the optimized conditions (61% ethanol concentration, 51.28 min extraction time and 4.96 v/w liquid-to-solid ratio) was 10125.4 mg gallic acid equivalents per liter while maximum TFC (2925 mg quercetin equivalents per liter) occurred at 67.83% ethanol concentration, 4.96 v/w liquid-to-solid ratio and 49.37 min extraction time. High significant correlations were found between antioxidant activity and both TPC (R(2 )=( )0.81) and TFC (R(2 )=( )0.78). Discussion and conclusion Extracts very rich in polyphenols could be obtained from walnut leaves by using UAE, aimed at preparing dietary supplements, nutraceuticals or functional food ingredients. PMID:26959811

  3. Optimization of ultrasound-assisted hydroalcoholic extraction of phenolic compounds from walnut leaves using response surface methodology.

    PubMed

    Nour, Violeta; Trandafir, Ion; Cosmulescu, Sina

    2016-10-01

    Context Walnut leaves are highly appreciated for their pharmacological effects and therapeutic properties which are mainly attributed to their high content of phenolic compounds. Objective This study optimizes ultrasound assisted hydroalcoholic extraction (UAE) of phenolic compounds from dried walnut leaves by the maximization of total phenolics content (TPC) and total flavanoids content (TFC) of the extracts. Materials and methods Optimal conditions with regard to ethanol concentration (X1: 12.17-95.83% v/v), extraction time (X2: 8.17-91.83 min) and liquid-to-solid ratio (X3: 4.96-25.04 v/w) were identified using central composite design combined with response surface methodology. A high-performance liquid chromatography method with diode-array detection was used to quantify phenolic acids (gallic, vanillic, chlorogenic, caffeic, syringic, p-coumaric, ferulic, sinapic, salicylic, ellagic and trans-cinnamic), flavonoids (catechin, epicatechin, rutin, myricetin and quercetin) and juglone in the extracts. Results Liquid-to-solid ratio and ethanol concentration proved to be the primary factors affecting the extraction efficiency. The maximum predicted TPC, under the optimized conditions (61% ethanol concentration, 51.28 min extraction time and 4.96 v/w liquid-to-solid ratio) was 10125.4 mg gallic acid equivalents per liter while maximum TFC (2925 mg quercetin equivalents per liter) occurred at 67.83% ethanol concentration, 4.96 v/w liquid-to-solid ratio and 49.37 min extraction time. High significant correlations were found between antioxidant activity and both TPC (R(2 )=( )0.81) and TFC (R(2 )=( )0.78). Discussion and conclusion Extracts very rich in polyphenols could be obtained from walnut leaves by using UAE, aimed at preparing dietary supplements, nutraceuticals or functional food ingredients.

  4. Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches.

    PubMed

    Mohammadi, Yousef; Arjmand, Navid; Shirazi-Adl, Aboulfazl

    2015-08-01

    Various hybrid EMG-assisted optimization (EMGAO) approaches are commonly used to estimate muscle forces and joint loads of human musculoskeletal systems. Use of EMG data and optimization enables the EMGAO models to account for inter- and intra-individual variations in muscle recruitments while satisfying equilibrium requirements. Due to implications in ergonomics/prevention and rehabilitation/treatment managements of low-back disorders, there is a need to evaluate existing approaches. The present study aimed to compare predictions of three different EMGAO and one stability-based optimization (OPT) approaches for trunk muscle forces, spinal loads, and stability. Identical measured kinematics/EMG data and anatomical model were used in all approaches when simulating several sagittally symmetric static activities. Results indicated substantial inter-model differences in predicted muscle forces (up to 123% and 90% for total muscle forces in tasks with upright and flexed postures, respectively) and spinal loads (up to 74% and 78% for compression loads in upright and flexed postures, respectively). Results of EMGAO models markedly varied depending on the manner in which correction (gain) factors were introduced. Large range of gain values (from ∼0.47 to 41) was estimated in each model. While EMGAO methods predicted an unstable spine for some tasks, OPT predicted, as intended, either a meta-stable or stable states in all simulated tasks. An unrealistic unstable state of the spine predicted by EMGAO methods for some of the simulated tasks (which are in reality stable) could be an indication of the shortcoming of these models in proper prediction of muscle forces.

  5. Autonomous Growing Neural Gas for applications with time constraint: optimal parameter estimation.

    PubMed

    García-Rodríguez, José; Angelopoulou, Anastassia; García-Chamizo, Juan Manuel; Psarrou, Alexandra; Orts Escolano, Sergio; Morell Giménez, Vicente

    2012-08-01

    This paper aims to address the ability of self-organizing neural network models to manage real-time applications. Specifically, we introduce fAGNG (fast Autonomous Growing Neural Gas), a modified learning algorithm for the incremental model Growing Neural Gas (GNG) network. The Growing Neural Gas network with its attributes of growth, flexibility, rapid adaptation, and excellent quality of representation of the input space makes it a suitable model for real time applications. However, under time constraints GNG fails to produce the optimal topological map for any input data set. In contrast to existing algorithms, the proposed fAGNG algorithm introduces multiple neurons per iteration. The number of neurons inserted and input data generated is controlled autonomous and dynamically based on a priory or online learnt model. A detailed study of the topological preservation and quality of representation depending on the neural network parameter selection has been developed to find the best alternatives to represent different linear and non-linear input spaces under time restrictions or specific quality of representation requirements. PMID:22386599

  6. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding

    PubMed Central

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10–20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%. PMID:26491719

  7. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology.

    PubMed

    Patil, Prafulla D; Gude, Veera Gnaneswar; Mannarswamy, Aravind; Cooke, Peter; Munson-McGee, Stuart; Nirmalakhandan, Nagamany; Lammers, Peter; Deng, Shuguang

    2011-01-01

    The effect of microwave irradiation on the simultaneous extraction and transesterification (in situ transesterification) of dry algal biomass to biodiesel was investigated. A high degree of oil/lipid extraction from dry algal biomass and an efficient conversion of the oils/lipids to biodiesel were demonstrated in a set of well-designed experimental runs. A response surface methodology (RSM) was used to analyze the influence of the process variables (dry algae to methanol (wt/vol) ratio, catalyst concentration, and reaction time) on the fatty acid methyl ester conversion. Based on the experimental results and RSM analysis, the optimal conditions for this process were determined as: dry algae to methanol (wt/vol) ratio of around 1:12, catalyst concentration about 2 wt.%, and reaction time of 4 min. The algal biodiesel samples were analyzed with GC-MS and thin layer chromatography (TLC) methods. Transmission electron microscopy (TEM) images of the algal biomass samples before and after the extraction/transesterification reaction are also presented. PMID:20933395

  8. Modeling and optimal design of an optical MEMS tactile sensor for use in robotically assisted surgery

    NASA Astrophysics Data System (ADS)

    Ahmadi, Roozbeh; Kalantari, Masoud; Packirisamy, Muthukumaran; Dargahi, Javad

    2010-06-01

    Currently, Minimally Invasive Surgery (MIS) performs through keyhole incisions using commercially available robotic surgery systems. One of the most famous examples of these robotic surgery systems is the da Vinci surgical system. In the current robotic surgery systems like the da Vinci, surgeons are faced with problems such as lack of tactile feedback during the surgery. Therefore, providing a real-time tactile feedback from interaction between surgical instruments and tissue can help the surgeons to perform MIS more reliably. The present paper proposes an optical tactile sensor to measure the contact force between the bio-tissue and the surgical instrument. A model is proposed for simulating the interaction between a flexible membrane and bio-tissue based on the finite element methods. The tissue is considered as a hyperelastic material with the material properties similar to the heart tissue. The flexible membrane is assumed as a thin layer of silicon which can be microfabricated using the technology of Micro Electro Mechanical Systems (MEMS). The simulation results are used to optimize the geometric design parameters of a proposed MEMS tactile sensor for use in robotic surgical systems to perform MIS.

  9. GIS based location optimization for mobile produced water treatment facilities in shale gas operations

    NASA Astrophysics Data System (ADS)

    Kitwadkar, Amol Hanmant

    Over 60% of the nation's total energy is supplied by oil and natural gas together and this demand for energy will continue to grow in the future (Radler et al. 2012). The growing demand is pushing the exploration and exploitation of onshore oil and natural gas reservoirs. Hydraulic fracturing has proven to not only create jobs and achieve economic growth, but also has proven to exert a lot of stress on natural resources---such as water. As water is one of the most important factors in the world of hydraulic fracturing, proper fluids management during the development of a field of operation is perhaps the key element to address a lot of these issues. Almost 30% of the water used during hydraulic fracturing comes out of the well in the form of flowback water during the first month after the well is fractured (Bai et. al. 2012). Handling this large amount of water coming out of the newly fractured wells is one of the major issues as the volume of the water after this period drops off and remains constant for a long time (Bai et. al. 2012) and permanent facilities can be constructed to take care of the water over a longer period. This paper illustrates development of a GIS based tool for optimizing the location of a mobile produced water treatment facility while development is still occurring. A methodology was developed based on a multi criteria decision analysis (MCDA) to optimize the location of the mobile treatment facilities. The criteria for MCDA include well density, ease of access (from roads considering truck hauls) and piping minimization if piping is used and water volume produced. The area of study is 72 square miles east of Greeley, CO in the Wattenberg Field in northeastern Colorado that will be developed for oil and gas production starting in the year 2014. A quarterly analysis is done so that we can observe the effect of future development plans and current circumstances on the location as we move from quarter to quarter. This will help the operators to

  10. A Test of the Optimality Approach to Modelling Canopy gas Exchange by Natural Vegetation

    NASA Astrophysics Data System (ADS)

    Schymanski, S. J.; Sivapalan, M.; Roderick, M. L.; Beringer, J.; Hutley, L. B.

    2005-12-01

    Natural vegetation has co-evolved with its environment over a long period of time and natural selection has led to a species composition that is most suited for the given conditions. Part of this adaptation is the vegetation's water use strategy, which determines the amount and timing of water extraction from the soil. Knowing that water extraction by vegetation often accounts for over 90% of the annual water balance in some places, we need to understand its controls if we want to properly model the hydrologic cycle. Water extraction by roots is driven by transpiration from the canopy, which in turn is an inevitable consequence of CO2 uptake for photosynthesis. Photosynthesis provides plants with their main building material, carbohydrates, and with the energy necessary to thrive and prosper in their environment. Therefore we expect that natural vegetation would have evolved an optimal water use strategy to maximise its `net carbon profit' (the difference between carbon acquired by photosynthesis and carbon spent on maintenance of the organs involved in its uptake). Based on this hypothesis and on an ecophysiological gas exchange and photosynthesis model (Cowan and Farquhar 1977; von Caemmerer 2000), we model the optimal vegetation for a site in Howard Springs (N.T., Australia) and compare the modelled fluxes with measurements by Beringer, Hutley et al. (2003). The comparison gives insights into theoretical and real controls on transpiration and photosynthesis and tests the optimality approach to modelling gas exchange of natural vegetation with unknown properties. The main advantage of the optimality approach is that no assumptions about the particular vegetation on a site are needed, which makes it very powerful for predicting vegetation response to long-term climate- or land use change. Literature: Beringer, J., L. B. Hutley, et al. (2003). "Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia." International

  11. A microfluidic respiratory assist device with high gas permeance for artificial lung applications.

    PubMed

    Kniazeva, Tatiana; Hsiao, James C; Charest, Joseph L; Borenstein, Jeffrey T

    2011-04-01

    One of the principal challenges in artificial lung technology has been the ability to provide levels of oxygen and carbon dioxide exchange that rival those of the natural human lung, while mitigating the deleterious interaction between blood and the surface of the synthetic gas exchange membrane. This interaction is exacerbated by the large oxygenator surface area required to achieve sufficient levels of gas transfer. In an effort to address this challenge, microfluidics-based artificial lung technologies comprising stacked microchannel networks have been explored by several groups. Here we report the design, fabrication and initial testing of a parallel plate multilayered silicone-based microfluidic construct containing ultrathin gas exchange membranes, aimed at maximizing gas transfer efficiency while minimizing membrane-blood contact area. The device comprises a branched microvascular network that provides controlled wall shear stress and uniform blood flow, and is designed to minimize blood damage, thrombosis and inflammatory responses seen in current oxygenators. Initial testing indicates that flow distribution through the multilayer structure is uniform and that the thin membrane can withstand pressures equivalent to those expected during operation. Oxygen transfer using phosphate buffered saline as the carrier fluid has also been assessed, demonstrating a sharp increase in oxygen transfer as membrane thickness is reduced, consistent with the expected values of oxygen permeance for thin silicone membranes.

  12. Determination of brominated flame retardants in electrical and electronic equipments with microwave-assisted extraction and gas chromatography-mass spectrometry.

    PubMed

    Li, Ying; Wang, Tianran; Hashi, Yuki; Li, Haifang; Lin, Jin-Ming

    2009-06-15

    Determination of brominated flame retardants in electrical and electronic equipments (EEE) was achieved through microwave-assisted extraction (MAE) and gas chromatography-mass spectrometry. Polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) including mono-brominated through deca-brominated congeners were qualified and quantified with good linearity (0.9963-0.9998) and repeatability (RSD, 1.1-8.1%). Multivariable orthogonal experimental design was used to optimize the MAE parameters. Extraction temperature and time were the most significant factors for extraction process. The extractants were cleaned up with SPE method after extraction. Recoveries of spiked blank samples ranged from 72.4% to 108.4% for most of the analytes. The method was applied to the determination of PBBs and PBDEs in several kinds of real EEE samples. It was found that no detectable level of PBBs was detected among them. Different contents of PBDEs were tested in the tested samples and the total contents ranged from 25.0 ng g(-1) to 194.0 ng g(-1). The proposed approach demonstrated an environmentally friendly and convenient alternative, which only consumed 10mL hexane to microwave extraction for 10min at 100 degrees C. PMID:19362212

  13. Rapid screening of haloacetamides in water using salt-assisted liquid-liquid extraction coupled injection-port silylation gas chromatography-mass spectrometry.

    PubMed

    Chen, Tzu-Ling; Tzing, Shin-Hwa; Ding, Wang-Hsien

    2015-11-27

    The rapid screening of trace amounts of the nitrogenous disinfection by-products, haloacetamides (HAcAms), in drinking and swimming pool water was performed by a simple and reliable procedure based on salt-assisted liquid-liquid extraction (SALLE) combined with injection-port silylation gas chromatography-mass spectrometry (IPS-GC-MS) method. The optimal SALLE conditions involved the injection of 4-mL of ethyl acetate into a 10-mL water sample (pH 7) containing 3-g of sodium sulfate. After vortex extraction for 1min and centrifugation, 10μL of the extract (mixed with 1μL of MTBSTFA) was directly determined by IPS-GC-MS. The limits of quantitation (LOQs) were determined to be 0.03-0.3μg/L. Precision, as indicated by relative standard deviations (RSDs), was less than 10% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was between 76% and 94%. The SALLE plus IPS-GC-MS was successfully applied to quantitatively determine HAcAms from drinking and swimming pool water samples, and the total concentrations of the compounds ranged from 0.43 to 4.03μg/L. PMID:26518495

  14. Determination of three antidepressants in urine using simultaneous derivatization and temperature-assisted dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection.

    PubMed

    Nabil, Ali Akbar Alizadeh; Nouri, Nina; Farajzadeh, Mir Ali

    2015-07-01

    This paper presents a fast and simple method for the extraction, preconcentration and determination of fluvoxamine, nortriptyline and maprotiline in urine using simultaneous derivatization and temperature-assisted dispersive liquid-liquid microextraction (TA-DLLME) followed by gas chromatography-flame ionization detection (GC-FID). An appropriate mixture of dimethylformamide (disperser solvent), 1,1,2,2-tetrachloroethane (extraction solvent) and acetic anhydride (derivatization agent) was rapidly injected into the heated sample. Then the solution was cooled to room temperature and cloudy solution formed was centrifuged. Finally a portion of the sedimented phase was injected into the GC-FID. The effect of several factors affecting the performance of the method, including the selection of suitable extraction and disperser solvents and their volumes, volume of derivatization agent, temperature, salt addition, pH and centrifugation time and speed were investigated and optimized. Figures of merit of the proposed method, such as linearity (r(2)  > 0.993), enrichment factors (820-1070), limits of detection (2-4 ng mL(-1)) and quantification (8-12 ng mL(-1)), and relative standard deviations (3-6%) for both intraday and interday precisions (concentration = 50 ng mL(-1)) were satisfactory for determination of the selected antidepressants. Finally the method was successfully applied to determine the target pharmaceuticals in urine.

  15. Rapid determination of polycyclic aromatic hydrocarbons in grilled meat using microwave-assisted extraction and dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry.

    PubMed

    Kamankesh, Marzieh; Mohammadi, Abdorreza; Hosseini, Hedayat; Modarres Tehrani, Zohreh

    2015-05-01

    A simple and rapid analytical tech nique for the simultaneous determination of 16 polycyclic aromatic hydrocarbons (PAHs) in grilled meat was developed using microwave-assisted extraction and dispersive liquid-liquid microextraction (MAE-DLLME) followed by gas chromatography-mass spectrometry (GC-MS). The effective parameters in DLLME process were optimized. Good linear relationships were obtained for 16 PAHs in a range of 1-200 ng g(-1), with a correlation coefficient (R(2)) higher than 0.98. Limits of detection and limits of quantification were 0.15-0.3 ng g(-1) and 0.47-1 ng g(-1), respectively. The relative standard deviations (RSD%) for seven analyses were less than 9%. The recoveries of those compounds in grilled meat were obtained from 85% to 104%. Low consumption of the solvent, high recovery, short extraction time, no matrix interference and good merit figures compared to other methods are advantages of the proposed method. The performance of the present method was evaluated for the determination of PAHs in various types of real grilled meat samples, and satisfactory results were obtained.

  16. Rapid screening of haloacetamides in water using salt-assisted liquid-liquid extraction coupled injection-port silylation gas chromatography-mass spectrometry.

    PubMed

    Chen, Tzu-Ling; Tzing, Shin-Hwa; Ding, Wang-Hsien

    2015-11-27

    The rapid screening of trace amounts of the nitrogenous disinfection by-products, haloacetamides (HAcAms), in drinking and swimming pool water was performed by a simple and reliable procedure based on salt-assisted liquid-liquid extraction (SALLE) combined with injection-port silylation gas chromatography-mass spectrometry (IPS-GC-MS) method. The optimal SALLE conditions involved the injection of 4-mL of ethyl acetate into a 10-mL water sample (pH 7) containing 3-g of sodium sulfate. After vortex extraction for 1min and centrifugation, 10μL of the extract (mixed with 1μL of MTBSTFA) was directly determined by IPS-GC-MS. The limits of quantitation (LOQs) were determined to be 0.03-0.3μg/L. Precision, as indicated by relative standard deviations (RSDs), was less than 10% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was between 76% and 94%. The SALLE plus IPS-GC-MS was successfully applied to quantitatively determine HAcAms from drinking and swimming pool water samples, and the total concentrations of the compounds ranged from 0.43 to 4.03μg/L.

  17. A fast method for the identification of Mycobacterium tuberculosis in sputum and cultures based on thermally assisted hydrolysis and methylation followed by gas chromatography-mass spectrometry.

    PubMed

    Kaal, Erwin; Kolk, Arend H J; Kuijper, Sjoukje; Janssen, Hans-Gerd

    2009-08-28

    A fast gas chromatography-mass spectrometry (GC-MS) method with minimum sample preparation is described for early diagnosis of tuberculosis (TB). The automated procedure is based on the injection of sputum samples which are then methylated inside the GC injector using thermally assisted hydrolysis and methylation (THM). The THM-GC-MS procedure was optimized for the injection of sputum samples. For the identification of Mycobacterium tuberculosis the known marker tuberculostearic acid (TBSA) and other potential markers were evaluated. Hexacosanoic acid in combination with TBSA was found to be specific for the presence of M. tuberculosis. For validation of the method several sputum samples with different viscosities spiked with bacterial cultures were analyzed. Finally, 18 stored sputum samples collected in Vietnam from patients suspected to suffer from TB were re-analyzed in Amsterdam by microscopy after decontamination/concentration and using the new THM-GC-MS method. No false positives were found by THM-GC-MS and all patients who were diagnosed with TB were also found positive using our newly developed THM-GC-MS method. These results show that the new fast and sensitive THM-GC-MS method holds great potential for the diagnosis of TB.

  18. Nonlocal energy-optimized kernel: Recovering second-order exchange in the homogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Bates, Jefferson E.; Laricchia, Savio; Ruzsinszky, Adrienn

    2016-01-01

    In order to remedy some of the shortcomings of the random phase approximation (RPA) within adiabatic connection fluctuation-dissipation (ACFD) density functional theory, we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free and exact for two-electron systems in the high-density limit. By tuning a free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy, we obtain a nonlocal, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. Using wave-vector symmetrization for the kernel, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and nonmetallic systems. The comparison of ACFD structural properties with experiment is also shown to be limited by the choice of norm-conserving pseudopotential.

  19. Reducing California's Greenhouse Gas Emissions through ProductLife-Cycle Optimization

    SciTech Connect

    Masanet, Eric; Price, Lynn; de la Rue du Can, Stephane; Worrell,Ernst

    2005-12-30

    Product life-cycle optimization addresses the reduction ofenvironmental burdens associated with the production, use, andend-of-life stages of a product s life cycle. In this paper, we offer anevaluation of the opportunities related to product life-cycleoptimization in California for two key products: personal computers (PCs)and concrete. For each product, we present the results of an explorativecase study to identify specific opportunities for greenhouse gas (GHG)emissions reductions at each stage of the product life cycle. We thenoffer a discussion of the practical policy options that may exist forrealizing the identified GHG reduction opportunities. The case studiesdemonstrate that there may be significant GHG mitigation options as wellas a number of policy options that could lead to life-cycle GHG emissionsreductions for PCs and concrete in California.

  20. Optimization of a RF-generated CF4/O2 gas plasma sterilization process.

    PubMed

    Lassen, Klaus S; Nordby, Bolette; Grün, Reinar

    2003-05-15

    A sterilization process with the use of RF-generated (13.56 MHz) CF(4)/O(2) gas plasma was optimized in regards to power, flow rate, exposure time, and RF-system type. The dependency of the sporicidal effect on the spore inoculum positioning in the chamber of the RF systems was also investigated. Dried Bacillus stearothermophilus ATCC 7953 endospores were used as test organisms. The treatments were evaluated on the basis of survival curves and corresponding D values. The only parameter found to affect the sterilization process was the power of the RF system. Higher power resulted in higher kill. Finally, when the samples were placed more than 3-8 cm away from a centrally placed electrode in System 2, the sporicidal effect was reduced. The results are discussed and compared to results from the present literature. The RF excitation source is evaluated to be more appropriate for sterilization processes than the MW source. PMID:12687716

  1. Synthesis of magnetic γ-Fe2O3-based nanomaterial for ultrasonic assisted dyes adsorption: Modeling and optimization.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Hajati, Shaaker; Goudarzi, Alireza

    2016-09-01

    γ-Fe2O3 nanoparticles were synthesized and loaded on activated carbon. The prepared nanomaterial was characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The γ-Fe2O3 nanoparticle-loaded activated carbon (γ-Fe2O3-NPs-AC) was used as novel adsorbent for the ultrasonic-assisted removal of methylene blue (MB) and malachite green (MG). Response surface methodology and artificial neural network were applied to model and optimize the adsorption of the MB and MG in their individual and binary solutions followed by the investigation on adsorption isotherm and kinetics. The individual effects of parameters such as pH, mass of adsorbent, ultrasonication time as well as MB and MG concentrations in addition to the effects of their possible interactions on the adsorption process were investigated. The numerical optimization revealed that the optimum adsorption (>99.5% for each dye) is obtained at 0.02g, 15mgL(-1), 4min and 7.0 corresponding to the adsorbent mass, each dye concentration, sonication time and pH, respectively. The Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherms were studied. The Langmuir was found to be most applicable isotherm which predicted maximum monolayer adsorption capacities of 195.55 and 207.04mgg(-1) for the adsorption of MB and MG, respectively. The pseudo-second order model was found to be applicable for the adsorption kinetics. Blank experiments (without any adsorbent) were run to investigate the possible degradation of the dyes studied in presence of ultrasonication. No dyes degradation was observed.

  2. Synthesis of magnetic γ-Fe2O3-based nanomaterial for ultrasonic assisted dyes adsorption: Modeling and optimization.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Hajati, Shaaker; Goudarzi, Alireza

    2016-09-01

    γ-Fe2O3 nanoparticles were synthesized and loaded on activated carbon. The prepared nanomaterial was characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The γ-Fe2O3 nanoparticle-loaded activated carbon (γ-Fe2O3-NPs-AC) was used as novel adsorbent for the ultrasonic-assisted removal of methylene blue (MB) and malachite green (MG). Response surface methodology and artificial neural network were applied to model and optimize the adsorption of the MB and MG in their individual and binary solutions followed by the investigation on adsorption isotherm and kinetics. The individual effects of parameters such as pH, mass of adsorbent, ultrasonication time as well as MB and MG concentrations in addition to the effects of their possible interactions on the adsorption process were investigated. The numerical optimization revealed that the optimum adsorption (>99.5% for each dye) is obtained at 0.02g, 15mgL(-1), 4min and 7.0 corresponding to the adsorbent mass, each dye concentration, sonication time and pH, respectively. The Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherms were studied. The Langmuir was found to be most applicable isotherm which predicted maximum monolayer adsorption capacities of 195.55 and 207.04mgg(-1) for the adsorption of MB and MG, respectively. The pseudo-second order model was found to be applicable for the adsorption kinetics. Blank experiments (without any adsorbent) were run to investigate the possible degradation of the dyes studied in presence of ultrasonication. No dyes degradation was observed. PMID:27150788

  3. Determination of total acid content in biomass hydrolysates by solvent-assisted and reaction based headspace gas chromatography.

    PubMed

    Huang, Liu-Lian; Hu, Hui-Chao; Chen, Li-Hui

    2015-11-27

    This work reports on a novel method for the determination of total acid (TA) in biomass hydrolysates by a solvent-assisted and reaction-based headspace gas chromatography (HS-GC). The neutralization reaction between the acids in hydrolysates and bicarbonate in an ethanol (50%) aqueous solution was performed in a closed headspace sample vial, from which the carbon dioxide generated from the reaction was detected by HS-GC. It was found that the addition of ethanol can effectively eliminate the precipitation of some organic acids in the biomass hydrolysates. The results showed that the reaction and headspace equilibration can be achieved within 45min at 70°C; the method has a good precision (RSD<3.27%) and accuracy (recovery of 97.4-105%); the limit of quantification is 1.36μmol. The present method is quite suitable to batch analysis of TA content in hydrolysate for the biorefinery related research. PMID:26499971

  4. Structural and composition investigations at delayered locations of low k integrated circuit device by gas-assisted focused ion beam

    SciTech Connect

    Wang, Dandan Kee Tan, Pik; Yamin Huang, Maggie; Lam, Jeffrey; Mai, Zhihong

    2014-05-15

    The authors report a new delayering technique – gas-assisted focused ion beam (FIB) method and its effects on the top layer materials of integrated circuit (IC) device. It demonstrates a highly efficient failure analysis with investigations on the precise location. After removing the dielectric layers under the bombardment of an ion beam, the chemical composition of the top layer was altered with the reduced oxygen content. Further energy-dispersive x-ray spectroscopy and Fourier transform infrared analysis revealed that the oxygen reduction lead to appreciable silicon suboxide formation. Our findings with structural and composition alteration of dielectric layer after FIB delayering open up a new insight avenue for the failure analysis in IC devices.

  5. Analyses of polychlorinated biphenyls in waters and wastewaters using vortex-assisted liquid-liquid microextraction and gas chromatography-mass spectrometry.

    PubMed

    Ozcan, Senar

    2011-03-01

    A method was developed for viable and rapid determination of seven polychlorinated biphenyls (PCBs) in water samples with vortex-assisted liquid-liquid microextraction (VALLME) using gas chromatography-mass spectrometry (GC-MS). At first, the most suitable extraction solvent and extraction solvent volume were determined. Later, the parameters affecting the extraction efficiency such as vortex extraction time, rotational speed of the vortex, and ionic strength of the sample were optimized by using a 2(3) factorial experimental design. The optimized extraction conditions for 5 mL water sample were as follows: extractant solvent 200 μL of chloroform; vortex extraction time of 2 min at 3000 rpm; centrifugation 5 min at 4000 rpm, and no ionic strength. Under the optimum condition, limits of detection (LOD) ranged from 0.36 to 0.73 ng/L. Mean recoveries of PCBs from fortified water samples are 96% for three different fortification levels and RSDs of the recoveries are below 5%. The developed procedure was successfully applied to the determination of PCBs in real water and wastewater samples such as tap, well, surface, bottled waters, and municipal, treated municipal, and industrial wastewaters. The performance of the proposed method was compared with traditional liquid-liquid extraction (LLE) of real water samples and the results show that efficiency of proposed method is comparable to the LLE. However, the proposed method offers several advantages, i.e. reducing sample requirement for measurement of target compounds, less solvent consumption, and reducing the costs associated with solvent purchase and waste disposal. It is also viable, rapid, and easy to use for the analyses of PCBs in water samples by using GC-MS. PMID:21280211

  6. Photoluminescence from gas-suspended nanoparticles synthesized by laser ablation: A pathway to optimized nanomaterials

    SciTech Connect

    Geohegan, D.B.; Puretzky, A.A.; Duscher, G.; Pennycook, S.J.

    1998-02-01

    Laser ablation of solids into background gases is a proven cluster-assembly method. It was used to synthesize the first carbon fullerenes in 1985.(1) In this technique, a solid material is vaporized by a high-powered laser pulse to form a partially-ionized plasma containing atoms and small molecules. The hot plasma plume quickly expands to collisionless conditions unless confined by a background gas. In this case, the plume atoms become trapped together and can form clusters as small as a few atoms, or larger clusters of 1--10 nm diameter (25--26,000 atoms for silicon). However, until now very little was known of the temporal and spatial scales for nanoparticle formation in background gases, or how the nanoparticles are transported and deposited after their formation. It is often unclear whether nanoparticles found on substrates were grown in the gas phase or from nuclei formed on the substrate surface. Here, the formation and transport of silicon nanoparticles in laser ablation plumes is revealed by a comparison of Rayleigh-scattering and the first photoluminescence measurements of nanoparticles suspended in background gases. Combined with Z-contrast transmission electron microscopy (TEM) and high resolution electron energy loss spectroscopy (HREELS) analysis of individual nanoparticles, the authors investigate their fundamental light absorption and emission properties without the influence of neighboring nanoparticles or surrounding solid or liquid hosts. Such understanding is critical for the deposition of optimized films.

  7. Optimized Design and Use of Induced Complex Fractures in Horizontal Wellbores of Tight Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Zeng, F. H.; Guo, J. C.

    2016-04-01

    Multistage hydraulic fracturing is being increasing use in the establishment of horizontal wells in tight gas reservoirs. Connecting hydraulic fractures to natural and stress-induced fractures can further improve well productivity. This paper investigates the fracture treatment design issues involved in the establishment of horizontal wellbores, including the effects of geologic heterogeneity, perforation parameters, fracturing patterns, and construction parameters on stress anisotropy during hydraulic fracturing and on natural fractures during hydraulic fracture propagation. The extent of stress reversal and reorientation was calculated for fractures induced by the creation of one or more propped fractures. The effects of stress on alternate and sequential fracturing horizontal well and on the reservoir's mechanical properties, including the spatial extent of stress reorientation caused by the opening of fractures, were assessed and quantified. Alternate sequencing of transverse fractures was found to be an effective means of enhancing natural fracture stimulation by allowing fractures to undergo less stress contrast during propagation. The goal of this paper was to present a new approach to design that optimizes fracturing in a horizontal wellbore from the perspectives of both rock mechanics and fluid production. The new design is a modified version of alternate fracturing, where the fracture-initiation sequence was controlled by perforation parameters with a staggered pattern within a horizontal wellbore. Results demonstrated that the modified alternate fracturing performed better than original sequence fracturing and that this was because it increased the contact area and promoted more gas production in completed wells.

  8. Optimization of closed ion source for a high-sensitivity residual gas analyzer

    SciTech Connect

    Han, Cheolsu; Rok Ahn, Jong; Jung Ahn, Sang; Joon Park, Chang

    2014-03-15

    A closed ion source (CIS) has been optimized by investigating the effect of electron entrance slit size and the effect of mesh in the slit. A stainless steel mesh was placed on the electron entrance slits for a uniform potential distribution inside the CIS anode. Sensitivity of the closed ion sources having four different slit sizes with and without the mesh was compared using mass spectra of SF{sub 6} gas (97% He gas base) introduced into the CIS anode through a needle valve. For each CIS, isolation of anode potential with a mesh in the slit exhibited a significant sensitivity enhancement, but ion current measured directly behind each CIS showed negligible mesh effect. In order to elucidate the mesh effect, electron trajectories were simulated inside the anode. The computer simulation shows that, with mesh in the slit, more electrons are focused to a central region of the anode. This suggests ions generated in the CIS with mesh should have higher probability of passing through the quadrupole mass filter.

  9. Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam.

    PubMed

    Santamaria, Luigi; Sarno, Valentina Di; Natale, Paolo De; Rosa, Maurizio De; Inguscio, Massimo; Mosca, Simona; Ricciardi, Iolanda; Calonico, Davide; Levi, Filippo; Maddaloni, Pasquale

    2016-06-22

    We demonstrate continuous-wave cavity ring-down spectroscopy of a partially hydrodynamic molecular beam emerging from a buffer-gas-cooling source. Specifically, the (ν1 + ν3) vibrational overtone band of acetylene (C2H2) around 1.5 μm is accessed using a narrow-linewidth diode laser stabilized against a GPS-disciplined rubidium clock via an optical frequency comb synthesizer. As an example, the absolute frequency of the R(1) component is measured with a fractional accuracy of ∼1 × 10(-9). Our approach represents the first step towards the extension of more sophisticated cavity-enhanced interrogation schemes, including saturated absorption cavity ring-down or two-photon excitation, to buffer-gas-cooled molecular beams.

  10. Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam.

    PubMed

    Santamaria, Luigi; Sarno, Valentina Di; Natale, Paolo De; Rosa, Maurizio De; Inguscio, Massimo; Mosca, Simona; Ricciardi, Iolanda; Calonico, Davide; Levi, Filippo; Maddaloni, Pasquale

    2016-06-22

    We demonstrate continuous-wave cavity ring-down spectroscopy of a partially hydrodynamic molecular beam emerging from a buffer-gas-cooling source. Specifically, the (ν1 + ν3) vibrational overtone band of acetylene (C2H2) around 1.5 μm is accessed using a narrow-linewidth diode laser stabilized against a GPS-disciplined rubidium clock via an optical frequency comb synthesizer. As an example, the absolute frequency of the R(1) component is measured with a fractional accuracy of ∼1 × 10(-9). Our approach represents the first step towards the extension of more sophisticated cavity-enhanced interrogation schemes, including saturated absorption cavity ring-down or two-photon excitation, to buffer-gas-cooled molecular beams. PMID:27273337

  11. Redeposition in plasma-assisted atomic layer deposition: Silicon nitride film quality ruled by the gas residence time

    SciTech Connect

    Knoops, Harm C. M. E-mail: w.m.m.kessels@tue.nl; Peuter, K. de; Kessels, W. M. M. E-mail: w.m.m.kessels@tue.nl

    2015-07-06

    The requirements on the material properties and growth control of silicon nitride (SiN{sub x}) spacer films in transistors are becoming ever more stringent as scaling of transistor structures continues. One method to deposit high-quality films with excellent control is atomic layer deposition (ALD). However, depositing SiN{sub x} by ALD has turned out to be very challenging. In this work, it is shown that the plasma gas residence time τ is a key parameter for the deposition of SiN{sub x} by plasma-assisted ALD and that this parameter can be linked to a so-called “redeposition effect”. This previously ignored effect, which takes place during the plasma step, is the dissociation of reaction products in the plasma and the subsequent redeposition of reaction-product fragments on the surface. For SiN{sub x} ALD using SiH{sub 2}(NH{sup t}Bu){sub 2} as precursor and N{sub 2} plasma as reactant, the gas residence time τ was found to determine both SiN{sub x} film quality and the resulting growth per cycle. It is shown that redeposition can be minimized by using a short residence time resulting in high-quality films with a high wet-etch resistance (i.e., a wet-etch rate of 0.5 nm/min in buffered HF solution). Due to the fundamental nature of the redeposition effect, it is expected to play a role in many more plasma-assisted ALD processes.

  12. Strategies and methodologies to develop techniques for computer-assisted analysis of gas phase formation during altitude decompression

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.; Hall, W. A.

    1993-01-01

    It would be of operational significance if one possessed a device that would indicate the presence of gas phase formation in the body during hypobaric decompression. Automated analysis of Doppler gas bubble signals has been attempted for 2 decades but with generally unfavorable results, except with surgically implanted transducers. Recently, efforts have intensified with the introduction of low-cost computer programs. Current NASA work is directed towards the development of a computer-assisted method specifically targeted to EVA, and we are most interested in Spencer Grade 4. We note that Spencer Doppler Grades 1 to 3 have increased in the FFT sonogram and spectrogram in the amplitude domain, and the frequency domain is sometimes increased over that created by the normal blood flow envelope. The amplitude perturbations are of very short duration, in both systole and diastole and at random temporal positions. Grade 4 is characteristic in the amplitude domain but with modest increases in the FFT sonogram and spectral frequency power from 2K to 4K over all of the cardiac cycle. Heart valve motion appears to characteristic display signals: (1) the demodulated Doppler signal amplitude is considerably above the Doppler-shifted blow flow signal (even Grade 4); and (2) demodulated Doppler frequency shifts are considerably greater (often several kHz) than the upper edge of the blood flow envelope. Knowledge of these facts will aid in the construction of a real-time, computer-assisted discriminator to eliminate cardiac motion artifacts. There could also exist perturbations in the following: (1) modifications of the pattern of blood flow in accordance with Poiseuille's Law, (2) flow changes with a change in the Reynolds number, (3) an increase in the pulsatility index, and/or (4) diminished diastolic flow or 'runoff.' Doppler ultrasound devices have been constructed with a three-transducer array and a pulsed frequency generator.

  13. Optimization of sample pretreatment for determination of polycyclic aromatic hydrocarbons in estuarine sediments by gas chromatography

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Li, Xianguo; Peng, Xuewei; Tang, Xuli; Deng, Xiaoyan

    2012-06-01

    This study examined levels of polycyclic aromatic hydrocarbons (PAHs) in estuarine sediments in Licun (Qingdao, China) by gas chromatography under optimized conditions for sample pretreatment via ultrasonic extraction, column chromatography, and thin layer chromatography. Methanol and dichloromethane (DCM)/methanol (2:1, v/v) were used in ultrasonic extraction, and DCM was used as eluate for column chromatography. The developing system consisted of n-hexane and DCM at a ratio of 9:1 (v/v), with DCM as the extraction solvent for PAHs-containing silica gel scraped off the plate. When the spiking level is 100 ng, total recoveries of spiked matrices for four target PAHs (phenanthrene, anthracene, pyrene and chrysene) were 83.7%, 76.4%, 85.8%, and 88.7%, respectively, with relative standard deviation (RSD) between 5.0% and 6.5% ( n = 4). When the spiking level is 1000 ng, associated total recoveries were 78.6%, 72.7%, 82.7% and 85.3%, respectively, with RSD between 4.4% and 5.3% ( n = 4). The optimized method was advantageous for determination of PAHs in complex matrix due to its effective sample purification.

  14. Optimization of PECVD Chamber Cleans Through Fundamental Studies of Electronegative Fluorinated Gas Discharges.

    NASA Astrophysics Data System (ADS)

    Langan, John

    1996-10-01

    The predominance of multi-level metalization schemes in advanced integrated circuit manufacturing has greatly increased the importance of plasma enhanced chemical vapor deposition (PECVD) and in turn in-situ plasma chamber cleaning. In order to maintain the highest throughput for these processes the clean step must be as short as possible. In addition, there is an increasing desire to minimize the fluorinated gas usage during the clean, while maximizing its efficiency, not only to achieve lower costs, but also because many of the gases used in this process are global warming compounds. We have studied the fundamental properties of discharges of NF_3, CF_4, and C_2F6 under conditions relevant to chamber cleaning in the GEC rf reference cell. Using electrical impedance analysis and optical emission spectroscopy we have determined that the electronegative nature of these discharges defines the optimal processing conditions by controlling the power coupling efficiency and mechanisms of power dissipation in the discharge. Examples will be presented where strategies identified by these studies have been used to optimize actual manufacturing chamber clean processes. (This work was performed in collaboration with Mark Sobolewski, National Institute of Standards and Technology, and Brian Felker, Air Products and Chemicals, Inc.)

  15. Study and optimization of gas flow and temperature distribution in a Czochralski configuration

    NASA Astrophysics Data System (ADS)

    Fang, H. S.; Jin, Z. L.; Huang, X. M.

    2012-12-01

    The Czochralski (Cz) method has virtually dominated the entire production of bulk single crystals with high productivity. Since the Cz-grown crystals are cylindrical, axisymmetric hot zone arrangement is required for an ideally high-quality crystal growth. However, due to three-dimensional effects the flow pattern and temperature field are inevitably non-axisymmetric. The grown crystal suffers from many defects, among which macro-cracks and micro-dislocation are mainly related to inhomogeneous temperature distribution during the growth and cooling processes. The task of the paper is to investigate gas partition and temperature distribution in a Cz configuration, and to optimize the furnace design for the reduction of the three-dimensional effects. The general design is found to be unfavorable to obtain the desired temperature conditions. Several different types of the furnace designs, modified at the top part of the side insulation, are proposed for a comparative analysis. The optimized one is chosen for further study, and the results display the excellence of the proposed design in suppression of three-dimensional effects to achieve relatively axisymmetric flow pattern and temperature distribution for the possible minimization of thermal stress related crystal defects.

  16. Fabrication of micro/nano-structures using focused ion beam implantation and XeF2 gas-assisted etching

    NASA Astrophysics Data System (ADS)

    Xu, Z. W.; Fang, F. Z.; Fu, Y. Q.; Zhang, S. J.; Han, T.; Li, J. M.

    2009-05-01

    A micro/nano-structure fabrication method is developed using focused ion beam implantation (FIBI) and FIB XeF2 gas-assisted etching (FIB-GAE). Firstly, the FIB parameters' influence on the FIBI depth is studied by SEM observation of the FIBI cross-section cutting by FIB. Nanoparticles with 10-15 nm diameter are found to be evenly distributed in the FIBI layer, which can serve as a XeF2-assisted etching mask when the ion dose is larger than 1.4 × 1017 ions cm-2. The FIBI layers being used as the etching mask for the subsequent FIB-GAE process are explored to create different micro/nano-structures such as nano-gratings, nano-electrode and sinusoidal microstructures. It is found that the method of combining FIBI with subsequent FIB-GAE is efficient and flexible in micro/nano-structuring, and it can effectively remove the redeposition effect compared with the FIB milling method.

  17. The role of silane gas flow rate on PECVD-assisted fabrication of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Hamidinezhad, Habib; Ashkarran, Ali Akbar; Abdul-Malek, Zulkurnain

    2016-03-01

    Silicon (Si) core-shell nanowires (NWs) were successfully prepared by very high frequency plasma-enhanced chemical vapor deposition technique, and the effect of silane (SiH4) gas flow rates on physicochemical properties of silicon NWs was investigated. Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy were used to characterize SiNWs. Structural properties and morphology of NWs were studied as a function of SiH4 gas flow rate. Microscopic analysis revealed the formation of SiNWs with average tip and stem diameters ranging from 18 to 30 and 21 to 67 nm, respectively. Furthermore, the average length of Si NWs calculated based on the FESEM images was about 300-1800 nm. We have found that the growth of SiNWs increased with increasing in SiH4 gas flow rate. XRD, Raman spectra in addition to high-resolution TEM, verified the formation of crystalline SiNWs. A possible growth mechanism was suggested based on our observations.

  18. UV-assisted room-temperature gas sensing by HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Karaduman, Irmak; Barin, Özlem; Acar, Selim

    2016-06-01

    This research paper presents a detailed study of the influence of annealing temperature and UV irradiation on the sensitivity to NO2 of HfO2 thin films that can be used for the development of metal-oxide gas sensors. The HfO2 thin films were grown with a 3.3-nm thickness by using atomic layer deposition (ALD) and were annealed at different temperatures. The HfO2 thin films were characterized by using an atomic force microscope (AFM). The roughnesses of thin films were seen to have been affected by the annealing treatment. The effects of annealing temperature, as well as the operating temperature, on the response and the recovery characteristics of the HfO2 film were investigated. The results showed that both the annealing temperature and the operating temperature had significant effects on the sensing characteristics. Also, at room-temperature operation, the sensitivity of HfO2 thin films to 5 ppm of NO2 gas in air was investigated under UV irradiation. UV irradiation not only increased the response but also reduced the response and the recovery times during the gas-sensing measurements.

  19. CO2 Binding Organic Liquids Gas Capture with Polarity Swing Assisted Regeneration

    SciTech Connect

    Heldebrant, David

    2014-05-31

    This report outlines the comprehensive bench-scale testing of the CO2-binding organic liquids (CO2BOLs) solvent platform and its unique Polarity Swing Assisted Regeneration (PSAR). This study outlines all efforts on a candidate CO2BOL solvent molecule, including solvent synthesis, material characterization, preliminary toxicology studies, and measurement of all physical, thermodynamic and kinetic data, including bench-scale testing. Equilibrium and kinetic models and analysis were made using Aspen Plus™. Preliminary process configurations, a technoeconomic assessment and solvent performance projections for separating CO2 from a subcritical coal-fired power plant are compared to the U.S. Department of Energy's Case 10 monoethanolamine baseline.

  20. Effect of Gas Tungsten Arc Welding Parameters on Hydrogen-Assisted Cracking of Type 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni

    2016-05-01

    The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.

  1. Morphology control of surfactant-assisted graphene oxide films at the liquid-gas interface.

    PubMed

    Kim, Hyeri; Jang, Young Rae; Yoo, Jeseung; Seo, Young-Soo; Kim, Ki-Yeon; Lee, Jeong-Soo; Park, Soon-Dong; Kim, Chan-Joong; Koo, Jaseung

    2014-03-01

    Control of a two-dimensional (2D) structure of assembled graphene oxide (GO) sheets is highly desirable for fundamental research and potential applications of graphene devices. We show that an alkylamine surfactant, i.e., octadecylamine (ODA), Langmuir monolayer can be utilized as a template for adsorbing highly hydrophilic GO sheets in an aqueous subphase at the liquid-gas interface. The densely packed 2-D monolayer of such complex films was obtained on arbitrary substrates by applying Langmuir-Schaefer or Langmuir-Blodgett technique. Morphology control of GO sheets was also achieved upon compression by tuning the amount of spread ODA molecules. We found that ODA surfactant monolayers prevent GO sheets from sliding, resulting in formation of wrinkling rather than overlapping at the liquid-gas interface during the compression. The morphology structures did not change after a graphitization procedure of chemical hydrazine reduction and thermal annealing treatments. Since morphologies of graphene films are closely correlated to the performance of graphene-based materials, the technique employed in this study can provide a route for applications requiring wrinkled graphenes, ranging from nanoelectronic devices to energy storage materials, such as supercapacitors and fuel cell electrodes. PMID:24499257

  2. Sandia's Geothermal Advanced Drill Rig Instrumentation Assists Critical Oil and Gas Drilling Operation

    SciTech Connect

    Staller, George E.; Whitlow, Gary

    1999-04-27

    On November 23, 1998, an 18,000-foot-deep wild-cat natural gas well being drilled near Bakersfield, CA blew out and caught fire. All attempts to kill this well failed, and the well continues to flow under limited control, producing large volumes of natural gas, salt water, and some oil. The oil and some of the water is being separated and trucked off site, and the remaining gas and water is being burned at the well head. A relief well is being drilled approximately one-quarter mile away in an attempt to intercept the first well. If the relief well is successful, it will be used to cement in and kill the first well. Epoch Wellsite Services, Inc., the mud-logging company for the initial well and the relief well, requested Sandia's rolling float meter (RFM) for these critical drilling operations. The RFM is being used to measure the mud outflow rate and detect kicks while drilling the relief well, which will undoubtedly encounter reservoir conditions similar to those responsible for the blow out. Based on its prior experience with the RFM, Epoch believes that it is the only instrument capable of providing the level of accuracy and response to mudflow needed to quickly detect kicks and minimize the risk of a blowout on this second critical well. In response to the urgent request from industry, Sandia and Epoch technicians installed the RFM on the relief well return line, and completed its initial calibration. The data from the RFM is displayed in real-time for the driller, the companyman, and the toolpusher via Epochs RIGWATCH Drilling Instmmentation System. The RFM has already detected several small kicks while drilling toward the annulus of the blown out well. A conventional paddle meter is located downstream of the RFM to provide redundancy and the opportunity to compare the two meters in an actual drilling operation, The relief well is nearing 14,000 feet deep, targeting an intercept of the first well near 17,600 feet. The relief well is expected to be completed in

  3. Matrix-assisted laser desorption mass spectrometry of gas-phase peptide-metal complexes

    NASA Astrophysics Data System (ADS)

    Hortal, Ana R.; Hurtado, Paola; Martínez-Haya, Bruno

    2008-12-01

    Cation attachment to a model peptide has been investigated in matrix-assisted laser desorption experiments. Angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) is chosen as a system for study, and Cu2+ and K+ salts are used as cationizing agents. Three fundamentally different types of samples are investigated: (1) a crystalline sample of Ang I, metal salt and MALDI matrix, prepared with the conventional dried droplet method; (2) a solvent-free fine powder mixture of the same three compounds, and (3) a solution of the angiotensin and the metal salt in an ionic liquid matrix (a molten organic salt that acts as a MALDI active solvent). Effective protonation and cationization of the peptide are achieved with the three methods. The transition metal systematically provides more efficient cationization than the alkali metal. At sufficiently high concentration of the salt, the attachment of up to four copper cations to the angiotensin is observed in the MALDI spectrum. In contrast, only one K+ cation is efficiently bound to the peptide. For a given salt concentration, the highest degree of cationization is obtained in the laser desorption from the ionic liquid matrix. This is attributed to the efficient transfer of free metal cations to the desorption plume, where the complexation takes place.

  4. Effect of laser parameters and assist gas on spectral response of silicon fibrous nanostructure

    SciTech Connect

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Alubiady, M.; Tan, Bo

    2010-11-15

    This article report, for the first time, the influence of laser parameters on the spectral response of weblike silicon fibrous nanostructures. These nanostructures are formed by femtosecond laser irradiation at megahertz pulse frequency under atmosphere and nitrogen ambient. The observed decreasing in reflectance is correlated with the density of fibrous nanostructures and the size of the agglomerated nanoparticles. Compared to bulk silicon, Raman spectra of fibrous nanostructures shows a downward shift and asymmetric broadening at the first order phonon peak. The shift and broadening are attributed to phonon confinement of fibrous nanostructure. Polarization and nitrogen gas modify the morphology of generated nanomaterials but does not have effect on light absorptance. Pulsewidth and pulse frequency do not have significant effect on light absorptance.

  5. Effect of laser parameters and assist gas on spectral response of silicon fibrous nanostructure

    NASA Astrophysics Data System (ADS)

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Tan, Bo; Alubiady, M.

    2010-11-01

    This article report, for the first time, the influence of laser parameters on the spectral response of weblike silicon fibrous nanostructures. These nanostructures are formed by femtosecond laser irradiation at megahertz pulse frequency under atmosphere and nitrogen ambient. The observed decreasing in reflectance is correlated with the density of fibrous nanostructures and the size of the agglomerated nanoparticles. Compared to bulk silicon, Raman spectra of fibrous nanostructures shows a downward shift and asymmetric broadening at the first order phonon peak. The shift and broadening are attributed to phonon confinement of fibrous nanostructure. Polarization and nitrogen gas modify the morphology of generated nanomaterials but does not have effect on light absorptance. Pulsewidth and pulse frequency do not have significant effect on light absorptance.

  6. GRAVITATIONAL INSTABILITY OF SOLIDS ASSISTED BY GAS DRAG: SLOWING BY TURBULENT MASS DIFFUSIVITY

    SciTech Connect

    Shariff, Karim; Cuzzi, Jeffrey N.

    2011-09-01

    The Goldreich and Ward (axisymmetric) gravitational instability of a razor thin particle layer occurs when the Toomre parameter Q{sub T} {identical_to} c{sub p}{Omega}{sub 0}/{pi}G{Sigma}{sub p} < 1 (c{sub p} being the particle dispersion velocity). Ward extended this analysis by adding the effect of gas drag upon particles and found that even when Q{sub T} > 1, sufficiently long waves were always unstable. Youdin carried out a detailed analysis and showed that the instability allows chondrule-sized ({approx}1 mm) particles to undergo radial clumping with reasonable growth times even in the presence of a moderate amount of turbulent stirring. The analysis of Youdin includes the role of turbulence in setting the thickness of the dust layer and in creating a turbulent particle pressure in the momentum equation. However, he ignores the effect of turbulent mass diffusivity on the disturbance wave. Here, we show that including this effect reduces the growth rate significantly, by an amount that depends on the level of turbulence, and reduces the maximum intensity of turbulence the instability can withstand by 1-3 orders of magnitude. The instability is viable only when turbulence is extremely weak and the solid to gas surface density of the particle layer is considerably enhanced over minimum-mass-nebula values. A simple mechanistic explanation of the instability shows how the azimuthal component of drag promotes instability while the radial component hinders it. A gravito-diffusive overstability is also possible but never realized in the nebula models.

  7. Assessment and optimization of an ultrasound-assisted washing process using organic solvents for polychlorinated biphenyl-contaminated soil.

    PubMed

    Bezama, Alberto; Flores, Alejandra; Araneda, Alberto; Barra, Ricardo; Pereira, Eduardo; Hernández, Víctor; Moya, Heriberto; Konrad, Odorico; Quiroz, Roberto

    2013-10-01

    The goal of this work was to evaluate a washing process that uses organic solutions for polychlorinated biphenyl (PCB)-contaminated soil, and includes an ultrasound pre-treatment step to reduce operational times and organic solvent losses. In a preliminary trial, the suitability of 10 washing solutions of different polarities were tested, from which three n-hexane-based solutions were selected for further evaluation. A second set of experiments was designed using a three-level Taguchi L27 orthogonal array to model the desorption processes of seven different PCB congeners in terms of the variability of their PCB concentration levels, polarity of the washing solution, sonication time, the ratio washing solution/soil, number of extraction steps and total washing time. Linear models were developed for the desorption processes of all congeners. These models provide a good fit with the results obtained. Moreover, statistically significant outcomes were achieved from the analysis of variance tests carried out. It was determined that sonication time and ratio of washing solution/soil were the most influential process parameters. For this reason they were studied in a third set of experiments, constructed as a full factorial design. The process was eventually optimized, achieving desorption rates of more than 90% for all congeners, thus obtaining concentrations lower than 5 ppb in all cases. The use of an ultrasound-assisted soil washing process for PCB-contaminated soils that uses organic solvents seems therefore to be a viable option, especially with the incorporation of an extra step in the sonication process relating to temperature control, which is intended to prevent the loss of the lighter congeners.

  8. Determining an Optimal Cutoff of Serum β-Human Chorionic Gonadotropin for Assisting the Diagnosis of Intracranial Germinomas

    PubMed Central

    Zhang, Hui; Zhang, Peng; Fan, Jun; Qiu, Binghui; Pan, Jun; Zhang, Xi’an; Fang, Luxiong; Qi, Songtao

    2016-01-01

    Background Beta (β)-human chorionic gonadotropin (β-HCG) is used to confirm the diagnosis and plan treatment of intracranial germinomas. However, the cutoff values of serum β-HCG in diagnosis of intracranial germinomas reported in the literature are inconsistent. To establish an appropriate cutoff value of serum β-HCG for diagnosis of intracranial germinomas, we retrospectively reviewed the records of intracranial tumor patients who received serum β-HCG and α-fetoprotein (AFP) tests for diagnostic purposes at our hospital from 2005 to 2014. Methods A total of 93 intracranial germinomas and 289 intracranial non-germ cell tumors were included in this study. Receiver operating characteristic (ROC) analysis was used to evaluate the sensitivity and specificity of 3 cutoffs (0.1, 0.4, and 0.5 mIU/mL) for diagnosing intracranial germinomas. The serum β-HCG level of intracranial germinoma patients was further analyzed to investigate the effect of metastasis status and tumor location on serum β-HCG level. Results The area under the ROC curve was 0.81 (P < .001), suggesting β-HCG is an effective marker. Of the 3 cutoff values, 0.1 mIU/mL possessed a highest sensitivity (66.67%) and good specificity (91%). Although there was no β-HCG level difference between metastatic and non-metastatic intracranial germinoma patients, the diagnostic rate of metastatic neurohypophyseal germinomas was significantly higher than that of its non-metastatic counterpart (P < .05), implying that the location of the germinoma might need to be considered when β-HCG is used as a marker to predict metastasis. Conclusions Determining an optimal cutoff of serum β-HCG is helpful for assisting the diagnosis of intracranial germinoma. PMID:26771195

  9. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  10. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  11. Simulating the Gas-Assisted Capture of Earth-sized Moons around Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Williams, D. M.

    2003-05-01

    The number of Jupiter-sized planets on orbits that cross the habitable zones of Sun-like stars is now 42. Moons of these planets might have oceans of liquid water if they are big enough to form and maintain atmospheres, which they should be able to do if they are slightly larger than Mars [Williams D.W., Kasting, J.F., & Wade, R.A.1997. Nature 385,234]. Here we demonstrate using a modified symplectic orbital integrator that such planet-sized moons may be captured through a chance collision between a terrestrial planet and a young jovian planet enveloped in a circumplanetary disk. We find that permanent capture is best achieved when the approach vector is approximately co-planar with the disk and the minimum planet-impactor separation is < 10 planetary radii. For optimal conditions, a 0.1 Jupiter-mass disk can capture and circularize an Earth-mass impactor in under 100 years. The ultimate fate of such moons and the nebula are currently being examined through hydrodynamic simulation.

  12. Controls and measurements of KU engine test cells for biodiesel, SynGas, and assisted biodiesel combustion

    NASA Astrophysics Data System (ADS)

    Cecrle, Eric Daniel

    This thesis is comprised of three unique data acquisition and controls (CDAQ) projects. Each of these projects differs from each other; however, they all include the concept of testing renewable or future fuel sources. The projects were the following: University of Kansas's Feedstock-to-Tailpipe Initiative's Synthesis Gas Reforming rig, Feedstock-to-Tailpipe Initiative's Biodiesel Single Cylinder Test Stand, and a unique Reformate Assisted Biodiesel Combustion architecture. The main responsibility of the author was to implement, develop and test CDAQ systems for the projects. For the Synthesis Gas Reforming rig, this thesis includes a report that summarizes the analysis and solution of building a controls and data acquisition system for this setup. It describes the purpose of the sensors selected along with their placement throughout the system. Moreover, it includes an explanation of the planned data collection system, along with two models describing the reforming process useful for system control. For the Biodiesel Single Cylinder Test Stand, the responsibility was to implement the CDAQ system for data collection. This project comprised a variety of different sensors that are being used collect the combustion characteristics of different biodiesel formulations. This project is currently being used by other graduates in order to complete their projects for subsequent publication. For the Reformate Assisted Biodiesel Combustion architecture, the author developed a reformate injection system to test different hydrogen and carbon monoxide mixtures as combustion augmentation. Hydrogen combustion has certain limiting factors, such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, a dual-fuel methodology is utilized by injecting a hydrogen/carbon monoxide mixture into the intake stream of a diesel engine operating on biodiesel. While carbon monoxide does degrade some of the

  13. Naturally fractured tight gas reservoir detection optimization. Annual report, September 1993--September 1994

    SciTech Connect

    1994-10-01

    This report is an annual summarization of an ongoing research in the field of modeling and detecting naturally fractured gas reservoirs. The current research is in the Piceance basin of Western Colorado. The aim is to use existing information to determine the most optimal zone or area of fracturing using a unique reaction-transport-mechanical (RTM) numerical basin model. The RTM model will then subsequently help map subsurface lateral and vertical fracture geometries. The base collection techniques include in-situ fracture data, remote sensing, aeromagnetics, 2-D seismic, and regional geologic interpretations. Once identified, high resolution airborne and spaceborne imagery will be used to verify the RTM model by comparing surficial fractures. If this imagery agrees with the model data, then a further investigation using a three-dimensional seismic survey component will be added. This report presents an overview of the Piceance Creek basin and then reviews work in the Parachute and Rulison fields and the results of the RTM models in these fields.

  14. Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing.

    PubMed

    Middleton, Richard S; Brandt, Adam R

    2013-02-01

    The Alberta oil sands are a significant source of oil production and greenhouse gas emissions, and their importance will grow as the region is poised for decades of growth. We present an integrated framework that simultaneously considers economic and engineering decisions for the capture, transport, and storage of oil sands CO(2) emissions. The model optimizes CO(2) management infrastructure at a variety of carbon prices for the oil sands industry. Our study reveals several key findings. We find that the oil sands industry lends itself well to development of CO(2) trunk lines due to geographic coincidence of sources and sinks. This reduces the relative importance of transport costs compared to nonintegrated transport systems. Also, the amount of managed oil sands CO(2) emissions, and therefore the CCS infrastructure, is very sensitive to the carbon price; significant capture and storage occurs only above 110$/tonne CO(2) in our simulations. Deployment of infrastructure is also sensitive to CO(2) capture decisions and technology, particularly the fraction of capturable CO(2) from oil sands upgrading and steam generation facilities. The framework will help stakeholders and policy makers understand how CCS infrastructure, including an extensive pipeline system, can be safely and cost-effectively deployed. PMID:23276202

  15. Statistical modelling and optimization of hydrolysis of urea to generate ammonia for flue gas conditioning.

    PubMed

    Mahalik, K; Sahu, J N; Patwardhan, Anand V; Meikap, B C

    2010-10-15

    The present study is concerned with the technique of producing a relatively small quantity of ammonia which can be used safely in a coal-fired thermal power plant to improve the efficiency of electrostatic precipitator by removing the suspended particulate material mostly fly ash, from the flue gas. In this work hydrolysis of urea has been conducted in a batch reactor at atmospheric pressure to study the different reaction variables such as reaction temperature, initial concentration and stirring speed on the conversion by using design expert software. A 2(3) full factorial central composite design (CCD) has been employed and a quadratic model equation has been developed. The study reveals that conversion increases exponentially with an increase in temperature, stirring speed and feed concentration. However the stirring speed has the greatest effect on the conversion with concentration and temperature exerting least and moderate effect respectively. The values of equilibrium conversion obtained through the developed models are found to agree well with their corresponding experimental counterparts with a satisfactory correlation coefficient of 93%. The developed quadratic model was optimized using quadratic programming to maximize conversion of urea within experimental range studied. The optimum production condition has been found to be at the temperature of 130 degrees C, feed concentration of 4.16 mol/l and stirring speed of 400 rpm and the corresponding conversion, 63.242%.

  16. Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing.

    PubMed

    Middleton, Richard S; Brandt, Adam R

    2013-02-01

    The Alberta oil sands are a significant source of oil production and greenhouse gas emissions, and their importance will grow as the region is poised for decades of growth. We present an integrated framework that simultaneously considers economic and engineering decisions for the capture, transport, and storage of oil sands CO(2) emissions. The model optimizes CO(2) management infrastructure at a variety of carbon prices for the oil sands industry. Our study reveals several key findings. We find that the oil sands industry lends itself well to development of CO(2) trunk lines due to geographic coincidence of sources and sinks. This reduces the relative importance of transport costs compared to nonintegrated transport systems. Also, the amount of managed oil sands CO(2) emissions, and therefore the CCS infrastructure, is very sensitive to the carbon price; significant capture and storage occurs only above 110$/tonne CO(2) in our simulations. Deployment of infrastructure is also sensitive to CO(2) capture decisions and technology, particularly the fraction of capturable CO(2) from oil sands upgrading and steam generation facilities. The framework will help stakeholders and policy makers understand how CCS infrastructure, including an extensive pipeline system, can be safely and cost-effectively deployed.

  17. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  18. Optimization Study of the Ames 0.5 Two-Stage Light Gas Gun

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1996-01-01

    There is a need for more faithful simulation of space debris impacts on various space vehicles. Space debris impact velocities can range up to 14 km/sec and conventional two-stage light gas guns with moderately heavy saboted projectiles are limited to launch velocities of 7-8 km/sec. Any increases obtained in the launch velocities will result in more faithful simulations of debris impacts. It would also be valuable to reduce the maximum gun and projectile base pressures and the gun barrel erosion rate. In this paper, the results of a computational fluid dynamics (CFD) study designed to optimize the performance of the NASA Ames 0.5' gun by systematically varying seven gun operating parameters are reported. Particularly beneficial effects were predicted to occur if (1) the piston mass was decreased together with the powder mass and the hydrogen fill pressure and (2) the pump tube length was decreased. The optimum set of changes in gun operating conditions were predicted to produce an increase in muzzle velocity of 0.7-1.0 km/sec, simultaneously with a substantial decrease in gun erosion. Preliminary experimental data have validated the code predictions. Velocities of up to 8.2 km/sec with a 0.475 cm diameter saboted aluminum sphere have been obtained, along with large reductions in gun erosion rates.

  19. Naturally fractured tight gas reservoir detection optimization. Quarterly status report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-04-15

    The objective of the study will be to demonstrate the geological and geophysical technology needed to detect and analyze, economically, naturally fractured tight gas reservoirs. Delays in subcontract approval for the RTM model with Indiana University had caused additional delays in commencement of the modeling effort. Now that the subcontract is signed, modeling work has commenced. Subcontract preparation and negotiations for the aeromagnetic fly-over by World Geoscience are also proceeding as planned. Because we have clearly documented production trends in the Parachute and Rulison fields, future effort will be directed toward geologic explanations of these production trends. Several regional cross-sections through these fields will be used to illustrate geologic differences and similarities between the two fields. This information will be critical to calibration of the RTM model and development of the optimal locations for infill drilling and recompletion strategies. Upon completion of the field studies, focus will be redirected toward development of a regional tectonic synthesis from Precambrian through today for the Piceance Basin and the uplifts surrounding this region. This effort will integrate published studies, seismic, wellbore, gravity and remote sensing data to delineate regions in the basin where additional field work is necessary to fully determine the geologic evolution of the basin.

  20. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    NASA Astrophysics Data System (ADS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l- 1 and 1.0 ng l- 1, respectively.

  1. Design Of A Sorbent/desorbent Unit For Sample Pre-treatment Optimized For QMB Gas Sensors

    SciTech Connect

    Pennazza, G.; Cristina, S.; Santonico, M.; Martinelli, E.; Di Natale, C.; D'Amico, A.; Paolesse, R.

    2009-05-23

    Sample pre-treatment is a typical procedure in analytical chemistry aimed at improving the performance of analytical systems. In case of gas sensors sample pre-treatment systems are devised to overcome sensors limitations in terms of selectivity and sensitivity. For this purpose, systems based on adsorption and desorption processes driven by temperature conditioning have been illustrated. The involvement of large temperature ranges may pose problems when QMB gas sensors are used. In this work a study of such influences on the overall sensing properties of QMB sensors are illustrated. The results allowed the design of a pre-treatment unit coupled with a QMB gas sensors array optimized to operate in a suitable temperatures range. The performance of the system are illustrated by the partially separation of water vapor in a gas mixture, and by substantial improvement of the signal to noise ratio.

  2. Design Of A Sorbent/desorbent Unit For Sample Pre-treatment Optimized For QMB Gas Sensors

    NASA Astrophysics Data System (ADS)

    Pennazza, G.; Santonico, M.; Martinelli, E.; Paolesse, R.; Di Natale, C.; Cristina, S.; D'Amico, A.

    2009-05-01

    Sample pre-treatment is a typical procedure in analytical chemistry aimed at improving the performance of analytical systems. In case of gas sensors sample pre-treatment systems are devised to overcome sensors limitations in terms of selectivity and sensitivity. For this purpose, systems based on adsorption and desorption processes driven by temperature conditioning have been illustrated. The involvement of large temperature ranges may pose problems when QMB gas sensors are used. In this work a study of such influences on the overall sensing properties of QMB sensors are illustrated. The results allowed the design of a pret-reatment unit coupled with a QMB gas sensors array optimized to operate in a suitable temperatures range. The performance of the system are illustrated by the partially separation of water vapor in a gas mixture, and by substantial improvement of the signal to noise ratio.

  3. Optimism

    PubMed Central

    Carver, Charles S.; Scheier, Michael F.; Segerstrom, Suzanne C.

    2010-01-01

    Optimism is an individual difference variable that reflects the extent to which people hold generalized favorable expectancies for their future. Higher levels of optimism have been related prospectively to better subjective well-being in times of adversity or difficulty (i.e., controlling for previous well-being). Consistent with such findings, optimism has been linked to higher levels of engagement coping and lower levels of avoidance, or disengagement, coping. There is evidence that optimism is associated with taking proactive steps to protect one's health, whereas pessimism is associated with health-damaging behaviors. Consistent with such findings, optimism is also related to indicators of better physical health. The energetic, task-focused approach that optimists take to goals also relates to benefits in the socioeconomic world. Some evidence suggests that optimism relates to more persistence in educational efforts and to higher later income. Optimists also appear to fare better than pessimists in relationships. Although there are instances in which optimism fails to convey an advantage, and instances in which it may convey a disadvantage, those instances are relatively rare. In sum, the behavioral patterns of optimists appear to provide models of living for others to learn from. PMID:20170998

  4. A Randomized Rounding Approach for Optimization of Test Sheet Composing and Exposure Rate Control in Computer-Assisted Testing

    ERIC Educational Resources Information Center

    Wang, Chu-Fu; Lin, Chih-Lung; Deng, Jien-Han

    2012-01-01

    Testing is an important stage of teaching as it can assist teachers in auditing students' learning results. A good test is able to accurately reflect the capability of a learner. Nowadays, Computer-Assisted Testing (CAT) is greatly improving traditional testing, since computers can automatically and quickly compose a proper test sheet to meet user…

  5. Scaling of stomatal size and density optimizes allocation of leaf epidermal space for gas exchange in angiosperms

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo Jan; Price, Charles A.; Wagner-Cremer, Friederike; Dekker, Stefan C.; Franks, Peter J.; Veneklaas, Erik J.

    2015-04-01

    Stomata on plant leaves are key traits in the regulation of terrestrial fluxes of water and carbon. The basic morphology of stomata consists of a diffusion pore and two guard cells that regulate the exchange of CO2 and water vapour between the leaf interior and the atmosphere. This morphology is common to nearly all land plants, yet stomatal size (defined as the area of the guard cell pair) and stomatal density (the number of stomata per unit area) range over three orders of magnitude across species. Evolution of stomatal sizes and densities is driven by selection pressure on the anatomical maximum stomatal conductance (gsmax), which determines the operational range of leaf gas exchange. Despite the importance of stomata traits for regulating leaf gas exchange, a quantitative understanding of the relation between adaptation of gsmax and the underlying co-evolution of stomatal sizes and densities is still lacking. Here we develop a theoretical framework for a scaling relationship between stomatal sizes and densities within the constraints set by the allocation of epidermal space and stomatal gas exchange. Our theory predicts an optimal scaling relationship that maximizes gsmax and minimizes epidermal space allocation to stomata. We test whether stomatal sizes and densities reflect this optimal scaling with a global compilation of stomatal trait data on 923 species reflecting most major clades. Our results show optimal scaling between stomatal sizes and densities across all species in the compiled data set. Our results also show optimal stomatal scaling across angiosperm species, but not across gymnosperm and fern species. We propose that the evolutionary flexibility of angiosperms to adjust stomatal sizes underlies their optimal allocation of leaf epidermal space to gas exchange.

  6. [Determination of eight polybrominated diphenyl ethers in marine sediments by ultrasonically assisted alkaline degradation extraction and gas chromatography-electron capture detection].

    PubMed

    Guoguang, Wang; Dahai, Zhang; Dandan, Yang; Jialin, Peng; Xianguo, Li

    2015-08-01

    For determination of the eight polybrominated diphenyl ethers (PBDEs) in marine sediments based on gas chromatography-electron capture detection (GC-ECD), a rapid and effective method for simultaneous sample extraction and purification was developed, in which ultrasonically assisted alkaline hydrolysis was combined with solvent extraction. The sediment sample was processed in an ultrasonic bath in 2. 00 mol/L NaOH-methanol solution for 30 min, and subsequently extracted by n-hexane. The organic phase was then separated and purified by silica column and concentrated to 100 µL for GC-ECD analysis. Under the optimized conditions, the recoveries and relative standard deviations (RSDs) for eight PBDE congeners ranged from 63.6% to 110.3% and from 1.7% to 10.5% (n = 5), respectively. The limits of detection (LODs, S/N = 3) ranged from 0.002 to 0.011 ng/g except for deca-brominated diphenyl ether (BDE-209), which was 0.097 ng/g. With high accuracy, good stability and adequate recovery, the established method was successfully applied to the analysis of PBDEs in the surface sediments from Bohai Sea. The concentrations of ∑8PBDEs (sum of 2,4,4'-tribromodiphenyl ether (BDE-28), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2, 2', 4, 4', 5-pentabromodiphenyl ether (BDE-99), 2, 2', 4, 4', 6-pentabromodiphenyl ether (BDE100), 2, 2', 4, 4', 5, 5'- 1.566 to 6.760 ng/g and from 1.461 to 6.438 ng/g, respectively. A decreasing gradient of concentration was basically observed with increasing distance off the shore, indicating that anthropogenic activities, surface runoff and river inputs may be the sources of PBDEs in the sediments from Bohai Sea. PMID:26749867

  7. Determination of fragrance allergens in indoor air by active sampling followed by ultrasound-assisted solvent extraction and gas chromatography-mass spectrometry.

    PubMed

    Lamas, J Pablo; Sanchez-Prado, Lucia; Garcia-Jares, Carmen; Llompart, Maria

    2010-03-19

    Fragrances are ubiquitous pollutants in the environment, present in the most of household products, air fresheners, insecticides and cosmetics. Commercial perfumes may contain hundreds of individual fragrance chemicals. In addition to the widespread use and exposure to fragranced products, many of the raw fragrance materials have limited available health and safety data. Because of their nature as artificial fragrances, inhalation should be considered as an important exposure pathway, especially in indoor environments. In this work, a very simple, fast, and sensitive methodology for the analysis of 24 fragrance allergens in indoor air is presented. Considered compounds include those regulated by the EU Directive, excluding limonene; methyl eugenol was also included due to its toxicity. The proposed methodology is based on the use of a very low amount of adsorbent to retain the target compounds, and the rapid ultrasound-assisted solvent extraction (UAE) using a very low volume of solvent which avoids further extract concentration. Quantification was performed by gas chromatography coupled to mass spectrometry (GC-MS). The influence of main factors involved in the UAE step (type of adsorbent and solvent, solvent volume and extraction time) was studied using an experimental design approach to account for possible factor interactions. Using the optimized procedure, 0.2 m(-3) air are sampled, analytes are retained on 25 mg Florisil, from which they are extracted by UAE (5 min) with 2 mL ethyl acetate. Linearity was demonstrated in a wide concentration range. Efficiency of the total sampling-extraction process was studied at several concentration levels (1, 5 and 125 microg m(-3)), obtaining quantitative recoveries, and good precision (RSD<10%). Method detection limits were < or =0.6 microg m(-3). Finally, the proposed method was applied to real samples collected in indoor environments in which several of the target compounds were determined.

  8. Optimization of carbon dioxide supply in raceway reactors: Influence of carbon dioxide molar fraction and gas flow rate.

    PubMed

    Duarte-Santos, T; Mendoza-Martín, J L; Acién Fernández, F G; Molina, E; Vieira-Costa, J A; Heaven, S

    2016-07-01

    Influence of CO2 composition and gas flow rate to control pH in a pilot-scale raceway producing Scenedesmus sp. was studied. Light and temperature determined the biomass productivity whereas neither the CO2 molar fraction nor the gas flow rate used influenced it; because pH was always controlled and carbon limitation did not take place. The CO2 molar fraction and the gas flow rate influenced carbon loss in the system. At low CO2 molar fraction (2-6%) or gas flow rate (75-100l·min(-1)) the carbon efficiency in the sump was higher than 95%, 85% of the injected carbon being transformed into biomass. Conversely, at high CO2 molar fraction (14%) or gas flow rate (150l·min(-1)) the carbon efficiency in the sump was lower than 67%, 32% of the carbon being fixed as biomass. Analysis here reported allows the pH control to be optimized and production costs to be reduced by optimizing CO2 efficiency.

  9. [Determination of 9 residual acrylic monomers in acrylic resins by gas chromatography-mass spectrometry coupled with microwave assisted extraction].

    PubMed

    Lai, Ying; Lin, Rui; Cai, Luxin; Ge, Xiuxiu; Huang, Changchun

    2012-01-01

    A reliable gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of 9 residual acrylic monomers (methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl acrylate, butyl methacrylate, styrene, acrylic acid and methacrylic acid) in acrylic resins. Solid resin was precipitated with methanol after microwave assisted extraction with ethyl acetate for 30 min, and liquid resin was diluted with methanol directly. The nine acrylic monomers got a good separation within 20 min on a DB-WAX column. The limits of quantification (LOQs, S/N = 10) of the method were in the range of 1-10 mg/kg for liquid resin and 3-50 mg/kg for solid resin. The calibration curves were linear within 1-500 mg/L range with correlation coefficients above 0. 995. The recoveries ranged from 84.4% to 108.6% at five spiked levels. The sensitivity, recovery and selectivity of the method can fully meet the requirements of practical work.

  10. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel.

    PubMed

    Dranca, Florina; Oroian, Mircea

    2016-07-01

    The present study describes the extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant peel using ultrasonic treatments and methanol and 2-propanol as extraction solvents. The extraction yields were optimized by varying the solvent concentration, ultrasonic frequency, temperature and time of ultrasonic treatment. Box-Behnken design was used to investigate the effect of process variables on the ultrasound-assisted extraction. The results showed that for TPC extraction the optimal condition were obtained with a methanol concentration of 76.6%, 33.88 kHz ultrasonic frequency, a temperature of 69.4 °C and 57.5 min extraction time. For TMA the optimal condition were the following: 54.4% methanol concentration, 37 kHz, 55.1 °C and process time of 44.85 min. PMID:26701808

  11. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel.

    PubMed

    Dranca, Florina; Oroian, Mircea

    2016-07-01

    The present study describes the extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant peel using ultrasonic treatments and methanol and 2-propanol as extraction solvents. The extraction yields were optimized by varying the solvent concentration, ultrasonic frequency, temperature and time of ultrasonic treatment. Box-Behnken design was used to investigate the effect of process variables on the ultrasound-assisted extraction. The results showed that for TPC extraction the optimal condition were obtained with a methanol concentration of 76.6%, 33.88 kHz ultrasonic frequency, a temperature of 69.4 °C and 57.5 min extraction time. For TMA the optimal condition were the following: 54.4% methanol concentration, 37 kHz, 55.1 °C and process time of 44.85 min.

  12. A sensitive and efficient method for trace analysis of some phenolic compounds using simultaneous derivatization and air-assisted liquid-liquid microextraction from human urine and plasma samples followed by gas chromatography-nitrogen phosphorous detection.

    PubMed

    Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Alizadeh Nabil, Ali Akbar

    2015-12-01

    In present study, a simultaneous derivatization and air-assisted liquid-liquid microextraction method combined with gas chromatography-nitrogen phosphorous detection has been developed for the determination of some phenolic compounds in biological samples. The analytes are derivatized and extracted simultaneously by a fast reaction with 1-flouro-2,4-dinitrobenzene under mild conditions. Under optimal conditions low limits of detection in the range of 0.05-0.34 ng mL(-1) are achievable. The obtained extraction recoveries are between 84 and 97% and the relative standard deviations are less than 7.2% for intraday (n = 6) and interday (n = 4) precisions. The proposed method was demonstrated to be a simple and efficient method for the analysis of phenols in biological samples. PMID:26014445

  13. A sensitive and efficient method for trace analysis of some phenolic compounds using simultaneous derivatization and air-assisted liquid-liquid microextraction from human urine and plasma samples followed by gas chromatography-nitrogen phosphorous detection.

    PubMed

    Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Alizadeh Nabil, Ali Akbar

    2015-12-01

    In present study, a simultaneous derivatization and air-assisted liquid-liquid microextraction method combined with gas chromatography-nitrogen phosphorous detection has been developed for the determination of some phenolic compounds in biological samples. The analytes are derivatized and extracted simultaneously by a fast reaction with 1-flouro-2,4-dinitrobenzene under mild conditions. Under optimal conditions low limits of detection in the range of 0.05-0.34 ng mL(-1) are achievable. The obtained extraction recoveries are between 84 and 97% and the relative standard deviations are less than 7.2% for intraday (n = 6) and interday (n = 4) precisions. The proposed method was demonstrated to be a simple and efficient method for the analysis of phenols in biological samples.

  14. Liquid-liquid microextraction methods based on ultrasound-assisted emulsification and single-drop coupled to gas chromatography-mass spectrometry for determining strobilurin and oxazole fungicides in juices and fruits.

    PubMed

    Viñas, Pilar; Martínez-Castillo, Nelson; Campillo, Natalia; Hernández-Córdoba, Manuel

    2010-10-15

    Two procedures are proposed based on ultrasound-assisted emulsification and single-drop liquid-liquid microextraction for the sensitive determination of seven strobilurin and six oxazole fungicides in fruits and juice samples. Both miniaturized techniques are coupled to gas chromatography with mass spectrometry in the selected ion monitoring mode, GC-MS(SIM). The procedures use low density organic solvents, and several factors influencing the emulsification, extraction and collection efficiency are optimized. The detection limits obtained at a signal-to-noise ratio of 3 are below the MRLs set by the European Commission. Enrichment factors are between 140-1140 for the first technique used and 80-1600 for the latter. The recoveries obtained for spiked samples are satisfactory for all compounds. The methods are validated according to the Commission Decision 2002/657/EC. Different fruit and juices are analyzed by the proposed method and none of the samples contained fungicide residues above the detection limits.

  15. Simultaneous derivatization and ultrasound-assisted dispersive liquid-liquid microextraction of chloropropanols in soy milk and other aqueous matrices combined with gas-chromatography-mass spectrometry.

    PubMed

    Carro, A M; González, P; Lorenzo, R A

    2013-12-01

    A novel approach involving ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) and derivatization combined with gas chromatography-mass spectrometry was developed for the determination of chloropropanols in water and beverages. UA-DLLME was optimized as less solvent-consuming and cost-effective extraction method for water, fruit juice, milk and soy milk samples. The effect of parameters such as the type and volume of extraction solvent, the type and volume of dispersive solvent, amount of derivatization agent, temperature, pH of sample and ionic strength was investigated and optimized for each specimen, using experimental designs. By adding acetonitrile as dispersive solvent, N-heptafluorobutyrylimizadole (HFBI) as derivatization agent and chloroform as extraction solvent, the extraction-derivatization and preconcentration were simultaneously performed. The analytical concentration range was investigated in detail for each analyte in the different samples, obtaining linearity with R(2) ranging between 0.9990 and 0.9999. The method detection limits were in the range of 0.2-1.8μgL(-1) (water), 0.5-15μgL(-1) (fruit juices) and 0.9-3.6μgkg(-1) (milk) and 0.1-1.0μgkg(-1) (soy milk). The method was applied to the analysis of a variety of specimens, with recoveries of 98-101% from water, 97-102% from juices, 99-103% from milk and 97-105% from soy beverage. The relative standard deviation (precision, n=6) varied between 1.3 and 4.9%RSD in water, 2.3 and 5.8%RSD in juices, 1.0 and 5.7%RSD in milk and 3.9 and 9.3%RSD in soy milk. The proposed method was applied to analysis of twenty-eight samples. 1,3-Dichloro-2-propanol was found in an influent water sample from urban wastewater treatment plant (WWTP) (2.1±0.04mgL(-1)) but no chloropropanols were found in the corresponding effluent water sample. This result suggests that the purification system used in the WWTP has been effective for this compound. Moreover, the results revealed the presence of 3

  16. Simultaneous derivatization and ultrasound-assisted dispersive liquid-liquid microextraction of chloropropanols in soy milk and other aqueous matrices combined with gas-chromatography-mass spectrometry.

    PubMed

    Carro, A M; González, P; Lorenzo, R A

    2013-12-01

    A novel approach involving ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) and derivatization combined with gas chromatography-mass spectrometry was developed for the determination of chloropropanols in water and beverages. UA-DLLME was optimized as less solvent-consuming and cost-effective extraction method for water, fruit juice, milk and soy milk samples. The effect of parameters such as the type and volume of extraction solvent, the type and volume of dispersive solvent, amount of derivatization agent, temperature, pH of sample and ionic strength was investigated and optimized for each specimen, using experimental designs. By adding acetonitrile as dispersive solvent, N-heptafluorobutyrylimizadole (HFBI) as derivatization agent and chloroform as extraction solvent, the extraction-derivatization and preconcentration were simultaneously performed. The analytical concentration range was investigated in detail for each analyte in the different samples, obtaining linearity with R(2) ranging between 0.9990 and 0.9999. The method detection limits were in the range of 0.2-1.8μgL(-1) (water), 0.5-15μgL(-1) (fruit juices) and 0.9-3.6μgkg(-1) (milk) and 0.1-1.0μgkg(-1) (soy milk). The method was applied to the analysis of a variety of specimens, with recoveries of 98-101% from water, 97-102% from juices, 99-103% from milk and 97-105% from soy beverage. The relative standard deviation (precision, n=6) varied between 1.3 and 4.9%RSD in water, 2.3 and 5.8%RSD in juices, 1.0 and 5.7%RSD in milk and 3.9 and 9.3%RSD in soy milk. The proposed method was applied to analysis of twenty-eight samples. 1,3-Dichloro-2-propanol was found in an influent water sample from urban wastewater treatment plant (WWTP) (2.1±0.04mgL(-1)) but no chloropropanols were found in the corresponding effluent water sample. This result suggests that the purification system used in the WWTP has been effective for this compound. Moreover, the results revealed the presence of 3

  17. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  18. Entransy analysis and optimization of performance of nano-scale irreversible Otto cycle operating with Maxwell-Boltzmann ideal gas

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad Ali; Pourfayaz, Fathollah; Bidi, Mokhtar

    2016-08-01

    This paper made attempt to investigate thermodynamically a nano scale irreversible Otto cycle for optimizing its performance. This system employed an ideal Maxwell-Boltzmann gas as a working fluid. Two different scenarios were proposed in the multi-objective optimization process and the results of each of the scenarios were examined separately. The first scenario made attempt to maximize the dimensionless ecological function and minimize the dimensionless entransy dissipation of the system. Furthermore, the second scenario tried to maximize the ecological coefficient of performance and minimize the dimensionless entransy dissipation of the system. The multi objective evolutionary method integrated with non-dominated sorting genetic algorithm was used to optimize the proposed objective functions. To determine the final output of each scenario, three efficient decision makers were employed. Finally, error analysis was employed to determine the deviation of solutions chosen by decision makers.

  19. Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction.

    PubMed

    Heleno, Sandrina A; Diz, Patrícia; Prieto, M A; Barros, Lillian; Rodrigues, Alírio; Barreiro, Maria Filomena; Ferreira, Isabel C F R

    2016-04-15

    Ergosterol, a molecule with high commercial value, is the most abundant mycosterol in Agaricus bisporus L. To replace common conventional extraction techniques (e.g. Soxhlet), the present study reports the optimal ultrasound-assisted extraction conditions for ergosterol. After preliminary tests, the results showed that solvents, time and ultrasound power altered the extraction efficiency. Using response surface methodology, models were developed to investigate the favourable experimental conditions that maximize the extraction efficiency. All statistical criteria demonstrated the validity of the proposed models. Overall, ultrasound-assisted extraction with ethanol at 375 W during 15 min proved to be as efficient as the Soxhlet extraction, yielding 671.5 ± 0.5mg ergosterol/100 g dw. However, with n-hexane extracts with higher purity (mg ergosterol/g extract) were obtained. Finally, it was proposed for the removal of the saponification step, which simplifies the extraction process and makes it more feasible for its industrial transference.

  20. Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism.

    PubMed

    Peters, Baron; Zimmermann, Nils E R; Beckham, Gregg T; Tester, Jefferson W; Trout, Bernhardt L

    2008-12-24

    Increased interest in natural gas hydrate formation and decomposition, coupled with experimental difficulties in diffusion measurements, makes estimating transport properties in hydrates an important technological challenge. This research uses an equilibrium path sampling method for free energy calculations [Radhakrishnan, R.; Schlick, T. J. Chem. Phys. 2004, 121, 2436] with reactive flux and kinetic Monte Carlo simulations to estimate the methane diffusivity within a structure I gas hydrate crystal. The calculations support a water-vacancy assisted diffusion mechanism where methane hops from an occupied "donor" cage to an adjacent "acceptor" cage. For pathways between cages that are separated by five-membered water rings, the free energy landscape has a high barrier with a shallow well at the top. For pathways between cages that are separated by six-membered water rings, the free energy calculations show a lower barrier with no stable intermediate. Reactive flux simulations confirm that many reactive trajectories become trapped in the shallow intermediate at the top of the barrier leading to a small transmission coefficient for these paths. Stable intermediate configurations are identified as doubly occupied off-pathway cages and methane occupying the position of a water vacancy. Rate constants are computed and used to simulate self-diffusion with a kinetic Monte Carlo algorithm. Self-diffusion rates were much slower than the Einstein estimate because of lattice connectivity and methane's preference for large cages over small cages. Specifically, the fastest pathways for methane hopping are arranged in parallel (nonintersecting) channels, so methane must hop via a slow pathway to escape the channel. From a computational perspective, this paper demonstrates that equilibrium path sampling can compute free energies for a broader class of coordinates than umbrella sampling with molecular dynamics. From a technological perspective, this paper provides one estimate for

  1. Trace analysis of trichlorobenzenes in fish by microwave-assisted extraction and gas chromatography-electron-capture detection.

    PubMed

    Wittmann, Gyula; Huybrechts, Tom; Van Langenhove, Herman; Dewulf, Jo; Nollet, Hendrik

    2003-04-18

    An analytical method consisting of extraction, clean-up, and analysis by gas chromatography-electron-capture detection (GC-ECD) was developed for the determination of trichlorobenzenes (TCBs) in fish samples. Two extraction methods, saponification and liquid-liquid extraction (S-LLE), and microwave-assisted extraction (MAE), were evaluated. In both cases, n-pentane was used as the extraction solvent. For S-LLE, the recoveries ranged from 66.6+/-9.1% for 1-bromo-4-chlorobenzene (4-BCB) to 93.5+/-4.9% for 1,2,4-trichlorobenzene (1,2,4-TCB). The recoveries were significantly lower, between 31.0+/-3.9% for 1,2,3-trichlorobenzene (1,2,3-TCB) and 52.3+/-3.0% for 1,3,5-trichlorobenzene (1,3,5-TCB), in the absence of fish. Proteins and glycerides of the fish tissue seemed to compete with TCBs for the base, and hence decreased their decomposition rate. In the case of MAE, the recoveries were highly dependent on the pressure applied during extraction. At 5 bar, much higher recoveries were obtained, from 66.7+/-15.6% for 4-BCB to 79.9+/-13.6% for 1,2,4-TCB, than at 1 bar. Sulfur formation was, however, observed at 5 bar, and interfered with the GC-ECD analysis of TCBs. Sulfur was adequately removed by copper powder treatment, which was shown not to affect the recovery of analytes. The recoveries of target analytes by S-LLE and MAE did not differ statistically (t-test, alpha = 0.01). Both methods were appropriate for the detection of TCBs at concentration levels typically observed in marine biota, i.e. approximately 1 ng/g. S-LLE was, however, more time consuming, and required larger volumes of high-purity organic solvents than MAE.

  2. Optimization of CO2 Storage in Saline Aquifers Using Water-Alternating Gas (WAG) Scheme - Case Study for Utsira Formation

    NASA Astrophysics Data System (ADS)

    Agarwal, R. K.; Zhang, Z.; Zhu, C.

    2013-12-01

    For optimization of CO2 storage and reduced CO2 plume migration in saline aquifers, a genetic algorithm (GA) based optimizer has been developed which is combined with the DOE multi-phase flow and heat transfer numerical simulation code TOUGH2. Designated as GA-TOUGH2, this combined solver/optimizer has been verified by performing optimization studies on a number of model problems and comparing the results with brute-force optimization which requires a large number of simulations. Using GA-TOUGH2, an innovative reservoir engineering technique known as water-alternating-gas (WAG) injection has been investigated to determine the optimal WAG operation for enhanced CO2 storage capacity. The topmost layer (layer # 9) of Utsira formation at Sleipner Project, Norway is considered as a case study. A cylindrical domain, which possesses identical characteristics of the detailed 3D Utsira Layer #9 model except for the absence of 3D topography, was used. Topographical details are known to be important in determining the CO2 migration at Sleipner, and are considered in our companion model for history match of the CO2 plume migration at Sleipner. However, simplification on topography here, without compromising accuracy, is necessary to analyze the effectiveness of WAG operation on CO2 migration without incurring excessive computational cost. Selected WAG operation then can be simulated with full topography details later. We consider a cylindrical domain with thickness of 35 m with horizontal flat caprock. All hydrogeological properties are retained from the detailed 3D Utsira Layer #9 model, the most important being the horizontal-to-vertical permeability ratio of 10. Constant Gas Injection (CGI) operation with nine-year average CO2 injection rate of 2.7 kg/s is considered as the baseline case for comparison. The 30-day, 15-day, and 5-day WAG cycle durations are considered for the WAG optimization design. Our computations show that for the simplified Utsira Layer #9 model, the

  3. Gas Turbine Heavy Hybrid Powertrain Variants. Opportunities and Potential for Systems Optimization

    SciTech Connect

    Smith, David; Chambon, Paul H.

    2015-07-01

    Widespread use of alternative hybrid powertrains is currently inevitable, and many opportunities for substantial progress remain. Hybrid electric vehicles (HEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas emissions in the transportation sector. This capability is mainly attributed to (a) the potential for downsizing the engine, (b) the potential for recovering energy during braking and thus recharging the energy storage unit, and (c) the ability to minimize the operation of the engine outside of its most efficient brake specific fuel consumption (BSFC) regime. Hybridization of the Class 8, heavy-duty (HD) powertrain is inherently challenging due to the expected long-haul driving requirements and limited opportunities for regenerative braking. The objective of this project is to develop control strategies aiming at optimizing the operation of a Class 8 HEV that features a micro-turbine as the heat engine. The micro-turbine application shows promise in fuel efficiency, even when compared to current diesel engines, and can meet regulated exhaust emissions levels with no exhaust after-treatment system. Both parallel and series HEV variants will be examined to understand the merits of each approach of the micro-turbine to MD advanced powertrain applications. These powertrain configurations enable new paradigms in operational efficiency, particularly in the Class 8 truck fleet. The successful development of these HEV variants will require a thorough technical understanding of the complex interactions between various energy sources and energy consumption components, for various operating modes. PACCAR will be integrating the first generation of their series HEV powertrain with a Brayton Energy micro-turbine into a Class 8 HD truck tractor that has both regional haul and local pick-up and delivery (P&D) components to its drive cycle. The vehicle will be deployed into fleet operation for a demonstration

  4. [Applications of multi-micro-volume pressure-assisted derivatization reaction device for analysis of polar heterocyclic aromatic amines by gas chromatography-mass spectrometry].

    PubMed

    Wang, Yiru; Chen, Fangxiang; Shi, Yamei; Tan, Connieal; Chen, Xi

    2013-01-01

    A multi-micro-volume pressure-assisted derivatization reaction device has been designed and made for the silylation derivatization of polar heterocyclic aromatic amines by N-(tert-butyldimethylsilyl )-N-methyl-trifluoroacetamide (MTBSTFA) with 1% catalyst tert-butyldimethylchlorosilane (TBDMCS) at a high temperature. The tert-butyldimethylsilyl derivatives then could be automatically analyzed by gas chromatography-mass spectrometry. Using the pressure-assisted device, the silylation reaction may occur at a temperature higher than the boiling points of the reagents, and several micro-volume samples can be simultaneously pretreated in the same device to shorten the sample-preparation time and to improve the repeatability. The derivatization conditions including the headspace volume of the vial, the evaporative surface area of the reagent, derivatization temperature and time have been discussed for the use of the pressure-assisted device. The experimental results proved that the device is an effective way for the simultaneous derivatization of several micro-volume samples at a high temperature. Compared with a common device, the derivative amounts were obviously increased when using the pressure-assisted device at 90 degrees C. Quantitative derivatization can be achieved even at 150 degrees C while there was no common device could be applied at such a high temperature due to the heavy losses of reagents by evaporation. However, no obviously higher reaction speed has been observed in such a circumstance with a higher temperature and a higher pressure using the pressure-assisted device. PMID:23667982

  5. Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia

    NASA Astrophysics Data System (ADS)

    Cheng, Xi; He, Li; Lu, Hongwei; Chen, Yizhong; Ren, Lixia

    2016-09-01

    A major concern associated with current shale-gas extraction is high consumption of water resources. However, decision-making problems regarding water consumption and shale-gas extraction have not yet been solved through systematic approaches. This study develops a new bilevel optimization problem based on goals at two different levels: minimization of water demands at the lower level and maximization of system benefit at the upper level. The model is used to solve a real-world case across Pennsylvania and West Virginia. Results show that surface water would be the largest contributor to gas production (with over 80.00% from 2015 to 2030) and groundwater occupies for the least proportion (with less than 2.00% from 2015 to 2030) in both districts over the planning span. Comparative analysis between the proposed model and conventional single-level models indicates that the bilevel model could provide coordinated schemes to comprehensively attain the goals from both water resources authorities and energy sectors. Sensitivity analysis shows that the change of water use of per unit gas production (WU) has significant effects upon system benefit, gas production and pollutants (i.e., barium, chloride and bromide) discharge, but not significantly changes water demands.

  6. Gas jet studies towards an optimization of the IGISOL LIST method

    NASA Astrophysics Data System (ADS)

    Reponen, M.; Moore, I. D.; Pohjalainen, I.; Kessler, T.; Karvonen, P.; Kurpeta, J.; Marsh, B.; Piszczek, S.; Sonnenschein, V.; Äystö, J.

    2011-04-01

    Gas jets emitted from an ion guide have been studied as a function of nozzle type and gas cell-to-background pressure ratio in order to obtain a low divergent, uniform jet over a distance of several cm. The jet has been probed by imaging the light emitted from excited argon or helium gas atoms. For a simple exit hole or converging-diverging nozzle, the jet diameter was found to be insensitive to the nozzle shape and inlet pressure. Sonic jets with a FWHM below 6 mm were achieved with a background pressure larger than 1 mbar in the expansion chamber. The measurements are supported by the detection of radioactive 219Rn recoils from an alpha recoil source mounted within the gas cell. A Laval nozzle produced a well-collimated supersonic jet at low background pressures with a FWHM of ˜6 mm over a distance of 14 cm. Direct Pitot probe measurements, on-axis, revealed a non-uniform pressure distribution in the gas jet of the Laval nozzle, supporting the visual observations. All measurements are motivated by the requirement of a good geometrical overlap between atoms and counter-propagating laser beams in the gas cell-based Laser Ion Source Trap (LIST) project. Computational fluid dynamics gas flow simulations were initiated to guide the future development of the gas jet system.

  7. Optimal sensor locations for the backward Lagrangian stochastic technique in measuring lagoon gas emission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the impact of gas concentration and wind sensor locations on the accuracy of the backward Lagrangian stochastic inverse-dispersion technique (bLS) for measuring gas emission rates from a typical lagoon environment. Path-integrated concentrations (PICs) and 3-dimensional (3D) wi...

  8. OPTIMIZING SYNTHESIS GAS YIELD FROM THE CROSS DRAFT GASIFICATION OF WOODY BIOMASS

    EPA Science Inventory

    Biomass can be gasified to yield synthesis gas, tars, and ash. The process is governed by a number of parameters such as the temperature of the gasifying medium (in this case air), and the moisture content of the feedstock. Synthesis gas from gasifying wood pellets was collected ...

  9. Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology.

    PubMed

    Ordóñez-Santos, Luis Eduardo; Pinzón-Zarate, Lina Ximena; González-Salcedo, Luis Octavio

    2015-11-01

    The present study reports on the extraction of total carotenoids from peach palm fruit by-products with sunflower oil. Response surface methodology (RSM) was used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE). Three independent variables including ultrasonic intensity (764-1528, W/m(2)), temperature (25-45°C), and the extraction time (10-30 min). According to the results, the optimal UAE condition was obtained with an ultrasonic intensity of 1528 W/m(2), extraction temperature of 35°C and extraction time of 30 min. At these conditions, extraction maximum extraction of total carotenoids as 163.47 mg/100 g dried peel. The experimental values under optimal condition were in good consistent with the predicted values. PMID:25911166

  10. Application of response surface methodology to optimize microwave-assisted extraction of silymarin from milk thistle seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several parameters of Microwave-assisted extraction (MAE) including extraction time, extraction temperature, ethanol concentration and solid-liquid ratio were selected to describe the MAE processing. The silybin content, measured by an UV-Vis spectrophotometry, was considered as the silymarin yield....

  11. Optimization of a PGSS (particles from gas saturated solutions) process for a fenofibrate lipid-based solid dispersion formulation.

    PubMed

    Pestieau, Aude; Krier, Fabrice; Lebrun, Pierre; Brouwers, Adeline; Streel, Bruno; Evrard, Brigitte

    2015-05-15

    The aim of this study was to develop a formulation containing fenofibrate and Gelucire(®) 50/13 (Gattefossé, France) in order to improve the oral bioavailability of the drug. Particles from gas saturated solutions (PGSS) process was chosen for investigation as a manufacturing process for producing a solid dispersion. The PGSS process was optimized according to the in vitro drug dissolution profile obtained using a biphasic dissolution test. Using a design of experiments approach, the effects of nine experimental parameters were investigated using a PGSS apparatus provided by Separex(®) (Champigneulles, France). Within the chosen experimental conditions, the screening results showed that the drug loading level, the autoclave temperature and pressure, the connection temperature and the nozzle diameter had a significant influence on the dissolution profile of fenofibrate. During the optimization step, the three most relevant parameters were optimized using a central composite design, while other factors remained fixed. In this way, we were able to identify the optimal production conditions that would deliver the highest level of fenofibrate in the organic phase at the end of the dissolution test. The closeness between the measured and the predicted optimal dissolution profiles in the organic phase demonstrated the validity of the statistical analyses.

  12. Design and optimization of a gas-puff nozzle for staged Z-pinch experiments using computational fluid dynamics simulations

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Krasheninnikov, I.; Beg, F. N.; Wessel, F.; Rahman, H.; Ney, P.; Presura, R.; McKee, E.; Darling, T.; Covington, A.

    2015-11-01

    Previous experimental work on staged Z-pinches demonstrated that gas liners can efficiently couple energy and implode uniformly a target-plasma. A 1.5 MA, 1 μs current driver was used to implode a magnetized, Kr liner onto a D + target, producing 1010 neutrons per shot and providing clear evidence of enhanced pinch stability. Time-of-flight data suggest that primary and secondary neutrons were produced. MHD simulations show that in Zebra, a 1.5MA and 100ns rise-time current driver, high fusion gain can be attained when the optimum liner and plasma target conditions are used. In this work we present the design and optimization of a liner-on-target nozzle to be fielded in Zebra and demonstrate high fusion gain at 1 MA current level. The nozzle is composed of an annular high atomic number gas-puff and an on-axis plasma gun that will deliver the ionized deuterium target. The nozzle optimization was carried out using the computational fluid dynamics (CFD) code fluent and the MHD code Mach2. The CFD simulation produces density and temperature profiles, as a function of the nozzle shapes and gas conditions, which are then used in Mach2 to find the optimum plasma liner implosion-pinch conditions. Funded by the US Department of Energy, ARPA-E, Control Number 1184-1527.

  13. Ultrananocrystalline diamond film deposition by direct-current plasma assisted chemical vapor deposition using hydrogen-rich precursor gas in the absence of the positive column

    NASA Astrophysics Data System (ADS)

    Lee, Hak-Joo; Jeon, Hyeongtag; Lee, Wook-Seong

    2011-01-01

    We have investigated the ultrananocrystalline diamond (UNCD) deposition by direct-current plasma assisted chemical vapor deposition on 4 in. Si wafer using CH4H2 as well as CH4Ar gas chemistry containing additive nitrogen. CH4/N2/H2 (5%/0.5%/94.5%) and CH4/N2/H2/Ar (0.5%/5%/6%/88.5%) gas mixtures were compared as the precursor gas. Molybdenum and tungsten were compared as cathode material. Discharge voltage and current were 480 V/45 A and 320 V/60 A, for respective gas chemistry. Chamber pressure and substrate temperature were 110-150 Torr and 750-850 °C, respectively. The film was characterized by near edge x-ray absorption fine structure spectroscopy, x-ray diffraction, high-resolution transmission electron microscope, electron energy loss spectroscopy, and high-resolution scanning electron microscope. We have demonstrated that (1) elimination of the positive column, by adopting very small interelectrode distance, gave some important and beneficial effects; (2) the plasma stability and impurity incorporation was sensitive to the cathode material and the precursor gas; (3) using the conventional CH4/H2 precursor gas and tungsten cathode, the mirror-smooth 4 in. UNCD film of excellent phase-purity and grain size below 10 nm could be deposited even in the absence of the positive column. The high electric field in the unusually narrow interelectrode space and the consequent high electron kinetic energy, in conjunction with the unusually high electron current thereof, directed to the substrate, i.e., the anode, was proposed to be the source of the grain refinement to achieve UNCD at such high chamber pressure around 110-150 Torr, in the absence of the usual ion bombardment assistance.

  14. Development of Micro-Heaters with Optimized Temperature Compensation Design for Gas Sensors

    PubMed Central

    Hwang, Woo-Jin; Shin, Kyu-Sik; Roh, Ji-Hyoung; Lee, Dae-Sung; Choa, Sung-Hoon

    2011-01-01

    One of the key components of a chemical gas sensor is a MEMS micro-heater. Micro-heaters are used in both semiconductor gas sensors and NDIR gas sensors; however they each require different heat dissipation characteristics. For the semiconductor gas sensors, a uniform temperature is required over a wide area of the heater. On the other hand, for the NDIR gas sensor, the micro-heater needs high levels of infrared radiation in order to increase sensitivity. In this study, a novel design of a poly-Si micro-heater is proposed to improve the uniformity of heat dissipation on the heating plate. Temperature uniformity of the micro-heater is achieved by compensating for the variation in power consumption around the perimeter of the heater. With the power compensated design, the uniform heating area is increased by 2.5 times and the average temperature goes up by 40 °C. Therefore, this power compensated micro-heater design is suitable for a semiconductor gas sensor. Meanwhile, the poly-Si micro-heater without compensation shows a higher level of infrared radiation under equal power consumption conditions. This indicates that the micro-heater without compensation is more suitable for a NDIR gas sensor. Furthermore, the micro-heater shows a short response time of less than 20ms, indicating a very high efficiency of pulse driving. PMID:22163756

  15. Multi-Optimization of Ultrasonic-Assisted Enzymatic Extraction of Atratylodes macrocephala Polysaccharides and Antioxidants Using Response Surface Methodology and Desirability Function Approach.

    PubMed

    Pu, Jin-Bao; Xia, Bo-Hou; Hu, Yi-Juan; Zhang, Hong-Jian; Chen, Jing; Zhou, Jie; Liang, Wei-Qing; Xu, Pan

    2015-12-11

    Rhizoma Atractylodes macrocephala polysaccharides (RAMP) have been reported to have a variety of important biological activities. In this study, an ultrasonic-assisted enzymatic extraction (UAEE) was employed to obtain the highest extraction yield and strongest antioxidant activity of RAMP and optimized by a multi-response optimization process. A three-level four-factor Box-Behnken design (BBD) was performed as response surface methodology (RSM) with desirability function (DF) to attain the optimal extraction parameters. The DPPH scavenging percentage was used to represent the antioxidant ability of RAMP. The maximum D value (0.328), along with the maximum yield (59.92%) and DPPH scavenging percentage (13.28%) were achieved at 90.54 min, 57.99 °C, 1.95% cellulase and 225.29 W. These values were further validated and found to be in good agreement with the predicted values. Compared to the other extraction methods, both the yield and scavenging percentage of RAMP obtained by UAEE was favorable and the method appeared to be time-saving and of high efficiency. These results demostrated that UAEE is an appropriate and effective extraction technique. Moreover, RSM with DF approach has been proved to be adequate for the design and optimization of the extraction parameters for RAMP. This work has a wide range of implications for the design and operation of polysaccharide extraction processes.

  16. GeneOptimizer program-assisted cDNA reengineering enhances sRAGE autologous expression in Chinese hamster ovary cells.

    PubMed

    Wei, Wen; Kim, Ji Min; Medina, Danny; Lakatta, Edward G; Lin, Li

    2014-03-01

    Soluble receptor for advanced glycation end products (sRAGE) is a secreted mammalian protein that functions as a decoy to counter-react RAGE signaling-resultant pathological conditions, and has high therapeutic potentials. Our prior studies showed that recombinant human sRAGE expressed in Chinese hamster, Ceanothus griseus, ovary (CHO) cells is modified by specific N-glycosylation, and exhibits higher bioactivity than that expressed in other host systems including insect Spodoptera frugiperda cells. Here, we show that GeneOptimizer software program-assisted, reengineered sRAGE cDNA enhances the recombinant protein expression in CHO cells. The cDNA sequence encoding human sRAGE was optimized for RNA structure, stability, and codon usages in CHO cells. We found that such optimization augmented sRAGE expression over 2 folds of its wild-type counterpart. We also studied how individual parameter impacted sRAGE autologous expression in CHO cells, and whether sRAGE bioactivity was compromised. We found that the enhanced expression appeared not to affect sRAGE N-glycosylation and bioactivity. Optimization of sRAGE expression provides a basis for future large-scale production of this protein to meet medical needs. PMID:24373844

  17. Multi-Optimization of Ultrasonic-Assisted Enzymatic Extraction of Atratylodes macrocephala Polysaccharides and Antioxidants Using Response Surface Methodology and Desirability Function Approach.

    PubMed

    Pu, Jin-Bao; Xia, Bo-Hou; Hu, Yi-Juan; Zhang, Hong-Jian; Chen, Jing; Zhou, Jie; Liang, Wei-Qing; Xu, Pan

    2015-01-01

    Rhizoma Atractylodes macrocephala polysaccharides (RAMP) have been reported to have a variety of important biological activities. In this study, an ultrasonic-assisted enzymatic extraction (UAEE) was employed to obtain the highest extraction yield and strongest antioxidant activity of RAMP and optimized by a multi-response optimization process. A three-level four-factor Box-Behnken design (BBD) was performed as response surface methodology (RSM) with desirability function (DF) to attain the optimal extraction parameters. The DPPH scavenging percentage was used to represent the antioxidant ability of RAMP. The maximum D value (0.328), along with the maximum yield (59.92%) and DPPH scavenging percentage (13.28%) were achieved at 90.54 min, 57.99 °C, 1.95% cellulase and 225.29 W. These values were further validated and found to be in good agreement with the predicted values. Compared to the other extraction methods, both the yield and scavenging percentage of RAMP obtained by UAEE was favorable and the method appeared to be time-saving and of high efficiency. These results demostrated that UAEE is an appropriate and effective extraction technique. Moreover, RSM with DF approach has been proved to be adequate for the design and optimization of the extraction parameters for RAMP. This work has a wide range of implications for the design and operation of polysaccharide extraction processes. PMID:26690404

  18. Naturally fractured tight gas reservoir detection optimization. Quarterly report, January--March 1995

    SciTech Connect

    1995-05-01

    This report describes progress in the following five projects: (1) Geologic assessment of the Piceance Basin; (2) Regional stratigraphic studies, Upper Cretaceous Mesaverde Group, southern Piceance Basin, Colorado; (3) Structurally controlled and aligned tight gas reservoir compartmentalization in the San Juan and Piceance Basins--Foundation for a new approach to exploration and resource assessments of continuous type deposits; (4) Delineation of Piceance Basin basement structures using multiple source data--Implications for fractured reservoir exploration; and (5) Gas and water-saturated conditions in the Piceance Basin, western Colorado--Implications for fractured reservoir detection in a gas-centered coal basin.

  19. Trajectory design to L4 and L5 libiration point in the Earth-Moon system using lunar gravity assistance and orbit optimization

    NASA Astrophysics Data System (ADS)

    Zhang, ZhengTao; Tang, Jingshi; Liu, Lin

    There has some application prospects of the stable libration point L4 and L5 of the Earth-Moon system in deep space exploration,such as VLBI.The transfer strategy is from LEO to L4 or L5 libration point with the lunar gravity assistance,which saves energy compared to the traditional Hohmann transfer strategy.The high-order analysis solution of period orbit around L4 libration point is applied to express the target orbit.Then by changing the velocity of a given point on the target orbit and doing reverse integration the probe reaches the perilune patched by a Hohmann transfer orbit from LEO with different velocity.By utilizing the global optimization method PSO and local SQP method,we optimize the transfer orbit. This powered lunar gravity assistance method is applied in the transfer from L2 to L4 and L5 libration point with invariant manifolds,which sloves the problem that the unstable manifold of L2 cannot reach L4 and L5.

  20. Synthesis and characterizations of nanoscale single crystal GaN grown by ion assisted gas source MBE

    NASA Astrophysics Data System (ADS)

    Cui, Bentao; Cohen, P. I.

    2004-03-01

    Nanoscale patterns could be induced by ion bombardment [1, 2]. In this study, an in-situ real time light scattering technique, combined with Reflection High Energy Electron Diffraction (RHEED), were used to study the surface morphology evolution during the ion beam assisted growth of GaN in a gas source MBE system. Ga was provided by a thermal effusion cell. Ammonia was used as the nitrogen source. A hot-filament Kaufman ion source was used to supply sub-KeV ion beams. Sapphire and MOCVD GaN templates were used as the substrates. A custom-designed Desorption Mass Spectrometer (DMS) was used to calibrate the growth temperature and determine the growth rate. Before growing GaN, the sapphire substrates were pretreated in an ion flux and then annealed for cleaning. The sapphire surface was then nitrided in ammonia at 1100K for about 10 min. After nitridation, a thin GaN buffer layer was prepared by a sequence of adsorption and annealing steps. During the growth, the short-range surface morphology and film quality were monitored in situ by RHEED. In a real-time way, the long-range surface morphology was monitored in-situ by light scattering technique. Photodiode array detector and CCD camera were used to record the reflected light scattering intensity and spectra profile respectively. Periodical patterns, such as ripple, have been observed during ion bombardment on GaN with or without growth. A linear theory (from Bradley and Harper 1988 [3]) has been modified to explain the dependence of ripple wavelength on ion species and ion energy. Partially supported by the National Science Foundation and the Air Force Office of Scientific Research. [1]. J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro, Phys. Rev. Lett. 82, 2330 (1998); J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro, Phys. Rev. Lett. 84, 5800 (2000). [2]. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt et al.. Science 285, 1551 (1999). [3]. R. M. Bradley

  1. Microwave-assisted extraction and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for isolation and determination of polycyclic aromatic hydrocarbons in smoked fish.

    PubMed

    Ghasemzadeh-Mohammadi, Vahid; Mohammadi, Abdorreza; Hashemi, Maryam; Khaksar, Ramin; Haratian, Parivash

    2012-05-11

    A simple and efficient method was developed using microwave-assisted extraction (MAE) and dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) for the extraction and quantification of 16 polycyclic aromatic hydrocarbons (PAHs) in smoked fish. Benzo[a]pyrene, chrysene and pyrene were employed as model compounds and spiked to smoked fish to assess the extraction procedure. Several parameters, including the nature and volume of hydrolysis, extracting and disperser solvents, microwave time and pH, were optimized. In the optimum condition for MAE, 1g of fish sample was extracted in 12 mL KOH (2M) and ethanol with a 50:50 ratio in a closed-vessel system. For DLLME, 500 μL of acetone (disperser solvent) containing 100 μL of ethylene tetrachloride (extraction solvent) was rapidly injected by syringe into 12 mL of the sample extract solution (previously adjusted to pH 6.5), thereby forming a cloudy solution. Phase separation was performed by centrifugation and a volume of 1.5 μL of the sedimented phase was analyzed by GC-MS in select ion monitoring (SIM) mode. Satisfactory results were achieved when this method was applied to analyze the PAHs in smoked fish samples. The MAE-DLLME method coupled with GC-MS provided excellent enrichment factors (in the range of 244-373 for 16 PAHs) and good repeatability (with a relative standard deviation between 2.8 and 9%) for spiked smoked fish. The calibration graphs were linear in the range of 1-200 ng g(-1), with the square of the correlation coefficient (R(2))>0.981 and detection limits between 0.11 and 0.43 ng g(-1). The recoveries of those compounds in smoked fish were from 82.1% to 105.5%. A comparison of this method with previous methods demonstrated that the proposed method is an accurate, rapid and reliable sample-pretreatment method that gives very good enrichment factors and detection limits for extracting and determining PAHs from smoked fish. PMID:22483095

  2. Modeling and optimizing a gas-water reservoir: Enhanced recovery with waterflooding

    USGS Publications Warehouse

    Johnson, M.E.; Monash, E.A.; Waterman, M.S.

    1979-01-01

    Accepted practice dictates that waterflooding of gas reservoirs should commence, if ever, only when the reservoir pressure has declined to the minimum production pressure. Analytical proof of this hypothesis has yet to appear in the literature however. This paper considers a model for a gas-water reservoir with a variable production rate and enhanced recovery with waterflooding and, using an initial dynamic programming approach, confirms the above hypothesis. ?? 1979 Plenum Publishing Corporation.

  3. Optimization of heat and mass transfers in counterflow corrugated-plate liquid-gas exchangers used in a greenhouse dehumidifier

    NASA Astrophysics Data System (ADS)

    Bentounes, N.; Jaffrin, A.

    1998-09-01

    Heat and mass transfers occuring in a counterflow direct contact liquid-gas exchanger determine the performance of a new greenhouse air dehumidifier designed at INRA. This prototype uses triethylene glycol (TEG) as the desiccant fluid which extracts water vapor from the air. The regeneration of the TEG desiccant fluid is then performed by direct contact with combustion gas from a high efficiency boiler equipped with a condensor. The heat and mass transfers between the thin film of diluted TEG and the hot gas were simulated by a model which uses correlation formula from the literature specifically relevant to the present cross-corrugated plates geometry. A simple set of analytical solutions is first derived, which explains why some possible processes can clearly be far from optimal. Then, more exact numerical calculations confirm that some undesirable water recondensations on the upper part of the exchanger were limiting the performance of this prototype. More suitable conditions were defined for the process, which lead to a new design of the apparatus. In this second prototype, a gas-gas exchanger provides dryer and cooler gas to the basis of the regenerators, while a warmer TEG is fed on the top. A whole range of operating conditions was experimented and measured parameters were compared with numerical simulations of this new configuration: recondensation did not occur any more. As a consequence, this second prototype was able to concentrate the desiccant fluid at the desired rate of 20 kg H_{2O}/hour, under temperature and humidity conditions which correspond to the dehumidification of a 1000 m2 greenhouse heated at night during the winter season.

  4. Start-up, performance and optimization of a compost biofilter treating gas-phase mixture of benzene and toluene.

    PubMed

    Rene, Eldon R; Kar, Saurajyoti; Krishnan, Jagannathan; Pakshirajan, K; López, M Estefanía; Murthy, D V S; Swaminathan, T

    2015-08-01

    The performance of a compost biofilter inoculated with mixed microbial consortium was optimized for treating a gas-phase mixture of benzene and toluene. The biofilter was acclimated to these VOCs for a period of ∼18d. The effects of concentration and flow rate on the removal efficiency (RE) and elimination capacity (EC) were investigated by varying the inlet concentration of benzene (0.12-0.95g/m(3)), toluene (0.14-1.48g/m(3)) and gas-flow rate (0.024-0.072m(3)/h). At comparable loading rates, benzene removal in the mixture was reduced in the range of 6.6-41% in comparison with the individual benzene degradation. Toluene removal in mixture was even more affected as observed from the reductions in REs, ranging from 18.4% to 76%. The results were statistically interpreted by performing an analysis of variance (ANOVA) to elucidate the main and interaction effects.

  5. A study of the optimization method used in the NAVY/NASA gas turbine engine computer code

    NASA Technical Reports Server (NTRS)

    Horsewood, J. L.; Pines, S.

    1977-01-01

    Sources of numerical noise affecting the convergence properties of the Powell's Principal Axis Method of Optimization in the NAVY/NASA gas turbine engine computer code were investigated. The principal noise source discovered resulted from loose input tolerances used in terminating iterations performed in subroutine CALCFX to satisfy specified control functions. A minor source of noise was found to be introduced by an insufficient number of digits in stored coefficients used by subroutine THERM in polynomial expressions of thermodynamic properties. Tabular results of several computer runs are presented to show the effects on program performance of selective corrective actions taken to reduce noise.

  6. Limit of detection of 15{sub N} by gas-chromatography atomic emission detection: Optimization using an experimental design

    SciTech Connect

    Deruaz, D.; Bannier, A.; Pionchon, C.

    1995-08-01

    This paper deals with the optimal conditions for the detection of {sup 15}N determined using a four-factor experimental design from [2{sup 13}C,-1,3 {sup 15}N] caffeine measured with an atomic emission detector (AED) coupled to gas chromatography (GC). Owing to the capability of a photodiodes array, AED can simultaneously detect several elements using their specific emission lines within a wavelength range of 50 nm. So, the emissions of {sup 15}N and {sup 14}N are simultaneously detected at 420.17 nm and 421.46 nm respectively. Four independent experimental factors were tested (1) helium flow rate (plasma gas); (2) methane pressure (reactant gas); (3) oxygen pressure; (4) hydrogen pressure. It has been shown that these four gases had a significant influence on the analytical response of {sup 15}N. The linearity of the detection was determined using {sup 15}N amounts ranging from 1.52 pg to 19 ng under the optimal conditions obtained from the experimental design. The limit of detection was studied using different methods. The limits of detection of {sup 15}N was 1.9 pg/s according to the IUPAC method (International-Union of Pure and Applied Chemistry). The method proposed by Quimby and Sullivan gave a value of 2.3 pg/s and that of Oppenheimer gave a limit of 29 pg/s. For each determination, and internal standard: 1-isobutyl-3.7 dimethylxanthine was used. The results clearly demonstrate that GC AED is sensitive and selective enough to detect and measure {sup 15}N-labelled molecules after gas chromatographic separation.

  7. A Novel Optimization Technique to Improve Gas Recognition by Electronic Noses Based on the Enhanced Krill Herd Algorithm.

    PubMed

    Wang, Li; Jia, Pengfei; Huang, Tailai; Duan, Shukai; Yan, Jia; Wang, Lidan

    2016-01-01

    An electronic nose (E-nose) is an intelligent system that we will use in this paper to distinguish three indoor pollutant gases (benzene (C₆H₆), toluene (C₇H₈), formaldehyde (CH₂O)) and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice, however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always find the global optimization value. In addition its search ability relies fully on randomness, so it cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to improve the global searching and convergence speed performance of KH. To obtain a more accurate model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee the krill group are diversiform at the early stage of iterations, and have a good performance in local searching ability at the later stage of iterations. The recognition results of EKH are compared with those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and we can find that EKH is better than the other considered methods. The research results verify that EKH not only significantly improves the performance of our E-nose system, but also provides a good beginning and theoretical basis for further study about other improved krill algorithms' applications in all E-nose application areas. PMID

  8. A Novel Optimization Technique to Improve Gas Recognition by Electronic Noses Based on the Enhanced Krill Herd Algorithm

    PubMed Central

    Wang, Li; Jia, Pengfei; Huang, Tailai; Duan, Shukai; Yan, Jia; Wang, Lidan

    2016-01-01

    An electronic nose (E-nose) is an intelligent system that we will use in this paper to distinguish three indoor pollutant gases (benzene (C6H6), toluene (C7H8), formaldehyde (CH2O)) and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice, however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always find the global optimization value. In addition its search ability relies fully on randomness, so it cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to improve the global searching and convergence speed performance of KH. To obtain a more accurate model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee the krill group are diversiform at the early stage of iterations, and have a good performance in local searching ability at the later stage of iterations. The recognition results of EKH are compared with those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and we can find that EKH is better than the other considered methods. The research results verify that EKH not only significantly improves the performance of our E-nose system, but also provides a good beginning and theoretical basis for further study about other improved krill algorithms’ applications in all E-nose application areas. PMID

  9. Efficiency enhancement for natural gas liquefaction with CO2 capture and sequestration through cycles innovation and process optimization

    NASA Astrophysics Data System (ADS)

    Alabdulkarem, Abdullah

    Liquefied natural gas (LNG) plants are energy intensive. As a result, the power plants operating these LNG plants emit high amounts of CO2 . To mitigate global warming that is caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, the major challenge of implementing this CCS system is the associated power requirement, increasing power consumption by about 15--25%. Therefore, the main scope of this work is to tackle this challenge by minimizing CCS power consumption as well as that of the entire LNG plant though system integration and rigorous optimization. The power consumption of the LNG plant was reduced through improving the process of liquefaction itself. In this work, a genetic algorithm (GA) was used to optimize a propane pre-cooled mixed-refrigerant (C3-MR) LNG plant modeled using HYSYS software. An optimization platform coupling Matlab with HYSYS was developed. New refrigerant mixtures were found, with savings in power consumption as high as 13%. LNG plants optimization with variable natural gas feed compositions was addressed and the solution was proposed through applying robust optimization techniques, resulting in a robust refrigerant which can liquefy a range of natural gas feeds. The second approach for reducing the power consumption is through process integration and waste heat utilization in the integrated CCS system. Four waste heat sources and six potential uses were uncovered and evaluated using HYSYS software. The developed models were verified against experimental data from the literature with good agreement. Net available power enhancement in one of the proposed CCS configuration is 16% more than the conventional CCS configuration. To reduce the CO2 pressurization power into a well for enhanced oil recovery (EOR) applications, five CO2 pressurization methods were explored. New CO2 liquefaction cycles were developed and modeled using HYSYS software. One of the developed

  10. Arapahoe low-sulfur-coal fabric filter pilot plant: Volume 3, Characterization of sonic-assisted reverse-gas cleaning, May 1982--May 1984: Final report

    SciTech Connect

    Cushing, K.M.; Bustard, C.J.; Pontius, D.H.; Pyle, B.E.; Smith, W.B.

    1989-02-01

    During 1981 intense interest developed in the utility industry regarding the use of horns as a supplement to reverse-gas bag cleaning. To characterize and assess sonic-enhanced, reverse-gas cleaning, horns were installed at EPRI's 10-MW Fabric Filter Pilot Plant (FFPP) at its Arapahoe Test Facility located at Public Service Company of Colorado's Arapahoe Steam Plant in Denver, Colorado. In addition to the FFPP tests, laboratory studies of sonic cleaning were conducted to supplement the pilot plant data. To verify the applicability of the pilot plant and laboratory work to full-scale baghouses, field data from utility baghouses in which horns had been installed were collected. The purpose of the testing was to determine the range of horn frequencies and total output power most effective in removing residual dustcakes from bags in reverse-gas-cleaned baghouses and, hence, most effective in reducing baghouse pressure drop. No attempt was made to identify a specific horn or horns most appropriate for baghouse application. The report presents the results of this testing from May 1982 through May 1984. Results showed that horns can dislodge a significant fraction of residual dustcake, thereby reducing pressure drop by as much as 60% without any noticeable reduction in bag life. Although outlet particulate emissions are higher with sonic assistance, they are generally <0.01 lb/10/sup 6/ Btu---below the 1979 New Source Performance Standards of 0.03 lb/MBtu. The overall results of this sonic horn investigation indicate that reverse-gas cleaning with sonic assistance definitely promotes more effective bag filter cleaning and lower pressure drop, and it should be considered as a supplement for most reverse-gas cleaned baghouse applications. 10 refs., 37 figs., 7 tabs.

  11. Bio-guided optimization of the ultrasound-assisted extraction of compounds from Annona glabra L. leaves using the etiolated wheat coleoptile bioassay.

    PubMed

    Matsumoto, Sadao; Varela, Rosa M; Palma, Miguel; Molinillo, José M G; Lima, Inês S; Barroso, Carmelo G; Macías, Francisco A

    2014-07-01

    A bio-guided optimization of the extraction of bioactive components from Annona glabra leaves has been developed using the etiolated wheat coleoptile bioassay as the control method. The optimization of an ultrasound-assisted extraction of bioactive compounds using allelopathy results as target values has been carried out for the first time. A two-level fractional factorial experimental design was applied to optimize the ultrasound-assisted extraction. The solvent was the extraction variable that had the most marked effect on the resulting bioactivity of the extracts in the etiolated wheat coleoptile bioassay. Extraction time, extraction temperature and the size of the ultrasonic probe also influenced the bioactivity of the extracts. A larger scale extraction was carried out in the next step in the allelopathic study, i.e., the isolation of compounds from the bioactive extract and chemical characterization by spectroscopic techniques, including NMR. Eight compounds were isolated and identified from the active extracts, namely two steroids (β-sistosterol and stigmasterol), five diterpenes with the kaurane skeleton (ent-kaur-16-en-19-oic acid, ent-19-methoxy-19-oxokauran-17-oic acid, annoglabasin B, ent-17-hydroxykaur-15-en-19-oic acid and ent-15β,16β-epoxy-17-hydroxy-kauran-19-oic acid) and the acetogenin asimicin. The most active compound was annoglabasin B, which showed inhibition with values of -95% at 10(-3) M, -87% at 5×10(-4) M and greater than -70% at 10(-4) M in the etiolated wheat coleoptile bioassay. PMID:24556321

  12. Bio-guided optimization of the ultrasound-assisted extraction of compounds from Annona glabra L. leaves using the etiolated wheat coleoptile bioassay.

    PubMed

    Matsumoto, Sadao; Varela, Rosa M; Palma, Miguel; Molinillo, José M G; Lima, Inês S; Barroso, Carmelo G; Macías, Francisco A

    2014-07-01

    A bio-guided optimization of the extraction of bioactive components from Annona glabra leaves has been developed using the etiolated wheat coleoptile bioassay as the control method. The optimization of an ultrasound-assisted extraction of bioactive compounds using allelopathy results as target values has been carried out for the first time. A two-level fractional factorial experimental design was applied to optimize the ultrasound-assisted extraction. The solvent was the extraction variable that had the most marked effect on the resulting bioactivity of the extracts in the etiolated wheat coleoptile bioassay. Extraction time, extraction temperature and the size of the ultrasonic probe also influenced the bioactivity of the extracts. A larger scale extraction was carried out in the next step in the allelopathic study, i.e., the isolation of compounds from the bioactive extract and chemical characterization by spectroscopic techniques, including NMR. Eight compounds were isolated and identified from the active extracts, namely two steroids (β-sistosterol and stigmasterol), five diterpenes with the kaurane skeleton (ent-kaur-16-en-19-oic acid, ent-19-methoxy-19-oxokauran-17-oic acid, annoglabasin B, ent-17-hydroxykaur-15-en-19-oic acid and ent-15β,16β-epoxy-17-hydroxy-kauran-19-oic acid) and the acetogenin asimicin. The most active compound was annoglabasin B, which showed inhibition with values of -95% at 10(-3) M, -87% at 5×10(-4) M and greater than -70% at 10(-4) M in the etiolated wheat coleoptile bioassay.

  13. Ultrasound-assisted emulsification microextraction coupled with gas chromatography-mass spectrometry using the Taguchi design method for bisphenol migration studies from thermal printer paper, toys and baby utensils.

    PubMed

    Viñas, Pilar; López-García, Ignacio; Campillo, Natalia; Rivas, Ricardo E; Hernández-Córdoba, Manuel

    2012-08-01

    The optimization of a clean procedure based on ultrasound-assisted emulsification liquid-liquid microextraction for the sensitive determination of four bisphenols is presented. The miniaturized technique was coupled with gas chromatography-mass spectrometry after derivatization by in situ acetylation. The Taguchi experimental method, an orthogonal array design, was applied to find the optimal combination of seven factors (each factor at three levels) influencing the emulsification, extraction and collection efficiency, namely acetic anhydride volume, sodium phosphate concentration, carbon tetrachloride volume, aqueous sample volume, sodium chloride concentration and ultrasound power and application time. A second factorial design was applied with four factors and five levels for each factor, 25 experiments being performed in this instance. The matrix effect was evaluated, and it was concluded that sample quantification can be done by calibration with aqueous standards. The detection limits ranged from 0.01 to 0.03 ng mL(-1) depending on the compound. The environmentally friendly sample pretreatment procedure was applied to study the migration of the bisphenols from different types of samples: thermal printer paper, compact discs, digital versatile discs, small tight-fitting waistcoats, baby's bottles, baby bottle nipples of different materials and children's toys.

  14. Evaluation of the optimal carrier gas flow rate for the carbon nanotubes growth

    NASA Astrophysics Data System (ADS)

    Kurenya, A. G.; Gorodetskiy, D. V.; Arkhipov, V. E.; Okotrub, A. V.

    2013-03-01

    Arrays of aligned carbon nanotubes (CNTs) were synthesized in a gas-phase flow reactor by thermal decomposition of reaction mixture (2% solution of ferrocene in toluene) on the surface of silicon substrates heated to 800°C. Variation of the height of the CNT array as a function of position of the substrate in the reactor and carrier gas flow rate was registered. The difference in the obtained dependences and temperature distribution in the reactor points to the necessity of taking into account the change in the concentration of the active carbon component in the gas mixture. An expression associating the parameters of synthesis and thickness of the CNT array being formed on the substrate is offered.

  15. Optimization of a two stage light gas gun. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rynearson, R. J.; Rand, J. L.

    1972-01-01

    Performance characteristics of the Texas A&M University light gas gun are presented along with a review of basic gun theory and popular prediction methods. A computer routine based on the simple isentropic compression method is discussed. Results from over 60 test shots are given which demonstrate an increase in gun muzzle velocity from 9.100 ft/sec. to 19,000 ft/sec. The data gathered indicated the Texas A&M light gas gun more closely resembles an isentropic compression gun rather than a shock compression gun.

  16. Optimal stack gas cleaning technology to maximize coal utilization in electric power generation

    SciTech Connect

    Emish, G.J.; Schulte, W.; Ellison, W.

    1997-07-01

    Major trends and developments are affecting availability, cost and comparative advantages to be assessed in choice of alternative primary energy/fuel sources and stack gas cleaning processes. As a result, electric power development can be seen to be in a traditional period leading to broadened, principal use of plentiful, higher-sulfur, fossil fuels, e.g. bituminous coal, petroleum coke, Orimulsion, etc., accompanied by gas cleaning system design affording minimum total cost per ton of SO{sub 2} removal in conjunction with advantageous, increased volume of high-value sulfurous byproduct generation.

  17. Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric, optimization, kinetic and isotherm study.

    PubMed

    Jamshidi, M; Ghaedi, M; Dashtian, K; Hajati, S; Bazrafshan, A A

    2016-09-01

    Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019g ZnO: Cr-NPs-AC, 3.9min sonication at 4.5, 4.8 and 4.7mgL(-1) of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R(2), adjusted and predicted R(2) for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6mgg(-1) for MG, EY and AO, respectively. PMID:27150752

  18. Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric, optimization, kinetic and isotherm study.

    PubMed

    Jamshidi, M; Ghaedi, M; Dashtian, K; Hajati, S; Bazrafshan, A A

    2016-09-01

    Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019g ZnO: Cr-NPs-AC, 3.9min sonication at 4.5, 4.8 and 4.7mgL(-1) of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R(2), adjusted and predicted R(2) for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6mgg(-1) for MG, EY and AO, respectively.

  19. Optimization of Resin Infusion Processing for Composite Pipe Key-Part and K/T Type Joints Using Vacuum-Assisted Resin Transfer Molding

    NASA Astrophysics Data System (ADS)

    Wang, Changchun; Bai, Guanghui; Yue, Guangquan; Wang, Zhuxi; Li, Jin; Zhang, Boming

    2016-10-01

    In present study, the optimization injection processes for manufacturing the composite pipe key-part and K/T type joints in vacuum-assisted resin transfer molding (VARTM) were determined by estimating the filling time and flow front shape of four kinds of injection methods. Validity of the determined process was proved with the results of a scaling-down composite pipe key-part containing of the carbon fiber four axial fabrics and a steel core with a complex surface. In addition, an expanded-size composite pipe part was also produced to further estimate the effective of the determined injection process. Moreover, the resin injection method for producing the K/T type joints via VARTM was also optimized with the simulation method, and then manufactured on a special integrated mould by the determined injection process. The flow front pattern and filling time of the experiments show good agreement with that from simulation. Cross-section images of the cured composite pipe and K/T type joints parts prove the validity of the optimized injection process, which verify the efficiency of simulation method in obtaining a suitable injection process of VARTM.

  20. Optimization of Resin Infusion Processing for Composite Pipe Key-Part and K/T Type Joints Using Vacuum-Assisted Resin Transfer Molding

    NASA Astrophysics Data System (ADS)

    Wang, Changchun; Bai, Guanghui; Yue, Guangquan; Wang, Zhuxi; Li, Jin; Zhang, Boming

    2016-05-01

    In present study, the optimization injection processes for manufacturing the composite pipe key-part and K/T type joints in vacuum-assisted resin transfer molding (VARTM) were determined by estimating the filling time and flow front shape of four kinds of injection methods. Validity of the determined process was proved with the results of a scaling-down composite pipe key-part containing of the carbon fiber four axial fabrics and a steel core with a complex surface. In addition, an expanded-size composite pipe part was also produced to further estimate the effective of the determined injection process. Moreover, the resin injection method for producing the K/T type joints via VARTM was also optimized with the simulation method, and then manufactured on a special integrated mould by the determined injection process. The flow front pattern and filling time of the experiments show good agreement with that from simulation. Cross-section images of the cured composite pipe and K/T type joints parts prove the validity of the optimized injection process, which verify the efficiency of simulation method in obtaining a suitable injection process of VARTM.

  1. Optimization of microwave-assisted extraction for anthocyanins, polyphenols, and antioxidants from raspberry (Rubus Coreanus Miq.) using response surface methodology.

    PubMed

    Teng, Hui; Lee, Won Young; Choi, Yong Hee

    2013-09-01

    Anthocyanins (Acys), polyphenols, and antioxidants were extracted from raspberry (Rubus Coreanus Miq.) using a highly efficient microwave-assisted extraction technique. Different solvents, including methanol, ethanol, and acetone, were tested. The colors of the extracts varied from light yellow to purple red or dark red. SEM and other nutrient analyses verified that ethanol was the most favorable medium for the microwave-assisted extraction of raspberry due to its high output and low toxicity. Effects of process parameters, including microwave power, irradiation time, and solvent concentration, were investigated through response surface methodology. Canonical analysis estimated that the highest total Acys content, total polyphenols content, and antioxidant activity of raspberry were 17.93 mg cyanidin-3-O-glucoside equivalents per gram dry weight, 38.57 mg gallic acid equivalents per gram dry weight, and 81.24%, respectively. The polyphenol compositions of raspberry extract were identified by HPLC with diode array detection, and nine kinds of polyphenols were identified and quantified, revealing that chlorogenic acid, syringic acid, and rutin are the major polyphenols contained in raspberry fruits. Compared with other fruits and vegetables, raspberry contains higher Acy and polyphenol contents with stronger antioxidant activity, suggesting that raspberry fruits are a good source of natural food colorants and antioxidants.

  2. The application of an assisting gas plasma generator for low- temperature magnetron sputtering of Ti-C-Mo-S antifriction coatings on titanium alloys

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Savostikov, V. M.; Tabachenko, A. N.; Dudarev, E. F.; Melnikova, E. A.; Shulepov, I. A.

    2015-11-01

    The positive effect of assisting influence of high-density gas plasma formed by an independent plasma generator PINK on mechanical and tribological characteristics of Ti-C- Mo-S magnetron coating on titanium alloys at lowered to 350°C temperature of coating regardless of alloy structural condition was revealed by methods of calotest, nanorecognition, scratch testing and frictional material tests. The coating formed by means of a combined magnetron plasma method reduces titanium alloys friction coefficient in multiple times and increases wear resistance by two orders of magnitude. At the same time the mechanical properties of ultra-fine-grained titanium alloys obtained by nanostructuring do not deteriorate.

  3. Preliminary Analysis of Low-Thrust Gravity Assist Trajectories by An Inverse Method and a Global Optimization Technique.

    NASA Astrophysics Data System (ADS)

    de Pascale, P.; Vasile, M.; Casotto, S.

    The design of interplanetary trajectories requires the solution of an optimization problem, which has been traditionally solved by resorting to various local optimization techniques. All such approaches, apart from the specific method employed (direct or indirect), require an initial guess, which deeply influences the convergence to the optimal solution. The recent developments in low-thrust propulsion have widened the perspectives of exploration of the Solar System, while they have at the same time increased the difficulty related to the trajectory design process. Continuous thrust transfers, typically characterized by multiple spiraling arcs, have a broad number of design parameters and thanks to the flexibility offered by such engines, they typically turn out to be characterized by a multi-modal domain, with a consequent larger number of optimal solutions. Thus the definition of the first guesses is even more challenging, particularly for a broad search over the design parameters, and it requires an extensive investigation of the domain in order to locate the largest number of optimal candidate solutions and possibly the global optimal one. In this paper a tool for the preliminary definition of interplanetary transfers with coast-thrust arcs and multiple swing-bys is presented. Such goal is achieved combining a novel methodology for the description of low-thrust arcs, with a global optimization algorithm based on a hybridization of an evolutionary step and a deterministic step. Low thrust arcs are described in a 3D model in order to account the beneficial effects of low-thrust propulsion for a change of inclination, resorting to a new methodology based on an inverse method. The two-point boundary values problem (TPBVP) associated with a thrust arc is solved by imposing a proper parameterized evolution of the orbital parameters, by which, the acceleration required to follow the given trajectory with respect to the constraints set is obtained simply through

  4. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    NASA Astrophysics Data System (ADS)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-04-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.

  5. Naturally fractured tight gas reservoir detection optimization. Quarterly report, January 1 - March 31, 1996

    SciTech Connect

    1996-12-31

    The objective is to determine methods for detection and mapping of naturally fractured systems for economic production of natural gas from fractured reservoirs. This report contains: 3D P-wave alternate processing; down hole 3C geophone analysis; fracture pattern analysis of the Fort Union and Wind River Basin; 3D-3C seismic processing; and technology transfer.

  6. Naturally fractured tight gas reservoir detection optimization. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    1995-08-01

    Research continued on methods to detect naturally fractured tight gas reservoirs. This report contains a seismic survey map, and reports on efforts towards a source test to select the source parameters for a 37 square mile compressional wave 3-D seismic survey. Considerations of the source tests are discussed.

  7. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Freeman, K. H.; Ricci, M. P.; Studley, S. A.; Hayes, J. M.

    1995-01-01

    Conditions and systems for on-line combustion of effluents from capillary gas chromatographic columns and for removal of water vapor from product streams were tested. Organic carbon in gas chromatographic peaks 15 s wide and containing up to 30 nanomoles of carbon was quantitatively converted to CO2 by tubular combustion reactors, 200 x 0.5 mm, packed with CuO or NiO. No auxiliary source of O2 was required because oxygen was supplied by metal oxides. Spontaneous degradation of CuO limited the life of CuO reactors at T > 850 degrees C. Since NiO does not spontaneously degrade, its use might be favored, but Ni-bound carbon phases form and lead to inaccurate isotopic results at T < 1050 degrees C if gas-phase O2 is not added. For all compounds tested except CH4, equivalent isotopic results are provided by CuO at 850 degrees C, NiO + O2 (gas-phase mole fraction, 10(-3)) at 1050 degrees C and NiO at 1150 degrees C. The combustion interface did not contribute additional analytical uncertainty, thus observed standard deviations of 13C/12C ratios were within a factor of 2 of shot-noise limits. For combustion and isotopic analyses of CH4, in which quantitative combustion required T approximately 950 degrees C, NiO-based systems are preferred, and precision is approximately 2 times lower than that observed for other analytes. Water must be removed from the gas stream transmitted to the mass spectrometer or else protonation of CO2 will lead to inaccuracy in isotopic analyses. Although thresholds for this effect vary between mass spectrometers, differential permeation of H2O through Nafion tubing was effective in both cases tested, but the required length of the Nafion membrane was 4 times greater for the more sensitive mass spectrometer.

  8. XeF2 gas-assisted focused-electron-beam-induced etching of GaAs with 30 nm resolution

    NASA Astrophysics Data System (ADS)

    Ganczarczyk, A.; Geller, M.; Lorke, A.

    2011-01-01

    We demonstrate the gas-assisted focused-electron-beam (FEB)-induced etching of GaAs with a resolution of 30 nm at room temperature. We use a scanning electron microscope (SEM) in a dual beam focused ion beam together with xenon difluoride (XeF2) that can be injected by a needle directly onto the sample surface. We show that the FEB-induced etching with XeF2 as a precursor gas results in isotropic and smooth etching of GaAs, while the etch rate depends strongly on the beam current and the electron energy. The natural oxide of GaAs at the sample surface inhibits the etching process; hence, oxide removal in combination with chemical surface passivation is necessary as a strategy to enable this high-resolution etching alternative for GaAs.

  9. Experimental studies and statistical analysis of membrane fouling behavior and performance in microfiltration of microalgae by a gas sparging assisted process.

    PubMed

    Javadi, Najvan; Ashtiani, Farzin Zokaee; Fouladitajar, Amir; Zenooz, Alireza Moosavi

    2014-06-01

    Response surface methodology (RSM) and central composite design (CCD) were applied for modeling and optimization of cross-flow microfiltration of Chlorella sp. suspension. The effects of operating conditions, namely transmembrane pressure (TMP), feed flow rate (Qf) and optical density of feed suspension (ODf), on the permeate flux and their interactions were determined. Analysis of variance (ANOVA) was performed to test the significance of response surface model. The effect of gas sparging technique and different gas-liquid two phase flow regimes on the permeate flux was also investigated. Maximum flux enhancement was 61% and 15% for Chlorella sp. with optical densities of 1.0 and 3.0, respectively. These results indicated that gas sparging technique was more efficient in low concentration microalgae microfiltration in which up to 60% enhancement was achieved in slug flow pattern. Additionally, variations in the transmission of exopolysaccharides (EPS) and its effects on the fouling phenomenon were evaluated.

  10. Molecular Imaging-Assisted Optimization of Hsp70 Expression during Laser-Induced Thermal Preconditioning for Wound Repair Enhancement

    PubMed Central

    Wilmink, Gerald J.; Opalenik, Susan R.; Beckham, Joshua T.; Abraham, Alexander A.; Nanney, Lillian B.; Mahadevan-Jansen, Anita; Davidson, Jeffrey M.; Jansen, E. Duco

    2013-01-01

    Patients at risk for impaired healing may benefit from prophylactic measures aimed at improving wound repair. Several photonic devices claim to enhance repair by thermal and photochemical mechanisms. We hypothesized that laser-induced thermal preconditioning would enhance surgical wound healing that was correlated with hsp70 expression. Using a pulsed diode laser (λ =1.85 μm, τp=2 ms, 50 Hz, H =7.64 mJcm−2), the skin of transgenic mice that contain an hsp70 promoter-driven luciferase was preconditioned 12 hours before surgical incisions were made. Laser protocols were optimized in vitro and in vivo using temperature, blood flow, and hsp70-mediated bioluminescence measurements as benchmarks. Biomechanical properties and histological parameters of wound healing were evaluated for up to 14 days. Bioluminescent imaging studies indicated that an optimized laser protocol increased hsp70 expression by 10-fold. Under these conditions, laser-preconditioned incisions were two times stronger than control wounds. Our data suggest that this molecular imaging approach provides a quantitative method for optimization of tissue preconditioning and that mild laser-induced heat shock may be a useful therapeutic intervention prior to surgery. PMID:18580963

  11. Schemes and Optimization of Gas Flowing into the Ion Source and the Neutralizer of the DIII-D Neutral Beam Systems

    SciTech Connect

    Hong, R.M.; Chiu, H.K.

    1999-11-01

    Performance comparisons of a DIII-D neutral beam ion source operated with two different schemes of supplying neutral gas to the arc chamber were performed. Superior performance was achieved when gas was puffed into both the arc chamber and the neutralizer with the gas flows optimized as compared to supplying gas through the neutralizer alone. To form a neutral beam, ions extracted from the arc chamber and accelerated are passed through a neutralizing cell of gas. Neutral gas is commonly puffed into the neutralizing cell to supplement the residual neutral gas from the arc chamber to obtain maximum neutralization efficiency. However, maximizing neutralization efficiency does not necessarily provide the maximum available neutral beam power, since high levels of neutral gas can increase beam loss through collisions and cause larger beam divergence. Excessive gas diffused from the neutralizer into the accelerator region also increases the number of energetic particles (ions and secondary electrons from the accelerator grid surfaces) deposited on the accelerator grids, increasing the possibility of overheating. We have operated an ion source with a constant optimal gas flow directly into the arc chamber while gas flow into the neutralizer was varied. Neutral beam power available for injecting into plasmas was obtained based on the measured data of beam energy, beam current, beam transmission, beam divergence, and neutralization efficiency for various neutralizer gas flow rates. We will present the results of performance comparison with the two gas puffing schemes, and show steps of obtaining the maximum available beam power and determining the optimum neutralizer gas flow rate.

  12. Influence of an Optimized Thermoelectric Generator on the Back Pressure of the Subsequent Exhaust Gas System of a Vehicle

    NASA Astrophysics Data System (ADS)

    Kühn, Roland; Koeppen, Olaf; Kitte, Jens

    2014-06-01

    Numerous research projects in automotive engineering focus on the industrialization of the thermoelectric generator (TEG). The development and the implementation of thermoelectric systems into the vehicle environment are commonly supported by virtual design activities. In this paper a customized simulation architecture is presented that includes almost all vehicle parts which are influenced by the TEG (overall system simulation) but is nevertheless capable of real-time use. Moreover, an optimized planar TEG with minimum nominal power output of about 580 W and pressure loss at nominal conditions of 10 mbar, synthesized using the overall system simulation, and the overall system simulation itself are used to answer a generally neglected question: What influence does the position of a TEG have on the back pressure of the subsequent exhaust gas system of the vehicle? It is found that the influence of the TEG on the muffler is low, but the catalytic converter is strongly influenced. It is shown that the TEG can reduce the back pressure of an exhaust gas system so much that its overall back pressure is less than the back pressure of a standard exhaust gas system.

  13. Optimization of machining and vibration parameters for residual stresses minimization in ultrasonic assisted turning of 4340 hardened steel.

    PubMed

    Sharma, Varun; Pandey, Pulak M

    2016-08-01

    The residual stresses generated in the machined work piece have detrimental effect on fatigue life, corrosion resistance and tribological properties. However, the effect of cutting and vibration parameters on residual stresses in Ultrasonic Assisted Turning (UAT) has not been dealt with. The present paper highlights the effect of feed rate, depth of cut, cutting velocity and percentage intensity of ultrasonic power on residual stress generation. XRD analysis has been carried out to measure the residual stress while turning 4340 hardened steel using UAT. The experiments were performed based on response surface methodology to develop statistical model for residual stress. The outcome of ANOVA revealed that percentage intensity and feed rate significantly affect the residual stress generation. The significant interactions between process parameters have also been presented tin order to understand the thermo-mechanical mechanism responsible for residual stress generation. PMID:27179142

  14. Optimization of machining and vibration parameters for residual stresses minimization in ultrasonic assisted turning of 4340 hardened steel.

    PubMed

    Sharma, Varun; Pandey, Pulak M

    2016-08-01

    The residual stresses generated in the machined work piece have detrimental effect on fatigue life, corrosion resistance and tribological properties. However, the effect of cutting and vibration parameters on residual stresses in Ultrasonic Assisted Turning (UAT) has not been dealt with. The present paper highlights the effect of feed rate, depth of cut, cutting velocity and percentage intensity of ultrasonic power on residual stress generation. XRD analysis has been carried out to measure the residual stress while turning 4340 hardened steel using UAT. The experiments were performed based on response surface methodology to develop statistical model for residual stress. The outcome of ANOVA revealed that percentage intensity and feed rate significantly affect the residual stress generation. The significant interactions between process parameters have also been presented tin order to understand the thermo-mechanical mechanism responsible for residual stress generation.

  15. Performance Optimization of Priority Assisted CSMA/CA Mechanism of 802.15.6 under Saturation Regime

    PubMed Central

    Shakir, Mustafa; Rehman, Obaid Ur; Rahim, Mudassir; Alrajeh, Nabil; Khan, Zahoor Ali; Khan, Mahmood Ashraf; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-01-01

    Due to the recent development in the field of Wireless Sensor Networks (WSNs), the Wireless Body Area Networks (WBANs) have become a major area of interest for the developers and researchers. Human body exhibits postural mobility due to which distance variation occurs and the status of connections amongst sensors change time to time. One of the major requirements of WBAN is to prolong the network lifetime without compromising on other performance measures, i.e., delay, throughput and bandwidth efficiency. Node prioritization is one of the possible solutions to obtain optimum performance in WBAN. IEEE 802.15.6 CSMA/CA standard splits the nodes with different user priorities based on Contention Window (CW) size. Smaller CW size is assigned to higher priority nodes. This standard helps to reduce delay, however, it is not energy efficient. In this paper, we propose a hybrid node prioritization scheme based on IEEE 802.15.6 CSMA/CA to reduce energy consumption and maximize network lifetime. In this scheme, optimum performance is achieved by node prioritization based on CW size as well as power in respective user priority. Our proposed scheme reduces the average back off time for channel access due to CW based prioritization. Additionally, power based prioritization for a respective user priority helps to minimize required number of retransmissions. Furthermore, we also compare our scheme with IEEE 802.15.6 CSMA/CA standard (CW assisted node prioritization) and power assisted node prioritization under postural mobility in WBAN. Mathematical expressions are derived to determine the accurate analytical model for throughput, delay, bandwidth efficiency, energy consumption and life time for each node prioritization scheme. With the intention of analytical model validation, we have performed the simulations in OMNET++/MIXIM framework. Analytical and simulation results show that our proposed hybrid node prioritization scheme outperforms other node prioritization schemes in

  16. Performance Optimization of Priority Assisted CSMA/CA Mechanism of 802.15.6 under Saturation Regime.

    PubMed

    Shakir, Mustafa; Rehman, Obaid Ur; Rahim, Mudassir; Alrajeh, Nabil; Khan, Zahoor Ali; Khan, Mahmood Ashraf; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-09-02

    Due to the recent development in the field of Wireless Sensor Networks (WSNs), the Wireless Body Area Networks (WBANs) have become a major area of interest for the developers and researchers. Human body exhibits postural mobility due to which distance variation occurs and the status of connections amongst sensors change time to time. One of the major requirements of WBAN is to prolong the network lifetime without compromising on other performance measures, i.e., delay, throughput and bandwidth efficiency. Node prioritization is one of the possible solutions to obtain optimum performance in WBAN. IEEE 802.15.6 CSMA/CA standard splits the nodes with different user priorities based on Contention Window (CW) size. Smaller CW size is assigned to higher priority nodes. This standard helps to reduce delay, however, it is not energy efficient. In this paper, we propose a hybrid node prioritization scheme based on IEEE 802.15.6 CSMA/CA to reduce energy consumption and maximize network lifetime. In this scheme, optimum performance is achieved by node prioritization based on CW size as well as power in respective user priority. Our proposed scheme reduces the average back off time for channel access due to CW based prioritization. Additionally, power based prioritization for a respective user priority helps to minimize required number of retransmissions. Furthermore, we also compare our scheme with IEEE 802.15.6 CSMA/CA standard (CW assisted node prioritization) and power assisted node prioritization under postural mobility in WBAN. Mathematical expressions are derived to determine the accurate analytical model for throughput, delay, bandwidth efficiency, energy consumption and life time for each node prioritization scheme. With the intention of analytical model validation, we have performed the simulations in OMNET++/MIXIM framework. Analytical and simulation results show that our proposed hybrid node prioritization scheme outperforms other node prioritization schemes in

  17. Peripheral cardiopulmonary bypass with modified assisted venous drainage and transthoracic aortic crossclamp: optimal management for robotic mitral valve repair.

    PubMed

    Sobieski, Michael A; Slaughter, Mark S; Hart, David E; Pappas, Patroklos S; Tatooles, Antone J

    2003-09-01

    The purpose of this study was to evaluate peripheral cardiopulmonary bypass (CPB) with modified assisted venous drainage (MAVD) and transthoracic aortic cross-clamping to maintain a bloodless surgical field, adequate myocardial protection, systemic flow and pressure during robotic surgical repair of the mitral valve. Peripheral CPB was established with a standard Duraflo-coated closed circuit with femoral arterial and venous cannulation. An additional 17 Fr wire-bound cannula was inserted into the right internal jugular vein and drainage rates of 200-400 mL/min were regulated using a separate roller-head pump. A transthoracic aortic crossclamp with antegrade cardioplegia was used for myocardial protection. Mitral valve (MV) repair was then performed through two 1-cm ports for the robotic arms and a 4-cm intercostal incision for the camera and passing suture. From October 2001 to October 2002, 25 patients underwent robotic MV repair. Average surgical times include leaflet resection and repair, 20 min, and insertion of annuloplasty ring, 28 min; average perfusion times, crossclamp 88 min and total bypass time of 126 min. There were no incisional conversions, no reoperations for bleeding and no deaths, strokes or perioperative myocardial infarctions. Twenty-one (84%) patients were extubated in the operating room. Average LOS was 2.7 days with eight (32%) patients discharged home in less than 24 hours. In conclusion, peripheral CPB with gravity drainage of the lower body and MAVD of the upper body allow safe and effective support during robotically assisted minimally invasive MV repair. This approach may be applied to other forms of minimally invasive cardiac surgery that requires CPB. PMID:14604249

  18. Performance Optimization of Priority Assisted CSMA/CA Mechanism of 802.15.6 under Saturation Regime.

    PubMed

    Shakir, Mustafa; Rehman, Obaid Ur; Rahim, Mudassir; Alrajeh, Nabil; Khan, Zahoor Ali; Khan, Mahmood Ashraf; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-01-01

    Due to the recent development in the field of Wireless Sensor Networks (WSNs), the Wireless Body Area Networks (WBANs) have become a major area of interest for the developers and researchers. Human body exhibits postural mobility due to which distance variation occurs and the status of connections amongst sensors change time to time. One of the major requirements of WBAN is to prolong the network lifetime without compromising on other performance measures, i.e., delay, throughput and bandwidth efficiency. Node prioritization is one of the possible solutions to obtain optimum performance in WBAN. IEEE 802.15.6 CSMA/CA standard splits the nodes with different user priorities based on Contention Window (CW) size. Smaller CW size is assigned to higher priority nodes. This standard helps to reduce delay, however, it is not energy efficient. In this paper, we propose a hybrid node prioritization scheme based on IEEE 802.15.6 CSMA/CA to reduce energy consumption and maximize network lifetime. In this scheme, optimum performance is achieved by node prioritization based on CW size as well as power in respective user priority. Our proposed scheme reduces the average back off time for channel access due to CW based prioritization. Additionally, power based prioritization for a respective user priority helps to minimize required number of retransmissions. Furthermore, we also compare our scheme with IEEE 802.15.6 CSMA/CA standard (CW assisted node prioritization) and power assisted node prioritization under postural mobility in WBAN. Mathematical expressions are derived to determine the accurate analytical model for throughput, delay, bandwidth efficiency, energy consumption and life time for each node prioritization scheme. With the intention of analytical model validation, we have performed the simulations in OMNET++/MIXIM framework. Analytical and simulation results show that our proposed hybrid node prioritization scheme outperforms other node prioritization schemes in

  19. Optimal control system design of an acid gas removal unit for an IGCC power plants with CO2 capture

    SciTech Connect

    Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future IGCC plants with CO{sub 2} capture should be operated optimally in the face of disturbances without violating operational and environmental constraints. To achieve this goal, a systematic approach is taken in this work to design the control system of a selective, dual-stage Selexol-based acid gas removal (AGR) unit for a commercial-scale integrated gasification combined cycle (IGCC) power plant with pre-combustion CO{sub 2} capture. The control system design is performed in two stages with the objective of minimizing the auxiliary power while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. In the first stage of the control system design, a top-down analysis is used to analyze degrees of freedom, define an operational objective, identify important disturbances and operational/environmental constraints, and select the control variables. With the degrees of freedom, the process is optimized with relation to the operational objective at nominal operation as well as under the disturbances identified. Operational and environmental constraints active at all operations are chosen as control variables. From the results of the optimization studies, self-optimizing control variables are identified for further examination. Several methods are explored in this work for the selection of these self-optimizing control variables. Modifications made to the existing methods will be discussed in this presentation. Due to the very large number of candidate sets available for control variables and due to the complexity of the underlying optimization problem, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. The second stage is a bottom-up design of the control layers used for the operation of the process. First, the regulatory control layer is

  20. Evaluation, prediction and optimization the ultrasound-assisted extraction method using response surface methodology: antioxidant and biological properties of Stachys parviflora L.

    PubMed Central

    Bashi, Davoud Salar; Dowom, Samaneh Attaran; Bazzaz, Bibi Sedigheh Fazly; Khanzadeh, Farhad; Soheili, Vahid; Mohammadpour, Ali

    2016-01-01

    Objective(s): To optimize the extraction method using response surface methodology, extract the phenolic compounds, and identify the antioxidant and biological properties of Stachys parviflora L. extracts. Materials and Methods: Maceration and ultrasound-assisted extraction (UAE) (4, 7, 10 min treatment time, 40, 70, 100 % high-intensity and 60, 80, 100 % (v v-1) methanol purity) were applied to obtain the extracts. SEM was conducted to provide the microstructure of the extracted plant. MICs (colorimetric assay), MFCs (colony diameter), total phenolic content, total flavonoid content, radical scavenging capacity and extraction efficiency were determined. HPLC analysis was applied to measure the existent phenolic compounds. Results: A quadratic model (4 min treatment time, 74.5 % high-intensity and 74.2 % solvent purity) was suggested as the best (TPC: 20.89 mg GAE g-1 d.m., TFC: 6.22 mg QEs g-1 d.m., DPPH IC50: 21.86 µg ml-1 and EE: 113.65 mg g-1 d.m.) UAE extraction model. The optimized UAE extract was generally more effective against Gram-positive microorganisms (MIC: 10-20; MBC: 10-40 (mg ml-1)) than Gram-negative ones (MIC: 40; MBC: >40 (mg ml-1)). Moreover, it (MGI: 2.32-100 %) revealed more anti-mold activity than maceration (MGI: <28.77 %). Explosive disruption of the cell walls, therefore, enhanced extraction yield by acoustic cavitation, was elucidated using SEM. Caffeic acid, tannic acid, quercetin, trans ferulic acid and rosmarinic acid were determined as the phenolic compounds in the optimized extract. Conclusion: RSM optimization was successfully applied for UAE from S. parviflora. The considerable antioxidant and biological properties were attributed to the phenolic compounds. PMID:27403260

  1. Optimization of drug viscosity used in gas-powered liquid jet injectors.

    PubMed

    Portaro, Rocco; Nakayama, Haruka; Ng, Hoi Dick

    2015-01-01

    This paper describes the effect of drug viscosity on the performance of gas powered liquid jet injectors. The analysis is accomplished utilizing a Computational Fluid Dynamics (CFD) model that obtains the stagnation pressure at the nozzle outlet. The technique is based on previous work used to predict gas power driven injector piston velocity with time. The results depict the variation in average and peak injector stagnation pressure for three different driven pressures; driving injections which vary from 0.2 cP to 87 cP in viscosity. Furthermore, a numerical representation of jet shape is also obtained to verify the effect of viscosity on jet geometry. These results demonstrate that increasing viscosity by 10 times that of water produces only a slight decrease in injector stagnation pressure and produces jets with greater confinement, which will display better characteristics for puncturing the skin.

  2. Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high-performance liquid chromatography-mass spectrometry.

    PubMed

    Chen, Fang; Sun, Yangzhao; Zhao, Guanghua; Liao, Xiaojun; Hu, Xiaosong; Wu, Jihong; Wang, Zhengfu

    2007-09-01

    Anthocyanins (Acys) are naturally occurring compounds that impart color to fruit, vegetables and plants. The extraction of Acys from red raspberry (Rubus idaeus L. var. Heritage) by ultrasound-assisted process (UAP) was studied. A central composite rotate design (CCRD) was used to obtain the optimal conditions of ultrasound-assisted extraction (UAE), and the effects of operating conditions, such as the ratio of solvents to materials, ultrasonic power and extraction time, on the extraction yield of Acys were studied through response surface methodology (RSM). The optimized conditions of UAE were as follows: ratio of solvents to materials was 4:1 (ml/g), extraction time was 200s, and ultrasonic power was 400 W. Under these conditions 34.5 mg of Acys from 100g of fresh fruits (T(Acy), expressed as cyanidin-3-glucoside), approximately 78.13% of the total red pigments, could be obtained by UAE. The Acys compositions of extracts were identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS), 12 kinds of Acys had been detected and eight kinds of Acys were characterized. Result indicated that cyanidin-3-sophoroside, cyanidin-3-(2(G)-glucosylrutinoside), cyanidin-3-sambubioside, cyanidin-3-rutinoside, cyanidin-3-xylosylrutinoside, cyanidin-3-(2(G)-glucosylrutinoside), and cyanidin-3-rutinoside were main components in extracts. In addition, in comparison with the conventional solvent extraction, UAE is more efficient and rapid to extract Acys from red raspberry, due to the strong disruption of fruit tissue structure under ultrasonic acoustic cavitation, which had been observed with the scanning electron microscopy (SEM). However, the Acys compositions in extracts by both methods were similar, which were investigated using HPLC profile.

  3. Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology.

    PubMed

    Pandey, Ajay Kumar; Negi, Sangeeta

    2015-09-01

    In present study, two hybrid methods such as surfactant assisted acid pretreatment (SAAP) and surfactant assisted base pretreatment (SABP) of pine foliage (PF) were found efficient for removal of 59.53 ± 0.76% and 73.47 ± 1.03% lignin, respectively. Assessment of the impact of pretreatment over the structure of PF were studied by scanning electron microscopy, Fourier transform infrared and X-ray diffraction analysis. Parameters for saccharification of SAAP and SABP biomass were optimized by Box-Behnken design method and 0.588 g/g and 0.477 g/g of reducing sugars were obtained, respectively. The ethanol fermentation efficiency of Saccharomyces cerevisiae (NCIM 3288) of hydrolysates was increased by 16.1% and 6.01% in SAAP-PFF and SABP-PFF after detoxification with XAD-4 resin. The mass balance analysis of the process showed that 67.7% and 70.12% cellulose were utilized during SAAP and SABP, respectively. These results indicated that SAAP would be more economic for bioethanol production.

  4. Surface roughness of MgO thin film and its critical thickness for optimal biaxial texturing by ion-beam-assisted deposition

    SciTech Connect

    Miyata, S.; Ibi, A.; Izumi, T.; Shiohara, Y.

    2011-06-01

    We investigated the deposition time dependences of the in-plane grain alignment ({Delta}{phi}) and the surface roughness (w) of biaxially textured MgO thin films fabricated by ion-beam-assisted deposition (IBAD) and found a strong correlation between them. The time evolution of the surface roughness of IBAD-MgO showed an abrupt increase at the same time corresponding to the beginning of the deterioration in {Delta}{phi}. The roughness versus thickness profiles obtained under different deposition conditions with different assisting ion-beam currents collapsed to a single curve, even though the deposition rates were significantly different in each condition. This implies that the abrupt increase in roughness occurred at the same thickness--of about 4 nm--irrespective of the deposition rate. The result also indicated that the {Delta}{phi} deterioration began with the same thickness of about 4 nm. This ''critical'' thickness of about 4 nm might be related to the completion of the crystallization of the film. Further, deposition beyond the critical thickness, therefore, became merely a homoepitaxial deposition under the ''IBAD'' condition, which was far from optimal because of the ion bombardment and low temperature (no-heating), and thus {Delta}{phi} deteriorated. Based on these considerations, we propose an approach to attain a sharp texture in a IBAD-MgO-based biaxial substrate; moreover, we demonstrated this approach using a two-step deposition process.

  5. Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology.

    PubMed

    Pandey, Ajay Kumar; Negi, Sangeeta

    2015-09-01

    In present study, two hybrid methods such as surfactant assisted acid pretreatment (SAAP) and surfactant assisted base pretreatment (SABP) of pine foliage (PF) were found efficient for removal of 59.53 ± 0.76% and 73.47 ± 1.03% lignin, respectively. Assessment of the impact of pretreatment over the structure of PF were studied by scanning electron microscopy, Fourier transform infrared and X-ray diffraction analysis. Parameters for saccharification of SAAP and SABP biomass were optimized by Box-Behnken design method and 0.588 g/g and 0.477 g/g of reducing sugars were obtained, respectively. The ethanol fermentation efficiency of Saccharomyces cerevisiae (NCIM 3288) of hydrolysates was increased by 16.1% and 6.01% in SAAP-PFF and SABP-PFF after detoxification with XAD-4 resin. The mass balance analysis of the process showed that 67.7% and 70.12% cellulose were utilized during SAAP and SABP, respectively. These results indicated that SAAP would be more economic for bioethanol production. PMID:26025349

  6. Optimizing the hohlraum gas density for better symmetry control of indirect drive implosion experiments

    NASA Astrophysics Data System (ADS)

    Izumi, Nobuhiko; Hall, G. N.; Nagel, S. R.; Khan, S.; Rygg, R. R.; MacKinnon, A. J.; Ho, D. D.; Berzak Hopkins, L.; Jones, O. S.; Town, R. P. J.; Bradley, D. K.

    2014-10-01

    To achieve a spherically symmetric implosion, control of drive uniformity is essential. Both the ablation pressure and the mass ablation rate on the capsule surface should be made as uniform as possible for the duration of the drive. For an indirect drive implosion, the drive uniformity changes during the pulse because of: (1) the dynamic movement of the laser spots due to blow-off of the hohlraum wall, and (2) cross-beam energy transfer caused by laser-plasma interaction in the hohlraum. To tamp the wall blow-off, we use gas filled hohlraums. The cross-beam energy transfer can be controlled by applying a wave length separation between the cones of the laser beams. However, both of those dynamic effects are sensitive to the initial density of the hohlraum gas fill. To assess this, we performed implosion experiments with different hohlraum gas densities and tested the effect on drive asymmetry. The uniformity of the acceleration was measured by in-flight x-ray backlit imaging of the capsule. The uniformity of the core assembly was observed by imaging the self emission x-ray from the core. We will report on the experimental results and compare them to hydrodynamic simulations. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-626372.

  7. Optimization of a steam-assisted gravity drainage project in the Monarch sands of the south Midway-Sunset field

    SciTech Connect

    Chona, R.A.; Hazlett, W.G.; Rajtar, J.M.

    1996-02-01

    This report presents several scenarios for oil recovery optimization of Berry Petroleum Company`s properties in the Midway-Sunset field in Kern County, California. The primary goal was to evaluate reservoir performance with a number of vertical wells recompleted in the lower half of the existing oil bank and with a number of horizontal infill wells. Case comparisons and recommendations are based solely on oil production rates and cumulative oil production obtained from the simulations; no economic analyses were performed as part of this study. The results indicate that recompleting two thirds of the vertical wells in the lower half of the existing oil bank will give the most improvement in oil recovery. The models also show that accelerated oil recovery will be obtained from the horizontal well scenario (Case h3), with initial oil rates higher than the vertical well recompletion scenario (Case 3). However, in the long term (11 year period), the cumulative oil production of the horizontal well will fall below that of the vertical well recompletion scheme (Case h3 vs. Case 3). Additionally, a combination of horizontal wells with recompletion of 1/3 of the vertical wells will give a significant improvement in oil recovery (Case h8). We recommend that further studies focus on optimizing the amount of steam injected in horizontal wells, frequency and length of the steam-injection and steam-soak periods, optimal horizontal well spacing, and ideal location of horizontal well in the oil bank. This study used Western Atlas` VIP-THERM numerical simulator to generate the history match and all of the alternative strategies presented in this report. The results presented in this report are based on information and field data provided by Berry Petroleum Company.

  8. Naturally fractured tight gas reservoir detection optimization. Quarterly report, October 1--December 31, 1994

    SciTech Connect

    1995-01-30

    This progress report covers the following tasks: Computational geochemistry (Indiana University Laboratory); and geologic assessment of the Piceance Basin. Computational geochemistry covers; three- dimensional basin simulator; stress solver; two-dimensional basin simulator; organic reactions and multi-phase flow; grid optimization; database calibration and data input; and Piceance Basin initial simulation. Sub-tasks under geologic assessment of the Piceance Basin include: structural analysis; reservoir characterization; stratigraphic interpretation; seismic interpretation; and remote sensing interpretation.

  9. [On the problem of optimal warming and moistening of the inspired gases in controlled and assisted artificial ventilation (author's transl)].

    PubMed

    Lang, V O

    1979-03-01

    The physiological significance of adequate temperature and humidity of respiratory gases and the problems of technical realization are demonstrated. Humidifying and warming of gases by the principle of bubbling through a heated waterbath are believed to be best. The problems with these techniques e.g. dependence of temperature and relative humidity of the gases delivered to the patient on respiratory minute volume, material of the tubing and room temperature are shown. A simple solution to these problems without the need of electrical heated tubing is offered. A new electronically controlled humidifier (H.R.P.-Humidifier 2000) with special developed tubing is presented. Optimal temperature and relative humidity of the respiratory gases is guaranteed by the high efficiency humidifier, and additional measurement and regulation of temperature close to the patients tracheal tube. The problem of increased amounts of condensed water in the tubing is solved by the H.R.P. special tracheal tube adapter with an automatic water exhaust. In addition the hygienic problems of artificial respiration can be solved optimally in combination with the complete H.R.P.-System 2000.

  10. Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology.

    PubMed

    Roosta, M; Ghaedi, M; Daneshfar, A; Sahraei, R; Asghari, A

    2014-01-01

    The present study was focused on the removal of methylene blue (MB) from aqueous solution by ultrasound-assisted adsorption onto the gold nanoparticles loaded on activated carbon (Au-NP-AC). This nanomaterial was characterized using different techniques such as SEM, XRD, and BET. The effects of variables such as pH, initial dye concentration, adsorbent dosage (g), temperature and sonication time (min) on MB removal were studied and using central composite design (CCD) and the optimum experimental conditions were found with desirability function (DF) combined response surface methodology (RSM). Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data to various kinetic models such as pseudo-first and second order, Elovich and intraparticle diffusion models show the applicability of the second-order equation model. The small amount of proposed adsorbent (0.01 g) is applicable for successful removal of MB (RE>95%) in short time (1.6 min) with high adsorption capacity (104-185 mg g(-1)).

  11. Optimization of microwave-assisted extraction of cottonseed oil and evaluation of its oxidative stability and physicochemical properties.

    PubMed

    Taghvaei, Mostafa; Jafari, Seid Mahdi; Assadpoor, Elham; Nowrouzieh, Shahram; Alishah, Omran

    2014-10-01

    Microwave assisted extraction (MAE) is a novel method, which can reduce the extraction time and solvent consumption. This study aimed to evaluate the influence of MAE on oxidative stability and physicochemical properties of cottonseed oil. We found that the optimum extraction conditions were: irradiation time 3.57 min; cottonseed moisture content 14% and cottonseed to solvent ratio 1:4, which resulted in an extraction efficiency of 32.6%, 46 ppm total phenolic content, 0.7% free fatty acids, peroxide value of 0.2 and 11.5 h of Rancimat oxidative stability at 110 °C. GC analysis for MAE cottonseed oil determined palmitic acid (23.6%), stearic acid (2.3%), oleic acid (15.6%) and linoleic acid (55.1%), which were not significant different (P>0.05) than conventionally-extracted (control) cottonseed oil. MAE oil samples from whole cottonseed (without dehulling) had the greatest long-term stability, more than oil samples containing BHT.

  12. Optimization of infrared-assisted extraction of Bletilla striata polysaccharides based on response surface methodology and their antioxidant activities.

    PubMed

    Qu, Yan; Li, Chunxue; Zhang, Chen; Zeng, Rui; Fu, Chaomei

    2016-09-01

    Bletilla striata polysaccharides (BSP) have attracted extensive research interest due to their potential medical application. Herein, infrared-assisted technique is employed for the first time to extract BSP from B. striata (Thunb.) Reichb.f. based on a Box-Behnken design (BBD) and response surface methodology, with the optimum extraction parameters as follows: 75°C extraction temperature, 2.5h extraction time; and water to solid ratio (53ml/g). Based on it, 43.95±0.26% yield of crude BSP was obtained. Subsequently, crude BSP was further decolorized, deproteinized, freeze-dried, and purified by a DEAE-52 cellulose column. Furthermore, the micro-structure and a triple-helical structure of BSP were characterized. Fourier transform infrared spectra confirmed its polysaccharide characterization via typical peaks. In addition, the significant in vitro antioxidant profiles of BSP were demonstrated by superoxide anion radical-scavenging assay, hydroxyl radical scavenging assay, DPPH free radical scavenging activity and chelation of ferrous ions. Taken together, this study provide an efficient extraction technique for BSP as a promising natural antioxidant. PMID:27185148

  13. Optimization of the textural characteristics of an alumina to capture contaminants in natural gas

    SciTech Connect

    Nedez, C.; Boitiaux, J.P.; Cameron, C.J.; Didillon, B.

    1996-08-07

    Capillary condensation of water can seriously impair the performance of an adsorbent intended for use in removing contaminants (mercury, arsenic, sulfur, etc.) in natural gas. Adsorption and desorption isotherms were used to determine how the nature and pore structure distribution of the adsorbent (alumina, active carbon) affect water adsorption. The contribution of the different phenomena involved (chemisorption, physisorption, capillary condensation) have been determined. The threshold of capillary condensation is reached much more rapidly on active carbon and microporous alumina (40% relative humidity) than on a highly mesoporous alumina (75-80% relative humidity). 44 refs., 9 figs., 1 tab.

  14. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.).

    PubMed

    Ma, Mengmei; Mu, Taihua; Sun, Hongnan; Zhang, Miao; Chen, Jingwang; Yan, Zhibin

    2015-07-15

    This study evaluated the optimal conditions for extracting dietary fiber (DF) from deoiled cumin by shear emulsifying assisted enzymatic hydrolysis (SEAEH) using the response surface methodology. Fat adsorption capacity (FAC), glucose adsorption capacity (GAC), and bile acid retardation index (BRI) were measured to evaluate the functional properties of the extracted DF. The results revealed that the optimal extraction conditions included an enzyme to substrate ratio of 4.5%, a reaction temperature of 57 °C, a pH value of 7.7, and a reaction time of 155 min. Under these conditions, DF extraction efficiency and total dietary fiber content were 95.12% and 84.18%, respectively. The major components of deoiled cumin DF were hemicellulose (37.25%) and cellulose (33.40%). FAC and GAC increased with decreasing DF particle size (51-100 μm), but decreased with DF particle sizes <26 μm; BRI increased with decreasing DF particle size. The results revealed that SEAEH is an effective method for extracting DF. DF with particle size 26-51 μm had improved functional properties.

  15. Optimization of microwave-assisted extraction of anthocyanins from mulberry and identification of anthocyanins in extract using HPLC-ESI-MS.

    PubMed

    Zou, Tangbin; Wang, Dongliang; Guo, Honghui; Zhu, Yanna; Luo, Xiaoqin; Liu, Fengqiong; Ling, Wenhua

    2012-01-01

    Anthocyanins are naturally occurring compounds that impart color to fruits, vegetables, and plants. This study aims to optimize the microwave-assisted extraction (MAE) conditions of anthocyanins from mulberry (M. atropurpurea Roxb.) using response surface methodology (RSM). A Box-Behnken experiment was employed in this regard. Methanol concentration, microwave power, and extraction time were chosen as independent variables. The optimized conditions of MAE were as follows: 59.6% acidified methanol, 425 W power, 25 (v/w) liquid-to-solid ratio, and 132 s time. Under these conditions, 54.72 mg anthocyanins were obtained from 1.0 g mulberry powder. Furthermore, 8 anthocyanins were identified by high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) in mulberry extract. The results showed that cyanidin-3-glucoside and cyanidin-3-rutinoside are the major anthocyanins in mulberry. In addition, in comparison with conventional extraction, MAE is more rapid and efficient for extracting anthocyanins from mulberry. PMID:22260102

  16. Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: Punicalagin and hydroxybenzoic acids.

    PubMed

    Kazemi, Milad; Karim, Roselina; Mirhosseini, Hamed; Abdul Hamid, Azizah

    2016-09-01

    Pomegranate peel is a rich source of phenolic compounds (such as punicalagin and hydroxybenzoic acids). However, the content of such bioactive compounds in the peel extract can be affected by extraction type and condition. It was hypothesized that the optimization of a pulsed ultrasound-assisted extraction (PUAE) technique could result in the pomegranate peel extract with higher yield and antioxidant activity. The main goal was to optimize PUAE condition resulting in the highest yield and antioxidant activity as well as the highest contents of punicalagin and hydroxybenzoic acids. The operation at the intensity level of 105W/cm(2) and duty cycle of 50% for a short time (10min) had a high efficiency for extraction of phenolics from pomegranate peel. The application of such short extraction can save the energy and cost of the production. Punicalagin and ellagic acid were the most predominant phenolic compounds quantified in the pomegranate peel extract (PPE) from Malas variety. PPE contained a minor content of gallic acid. PMID:27041311

  17. The optimization process of biodiesel production using multiple feedstock (CPO and Jatropha) with assistance of ultrasound at 40 kHz

    NASA Astrophysics Data System (ADS)

    Fajar, Berkah; Wilis, Widayat

    2016-06-01

    CPO prices are unstable, therefore affecting the supply of feedstock to produce biodiesel [2]. To overcome the shortage of feedstock, it is necessary to use multiple feedstock, in this case is CPO and Jatropha [1]. This objective of this work to optimizate biodiesel production using multifeedstock (CPO and Jatropha) with assistance of ultrasound. The optimization was to find the highest yield and the least production time. Experiments was carried out using an ultrasonic bath at a frequency of 40 kHz. The ratio of CPO and Jatropha was 1: 1, 3: 1, 4: 1 while the ratio of methanol and oil was 5: 1, 6: 1, 7: 1 and the reaction time was 50, 60, and 70 minutes. KOH was used as a catalyst. The experiment data was optimized using a Response Surface Methodology [3,4]. The optimum point was at a frequency of 40 kHz obtained at a 2.8: 1 mixture of CPO - Jatropha, 6.4: 1 molar ratio of methanol-oil and 61.5 minutes of reaction time. The results of quality testing shows that the biodiesel produced meets the ASTM standard D6751 and SNI 04-7182-2006[5].

  18. Laser-assisted skin closure (LASC) using a 815-nm diode laser system: determination of an optimal dose to accelerate wound healing

    NASA Astrophysics Data System (ADS)

    Capon, Alexandre; Mitchell, Valerie A.; Sumian, Chryslain C.; Gauthier, Beatrice; Mordon, Serge R.

    1999-01-01

    This study aimed to evaluate a 815 nm diode-laser system to assist wound closure. It was proposed to determine an optimal fluence being able to accelerate and improve heating process without thermal damage after laser irradiation. Male hairless rats with dorsal skin incisions were used for the study. Different fluences were screened (76 to 346 J/cm2) in a first phase with clinical examination at 3, 7, 15 and 21 days after surgery. Best results were obtained for a fluence of 145 J/cm2 and 3 sec time of exposure. A second phase was conducted to valid these parameters with histological study and determination of tensile strength at 3, 7, 15 and 21 days after surgery. LASC was 4 times faster to process than conventional suture. In the laser group with an optimal fluence of 145 J/cm2, healing was accelerated. The resulting scar was more indiscernible than in the control groups. Histological aspect was better with continuous epidermis and dermis at 3 days in most cases. Tensile strength was 30 to 58% greater than in control groups (1141 g/cm2 at 7 days in the laser group versus 856 g/cm2 and 724 g/cm2 in the control groups, p < 0.001).

  19. Optimization of Ionic Liquid Based Simultaneous Ultrasonic- and Microwave-Assisted Extraction of Rutin and Quercetin from Leaves of Velvetleaf (Abutilon theophrasti) by Response Surface Methodology

    PubMed Central

    Zhao, Chunjian; Lu, Zhicheng; He, Xin; Li, Zhao; Shi, Kunming; Yang, Lei; Fu, Yujie; Zu, Yuangang

    2014-01-01

    An ionic liquids based simultaneous ultrasonic and microwave assisted extraction (ILs-UMAE) method has been proposed for the extraction of rutin (RU), quercetin (QU), from velvetleaf leaves. The influential parameters of the ILs-UMAE were optimized by the single factor and the central composite design (CCD) experiments. A 2.00 M 1-butyl-3-methylimidazolium bromide ([C4mim]Br) was used as the experimental ionic liquid, extraction temperature 60°C, extraction time 12 min, liquid-solid ratio 32 mL/g, microwave power of 534 W, and a fixed ultrasonic power of 50 W. Compared to conventional heating reflux extraction (HRE), the RU and QU extraction yields obtained by ILs-UMAE were, respectively, 5.49 mg/g and 0.27 mg/g, which increased, respectively, 2.01-fold and 2.34-fold with the recoveries that were in the range of 97.62–102.36% for RU and 97.33–102.21% for QU with RSDs lower than 3.2% under the optimized UMAE conditions. In addition, the shorter extraction time was used in ILs-UMAE, compared with HRE. Therefore, ILs-UMAE was a rapid and an efficient method for the extraction of RU and QU from the leaves of velvetleaf. PMID:25243207

  20. Optimality in Microwave-Assisted Drying of Aloe Vera (Aloe barbadensis Miller) Gel using Response Surface Methodology and Artificial Neural Network Modeling

    NASA Astrophysics Data System (ADS)

    Das, Chandan; Das, Arijit; Kumar Golder, Animes

    2016-07-01

    The present work illustrates the Microwave-Assisted Drying (MWAD) characteristic of aloe vera gel combined with process optimization and artificial neural network modeling. The influence of microwave power (160-480 W), gel quantity (4-8 g) and drying time (1-9 min) on the moisture ratio was investigated. The drying of aloe gel exhibited typical diffusion-controlled characteristics with a predominant interaction between input power and drying time. Falling rate period was observed for the entire MWAD of aloe gel. Face-centered Central Composite Design (FCCD) developed a regression model to evaluate their effects on moisture ratio. The optimal MWAD conditions were established as microwave power of 227.9 W, sample amount of 4.47 g and 5.78 min drying time corresponding to the moisture ratio of 0.15. A computer-stimulated Artificial Neural Network (ANN) model was generated for mapping between process variables and the desired response. `Levenberg-Marquardt Back Propagation' algorithm with 3-5-1 architect gave the best prediction, and it showed a clear superiority over FCCD.

  1. Designing optimal greenhouse gas observing networks that consider performance and cost

    DOE PAGES

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2014-12-23

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore » network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  2. Designing optimal greenhouse gas observing networks that consider performance and cost

    DOE PAGES

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2015-06-16

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore » network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  3. Compressor configuration and design optimization for the high reliability gas turbine. Final report

    SciTech Connect

    Day, D. L.

    1980-04-01

    The purpose of this program has been to develop a preliminary design of a low aspect ratio/high through-flow compressor configuration to be compatible with the Electric Power Research Institute/Department of Energy/Reliable Advanced Liquid Fueled Engine (EPRI-DOE/RALFE) program and to evaluate the design for use in the Reliable Engine. Our objective was to define the benefits of low aspect ratio and high through-flow (HTF) in a large industrial gas turbine in which high reliability and cost-of-electricity (COE) are major design considerations. These benefits have been identified, in aircraft gas turbines, as reduced number of stages, with reduced number of parts, and increased aerodynamic loading capability. The compressor and diffuser preliminary designs have been completed to define size and performance characteristics. The compressor has 9 stages and a predicted adiabatic efficiency of 88.35%. The diffuser selected is a conventional straightwall configuration with an equivalent conical angle of 8-degrees. An alternate diffuser configuration has also been recommended because of its excellent performance potential in high Mach number applications. The HTF compressor configuration appears to offer equivalent COE and reliability as compared to the Baseline Reliable Engine configuration, but at more conservative aerodynamic loading levels.

  4. An optimized concept for flue gas cleaning downstream of MWCs using sodium tetrasulfide for mercury removal

    SciTech Connect

    Schuettenhelm, W.; Hartenstein, H.U.; Licata, A.

    1998-07-01

    In Germany and other central European countries, new emission standards for refuse incineration plants became effective in 1989/90. In recent years the operators of incinerating plants in Germany demanded higher removal emission efficiency than required by law in order to obtain local permits. In the course of the procurement process, complex flue gas cleaning systems were approved and built. As a result, the costs for air pollution control systems exceeded the costs of the refuse combustion system (stoker plus boiler) which has been reflected in the constantly climbing disposal costs. Not all of the increased disposal costs have been able to be passed along to the market. Economic pressure has led to a search for simple solutions and low-cost flue gas cleaning systems which correspond to the legal and contractual limits. A new processes was developed by L. and C. Steinmueller GmbH (Steinmueller) using sodium tetrasulfide (Na{sub 2}S{sub 4}) as a additive for the emission control of mercury. This paper will present an overview of the general application of this new technology in the waste-to-energy field. The efficiency of the reduction of mercury, and serviceability and the simple handling of this new technology will be shown by results of plants which are in operating. For a conclusion, an outlook is provided into future applications of this technology over the waste-to-energy field.

  5. Optimizing hot-ion production from a gas-injected washer gun

    NASA Astrophysics Data System (ADS)

    McCarrick, M. J.; Ellis, R. F.; Booske, J. H.; Koepke, M.

    1987-03-01

    This paper reports the results of a study to maximize the ion temperature of the plasma generated by a gas-injected washer gun. We characterize the gun discharge and the plasma output as a function of the controllable gun parameters. For hydrogen we find a maximum ion temperature of 100 eV with typical densities ranging from 2×1011 to 5×1012 cm-3. A primary feature of the pulsed gun discharge is the observation of large amplitude rf fluctuations on the cathode voltage. The fluctuation amplitude varies with discharge current and with the quantity of injected gas. We show that the scaling of the fluctuation level with gun parameters is in agreement with that expected of an unstable beam-plasma system. We find a linear relation between the square of the fluctuation amplitude and the product of the plasma density times the ion temperature of the plasma output nTi, suggesting a stochastic wave-induced heating mechanism.

  6. Assessment and optimization of electroporation-assisted tumoral nanoparticle uptake in a nude mouse model of pancreatic ductal adenocarcinoma.

    PubMed

    West, Derek Lamont; White, Sarah B; Zhang, Zhouli; Larson, Andrew C; Omary, Reed A

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a particularly lethal form of cancer. In 2012, the incidence of PDAC was 43,920. Five-year survival for patients with PDAC is around 6%, regardless of staging, making PDAC one of the deadliest forms of cancer. One reason for this dismal prognosis is chemoresistance to the current first-line therapy, gemcitabine. There are multiple factors that contribute to the chemoresistance observed in pancreatic cancer. Among them, desmoplasia has been increasingly seen as a significant contributor to chemoresistance. To overcome desmoplastic chemoresistance, several novel methods of treatment have been developed. Electroporation is one such novel treatment. High electrical fields are applied to cells to create pores that increase cell permeability. It has been previously demonstrated that electroporation enhances the therapeutic efficacy of anticancer drugs in pancreatic tumor models. Nanoparticle-based drug delivery systems constitute a second novel method to overcome desmoplastic chemoresistance. Due to their intrinsic design advantages, nanoparticles have been shown to increase the effectiveness of chemotherapeutic agents, while further reducing or even eliminating side effects. To date, there have been no studies evaluating the cumulative effect of combining both nanoparticle and electroporation strategies to overcome chemoresistance in PDAC. Our preliminary studies assessed the in vitro and in vivo uptake of doxorubicin-loaded iron oxide nanoparticles as a function of electroporation voltage and timing of administration in pancreatic adenocarcinoma cells. Our studies demonstrated that addition of electroporation to administration of nanoparticles significantly increased the amount of intracellular iron oxide nanoparticle uptake by a PANC-1 cell line in an athymic nude mouse model of PDAC. Further, electroporation-assisted nanoparticle uptake could be significantly altered by changing the timing of application of electroporation.

  7. Global optimization of the infrared matrix-assisted laser desorption electrospray ionization (IR MALDESI) source for mass spectrometry using statistical design of experiments.

    PubMed

    Barry, Jeremy A; Muddiman, David C

    2011-12-15

    Design of experiments (DOE) is a systematic and cost-effective approach to system optimization by which the effects of multiple parameters and parameter interactions on a given response can be measured in few experiments. Herein, we describe the use of statistical DOE to improve a few of the analytical figures of merit of the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for mass spectrometry. In a typical experiment, bovine cytochrome c was ionized via electrospray, and equine cytochrome c was desorbed and ionized by IR-MALDESI such that the ratio of equine:bovine was used as a measure of the ionization efficiency of IR-MALDESI. This response was used to rank the importance of seven source parameters including flow rate, laser fluence, laser repetition rate, ESI emitter to mass spectrometer inlet distance, sample stage height, sample plate voltage, and the sample to mass spectrometer inlet distance. A screening fractional factorial DOE was conducted to designate which of the seven parameters induced the greatest amount of change in the response. These important parameters (flow rate, stage height, sample to mass spectrometer inlet distance, and laser fluence) were then studied at higher resolution using a full factorial DOE to obtain the globally optimized combination of parameter settings. The optimum combination of settings was then compared with our previously determined settings to quantify the degree of improvement in detection limit. The limit of detection for the optimized conditions was approximately 10 attomoles compared with 100 femtomoles for the previous settings, which corresponds to a four orders of magnitude improvement in the detection limit of equine cytochrome c.

  8. Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory.

    PubMed

    Ramić, Milica; Vidović, Senka; Zeković, Zoran; Vladić, Jelena; Cvejin, Aleksandra; Pavlić, Branimir

    2015-03-01

    Aronia melanocarpa by-product from filter-tea factory was used for the preparation of extracts with high content of bioactive compounds. Extraction process was accelerated using sonication. Three level, three variable face-centered cubic experimental design (FCD) with response surface methodology (RSM) was used for optimization of extraction in terms of maximized yields for total phenolics (TP), flavonoids (TF), anthocyanins (MA) and proanthocyanidins (TPA) contents. Ultrasonic power (X₁: 72-216 W), temperature (X₂: 30-70 °C) and extraction time (X₃: 30-90 min) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where multiple regression analysis and analysis of variance were used to determine fitness of the model and optimal conditions for investigated responses. Three-dimensional surface plots were generated from the mathematical models. The optimal conditions for ultrasound-assisted extraction of TP, TF, MA and TPA were: X₁=206.64 W, X₂=70 °C, X₃=80.1 min; X₁=210.24 W, X₂=70 °C, X₃=75 min; X₁=216 W, X₂=70 °C, X₃=45.6 min and X₁=199.44 W, X₂=70 °C, X₃=89.7 min, respectively. Generated model predicted values of the TP, TF, MA and TPA to be 15.41 mg GAE/ml, 9.86 mg CE/ml, 2.26 mg C3G/ml and 20.67 mg CE/ml, respectively. Experimental validation was performed and close agreement between experimental and predicted values was found (within 95% confidence interval).

  9. Optimized use of a 50mum ID secondary column in comprehensive two-dimensional gas chromatography-mass spectrometry.

    PubMed

    Tranchida, Peter Quinto; Purcaro, Giorgia; Fanali, Chiara; Dugo, Paola; Dugo, Giovanni; Mondello, Luigi

    2010-06-18

    The objective of the present research is directed towards the optimized use of a 50microm ID secondary column, in a comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GCxGC-qMS) system. The analytical aim was achieved by exploiting a split-flow GCxGC approach, and a rapid-scanning qMS instrument. The stationary phase combination consisted of an apolar (silphenylene polymer) 30mx0.25mm ID column, linked by means of a Y-union, to an MS-connected 1mx0.05mm ID polar one [poly(ethyleneglycol)], and to a 0.20mx0.05mm ID uncoated capillary segment; the latter was connected to a manually operated split-valve. It will be herein demonstrated that the split-flow GCxGC approach, successfully employed in previous H(2)-based, flame ionization detection experiments, provides equally satisfactory results using mass spectrometric detection and helium as carrier gas. An optimized split-flow GCxGC-qMS method was developed and exploited for the analysis of a perfume sample. The results attained were compared with those observed using the same analytical column combination, but with no flow-splitting. It was found that it is not convenient to employ a 50microm ID secondary column in a conventional GCxGC-MS instrument. On the contrary, the use a 50microm ID secondary column, in a split-flow, twin-oven system, provided a good performance. A recently developed comprehensive chromatography software was used for data processing.

  10. Using the Eclipse Parallel Tools Platform to Assist Earth Science Model Development and Optimization on High Performance Computers

    NASA Astrophysics Data System (ADS)

    Alameda, J. C.

    2011-12-01

    Development and optimization of computational science models, particularly on high performance computers, and with the advent of ubiquitous multicore processor systems, practically on every system, has been accomplished with basic software tools, typically, command-line based compilers, debuggers, performance tools that have not changed substantially from the days of serial and early vector computers. However, model complexity, including the complexity added by modern message passing libraries such as MPI, and the need for hybrid code models (such as openMP and MPI) to be able to take full advantage of high performance computers with an increasing core count per shared memory node, has made development and optimization of such codes an increasingly arduous task. Additional architectural developments, such as many-core processors, only complicate the situation further. In this paper, we describe how our NSF-funded project, "SI2-SSI: A Productive and Accessible Development Workbench for HPC Applications Using the Eclipse Parallel Tools Platform" (WHPC) seeks to improve the Eclipse Parallel Tools Platform, an environment designed to support scientific code development targeted at a diverse set of high performance computing systems. Our WHPC project to improve Eclipse PTP takes an application-centric view to improve PTP. We are using a set of scientific applications, each with a variety of challenges, and using PTP to drive further improvements to both the scientific application, as well as to understand shortcomings in Eclipse PTP from an application developer perspective, to drive our list of improvements we seek to make. We are also partnering with performance tool providers, to drive higher quality performance tool integration. We have partnered with the Cactus group at Louisiana State University to improve Eclipse's ability to work with computational frameworks and extremely complex build systems, as well as to develop educational materials to incorporate into

  11. Tribological composition optimization of chromium-carbide-based solid lubricant coatings for foil gas bearings at temperatures to 650 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1988-01-01

    The determination of the tribilogically optimum composition of chromium-carbide-based solid lubricant coatings using a foil gas bearing test apparatus is described. The coatings contain a wear resistant chromium carbide `base stock' with the lubricant additives silver and BaF2-CaF2 eutectic. The coating composition is optimized for air-lubricated foil gas bearings at temperatures ranging from 25 to 650 C. The various compositions were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized Ni-Cr alloy foils, and the test bearings were subjected to repeated start-stop cycles under a bearing unit of 14 kPa. Sliding contact between the coated journal and the smooth foil occurs during bearing start-up before lift-off or hydrodynamic lubrication by the air film and during bearing coast-down. The bearings were tested for 9000 start-stop cycles or until specimen reached a predetermined failure level.

  12. Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F.

    1984-01-01

    An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.

  13. Effort Optimization in Minimizing Food Related Greenhouse Gas Emissions, a look at "Organic" and "Local"

    NASA Astrophysics Data System (ADS)

    Bowen, E.; Martin, P. A.; Eshel, G.

    2008-12-01

    The adverse environmental effects, especially energy use and resultant GHG emissions, of food production and consumption are becoming more widely appreciated and increasingly well documented. Our insights into the thorny problem of how to mitigate some of those effects, however, are far less evolved. Two of the most commonly advocated strategies are "organic" and "local", referring, respectively, to growing food without major inputs of fossil fuel based synthetic fertilizers and pesticides and to food consumption near its agricultural origin. Indeed, both agrochemical manufacture and transportation of produce to market make up a significant percentage of energy use in agriculture. While there can be unique environmental benefits to each strategy, "organic" and "local" each may potentially result in energy and emissions savings relative to conventionally grown produce. Here, we quantify the potential energy and greenhouse gas emissions savings associated with "organic" and "local". We take note of energy use and actual GHG costs of the major synthetic fertilizers and transportation by various modes routinely employed in agricultural distribution chains, and compare them for ~35 frequently consumed nutritional mainstays. We present new, current, lower-bound energy and greenhouse gas efficiency estimates for these items and compare energy consumption and GHG emissions incurred during producing those food items to consumption and emissions resulting from transporting them, considering travel distances ranging from local to continental and transportation modes ranging from (most efficient) rail to (least efficient) air. In performing those calculations, we demonstrate the environmental superiority of either local or organic over conventional foods, and illuminate the complexities involved in entertaining the timely yet currently unanswered, and previously unanswerable, question of "Which is Environmentally Superior, Organic or Local?". More broadly, we put forth a

  14. Microwave-assisted hydrothermal synthesis of Cu/Cu2O hollow spheres with enhanced photocatalytic and gas sensing activities at room temperature.

    PubMed

    Zou, Xinwei; Fan, Huiqing; Tian, Yuming; Zhang, Mingang; Yan, Xiaoyan

    2015-05-01

    Cu/Cu2O nano-heterostructure hollow spheres with a submicron diameter (200-500 nm) were prepared by a microwave-assisted hydrothermal method using Cu(OAc)2·H2O, PVP and ascorbic acid solution as the precursors. The morphology of the products could evolve with the hydrothermal time from solid spheres to thick-shell hollow spheres, then to thin-shell hollow spheres, and finally to nanoparticles. Moreover, the content of Cu in the products could be controlled by adjusting the hydrothermal time. The spontaneous forming of the hollow structure spheres was found to result from the Ostwald ripening effect during the low temperature (100 °C) hydrothermal reaction process. The photocatalytic degradation activities on MO under visible-light irradiation and the gas sensing activities toward the oxidizing NO2 gas of different Cu/Cu2O nano-heterostructure hollow spheres were investigated. As a result, the Cu/Cu2O nano-heterostructure hollow spheres obtained at the hydrothermal time of 30 min, with a rough/porous thin-shell structure and a Cu content of about 10.5 wt%, exhibited the best photocatalytic and gas sensing performances compared with others.

  15. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  16. Optimization of operating parameters for gas-phase photocatalytic splitting of H2S by novel vermiculate packed tubular reactor.

    PubMed

    Preethi, V; Kanmani, S

    2016-10-01

    Hydrogen production by gas-phase photocatalytic splitting of Hydrogen Sulphide (H2S) was investigated on four semiconductor photocatalysts including CuGa1.6Fe0.4O2, ZnFe2O3, (CdS + ZnS)/Fe2O3 and Ce/TiO2. The CdS and ZnS coated core shell particles (CdS + ZnS)/Fe2O3 shows the highest rate of hydrogen (H2) production under optimized conditions. Packed bed tubular reactor was used to study the performance of prepared photocatalysts. Selection of the best packing material is a key for maximum removal efficiency. Cheap, lightweight and easily adsorbing vermiculate materials were used as a novel packing material and were found to be effective in splitting H2S. Effect of various operating parameters like flow rate, sulphide concentration, catalyst dosage, light irradiation were tested and optimized for maximum H2 conversion of 92% from industrial waste H2S. PMID:27562700

  17. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory.

    PubMed

    Novick, Kimberly A; Miniat, Chelcy F; Vose, James M

    2016-03-01

    We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species.

  18. Optimization of matrix solid phase dispersion coupled with gas chromatography electron capture detection for determination of chlorinated pesticides in soil.

    PubMed

    Salemi, Amir; Shafiei, Elham; Vosough, Maryam

    2012-11-15

    A fast, simple and efficient technique based on matrix solid phase dispersion has been presented for extraction and clean-up of some chlorinated pesticides and derivative products; α-BHC, β-BHC, γ-BHC, δ-BHC, heptachlor, aldrin, dieldrin, endrin, endosulfan 1, endosulfan 2, 4,4'-DDT, 4,4'-DDE, 4,4'-DDD, heptachlor epoxide, endrin aldehyde, endosulfan sulfate. Box-Behnken response surface methodology was employed for optimization of the extraction efficiency. As the optimized procedure, 0.5 g of dried and sieved soil samples were mixed with 2.0 g of 10% C18 in silica (w/w) as dispersant and after transferring into the extraction tube they were extracted with 8 mL of dichloromethane-n-hexane (1:1, v/v). Gas chromatography with electron capture detector was used for selective and sensitive determination of the analytes. Recoveries for the extraction of the proposed analytes were calculated and were satisfying (more than 75%), except for endrin aldehyde (59%) and endosulfan sulfate (62%). Also the method was linear over the calibration range (R(2)>0.991) and the quantitative results were reasonably reproducible and sensitive (LODs ranged between 0.3 and 1.8 ng g(-1)).

  19. [Optimizing the operating variables that affect the transfection experiment of antisense oligodeoxyribonucleotide by gas-filled microbubbles].

    PubMed

    Zhao, Ying-zheng; Luo, Yu-kun; Lu, Cui-tao; Xu, Jing-feng; Mei, Xing-guo; Wang, Hu-jun; Zhang, Mei

    2007-12-01

    To optimize the operating variables that affect the transfection of antisense oligodeoxyribonucleotide (AS-ODNs) by insonated gas-filled lipid microbubbles, SF6-filled microbubbles were prepared by sonication-lyophilization method. An AS-ODNs sequence and a breast cancer cell line SK-BR-3 were used to define the various operating variables determining the transfection efficiency of SF6-filled microbubbles. Three levels of mixing speed, different durations of mixing and various delay time before ultrasound were examined, separately. Transfection efficiency was detected by fluorescence microscopy. Transfection results with and without incubation of AS-ODNs and microbubbles before mixing cells were compared. From the results, there is no significant difference between the transinfection efficiency with or without incubation of AS-ODNs and microbubbles before mixing cells. AS-ODNs transfection efficiency showed an increasing trend with mixing speed and mixing duration, but there is a negative relationship with delay time before ultrasound. The optimum parameters for AS-ODNs transfection by SF6-filled microbubbles were found at a mixing speed of 40-50 r x min(-1) for 30-60 s with less than 60 s delay before ultrasound. For a successful transfection, long time of incubation with gene is essential for normal nonviral vectors such as liposomes or cationic lipid-polymer hybrids, because these vectors depend on endocytosis and membrane fusion to realize transfection. Unlike liposomes and cationic lipid-polymer hybrids, gas-filled lipid microbubbles depend on sonorporation effect to realize transfection. Therefore, the incubation of gene and microbubbles before mixing cells may not be necessary. Ultrasound-mediated AS-ODNs transfection enhanced by gas-filled lipid microbubbles represents an effective avenue for gene transfer.

  20. Optimal use of buffer volumes for the measurement of atmospheric gas concentration in multi-point systems

    NASA Astrophysics Data System (ADS)

    Cescatti, Alessandro; Marcolla, Barbara; Goded, Ignacio; Gruening, Carsten

    2016-09-01

    Accurate multi-point monitoring systems are required to derive atmospheric measurements of greenhouse gas concentrations both for the calculation of surface fluxes with inversion transport models and for the estimation of non-turbulent components of the mass balance equation (i.e. advection and storage fluxes) at eddy covariance sites. When a single analyser is used to monitor multiple sampling points, the deployment of buffer volumes (BVs) along sampling lines can reduce the uncertainty due to the discrete temporal sampling of the signal. In order to optimize the use of buffer volumes we explored various set-ups by simulating their effect on time series of high-frequency CO2 concentration collected at three Fluxnet sites. Besides, we proposed a novel scheme to calculate half-hourly weighted arithmetic means from discrete point samples, accounting for the probabilistic fraction of the signal generated in the averaging period. Results show that the use of BVs with the new averaging scheme reduces the mean absolute error (MAE) up to 80 % compared to a set-up without BVs and up to 60 % compared to the case with BVs and a standard, non-weighted averaging scheme. The MAE of CO2 concentration measurements was observed to depend on the variability of the concentration field and on the size of BVs, which therefore have to be carefully dimensioned. The optimal volume size depends on two main features of the instrumental set-up: the number of measurement points and the time needed to sample at one point (i.e. line purging plus sampling time). A linear and consistent relationship was observed at all sites between the sampling frequency, which summarizes the two features mentioned above, and the renewal frequency associated with the volume. Ultimately, this empirical relationship can be applied to estimate the optimal volume size according to the technical specifications of the sampling system.

  1. Optimization of a closed-loop gas system for the operation of Resistive Plate Chambers at the Large Hadron Collider experiments

    NASA Astrophysics Data System (ADS)

    Capeans, M.; Glushkov, I.; Guida, R.; Hahn, F.; Haider, S.

    2012-01-01

    Resistive Plate Chambers (RPCs), thanks to their fast time resolution (˜1 ns), suitable space resolution (˜1 cm) and low production cost (˜50 €/m2), are widely employed for the muon trigger systems at the Large Hadron Collider (LHC). Their large detector volume (they cover a surface of about 4000 m2 equivalent to 16 m3 of gas volume both in ATLAS and CMS) and the use of a relatively expensive Freon-based gas mixture make a closed-loop gas circulation unavoidable. It has been observed that the return gas of RPCs operated in conditions similar to the difficult experimental background foreseen at LHC contains a large amount of impurities potentially dangerous for long-term operation. Several gas-cleaning agents are currently in use in order to avoid accumulation of impurities in the closed-loop circuits. We present the results of a systematic study characterizing each of these cleaning agents. During the test, several RPCs were operated at the CERN Gamma Irradiation Facility (GIF) in a high radiation environment in order to observe the production of typical impurities: mainly fluoride ions, molecules of the Freon group and hydrocarbons. The polluted return gas was sent to several cartridges, each containing a different cleaning agent. The effectiveness of each material was studied using gas chromatography and mass-spectrometry techniques. Results of this test have revealed an optimized configuration of filters that is now under long-term validation.Gas optimization studies are complemented with a finite element simulation of gas flow distribution in the RPCs, aiming at its eventual optimization in terms of distribution and flow rate.

  2. CFD assisted simulation of temperature distribution and laser power in pulsed and CW pumped static gas DPALs

    NASA Astrophysics Data System (ADS)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2015-10-01

    An analysis of radiation, kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The gas flow conservation equations are coupled to the equations for DPAL kinetics and to the Beer-Lambert equations for pump and laser beams propagation. The DPAL kinetic processes in the Cs/CH4 (K/He) gas mixtures considered involve the three low energy levels, (1) n2S1/2, (2) n2P3/2 and (3) n2P1/2 (where n=4,6 for K and Cs, respectively), three excited alkali states and two alkali ionic states. Using the CFD model, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped CW and pulsed Cs and K DPALs. The DPAL power and medium temperature were calculated as a function of pump power and pump pulse duration. The CFD model results were compared to experimental results of Cs and K DPALs.

  3. [Ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of eight drugs in biological samples by gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Meng, Liang; Zhu, Binling; Zheng, Kefang; Zhang, Wenwen; Meng, Pinjia

    2015-03-01

    A novel microextraction technique based on ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction (UA-LDS-DLLME) has been developed for the determination of multiple drugs of abuse in biological samples by gas chromatography-triple quadrupole mass spectrometry (GC-QQQ-MS). A total of 100 µL of toluene as extraction solvent was dropped into the sample solution. Then the mixture was sonicated drastically in an ultrasonic bath for 3 min with occasional manual shaking to form a cloudy suspension. After centrifugation at 10,000 r/min for 3 min, the upper layer of low-density extractant was withdrawn and injected into the GC-QQQ-MS for analysis. The parameters affecting extraction efficiency have been investigated and optimized. Under the optimum conditions, good linearities were observed for all analytes with the correlation coefficients ranging from 0. 998 4 to 0. 999 4. The recoveries of 79.3%-100.3% with RSDs < 5.7% were obtained. The LODs (S/N = 3) were in the range from 0.05 to 0.40 µg/L. UA-LDS-DLLME technique has the advantages of less extraction time, suitable for batches of sample pretreatment simultaneously, and higher extraction efficiency. It was successfully applied to the analysis of amphetamines in real human urine samples.

  4. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  5. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    SciTech Connect

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.

  6. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    PubMed Central

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-01-01

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We also demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%. PMID:26056307

  7. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment.

    PubMed

    Balakrishnan, Madhesan; Sacia, Eric R; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A; Scown, Corinne D; Toste, F Dean; Bell, Alexis T

    2015-06-23

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We also demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.

  8. Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2004-01-31

    More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

  9. Optimized working conditions for a thermoelectric generator as a topping cycle for gas turbines

    NASA Astrophysics Data System (ADS)

    Brady Knowles, C.; Lee, Hohyun

    2012-10-01

    This paper presents a model for a theoretical maximum efficiency of a thermoelectric generator integrated with a Brayton-cycle engine. The thermoelectric cycle is presented in two configurations as a topping cycle and a preheating topping cycle. For the topping cycle configuration, the thermoelectric generator receives heat from a high-temperature heat source and produces electrical work before rejecting heat to a Brayton cycle. For the preheating topping cycle, the rejected heat from the thermoelectric generator partially heats the compressed working fluid of the Brayton cycle before a secondary heater delivers heat to the working fluid directly from the heat source. The thermoelectric topping cycle efficiency increases as the temperature difference between the hot- and cold-side increases; however, this limits the heat transfer possible to the Brayton cycle, which in turn reduces power generation from the Brayton cycle. This model identifies the optimum operating parameters of the thermoelectric and Brayton cycles to obtain the maximum thermal efficiency of the combined cycle. In both configurations, efficiency gains are larger at low-temperature Brayton cycles. Although a thermoelectric generator (TEG) topping cycle enhances efficiency for a low temperature turbine, efficiency cannot exceed a high temperature gas turbine. Using a TEG topping cycle is limited to cases when space or price for a high temperature turbine cannot be justified. A design to achieve the preheating thermoelectric topping cycle is also presented.

  10. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    DOE PAGES

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a methodmore » for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.« less

  11. Optimizing detection of noble gas emission at a former UNE site: sample strategy, collection, and analysis

    NASA Astrophysics Data System (ADS)

    Kirkham, R.; Olsen, K.; Hayes, J. C.; Emer, D. F.

    2013-12-01

    Underground nuclear tests may be first detected by seismic or air samplers operated by the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). After initial detection of a suspicious event, member nations may call for an On-Site Inspection (OSI) that in part, will sample for localized releases of radioactive noble gases and particles. Although much of the commercially available equipment and methods used for surface and subsurface environmental sampling of gases can be used for an OSI scenario, on-site sampling conditions, required sampling volumes and establishment of background concentrations of noble gases require development of specialized methodologies. To facilitate development of sampling equipment and methodologies that address OSI sampling volume and detection objectives, and to collect information required for model development, a field test site was created at a former underground nuclear explosion site located in welded volcanic tuff. A mixture of SF-6, Xe127 and Ar37 was metered into 4400 m3 of air as it was injected into the top region of the UNE cavity. These tracers were expected to move towards the surface primarily in response to barometric pumping or through delayed cavity pressurization (accelerated transport to minimize source decay time). Sampling approaches compared during the field exercise included sampling at the soil surface, inside surface fractures, and at soil vapor extraction points at depths down to 2 m. Effectiveness of various sampling approaches and the results of tracer gas measurements will be presented.

  12. Optimization of an oxide dispersion strengthened Ni-Cr-Al alloy for gas turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Klarstrom, D. L.; Grierson, R.

    1975-01-01

    The investigation was carried out to determine the optimum alloy within the Ni-16Cr-Al-Y2O3 system for use as a vane material in advanced aircraft gas turbine engines. Six alloys containing nominally 4%, 5% and 6% Al with Y2O3 levels of 0.8% and 1.2% were prepared by mechanical attrition. Six small-scale, rectangular extrusions were produced from each powder lot for property evaluation. The approximate temperatures for incipient melting were found to be 1658 K (2525 F), 1644 K (2500 F) and 1630 K (2475 F) for the 4%, 5% and 6% aluminum levels, respectively. With the exception of longitudinal crystallographic texture, the eight extrusions selected for extensive evaluation either exceeded or were close to mechanical property goals. Major differences between the alloys became apparent during dynamic oxidation testing, and in particular during the 1366 K (2000 F)/500 hour Mach 1 tests carried out by NASA-Lewis. An aluminum level of 4.75% was subsequently judged to be optimum based on considerations of dynamic oxidation resistance, susceptibility to thermal fatigue cracking and melting point.

  13. A tool for thermoeconomic analysis and optimization of gas, steam, and combined plants

    SciTech Connect

    Agazzani, A.; Massardo, A.F.

    1997-10-01

    The aim of this work is to demonstrate the capability of an original modular simulator tool for the thermoeconomic analysis of thermal-energy systems. The approach employed is based on the Thermoeconomic Functional Analysis (T.F.A.), which, through definition of the functional productive diagram and the establishment of the capital cost function of each component, allows the marginal costs and the unit product costs, i.e., the internal economy, of the functional energy flows to be obtained in correspondence to the optimum point. The optimum design of the system is obtained utilizing a traditional optimization technique, which includes both physical structure of the energy system described in terms of thermodynamic variables and cost model (capital cost of the components, maintenance and amortization factors, unit fuel cost, unit electricity cost, etc.). As an application example to show the practicability of the tool, the thermoeconomic analysis of various complex multipressure combined cycles (with or without steam reheating) is carried out. The results are analyzed and discussed in depth.

  14. Room temperature hydrogen gas sensing characteristics of porous quaternary AlInGaN film prepared via UV-assisted photo-electrochemical etching

    NASA Astrophysics Data System (ADS)

    Quah, Hock Jin; Ahmed, Naser Mahmoud; Zainal, Norzaini; Yam, Fong Kwong; Hassan, Zainuriah; Lim, Way Foong

    2016-07-01

    This paper reports room temperature hydrogen gas sensing characteristics of porous quaternary AlInGaN prepared via ultraviolet-assisted photo-electrochemical etching in 1-4% diluted potassium hydroxide (KOH) solution. The highest sensitivity (S), the lowest response time and recovery time were obtained by the 4% KOH etched sample, owing to good adsorption and desorption of adsorbed H atoms over the largest surface area provided by the highest pore density. An increase in forward bias to 2.0 V has enhanced S (98.0%) of the sample while a relatively low bias of 0.5 V was sufficient to yield S of 81.9% in the sample.

  15. Development of an ultrasound-assisted emulsification microextraction method for the determination of chlorpyrifos and organochlorine pesticide residues in honey samples using gas chromatography with mass spectrometry.

    PubMed

    Mousavi, Mir-Michael; Arefhosseini, Seyedrafie; Alizadeh Nabili, Ali Akbar; Mahmoudpour, Mansour; Nemati, Mahboob

    2016-07-01

    A simple, rapid, and efficient ultrasound-assisted emulsification microextraction method followed by gas chromatography mass spectrometry in selected ion monitoring mode was developed for the determination of organochlorine pesticides in honey samples. The type and volume of organic extraction solvent, pH, effect of added salt content, and centrifuging time and speed were investigated. Under the optimum extraction conditions, 30 μL of 1, 2-dibromoethane (extraction solvent) was immersed into an ultrasonic bath for 1 min at 40°C. The limits of detection and quantification for all target pesticides were 0.003-0.06 and 0.01-0.2 ng/g, respectively. The extraction recovery was 91-100% and the enrichment factors were 168-192. The relative standard deviation for the method was <6% for intraday (n = 6) and <8% for interday precision (n = 4). The proposed method was successfully applied for the analysis of organochlorine pesticides in honey samples. PMID:27214344

  16. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications.

    PubMed

    Alias, Mohd S; Yang, Yang; Ng, Tien K; Dursun, Ibrahim; Shi, Dong; Saidaminov, Makhsud I; Priante, Davide; Bakr, Osman M; Ooi, Boon S

    2016-01-01

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted attention for photonic device applications. However, owing to the sensitivity of organic moieties to solvents and temperature, device processing is challenging, particularly for patterning. Here, we report the direct patterning of perovskites using chemically gas-assisted focused-ion beam (GAFIB) etching with XeF2 and I2 precursors. We demonstrate etching enhancement in addition to controllability and marginal surface damage compared to focused-ion beam (FIB) etching without precursors. Utilizing the GAFIB etching, we fabricated a uniform and periodic submicron perovskite subwavelength grating (SWG) absorber with broadband absorption and nanoscale precision. Our results demonstrate the use of FIB as a submicron patterning tool and a means of providing surface treatment (after FIB patterning to minimize optical loss) for perovskite photonic nanostructures. The SWG absorber can be patterned on perovskite solar cells to enhance the device efficiency through increasing light trapping and absorption. PMID:26688008

  17. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications.

    PubMed

    Alias, Mohd S; Yang, Yang; Ng, Tien K; Dursun, Ibrahim; Shi, Dong; Saidaminov, Makhsud I; Priante, Davide; Bakr, Osman M; Ooi, Boon S

    2016-01-01

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted attention for photonic device applications. However, owing to the sensitivity of organic moieties to solvents and temperature, device processing is challenging, particularly for patterning. Here, we report the direct patterning of perovskites using chemically gas-assisted focused-ion beam (GAFIB) etching with XeF2 and I2 precursors. We demonstrate etching enhancement in addition to controllability and marginal surface damage compared to focused-ion beam (FIB) etching without precursors. Utilizing the GAFIB etching, we fabricated a uniform and periodic submicron perovskite subwavelength grating (SWG) absorber with broadband absorption and nanoscale precision. Our results demonstrate the use of FIB as a submicron patterning tool and a means of providing surface treatment (after FIB patterning to minimize optical loss) for perovskite photonic nanostructures. The SWG absorber can be patterned on perovskite solar cells to enhance the device efficiency through increasing light trapping and absorption.

  18. Solid-phase microextraction/gas chromatography-mass spectrometry method optimization for characterization of surface adsorption forces of nanoparticles.

    PubMed

    Omanovic-Miklicanin, Enisa; Valzacchi, Sandro; Simoneau, Catherine; Gilliland, Douglas; Rossi, Francois

    2014-10-01

    A complete characterization of the different physico-chemical properties of nanoparticles (NPs) is necessary for the evaluation of their impact on health and environment. Among these properties, the surface characterization of the nanomaterial is the least developed and in many cases limited to the measurement of surface composition and zetapotential. The biological surface adsorption index approach (BSAI) for characterization of surface adsorption properties of NPs has recently been introduced (Xia et al. Nat Nanotechnol 5:671-675, 2010; Xia et al. ACS Nano 5(11):9074-9081, 2011). The BSAI approach offers in principle the possibility to characterize the different interaction forces exerted between a NP's surface and an organic--and by extension biological--entity. The present work further develops the BSAI approach and optimizes a solid-phase microextraction gas chromatography-mass spectrometry (SPME/GC-MS) method which, as an outcome, gives a better-defined quantification of the adsorption properties on NPs. We investigated the various aspects of the SPME/GC-MS method, including kinetics of adsorption of probe compounds on SPME fiber, kinetic of adsorption of probe compounds on NP's surface, and optimization of NP's concentration. The optimized conditions were then tested on 33 probe compounds and on Au NPs (15 nm) and SiO2 NPs (50 nm). The procedure allowed the identification of three compounds adsorbed by silica NPs and nine compounds by Au NPs, with equilibrium times which varied between 30 min and 12 h. Adsorption coefficients of 4.66 ± 0.23 and 4.44 ± 0.26 were calculated for 1-methylnaphtalene and biphenyl, compared to literature values of 4.89 and 5.18, respectively. The results demonstrated that the detailed optimization of the SPME/GC-MS method under various conditions is a critical factor and a prerequisite to the application of the BSAI approach as a tool to characterize surface adsorption properties of NPs and therefore to draw any further

  19. Gas chromatographic quantitative analysis of methanol in wine: operative conditions, optimization and calibration model choice.

    PubMed

    Caruso, Rosario; Gambino, Grazia Laura; Scordino, Monica; Sabatino, Leonardo; Traulo, Pasqualino; Gagliano, Giacomo

    2011-12-01

    The influence of the wine distillation process on methanol content has been determined by quantitative analysis using gas chromatographic flame ionization (GC-FID) detection. A comparative study between direct injection of diluted wine and injection of distilled wine was performed. The distillation process does not affect methanol quantification in wines in proportions higher than 10%. While quantification performed on distilled samples gives more reliable results, a screening method for wine injection after a 1:5 water dilution could be employed. The proposed technique was found to be a compromise between the time consuming distillation process and direct wine injection. In the studied calibration range, the stability of the volatile compounds in the reference solution is concentration-dependent. The stability is higher in the less concentrated reference solution. To shorten the operation time, a stronger temperature ramp and carrier flow rate was employed. With these conditions, helium consumption and column thermal stress were increased. However, detection limits, calibration limits, and analytical method performances are not affected substantially by changing from normal to forced GC conditions. Statistical data evaluation were made using both ordinary (OLS) and bivariate least squares (BLS) calibration models. Further confirmation was obtained that limit of detection (LOD) values, calculated according to the 3sigma approach, are lower than the respective Hubaux-Vos (H-V) calculation method. H-V LOD depends upon background noise, calibration parameters and the number of reference standard solutions employed in producing the calibration curve. These remarks are confirmed by both calibration models used. PMID:22312744

  20. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    SciTech Connect

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate