Zhang, Ru; Han, Shufen; Zhang, Zheng; Zhang, Weiguo; Yang, Jing; Wan, Zhongxiao; Qin, Liqiang
2018-05-16
Cereal fiber is associated with decreasing the risk of cardiovascular diseases. However, whether cereal fiber modulates inflammatory response and improves atherosclerosis remains unclear. This study evaluated the anti-atherosclerotic effect of cereal fibers from oat or wheat bran and explored the potential anti-inflammatory mechanisms. Male ApoE -/- mice were given a high-fat/cholesterol (HFC) diet or a HFC diet supplemented with 0.8% oat fiber or wheat bran fiber. After 18 weeks of the feeding period, serum lipids and inflammatory cytokines were measured. The relative protein levels of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway and nuclear factor κB (NF-κB) were determined by the western blot method in aorta tissues. Pathologically, oat fiber and wheat fiber significantly reduced atherosclerotic plaques by 43.3 and 27.1%, respectively. Biochemically, cereal fiber markedly decreased the protein levels of myeloid differentiation factor 88 (MyD88) and toll-like receptor 4 (TLR4) in aortic tissues. The expression of NF-κB was similarly inhibited by both cereal fibers. In comparison to wheat bran fiber, oat fiber had greater effects in reducing the plague size and inhibiting TLR4/MyD88/NF-κB pathways. Such differences might come from modulation of the NLRP3 inflammasome pathway because the expressions of the cleavage of caspase-1 and interleukin (IL)-1β were inhibited only by oat fiber. The present study demonstrates that cereal fibers can attenuate inflammatory response and atherosclerosis in ApoE -/- mice. Such effects are pronounced with oat fiber and likely mediated by specific inhibition of oat fiber on the NLRP3 inflammasome pathway.
Splenium Development and Early Spoken Language in Human Infants
ERIC Educational Resources Information Center
Swanson, Meghan R.; Wolff, Jason J.; Elison, Jed T.; Gu, Hongbin; Hazlett, Heather C.; Botteron, Kelly; Styner, Martin; Paterson, Sarah; Gerig, Guido; Constantino, John; Dager, Stephen; Estes, Annette; Vachet, Clement; Piven, Joseph
2017-01-01
The association between developmental trajectories of language-related white matter fiber pathways from 6 to 24 months of age and individual differences in language production at 24 months of age was investigated. The splenium of the corpus callosum, a fiber pathway projecting through the posterior hub of the default mode network to occipital…
Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling.
Shi, Hao; Scheffler, Jason M; Pleitner, Jonathan M; Zeng, Caiyun; Park, Sungkwon; Hannon, Kevin M; Grant, Alan L; Gerrard, David E
2008-08-01
Skeletal muscle is composed of diverse fiber types, yet the underlying molecular mechanisms responsible for this diversification remain unclear. Herein, we report that the extracellular signal-regulated kinase (ERK) 1/2 pathway, but not p38 or c-Jun NH(2)-terminal kinase (JNK), is preferentially activated in fast-twitch muscles. Pharmacological blocking of ERK1/2 pathway increased slow-twitch fiber type-specific reporter activity and repressed those associated with the fast-twitch fiber phenotype in vitro. Overexpression of a constitutively active ERK2 had an opposite effect. Inhibition of ERK signaling in cultured myotubes increased slow-twitch fiber-specific protein accumulation while repressing those characteristic of fast-twitch fibers. Overexpression of MAP kinase phosphatase-1 (MKP1) in mouse and rat muscle fibers containing almost exclusively type IIb or IIx fast myosin heavy chain (MyHC) isoforms induced de novo synthesis of the slower, more oxidative type IIa and I MyHCs in a time-dependent manner. Conversion to the slower phenotype was confirmed by up-regulation of slow reporter gene activity and down-regulation of fast reporter activities in response to forced MKP1 expression in vivo. In addition, activation of ERK2 signaling induced up-regulation of fast-twitch fiber program in soleus. These data suggest that the MAPK signaling, most likely the ERK1/2 pathway, is necessary to preserve the fast-twitch fiber phenotype with a concomitant repression of slow-twitch fiber program.
The muscle fiber type–fiber size paradox: hypertrophy or oxidative metabolism?
van Wessel, T.; de Haan, A.; van der Laarse, W. J.
2010-01-01
An inverse relationship exists between striated muscle fiber size and its oxidative capacity. This relationship implies that muscle fibers, which are triggered to simultaneously increase their mass/strength (hypertrophy) and fatigue resistance (oxidative capacity), increase these properties (strength or fatigue resistance) to a lesser extent compared to fibers increasing either of these alone. Muscle fiber size and oxidative capacity are determined by the balance between myofibrillar protein synthesis, mitochondrial biosynthesis and degradation. New experimental data and an inventory of critical stimuli and state of activation of the signaling pathways involved in regulating contractile and metabolic protein turnover reveal: (1) higher capacity for protein synthesis in high compared to low oxidative fibers; (2) competition between signaling pathways for synthesis of myofibrillar proteins and proteins associated with oxidative metabolism; i.e., increased mitochondrial biogenesis via AMP-activated protein kinase attenuates the rate of protein synthesis; (3) relatively higher expression levels of E3-ligases and proteasome-mediated protein degradation in high oxidative fibers. These observations could explain the fiber type–fiber size paradox that despite the high capacity for protein synthesis in high oxidative fibers, these fibers remain relatively small. However, it remains challenging to understand the mechanisms by which contractile activity, mechanical loading, cellular energy status and cellular oxygen tension affect regulation of fiber size. Therefore, one needs to know the relative contribution of the signaling pathways to protein turnover in high and low oxidative fibers. The outcome and ideas presented are relevant to optimizing treatment and training in the fields of sports, cardiology, oncology, pulmonology and rehabilitation medicine. Electronic supplementary material The online version of this article (doi:10.1007/s00421-010-1545-0) contains supplementary material, which is available to authorized users. PMID:20602111
Simulated mossy fiber associated feedforward circuit functioning as a highpass filter.
Zalay, Osbert C; Bardakjian, Berj L
2006-01-01
Learning and memory rely on the strict regulation of communication between neurons in the hippocampus. The mossy fiber (MF) pathway connects the dentate gyrus to the auto-associative CA3 network, and the information it carries is controlled by a feedforward circuit combining disynaptic inhibition with monosynaptic excitation. Analysis of the MF associated circuit using a mapped clock oscillator (MCO) model reveals the circuit to be a highpass filter.
Taupin, J M
1996-07-01
Levels of trace evidence transfer were examined in a casework context. A girl was allegedly abducted in a car and rape attempted by the accused, who denied any contact with the victim. Clothing worn by the victim and the accused, and the covers from the front seats of the car, were analyzed for trace evidence. Three types of corresponding fibers and four possible pathways of transfer were identified. Synthetic fibers similar to those composing the car seat covers were located on the victim's clothing, consistent with direct transfer. Secondary transfer was indicated by dyed brown human head-type hairs (possibly originating from the accused's wife) located on the seat covers and on the victim's clothing. Secondary and possibly tertiary transfer was indicated by pink synthetic material and associated fibers (possibly originating from the victim's mother) located on the victim's clothing, a car seat cover and the accused's clothing. Light microscopy, comparison microscopy, and cross-sectioning techniques were used. The multiple fiber matches and the differing pathways and levels of transfer increased the strength of the association between the accused and the victim. After the fiber evidence was led at the trial, the accused pleaded guilty, thereby affirming the value of secondary transfer evidence.
Bauer, Corinna M.; Heidary, Gena; Koo, Bang-Bon; Killiany, Ronald J.; Bex, Peter; Merabet, Lotfi B.
2014-01-01
Cortical (cerebral) visual impairment (CVI) is characterized by visual dysfunction associated with damage to the optic radiations and/or visual cortex. Typically it results from pre- or perinatal hypoxic damage to postchiasmal visual structures and pathways. The neuroanatomical basis of this condition remains poorly understood, particularly with regard to how the resulting maldevelopment of visual processing pathways relates to observations in the clinical setting. We report our investigation of 2 young adults diagnosed with CVI and visual dysfunction characterized by difficulties related to visually guided attention and visuospatial processing. Using high-angular-resolution diffusion imaging (HARDI), we characterized and compared their individual white matter projections of the extrageniculo-striate visual system with a normal-sighted control. Compared to a sighted control, both CVI cases revealed a striking reduction in association fibers, including the inferior frontal-occipital fasciculus as well as superior and inferior longitudinal fasciculi. This reduction in fibers associated with the major pathways implicated in visual processing may provide a neuroanatomical basis for the visual dysfunctions observed in these patients. PMID:25087644
Dai, Guangping; Das, Avilash; Hayashi, Emiko; Chen, Qin; Takahashi, Emi
2016-11-01
Three-dimensional reconstruction of developing fiber pathways is essential to assessing the developmental course of fiber pathways in the whole brain. We applied diffusion spectrum imaging (DSI) tractography to five juvenile ex vivo cat brains at postnatal day (P) 35, when the degree of myelination varies across brain regions. We quantified diffusion properties (fractional anisotropy [FA] and apparent diffusion coefficient [ADC]) and other measurements (number, volume, and voxel count) on reconstructed pathways for projection (cortico-spinal and thalamo-cortical), corpus callosal, limbic (cingulum and fornix), and association (cortico-cortical) pathways, and characterized regional differences in maturation patterns by assessing diffusion properties. FA values were significantly higher in cortico-cortical pathways within the right hemisphere compared to those within the left hemisphere, while the other measurements for the cortico-cortical pathways within the hemisphere did not show asymmetry. ADC values were not asymmetric in both types of pathways. Interestingly, tract count and volume were significantly larger in the left thalamo-cortical pathways compared to the right thalamo-cortical pathways. The bilateral thalamo-cortical pathways showed high FA values compared to the other fiber pathways. On the other hand, ADC values did not show any differences across pathways studied. These results demonstrate that DSI tractography successfully depicted regional variations of white matter tracts during development when myelination is incomplete. Low FA and high ADC values in the cingulum bundle suggest that the cingulum bundle is less mature than the others at this developmental stage. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.
Deafferentation in thalamic and pontine areas in severe traumatic brain injury.
Laouchedi, M; Galanaud, D; Delmaire, C; Fernandez-Vidal, S; Messé, A; Mesmoudi, S; Oulebsir Boumghar, F; Pélégrini-Issac, M; Puybasset, L; Benali, H; Perlbarg, V
2015-07-01
Severe traumatic brain injury (TBI) is characterized mainly by diffuse axonal injuries (DAI). The cortico-subcortical disconnections induced by such fiber disruption play a central role in consciousness recovery. We hypothesized that these cortico-subcortical deafferentations inferred from diffusion MRI data could differentiate between TBI patients with favorable or unfavorable (death, vegetative state, or minimally conscious state) outcome one year after injury. Cortico-subcortical fiber density maps were derived by using probabilistic tractography from diffusion tensor imaging data acquired in 24 severe TBI patients and 9 healthy controls. These maps were compared between patients and controls as well as between patients with favorable (FO) and unfavorable (UFO) 1-year outcome to identify the thalamo-cortical and ponto-thalamo-cortical pathways involved in the maintenance of consciousness. Thalamo-cortical and ponto-thalamo-cortical fiber density was significantly lower in TBI patients than in healthy controls. Comparing FO and UFO TBI patients showed thalamo-cortical deafferentation associated with unfavorable outcome for projections from ventral posterior and intermediate thalamic nuclei to the associative frontal, sensorimotor and associative temporal cortices. Specific ponto-thalamic deafferentation in projections from the upper dorsal pons (including the reticular formation) was also associated with unfavorable outcome. Fiber density of cortico-subcortical pathways as measured from diffusion MRI tractography is a relevant candidate biomarker for early prediction of one-year favorable outcome in severe TBI. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Henry, Roland G; Berman, Jeffrey I; Nagarajan, Srikantan S; Mukherjee, Pratik; Berger, Mitchel S
2004-02-01
The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain.
Henry, Roland G.; Berman, Jeffrey I.; Nagarajan, Srikantan S.; Mukherjee, Pratik; Berger, Mitchel S.
2014-01-01
The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain. PMID:14980564
Mishra, Arabinda; Anderson, Adam W; Wu, Xi; Gore, John C; Ding, Zhaohua
2010-08-01
The purpose of this work is to design a neuronal fiber tracking algorithm, which will be more suitable for reconstruction of fibers associated with functionally important regions in the human brain. The functional activations in the brain normally occur in the gray matter regions. Hence the fibers bordering these regions are weakly myelinated, resulting in poor performance of conventional tractography methods to trace the fiber links between them. A lower fractional anisotropy in this region makes it even difficult to track the fibers in the presence of noise. In this work, the authors focused on a stochastic approach to reconstruct these fiber pathways based on a Bayesian regularization framework. To estimate the true fiber direction (propagation vector), the a priori and conditional probability density functions are calculated in advance and are modeled as multivariate normal. The variance of the estimated tensor element vector is associated with the uncertainty due to noise and partial volume averaging (PVA). An adaptive and multiple sampling of the estimated tensor element vector, which is a function of the pre-estimated variance, overcomes the effect of noise and PVA in this work. The algorithm has been rigorously tested using a variety of synthetic data sets. The quantitative comparison of the results to standard algorithms motivated the authors to implement it for in vivo DTI data analysis. The algorithm has been implemented to delineate fibers in two major language pathways (Broca's to SMA and Broca's to Wernicke's) across 12 healthy subjects. Though the mean of standard deviation was marginally bigger than conventional (Euler's) approach [P. J. Basser et al., "In vivo fiber tractography using DT-MRI data," Magn. Reson. Med. 44(4), 625-632 (2000)], the number of extracted fibers in this approach was significantly higher. The authors also compared the performance of the proposed method to Lu's method [Y. Lu et al., "Improved fiber tractography with Bayesian tensor regularization," Neuroimage 31(3), 1061-1074 (2006)] and Friman's stochastic approach [O. Friman et al., "A Bayesian approach for stochastic white matter tractography," IEEE Trans. Med. Imaging 25(8), 965-978 (2006)]. Overall performance of the approach is found to be superior to above two methods, particularly when the signal-to-noise ratio was low. The authors observed that an adaptive sampling of the tensor element vectors, estimated as a function of the variance in a Bayesian framework, can effectively delineate neuronal fibers to analyze the structure-function relationship in human brain. The simulated and in vivo results are in good agreement with the theoretical aspects of the algorithm.
Early White-Matter Abnormalities of the Ventral Frontostriatal Pathway in Fragile X Syndrome
ERIC Educational Resources Information Center
Haas, Brian W.; Barnea-Goraly, Naama; Lightbody, Amy A.; Patnaik, Swetapadma S.; Hoeft, Fumiko; Hazlett, Heather; Piven, Joseph; Reiss, Allan L.
2009-01-01
Aim: Fragile X syndrome is associated with cognitive deficits in inhibitory control and with abnormal neuronal morphology and development. Method: In this study, we used a diffusion tensor imaging (DTI) tractography approach to reconstruct white-matter fibers in the ventral frontostriatal pathway in young males with fragile X syndrome (n = 17;…
Gene polymorphisms and fiber-type composition of human skeletal muscle.
Ahmetov, Ildus I; Vinogradova, Olga L; Williams, Alun G
2012-08-01
The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5-90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40-50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin-NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.
Zhang, Ru; Jiao, Jun; Zhang, Wei; Zhang, Zheng; Zhang, Weiguo; Qin, Li-Qiang; Han, Shu-Fen
2016-01-01
Cereal fiber is reported to be associated with obesity and metabolic diseases. However, whether cereal fiber improves leptin resistance and sensitivity remains unclear. For 24 weeks, 48 male C57BL/6J mice were randomly given a normal chow diet (Chow), high-fat/cholesterol diet (HFD), HFD with 0.8% oat fiber (H-oat) or HFD with 0.8% wheat bran fiber (H-wheat). At the end of feeding period, both the serum insulin and leptin levels were determined by ELISA kits. Western blotting was used to assess the protein expressions of the leptin receptor (LepR) and the leptin-signaling pathway in the adipose tissues. Our results suggested that mice fed oat or wheat bran fiber exhibited lower body weight, serum lipids, as well as insulin and leptin levels. The two cereal fibers potently increased the protein expressions of LepR in the adipose tissue. In addition, protein expressions of Janus kinase 2 (JAK2) and transcription 3 (STAT3) (induced by LepR), which enhances leptin signaling, were significantly higher and the expression of cytokine signaling-3 (SOCS3), which inhibits leptin signaling, was significantly lower in the two cereal fiber groups than in the HFD group. Taken together, our findings suggest that cereal fiber can improve leptin resistance and sensitivity by the JAK2/STAT3 pathway in C57BL/6J mice fed a HFD; furthermore, oat fiber is more effective in the improvement of leptin sensitivity than wheat bran fiber, in this murine model.
Lo, R Y; Levine, R L
1981-04-06
We have used [3H]proline radioautography to trace regenerating optic fibers in the goldfish following: (1) the removal of the right tectal lobe and the right eye, and (2) the removal of both tectal lobes. Our results indicate that following the removal of the right tectal lobe and the right eye, both the denervated tectal efferent pathways, and the denervated visual pathways and terminal zones of the enucleated eye were penetrated by the regenerating optic fibers. In addition, following bilateral lobectomy, the denervated tectal efferent pathways were bilaterally penetrated by the regenerating fibers. Since, in both types of operations, these denervated pathways and terminal zones should undergo degeneration, our results support the suggestion that the presence of degenerating axonal debris and proliferating glia may play an important role in guiding regenerating optic fibers in the visual system of the goldfish.
Shin, Junchul; Nunomiya, Aki; Kitajima, Yasuo; Dan, Takashi; Miyata, Toshio; Nagatomi, Ryoichi
2016-01-01
Hypoxia exposure is known to induce an alteration in skeletal muscle fiber-type distribution mediated by hypoxia-inducible factor (HIF)-α. The downstream pathway of HIF-α leading to fiber-type shift, however, has not been elucidated. The calcineurin pathway is one of the pathways responsible for slow muscle fiber transition. Because calcineurin pathway is activated by vascular endothelial growth factor (VEGF), one of the factors induced by HIF-1α, we hypothesized that the stabilization of HIF-1α may lead to slow muscle fiber transition via the activation of calcineurin pathway in skeletal muscles. To induce HIF-1α stabilization, we used a loss of function strategy to abrogate Prolyl hydroxylase domain protein (PHD) 2 responsible for HIF-1α hydroxylation making HIF-1α susceptible to ubiquitin dependent degradation by proteasome. The purpose of this study was therefore to examine the effect of HIF-1α stabilization in PHD2 conditional knockout mouse on skeletal muscle fiber-type transition and to elucidate the involvement of calcineurin pathway on muscle fiber-type transition. PHD2 deficiency resulted in an increased capillary density in skeletal muscles due to the induction of vascular endothelial growth factor. It also elicited an alteration of skeletal muscle phenotype toward the type I fibers in both of the soleus (35.8 % in the control mice vs. 46.7 % in the PHD2-deficient mice, p < 0.01) and the gastrocnemius muscle (0.94 vs. 1.89 %, p < 0.01), and the increased proportion of type I fibers appeared to correspond to the area of increased capillary density. In addition, calcineurin and nuclear factor of activated T cell (NFATc1) protein levels were increased in both the gastrocnemius and soleus muscles, suggesting that the calcineurin/NFATc1 pathway was responsible for the type I fiber transition regardless of PGC-1α, which responded minimally to PHD2 deficiency. Indeed, we found that tacrolimus (FK-506), a calcineurin inhibitor, successfully suppressed slow fiber-type formation in PHD2-deficient mice. Taken together, stabilized HIF-1α induced by PHD2 conditional knockout resulted in the transition of muscle fibers toward a slow fiber type via a calcineurin/NFATc1 signaling pathway. PHD2 conditional knockout mice may serve as a model for chronic HIF-1α stabilization as in mice exposed to low oxygen concentration.
FGFR and PTEN signaling interact during lens development to regulate cell survival
Chaffee, Blake R.; Hoang, Thanh V.; Leonard, Melissa R.; Bruney, Devin G.; Wagner, Brad D.; Dowd, Joseph Richard; Leone, Gustavo; Ostrowski, Michael C.; Robinson, Michael L.
2016-01-01
Lens epithelial cells express many receptor tyrosine kinases (RTKs) that stimulate PI3K-AKT and RAS-RAF-MEK-ERK intracellular signaling pathways. These pathways ultimately activate the phosphorylation of key cellular transcription factors and other proteins that control proliferation, survival, metabolism, and differentiation in virtually all cells. Among RTKs in the lens, only stimulation of fibroblast growth factor receptors (FGFRs) elicits a lens epithelial cell to fiber cell differentiation response in mammals. Moreover, although the lens expresses three different Fgfr genes, the isolated removal of Fgfr2 at the lens placode stage inhibits both lens cell survival and fiber cell differentiation. Phosphatase and tensin homolog (PTEN), commonly known as a tumor suppressor, inhibits ERK and AKT activation and initiates both apoptotic pathways, and cell cycle arrest. Here, we show that the combined deletion of Fgfr2 and Pten rescues the cell death phenotype associated with Fgfr2 loss alone. Additionally, Pten removal increased AKT and ERK activation, above the levels of controls, in the presence or absence of Fgfr2. However, isolated deletion of Pten failed to stimulate ectopic fiber cell differentiation, and the combined deletion of Pten and Fgfr2 failed to restore differentiation-specific Aquaporin0 and DnaseIIβ expression in the lens fiber cells. PMID:26764128
Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia
2014-01-01
Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolar-mediated pathways, allows uptake of nano- and micro-carriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and micro-carriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size-restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems. PMID:24237309
Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia
2013-12-23
Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.
Oestreich, Lena K L; McCarthy-Jones, Simon; Whitford, Thomas J
2016-06-01
Auditory verbal hallucinations (AVH) have been proposed to result from altered connectivity between frontal speech production regions and temporal speech perception regions. Whilst the dorsal language pathway, serviced by the arcuate fasciculus, has been extensively studied in relation to AVH, the ventral language pathway, serviced by the inferior occipito-frontal fasciculus (IOFF) has been rarely studied in relation to AVH. This study examined whether structural changes in anatomically defined subregions of the IOFF were associated with AVH in patients with schizophrenia. Diffusion tensor imaging scans and clinical data were obtained from the Australian Schizophrenia Research Bank for 113 schizophrenia patients, of whom 39 had lifetime experience of AVH (18 had current AVH, 21 had remitted AVH), 74 had no lifetime experience of AVH, and 40 healthy controls. Schizophrenia patients with a lifetime experience of AVH exhibited reduced fractional anisotropy (FA) in the fronto-temporal fibers of the left IOFF compared to both healthy controls and schizophrenia patients without AVH. In contrast, structural abnormalities in the temporal and occipital regions of the IOFF were observed bilaterally in both patient groups, relative to the healthy controls. These results suggest that while changes in the structural integrity of the bilateral IOFF are associated with schizophrenia per se, integrity reductions in the fronto-temporal fibers of the left IOFF may be specifically associated with AVH.
Loss of Dlg-1 in the Mouse Lens Impairs Fibroblast Growth Factor Receptor Signaling
Lee, SungKyoung; Griep, Anne E.
2014-01-01
Coordination of cell proliferation, differentiation and survival is essential for normal development and maintenance of tissues in the adult organism. Growth factor receptor tyrosine kinase signaling pathways and planar cell polarity pathways are two regulators of many developmental processes. We have previously shown through analysis of mice conditionally null in the lens for the planar cell polarity gene (PCP), Dlg-1, that Dlg-1 is required for fiber differentiation. Herein, we asked if Dlg-1 is a regulator of the Fibroblast growth factor receptor (Fgfr) signaling pathway, which is known to be required for fiber cell differentiation. Western blot analysis of whole fiber cell extracts from control and Dlg-1 deficient lenses showed that levels of the Fgfr signaling intermediates pErk, pAkt, and pFrs2α, the Fgfr target, Erm, and the fiber cell specific protein, Mip26, were reduced in the Dlg-1 deficient fiber cells. The levels of Fgfr2 were decreased in Dlg-1 deficient lenses compared to controls. Conversely, levels of Fgfr1 in Dlg-1 deficient lenses were increased compared to controls. The changes in Fgfr levels were found to be specifically in the triton insoluble, cytoskeletal associated fraction of Dlg-1 deficient lenses. Immunofluorescent staining of lenses from E13.5 embryos showed that expression levels of pErk were reduced in the transition zone, a region of the lens that exhibits PCP, in the Dlg-1 deficient lenses as compared to controls. In control lenses, immunofluorescent staining for Fgfr2 was observed in the epithelium, transition zone and fibers. By E13.5, the intensity of staining for Fgfr2 was reduced in these regions of the Dlg-1 deficient lenses. Thus, loss of Dlg-1 in the lens impairs Fgfr signaling and leads to altered levels of Fgfrs, suggesting that Dlg-1 is a modulator of Fgfr signaling pathway at the level of the receptors and that Dlg-1 regulates fiber cell differentiation through its role in PCP. PMID:24824078
Tax, Chantal M W; Chamberland, Maxime; van Stralen, Marijn; Viergever, Max A; Whittingstall, Kevin; Fortin, David; Descoteaux, Maxime; Leemans, Alexander
2015-01-01
Fiber tractography plays an important role in exploring the architectural organization of fiber trajectories, both in fundamental neuroscience and in clinical applications. With the advent of diffusion MRI (dMRI) approaches that can also model "crossing fibers", the complexity of the fiber network as reconstructed with tractography has increased tremendously. Many pathways interdigitate and overlap, which hampers an unequivocal 3D visualization of the network and impedes an efficient study of its organization. We propose a novel fiber tractography visualization approach that interactively and selectively adapts the transparency rendering of fiber trajectories as a function of their orientation to enhance the visibility of the spatial context. More specifically, pathways that are oriented (locally or globally) along a user-specified opacity axis can be made more transparent or opaque. This substantially improves the 3D visualization of the fiber network and the exploration of tissue configurations that would otherwise be largely covered by other pathways. We present examples of fiber bundle extraction and neurosurgical planning cases where the added benefit of our new visualization scheme is demonstrated over conventional fiber visualization approaches.
Locomotor activity modulates associative learning in mouse cerebellum.
Albergaria, Catarina; Silva, N Tatiana; Pritchett, Dominique L; Carey, Megan R
2018-05-01
Changes in behavioral state can profoundly influence brain function. Here we show that behavioral state modulates performance in delay eyeblink conditioning, a cerebellum-dependent form of associative learning. Increased locomotor speed in head-fixed mice drove earlier onset of learning and trial-by-trial enhancement of learned responses that were dissociable from changes in arousal and independent of sensory modality. Eyelid responses evoked by optogenetic stimulation of mossy fiber inputs to the cerebellum, but not at sites downstream, were positively modulated by ongoing locomotion. Substituting prolonged, low-intensity optogenetic mossy fiber stimulation for locomotion was sufficient to enhance conditioned responses. Our results suggest that locomotor activity modulates delay eyeblink conditioning through increased activation of the mossy fiber pathway within the cerebellum. Taken together, these results provide evidence for a novel role for behavioral state modulation in associative learning and suggest a potential mechanism through which engaging in movement can improve an individual's ability to learn.
Enhanced Brain Connectivity in Long-term Meditation Practitioners
Luders, Eileen; Clark, Kristi; Narr, Katherine L.; Toga, Arthur W.
2011-01-01
Very little is currently known about the cerebral characteristics that underlie the complex processes of meditation as only a limited number of studies have addressed this topic. Research exploring structural connectivity in meditation practitioners is particularly rare. We thus acquired diffusion tensor imaging (DTI) data of high angular and spatial resolution and used atlas-based tract mapping methods to investigate white matter fiber characteristics in a well-matched sample of long-term meditators and controls (n=54). A broad field mapping approach estimated the fractional anisotropy (FA) for twenty different fiber tracts (i.e., nine tracts in each hemisphere and two inter-hemispheric tracts) that were subsequently used as dependent measures. Results showed pronounced structural connectivity in meditators compared to controls throughout the entire brain within major projection pathways, commissural pathways, and association pathways. The largest group differences were observed within the corticospinal tract, the temporal component of the superior longitudinal fasciculus, and the uncinate fasciculus. While cross-sectional studies represent a good starting point for elucidating possible links between meditation and white matter fiber characteristics, longitudinal studies will be necessary to determine the relative contribution of nature and nurture to enhanced structural connectivity in long-term meditators. PMID:21664467
Nigam, Deepti; Sawant, Samir V
2013-01-01
Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development. PMID:24497725
Turner, Michael J; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru
2014-06-13
This study aims to identify the contribution of myelinated (A-fiber) and unmyelinated (C-fiber) baroreceptor central pathways to the baroreflex control of sympathetic nerve activity and arterial pressure. Two binary white noise stimulation protocols were used to electrically stimulate the aortic depressor nerve and activate reflex responses from either A-fiber (3 V, 20-100 Hz) or C-fiber (20 V, 0-10 Hz) baroreceptor in anesthetized Sprague-Dawley rats (n=10). Transfer function analysis was performed between stimulation and sympathetic nerve activity (central arc), sympathetic nerve activity and arterial pressure (peripheral arc), and stimulation and arterial pressure (Stim-AP arc). The central arc transfer function from nerve stimulation to splanchnic sympathetic nerve activity displayed derivative characteristics for both stimulation protocols. However, the modeled steady-state gain (0.28 ± 0.04 vs. 4.01 ± 0.2%·Hz(-1), P<0.001) and coherence at 0.01 Hz (0.44 ± 0.05 vs. 0.81 ± 0.03, P<0.05) were significantly lower for A-fiber stimulation compared with C-fiber stimulation. The slope of the dynamic gain was higher for A-fiber stimulation (14.82 ± 1.02 vs. 7.21 ± 0.79 dB·decade(-1), P<0.001). The steady-state gain of the Stim-AP arc was also significantly lower for A-fiber stimulation compared with C-fiber stimulation (0.23 ± 0.05 vs. 3.05 ± 0.31 mmHg·Hz(-1), P<0.001). These data indicate that the A-fiber central pathway contributes to high frequency arterial pressure regulation and the C-fiber central pathway provides more sustained changes in sympathetic nerve activity and arterial pressure. A sustained reduction in arterial pressure from electrical stimulation of arterial baroreceptor afferents is likely mediated through the C-fiber central pathway. Copyright © 2014 Elsevier Inc. All rights reserved.
Tax, Chantal M. W.; Chamberland, Maxime; van Stralen, Marijn; Viergever, Max A.; Whittingstall, Kevin; Fortin, David; Descoteaux, Maxime; Leemans, Alexander
2015-01-01
Fiber tractography plays an important role in exploring the architectural organization of fiber trajectories, both in fundamental neuroscience and in clinical applications. With the advent of diffusion MRI (dMRI) approaches that can also model “crossing fibers”, the complexity of the fiber network as reconstructed with tractography has increased tremendously. Many pathways interdigitate and overlap, which hampers an unequivocal 3D visualization of the network and impedes an efficient study of its organization. We propose a novel fiber tractography visualization approach that interactively and selectively adapts the transparency rendering of fiber trajectories as a function of their orientation to enhance the visibility of the spatial context. More specifically, pathways that are oriented (locally or globally) along a user-specified opacity axis can be made more transparent or opaque. This substantially improves the 3D visualization of the fiber network and the exploration of tissue configurations that would otherwise be largely covered by other pathways. We present examples of fiber bundle extraction and neurosurgical planning cases where the added benefit of our new visualization scheme is demonstrated over conventional fiber visualization approaches. PMID:26444010
Barnes, Benjamin T; Confides, Amy L; Rich, Mark M; Dupont-Versteegden, Esther E
2015-06-01
Critical illness myopathy (CIM) is associated with severe muscle atrophy and fatigue in affected patients. Apoptotic signaling is involved in atrophy and is elevated in muscles from patients with CIM. In this study we investigated underlying mechanisms of apoptosis-related pathways in muscles with different fiber type composition in a rat model of CIM using denervation and glucocorticoid administration (denervation and steroid-induced myopathy, DSIM). Soleus and tibialis anterior (TA) muscles showed severe muscle atrophy (40-60% of control muscle weight) and significant apoptosis in interstitial as well as myofiber nuclei that was similar between the two muscles with DSIM. Caspase-3 and -8 activities, but not caspase-9 and -12, were elevated in TA and not in soleus muscle, while the caspase-independent proteins endonuclease G (EndoG) and apoptosis inducing factor (AIF) were not changed in abundance nor differentially localized in either muscle. Anti-apoptotic proteins HSP70, -27, and apoptosis repressor with a caspase recruitment domain (ARC) were elevated in soleus compared to TA muscle and ARC was significantly decreased with induction of DSIM in soleus. Results indicate that apoptosis is a significant process associated with DSIM in both soleus and TA muscles, and that apoptosis-associated processes are differentially regulated in muscles of different function and fiber type undergoing atrophy due to DSIM. We conclude that interventions combating apoptosis with CIM may need to be directed towards inhibiting caspase-dependent as well as -independent mechanisms to be able to affect muscles of all fiber types.
Zhang, Feng; Jin, Xuanxiang; Wang, Like; Li, Shufen; Wu, Shuang; Cheng, Chaoze; Zhang, Tianzhen
2016-01-01
Annexins play pivotal roles in a variety of cellular processes as well as in fiber development; however, the functional mechanisms of their activities are unclear. Here, an annexin gene that is preferentially expressed in fibers, GhFAnnxA, was found to be significantly associated with various cotton (Gossypium hirsutum) fiber traits. Transgenic analysis demonstrated that GhFAnnxA affected cotton fiber elongation and was involved in secondary cell wall (SCW) biosynthesis. Functional studies demonstrated that GhFAnnxA may act as a Ca2+ conductance regulator and that reactive oxygen species (ROS) produced by Rbohs in a Ca2+-dependent manner may determine fiber elongation caused by elevated intracellular turgor and cell wall loosening. However, excessive hydrogen peroxide (H2O2) inhibited cotton fiber elongation in vitro. We speculate that a positive feedback loop involving ROS and Ca2+ is regulated by GhCDPK1 and regulates fiber cell elongation. Furthermore, the convergence of actin filaments is altered by their interaction with GhFAnnxA, and this also may contribute to fiber elongation. Moreover, GhFAnnxA may affect SCW biosynthesis through changes in cell wall components caused by an increase in H2O2 levels. These results not only provide new insights into the signaling pathways of GhFAnnxA in fiber development but also clarify the role of ROS in fiber development. PMID:27255486
Fang, Lei; Wang, Qiong; Hu, Yan; Jia, Yinhua; Chen, Jiedan; Liu, Bingliang; Zhang, Zhiyuan; Guan, Xueying; Chen, Shuqi; Zhou, Baoliang; Mei, Gaofu; Sun, Junling; Pan, Zhaoe; He, Shoupu; Xiao, Songhua; Shi, Weijun; Gong, Wenfang; Liu, Jianguang; Ma, Jun; Cai, Caiping; Zhu, Xiefei; Guo, Wangzhen; Du, Xiongming; Zhang, Tianzhen
2017-07-01
Upland cotton (Gossypium hirsutum) is the most important natural fiber crop in the world. The overall genetic diversity among cultivated species of cotton and the genetic changes that occurred during their improvement are poorly understood. Here we report a comprehensive genomic assessment of modern improved upland cotton based on the genome-wide resequencing of 318 landraces and modern improved cultivars or lines. We detected more associated loci for lint yield than for fiber quality, which suggests that lint yield has stronger selection signatures than other traits. We found that two ethylene-pathway-related genes were associated with increased lint yield in improved cultivars. We evaluated the population frequency of each elite allele in historically released cultivar groups and found that 54.8% of the elite genome-wide association study (GWAS) alleles detected were transferred from three founder landraces: Deltapine 15, Stoneville 2B and Uganda Mian. Our results provide a genomic basis for improving cotton cultivars and for further evolutionary analysis of polyploid crops.
Mapping Topographic Structure in White Matter Pathways with Level Set Trees
Kent, Brian P.; Rinaldo, Alessandro; Yeh, Fang-Cheng; Verstynen, Timothy
2014-01-01
Fiber tractography on diffusion imaging data offers rich potential for describing white matter pathways in the human brain, but characterizing the spatial organization in these large and complex data sets remains a challenge. We show that level set trees–which provide a concise representation of the hierarchical mode structure of probability density functions–offer a statistically-principled framework for visualizing and analyzing topography in fiber streamlines. Using diffusion spectrum imaging data collected on neurologically healthy controls (N = 30), we mapped white matter pathways from the cortex into the striatum using a deterministic tractography algorithm that estimates fiber bundles as dimensionless streamlines. Level set trees were used for interactive exploration of patterns in the endpoint distributions of the mapped fiber pathways and an efficient segmentation of the pathways that had empirical accuracy comparable to standard nonparametric clustering techniques. We show that level set trees can also be generalized to model pseudo-density functions in order to analyze a broader array of data types, including entire fiber streamlines. Finally, resampling methods show the reliability of the level set tree as a descriptive measure of topographic structure, illustrating its potential as a statistical descriptor in brain imaging analysis. These results highlight the broad applicability of level set trees for visualizing and analyzing high-dimensional data like fiber tractography output. PMID:24714673
Lemos, C; Rial, D; Gonçalves, F Q; Pires, J; Silva, H B; Matheus, F C; da Silva, A C; Marques, J M; Rodrigues, R J; Jarak, I; Prediger, R D; Reis, F; Carvalho, R A; Pereira, F C; Cunha, R A
2016-02-19
High sugar consumption is a risk factor for metabolic disturbances leading to memory impairment. Thus, rats subject to high sucrose intake (HSu) develop a metabolic syndrome and display memory deficits. We now investigated if these HSu-induced memory deficits were associated with metabolic and electrophysiological alterations in the hippocampus. Male Wistar rats were submitted for 9 weeks to a sucrose-rich diet (35% sucrose solution) and subsequently to a battery of behavioral tests; after sacrifice, their hippocampi were collected for ex vivo high-resolution magic angle spinning (HRMAS) metabolic characterization and electrophysiological extracellular recordings in slices. HSu rats displayed a decreased memory performance (object displacement and novel object recognition tasks) and helpless behavior (forced swimming test), without altered locomotion (open field). HRMAS analysis indicated a similar hippocampal metabolic profile of HSu and control rats. HSu rats also displayed no change of synaptic transmission and plasticity (long-term potentiation) in hippocampal Schaffer fibers-CA1 pyramid synapses, but had decreased amplitude of long-term depression in the temporoammonic (TA) pathway. Furthermore, HSu rats had an increased density of inhibitory adenosine A1 receptors (A1R), that translated into a greater potency of A1R in Schaffer fiber synapses, but not in the TA pathway, whereas the endogenous activation of A1R in HSu rats was preserved in the TA pathway but abolished in Schaffer fiber synapses. These results suggest that HSu triggers a hippocampal-dependent memory impairment that is not associated with altered hippocampal metabolism but is probably related to modified synaptic plasticity in hippocampal TA synapses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway
Haustein, Martin D.; Kracun, Sebastian; Lu, Xiao-Hong; Shih, Tiffany; Jackson-Weaver, Olan; Tong, Xiaoping; Xu, Ji; Yang, X. William; O'Dell, Thomas J.; Marvin, Jonathan S.; Ellisman, Mark H.; Bushong, Eric A.; Looger, Loren L.; Khakh, Baljit S.
2014-01-01
Summary The spatiotemporal activities of astrocyte Ca2+ signaling in mature neuronal circuits remain unclear. We used genetically encoded Ca2+ and glutamate indicators as well as pharmacogenetic and electrical control of neurotransmitter release to explore astrocyte activity in the hippocampal mossy fiber pathway. Our data revealed numerous localised spontaneous Ca2+ signals in astrocyte branches and territories, but these were not driven by neuronal activity or glutamate. Moreover, evoked astrocyte Ca2+ signaling changed linearly with the number of mossy fiber action potentials. Under these settings astrocyte responses were global, suppressed by neurotransmitter clearance and mediated by glutamate and GABA. Thus, astrocyte engagement in the fully developed mossy fiber pathway was slow and territorial, contrary to that frequently proposed for astrocytes within microcircuits. We show that astrocyte Ca2+ signaling functionally segregates large volumes of neuropil and that these transients are not suited for responding to, or regulating, single synapses in the mossy fiber pathway. PMID:24742463
Kunzmann, Andrew T; Coleman, Helen G; Huang, Wen-Yi; Kitahara, Cari M; Cantwell, Marie M; Berndt, Sonja I
2015-10-01
Dietary fiber has been associated with a reduced risk of colorectal cancer. However, it remains unclear at which stage in the carcinogenic pathway fiber may act or which food sources of dietary fiber may be most beneficial against colorectal cancer development. The objective was to prospectively evaluate the association between dietary fiber intake and the risk of incident and recurrent colorectal adenoma and incident colorectal cancer. Study participants were identified from the intervention arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Participants received flexible sigmoidoscopy at baseline and 3 or 5 y after. Dietary fiber intake was measured by using a self-reported dietary questionnaire. The colorectal cancer, incident adenoma, and recurrent adenoma analyses were based on 57,774, 16,980, and 1667 participants, respectively. Unconditional logistic regression was used to assess the risk of incident and recurrent adenoma, and Cox proportional hazards models were used to assess the risk of colorectal cancer across categories of dietary fiber intake, with adjustment for potential confounders. Elevated total dietary fiber intake was associated with a significantly reduced risk of incident distal colorectal adenoma (ORhighest vs. lowest tertile of intake: 0.76; 95% CI: 0.63, 0.91; P-trend = 0.003) but not recurrent adenoma (P-trend = 0.67). Although the association was not statistically significant for colorectal cancer overall (HR: 0.85; 95% CI: 0.70, 1.03; P-trend = 0.10), a reduced risk of distal colon cancer was observed with increased total fiber intake (HR: 0.62; 95% CI: 0.41, 0.94; P-trend = 0.03). Protective associations were most notable for fiber originating from cereals or fruit. This large, prospective study within a population-based screening trial suggests that individuals consuming the highest intakes of dietary fiber have reduced risks of incident colorectal adenoma and distal colon cancer and that this effect of dietary fiber, particularly from cereals and fruit, may begin early in colorectal carcinogenesis. This trial was registered at clinicaltrials.gov as NCT01696981. © 2015 American Society for Nutrition.
Kunzmann, Andrew T; Coleman, Helen G; Huang, Wen-Yi; Kitahara, Cari M; Cantwell, Marie M; Berndt, Sonja I
2015-01-01
Background: Dietary fiber has been associated with a reduced risk of colorectal cancer. However, it remains unclear at which stage in the carcinogenic pathway fiber may act or which food sources of dietary fiber may be most beneficial against colorectal cancer development. Objective: The objective was to prospectively evaluate the association between dietary fiber intake and the risk of incident and recurrent colorectal adenoma and incident colorectal cancer. Design: Study participants were identified from the intervention arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Participants received flexible sigmoidoscopy at baseline and 3 or 5 y after. Dietary fiber intake was measured by using a self-reported dietary questionnaire. The colorectal cancer, incident adenoma, and recurrent adenoma analyses were based on 57,774, 16,980, and 1667 participants, respectively. Unconditional logistic regression was used to assess the risk of incident and recurrent adenoma, and Cox proportional hazards models were used to assess the risk of colorectal cancer across categories of dietary fiber intake, with adjustment for potential confounders. Results: Elevated total dietary fiber intake was associated with a significantly reduced risk of incident distal colorectal adenoma (ORhighest vs. lowest tertile of intake: 0.76; 95% CI: 0.63, 0.91; P-trend = 0.003) but not recurrent adenoma (P-trend = 0.67). Although the association was not statistically significant for colorectal cancer overall (HR: 0.85; 95% CI: 0.70, 1.03; P-trend = 0.10), a reduced risk of distal colon cancer was observed with increased total fiber intake (HR: 0.62; 95% CI: 0.41, 0.94; P-trend = 0.03). Protective associations were most notable for fiber originating from cereals or fruit. Conclusions: This large, prospective study within a population-based screening trial suggests that individuals consuming the highest intakes of dietary fiber have reduced risks of incident colorectal adenoma and distal colon cancer and that this effect of dietary fiber, particularly from cereals and fruit, may begin early in colorectal carcinogenesis. This trial was registered at clinicaltrials.gov as NCT01696981. PMID:26269366
Gilbert, Matthew K; Turley, Rickie B; Kim, Hee Jin; Li, Ping; Thyssen, Gregory; Tang, Yuhong; Delhom, Christopher D; Naoumkina, Marina; Fang, David D
2013-06-17
Cotton fiber length is very important to the quality of textiles. Understanding the genetics and physiology of cotton fiber elongation can provide valuable tools to the cotton industry by targeting genes or other molecules responsible for fiber elongation. Ligon Lintless-1 (Li1) is a monogenic mutant in Upland cotton (Gossypium hirsutum) which exhibits an early cessation of fiber elongation resulting in very short fibers (< 6 mm) at maturity. This presents an excellent model system for studying the underlying molecular and cellular processes involved with cotton fiber elongation. Previous reports have characterized Li1 at early cell wall elongation and during later secondary cell wall synthesis, however there has been very limited analysis of the transition period between these developmental time points. Physical and morphological measurements of the Li1 mutant fibers were conducted, including measurement of the cellulose content during development. Affymetrix microarrays were used to analyze transcript profiles at the critical developmental time points of 3 days post anthesis (DPA), the late elongation stage of 12 DPA and the early secondary cell wall synthesis stage of 16 DPA. The results indicated severe disruption to key hormonal and other pathways related to fiber development, especially pertaining to the transition stage from elongation to secondary cell wall synthesis. Gene Ontology enrichment analysis identified several key pathways at the transition stage that exhibited altered regulation. Genes involved in ethylene biosynthesis and primary cell wall rearrangement were affected, and a primary cell wall-related cellulose synthase was transcriptionally repressed. Linkage mapping using a population of 2,553 F2 individuals identified SSR markers associated with the Li1 genetic locus on chromosome 22. Linkage mapping in combination with utilizing the diploid G. raimondii genome sequences permitted additional analysis of the region containing the Li1 gene. The early termination of fiber elongation in the Li1 mutant is likely controlled by an early upstream regulatory factor resulting in the altered regulation of hundreds of downstream genes. Several elongation-related genes that exhibited altered expression profiles in the Li1 mutant were identified. Molecular markers closely associated with the Li1 locus were developed. Results presented here will lay the foundation for further investigation of the genetic and molecular mechanisms of fiber elongation.
Lu, Quanwei; Shi, Yuzhen; Xiao, Xianghui; Li, Pengtao; Gong, Juwu; Gong, Wankui; Liu, Aiying; Shang, Haihong; Li, Junwen; Ge, Qun; Song, Weiwu; Li, Shaoqi; Zhang, Zhen; Rashid, Md Harun Or; Peng, Renhai; Yuan, Youlu; Huang, Jinling
2017-10-05
As high-strength cotton fibers are critical components of high quality cotton, developing cotton cultivars with high-strength fibers as well as high yield is a top priority for cotton development. Recently, chromosome segment substitution lines (CSSLs) have been developed from high-yield Upland cotton ( Gossypium hirsutum ) crossed with high-quality Sea Island cotton ( G. barbadense ). Here, we constructed a CSSL population by crossing CCRI45, a high-yield Upland cotton cultivar, with Hai1, a Sea Island cotton cultivar with superior fiber quality. We then selected two CSSLs with significantly higher fiber strength than CCRI45 (MBI7747 and MBI7561), and one CSSL with lower fiber strength than CCRI45 (MBI7285), for further analysis. We sequenced all four transcriptomes at four different time points postanthesis, and clustered the 44,678 identified genes by function. We identified 2200 common differentially-expressed genes (DEGs): those that were found in both high quality CSSLs (MBI7747 and MBI7561), but not in the low quality CSSL (MBI7285). Many of these genes were associated with various metabolic pathways that affect fiber strength. Upregulated DEGs were associated with polysaccharide metabolic regulation, single-organism localization, cell wall organization, and biogenesis, while the downregulated DEGs were associated with microtubule regulation, the cellular response to stress, and the cell cycle. Further analyses indicated that three genes, XLOC_036333 [mannosyl-oligosaccharide-α-mannosidase ( MNS1 )], XLOC_029945 ( FLA8 ), and XLOC_075372 ( snakin-1 ), were potentially important for the regulation of cotton fiber strength. Our results suggest that these genes may be good candidates for future investigation of the molecular mechanisms of fiber strength formation and for the improvement of cotton fiber quality through molecular breeding. Copyright © 2017 Lu et al.
[Myonuclear domain and microtubule proteome during skeletal muscle maturation].
Couturier, Nathalie; Gache, Vincent
2017-11-01
In the normal course of muscle fiber development, myonuclei actively position and adapt a precise localization in mature fibers, shaping MyoNuclear Domains (MNDs). Myonuclei positioning in fibers appears to be essential for muscle function as defects in MNDs settings are always associated with dysfunction (i.e., centronuclear myopathy, sarcopenia). Previous studies have shown that myonuclei positioning in fibers is reversible, suggesting that in pathologies presenting MNDs impairment, myonuclei could be re-addressed to the "correct" position in fibers and this could benefit to muscle function. Cytoskeleton networks, and particularly microtubules, have been implicated in early nuclei localization in myotubes. As the microtubule network is completely redesigned during muscle maturation, we hypothesized that "microtubules associated proteomes" would change between immature and mature fibers and contribute to a microtubule-dependent process resulting in MNDs setting and maintenance in mature fibers. We performed an in vitro biochemical approach to isolate microtubules partners in immature (myotubes) and mature myofibers. Using mass-spectrometry identification, we selected 244 candidates, differentially associated/expressed with microtubules during myofiber maturation and potentially controlling MNDs settings. We are currently conducting a siRNA screen approach on these candidates to decipher their respective implication in early and late phases of MNDs establishment, using an unbiased assay developed by our team allowing statistical analysis of MNDs regarding myonuclei content. This approach will lead to the identification of new pathways related to nuclear positioning and MNDs setting in normal condition and in myopathies associated to MNDs impairment such as CNMs. © 2017 médecine/sciences – Inserm.
Molecular Signaling in Muscle Plasticity
NASA Technical Reports Server (NTRS)
Epstein, Henry F.
1999-01-01
Extended spaceflight under microgravity conditions leads to significant atrophy of weight-bearing muscles. Atrophy and hypertrophy are the extreme outcomes of the high degree of plasticity exhibited by skeletal muscle. Stimuli which control muscle plasticity include neuronal, hormonal, nutritional, and mechanical inputs. The mechanical stimulus for muscle is directly related to the work or exercise against a load performed. Little or no work is performed by weight-bearing muscles under microgravity conditions. A major hypothesis is that focal adhesion kinase (FAK) which is associated with integrin at the adherens junctions and costa meres of all skeletal muscles is an integral part of the major mechanism for molecular signaling upon mechanical stimulation in all muscle fibers. Additionally, we propose that myotonic protein kinase (DMPK) and dystrophin (DYSTR) also participate in distinct mechanically stimulated molecular signaling pathways that are most critical in type I and type II muscle fibers, respectively. To test these hypotheses, we will use the paradigms of hindlimb unloading and overloading in mice as models for microgravity conditions and a potential exercise countermeasure, respectively, in mice. We expect that FAK loss-of-function will impair hypertrophy and enhance atrophy in all skeletal muscle fibers whereas DYSTR and DMPK loss-of-function will have similar but more selective effects on Type IT and Type I fibers, respectively. Gene expression will be monitored by muscle-specific creatine kinase M promoter-reporter construct activity and specific MRNA and protein accumulation in the soleus (type I primarily) and plantaris (type 11 primarily) muscles. With these paradigms and assays, the following Specific Project Aims will be tested in genetically altered mice: 1) identify the roles of DYSTR and its pathway; 2) evaluate the roles of the DMPK and its pathway; 3) characterize the roles of FAK and its pathway and 4) genetically analyze the mechanisms and interactions between the FAK, DYSTR, and DMPK-associated pathways in single and specific combinations of mutants. The identification of potential signaling mechanisms may permit future development of pharmacological countermeasures for amelioration and prevention of the microgravity-induced atrophy in extended spaceflight, and the analysis of both overloading and unloading paradigms may provide further support for development of exercise-based countermeasures. Understanding the basic mechanisms of molecular signaling in muscle plasticity may aid our understanding and treatment of skeletal muscle atrophy not only in spaceflight but in similar problems of the aging population, in prolonged bed rest, and in cachexia associated with chronic disease.
Ugurlu, Devran; Firat, Zeynep; Türe, Uğur; Unal, Gozde
2018-05-01
Accurate digital representation of major white matter bundles in the brain is an important goal in neuroscience image computing since the representations can be used for surgical planning, intra-patient longitudinal analysis and inter-subject population connectivity studies. Reconstructing desired fiber bundles generally involves manual selection of regions of interest by an expert, which is subject to user bias and fatigue, hence an automation is desirable. To that end, we first present a novel anatomical representation based on Neighborhood Resolved Fiber Orientation Distributions (NRFOD) along the fibers. The resolved fiber orientations are obtained by generalized q-sampling imaging (GQI) and a subsequent diffusion decomposition method. A fiber-to-fiber distance measure between the proposed fiber representations is then used in a density-based clustering framework to select the clusters corresponding to the major pathways of interest. In addition, neuroanatomical priors are utilized to constrain the set of candidate fibers before density-based clustering. The proposed fiber clustering approach is exemplified on automation of the reconstruction of the major fiber pathways in the brainstem: corticospinal tract (CST); medial lemniscus (ML); middle cerebellar peduncle (MCP); inferior cerebellar peduncle (ICP); superior cerebellar peduncle (SCP). Experimental results on Human Connectome Project (HCP)'s publicly available "WU-Minn 500 Subjects + MEG2 dataset" and expert evaluations demonstrate the potential of the proposed fiber clustering method in brainstem white matter structure analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Overexpression of the Mitochondrial T3 Receptor p43 Induces a Shift in Skeletal Muscle Fiber Types
Casas, François; Pessemesse, Laurence; Grandemange, Stéphanie; Seyer, Pascal; Gueguen, Naïg; Baris, Olivier; Lepourry, Laurence; Cabello, Gérard; Wrutniak-Cabello, Chantal
2008-01-01
In previous studies, we have characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43) acting as a mitochondrial transcription factor and consequently stimulating mitochondrial activity and mitochondrial biogenesis. We have established the involvement of this T3 pathway in the regulation of in vitro myoblast differentiation.We have generated mice overexpressing p43 under control of the human α-skeletal actin promoter. In agreement with the previous characterization of this promoter, northern-blot and western-blot experiments confirmed that after birth p43 was specifically overexpressed in skeletal muscle. As expected from in vitro studies, in 2-month old mice, p43 overexpression increased mitochondrial genes expression and mitochondrial biogenesis as attested by the increase of mitochondrial mass and mt-DNA copy number. In addition, transgenic mice had a body temperature 0.8°C higher than control ones and displayed lower plasma triiodothyronine levels. Skeletal muscles of transgenic mice were redder than wild-type animals suggesting an increased oxidative metabolism. In line with this observation, in gastrocnemius, we recorded a strong increase in cytochrome oxidase activity and in mitochondrial respiration. Moreover, we observed that p43 drives the formation of oxidative fibers: in soleus muscle, where MyHC IIa fibers were partly replaced by type I fibers; in gastrocnemius muscle, we found an increase in MyHC IIa and IIx expression associated with a reduction in the number of glycolytic fibers type IIb. In addition, we found that PGC-1α and PPARδ, two major regulators of muscle phenotype were up regulated in p43 transgenic mice suggesting that these proteins could be downstream targets of mitochondrial activity. These data indicate that the direct mitochondrial T3 pathway is deeply involved in the acquisition of contractile and metabolic features of muscle fibers in particular by regulating PGC-1α and PPARδ. PMID:18575627
Effects of dietary fiber, fats, and meat intakes on the risk of Barrett’s Esophagus
Kubo, Ai; Block, Gladys; Quesenberry, Charles P.; Buffler, Patricia; Corley, Douglas A.
2009-01-01
Animal and human models suggest associations between fat intake, fiber intake and the risk of esophageal adenocarcinoma. We evaluated whether these factors may act early in the carcinogenic pathway as a risk factor for Barrett’s esophagus, a potentially premalignant precursor to esophageal adenocarcinoma using a case-control design within the Kaiser Permanente, Northern California population. Incident Barrett’s esophagus cases (n=296) were matched to persons with gastroesophageal reflux disease (GERD) (n=308), and to population controls (n=309). Higher intakes of omega-3-fatty-acids (cases vs. population controls; OR=0.46, 95% CI 0.22–0.97, 4th vs. 1st quartiles of intake), polyunsaturated fat, total fiber (OR=0.34, 95% CI 0.15–0.76), and fiber from fruits and vegetables (OR=0.47 95% CI 0.25–0.88) were associated with a lower risk of Barrett’s esophagus. Higher meat intakes were associated with a lower risk of long-segment Barrett’s esophagus (OR=0.25, 95% CI 0.09–0.72). In contrast, higher trans-fat intakes were associated with increased risk (OR=1.11; 95% CI 1.03–1.21 per gram/day). Total fat intake, barbecued foods, and fiber intake from sources other than fruits and vegetables were not associated with Barrett’s esophagus. Future studies to evaluate whether dietary interventions might influence the risk of Barrett’s esophagus or esophageal adenocarcinoma in high risk persons are needed. PMID:19838934
Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway.
Haustein, Martin D; Kracun, Sebastian; Lu, Xiao-Hong; Shih, Tiffany; Jackson-Weaver, Olan; Tong, Xiaoping; Xu, Ji; Yang, X William; O'Dell, Thomas J; Marvin, Jonathan S; Ellisman, Mark H; Bushong, Eric A; Looger, Loren L; Khakh, Baljit S
2014-04-16
The spatiotemporal activities of astrocyte Ca²⁺ signaling in mature neuronal circuits remain unclear. We used genetically encoded Ca²⁺ and glutamate indicators as well as pharmacogenetic and electrical control of neurotransmitter release to explore astrocyte activity in the hippocampal mossy fiber pathway. Our data revealed numerous localized, spontaneous Ca²⁺ signals in astrocyte branches and territories, but these were not driven by neuronal activity or glutamate. Moreover, evoked astrocyte Ca²⁺ signaling changed linearly with the number of mossy fiber action potentials. Under these settings, astrocyte responses were global, suppressed by neurotransmitter clearance, and mediated by glutamate and GABA. Thus, astrocyte engagement in the fully developed mossy fiber pathway was slow and territorial, contrary to that frequently proposed for astrocytes within microcircuits. We show that astrocyte Ca²⁺ signaling functionally segregates large volumes of neuropil and that these transients are not suited for responding to, or regulating, single synapses in the mossy fiber pathway. Copyright © 2014 Elsevier Inc. All rights reserved.
Aurora-A regulates MCRS1 function during mitosis.
Meunier, Sylvain; Timón, Krystal; Vernos, Isabelle
2016-07-02
The mitotic spindle is made of microtubules (MTs) nucleated through different pathways involving the centrosomes, the chromosomes or the walls of pre-existing MTs. MCRS1 is a RanGTP target that specifically associates with the chromosome-driven MTs protecting them from MT depolymerases. MCRS1 is also needed for the control of kinetochore fiber (K-fiber) MT minus-ends dynamics in metaphase. Here, we investigated the regulation of MCRS1 activity in M-phase. We show that MCRS1 is phosphorylated by the Aurora-A kinase in mitosis on Ser35/36. Although this phosphorylation has no role on MCRS1 localization to chromosomal MTs and K-fiber minus-ends, we show that it regulates MCRS1 activity in mitosis. We conclude that Aurora-A activity is particularly important in the tuning of K-fiber minus-ends dynamics in mitosis.
Jang, Sung Ho; You, Sung H; Kwon, Yong-Hyun; Hallett, Mark; Lee, Mi Young; Ahn, Sang Ho
2005-01-01
Recovery mechanisms supporting upper extremity motor recovery following stroke are well established, but cortical mechanism associated with lower extremity motor recovery is unknown. The aim of this study was to assess cortical reorganization associated with lower extremity motor recovery in a hemiparetic patient. Six control subjects and a 17 year-old woman with left intracerebral hemorrhage due to an arterio-venous malformation rupture were evaluated. The motor function of the paretic (left) hip and knee had recovered slowly to the extent of her being able to overcome gravity for 10 months after the onset of stroke. However, her paretic upper extremity showed no significant motor recovery. Blood oxygenation level dependent (BOLD) functional MRI at 1.5 Tesla was used to determine the acutual location of cortical activation in the predefined regions of interest. Concurrently, Diffusion Tensor Imaging (DTI) in combination with a novel 3D-fiber reconstruction algorithm was utilized to investigate the pattern of the corticospinal pathway connectivity between the areas of the motor stream. All subjects' body parts were secured in the scanner and performed a sequential knee flexion-extension with a predetermined angle of 0-60 degrees at 0.5 Hz. Controls showed anticipated activation in the contralateral sensorimotor cortex (SM1) and the descending corticospinal fibers stemming from motor cortex. In contrast to control normal subjects, the stroke patient showed fMRI activation only in the unaffected (right) primary SM1 during either paretic or nonparetic knee movements. DTT fiber tracing data showed that the corticospinal tract fibers were found only in the unaffected hemisphere but not in the affected hemisphere. Our results indicate that an ipsilateral motor pathway from the unaffected (right) motor cortex to the paretic (right) leg was present in this patient. This study raises the potential that the contralesional (ipsilateral) SM1 is involved in cortical reorganization associated lower extremity motor recovery in stroke. This study is the first neuroimaging evidence that the combined fMRI and DTI fiber tracing can significantly expand the explanatory power of probing cortical reorganization underlying motor recovery mechanism in stroke.
Bucci, Monica; Mandelli, Maria Luisa; Berman, Jeffrey I.; Amirbekian, Bagrat; Nguyen, Christopher; Berger, Mitchel S.; Henry, Roland G.
2013-01-01
Introduction Diffusion MRI tractography has been increasingly used to delineate white matter pathways in vivo for which the leading clinical application is presurgical mapping of eloquent regions. However, there is rare opportunity to quantify the accuracy or sensitivity of these approaches to delineate white matter fiber pathways in vivo due to the lack of a gold standard. Intraoperative electrical stimulation (IES) provides a gold standard for the location and existence of functional motor pathways that can be used to determine the accuracy and sensitivity of fiber tracking algorithms. In this study we used intraoperative stimulation from brain tumor patients as a gold standard to estimate the sensitivity and accuracy of diffusion tensor MRI (DTI) and q-ball models of diffusion with deterministic and probabilistic fiber tracking algorithms for delineation of motor pathways. Methods We used preoperative high angular resolution diffusion MRI (HARDI) data (55 directions, b = 2000 s/mm2) acquired in a clinically feasible time frame from 12 patients who underwent a craniotomy for resection of a cerebral glioma. The corticospinal fiber tracts were delineated with DTI and q-ball models using deterministic and probabilistic algorithms. We used cortical and white matter IES sites as a gold standard for the presence and location of functional motor pathways. Sensitivity was defined as the true positive rate of delineating fiber pathways based on cortical IES stimulation sites. For accuracy and precision of the course of the fiber tracts, we measured the distance between the subcortical stimulation sites and the tractography result. Positive predictive rate of the delineated tracts was assessed by comparison of subcortical IES motor function (upper extremity, lower extremity, face) with the connection of the tractography pathway in the motor cortex. Results We obtained 21 cortical and 8 subcortical IES sites from intraoperative mapping of motor pathways. Probabilistic q-ball had the best sensitivity (79%) as determined from cortical IES compared to deterministic q-ball (50%), probabilistic DTI (36%), and deterministic DTI (10%). The sensitivity using the q-ball algorithm (65%) was significantly higher than using DTI (23%) (p < 0.001) and the probabilistic algorithms (58%) were more sensitive than deterministic approaches (30%) (p = 0.003). Probabilistic q-ball fiber tracks had the smallest offset to the subcortical stimulation sites. The offsets between diffusion fiber tracks and subcortical IES sites were increased significantly for those cases where the diffusion fiber tracks were visibly thinner than expected. There was perfect concordance between the subcortical IES function (e.g. hand stimulation) and the cortical connection of the nearest diffusion fiber track (e.g. upper extremity cortex). Discussion This study highlights the tremendous utility of intraoperative stimulation sites to provide a gold standard from which to evaluate diffusion MRI fiber tracking methods and has provided an object standard for evaluation of different diffusion models and approaches to fiber tracking. The probabilistic q-ball fiber tractography was significantly better than DTI methods in terms of sensitivity and accuracy of the course through the white matter. The commonly used DTI fiber tracking approach was shown to have very poor sensitivity (as low as 10% for deterministic DTI fiber tracking) for delineation of the lateral aspects of the corticospinal tract in our study. Effects of the tumor/edema resulted in significantly larger offsets between the subcortical IES and the preoperative fiber tracks. The provided data show that probabilistic HARDI tractography is the most objective and reproducible analysis but given the small sample and number of stimulation points a generalization about our results should be given with caution. Indeed our results inform the capabilities of preoperative diffusion fiber tracking and indicate that such data should be used carefully when making pre-surgical and intra-operative management decisions. PMID:24273719
Human Fetal Brain Connectome: Structural Network Development from Middle Fetal Stage to Birth
Song, Limei; Mishra, Virendra; Ouyang, Minhui; Peng, Qinmu; Slinger, Michelle; Liu, Shuwei; Huang, Hao
2017-01-01
Complicated molecular and cellular processes take place in a spatiotemporally heterogeneous and precisely regulated pattern in the human fetal brain, yielding not only dramatic morphological and microstructural changes, but also macroscale connectomic transitions. As the underlying substrate of the fetal brain structural network, both dynamic neuronal migration pathways and rapid developing fetal white matter (WM) fibers could fundamentally reshape early fetal brain connectome. Quantifying structural connectome development can not only shed light on the brain reconfiguration in this critical yet rarely studied developmental period, but also reveal alterations of the connectome under neuropathological conditions. However, transition of the structural connectome from the mid-fetal stage to birth is not yet known. The contribution of different types of neural fibers to the structural network in the mid-fetal brain is not known, either. In this study, diffusion tensor magnetic resonance imaging (DT-MRI or DTI) of 10 fetal brain specimens at the age of 20 postmenstrual weeks (PMW), 12 in vivo brains at 35 PMW, and 12 in vivo brains at term (40 PMW) were acquired. The structural connectome of each brain was established with evenly parcellated cortical regions as network nodes and traced fiber pathways based on DTI tractography as network edges. Two groups of fibers were categorized based on the fiber terminal locations in the cerebral wall in the 20 PMW fetal brains. We found that fetal brain networks become stronger and more efficient during 20–40 PMW. Furthermore, network strength and global efficiency increase more rapidly during 20–35 PMW than during 35–40 PMW. Visualization of the whole brain fiber distribution by the lengths suggested that the network reconfiguration in this developmental period could be associated with a significant increase of major long association WM fibers. In addition, non-WM neural fibers could be a major contributor to the structural network configuration at 20 PMW and small-world network organization could exist as early as 20 PMW. These findings offer a preliminary record of the fetal brain structural connectome maturation from the middle fetal stage to birth and reveal the critical role of non-WM neural fibers in structural network configuration in the middle fetal stage. PMID:29081731
Hatkoff, Matthew; Runco, Lisa M.; Pujol, Celine; Jayatilaka, Indralatha; Furie, Martha B.; Bliska, James B.
2012-01-01
Yersinia pestis and many other Gram-negative pathogenic bacteria use the chaperone/usher (CU) pathway to assemble virulence-associated surface fibers termed pili or fimbriae. Y. pestis has two well-characterized CU pathways: the caf genes coding for the F1 capsule and the psa genes coding for the pH 6 antigen. The Y. pestis genome contains additional CU pathways that are capable of assembling pilus fibers, but the roles of these pathways in the pathogenesis of plague are not understood. We constructed deletion mutations in the usher genes for six of the additional Y. pestis CU pathways. The wild-type (WT) and usher deletion strains were compared in the murine bubonic (subcutaneous) and pneumonic (intranasal) plague infection models. Y. pestis strains containing deletions in CU pathways y0348-0352, y1858-1862, and y1869-1873 were attenuated for virulence compared to the WT strain by the intranasal, but not subcutaneous, routes of infection, suggesting specific roles for these pathways during pneumonic plague. We examined binding of the Y. pestis WT and usher deletion strains to A549 human lung epithelial cells, HEp-2 human cervical epithelial cells, and primary human and murine macrophages. Y. pestis CU pathways y0348-0352 and y1858-1862 were found to contribute to adhesion to all host cells tested, whereas pathway y1869-1873 was specific for binding to macrophages. The correlation between the virulence attenuation and host cell binding phenotypes of the usher deletion mutants identifies three of the additional CU pathways of Y. pestis as mediating interactions with host cells that are important for the pathogenesis of plague. PMID:22851745
Hatkoff, Matthew; Runco, Lisa M; Pujol, Celine; Jayatilaka, Indralatha; Furie, Martha B; Bliska, James B; Thanassi, David G
2012-10-01
Yersinia pestis and many other Gram-negative pathogenic bacteria use the chaperone/usher (CU) pathway to assemble virulence-associated surface fibers termed pili or fimbriae. Y. pestis has two well-characterized CU pathways: the caf genes coding for the F1 capsule and the psa genes coding for the pH 6 antigen. The Y. pestis genome contains additional CU pathways that are capable of assembling pilus fibers, but the roles of these pathways in the pathogenesis of plague are not understood. We constructed deletion mutations in the usher genes for six of the additional Y. pestis CU pathways. The wild-type (WT) and usher deletion strains were compared in the murine bubonic (subcutaneous) and pneumonic (intranasal) plague infection models. Y. pestis strains containing deletions in CU pathways y0348-0352, y1858-1862, and y1869-1873 were attenuated for virulence compared to the WT strain by the intranasal, but not subcutaneous, routes of infection, suggesting specific roles for these pathways during pneumonic plague. We examined binding of the Y. pestis WT and usher deletion strains to A549 human lung epithelial cells, HEp-2 human cervical epithelial cells, and primary human and murine macrophages. Y. pestis CU pathways y0348-0352 and y1858-1862 were found to contribute to adhesion to all host cells tested, whereas pathway y1869-1873 was specific for binding to macrophages. The correlation between the virulence attenuation and host cell binding phenotypes of the usher deletion mutants identifies three of the additional CU pathways of Y. pestis as mediating interactions with host cells that are important for the pathogenesis of plague.
How the Ventral Pathway Got Lost--And What Its Recovery Might Mean
ERIC Educational Resources Information Center
Weiller, Cornelius; Bormann, Tobias; Saur, Dorothee; Musso, Mariachristina; Rijntjes, Michel
2011-01-01
Textbooks dealing with the anatomical representation of language in the human brain display two language-related zones, Broca's area and Wernicke's area, connected by a single dorsal fiber tract, the arcuate fascicle. This classical model is incomplete. Modern imaging techniques have identified a second long association tract between the temporal…
Compromised Integrity of Central Visual Pathways in Patients With Macular Degeneration.
Malania, Maka; Konrad, Julia; Jägle, Herbert; Werner, John S; Greenlee, Mark W
2017-06-01
Macular degeneration (MD) affects the central retina and leads to gradual loss of foveal vision. Although, photoreceptors are primarily affected in MD, the retinal nerve fiber layer (RNFL) and central visual pathways may also be altered subsequent to photoreceptor degeneration. Here we investigate whether retinal damage caused by MD alters microstructural properties of visual pathways using diffusion-weighted magnetic resonance imaging. Six MD patients and six healthy control subjects participated in the study. Retinal images were obtained by spectral-domain optical coherence tomography (SD-OCT). Diffusion tensor images (DTI) and high-resolution T1-weighted structural images were collected for each subject. We used diffusion-based tensor modeling and probabilistic fiber tractography to identify the optic tract (OT) and optic radiations (OR), as well as nonvisual pathways (corticospinal tract and anterior fibers of corpus callosum). Fractional anisotropy (FA) and axial and radial diffusivity values (AD, RD) were calculated along the nonvisual and visual pathways. Measurement of RNFL thickness reveals that the temporal circumpapillary retinal nerve fiber layer was significantly thinner in eyes with macular degeneration than normal. While we did not find significant differences in diffusion properties in nonvisual pathways, patients showed significant changes in diffusion scalars (FA, RD, and AD) both in OT and OR. The results indicate that the RNFL and the white matter of the visual pathways are significantly altered in MD patients. Damage to the photoreceptors in MD leads to atrophy of the ganglion cell axons and to corresponding changes in microstructural properties of central visual pathways.
Butyrate-Induced Transcriptional Changes in Human Colonic Mucosa
Vanhoutvin, Steven A. L. W.; Troost, Freddy J.; Hamer, Henrike M.; Lindsey, Patrick J.; Koek, Ger H.; Jonkers, Daisy M. A. E.; Kodde, Andrea; Venema, Koen; Brummer, Robert J. M.
2009-01-01
Background Fermentation of dietary fiber in the colon results in the production of short chain fatty acids (mainly propionate, butyrate and acetate). Butyrate modulates a wide range of processes, but its mechanism of action is mostly unknown. This study aimed to determine the effects of butyrate on the transcriptional regulation of human colonic mucosa in vivo. Methodology/Principal Findings Five hundred genes were found to be differentially expressed after a two week daily butyrate administration with enemas. Pathway analysis showed that the butyrate intervention mainly resulted in an increased transcriptional regulation of the pathways representing fatty acid oxidation, electron transport chain and oxidative stress. In addition, several genes associated with epithelial integrity and apoptosis, were found to be differentially expressed after the butyrate intervention. Conclusions/Significance Colonic administration of butyrate in concentrations that can be achieved by consumption of a high-fiber diet enhances the maintenance of colonic homeostasis in healthy subjects, by regulating fatty acid metabolism, electron transport and oxidative stress pathways on the transcriptional level and provide for the first time, detailed molecular insight in the transcriptional response of gut mucosa to butyrate. PMID:19707587
Tan, Jiafu; Tu, Lili; Deng, Fenglin; Hu, Haiyan; Nie, Yichun; Zhang, Xianlong
2013-01-01
The cotton (Gossypium spp.) fiber is a unique elongated cell that is useful for investigating cell differentiation. Previous studies have demonstrated the importance of factors such as sugar metabolism, the cytoskeleton, and hormones, which are commonly known to be involved in plant cell development, while the secondary metabolites have been less regarded. By mining public data and comparing analyses of fiber from two cotton species (Gossypium hirsutum and Gossypium barbadense), we found that the flavonoid metabolism is active in early fiber cell development. Different flavonoids exhibited distinct effects on fiber development during ovule culture; among them, naringenin (NAR) could significantly retard fiber development. NAR is a substrate of flavanone 3-hydroxylase (F3H), and silencing the F3H gene significantly increased the NAR content of fiber cells. Fiber development was suppressed following F3H silencing, but the overexpression of F3H caused no obvious effects. Significant retardation of fiber growth was observed after the introduction of the F3H-RNA interference segment into the high-flavonoid brown fiber G. hirsutum T586 line by cross. A greater accumulation of NAR as well as much shorter fibers were also observed in the BC1 generation plants. These results suggest that NAR is negatively associated with fiber development and that the metabolism mediated by F3H is important in fiber development, thus highlighting that flavonoid metabolism represents a novel pathway with the potential for cotton fiber improvement. PMID:23535943
Tracing of single fibers of the nervus terminalis in the goldfish brain.
von Bartheld, C S; Meyer, D L
1986-01-01
Central projections of the nervus terminalis (n.t.) in the goldfish were investigated using cobalt- and horseradish peroxidase-tracing techniques. Single n.t. fibers were identified after unilateral application of cobalt chloride-lysine to the rostral olfactory bulb. The central course and branching patterns of individual n.t. fibers were studied in serial sections. Eight types of n.t. fibers are differentiated according to pathways and projection patterns. Projection areas of the n.t. include the contralateral olfactory bulb, the ipsilateral periventricular preoptic nucleus, both retinae, the caudal zone of the periventricular hypothalamus bilaterally, and the rostral optic tectum bilaterally. N.t. fibers cross to contralateral targets in the anterior commissure, the optic chiasma, the horizontal commissure, the posterior commissure, and possibly the habenular commissure. We propose criteria that differentiate central n.t. fibers from those of the classical secondary olfactory projections. Branching patterns of eight n.t. fiber types are described. Mesencephalic projections of the n.t. and of secondary olfactory fibers are compared and discussed with regard to prior reports on the olfactory system of teleosts. Further fiber types for which the association with the n.t. could not be established with certainty were traced to the torus longitudinalis, the torus semicircularis, and to the superior reticular nucleus on the ipsilateral side.
Ashtari, Manzar; Zhang, Hui; Cook, Philip A; Cyckowski, Laura L; Shindler, Kenneth S; Marshall, Kathleen A; Aravand, Puya; Vossough, Arastoo; Gee, James C; Maguire, Albert M; Baker, Chris I; Bennett, Jean
2015-07-15
Much of our knowledge of the mechanisms underlying plasticity in the visual cortex in response to visual impairment, vision restoration, and environmental interactions comes from animal studies. We evaluated human brain plasticity in a group of patients with Leber's congenital amaurosis (LCA), who regained vision through gene therapy. Using non-invasive multimodal neuroimaging methods, we demonstrated that reversing blindness with gene therapy promoted long-term structural plasticity in the visual pathways emanating from the treated retina of LCA patients. The data revealed improvements and normalization along the visual fibers corresponding to the site of retinal injection of the gene therapy vector carrying the therapeutic gene in the treated eye compared to the visual pathway for the untreated eye of LCA patients. After gene therapy, the primary visual pathways (for example, geniculostriate fibers) in the treated retina were similar to those of sighted control subjects, whereas the primary visual pathways of the untreated retina continued to deteriorate. Our results suggest that visual experience, enhanced by gene therapy, may be responsible for the reorganization and maturation of synaptic connectivity in the visual pathways of the treated eye in LCA patients. The interactions between the eye and the brain enabled improved and sustained long-term visual function in patients with LCA after gene therapy. Copyright © 2015, American Association for the Advancement of Science.
Selsby, Joshua T; Morine, Kevin J; Pendrak, Klara; Barton, Elisabeth R; Sweeney, H Lee
2012-01-01
Increased utrophin expression is known to reduce pathology in dystrophin-deficient skeletal muscles. Transgenic over-expression of PGC-1α has been shown to increase levels of utrophin mRNA and improve the histology of mdx muscles. Other reports have shown that PGC-1α signaling can lead to increased oxidative capacity and a fast to slow fiber type shift. Given that it has been shown that slow fibers produce and maintain more utrophin than fast skeletal muscle fibers, we hypothesized that over-expression of PGC-1α in post-natal mdx mice would increase utrophin levels via a fiber type shift, resulting in more slow, oxidative fibers that are also more resistant to contraction-induced damage. To test this hypothesis, neonatal mdx mice were injected with recombinant adeno-associated virus (AAV) driving expression of PGC-1α. PGC-1α over-expression resulted in increased utrophin and type I myosin heavy chain expression as well as elevated mitochondrial protein expression. Muscles were shown to be more resistant to contraction-induced damage and more fatigue resistant. Sirt-1 was increased while p38 activation and NRF-1 were reduced in PGC-1α over-expressing muscle when compared to control. We also evaluated if the use a pharmacological PGC-1α pathway activator, resveratrol, could drive the same physiological changes. Resveratrol administration (100 mg/kg/day) resulted in improved fatigue resistance, but did not achieve significant increases in utrophin expression. These data suggest that the PGC-1α pathway is a potential target for therapeutic intervention in dystrophic skeletal muscle.
Natural cellulose fiber as substrate for supercapacitor.
Gui, Zhe; Zhu, Hongli; Gillette, Eleanor; Han, Xiaogang; Rubloff, Gary W; Hu, Liangbing; Lee, Sang Bok
2013-07-23
Cellulose fibers with porous structure and electrolyte absorption properties are considered to be a good potential substrate for the deposition of energy material for energy storage devices. Unlike traditional substrates, such as gold or stainless steel, paper prepared from cellulose fibers in this study not only functions as a substrate with large surface area but also acts as an interior electrolyte reservoir, where electrolyte can be absorbed much in the cellulose fibers and is ready to diffuse into an energy storage material. We demonstrated the value of this internal electrolyte reservoir by comparing a series of hierarchical hybrid supercapacitor electrodes based on homemade cellulose paper or polyester textile integrated with carbon nanotubes (CNTs) by simple solution dip and electrodeposited with MnO2. Atomic layer deposition of Al2O3 onto the fiber surface was used to limit electrolyte absorption into the fibers for comparison. Configurations designed with different numbers of ion diffusion pathways were compared to show that cellulose fibers in paper can act as a good interior electrolyte reservoir and provide an effective pathway for ion transport facilitation. Further optimization using an additional CNT coating resulted in an electrode of paper/CNTs/MnO2/CNTs, which has dual ion diffusion and electron transfer pathways and demonstrated superior supercapacitive performance. This paper highlights the merits of the mesoporous cellulose fibers as substrates for supercapacitor electrodes, in which the water-swelling effect of the cellulose fibers can absorb electrolyte, and the mesoporous internal structure of the fibers can provide channels for ions to diffuse to the electrochemical energy storage materials.
Weitkunat, Karolin; Schumann, Sara; Nickel, Daniela; Hornemann, Silke; Petzke, Klaus J; Schulze, Matthias B; Pfeiffer, Andreas Fh; Klaus, Susanne
2017-06-01
Background: The risk of type 2 diabetes is inversely correlated with plasma concentrations of odd-chain fatty acids [OCFAs; pentadecanoic acid (15:0) and heptadecanoic acid (17:0)], which are considered as biomarkers for dairy fat intake in humans. However, rodent studies suggest that OCFAs are synthesized endogenously from gut-derived propionate. Propionate increases with dietary fiber consumption and has been shown to improve insulin sensitivity. Objective: We hypothesized that OCFAs are produced in humans from dietary fibers by a novel endogenous pathway. Design: In a randomized, double-blind crossover study, 16 healthy individuals were supplemented with cellulose (30 g/d), inulin (30 g/d), or propionate (6 g/d) for 7 d. In addition, human hepatoma cells were incubated with different propionate concentrations. OCFAs were determined in plasma phospholipids and hepatoma cells by gas chromatography. Results: Cellulose did not affect plasma OCFA levels, whereas inulin and propionate increased pentadecanoic acid by ∼17% ( P < 0.05) and 13% ( P = 0.05), respectively. The effect on heptadecanoic acid was even more pronounced, because it was elevated in almost all participants by inulin (11%; P < 0.01) and propionate (13%; P < 0.001). Furthermore, cell culture experiments showed a positive association between propionate and OCFA levels ( R 2 = 0.99, P < 0.0001), whereas palmitate (16:0) was negatively correlated ( R 2 = 0.83, P = 0.004). Conclusions: Our data show that gut-derived propionate is used for the hepatic synthesis of OCFAs in humans. The association of OCFAs with a decreased risk of type 2 diabetes may therefore also relate to dietary fiber intake and not only dairy fat. This trial was registered at www.germanctr.de as DRKS00010121. © 2017 American Society for Nutrition.
Cereal fiber, fruit fiber, and type 2 diabetes: Explaining the paradox.
Davison, Karen M; Temple, Norman J
2018-02-01
While the relationship between dietary fiber and type 2 diabetes mellitus (T2DM) has been much studied, the evidence about its role in the prevention and control of this condition has been conflicting. We critically evaluate prospective cohort studies and randomized controlled trials (RCTs) that examined insoluble/nonviscous/cereal fiber and soluble/viscous/fruit fiber in relation to risk of T2DM. Taken as a whole this evidence indicates that, in the quantities typically eaten, cereal fiber is protective against T2DM while fruit fiber gives little protection. We argue that the protective action of cereal fiber may be explained by the modulating effects of gut microbiota through mechanisms such as: 1) improving glucose tolerance via energy metabolism pathways (colonic fermentation and generation of short-chain fatty acids); 2) reducing inflammation; and 3) altering the immune response. By gaining more knowledge of specific host and gut microbial functional pathways involved in T2DM development and the potential role of cereal fiber, appropriate disease prevention and intervention strategies may be developed. Copyright © 2017 Elsevier Inc. All rights reserved.
Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang
2014-02-10
Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.
Microsurgical anatomy of the central core of the brain.
Ribas, Eduardo Carvalhal; Yağmurlu, Kaan; de Oliveira, Evandro; Ribas, Guilherme Carvalhal; Rhoton, Albert
2017-12-22
OBJECTIVE The purpose of this study was to describe in detail the cortical and subcortical anatomy of the central core of the brain, defining its limits, with particular attention to the topography and relationships of the thalamus, basal ganglia, and related white matter pathways and vessels. METHODS The authors studied 19 cerebral hemispheres. The vascular systems of all of the specimens were injected with colored silicone, and the specimens were then frozen for at least 1 month to facilitate identification of individual fiber tracts. The dissections were performed in a stepwise manner, locating each gray matter nucleus and white matter pathway at different depths inside the central core. The course of fiber pathways was also noted in relation to the insular limiting sulci. RESULTS The insular surface is the most superficial aspect of the central core and is divided by a central sulcus into an anterior portion, usually containing 3 short gyri, and a posterior portion, with 2 long gyri. It is bounded by the anterior limiting sulcus, the superior limiting sulcus, and the inferior limiting sulcus. The extreme capsule is directly underneath the insular surface and is composed of short association fibers that extend toward all the opercula. The claustrum lies deep to the extreme capsule, and the external capsule is found medial to it. Three fiber pathways contribute to form both the extreme and external capsules, and they lie in a sequential anteroposterior disposition: the uncinate fascicle, the inferior fronto-occipital fascicle, and claustrocortical fibers. The putamen and the globus pallidus are between the external capsule, laterally, and the internal capsule, medially. The internal capsule is present medial to almost all insular limiting sulci and most of the insular surface, but not to their most anteroinferior portions. This anteroinferior portion of the central core has a more complex anatomy and is distinguished in this paper as the "anterior perforated substance region." The caudate nucleus and thalamus lie medial to the internal capsule, as the most medial structures of the central core. While the anterior half of the central core is related to the head of the caudate nucleus, the posterior half is related to the thalamus, and hence to each associated portion of the internal capsule between these structures and the insular surface. The central core stands on top of the brainstem. The brainstem and central core are connected by several white matter pathways and are not separated from each other by any natural division. The authors propose a subdivision of the central core into quadrants and describe each in detail. The functional importance of each structure is highlighted, and surgical approaches are suggested for each quadrant of the central core. CONCLUSIONS As a general rule, the internal capsule and its vascularization should be seen as a parasagittal barrier with great functional importance. This is of particular importance in choosing surgical approaches within this region.
Guo, Yuan; Qiu, Caisheng; Long, Songhua; Chen, Ping; Hao, Dongmei; Preisner, Marta; Wang, Hui; Wang, Yufu
2017-08-30
To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops. Copyright © 2017 Elsevier B.V. All rights reserved.
Moura, Frederico Castelo; Lunardelli, Patrícia; Leite, Cláudia Costa; Monteiro, Mário Luiz Ribeiro
2005-01-01
Lesions of the lateral geniculate body (LGB) are the most unusual lesions of the visual pathways. Imaging studies are very important in establishing the correct diagnosis. However, due to its small size and particular location, the lateral geniculate body and its lesions are sometimes difficult to detect in imaging studies possibly causing diagnostic confusion. The purpose of this paper is to document an unusual case of a lesion of the lateral geniculate body for which an optical coherence tomography study was very important in confirming the anatomic diagnosis of a lateral geniculate body lesion. A 39-year-old woman with a previous diagnosis of uveitis and central nervous system vasculitis was referred for investigation of a right temporal quadrantanopia. She had already been submitted to a magnetic resonance imaging (MRI) that did not show any lesion along the visual pathway. Ophthalmoscopy revealed retinal nerve fiber layer (RNFL) loss that was confirmed by optical coherence tomography. Such finding associated with the observations on the neurological examination strongly suggested a lateral geniculate body lesion. The patient was submitted to another new magnetic resonance imaging obtained with especially oriented thin sections and an ischemic lesion of the lateral geniculate body was observed establishing the correct diagnosis. This case serves to confirm the importance of optical coherence tomography in determining the pattern of retinal nerve fiber layer loss in neuro-ophthalmic diseases and therefore to help in locating a lesion along the visual pathway.
Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia
2017-04-15
Airborne particulate matter with an aerodynamic diameter ≤10μm (PM 10 ) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM 10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM 10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm 2 of PM 10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM 10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM 10 exposure could contribute to the understanding of PM 10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.
Three-dimensional topographic fiber tract anatomy of the cerebrum.
Yagmurlu, Kaan; Vlasak, Alexander L; Rhoton, Albert L
2015-06-01
The fiber tracts of the cerebrum may be a more important determinant of resection limits than the cortex. Better knowledge of the 3-dimensional (3-D) anatomic organization of the fiber pathways is important in planning safe and accurate surgery for lesions within the cerebrum. To examine the topographic anatomy of fiber tracts and subcortical gray matter of the human cerebrum and their relationships with consistent cortical, ventricular, and nuclear landmarks. Twenty-five formalin-fixed human brains and 4 whole cadaveric heads were examined by fiber dissection technique and ×6 to ×40 magnification. The fiber tracts and central core structures, including the insula and basal ganglia, were examined and their relationships captured in 3-D photography. The depth between the surface of the cortical gyri and selected fiber tracts was measured. The topographic relationships of the important association, projection, and commissural fasciculi within the cerebrum and superficial cortical landmarks were identified. Important landmarks with consistent relationships to the fiber tracts were the cortical gyri and sulci, limiting sulci of the insula, nuclear masses in the central core, and lateral ventricles. The fiber tracts were also organized in a consistent pattern in relation to each other. The anatomic findings are briefly compared with functional data from clinicoradiological analysis and intraoperative stimulation of fiber tracts. An understanding of the 3-D anatomic organization of the fiber tracts of the brain is essential in planning safe and accurate cerebral surgery.
FGF2 activates TRPC and Ca2+ signaling leading to satellite cell activation
Liu, Yewei; Schneider, Martin F.
2013-01-01
Satellite cells, as stem cells of adult skeletal muscle, are tightly associated with the differentiated muscle fibers and remain quiescent in the absence of muscle damage. In response to an injury, the quiescent satellite cell is activated by soluble factors, including FGFs released from injured myofibers. Using immunostaining, we here first show that TRPC1 channels are highly expressed in satellite cells attached to muscle fibers. Since CD34, a traditional stem cell marker, was recently found to be expressed in skeletal muscle satellite cells we labeled living satellite cells in their physiological niche associated with host FDB fibers using anti-CD34-FITC antibody. We then monitored intra-cellular calcium in anti-CD34-FITC labeled satellite cells attached to muscle fibers using the calcium sensitive dye X rhod-1 which has little fluorescence cross talk with FITC. FGF2 increased intracellular calcium in satellite cells, which was antagonized by the TRPC channel blocker SKF 96365. Immunostaining showed that NFATc3 is highly expressed in satellite cells, but not in host FDB fibers. Elevation of intracellular calcium by FGF2 is accompanied by nuclear translocation of NFATc3 and NFATc2 and by an increase in the number of MyoD positive cells per muscle fiber, both of which were attenuated by TRPC blocker SKF 96365. Our results suggest a novel pathway of satellite cell activation where FGF2 enhances calcium influx through a TRPC channel, and the increased cytosolic calcium leads to both NFATc3 and NFATc2 nuclear translocation and enhanced number of MyoD positive satellite cells per muscle fiber. PMID:24575047
Liu, Gang; Peng, Kangqiang; Dang, Chao; Tan, Shuangquan; Chen, Hongbing; Xie, Chuanmiao; Xing, Shihui; Zeng, Jinsheng
2018-01-01
Secondary degeneration of the fiber tract of the motor pathway below infarct foci and functional recovery after stroke have been well demonstrated, but the role of the fiber tract above stroke foci remains unclear. This study aimed to investigate diffusion changes in motor fibers above the lesion and identify predictors of motor improvement within 12 weeks after subcortical infarction. Diffusion tensor imaging and the Fugl-Meyer (FM) scale were conducted 1, 4, and 12 weeks (W) after a subcortical infarct. Proportional recovery model residuals were used to assign patients to proportional recovery and poor recovery groups. Region of interest analysis was used to assess diffusion changes in the motor pathway above and below a stroke lesion. Multivariable linear regression was employed to identify predictors of motor improvement within 12 weeks after stroke. Axial diffusivity (AD) in the underlying white matter of the ipsilesional primary motor area (PMA) and cerebral peduncle (CP) in both proportional and poor recovery groups was lower at W1 compared to the controls and values in the contralesional PMA and CP (all P < 0.05). Subsequently, AD in the ipsilesional CP became relatively stable, while AD in the ipsilesional PMA significantly increased from W4 to W12 after stroke (P < 0.05). In all of the patients, changes in the FM scores were greater in those with higher changes in AD of the ipsilesional PMA. Only initial impairment or lesion volume was predictive of motor improvement within 12 weeks after stroke in patients with proportional or poor recovery. Increases of AD in the motor pathway above stroke foci may be associated with motor recovery after subcortical infarction. Early measurement of diffusion metrics in the ipsilesional non-ischemic motor pathway has limited value in predicting future motor improvement patterns (proportional or poor recovery).
Bansal, Ravi; Hao, Xuejun; Peterson, Bradley S
2015-05-01
We hypothesize that coordinated functional activity within discrete neural circuits induces morphological organization and plasticity within those circuits. Identifying regions of morphological covariation that are independent of morphological covariation in other regions therefore may therefore allow us to identify discrete neural systems within the brain. Comparing the magnitude of these variations in individuals who have psychiatric disorders with the magnitude of variations in healthy controls may allow us to identify aberrant neural pathways in psychiatric illnesses. We measured surface morphological features by applying nonlinear, high-dimensional warping algorithms to manually defined brain regions. We transferred those measures onto the surface of a unit sphere via conformal mapping and then used spherical wavelets and their scaling coefficients to simplify the data structure representing these surface morphological features of each brain region. We used principal component analysis (PCA) to calculate covariation in these morphological measures, as represented by their scaling coefficients, across several brain regions. We then assessed whether brain subregions that covaried in morphology, as identified by large eigenvalues in the PCA, identified specific neural pathways of the brain. To do so, we spatially registered the subnuclei for each eigenvector into the coordinate space of a Diffusion Tensor Imaging dataset; we used these subnuclei as seed regions to track and compare fiber pathways with known fiber pathways identified in neuroanatomical atlases. We applied these procedures to anatomical MRI data in a cohort of 82 healthy participants (42 children, 18 males, age 10.5 ± 2.43 years; 40 adults, 22 males, age 32.42 ± 10.7 years) and 107 participants with Tourette's Syndrome (TS) (71 children, 59 males, age 11.19 ± 2.2 years; 36 adults, 21 males, age 37.34 ± 10.9 years). We evaluated the construct validity of the identified covariation in morphology using DTI data from a different set of 20 healthy adults (10 males, mean age 29.7 ± 7.7 years). The PCA identified portions of structures that covaried across the brain, the eigenvalues measuring the magnitude of the covariation in morphology along the respective eigenvectors. Our results showed that the eigenvectors, and the DTI fibers tracked from their associated brain regions, corresponded with known neural pathways in the brain. In addition, the eigenvectors that captured morphological covariation across regions, and the principal components along those eigenvectors, identified neural pathways with aberrant morphological features associated with TS. These findings suggest that covariations in brain morphology can identify aberrant neural pathways in specific neuropsychiatric disorders. Copyright © 2015. Published by Elsevier Inc.
Vaessen, Maarten J; Saj, Arnaud; Lovblad, Karl-Olof; Gschwind, Markus; Vuilleumier, Patrik
2016-04-01
Spatial neglect is a neuropsychological syndrome in which patients fail to perceive and orient to stimuli located in the space contralateral to the lesioned hemisphere. It is characterized by a wide heterogeneity in clinical symptoms which can be grouped into distinct behavioral components correlating with different lesion sites. Moreover, damage to white-matter (WM) fiber tracts has been suggested to disconnect brain networks that mediate different functions associated with spatial cognition and attention. However, it remains unclear what WM pathways are associated with functionally dissociable neglect components. In this study we examined nine patients with a focal right hemisphere stroke using a series of neuropsychological tests and diffusion tensor imaging (DTI) in order to disentangle the role of specific WM pathways in neglect symptoms. First, following previous work, the behavioral test scores of patients were factorized into three independent components reflecting perceptual, exploratory, and object-centered deficits in spatial awareness. We then examined the structural neural substrates of these components by correlating indices of WM integrity (fractional anisotropy) with the severity of deficits along each profile. Several locations in the right parietal and frontal WM correlated with neuropsychological scores. Fiber tracts projecting from these locations indicated that posterior parts of the superior longitudinal fasciculus (SLF), as well as nearby callosal fibers connecting ipsilateral and contralateral parietal areas, were associated with perceptual spatial deficits, whereas more anterior parts of SLF and inferior fronto-occipital fasciculus (IFOF) were predominantly associated with object-centered deficits. In addition, connections between frontal areas and superior colliculus were found to be associated with the exploratory deficits. Our results provide novel support to the view that neglect may result from disconnection lesions in distributed brain networks, but also extend these notions by highlighting the role of dissociable circuits in different functional components of the neglect syndrome. However these preliminary findings require replication with larger samples of patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bonuccelli, Gloria; Sotgia, Federica; Schubert, William; Park, David S; Frank, Philippe G; Woodman, Scott E; Insabato, Luigi; Cammer, Michael; Minetti, Carlo; Lisanti, Michael P
2003-10-01
Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, is absent in the skeletal muscle of DMD patients and mdx mice. At the plasma membrane of skeletal muscle fibers, dystrophin associates with a multimeric protein complex, termed the dystrophin-glycoprotein complex (DGC). Protein members of this complex are normally absent or greatly reduced in dystrophin-deficient skeletal muscle fibers, and are thought to undergo degradation through an unknown pathway. As such, we reasoned that inhibition of the proteasomal degradation pathway might rescue the expression and subcellular localization of dystrophin-associated proteins. To test this hypothesis, we treated mdx mice with the well-characterized proteasomal inhibitor MG-132. First, we locally injected MG-132 into the gastrocnemius muscle, and observed the outcome after 24 hours. Next, we performed systemic treatment using an osmotic pump that allowed us to deliver different concentrations of the proteasomal inhibitor, over an 8-day period. By immunofluorescence and Western blot analysis, we show that administration of the proteasomal inhibitor MG-132 effectively rescues the expression levels and plasma membrane localization of dystrophin, beta-dystroglycan, alpha-dystroglycan, and alpha-sarcoglycan in skeletal muscle fibers from mdx mice. Furthermore, we show that systemic treatment with the proteasomal inhibitor 1) reduces muscle membrane damage, as revealed by vital staining (with Evans blue dye) of the diaphragm and gastrocnemius muscle isolated from treated mdx mice, and 2) ameliorates the histopathological signs of muscular dystrophy, as judged by hematoxylin and eosin staining of muscle biopsies taken from treated mdx mice. Thus, the current study opens new and important avenues in our understanding of the pathogenesis of DMD. Most importantly, these new findings may have clinical implications for the pharmacological treatment of patients with DMD.
Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells
Huang, Cheng-Chiu; Sugino, Ken; Shima, Yasuyuki; Guo, Caiying; Bai, Suxia; Mensh, Brett D; Nelson, Sacha B; Hantman, Adam W
2013-01-01
Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI: http://dx.doi.org/10.7554/eLife.00400.001 PMID:23467508
Connectome imaging for mapping human brain pathways
Shi, Y; Toga, A W
2017-01-01
With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research. PMID:28461700
Cycle Training Increased GLUT4 and Activation of mTOR in Fast Twitch Muscle Fibers
Stuart, Charles A.; Howell, Mary E.A.; Baker, Jonathan D.; Dykes, Rhesa J.; Duffourc, Michelle M.; Ramsey, Michael W.; Stone, Michael H.
2009-01-01
Purpose To determine if cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed six weeks of progressively increasing intensity stationary cycle cycling. Methods In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. Results GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (PGC-1α and phospho-AMPK) were unchanged, but the muscle hypertrophy pathway component, phospho-mTOR increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training, but also increased in Type I fibers (34%). Conclusion Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis. PMID:20010125
Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis.
Kammen, Alexandra; Law, Meng; Tjan, Bosco S; Toga, Arthur W; Shi, Yonggang
2016-01-15
Diffusion MRI tractography provides a non-invasive modality to examine the human retinofugal projection, which consists of the optic nerves, optic chiasm, optic tracts, the lateral geniculate nuclei (LGN) and the optic radiations. However, the pathway has several anatomic features that make it particularly challenging to study with tractography, including its location near blood vessels and bone-air interface at the base of the cerebrum, crossing fibers at the chiasm, somewhat-tortuous course around the temporal horn via Meyer's Loop, and multiple closely neighboring fiber bundles. To date, these unique complexities of the visual pathway have impeded the development of a robust and automated reconstruction method using tractography. To overcome these challenges, we develop a novel, fully automated system to reconstruct the retinofugal visual pathway from high-resolution diffusion imaging data. Using multi-shell, high angular resolution diffusion imaging (HARDI) data, we reconstruct precise fiber orientation distributions (FODs) with high order spherical harmonics (SPHARM) to resolve fiber crossings, which allows the tractography algorithm to successfully navigate the complicated anatomy surrounding the retinofugal pathway. We also develop automated algorithms for the identification of ROIs used for fiber bundle reconstruction. In particular, we develop a novel approach to extract the LGN region of interest (ROI) based on intrinsic shape analysis of a fiber bundle computed from a seed region at the optic chiasm to a target at the primary visual cortex. By combining automatically identified ROIs and FOD-based tractography, we obtain a fully automated system to compute the main components of the retinofugal pathway, including the optic tract and the optic radiation. We apply our method to the multi-shell HARDI data of 215 subjects from the Human Connectome Project (HCP). Through comparisons with post-mortem dissection measurements, we demonstrate the retinotopic organization of the optic radiation including a successful reconstruction of Meyer's loop. Then, using the reconstructed optic radiation bundle from the HCP cohort, we construct a probabilistic atlas and demonstrate its consistency with a post-mortem atlas. Finally, we generate a shape-based representation of the optic radiation for morphometry analysis. Copyright © 2015 Elsevier Inc. All rights reserved.
Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy.
de Theije, C C; Langen, R C J; Lamers, W H; Gosker, H R; Schols, A M W J; Köhler, S E
2015-01-15
Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers. Copyright © 2015 the American Physiological Society.
The Hippo signal transduction network for exercise physiologists
Hamilton, D. Lee; Tremblay, Annie M.
2016-01-01
The ubiquitous transcriptional coactivators Yap (gene symbol Yap1) and Taz (gene symbol Wwtr1) regulate gene expression mainly by coactivating the Tead transcription factors. Being at the center of the Hippo signaling network, Yap and Taz are regulated by the Hippo kinase cassette and additionally by a plethora of exercise-associated signals and signaling modules. These include mechanotransduction, the AKT-mTORC1 network, the SMAD transcription factors, hypoxia, glucose homeostasis, AMPK, adrenaline/epinephrine and angiotensin II through G protein-coupled receptors, and IL-6. Consequently, exercise should alter Hippo signaling in several organs to mediate at least some aspects of the organ-specific adaptations to exercise. Indeed, Tead1 overexpression in muscle fibers has been shown to promote a fast-to-slow fiber type switch, whereas Yap in muscle fibers and cardiomyocytes promotes skeletal muscle hypertrophy and cardiomyocyte adaptations, respectively. Finally, genome-wide association studies in humans have linked the Hippo pathway members LATS2, TEAD1, YAP1, VGLL2, VGLL3, and VGLL4 to body height, which is a key factor in sports. PMID:26940657
White matter pathways for prosodic structure building: A case study.
Sammler, Daniela; Cunitz, Katrin; Gierhan, Sarah M E; Anwander, Alfred; Adermann, Jens; Meixensberger, Jürgen; Friederici, Angela D
2018-05-11
The relevance of left dorsal and ventral fiber pathways for syntactic and semantic comprehension is well established, while pathways for prosody are little explored. The present study examined linguistic prosodic structure building in a patient whose right arcuate/superior longitudinal fascicles and posterior corpus callosum were transiently compromised by a vasogenic peritumoral edema. Compared to ten matched healthy controls, the patient's ability to detect irregular prosodic structure significantly improved between pre- and post-surgical assessment. This recovery was accompanied by an increase in average fractional anisotropy (FA) in right dorsal and posterior transcallosal fiber tracts. Neither general cognitive abilities nor (non-prosodic) syntactic comprehension nor FA in right ventral and left dorsal fiber tracts showed a similar pre-post increase. Together, these findings suggest a contribution of right dorsal and inter-hemispheric pathways to prosody perception, including the right-dorsal tracking and structuring of prosodic pitch contours that is transcallosally informed by concurrent syntactic information. Copyright © 2018 Elsevier Inc. All rights reserved.
Xiong, Guoxiang; Metheny, Hannah; Johnson, Brian N.; Cohen, Akiva S.
2017-01-01
The hippocampus plays a critical role in learning and memory and higher cognitive functions, and its dysfunction has been implicated in various neuropathological disorders. Electrophysiological recording undertaken in live brain slices is one of the most powerful tools for investigating hippocampal cellular and network activities. The plane for cutting the slices determines which afferent and/or efferent connections are best preserved, and there are three commonly used slices: hippocampal-entorhinal cortex (HEC), coronal and transverse. All three slices have been widely used for studying the major afferent hippocampal pathways including the perforant path (PP), the mossy fibers (MFs) and the Schaffer collaterals (SCs). Surprisingly, there has never been a systematic investigation of the anatomical and functional consequences of slicing at a particular angle. In the present study, we focused on how well fiber pathways are preserved from the entorhinal cortex (EC) to the hippocampus, and within the hippocampus, in slices generated by sectioning at different angles. The postmortem neural tract tracer 1,1′-dioctadecyl-3,3,3′3′-tetramethylindocarbocyanine perchlorate (DiI) was used to label afferent fibers to hippocampal principal neurons in fixed slices or whole brains. Laser scanning confocal microscopy was adopted for imaging DiI-labeled axons and terminals. We demonstrated that PP fibers were well preserved in HEC slices, MFs in both HEC and transverse slices and SCs in all three types of slices. Correspondingly, field excitatory postsynaptic potentials (fEPSPs) could be consistently evoked in HEC slices when stimulating PP fibers and recorded in stratum lacunosum-moleculare (sl-m) of area CA1, and when stimulating the dentate granule cell layer (gcl) and recording in stratum lucidum (sl) of area CA3. The MF evoked fEPSPs could not be recorded in CA3 from coronal slices. In contrast to our DiI-tracing data demonstrating severely truncated PP fibers in coronal slices, fEPSPs could still be recorded in CA1 sl-m in this plane, suggesting that an additional afferent fiber pathway other than PP might be involved. The present study increases our understanding of which hippocampal pathways are best preserved in the three most common brain slice preparations, and will help investigators determine the appropriate slices to use for physiological studies depending on the subregion of interest. PMID:29201002
A probabilistic atlas of human brainstem pathways based on connectome imaging data.
Tang, Yuchun; Sun, Wei; Toga, Arthur W; Ringman, John M; Shi, Yonggang
2018-04-01
The brainstem is a critical structure that regulates vital autonomic functions, houses the cranial nerves and their nuclei, relays motor and sensory information between the brain and spinal cord, and modulates cognition, mood, and emotions. As a primary relay center, the fiber pathways of the brainstem include efferent and afferent connections among the cerebral cortex, spinal cord, and cerebellum. While diffusion MRI has been successfully applied to map various brain pathways, its application for the in vivo imaging of the brainstem pathways has been limited due to inadequate resolution and large susceptibility-induced distortion artifacts. With the release of high-resolution data from the Human Connectome Project (HCP), there is increasing interest in mapping human brainstem pathways. Previous works relying on HCP data to study brainstem pathways, however, did not consider the prevalence (>80%) of large distortions in the brainstem even after the application of correction procedures from the HCP-Pipeline. They were also limited in the lack of adequate consideration of subject variability in either fiber pathways or region of interests (ROIs) used for bundle reconstruction. To overcome these limitations, we develop in this work a probabilistic atlas of 23 major brainstem bundles using high-quality HCP data passing rigorous quality control. For the large-scale data from the 500-Subject release of HCP, we conducted extensive quality controls to exclude subjects with severe distortions in the brainstem area. After that, we developed a systematic protocol to manually delineate 1300 ROIs on 20 HCP subjects (10 males; 10 females) for the reconstruction of fiber bundles using tractography techniques. Finally, we leveraged our novel connectome modeling techniques including high order fiber orientation distribution (FOD) reconstruction from multi-shell diffusion imaging and topography-preserving tract filtering algorithms to successfully reconstruct the 23 fiber bundles for each subject, which were then used to calculate the probabilistic atlases in the MNI152 space for public release. In our experimental results, we demonstrate that our method yielded anatomically faithful reconstruction of the brainstem pathways and achieved improved performance in comparison with an existing atlas of cerebellar peduncles based on HCP data. These atlases have been publicly released on NITRIC (https://www.nitrc.org/projects/brainstem_atlas/) and can be readily used by brain imaging researchers interested in studying brainstem pathways. Copyright © 2017 Elsevier Inc. All rights reserved.
Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton.
Feng, Hongjie; Tian, Xinhui; Liu, Yongchang; Li, Yanjun; Zhang, Xinyu; Jones, Brian Joseph; Sun, Yuqiang; Sun, Jie
2013-01-01
As a result of changing consumer preferences, cotton (Gossypium Hirsutum L.) from varieties with naturally colored fibers is becoming increasingly sought after in the textile industry. The molecular mechanisms leading to colored fiber development are still largely unknown, although it is expected that the color is derived from flavanoids. Firstly, four key genes of the flavonoid biosynthetic pathway in cotton (GhC4H, GhCHS, GhF3'H, and GhF3'5'H) were cloned and studied their expression profiles during the development of brown- and white cotton fibers by QRT-PCR. And then, the concentrations of four components of the flavonoid biosynthetic pathway, naringenin, quercetin, kaempferol and myricetin in brown- and white fibers were analyzed at different developmental stages by HPLC. The predicted proteins of the four flavonoid structural genes corresponding to these genes exhibit strong sequence similarity to their counterparts in various plant species. Transcript levels for all four genes were considerably higher in developing brown fibers than in white fibers from a near isogenic line (NIL). The contents of four flavonoids (naringenin, quercetin, kaempferol and myricetin) were significantly higher in brown than in white fibers and corresponding to the biosynthetic gene expression levels. Flavonoid structural gene expression and flavonoid metabolism are important in the development of pigmentation in brown cotton fibers.
Ruan, Yong-Ling; Chourey, Prem S.
1998-01-01
Fiber cell initiation in the epidermal cells of cotton (Gossypium hirsutum L.) ovules represents a unique example of trichome development in higher plants. Little is known about the molecular and metabolic mechanisms controlling this process. Here we report a comparative analysis of a fiberless seed (fls) mutant (lacking fibers) and a normal (FLS) mutant to better understand the initial cytological events in fiber development and to analyze the metabolic changes that are associated with the loss of a major sink for sucrose during cellulose biosynthesis in the mutant seeds. On the day of anthesis (0 DAA), the mutant ovular epidermal cells lacked the typical bud-like projections that are seen in FLS ovules and are required for commitment to the fiber development pathway. Cell-specific gene expression analyses at 0 DAA showed that sucrose synthase (SuSy) RNA and protein were undetectable in fls ovules but were in abundant, steady-state levels in initiating fiber cells of the FLS ovules. Tissue-level analyses of developing seeds 15 to 35 DAA revealed an altered temporal pattern of SuSy expression in the mutant relative to the normal genotype. Whether the altered programming of SuSy expression is the cause or the result of the mutation is unknown. The developing seeds of the fls mutant have also shown several correlated changes that represent altered carbon partitioning in seed coats and cotyledons as compared with the FLS genotype. PMID:9765525
Ruan; Chourey
1998-10-01
Fiber cell initiation in the epidermal cells of cotton (Gossypium hirsutum L.) ovules represents a unique example of trichome development in higher plants. Little is known about the molecular and metabolic mechanisms controlling this process. Here we report a comparative analysis of a fiberless seed (fls) mutant (lacking fibers) and a normal (FLS) mutant to better understand the initial cytological events in fiber development and to analyze the metabolic changes that are associated with the loss of a major sink for sucrose during cellulose biosynthesis in the mutant seeds. On the day of anthesis (0 DAA), the mutant ovular epidermal cells lacked the typical bud-like projections that are seen in FLS ovules and are required for commitment to the fiber development pathway. Cell-specific gene expression analyses at 0 DAA showed that sucrose synthase (SuSy) RNA and protein were undetectable in fls ovules but were in abundant, steady-state levels in initiating fiber cells of the FLS ovules. Tissue-level analyses of developing seeds 15 to 35 DAA revealed an altered temporal pattern of SuSy expression in the mutant relative to the normal genotype. Whether the altered programming of SuSy expression is the cause or the result of the mutation is unknown. The developing seeds of the fls mutant have also shown several correlated changes that represent altered carbon partitioning in seed coats and cotyledons as compared with the FLS genotype.
Snow, Nicholas J; Peters, Sue; Borich, Michael R; Shirzad, Navid; Auriat, Angela M; Hayward, Kathryn S; Boyd, Lara A
2016-01-15
Diffusion-weighted magnetic resonance imaging (DW-MRI) is commonly used to assess white matter properties after stroke. Novel work is utilizing constrained spherical deconvolution (CSD) to estimate complex intra-voxel fiber architecture unaccounted for with tensor-based fiber tractography. However, the reliability of CSD-based tractography has not been established in people with chronic stroke. Establishing the reliability of CSD-based DW-MRI in chronic stroke. High-resolution DW-MRI was performed in ten adults with chronic stroke during two separate sessions. Deterministic region of interest-based fiber tractography using CSD was performed by two raters. Mean fractional anisotropy (FA), apparent diffusion coefficient (ADC), tract number, and tract volume were extracted from reconstructed fiber pathways in the corticospinal tract (CST) and superior longitudinal fasciculus (SLF). Callosal fiber pathways connecting the primary motor cortices were also evaluated. Inter-rater and test-retest reliability were determined by intra-class correlation coefficients (ICCs). ICCs revealed excellent reliability for FA and ADC in ipsilesional (0.86-1.00; p<0.05) and contralesional hemispheres (0.94-1.00; p<0.0001), for CST and SLF fibers; and excellent reliability for all metrics in callosal fibers (0.85-1.00; p<0.05). ICC ranged from poor to excellent for tract number and tract volume in ipsilesional (-0.11 to 0.92; p≤0.57) and contralesional hemispheres (-0.27 to 0.93; p≤0.64), for CST and SLF fibers. Like other select DW-MRI approaches, CSD-based tractography is a reliable approach to evaluate FA and ADC in major white matter pathways, in chronic stroke. Future work should address the reproducibility and utility of CSD-based metrics of tract number and tract volume. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Hee Jin; Hinchliffe, Doug J.; Triplett, Barbara A.; Chen, Z. Jeffrey; Stelly, David M.; Yeater, Kathleen M.; Moon, Hong S.; Gilbert, Matthew K.; Thyssen, Gregory N.; Turley, Rickie B.; Fang, David D.
2015-01-01
The number of cotton (Gossypium sp.) ovule epidermal cells differentiating into fiber initials is an important factor affecting cotton yield and fiber quality. Despite extensive efforts in determining the molecular mechanisms regulating fiber initial differentiation, only a few genes responsible for fiber initial differentiation have been discovered. To identify putative genes directly involved in the fiber initiation process, we used a cotton ovule culture technique that controls the timing of fiber initial differentiation by exogenous phytohormone application in combination with comparative expression analyses between wild type and three fiberless mutants. The addition of exogenous auxin and gibberellins to pre-anthesis wild type ovules that did not have visible fiber initials increased the expression of genes affecting auxin, ethylene, ABA and jasmonic acid signaling pathways within 1 h after treatment. Most transcripts expressed differentially by the phytohormone treatment in vitro were also differentially expressed in the ovules of wild type and fiberless mutants that were grown in planta. In addition to MYB25-like, a gene that was previously shown to be associated with the differentiation of fiber initials, several other differentially expressed genes, including auxin/indole-3-acetic acid (AUX/IAA) involved in auxin signaling, ACC oxidase involved in ethylene biosynthesis, and abscisic acid (ABA) 8'-hydroxylase an enzyme that controls the rate of ABA catabolism, were co-regulated in the pre-anthesis ovules of both wild type and fiberless mutants. These results support the hypothesis that phytohormonal signaling networks regulate the temporal expression of genes responsible for differentiation of cotton fiber initials in vitro and in planta. PMID:25927364
Hanna-Addams, Sarah; Wang, Zhigao
2018-04-26
Amyloid or amyloid-like fibers have been associated with many human diseases, and are now being discovered to be important for many signaling pathways. The ability to readily detect the formation of these fibers under various experimental conditions is essential for understanding their potential function. Many methods have been used to detect the fibers, but not without some drawbacks. For example, electron microscopy (EM), or staining with Congo Red or Thioflavin T often requires purification of the fibers. On the other hand, semi-denaturing detergent agarose gel electrophoresis (SDD-AGE) allows detection of the SDS-resistant amyloid-like fibers in the cell extracts without purification. In addition, it allows the comparison of the size difference of the fibers. More importantly, it can be used to identify specific proteins within the fibers by Western blotting. It is less time consuming and more easily accessible to a wider number of labs. SDD-AGE results often show variable degree of heterogeneity. It raises the question whether part of the heterogeneity results from the dissociation of the protein complex during the electrophoresis in the presence of SDS. For this reason, we have employed a second dimension of SDD-AGE to determine if the size heterogeneity seen in SDD-AGE is truly a result of fiber heterogeneity in vivo and not a result of either degradation or dissociation of some of the proteins during electrophoresis. This method allows fast, qualitative confirmation that the amyloid or amyloid-like fibers are not partially dissociating during the SDD-AGE process.
Formicola, Luigi; Pannérec, Alice; Correra, Rosa Maria; Gayraud-Morel, Barbara; Ollitrault, David; Besson, Vanessa; Tajbakhsh, Shahragim; Lachey, Jennifer; Seehra, Jasbir S; Marazzi, Giovanna; Sassoon, David A
2018-01-01
Degenerative myopathies typically display a decline in satellite cells coupled with a replacement of muscle fibers by fat and fibrosis. During this pathological remodeling, satellite cells are present at lower numbers and do not display a proper regenerative function. Whether a decline in satellite cells directly contributes to disease progression or is a secondary result is unknown. In order to dissect these processes, we used a genetic model to reduce the satellite cell population by ~70-80% which leads to a nearly complete loss of regenerative potential. We observe that while no overt tissue damage is observed following satellite cell depletion, muscle fibers atrophy accompanied by changes in the stem cell niche cellular composition. Treatment of these mice with an Activin receptor type-2B (AcvR2B) pathway blocker reverses muscle fiber atrophy as expected, but also restores regenerative potential of the remaining satellite cells. These findings demonstrate that in addition to controlling fiber size, the AcvR2B pathway acts to regulate the muscle stem cell niche providing a more favorable environment for muscle regeneration.
Neuroplasticity in the auditory system.
Gil-Loyzaga, P
2005-01-01
An increasing interest on neuroplasticity and nerve regeneration within the auditory receptor and pathway has developed in recent years. The receptor and the auditory pathway are controlled by highly complex circuits that appear during embryonic development. During this early maturation process of the auditory sensory elements, we observe the development of two types of nerve fibers: permanent fibers that will remain to reach full-term maturity and other transient fibers that will ultimately disappear. Both stable and transitory fibers however, as well as developing sensory cells, express, and probably release, their respective neuro-transmitters that could be involved in neuroplasticity. Cell culture experiments have added significant information; the in vitro administration of glutamate or GABA to isolated spiral ganglion neurons clearly modified neural development. Neuroplasticity has been also found in the adult. Nerve regeneration and neuroplasticity have been demonstrated in the adult auditory receptors as well as throughout the auditory pathway. Neuroplasticity studies could prove interesting in the elaboration of current or future therapy strategies (e.g.: cochlear implants or stem cells), but also to really understand the pathogenesis of auditory or language diseases (e.g.: deafness, tinnitus, dyslexia, etc.).
The visceromotor and somatic afferent nerves of the penis.
Diallo, Djibril; Zaitouna, Mazen; Alsaid, Bayan; Quillard, Jeanine; Ba, Nathalie; Allodji, Rodrigue Sètchéou; Benoit, Gérard; Bedretdinova, Dina; Bessede, Thomas
2015-05-01
Innervation of the penis supports erectile and sensory functions. This article aims to study the efferent autonomic (visceromotor) and afferent somatic (sensory) nervous systems of the penis and to investigate how these systems relate to vascular pathways. Penises obtained from five adult cadavers were studied via computer-assisted anatomic dissection (CAAD). The number of autonomic and somatic nerve fibers was compared using the Kruskal-Wallis test. Proximally, penile innervation was mainly somatic in the extra-albugineal sector and mainly autonomic in the intracavernosal sector. Distally, both sectors were almost exclusively supplied by somatic nerve fibers, except the intrapenile vascular anastomoses that accompanied both somatic and autonomic (nitrergic) fibers. From this point, the neural immunolabeling within perivascular nerve fibers was mixed (somatic labeling and autonomic labeling). Accessory afferent, extra-albugineal pathways supplied the outer layers of the penis. There is a major change in the functional type of innervation between the proximal and distal parts of the intracavernosal sector of the penis. In addition to the pelvis and the hilum of the penis, the intrapenile neurovascular routes are the third level where the efferent autonomic (visceromotor) and the afferent somatic (sensory) penile nerve fibers are close. Intrapenile neurovascular pathways define a proximal penile segment, which guarantees erectile rigidity, and a sensory distal segment. © 2015 International Society for Sexual Medicine.
Metabolic pathway engineering in cotton: Biosynthesis of polyhydroxybutyrate in fiber cells
John, Maliyakal E.; Keller, Greg
1996-01-01
Alcaligenes eutrophus genes encoding the enzymes, β-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB), and polyhydroxyalkanoate synthase (phaC) catalyze the production of aliphatic polyester poly-d-(−)-3-hydroxybutyrate (PHB) from acetyl-CoA. PHB is a thermoplastic polymer that may modify fiber properties when synthesized in cotton. Endogenous β-ketothiolase activity is present in cotton fibers. Hence cotton was transformed with engineered phaB and phaC genes by particle bombardment, and transgenic plants were selected based on marker gene, β-glucuronidase (GUS), expression. Fibers of 10 transgenic plants expressed phaB gene, while eight plants expressed both phaB and phaC genes. Electron microscopy examination of fibers expressing both genes indicated the presence of electron-lucent granules in the cytoplasm. High pressure liquid chromatography, gas chromatography, and mass spectrometry evidence suggested that the new polymer produced in transgenic fibers is PHB. Sixty-six percent of the PHB in fibers is in the molecular mass range of 0.6 × 106 to 1.8 × 106 Da. The presence of PHB granules in transgenic fibers resulted in measurable changes of thermal properties. The fibers exhibited better insulating characteristics. The rate of heat uptake and cooling was slower in transgenic fibers, resulting in higher heat capacity. These data show that metabolic pathway engineering in cotton may enhance fiber properties by incorporating new traits from other genetic sources. This is an important step toward producing new generation fibers for the textile industry. PMID:11038522
Boba, Aleksandra; Kostyn, Kamil; Kostyn, Anna; Wojtasik, Wioleta; Dziadas, Mariusz; Preisner, Marta; Szopa, Jan; Kulma, Anna
2017-01-01
Flax (Linum usitatissimum) is a crop plant valued for its oil and fiber. Unfortunately, large losses in cultivation of this plant are caused by fungal infections, with Fusarium oxysporum being one of its most dangerous pathogens. Among the plant's defense strategies, changes in the expression of genes of the shikimate/phenylpropanoid/benzoate pathway and thus in phenolic contents occur. Among the benzoates, salicylic acid, and its methylated form methyl salicylate play an important role in regulating plants' response to stress conditions. Upon treatment of flax plants with the fungus we found that methyl salicylate content increased (4.8-fold of the control) and the expression profiles of the analyzed genes suggest that it is produced most likely from cinnamic acid, through the β-oxidative route. At the same time activation of some genes involved in lignin and flavonoid biosynthesis was observed. We suggest that increased methyl salicylate biosynthesis during flax response to F. oxysporum infection may be associated with phenylpropanoid pathway activation. PMID:28163709
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai
Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species.more » The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.« less
Zhang, Guo-Jun; Chen, Tsing-Bau; Bednar, Bohumil; Connolly, Brett M; Hargreaves, Richard; Sur, Cyrille; Williams, David L
2007-08-01
The in vivo hollow fiber assay, in which semipermeable hollow fibers filled with tumor cells, are implanted into animals, was originally developed to screen for anticancer compounds before assessment in more complex tumor models. To enhance screening and evaluation of anticancer drugs, we have applied optical imaging technology to this assay. To demonstrate that tumor cells inside hollow fibers can communicate with the host mice, we have used fluorescence imaging in vivo and CD31 immunostaining ex vivo to show that angiogenesis occurs around cell-filled hollow fibers by 2 weeks after subcutaneous implantation. Bioluminescence imaging has been used to follow the number of luciferase-expressing tumor cells within implanted hollow fibers; proliferation of those cells was found to be significantly inhibited by docetaxel or irinotecan. We also used bioluminescence imaging of hollow fibers to monitor the nuclear factor kappaB (NFkappaB) pathway in vivo; NFkappaB activation by lipopolysaccharide and tumor necrosis factor-alpha was evaluated in tumor cell lines genetically engineered to express luciferase controlled by an NFkappaB-responsive element. These results demonstrate that optical imaging of hollow fibers containing reporter tumor cells can be used for the rapid and accurate evaluation of antitumor activities of anticancer drugs and for measurement of molecular pathways.
NASA Astrophysics Data System (ADS)
Burke, Ryan M.; Madden, Kelley S.; Perry, Seth W.; Zettel, Martha L.; Brown, Edward B.
2013-08-01
Collagen fibers can be imaged with second harmonic generation (SHG) and are associated with efficient tumor cell locomotion. Preferential locomotion along these fibers correlates with a more aggressively metastatic phenotype, and changes in SHG emission properties accompany changes in metastatic outcome. We therefore attempted to elucidate the cellular and molecular machinery that influences SHG in order to understand how the microstructure of tumor collagen fibers is regulated. By quantifying SHG and immunofluorescence (IF) from tumors grown in mice with and without stromal tumor necrosis factor (TNF)-α and in the presence or absence of tumor-associated macrophages (TAMs), we determined that depletion of TAMs alters tumor collagen fibrillar microstructure as quantified by SHG and IF. Furthermore, we determined that abrogation of TNF-α expression by tumor stromal cells also alters fibrillar microstructure and that subsequent depletion of TAMs has no further effect. In each case, metastatic burden correlated with optical readouts of collagen microstructure. Our results implicate TAMs and stromal TNF-α as regulators of breast tumor collagen microstructure and suggest that this regulation plays a role in tumor metastasis. Furthermore, these results indicate that quantification of SHG represents a useful strategy for evaluating the cells and molecular pathways responsible for manipulating fibrillar collagen in breast tumor models.
Identification of Stria Medullaris Fibers in the Massa Intermedia Using Diffusion Tensor Imaging.
Kochanski, Ryan B; Dawe, Robert; Kocak, Mehmet; Sani, Sepehr
2018-04-01
The massa intermedia (MI) or interthalamic adhesion is an inconsistent band spanning between bilateral medial thalami that is absent in up to 20%-30% of individuals. Little is known of its significance, especially in regard to functional pathways. Probabilistic diffusion tensor imaging (DTI) has recently been used to seed the lateral habenula and define its afferent white matter pathway, the stria medullaris thalami (SM). We sought to determine whether the MI serves as a conduit for crossing of limbic fibers such as the SM. Probabilistic DTI was performed on 10 subjects who had presence of a MI as visualized on magnetic resonance imaging. Tractography was also performed on 2 subjects without MI. Manual identification of the lateral habenula on axial T1-weighted magnetic resonance imaging was used for the initial seed region for tractography. In all subjects, the SM was reliably visualized. In 7 of the 10 subjects with MI, there was evidence of SM fibers that crossed to the ipsilateral hemisphere. Three subjects with small diameter MI did not have tractographic evidence of crossing SM fibers. Of the 7 subjects with crossing SM fibers within the MI, 5 showed predilection toward the right orbitofrontal cortex from both the left and right seed regions. Probabilistic DTI provides evidence of SM fibers within the MI. Given its anatomic location as a bridging pathway between thalami, further studies are necessary to assess its role within the limbic functional network. Copyright © 2018 Elsevier Inc. All rights reserved.
Spectrally Resolved Fiber Photometry for Multi-component Analysis of Brain Circuits.
Meng, Chengbo; Zhou, Jingheng; Papaneri, Amy; Peddada, Teja; Xu, Karen; Cui, Guohong
2018-04-25
To achieve simultaneous measurement of multiple cellular events in molecularly defined groups of neurons in vivo, we designed a spectrometer-based fiber photometry system that allows for spectral unmixing of multiple fluorescence signals recorded from deep brain structures in behaving animals. Using green and red Ca 2+ indicators differentially expressed in striatal direct- and indirect-pathway neurons, we were able to simultaneously monitor the neural activity in these two pathways in freely moving animals. We found that the activities were highly synchronized between the direct and indirect pathways within one hemisphere and were desynchronized between the two hemispheres. We further analyzed the relationship between the movement patterns and the magnitude of activation in direct- and indirect-pathway neurons and found that the striatal direct and indirect pathways coordinately control the dynamics and fate of movement. Published by Elsevier Inc.
Analysis of Flavonoids and the Flavonoid Structural Genes in Brown Fiber of Upland Cotton
Liu, Yongchang; Li, Yanjun; Zhang, Xinyu; Jones, Brian Joseph; Sun, Yuqiang; Sun, Jie
2013-01-01
Backgroud As a result of changing consumer preferences, cotton (Gossypium Hirsutum L.) from varieties with naturally colored fibers is becoming increasingly sought after in the textile industry. The molecular mechanisms leading to colored fiber development are still largely unknown, although it is expected that the color is derived from flavanoids. Experimental Design Firstly, four key genes of the flavonoid biosynthetic pathway in cotton (GhC4H, GhCHS, GhF3′H, and GhF3′5′H) were cloned and studied their expression profiles during the development of brown- and white cotton fibers by QRT-PCR. And then, the concentrations of four components of the flavonoid biosynthetic pathway, naringenin, quercetin, kaempferol and myricetin in brown- and white fibers were analyzed at different developmental stages by HPLC. Result The predicted proteins of the four flavonoid structural genes corresponding to these genes exhibit strong sequence similarity to their counterparts in various plant species. Transcript levels for all four genes were considerably higher in developing brown fibers than in white fibers from a near isogenic line (NIL). The contents of four flavonoids (naringenin, quercetin, kaempferol and myricetin) were significantly higher in brown than in white fibers and corresponding to the biosynthetic gene expression levels. Conclusions Flavonoid structural gene expression and flavonoid metabolism are important in the development of pigmentation in brown cotton fibers. PMID:23527031
Exposure pathway evaluations for sites that processed asbestos-contaminated vermiculite.
Anderson, Barbara A; Dearwent, Steve M; Durant, James T; Dyken, Jill J; Freed, Jennifer A; Moore, Susan McAfee; Wheeler, John S
2005-01-01
The Agency for Toxic Substances and Disease Registry (ATSDR) is currently evaluating the potential public health impacts associated with the processing of asbestos-contaminated vermiculite at various facilities around the country. Vermiculite ore contaminated with significant levels of asbestos was mined and milled in Libby, Montana, from the early 1920s until 1990. The majority of the Libby ore was then shipped to processing facilities for exfoliation. ATSDR initiated the National Asbestos Exposure Review (NAER) to identify and evaluate exposure pathways associated with these processing facilities. This manuscript details ATSDR's phased approach in addressing exposure potential around these sites. As this is an ongoing project, only the results from a selected set of completed site analyses are presented. Historical occupational exposures are the most significant exposure pathway for the site evaluations completed to date. Former workers also probably brought asbestos fibers home on their clothing, shoes, and hair, and their household contacts may have been exposed. Currently, most site-related worker and community exposure pathways have been eliminated. One community exposure pathway of indeterminate significance is the current exposure of individuals through direct contact with waste rock brought home for personal use as fill material, driveway surfacing, or soil amendment. Trace levels of asbestos are present in soil at many of the sites and buried waste rock has been discovered at a few sites; therefore, future worker and community exposure associated with disturbing on-site soil during construction or redevelopment at these sites is also a potential exposure pathway.
Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds
Andersen, Jeppe Reitan; Zein, Imad; Wenzel, Gerhard; Darnhofer, Birte; Eder, Joachim; Ouzunova, Milena; Lübberstedt, Thomas
2008-01-01
Background Forage quality of maize is influenced by both the content and structure of lignins in the cell wall. Biosynthesis of monolignols, constituting the complex structure of lignins, is catalyzed by enzymes in the phenylpropanoid pathway. Results In the present study we have amplified partial genomic fragments of six putative phenylpropanoid pathway genes in a panel of elite European inbred lines of maize (Zea mays L.) contrasting in forage quality traits. Six loci, encoding C4H, 4CL1, 4CL2, C3H, F5H, and CAD, displayed different levels of nucleotide diversity and linkage disequilibrium (LD) possibly reflecting different levels of selection. Associations with forage quality traits were identified for several individual polymorphisms within the 4CL1, C3H, and F5H genomic fragments when controlling for both overall population structure and relative kinship. A 1-bp indel in 4CL1 was associated with in vitro digestibility of organic matter (IVDOM), a non-synonymous SNP in C3H was associated with IVDOM, and an intron SNP in F5H was associated with neutral detergent fiber. However, the C3H and F5H associations did not remain significant when controlling for multiple testing. Conclusion While the number of lines included in this study limit the power of the association analysis, our results imply that genetic variation for forage quality traits can be mined in phenylpropanoid pathway genes of elite breeding lines of maize. PMID:18173847
Disassembly of the lens fiber cell nucleus to create a clear lens: The p27 descent.
Rowan, Sheldon; Chang, Min-Lee; Reznikov, Natalie; Taylor, Allen
2017-03-01
The eye lens is unique among tissues: it is transparent, does not form tumors, and the majority of its cells degrade their organelles, including their cell nuclei. A mystery for over a century, there has been considerable recent progress in elucidating mechanisms of lens fiber cell denucleation (LFCD). In contrast to the disassembly and reassembly of the cell nucleus during mitosis, LFCD is a unidirectional process that culminates in destruction of the fiber cell nucleus. Whereas p27 Kip1 , the cyclin-dependent kinase inhibitor, is upregulated during formation of LFC in the outermost cortex, in the inner cortex, in the nascent organelle free zone, p27 Kip1 is degraded, markedly activating cyclin-dependent kinase 1 (Cdk1). This process results in phosphorylation of nuclear Lamins, dissociation of the nuclear membrane, and entry of lysosomes that liberate DNaseIIβ (DLAD) to cleave chromatin. Multiple cellular pathways, including the ubiquitin proteasome system and the unfolded protein response, converge on post-translational regulation of p27 Kip1 . Mutations that impair these pathways are associated with congenital cataracts and loss of LFCD. These findings highlight new regulatory nodes in the lens and suggest that we are close to understanding this fascinating terminal differentiation process. Such knowledge may offer a new means to confront proliferative diseases including cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molnár, P; Nadler, J V
2001-05-01
The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in the epileptic brain and serves as a mechanism for synchronization of granule cell epileptiform activity. It has been suggested that this pathway also promotes epileptiform activity by inhibiting GABA(A) receptor function through release of zinc. Hippocampal slices from pilocarpine-treated rats were used to evaluate this hypothesis. The rats had developed status epilepticus after pilocarpine administration, followed by robust recurrent mossy fiber growth. The ability of exogenously applied zinc to depress GABA(A) receptor function in dentate granule cells depended on removal of polyvalent anions from the superfusion medium. Under these conditions, 200 microM zinc reduced the amplitude of the current evoked by applying muscimol to the proximal portion of the granule cell dendrite (23%). It also reduced the mean amplitude (31%) and frequency (36%) of miniature inhibitory postsynaptic currents. Nevertheless, repetitive mossy fiber stimulation (10 Hz for 1 s, 100 Hz for 1 s, or 10 Hz for 5 min) at maximal intensity did not affect GABA(A) receptor-mediated currents evoked by photorelease of GABA onto the proximal portion of the dendrite, where recurrent mossy fiber synapses were located. These results could not be explained by stimulation-induced depletion of zinc from the recurrent mossy fiber boutons. Negative results were obtained even during exposure to conditions that promoted transmitter release and synchronized granule cell activity (6 mM [K(+)](o), nominally Mg(2+)-free medium, 33 degrees C). These results suggest that zinc released from the recurrent mossy fiber pathway did not reach a concentration at postsynaptic GABA(A) receptors sufficient to inhibit agonist-evoked activation.
Impact of weightlessness on muscle function
NASA Technical Reports Server (NTRS)
Tischler, M. E.; Slentz, M.
1995-01-01
The most studied skeletal muscles which depend on gravity, "antigravity" muscles, are located in the posterior portion of the legs. Antigravity muscles are characterized generally by a different fiber type composition than those which are considered nonpostural. The gravity-dependent function of the antigravity muscles makes them particularly sensitive to weightlessness (unweighting) resulting in a substantial loss of muscle protein, with a relatively greater loss of myofibrillar (structural) proteins. Accordingly alpha-actin mRNA decreases in muscle of rats exposed to microgravity. In the legs, the soleus seems particularly responsive to the lack of weight-bearing associated with space flight. The loss of muscle protein leads to a decreased cross-sectional area of muscle fibers, particularly of the slow-twitch, oxidative (SO) ones compared to fast-twitch glycolytic (FG) or oxidative-glycolytic (FOG) fibers. In some muscles, a shift in fiber composition from SO to FOG has been reported in the adaptation to spaceflight. Changes in muscle composition with spaceflight have been associated with decreased maximal isometric tension (Po) and increased maximal shortening velocity. In terms of fuel metabolism, results varied depending on the pathway considered. Glucose uptake, in the presence of insulin, and activities of glycolytic enzymes are increased by space flight. In contrast, oxidation of fatty acids may be diminished. Oxidation of pyruvate, activity of the citric acid cycle, and ketone metabolism in muscle seem to be unaffected by microgravity.
NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy
Goody, Michelle F.; Kelly, Meghan W.; Reynolds, Christine J.; Khalil, Andre; Crawford, Bryan D.; Henry, Clarissa A.
2012-01-01
Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies. PMID:23109907
Formicola, Luigi; Pannérec, Alice; Correra, Rosa Maria; Gayraud-Morel, Barbara; Ollitrault, David; Besson, Vanessa; Tajbakhsh, Shahragim; Lachey, Jennifer; Seehra, Jasbir S.; Marazzi, Giovanna; Sassoon, David A.
2018-01-01
Degenerative myopathies typically display a decline in satellite cells coupled with a replacement of muscle fibers by fat and fibrosis. During this pathological remodeling, satellite cells are present at lower numbers and do not display a proper regenerative function. Whether a decline in satellite cells directly contributes to disease progression or is a secondary result is unknown. In order to dissect these processes, we used a genetic model to reduce the satellite cell population by ~70–80% which leads to a nearly complete loss of regenerative potential. We observe that while no overt tissue damage is observed following satellite cell depletion, muscle fibers atrophy accompanied by changes in the stem cell niche cellular composition. Treatment of these mice with an Activin receptor type-2B (AcvR2B) pathway blocker reverses muscle fiber atrophy as expected, but also restores regenerative potential of the remaining satellite cells. These findings demonstrate that in addition to controlling fiber size, the AcvR2B pathway acts to regulate the muscle stem cell niche providing a more favorable environment for muscle regeneration. PMID:29881353
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beerbower, J.R.; Olson, E.C.; Hotton, N. III
1992-01-01
Variation among Permo-Carboniferous tetrapod assemblages demonstrates major transformations in pathways and rates of energy and nutrient transfer, in integration of terrestrial ecosystems and in predominant ecologic modes. Early Carboniferous pathways were through plant detritus to aquatic and terrestrial detritivores and thence to arthropod and vertebrate meso-and macro-predators. Transfer rates (and efficiency) were low as was ecosystem integration; the principal ecologic mode was conservation. Late Carboniferous and Early Permian assemblages demonstrate an expansion in herbivory, primarily in utilization of low-fiber plant tissue by insects. But transfer rates, efficiency and integration were still limited because the larger portion of plant biomass, high-fibermore » tissues, still went into detrital pathways; high-fiber'' herbivores, i.e., tetrapods, were neither abundant or diverse, reflecting limited resources, intense predation and limited capabilities for processing fiber-rich food. The abundance and diversity of tetrapod herbivores in upper Permian assemblages suggests a considerable transfer of energy from high-fiber tissues through these animals to tetrapod predators and thus higher transfer rates and efficiencies. It also brought a shift in ecological mode toward acquisition and regulation and tightened ecosystem integration.« less
Jiang, Zhiquan; Gui, Songbo; Zhang, Yazhuo
2010-09-01
Growth-hormone-secreting pituitary adenomas (GHomas) account for approximately 20% of all pituitary neoplasms. However, the pathogenesis of GHomas remains to be elucidated. To explore the possible pathogenesis of GHomas, we used bead-based fiber-optic arrays to examine the gene expression in five GHomas and compared them to three healthy pituitaries. Four differentially expressed genes were chosen randomly for validation by quantitative real-time reverse transcription-polymerase chain reaction. We then performed pathway analysis on the identified differentially expressed genes using the Kyoto Encyclopedia of Genes and Genomes. Array analysis showed significant increases in the expression of 353 genes and 206 expressed sequence tags (ESTs) and decreases in 565 genes and 29 ESTs. Bioinformatic analysis showed that the genes HIGD1B, HOXB2, ANGPT2, HPGD and BTG2 may play an important role in the tumorigenesis and progression of GHomas. Pathway analysis showed that the wingless-type signaling pathway and extracellular-matrix receptor interactions may play a key role in the tumorigenesis and progression of GHomas. Our data suggested that there are numerous aberrantly expressed genes and pathways involved in the pathogenesis of GHomas. Bead-based fiber-optic arrays combined with pathway analysis of differentially expressed genes appear to be a valid method for investigating the pathogenesis of tumors.
JIANG, ZHIQUAN; GUI, SONGBO; ZHANG, YAZHUO
2010-01-01
Growth-hormone-secreting pituitary adenomas (GHomas) account for approximately 20% of all pituitary neoplasms. However, the pathogenesis of GHomas remains to be elucidated. To explore the possible pathogenesis of GHomas, we used bead-based fiber-optic arrays to examine the gene expression in five GHomas and compared them to three healthy pituitaries. Four differentially expressed genes were chosen randomly for validation by quantitative real-time reverse transcription-polymerase chain reaction. We then performed pathway analysis on the identified differentially expressed genes using the Kyoto Encyclopedia of Genes and Genomes. Array analysis showed significant increases in the expression of 353 genes and 206 expressed sequence tags (ESTs) and decreases in 565 genes and 29 ESTs. Bioinformatic analysis showed that the genes HIGD1B, HOXB2, ANGPT2, HPGD and BTG2 may play an important role in the tumorigenesis and progression of GHomas. Pathway analysis showed that the wingless-type signaling pathway and extracellular-matrix receptor interactions may play a key role in the tumorigenesis and progression of GHomas. Our data suggested that there are numerous aberrantly expressed genes and pathways involved in the pathogenesis of GHomas. Bead-based fiber-optic arrays combined with pathway analysis of differentially expressed genes appear to be a valid method for investigating the pathogenesis of tumors. PMID:22993617
Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha
2015-01-01
Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, and consequently tractography and the ability to recover complex white-matter pathways, as well as differences between results due to choice of analysis method and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment “ball and stick” model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm2) common to clinical studies. We found the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection rate was found to be the most distinguishing characteristic between the methods, and a significant factor for complete recovery of tractography through complex white-matter pathways. For example, while all methods recovered similar tractography of prominent white matter pathways of limited fiber crossing, CSD (which had the highest fiber detection rate, especially for voxels containing three fibers) recovered the greatest number of fibers and largest fraction of correct tractography for a complex three-fiber crossing region. The synthetic data sets, ground-truth, and tools for quantitative evaluation are publically available on the NITRC website as the project “Simulated DW-MRI Brain Data Sets for Quantitative Evaluation of Estimated Fiber Orientations” at http://www.nitrc.org/projects/sim_dwi_brain PMID:25555998
Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha
2015-04-01
Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, tractography and the ability to recover complex white-matter pathways, differences between results due to choice of analysis method, and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work, we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment "ball and stick" model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm(2)) common to clinical studies. We found that the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection rate was found to be the most distinguishing characteristic between the methods, and a significant factor for complete recovery of tractography through complex white-matter pathways. For example, while all methods recovered similar tractography of prominent white matter pathways of limited fiber crossing, CSD (which had the highest fiber detection rate, especially for voxels containing three fibers) recovered the greatest number of fibers and largest fraction of correct tractography for complex three-fiber crossing regions. The synthetic data sets, ground-truth, and tools for quantitative evaluation are publically available on the NITRC website as the project "Simulated DW-MRI Brain Data Sets for Quantitative Evaluation of Estimated Fiber Orientations" at http://www.nitrc.org/projects/sim_dwi_brain. Copyright © 2014 Elsevier Inc. All rights reserved.
Borgen, Melissa; Rowland, Kimberly; Boerner, Jana; Lloyd, Brandon; Khan, Aruna; Murphey, Rodney
2017-03-01
The ubiquitin ligase Highwire has a conserved role in synapse formation. Here, we show that Highwire coordinates several facets of central synapse formation in the Drosophila melanogaster giant fiber system, including axon termination, axon pruning, and synaptic function. Despite the similarities to the fly neuromuscular junction, the role of Highwire and the underlying signaling pathways are distinct in the fly's giant fiber system. During development, branching of the giant fiber presynaptic terminal occurs and, normally, the transient branches are pruned away. However, in highwire mutants these ectopic branches persist, indicating that Highwire promotes axon pruning. highwire mutants also exhibit defects in synaptic function. Highwire promotes axon pruning and synaptic function cell-autonomously by attenuating a mitogen-activated protein kinase pathway including Wallenda, c-Jun N-terminal kinase/Basket, and the transcription factor Jun. We also show a novel role for Highwire in non-cell autonomous promotion of synaptic function from the midline glia. Highwire also regulates axon termination in the giant fibers, as highwire mutant axons exhibit severe overgrowth beyond the pruning defect. This excessive axon growth is increased by manipulating Fos expression in the cells surrounding the giant fiber terminal, suggesting that Fos regulates a trans -synaptic signal that promotes giant fiber axon growth. Copyright © 2017 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
Alexandroni, Guy; Zimmerman Moreno, Gali; Sochen, Nir; Greenspan, Hayit
2016-03-01
Recent advances in Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) of white matter in conjunction with improved tractography produce impressive reconstructions of White Matter (WM) pathways. These pathways (fiber sets) often contain hundreds of thousands of fibers, or more. In order to make fiber based analysis more practical, the fiber set needs to be preprocessed to eliminate redundancies and to keep only essential representative fibers. In this paper we demonstrate and compare two distinctive frameworks for selecting this reduced set of fibers. The first framework entails pre-clustering the fibers using k-means, followed by Hierarchical Clustering and replacing each cluster with one representative. For the second clustering stage seven distance metrics were evaluated. The second framework is based on an efficient geometric approximation paradigm named coresets. Coresets present a new approach to optimization and have huge success especially in tasks requiring large computation time and/or memory. We propose a modified version of the coresets algorithm, Density Coreset. It is used for extracting the main fibers from dense datasets, leaving a small set that represents the main structures and connectivity of the brain. A novel approach, based on a 3D indicator structure, is used for comparing the frameworks. This comparison was applied to High Angular Resolution Diffusion Imaging (HARDI) scans of 4 healthy individuals. We show that among the clustering based methods, that cosine distance gives the best performance. In comparing the clustering schemes with coresets, Density Coreset method achieves the best performance.
The TWEAK–Fn14 dyad is involved in age-associated pathological changes in skeletal muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajrishi, Marjan M.; Sato, Shuichi; Shin, Jonghyun
Highlights: • The levels of TWEAK receptor Fn14 are increased in skeletal muscle during aging. • Deletion of Fn14 attenuates age-associated skeletal muscle fiber atrophy. • Deletion of Fn14 inhibits proteolysis in skeletal muscle during aging. • TWEAK–Fn14 signaling activates transcription factor NF-κB in aging skeletal muscle. • TWEAK–Fn14 dyad is involved in age-associated fibrosis in skeletal muscle. - Abstract: Progressive loss of skeletal muscle mass and strength (sarcopenia) is a major clinical problem in the elderly. Recently, proinflammatory cytokine TWEAK and its receptor Fn14 were identified as key mediators of muscle wasting in various catabolic states. However, the rolemore » of the TWEAK–Fn14 pathway in pathological changes in skeletal muscle during aging remains unknown. In this study, we demonstrate that the levels of Fn14 are increased in skeletal muscle of 18-month old (aged) mice compared with adult mice. Genetic ablation of Fn14 significantly increased the levels of specific muscle proteins and blunted the age-associated fiber atrophy in mice. While gene expression of two prominent muscle-specific E3 ubiquitin ligases MAFBx and MuRF1 remained comparable, levels of ubiquitinated proteins and the expression of autophagy-related molecule Atg12 were significantly reduced in Fn14-knockout (KO) mice compared with wild-type mice during aging. Ablation of Fn14 significantly diminished the DNA-binding activity of transcription factor nuclear factor-kappa B (NF-κB), gene expression of various inflammatory molecules, and interstitial fibrosis in skeletal muscle of aged mice. Collectively, our study suggests that the TWEAK–Fn14 signaling axis contributes to age-associated muscle atrophy and fibrosis potentially through its local activation of proteolytic systems and inflammatory pathways.« less
Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway
Huang, Z; Zhang, L; Chen, Y; Zhang, H; Zhang, Q; Li, R; Ma, J; Li, Z; Yu, C; Lai, Y; Lin, T; Zhao, X; Zhang, B; Ye, Z; Liu, S; Wang, W; Liang, X; Liao, R; Shi, W
2016-01-01
Podocyte apoptosis is a major mechanism that leads to proteinuria in many chronic kidney diseases. However, the concert mechanisms that cause podocyte apoptosis in these kidney diseases are not fully understood. The Rho family of small GTPases has been shown to be required in maintaining podocyte structure and function. Recent studies have indicated that podocyte-specific deletion of Cdc42 in vivo, but not of RhoA or Rac1, leads to congenital nephrotic syndrome and glomerulosclerosis. However, the underlying cellular events in podocyte controlled by Cdc42 remain unclear. Here, we assessed the cellular mechanisms by which Cdc42 regulates podocyte apoptosis. We found that the expression of Cdc42 and its activity were significantly decreased in high glucose-, lipopolysaccharide- or adriamycin-injured podocytes. Reduced Cdc42 expression in vitro and in vivo by small interfering RNA and selective Cdc42 inhibitor ML-141, respectively, caused podocyte apoptosis and proteinuria. Our results further demonstrated that insufficient Cdc42 or Nwasp, its downstream effector, could decrease the mRNA and protein expression of YAP, which had been regarded as an anti-apoptosis protein in podocyte. Moreover, our data indicated that the loss of stress fibers caused by Cdc42/Nwasp deficiency also decreased Yes-associated protein (YAP) mRNA and protein expression, and induced podocyte apoptosis. Podocyte apoptosis induced by Cdc42/Nwasp/stress fiber deficiency was significantly inhibited by overexpressing-active YAP. Thus, the Cdc42/Nwasp/stress fibers/YAP signal pathway may potentially play an important role in regulating podocyte apoptosis. Maintaining necessary Cdc42 would be one potent way to prevent proteinuria kidney diseases. PMID:26986510
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, T.T.; Blake, R.D.
1985-04-03
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, Thomas T.; Blake, Rodger D.
1987-01-01
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.
Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando
2016-01-01
Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes. PMID:27579157
Tan, Jian; McKenzie, Craig; Vuillermin, Peter J; Goverse, Gera; Vinuesa, Carola G; Mebius, Reina E; Macia, Laurence; Mackay, Charles R
2016-06-21
The incidence of food allergies in western countries has increased dramatically in recent decades. Tolerance to food antigens relies on mucosal CD103(+) dendritic cells (DCs), which promote differentiation of regulatory T (Treg) cells. We show that high-fiber feeding in mice improved oral tolerance and protected from food allergy. High-fiber feeding reshaped gut microbial ecology and increased the release of short-chain fatty acids (SCFAs), particularly acetate and butyrate. High-fiber feeding enhanced oral tolerance and protected against food allergy by enhancing retinal dehydrogenase activity in CD103(+) DC. This protection depended on vitamin A in the diet. This feeding regimen also boosted IgA production and enhanced T follicular helper and mucosal germinal center responses. Mice lacking GPR43 or GPR109A, receptors for SCFAs, showed exacerbated food allergy and fewer CD103(+) DCs. Dietary elements, including fiber and vitamin A, therefore regulate numerous protective pathways in the gastrointestinal tract, necessary for immune non-responsiveness to food antigens. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
... connector hub for solar energy generated in the Ivanpah Valley area. A fiber optics telecommunications cable will be located on the new transmission towers and an additional fiber optics pathway ROW is also...
Vasung, L; Jovanov-Milošević, N; Pletikos, M; Mori, S; Judaš, M; Kostović, Ivica
2011-01-01
Periventricular pathway (PVP) system of the developing human cerebrum is situated medial to the intermediate zone in the close proximity to proliferative cell compartments. In order to elucidate chemical properties and developing trajectories of the PVP we used DTI in combination with acetylcholinesterase histochemistry, SNAP-25 immunocytochemistry and axonal cytoskeletal markers (SMI312, MAP1b) immunocytochemistry on postmortem paraformaldehyde-fixed brains of 30 human fetuses ranging in age from 10 to 38 postconceptional weeks (PCW), 2 infants (age 1-3 months) and 1 adult brain. The PVP appears in the early fetal period (10-13 PCW) as two defined fibre bundles: the corpus callosum (CC) and the fetal fronto-occipital fascicle (FOF). In the midfetal period (15-18 PCW), all four components of the PVP can be identified: (1) the CC, which at rostral levels forms a voluminous callosal plate; (2) the FOF, with SNAP-25-positive fibers; (3) the fronto-pontine pathway (FPP) which for a short distance runs within the PVP; and (4) the subcallosal fascicle of Muratoff (SFM) which contains cortico-caudate projections. The PVPs are situated medial to the internal capsule at the level of the cortico-striatal junction; they remain prominent during the late fetal and early preterm period (19-28 PCW) and represent a portion of the wider periventricular crossroad of growing associative, callosal and projection pathways. In the perinatal period, the PVPs change their topographical relationships, decrease in size and the FOF looses its SNAP-25-reactivity. In conclusion, the hitherto undescribed PVP of the human fetal cerebrum contains forerunners of adult associative and projection pathways. Its transient chemical properties and relative exuberance suggest that the PVP may exert influence on the development of cortical connectivity (intermediate targeting) and other neurogenetic events such as neuronal proliferation. The PVP's topographical position also indicates that it is a major site of vulnerability in hypoxic-ischaemic perinatal brain injury. © Springer-Verlag 2010
Slattery, Martha L.; Lundgreen, Abbie; Herrick, Jennifer S.; Caan, Bette J.; Potter, John D.; Wolff, Roger K.
2012-01-01
There is considerable biologic plausibility to the hypothesis that genetic variability in pathways involved in insulin signaling and energy homeostasis may modulate dietary risk associated with colorectal cancer. We utilized data from 2 population-based case-control studies of colon (n = 1,574 cases, 1,970 controls) and rectal (n = 791 cases, 999 controls) cancer to evaluate genetic variation in candidate SNPs identified from 9 genes in a candidate pathway: PDK1, RP6KA1, RPS6KA2, RPS6KB1, RPS6KB2, PTEN, FRAP1 (mTOR), TSC1, TSC2, Akt1, PIK3CA, and PRKAG2 with dietary intake of total energy, carbohydrates, fat, and fiber. We employed SNP, haplotype, and multiple-gene analysis to evaluate associations. PDK1 interacted with dietary fat for both colon and rectal cancer and with dietary carbohydrates for colon cancer. Statistically significant interaction with dietary carbohydrates and rectal cancer was detected by haplotype analysis of PDK1. Evaluation of dietary interactions with multiple genes in this candidate pathway showed several interactions with pairs of genes: Akt1 and PDK1, PDK1 and PTEN, PDK1 and TSC1, and PRKAG2 and PTEN. Analyses show that genetic variation influences risk of colorectal cancer associated with diet and illustrate the importance of evaluating dietary interactions beyond the level of single SNPs or haplotypes when a biologically relevant candidate pathway is examined. PMID:21999454
Joseph, Jamie; Depp, Colin; Shih, Pei-an B.; Cadenhead, Kristen S.; Schmid-Schönbein, Geert
2017-01-01
Growing interest in gut and digestive processes and their potential link to brain and peripheral based inflammation or biobehavioral phenotypes has led to an increasing number of basic and translational scientific reports focused on the role of gut microbiota within the context of neuropsychiatric disorders. However, the effect of dietary modification on specific gut metabolites, in association with immune, metabolic, and psychopathological functioning in schizophrenia spectrum disorders has not been well characterized. The short chain fatty acids (SCFA) acetate, butyrate, and propionate, major metabolites derived from fermentation of dietary fibers by gut microbes, interact with multiple immune and metabolic pathways. The specific pathways that SCFA are thought to target, are dysregulated in cardiovascular disease, type II diabetes, and systemic inflammation. Most notably, these disorders are consistently linked to an attenuated lifespan in schizophrenia. Although, unhealthy dietary intake patterns and increased prevalence of immune and metabolic dysfunction has been observed in people with schizophrenia; dietary interventions have not been well utilized to target immune or metabolic illness. Prior schizophrenia patient trials primarily focused on the effects of gluten free diets. Findings from these studies indicate that a diet avoiding gluten benefits a limited subset of patients, individuals with celiac disease or non-celiac gluten sensitivity. Therefore, alternative dietary and nutritional modifications such as high-fiber, Mediterranean style, diets that enrich the production of SCFA, while being associated with a minimal likelihood of adverse events, may improve immune and cardiovascular outcomes linked to premature mortality in schizophrenia. With a growing literature demonstrating that SCFA can cross the blood brain barrier and target key inflammatory and metabolic pathways, this article highlights enriching dietary intake for SCFA as a potential adjunctive therapy for people with schizophrenia. PMID:28396623
Li, Yongxin; Hu, Yuzheng; Wang, Yunqi; Weng, Jian; Chen, Feiyan
2013-01-01
Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM) for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI) to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the gray matter (GM) volume in the left intraparietal sulcus (IPS). Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF), bilateral inferior longitudinal fasciculus (ILF) and inferior fronto-occipital fasciculus (IFOF) were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA) values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children's arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren. PMID:24367320
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, T.T.; Blake, R.D.
1987-09-22
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate. 2 figs.
Shin, Samuel S; Verstynen, Timothy; Pathak, Sudhir; Jarbo, Kevin; Hricik, Allison J; Maserati, Megan; Beers, Sue R; Puccio, Ava M; Boada, Fernando E; Okonkwo, David O; Schneider, Walter
2012-05-01
For patients with traumatic brain injury (TBI), current clinical imaging methods generally do not provide highly detailed information about the location of axonal injury, severity of injury, or expected recovery. In a case of severe TBI, the authors applied a novel high-definition fiber tracking (HDFT) to directly visualize and quantify the degree of axonal fiber damage and predict functional deficits due to traumatic axonal injury and loss of cortical projections. This 32-year-old man sustained a severe TBI. Computed tomography and MRI revealed an area of hemorrhage in the basal ganglia with mass effect, but no specific information on the location of axonal injury could be obtained from these studies. Examinations of the patient at Week 3 and Week 8 after TBI revealed motor weaknesses of the left extremities. Four months postinjury, 257-direction diffusion spectrum imaging and HDFT analysis was performed to evaluate the degree of axonal damage in the motor pathway and quantify asymmetries in the left and right axonal pathways. High-definition fiber tracking was used to follow corticospinal and corona radiata pathways from the cortical surface to the midbrain and quantify projections from motor areas. Axonal damage was then localized by assessing the number of descending fibers at the level of the cortex, internal capsule, and midbrain. The motor deficit apparent in the clinical examinations correlated with the axonal losses visualized using HDFT. Fiber loss estimates at 4 months postinjury accurately predicted the nature of the motor deficits (severe, focal left-hand weakness) when other standard clinical imaging modalities did not. A repeat scan at 10 months postinjury, when edema and hemorrhage had receded, replicated the fiber loss. Using HDFT, the authors accurately identified the presence and location of damage to the underlying white matter in this patient with TBI. Detailed information of injury provided by this novel technique holds future potential for precise neuroimaging assessment of TBI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobe, Koji, E-mail: kojinobe@pharm.showa-u.ac.jp; Nobe, Hiromi; Department of Physical Therapy, Bunkyo-Gakuin University
Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibersmore » and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.« less
Analysis of GI Community Shifts in Response to Dietary Fiber
2004-12-31
similar to the human tract (omnivorous, non- ruminant but better cellulose utilization), 3) show gut community response to change in diet fiber, 4...detect bacteria for further characterization as potential probiotics or for other biotechnical advances (i.e. enzymes and pathways). At the Swine
Andi, Shi; Lin, Zeng; Jing, Liu
2017-06-01
This study aims to determine the influence of unilateral chewing on metabolic characteristics of masseter muscle fibers in rats and the regulatory effect of an adenosine monophosphate activated protein kinase (AMPK) signal pathway on metabolism. Rats were submitted to exodontia of all the right maxillary molars and divided into 2, 4, 6, and 8 weeks groups, and corresponding control groups were set as well. Sections were stained by nicotine adenine dinucleotide tetrazolim reductase(NADH-TRase) to demonstrate the types, proportion, and density of masseter muscle fibers. AMPKα1 and p-AMPK(Thr172) levels in bilateral masseter muscles were detected by Western blot. In the 2-week group, the percentage of dark fibers augmented in the ipsilateral side, whereas the percentage of intermediary fibers in the contralateral side was increased accompanied by a decrease of light fibers, compared with the control group (P<0.05). The percentage of dark fibers was increased in the bilateral sides, whereas the percentage of dark fiber in the ipsilateral sides surpassed that of the contralateral sides in the 4, 6, and 8-week groups. The percentage of intermediary fibers was decreased in the bilateral sides in the 6 and 8-week groups (P<0.05). The percentage of light fibers was reduced in the ipsilateral sides in the 8-week group, whereas no alteration was observed in contralateral sides (P>0.05). In the ipsilateral sides, p-AMPK (Thr172)/AMPKα1 levels were increased in the 2 and 4-week groups (P<0.05), whereas no change was observed in the contralateral sides in either group (P>0.05). Unilateral chewing increases the oxidative metabolic ability in bilateral masseter muscle fibers especially in the non-working side accompanied with change of muscle fiber types. The improvement of aerobic metabolism ability is related to the AMPK signal pathway. .
Jiang, Z; Gui, S; Zhang, Y
2011-05-01
Nonfunctioning pituitary adenomas (NFPAs) are relatively common, accounting for 30% of all pituitary adenomas; however, their pathogenesis remains enigmatic. To explore the possible pathogenesis of NFPAs, we used fiber-optic BeadArray to examine gene expression in 5 NFPAs compared with 3 normal pituitaries. 4 differentially expressed genes were chosen randomly for validation by reverse transcriptase-real time quantitative polymerase chain reaction (RT-qPCR). We then analyzed the differentially expressed gene profile with Kyoto Encyclopedia of Genes and Genomes (KEGG). The array analysis indentified significant increases in the expression of 1,402 genes and 383 expressed sequence tags (ESTs), and decreases in 1,697 genes and 113 ESTs in the NFPAs. Bioinformatic and pathway analysis showed that the genes HIGD1B, FAM5C, PMAIP1 and the pathway cell-cycle regulation may play an important role in tumorigenesis and progression of NFPAs. Our data suggest fiber-optic BeadArray combined with pathway analysis of differential gene expression profile appears to be a valid approach for investigating the pathogenesis of tumors. © Georg Thieme Verlag KG Stuttgart · New York.
Kinetochore fiber formation in animal somatic cells: dueling mechanisms come to a draw
2008-01-01
The attachment to and movement of a chromosome on the mitotic spindle are mediated by the formation of a bundle of microtubules (MTs) that tethers the kinetochore on the chromosome to a spindle pole. The origin of these “kinetochore fibers” (K fibers) has been investigated for over 125 years. As noted in 1944 by Schrader [Mitosis, Columbia University Press, New York, 110 pp.], there are three possible ways to form a K fiber: (a) it grows from the pole until it contacts the kinetochore, (b) it grows directly from the kinetochore, or (c) it forms as a result of an interaction between the pole and the chromosome. Since Schrader's time, it has been firmly established that K fibers in centrosome-containing animal somatic cells form as kinetochores capture MTs growing from the spindle pole (route a). It is now similarly clear that in cells lacking centrosomes, including higher plants and many animal oocytes, K fibers “self-assemble” from MTs generated by the chromosomes (route b). Can animal somatic cells form K fibers in the absence of centrosomes by the “self-assembly” pathway? In 2000, the answer to this question was shown to be a resounding “yes.” With this result, the next question became whether the presence of a centrosome normally suppresses K fiber self-assembly or if this route works concurrently with centrosome-mediated K-fiber formation. This question, too, has recently been answered: observations on untreated live animal cells expressing green fluorescent protein-tagged tubulin clearly show that kinetochores can nucleate the formation of their associated MTs in a unique manner in the presence of functional centrosomes. The concurrent operation of these two “dueling” routes for forming K fibers in animal cells helps explain why the attachment of kinetochores and the maturation of K fibers occur as quickly as they do on all chromosomes within a cell. PMID:16270218
Barmack, N H; Yakhnitsa, V
2015-10-01
Climbing and mossy fibers comprise two distinct afferent paths to the cerebellum. Climbing fibers directly evoke a large multispiked action potential in Purkinje cells termed a "complex spike" (CS). By logical exclusion, the other class of Purkinje cell action potential, termed "simple spike" (SS), has often been attributed to activity conveyed by mossy fibers and relayed to Purkinje cells through granule cells. Here, we investigate the relative importance of climbing and mossy fiber pathways in modulating neuronal activity by recording extracellularly from Purkinje cells, as well as from mossy fiber terminals and interneurons in folia 8-10. Sinusoidal roll-tilt vestibular stimulation vigorously modulates the discharge of climbing and mossy fiber afferents, Purkinje cells, and interneurons in folia 9-10 in anesthetized mice. Roll-tilt onto the side ipsilateral to the recording site increases the discharge of both climbing fibers (CSs) and mossy fibers. However, the discharges of SSs decrease during ipsilateral roll-tilt. Unilateral microlesions of the beta nucleus (β-nucleus) of the inferior olive blocks vestibular modulation of both CSs and SSs in contralateral Purkinje cells. The blockage of SSs occurs even though primary and secondary vestibular mossy fibers remain intact. When mossy fiber afferents are damaged by a unilateral labyrinthectomy (UL), vestibular modulation of SSs in Purkinje cells ipsilateral to the UL remains intact. Two inhibitory interneurons, Golgi and stellate cells, could potentially contribute to climbing fiber-induced modulation of SSs. However, during sinusoidal roll-tilt, only stellate cells discharge appropriately out of phase with the discharge of SSs. Golgi cells discharge in phase with SSs. When the vestibularly modulated discharge is blocked by a microlesion of the inferior olive, the modulated discharge of CSs and SSs is also blocked. When the vestibular mossy fiber pathway is destroyed, vestibular modulation of ipsilateral CSs and SSs persists. We conclude that climbing fibers are primarily responsible for the vestibularly modulated discharge of both CSs and SSs. Modulation of the discharge of SSs is likely caused by climbing fiber-evoked stellate cell inhibition.
Retinotopic and temporal organization of the optic nerve and tracts in the adult goldfish.
Bunt, S M
1982-04-10
In order to investigate the role of the different factors controlling the pathways and termination sites of growing axons, selected optic fibers were traced from the eye to the tectum in adult goldfish either by filling them with HRP, or by severing a group of fibers and tracing their degeneration in 2 micrometers plastic sections stained with toluidine blue. Some fish received more than one lesion and others received both lesions and HRP applications. Two major rearrangements of the optic fibers were identified, one at the exit from the eye, the other within the optic tracts. Near the eye the optic fibers appear to be guided by the conformation of the underlying tissue planes that they encounter. The most recently added fibers, from the peripheral retina, grow over the vitread surface of the older fibers toward the blood vessel in the center of the optic nerve head. Behind the eye the fibers follow this blood vessel until it leaves the side of the optic nerve, and the fibers from peripheral retina are left as a single group on the ventral edge of the optic nerve cross section. As a consequence of this pattern of fiber growth the fibers form an orderly temporal sequence in the optic nerve, with the oldest fibers from the central retina on one side of the nerve and the youngest from peripheral retina on the other. In addition, the fibers are ordered topographically at right angles to this central-to-peripheral axis, with fibers from ventral retina on each edge of the nerve, dorsal fibers in the center, and nasal and temporal fibers in between. This arrangement of the optic fibers continues with only a little loss of precision up to the optic tracts. A more radical fiber rearrangement, seemingly incompatible with the fibers simply following tissue planes occurs within the optic tracts. Each newly arriving set of fibers grows over the surface of the optic tracts so that the older fibers come to lie deepest in the tracts. This segregation of fibers of different ages ensures that the rearrangement is limited to each layer of fibers. The abrupt reorganization of the fibers occurs as the tracts split around the nucleus rotundus to form the brachia of the optic tracts. The fibers are then arranged with temporal fibers nearest the nucleus rotundus and nasal fibers on the opposite edges of the brachia. From this point the fibers grow out over the tectal surface to their termination sites with only minimal rearrangements. Therefore the optic fiber rearrangements show evidence of several different sorts of constraints acting on the fibers at separate points in the optic pathway, each contributing to the final orderly arrangement of the fibers on the optic tectum.
Zhang, Zhiyuan; Ruan, Yong-Ling; Zhou, Na; Wang, Fang; Guan, Xueying; Fang, Lei; Shang, Xiaoguang; Guo, Wangzhen; Zhu, Shuijin; Zhang, Tianzhen
2017-08-01
Plasmodesmata (PDs) play vital roles in cell-to-cell communication and plant development. Emerging evidence suggests that sterols are involved in PD activity during cytokinesis. However, whether sterols contribute to PD gating between established cells remains unknown. Here, we isolated GhSCP2D , a putative sterol carrier protein gene from elongating cotton ( Gossypium hirsutum ) fibers. In contrast to wild-type fiber PDs, which opened at 5 to 10 d postanthesis (DPA) and closed only at 15 to 25 DPA, plants with suppressed GhSCP2D expression had reduced sterol contents and closed PDs at 5 through 25 DPA The GhSCP2D- suppressed fibers exhibited callose deposition at the PDs, likely due to reduced expression of GhPdBG3-2A/D , which encodes a PD-targeting β-1,3-glucanase. Both GhPdBG3-2A/D expression and callose deposition were sensitive to a sterol biosynthesis inhibitor. Moreover, suppressing GhSCP2D upregulated a cohort of SUT and SWEET sucrose transporter genes in fiber cells. Collectively, our results indicate that (1) GhSCP2D is required for GhPdBG3-2A/D expression to degrade callose at the PD, thereby contributing to the establishment of the symplasmic pathway; and (2) blocking the symplasmic pathway by downregulating GhSCP2D activates or increases the expression of SUTs and SWEETs , leading to the switch from symplasmic to apoplasmic pathways. © 2017 American Society of Plant Biologists. All rights reserved.
Four Possible Itching Pathways Related to the TRPV1 Channel, Histamine, PAR-2 and Serotonin.
Nakagawa, Hiroshi; Hiura, Akio
2013-07-01
The following four possible pathways for itching sensation have been suggested by recent reports. 1) Histaminergic TRPV1-positive pathway: Although histamine-positive nerve fibers cannot strictly be classified as "itch specific" due to their excitation also by pure algogens (making them itch-selective), the existence of a subpopulation of nociceptors responsible for itching is strongly suggested. Moreover, the TRPV1-expressing neurons have been suggested to be the main sensors and mediators of itching. 2) Histaminergic TRPV1-negative pathway: The scratching behavior caused by itching was not different between capsaicin-pre-treated and vehicle-treated (control) mast cell-rich NC mice. This result suggests the existence of a capsaicin-insensitive (TRPV1-negative) histaminergic pathway. 3) Non-histaminergic PAR-2 pathway: Protease-activated receptor 2 (PAR-2) has been shown to play a role in the itching of atopic dermatitis (AD). The itch evoked by cowhage (a non-histaminergic pruritogen that activates PAR-2) is very similar in characteristics to the itch evoked by conditions such as AD. 4) Non-histaminergic serotonin (5-HT) pathway: 5-HT alone applied to the human skin evokes an itching sensation and has been suggested to be involved in the itching associated with pruritic diseases, such as polycythemia vera and cholestasis.
Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep.
Peñagaricano, Francisco; Wang, Xin; Rosa, Guilherme Jm; Radunz, Amy E; Khatib, Hasan
2014-11-28
Maternal nutrition during different stages of pregnancy can induce significant changes in the structure, physiology, and metabolism of the offspring. These changes could have important implications on food animal production especially if these perturbations impact muscle and adipose tissue development. Here, we evaluated the impact of different maternal isoenergetic diets, alfalfa haylage (HY; fiber), corn (CN; starch), and dried corn distillers grains (DG; fiber plus protein plus fat), on the transcriptome of fetal muscle and adipose tissues in sheep. Prepartum diets were associated with notable gene expression changes in fetal tissues. In longissimus dorsi muscle, a total of 224 and 823 genes showed differential expression (FDR ≤0.05) in fetuses derived from DG vs. CN and HY vs. CN maternal diets, respectively. Several of these significant genes affected myogenesis and muscle differentiation. In subcutaneous and perirenal adipose tissues, 745 and 208 genes were differentially expressed (FDR ≤0.05), respectively, between CN and DG diets. Many of these genes are involved in adipogenesis, lipogenesis, and adipose tissue development. Pathway analysis revealed that several GO terms and KEGG pathways were enriched (FDR ≤0.05) with differentially expressed genes associated with tissue and organ development, chromatin biology, and different metabolic processes. These findings provide evidence that maternal nutrition during pregnancy can alter the programming of fetal muscle and fat tissues in sheep. The ramifications of the observed gene expression changes, in terms of postnatal growth, body composition, and meat quality of the offspring, warrant future investigation.
Mapping White Matter Integrity in Elderly People with HIV
Nir, Talia M.; Jahanshad, Neda; Busovaca, Edgar; Wendelken, Lauren; Nicolas, Krista; Thompson, Paul M.; Valcour, Victor G.
2013-01-01
People with HIV are living longer as combination antiretroviral therapy (cART) becomes more widely available. However, even when plasma viral load is reduced to untraceable levels, chronic HIV infection is associated with neurological deficits and brain atrophy beyond that of normal aging. HIV is often marked by cortical and subcortical atrophy, but the integrity of the brain’s white matter (WM) pathways also progressively declines. Few studies focus on older cohorts where normal aging may be compounded with HIV infection to influence deficit patterns. In this relatively large diffusion tensor imaging (DTI) study, we investigated abnormalities in WM fiber integrity in 56 HIV+ adults with access to cART (mean age: 63.9 ± 3.7 years), compared to 31 matched healthy controls (65.4 ± 2.2 years). Statistical 3D maps revealed the independent effects of HIV diagnosis and age on fractional anisotropy (FA) and diffusivity, but we did not find any evidence for an age by diagnosis interaction in our current sample. Compared to healthy controls, HIV patients showed pervasive FA decreases and diffusivity increases throughout WM. We also assessed neuropsychological (NP) summary z-score associations. In both patients and controls, fiber integrity measures were associated with NP summary scores. The greatest differences were detected in the corpus callosum and in the projection fibers of the corona radiata. These deficits are consistent with published NP deficits and cortical atrophy patterns in elderly people with HIV. PMID:23362139
Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers
Meng, He; Andresen, Kurt; van Noort, John
2015-01-01
Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays. PMID:25779043
Rapid amyloid fiber formation from the fast-folding WW domain FBP28.
Ferguson, Neil; Berriman, John; Petrovich, Miriana; Sharpe, Timothy D; Finch, John T; Fersht, Alan R
2003-08-19
The WW domains are small proteins that contain a three-stranded, antiparallel beta-sheet. The 40-residue murine FBP28 WW domain rapidly formed twirling ribbon-like fibrils at physiological temperature and pH, with morphology typical of amyloid fibrils. These ribbons were unusually wide and well ordered, making them highly suitable for structural studies. Their x-ray and electron-diffraction patterns displayed the characteristic amyloid fiber 0.47-nm reflection of the cross-beta diffraction signature. Both conventional and electron cryomicroscopy showed clearly that the ribbons were composed of many 2.5-nm-wide subfilaments that ran parallel to the long axis of the fiber. There was a region of lower density along the center of each filament. Lateral association of these filaments generated twisted, often interlinked, sheets up to 40 nm wide and many microns in length. The pitch of the helix varied from 60 to 320 nm, depending on the width of the ribbon. The wild-type FBP28 fibers were formed under conditions in which multiexponential folding kinetics is observed in other studies and which was attributed to a change in the mechanism of folding. It is more likely that those phases result from initial events in the off-pathway aggregation observed here.
Buchan, Alison M J; Lin, Chin-Yu; Choi, Jimmy; Barber, Diane L
2002-08-09
Somatostatin regulates multiple biological functions by acting through a family of five G protein-coupled receptors, somatostatin receptors (SSTRs) 1-5. Although all five receptor subtypes inhibit adenylate cyclase activity and decrease intracellular cAMP levels, specific receptor subtypes also couple to additional signaling pathways. In CCL39 fibroblasts expressing either human SSTR1 or SSTR2, we demonstrate that activation of SSTR1 (but not SSTR2) attenuated both thrombin- and integrin-stimulated Rho-GTP complex formation. The reduction in Rho-GTP formation in the presence of somatostatin was associated with decreased translocation of Rho and LIM kinase to the plasma membrane and fewer focal contacts. Activation of Rho resulted in the formation of intracellular actin stress fibers and cell migration. In CCL39-R1 cells, somatostatin treatment prevented actin stress fiber assembly and attenuated thrombin-stimulated cell migration through Transwell membranes to basal levels. To show that native SSTR1 shares the ability to inhibit Rho activation, we demonstrated that somatostatin treatment of human umbilical vein endothelial cells attenuated thrombin-stimulated Rho-GTP accumulation. These data show for the first time that a G protein-coupled receptor, SSTR1, inhibits the activation of Rho, the assembly of focal adhesions and actin stress fibers, and cell migration.
Hansen, Steen H.; Zegers, Mirjam M. P.; Woodrow, Melissa; Rodriguez-Viciana, Pablo; Chardin, Pierre; Mostov, Keith E.; McMahon, Martin
2000-01-01
Madin-Darby canine kidney (MDCK) epithelial cells transformed by oncogenic Ras and Raf exhibit cell multilayering and alterations in the actin cytoskeleton. The changes in the actin cytoskeleton comprise a loss of actin stress fibers and enhanced cortical actin. Using MDCK cells expressing a conditionally active form of Raf, we have explored the molecular mechanisms that underlie these observations. Raf activation elicited a robust increase in Rac1 activity consistent with the observed increase in cortical actin. Loss of actin stress fibers is indicative of attenuated Rho function, but no change in Rho-GTP levels was detected following Raf activation. However, the loss of actin stress fibers in Raf-transformed cells was preceded by the induced expression of Rnd3, an endogenous inhibitor of Rho protein function. Expression of Rnd3 alone at levels equivalent to those observed following Raf transformation led to a substantial loss of actin stress fibers. Moreover, cells expressing activated RhoA failed to multilayer in response to Raf. Pharmacological inhibition of MEK activation prevented all of the biological and biochemical changes described above. Consequently, the data are consistent with a role for induced Rnd3 expression downstream of the Raf–MEK–extracellular signal-regulated kinase pathway in epithelial oncogenesis. PMID:11094087
Responses of neuromuscular systems under gravity or microgravity environment.
Ishihara, Akihiko; Kawano, Fuminori; Wang, Xiao Dong; Ohira, Yoshinobu
2004-11-01
Hindlimb suspension of rats induces induces fiber atrophy and type shift of muscle fibers. In contrast, there is no change in the cell size or oxidative enzyme activity of spinal motoneurons innervating muscle fibers. Growth-related increases in the cell size of muscle fibers and their spinal motoneurons are inhibited by hindlimb suspension. Exposure to microgravity induces atrophy of fibers (especially slow-twitch fibers) and shift of fibers from slow- to fast-twitch type in skeletal muscles (especially slow, anti-gravity muscles). In addition, a decrease in the oxidative enzyme activity of spinal motoneurons innervating slow-twitch fibers and of sensory neurons in the dorsal root ganglion is observed following exposure to microgravity. It is concluded that neuromuscular activities are important for maintaining metabolism and function of neuromuscular systems at an early postnatal development and that gravity effects both efferent and afferent neural pathways.
White, Dalon P.; Baumgarner, Bradley L.; Watanabe, Wade O.; Alam, Md Shah; Kinsey, Stephen T.
2018-01-01
β-guandinopropionic acid (β-GPA) has been used in mammalian models to reduce intracellular phosphocreatine (PCr) concentration, which in turn lowers the energetic state of cells. This leads to changes in signaling pathways that attempt to re-establish energetic homeostasis. Changes in those pathways elicit effects similar to those of exercise such as changes in body and muscle growth, metabolism, endurance and health. Generally, exercise effects are beneficial to fish health and aquaculture, but inducing exercise in fishes can be impractical. Therefore, this study evaluated the potential use of supplemental β-GPA to induce exercise-like effects in a rapidly growing juvenile teleost, the red porgy (Pagrus pagrus). We demonstrate for the first time that β-GPA can be transported into teleost muscle fibers and is phosphorylated, and that this perturbs the intracellular energetic state of the cells, although to a lesser degree than typically seen in mammals. β-GPA did not affect whole animal growth, nor did it influence skeletal muscle fiber size or myonuclear recruitment. There was, however, an increase in mitochondrial volume within myofibers in treated fish. GC/MS metabolomic analysis revealed shifts in amino acid composition of the musculature, putatively reflecting increases in connective tissue and decreases in protein synthesis that are associated with β-GPA treatment. These results suggest that β-GPA modestly affects fish muscle in a manner similar to that observed in mammals, and that β-GPA may have application to aquaculture by providing a more practical means of generating some of the beneficial effects of exercise in fishes. PMID:29175483
Shu, Jingting; Li, Huifang; Shan, Yanju; Xu, Wenjuan; Chen, Wenfeng; Song, Chi; Song, Weitao
2015-06-01
The insulin-like growth factor I (IGF-I)-calcineurin (CaN)-NFATc signaling pathways have been implicated in the regulation of myocyte hypertrophy and fiber-type specificity. In the present study, the expression of the CnAα, NFATc3, and IGF-I genes was quantified by RT-PCR for the first time in the breast muscle (BM) and leg muscle (LM) on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days posthatching (PH), in Gaoyou and Jinding ducks, which differ in their muscle growth rates. Consistent expression patterns of CnAα, NFATc3, and IGF-I were found in the same anatomical location at different development stages in both duck breeds, showing significant differences in an age-specific fashion. However, the three genes were differentially expressed in the two different anatomical locations (BM and LM). CnAα, NFATc3, and IGF-I messenger RNA (mRNA) could be detected as early as embryonic day 13 (ED13), and the highest level appeared at this stage in both BM and LM. Significant positive relationships were observed in the expression of the studied genes in the BM and LM of both duck breeds. Also, the expression of these three genes showed a positive relationship with the percentage of type IIb fibers and a negative relationship with the percentage of type I fibers and type IIa fibers. Our data indicate differential expression and coordinated developmental regulation of the selected genes involved in the IGF-I-calcineurin-NFATc3 pathway in duck skeletal muscle during embryonic and early PH growth and development; these data also indicate that this signaling pathway might play a role in the regulation of myofiber type transition.
Kerr, Christine L.; Huang, Jian; Williams, Trevor; West-Mays, Judith A.
2012-01-01
Purpose. The signaling pathways and transcriptional effectors responsible for directing mammalian lens development provide key regulatory molecules that can inform our understanding of human eye defects. The hedgehog genes encode extracellular signaling proteins responsible for patterning and tissue formation during embryogenesis. Signal transduction of this pathway is mediated through activation of the transmembrane proteins smoothened and patched, stimulating downstream signaling resulting in the activation or repression of hedgehog target genes. Hedgehog signaling is implicated in eye development, and defects in hedgehog signaling components have been shown to result in defects of the retina, iris, and lens. Methods. We assessed the consequences of constitutive hedgehog signaling in the developing mouse lens using Cre-LoxP technology to express the conditional M2 smoothened allele in the embryonic head and lens ectoderm. Results. Although initial lens development appeared normal, morphological defects were apparent by E12.5 and became more significant at later stages of embryogenesis. Altered lens morphology correlated with ectopic expression of FoxE3, which encodes a critical gene required for human and mouse lens development. Later, inappropriate expression of the epithelial marker Pax6, and as well as fiber cell markers c-maf and Prox1 also occurred, indicating a failure of appropriate lens fiber cell differentiation accompanied by altered lens cell proliferation and cell death. Conclusions. Our findings demonstrate that the ectopic activation of downstream effectors of the hedgehog signaling pathway in the mouse lens disrupts normal fiber cell differentiation by a mechanism consistent with a sustained epithelial cellular developmental program driven by FoxE3. PMID:22491411
Constitutive activation of MAPK cascade in acute quadriplegic myopathy.
Di Giovanni, Simone; Molon, Annamaria; Broccolini, Aldobrando; Melcon, Gisela; Mirabella, Massimiliano; Hoffman, Eric P; Servidei, Serenella
2004-02-01
Acute quadriplegic myopathy (AQM; also called "critical illness myopathy") shows acute muscle wasting and weakness and is experienced by some patients with severe systemic illness, often associated with administration of corticosteroids and/or neuroblocking agents. Key aspects of AQM include muscle atrophy and myofilament loss. Although these features are shared with neurogenic atrophy, myogenic atrophy in AQM appears mechanistically distinct from neurogenic atrophy. Using muscle biopsies from AQM, neurogenic atrophy, and normal controls, we show that both myogenic and neurogenic atrophy share induction of myofiber-specific ubiquitin/proteosome pathways (eg, atrogin-1). However, AQM patient muscle showed a specific strong induction of transforming growth factor (TGF)-beta/MAPK pathways. Atrophic AQM myofibers showed coexpression of TGF-beta receptors, p38 MAPK, c-jun, and c-myc, including phosphorylated active forms, and these same fibers showed apoptotic features. Our data suggest a model of AQM pathogenesis in which stress stimuli (sepsis, corticosteroids, pH imbalance, osmotic imbalance) converge on the TGF-beta pathway in myofibers. The acute stimulation of the TGF-beta/MAPK pathway, coupled with the inactivity-induced atrogin-1/proteosome pathway, leads to the acute muscle loss seen in AQM patients.
Amyloid Fiber Formation in Human γD-Crystallin Induced by UV-B Photodamage
Moran, Sean D.; Zhang, Tianqi O.; Decatur, Sean M.; Zanni, Martin T.
2013-01-01
γD-crystallin is an abundant structural protein of the lens that is found in native and modified forms in cataractous aggregates. We establish that UV-B irradiation of γD-crystallin leads to structurally specific modifications and precipitation via two mechanisms: amorphous aggregates and amyloid fibers. UV-B radiation causes cleavage of the backbone, in large measure near the interdomain interface, where side chain oxidations are also concentrated. 2D IR spectroscopy and expressed protein ligation localize fiber formation exclusively to the C-terminal domain of γD-crystallin. The native β-sandwich domains are not retained upon precipitation by either mechanism. The similarity between the amyloid forming pathway when induced by either UV-B radiation or low pH suggests that it is the propensity for the C-terminal β-sandwich domain to form amyloid β-sheets that determines the misfolding pathway independent of the mechanism of denaturation. PMID:23957864
Joint brain connectivity estimation from diffusion and functional MRI data
NASA Astrophysics Data System (ADS)
Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.
2015-03-01
Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information flow is introduced and used to model the propagation of information between GM areas through WM fiber bundles. The link capacity, i.e., ability to transfer information, is characterized by the relative strength of fiber bundles, e.g., fiber count gathered from the tractography of dMRI data. The node information demand is considered to be proportional to the correlation between neural activity at various cortical areas involved in a particular functional mode (e.g. visual, motor, etc.). These two properties lead to the link capacity and node demand constraints in the proposed model. Moreover, the information flow of a link cannot exceed the demand from either end node. This is captured by the feasibility constraints. Two different cost functions are considered in the optimization formulation in this paper. The first cost function, the reciprocal of fiber strength represents the unit cost for information passing through the link. In the second cost function, a min-max (minimizing the maximal link load) approach is used to balance the usage of each link. Optimizing the first cost function selects the pathway with strongest fiber strength for information propagation. In the second case, the optimization procedure finds all the possible propagation pathways and allocates the flow proportionally to their strength. Additionally, a penalty term is incorporated with both the cost functions to capture the possible missing and weak anatomical connections. With this set of constraints and the proposed cost functions, solving the network optimization problem recovers missing and weak anatomical connections supported by the functional information and provides the functional-associated anatomical subnetworks. Feasibility is demonstrated using realistic diffusion and functional MRI phantom data. It is shown that the proposed model recovers the maximum number of true connections, with fewest number of false connections when compared with the connectivity derived from a joint probabilistic model using the expectation-maximization (EM) algorithm presented in a prior work. We also apply the proposed method to data provided by the Human Connectome Project (HCP).
Suzuki, Reiko; Allen, Naomi E; Key, Timothy J; Appleby, Paul N; Tjønneland, Anne; Johnsen, Nina Føns; Jensen, Majken K; Overvad, Kim; Boeing, Heiner; Pischon, Tobias; Kaaks, Rudolf; Rohrmann, Sabine; Trichopoulou, Antonia; Misirli, Gesthimani; Trichopoulos, Dimitrios; Bueno-de-Mesquita, H Bas; van Duijnhoven, Fränzel; Sacerdote, Carlotta; Pala, Valeria; Palli, Domenico; Tumino, Rosario; Ardanaz, Eva; Quirós, José Ramón; Larrañaga, Nerea; Sánchez, Maria-José; Tormo, María-José; Jakszyn, Paula; Johansson, Ingegerd; Stattin, Pär; Berglund, Göran; Manjer, Jonas; Bingham, Sheila; Khaw, Kay-Tee; Egevad, Lars; Ferrari, Pietro; Jenab, Mazda; Riboli, Elio
2009-01-01
Few studies have examined the association between dietary fiber intake and prostate cancer risk. We evaluated the association between dietary fiber intake and the risk of prostate cancer among 142,590 men in the European Prospective Investigation into Cancer and Nutrition (EPIC). Consumption of dietary fiber (total, cereal, fruit and vegetable fiber) was estimated by validated dietary questionnaires and calibrated using 24-hr dietary recalls. Incidence rate ratios were estimated using Cox regression and adjusted for potential confounding factors. During an average of 8.7 years follow-up, prostate cancer was diagnosed in 2,747 men. Overall, there was no association between dietary fiber intake (total, cereal, fruit or vegetable fiber) and prostate cancer risk, although calibrated intakes of total fiber and fruit fiber were associated with nonstatistically significant reductions in risk. There was no association between fiber derived from cereals or vegetables and risk and no evidence for heterogeneity in any of the risk estimates by stage or grade of disease. Our results suggest that dietary fiber intake is not associated with prostate cancer risk.
Thinner retinal layers are associated with changes in the visual pathway: A population-based study.
Mutlu, Unal; Ikram, Mohammad K; Roshchupkin, Gennady V; Bonnemaijer, Pieter W M; Colijn, Johanna M; Vingerling, Johannes R; Niessen, Wiro J; Ikram, Mohammad A; Klaver, Caroline C W; Vernooij, Meike W
2018-06-23
Increasing evidence shows that thinner retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL), assessed on optical coherence tomography (OCT), are reflecting global brain atrophy. Yet, little is known on the relation of these layers with specific brain regions. Using voxel-based analysis, we aimed to unravel specific brain regions associated with these retinal layers. We included 2,235 persons (mean age: 67.3 years, 55% women) from the Rotterdam Study (2007-2012) who had gradable retinal OCT images and brain magnetic resonance imaging (MRI) scans, including diffusion tensor (DT) imaging. Thicknesses of peripapillary RNFL and perimacular GCL were measured using an automated segmentation algorithm. Voxel-based morphometry protocols were applied to process DT-MRI data. We investigated the association between retinal layer thickness with voxel-wise gray matter density and white matter microstructure by performing linear regression models. We found that thinner RNFL and GCL were associated with lower gray matter density in the visual cortex, and with lower fractional anisotropy and higher mean diffusivity in white matter tracts that are part of the optic radiation. Furthermore, thinner GCL was associated with lower gray matter density of the thalamus. Thinner RNFL and GCL are associated with gray and white matter changes in the visual pathway suggesting that retinal thinning on OCT may be specifically associated with changes in the visual pathway rather than with changes in the global brain. These findings may serve as a basis for understanding visual symptoms in elderly patients, patients with Alzheimer's disease, or patients with posterior cortical atrophy. © 2018 Wiley Periodicals, Inc.
Synthetic fibers in atmospheric fallout: A source of microplastics in the environment?
Dris, Rachid; Gasperi, Johnny; Saad, Mohamed; Mirande, Cécile; Tassin, Bruno
2016-03-15
Sources, pathways and reservoirs of microplastics, plastic particles smaller than 5mm, remain poorly documented in an urban context. While some studies pointed out wastewater treatment plants as a potential pathway of microplastics, none have focused on the atmospheric compartment. In this work, the atmospheric fallout of microplastics was investigated in two different urban and sub-urban sites. Microplastics were collected continuously with a stainless steel funnel. Samples were then filtered and observed with a stereomicroscope. Fibers accounted for almost all the microplastics collected. An atmospheric fallout between 2 and 355 particles/m(2)/day was highlighted. Registered fluxes were systematically higher at the urban than at the sub-urban site. Chemical characterization allowed to estimate at 29% the proportion of these fibers being all synthetic (made with petrochemicals), or a mixture of natural and synthetic material. Extrapolation using weight and volume estimates of the collected fibers, allowed a rough estimation showing that between 3 and 10 tons of fibers are deposited by atmospheric fallout at the scale of the Parisian agglomeration every year (2500 km(2)). These results could serve the scientific community working on the different sources of microplastic in both continental and marine environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.
2012-01-01
Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632
Stuart, Charles A.; Lee, Michelle L.; South, Mark A.; Howell, Mary E.A.; Cartwright, Brian M.; Ramsey, Michael W.; Stone, Michael H.
2016-01-01
Only half of pre-diabetic, subjects who are obese who underwent exercise training without weight loss increased their insulin responsiveness. We hypothesized that those who improved their insulin responsiveness might have pre-training characteristics favoring a positive response to exercise training. Thirty non-diabetic, subjects who are obese volunteered for eight weeks of either strength training or endurance training. During training, subjects increased their caloric intake to prevent weight loss. Insulin responsiveness by euglycemic clamps and muscle fiber composition and expression of muscle key biochemical pathways were quantified. Positive responders initially had 52% higher intermediate muscle fibers (fiber type IIa) with 27% lower slow twitch fibers (type I) and 23% lower expression of muscle insulin receptors. Whether after weight training or stationary bike training, positive responders' fiber type shifted away from type I and type IIa fibers to an increased proportion of type IIx fibers (fast twitch). Muscle insulin receptor expression and GLUT4 expression increased in all trained subjects, but these moderate changes did not consistently translate to improvement in whole body insulin responsiveness. Exercise training of previously sedentary subjects who are obese can result in muscle remodeling and increased expression of key elements of the insulin pathway, but in the absence of weight loss, insulin sensitivity improvement was modest and limited to about half of the participants. Our data suggest rather than responders being more fit, they may have been less fit, only catching up to the other half of subjects who are obese whose insulin responsiveness did not increase beyond their pre-training baseline. PMID:27379957
De Benedictis, Alessandro; Petit, Laurent; Descoteaux, Maxime; Marras, Carlo Efisio; Barbareschi, Mattia; Corsini, Francesco; Dallabona, Monica; Chioffi, Franco; Sarubbo, Silvio
2016-12-01
Extensive studies revealed that the human corpus callosum (CC) plays a crucial role in providing large-scale bi-hemispheric integration of sensory, motor and cognitive processing, especially within the frontal lobe. However, the literature lacks of conclusive data regarding the structural macroscopic connectivity of the frontal CC. In this study, a novel microdissection approach was adopted, to expose the frontal fibers of CC from the dorsum to the lateral cortex in eight hemispheres and in one entire brain. Post-mortem results were then combined with data from advanced constrained spherical deconvolution in 130 healthy subjects. We demonstrated as the frontal CC provides dense inter-hemispheric connections. In particular, we found three types of fronto-callosal fibers, having a dorso-ventral organization. First, the dorso-medial CC fibers subserve homotopic connections between the homologous medial cortices of the superior frontal gyrus. Second, the ventro-lateral CC fibers subserve homotopic connections between lateral frontal cortices, including both the middle frontal gyrus and the inferior frontal gyrus, as well as heterotopic connections between the medial and lateral frontal cortices. Third, the ventro-striatal CC fibers connect the medial and lateral frontal cortices with the contralateral putamen and caudate nucleus. We also highlighted an intricate crossing of CC fibers with the main association pathways terminating in the lateral regions of the frontal lobes. This combined approach of ex vivo microdissection and in vivo diffusion tractography allowed demonstrating a previously unappreciated three-dimensional architecture of the anterior frontal CC, thus clarifying the functional role of the CC in mediating the inter-hemispheric connectivity. Hum Brain Mapp 37:4718-4735, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Irfanoglu, M. Okan; Walker, Lindsay; Sarlls, Joelle; Marenco, Stefano; Pierpaoli, Carlo
2013-01-01
In this work we investigate the effects of echo planar imaging (EPI) distortions on diffusion tensor imaging (DTI) based fiber tractography results. We propose a simple experimental framework that would enable assessing the effects of EPI distortions on the accuracy and reproducibility of fiber tractography from a pilot study on a few subjects. We compare trajectories computed from two diffusion datasets collected on each subject that are identical except for the orientation of phase encode direction, either right–left (RL) or anterior–posterior (AP). We define metrics to assess potential discrepancies between RL and AP trajectories in association, commissural, and projection pathways. Results from measurements on a 3 Tesla clinical scanner indicated that the effects of EPI distortions on computed fiber trajectories are statistically significant and large in magnitude, potentially leading to erroneous inferences about brain connectivity. The correction of EPI distortion using an image-based registration approach showed a significant improvement in tract consistency and accuracy. Although obtained in the context of a DTI experiment, our findings are generally applicable to all EPI-based diffusion MRI tractography investigations, including high angular resolution (HARDI) methods. On the basis of our findings, we recommend adding an EPI distortion correction step to the diffusion MRI processing pipeline if the output is to be used for fiber tractography. PMID:22401760
Auditory pathways: anatomy and physiology.
Pickles, James O
2015-01-01
This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.
Wimmer, Robert J; Russell, Sarah J; Schneider, Martin F
2015-12-01
Prevention and slowing of skeletal muscle atrophy with nutritional approaches offers the potential to provide far-reaching improvements in the quality of life for our increasingly aging population. Here we show that polyphenol flavonoid epigallocatechin 3-gallate (EGCG), found in the popular beverage green tea (Camellia sinensis), demonstrates similar effects to the endogenous hormones insulin-like growth factor 1 (IGF-1) and insulin in the ability to suppress action of the atrophy-promoting transcription factor Foxo1 through a net translocation of Foxo1 out of the nucleus as monitored by nucleo-cytoplasmic movement of Foxo1-green fluorescent protein (GFP) in live skeletal muscle fibers. Foxo1-GFP nuclear efflux is rapid in IGF-1 or insulin, but delayed by an additional 30 min for EGCG. Once activated, kinetic analysis with a simple mathematical model shows EGCG, IGF-1 and insulin all produce similar apparent rate constants for Foxo1-GFP unidirectional nuclear influx and efflux. Interestingly, EGCG appears to have its effect at least partially via parallel signaling pathways that are independent of IGF-1's (and insulin's) downstream PI3K/Akt/Foxo1 signaling axis. Using the live fiber model system, we also determine the dose-response curve for both IGF-1 and insulin on Foxo1 nucleo-cytoplasmic distribution. The continued understanding of the activation mechanisms of EGCG could allow for nutritional promotion of green tea's antiatrophy skeletal muscle benefits and have implications in the development of a clinically significant parallel pathway for new drugs to target muscle wasting and the reduced insulin receptor sensitivity which causes type II diabetes mellitus. Copyright © 2015 Elsevier Inc. All rights reserved.
Pearen, Michael A.; Goode, Joel M.; Fitzsimmons, Rebecca L.; Eriksson, Natalie A.; Thomas, Gethin P.; Cowin, Gary J.; Wang, S.-C. Mary; Tuong, Zewen K.
2013-01-01
The mRNA encoding Nor-1/NR4A3 is rapidly and strikingly induced by β2-adrenergic signaling in glycolytic and oxidative skeletal muscle. In skeletal muscle cells, Nor-1 expression is important for the regulation of oxidative metabolism. Transgenic skeletal muscle-specific expression of activated Nor-1 resulted in the acquisition of an endurance phenotype, an increase in type IIA/X oxidative muscle fibers, and increased numbers of mitochondria. In the current study, we used dual-energy x-ray absorptiometry and magnetic resonance imaging analysis to demonstrate decreased adiposity in transgenic (Tg) Nor-1 mice relative to that in wild-type littermates. Furthermore, the Tg-Nor-1 mice were resistant to diet-induced weight gain and maintained fasting glucose at normoglycemic levels. Expression profiling and RT-quantitative PCR analysis revealed significant increases in genes involved in glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid oxidation, and glycogen synthesis, in concordance with the lean phenotype. Moreover, expression profiling identified several Z-disc and sarcomeric binding proteins that modulate fiber type phenotype and endurance, eg, α-actinin-3. In addition, we demonstrated that the Tg-Nor-1 mouse line has significantly higher glycogen content in skeletal muscle relative to that in wild-type littermates. Finally, we identified a decreased NAD+/NADH ratio with a concordant increase in peroxisome proliferator-activated receptor γ coactivator-1α1 protein/mRNA expression. Increased NADH was associated with an induction of the genes involved in the malate-aspartate shuttle and a decrease in the glycerol 3-phosphate shuttle, which maximizes aerobic ATP production. In conclusion, skeletal muscle-specific Nor-1 expression regulates genes and pathways that regulate adiposity, muscle fiber type metabolic capacity, and endurance. PMID:24065705
White, Dalon P; Baumgarner, Bradley L; Watanabe, Wade O; Alam, Md Shah; Kinsey, Stephen T
2018-02-01
β-guanidinopropionic acid (β-GPA) has been used in mammalian models to reduce intracellular phosphocreatine (PCr) concentration, which in turn lowers the energetic state of cells. This leads to changes in signaling pathways that attempt to re-establish energetic homeostasis. Changes in those pathways elicit effects similar to those of exercise such as changes in body and muscle growth, metabolism, endurance and health. Generally, exercise effects are beneficial to fish health and aquaculture, but inducing exercise in fishes can be impractical. Therefore, this study evaluated the potential use of supplemental β-GPA to induce exercise-like effects in a rapidly growing juvenile teleost, the red porgy (Pagrus pagrus). We demonstrate for the first time that β-GPA can be transported into teleost muscle fibers and is phosphorylated, and that this perturbs the intracellular energetic state of the cells, although to a lesser degree than typically seen in mammals. β-GPA did not affect whole animal growth, nor did it influence skeletal muscle fiber size or myonuclear recruitment. There was, however, an increase in mitochondrial volume within myofibers in treated fish. GC/MS metabolomic analysis revealed shifts in amino acid composition of the musculature, putatively reflecting increases in connective tissue and decreases in protein synthesis that are associated with β-GPA treatment. These results suggest that β-GPA modestly affects fish muscle in a manner similar to that observed in mammals, and that β-GPA may have application to aquaculture by providing a more practical means of generating some of the beneficial effects of exercise in fishes. Copyright © 2017 Elsevier Inc. All rights reserved.
Neuroanatomical prerequisites for language functions in the maturing brain.
Brauer, Jens; Anwander, Alfred; Friederici, Angela D
2011-02-01
The 2 major language-relevant cortical regions in the human brain, Broca's area and Wernicke's area, are connected via the fibers of the arcuate fasciculus/superior longitudinal fasciculus (AF/SLF). Here, we compared this pathway in adults and children and its relation to language processing during development. Comparison of fiber properties demonstrated lower anisotropy in children's AF/SLF, arguing for an immature status of this particular pathway with conceivably a lower degree of myelination. Combined diffusion tensor imaging (DTI) data and functional magnetic resonance imaging (fMRI) data indicated that in adults the termination of the AF/SLF fiber projection is compatible with functional activation in Broca's area, that is pars opercularis. In children, activation in Broca's area extended from the pars opercularis into the pars triangularis revealing an alternative connection to the temporal lobe (Wernicke's area) via the ventrally projecting extreme capsule fiber system. fMRI and DTI data converge to indicate that adults make use of a more confined language network than children based on ongoing maturation of the structural network. Our data suggest relations between language development and brain maturation and, moreover, indicate the brain's plasticity to adjust its function to available structural prerequisites.
Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana
2013-01-01
ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies. PMID:24282497
Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana
2013-01-01
ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.
A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes.
Lacoste, Alix M B; Schoppik, David; Robson, Drew N; Haesemeyer, Martin; Portugues, Ruben; Li, Jennifer M; Randlett, Owen; Wee, Caroline L; Engert, Florian; Schier, Alexander F
2015-06-01
The Mauthner cell (M-cell) is a command-like neuron in teleost fish whose firing in response to aversive stimuli is correlated with short-latency escapes [1-3]. M-cells have been proposed as evolutionary ancestors of startle response neurons of the mammalian reticular formation [4], and studies of this circuit have uncovered important principles in neurobiology that generalize to more complex vertebrate models [3]. The main excitatory input was thought to originate from multisensory afferents synapsing directly onto the M-cell dendrites [3]. Here, we describe an additional, convergent pathway that is essential for the M-cell-mediated startle behavior in larval zebrafish. It is composed of excitatory interneurons called spiral fiber neurons, which project to the M-cell axon hillock. By in vivo calcium imaging, we found that spiral fiber neurons are active in response to aversive stimuli capable of eliciting escapes. Like M-cell ablations, bilateral ablations of spiral fiber neurons largely eliminate short-latency escapes. Unilateral spiral fiber neuron ablations shift the directionality of escapes and indicate that spiral fiber neurons excite the M-cell in a lateralized manner. Their optogenetic activation increases the probability of short-latency escapes, supporting the notion that spiral fiber neurons help activate M-cell-mediated startle behavior. These results reveal that spiral fiber neurons are essential for the function of the M-cell in response to sensory cues and suggest that convergent excitatory inputs that differ in their input location and timing ensure reliable activation of the M-cell, a feedforward excitatory motif that may extend to other neural circuits. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spainhower, Kyle B; Cliffe, Rebecca N; Metz, Allan K; Barkett, Ernest M; Kiraly, Paije M; Thomas, Dylan R; Kennedy, Sarah J; Avey-Arroyo, Judy; Butcher, Michael T
2018-05-03
Sloths are canopy-dwelling inhabitants of American neotropical rainforests that exhibit suspensory behaviors. These abilities require both strength and muscular endurance to hang for extended periods of time; however, the skeletal muscle mass of sloths is reduced, thus requiring modifications to muscle architecture and leverage for large joint torque. We hypothesize that intrinsic muscle properties also are modified for fatigue resistance and predict a heterogeneous expression of slow/fast myosin heavy chain (MHC) fibers that utilize oxidative metabolic pathways for economic force production. MHC fiber type distribution and energy metabolism in the forelimb muscles of three-toed ( Bradypus variegatus, N=5) and two-toed ( Choloepus hoffmanni, N=4) sloths were evaluated using SDS-PAGE, immunohistochemistry, and enzyme activity assays. The results partially support our hypothesis by a primary expression of the slow MHC-1 isoform as well as moderate expression of fast MHC-2A fibers, while few hybrid MHC-1/2A fibers were found in both species. MHC-1 fibers were larger in cross-sectional area (CSA) than MHC-2A fibers and comprised the greatest %CSA in each muscle sampled. Enzyme assays showed elevated activity for the anaerobic enzymes creatine kinase (CK) and lactate dehydrogenase (LDH) compared to low activity for aerobic markers citrate synthase (CS) and 3- hydroxyacetyl CoA dehydrogenase (3-HAD). These findings suggest that sloth forelimb muscles may rely heavily on rapid ATP resynthesis pathways, and lactate accumulation may be beneficial. The intrinsic properties observed match well with suspensory requirements, and these modifications may have further evolved in unison with low metabolism and slow movement patterns as means to systemically conserve energy.
Zorzano, A; Muñoz, P; Camps, M; Mora, C; Testar, X; Palacín, M
1996-01-01
Insulin rapidly stimulates glucose transport in muscle fiber. This process controls the utilization of glucose in skeletal muscle, and it is deficient in various insulin-resistant states, such as non-insulin-dependent diabetes mellitus. The effect of insulin on muscle glucose transport is mainly due to the recruitment of GLUT4 glucose carriers to the cell surface of the muscle fiber. There is increasing evidence that the recruitment of GLUT4 carriers triggered by insulin affects selective domains of sarcolemma and transverse tubules. In contrast, GLUT1 is located mainly in sarcolemma and is absent in transverse tubules, and insulin does not alter its cellular distribution in muscle fiber. The differential distribution of GLUT1 and GLUT4 in the cell surface raises new questions regarding the precise endocytic and exocytic pathways that are functional in the muscle fiber. The current view of insulin-induced GLUT4 translocation is based mainly on studies performed in adipocytes. These studies have proposed the existence of intracellular compartments of GLUT4 that respond to insulin in a highly homogeneous manner. However, studies performed in skeletal muscle have identified insulin-sensitive as well as insulin-insensitive intracellular GLUT4-containing membranes. These data open a new perspective on the dynamics of intracellular GLUT4 compartments in insulin-sensitive cells.
Imaging White Matter in Human Brainstem
Ford, Anastasia A.; Colon-Perez, Luis; Triplett, William T.; Gullett, Joseph M.; Mareci, Thomas H.; FitzGerald, David B.
2013-01-01
The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo. PMID:23898254
Imaging white matter in human brainstem.
Ford, Anastasia A; Colon-Perez, Luis; Triplett, William T; Gullett, Joseph M; Mareci, Thomas H; Fitzgerald, David B
2013-01-01
The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo.
The CHC22 Clathrin-GLUT4 Transport Pathway Contributes to Skeletal Muscle Regeneration
Griffin, Christine A.; Esk, Christopher; Torres, Jorge A.; Ohkoshi, Norio; Ishii, Akiko; Tamaoka, Akira; Funke, Birgit H.; Kucherlapati, Raju; Margeta, Marta; Rando, Thomas A.; Brodsky, Frances M.
2013-01-01
Mobilization of the GLUT4 glucose transporter from intracellular storage vesicles provides a mechanism for insulin-responsive glucose import into skeletal muscle. In humans, clathrin isoform CHC22 participates in formation of the GLUT4 storage compartment in skeletal muscle and fat. CHC22 function is limited to retrograde endosomal sorting and is restricted in its tissue expression and species distribution compared to the conserved CHC17 isoform that mediates endocytosis and several other membrane traffic pathways. Previously, we noted that CHC22 was expressed at elevated levels in regenerating rat muscle. Here we investigate whether the GLUT4 pathway in which CHC22 participates could play a role in muscle regeneration in humans and we test this possibility using CHC22-transgenic mice, which do not normally express CHC22. We observed that GLUT4 expression is elevated in parallel with that of CHC22 in regenerating skeletal muscle fibers from patients with inflammatory and other myopathies. Regenerating human myofibers displayed concurrent increases in expression of VAMP2, another regulator of GLUT4 transport. Regenerating fibers from wild-type mouse skeletal muscle injected with cardiotoxin also showed increased levels of GLUT4 and VAMP2. We previously demonstrated that transgenic mice expressing CHC22 in their muscle over-sequester GLUT4 and VAMP2 and have defective GLUT4 trafficking leading to diabetic symptoms. In this study, we find that muscle regeneration rates in CHC22 mice were delayed compared to wild-type mice, and myoblasts isolated from these mice did not proliferate in response to glucose. Additionally, CHC22-expressing mouse muscle displayed a fiber type switch from oxidative to glycolytic, similar to that observed in type 2 diabetic patients. These observations implicate the pathway for GLUT4 transport in regeneration of both human and mouse skeletal muscle, and demonstrate a role for this pathway in maintenance of muscle fiber type. Extrapolating these findings, CHC22 and GLUT4 can be considered markers of muscle regeneration in humans. PMID:24204966
Tax, Chantal M.W.; Haije, Tom Dela; Fuster, Andrea; Westin, Carl-Fredrik; Viergever, Max A.; Florack, Luc; Leemans, Alexander
2017-01-01
The question whether our brain pathways adhere to a geometric grid structure has been a popular topic of debate in the diffusion imaging and neuroscience society. Wedeen et al. (2012a b) proposed that the brain’s white matter is organized like parallel sheets of interwoven pathways. Catani et al. (2012) concluded that this grid pattern is most likely an artifact, resulting from methodological biases that cause the tractography pathways to cross in orthogonal angles. To date, ambiguities in the mathematical conditions for a sheet structure to exist (e.g. its relation to orthogonal angles) combined with the lack of extensive quantitative evidence have prevented wide acceptance of the hypothesis. In this work, we formalize the relevant terminology and recapitulate the condition for a sheet structure to exist. Note that this condition is not related to the presence or absence of orthogonal crossing fibers, and that sheet structure is defined formally as a surface formed by two sets of interwoven pathways intersecting at arbitrary angles within the surface. To quantify the existence of sheet structure, we present a novel framework to compute the sheet probability index (SPI), which reflects the presence of sheet structure in discrete orientation data (e.g. fiber peaks derived from diffusion MRI). With simulation experiments we investigate the effect of spatial resolution, curvature of the fiber pathways, and measurement noise on the ability to detect sheet structure. In real diffusion MRI data experiments we can identify various regions where the data supports sheet structure (high SPI values), but also areas where the data does not support sheet structure (low SPI values) or where no reliable conclusion can be drawn. Several areas with high SPI values were found to be consistent across subjects, across multiple data sets obtained with different scanners, resolutions, and degrees of diffusion weighting, and across various modeling techniques. Under the strong assumption that the diffusion MRI peaks reflect true axons, our results would therefore indicate that pathways do not form sheet structures at every crossing fiber region but instead at well-defined locations in the brain. With this framework, sheet structure location, extent, and orientation could potentially serve as new structural features of brain tissue. The proposed method can be extended to quantify sheet structure in directional data obtained with techniques other than diffusion MRI, which is essential for further validation. PMID:27456538
NASA Astrophysics Data System (ADS)
Conzatti, Lucia; Utzeri, Roberto; Hodge, Philip; Stagnaro, Paola
2016-05-01
An original compatibilizing pathway for hemp fibers/poly(1,4-butylene adipate-co-terephtalate) (PBAT) eco-composites was explored exploiting the capability of macrocyclic oligomers (MCOs), obtained by cyclodepolymerization (CDP) of PBAT at high dilution, of being re-converted into linear chains by entropically-driven ring-opening polymerization (ED-ROP) that occurs simply heating the MCOS in the bulk. CDP reaction of PBAT was carried out varying solvent, catalyst and reaction time. Selected MCOs were used to adjust the conditions of the ED-ROP reaction. The best experimental conditions were then adopted to modify hemp fibers. Eco-composites based on PBAT and hemp fibers as obtained or modified with PBAT macrocyclics or oligomers were prepared by different process strategies. The best fiber-PBAT compatibility was observed when the fibers were modified with PBAT oligomers before incorporation in the polyester matrix.
Simultaneous Multi-Scale Diffusion Estimation and Tractography Guided by Entropy Spectrum Pathways
Galinsky, Vitaly L.; Frank, Lawrence R.
2015-01-01
We have developed a method for the simultaneous estimation of local diffusion and the global fiber tracts based upon the information entropy flow that computes the maximum entropy trajectories between locations and depends upon the global structure of the multi-dimensional and multi-modal diffusion field. Computation of the entropy spectrum pathways requires only solving a simple eigenvector problem for the probability distribution for which efficient numerical routines exist, and a straight forward integration of the probability conservation through ray tracing of the convective modes guided by a global structure of the entropy spectrum coupled with a small scale local diffusion. The intervoxel diffusion is sampled by multi b-shell multi q-angle DWI data expanded in spherical waves. This novel approach to fiber tracking incorporates global information about multiple fiber crossings in every individual voxel and ranks it in the most scientifically rigorous way. This method has potential significance for a wide range of applications, including studies of brain connectivity. PMID:25532167
Whole-Brain In-vivo Measurements of the Axonal G-Ratio in a Group of 37 Healthy Volunteers
Mohammadi, Siawoosh; Carey, Daniel; Dick, Fred; Diedrichsen, Joern; Sereno, Martin I.; Reisert, Marco; Callaghan, Martina F.; Weiskopf, Nikolaus
2015-01-01
The g-ratio, quantifying the ratio between the inner and outer diameters of a fiber, is an important microstructural characteristic of fiber pathways and is functionally related to conduction velocity. We introduce a novel method for estimating the MR g-ratio non-invasively across the whole brain using high-fidelity magnetization transfer (MT) imaging and single-shell diffusion MRI. These methods enabled us to map the MR g-ratio in vivo across the brain's prominent fiber pathways in a group of 37 healthy volunteers and to estimate the inter-subject variability. Effective correction of susceptibility-related distortion artifacts was essential before combining the MT and diffusion data, in order to reduce partial volume and edge artifacts. The MR g-ratio is in good qualitative agreement with histological findings despite the different resolution and spatial coverage of MRI and histology. The MR g-ratio holds promise as an important non-invasive biomarker due to its microstructural and functional relevance in neurodegeneration. PMID:26640427
NASA Astrophysics Data System (ADS)
Rashid, Faisal M.; Dennis, Emily L.; Villalon-Reina, Julio E.; Jin, Yan; Lewis, Jeffrey D.; York, Gerald E.; Thompson, Paul M.; Tate, David F.
2017-11-01
Mild traumatic brain injury (mTBI) is characterized clinically by a closed head injury involving differential or rotational movement of the brain inside the skull. Over 3 million mTBIs occur annually in the United States alone. Many of the individuals who sustain an mTBI go on to recover fully, but around 20% experience persistent symptoms. These symptoms often last for many weeks to several months. The thalamus, a structure known to serve as a global networking or relay system for the rest of the brain, may play a critical role in neurorehabiliation and its integrity and connectivity after injury may also affect cognitive outcomes. To examine the thalamus, conventional tractography methods to map corticothalamic pathways with diffusion-weighted MRI (DWI) lead to sparse reconstructions that may contain false positive fibers that are anatomically inaccurate. Using a specialized method to zero in on corticothalamic pathways with greater robustness, we noninvasively examined corticothalamic fiber projections using DWI, in 68 service members. We found significantly lower fractional anisotropy (FA), a measure of white matter microstructural integrity, in pathways projecting to the left pre- and postcentral gyri - consistent with sensorimotor deficits often found post-mTBI. Mapping of neural circuitry in mTBI may help to further our understanding of mechanisms underlying recovery post-TBI.
Glycogen function in adult central and peripheral nerves.
Evans, Richard D; Brown, Angus M; Ransom, Bruce R
2013-08-01
We studied the roles of glycogen in axonal pathways of the central nervous system (CNS) and peripheral nervous system (PNS). By using electrophysiological recordings, in combination with biochemical glycogen assay, it was possible to determine whether glycogen was crucial to axon function under different conditions. Glycogen was present both in mouse optic nerve (MON) and in mouse sciatic nerve (MSN). Aglycemia caused loss of the compound action potential (CAP) in both pathways after a latency of 15 min (MON) and 120 min for myelinated axons (A fibers) in the MSN. With the exception of unmyelinated axons (C fibers) in the MSN, CAP decline began when usable glycogen was exhausted. Glycogen was located in astrocytes in the MON and in myelinating Schwann cells in the MSN; it was absent from the Schwann cells surrounding unmyelinated C fibers. In MON, astrocytic glycogen is metabolized to lactate and "shuttled" to axons to support metabolism. The ability of lactate to support A fiber conduction in the absence of glucose suggests a common pathway in both the CNS and the PNS. Lactate is released from MON and MSN in substantial quantities. That lactate levels fall in MSN in the presence of diaminobenzidine, which inhibits glycogen phosphorylase, strongly suggests that glycogen metabolism contributes to lactate release under resting conditions. Glycogen is a "backup" energy substrate in both the CNS and the PNS and, beyond sustaining excitability during glucose deprivation, has the capacity to subsidize the axonal energy demands during times of intense activity in the presence of glucose. Copyright © 2013 Wiley Periodicals, Inc.
Santos, Paula Victória Félix Dos; Sales, Cristiane Hermes; Vieira, Diva Aliete Santos; de Mello Fontanelli, Mariane; Marchioni, Dirce Maria; Fisberg, Regina Mara
2016-05-01
We hypothesized that dietary total fiber intake may be less than recommendations and that the intake of total, soluble, and insoluble fiber may be associated with demographic, lifestyle, and socioeconomic factors. Data were drawn from the Health Survey of São Paulo, a cross-sectional population-based study. Adolescents, adults, and elderly persons living in São Paulo city were included. Demographic, lifestyle, and anthropometric data were collected from households. Dietary intake was measured using two 24-hour dietary recalls. All analyses were conducted based on the sample design of the study. The proportion of individuals who met the adequate intake (AI) for total fiber intake was examined, and foods that contributed to the intake of fiber and fractions were evaluated. The relationship of total, soluble, and insoluble fiber intake with demographic, socioeconomic, and lifestyle characteristics was determined using multiple linear regression models. A low proportion of individuals met the AI for dietary fiber. The foods that most contributed to total fiber intake were beans, French bread, and rice. Total fiber intake was negatively associated with former and current smokers and positively associated with family income per capita and age. Soluble fiber intake was negatively associated with current smokers and positively associated with female sex, age, and family income per capita. Insoluble fiber intake was negatively associated with former or current smokers and positively associated with age. In summary, residents in the city of São Paulo had a low fiber intake, and demographic, socioeconomic, and lifestyle factors were associated with dietary fiber and intake of its fractions. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia
2016-01-01
Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry.
Ruiz-Rosado, Azucena; Cabrera-Fuentes, Héctor A; González-Calixto, Cecilia; González-López, Lorena; Cázares-Raga, Febe E; Segura-Alegría, Bertha; Lochnit, Günter; de la Cruz Hernández-Hernández, Fidel; Preissner, Klaus T; Jiménez-Estrada, Ismael
2013-12-01
In the present study, we analyze the influence of chronic undernutrition on protein expression, muscle fiber type composition, and fatigue resistance of the fast extensor digitorum longus (EDL) muscle of male juvenile rats (45 ± 3 days of life; n = 25 and 31 rats for control and undernourished groups, respectively). Using 2D gel electrophoresis and mass spectrometry, we identified in undernourished muscles 12 proteins up-regulated (8 proteins of the electron transport chain and the glycolytic pathway, 2 cross-bridge proteins, chaperone and signaling proteins that are related to the stress response). In contrast, one down-regulated protein related to the fast muscle contractile system and two other proteins with no changes in expression were used as charge controls. By means of COX and alkaline ATPase histochemical techniques and low-frequency fatigue protocols we determined that undernourished muscles showed a larger proportion (15% increase) of Type IIa/IId fibers (oxidative-glycolytic) at the expense of Type IIb (glycolytic) fibers (15.5% decrease) and increased fatigue resistance (55.3%). In addition, all fiber types showed a significant reduction in their cross-sectional area (slow: 64.4%; intermediate: 63.9% and fast: 61.2%). These results indicate that undernourished EDL muscles exhibit an increased expression of energy metabolic and myofibrillar proteins which are associated with the predominance of oxidative and Type IIa/IId fibers and to a higher resistance to fatigue. We propose that such alterations may act as protective and/or adaptive mechanisms that counterbalance the effect of chronic undernourishment.
Desai, Mahesh S; Seekatz, Anna M; Koropatkin, Nicole M; Kamada, Nobuhiko; Hickey, Christina A; Wolter, Mathis; Pudlo, Nicholas A; Kitamoto, Sho; Terrapon, Nicolas; Muller, Arnaud; Young, Vincent B; Henrissat, Bernard; Wilmes, Paul; Stappenbeck, Thaddeus S; Núñez, Gabriel; Martens, Eric C
2016-11-17
Despite the accepted health benefits of consuming dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic mouse model, in which animals were colonized with a synthetic human gut microbiota composed of fully sequenced commensal bacteria, we elucidated the functional interactions between dietary fiber, the gut microbiota, and the colonic mucus barrier, which serves as a primary defense against enteric pathogens. We show that during chronic or intermittent dietary fiber deficiency, the gut microbiota resorts to host-secreted mucus glycoproteins as a nutrient source, leading to erosion of the colonic mucus barrier. Dietary fiber deprivation, together with a fiber-deprived, mucus-eroding microbiota, promotes greater epithelial access and lethal colitis by the mucosal pathogen, Citrobacter rodentium. Our work reveals intricate pathways linking diet, the gut microbiome, and intestinal barrier dysfunction, which could be exploited to improve health using dietary therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.
Lawrenson, Charlotte L.; Watson, Thomas C.
2016-01-01
Pathways arising from the periphery that target the inferior olive [spino-olivocerebellar pathways (SOCPs)] are a vital source of information to the cerebellum and are modulated (gated) during active movements. This limits their ability to forward signals to climbing fibers in the cerebellar cortex. We tested the hypothesis that the temporal pattern of gating is related to the predictability of a sensory signal. Low-intensity electrical stimulation of the ipsilateral hindlimb in awake rats evoked field potentials in the C1 zone in the copula pyramidis of the cerebellar cortex. Responses had an onset latency of 12.5 ± 0.3 ms and were either short or long duration (8.7 ± 0.1 vs 31.2 ± 0.3 ms, respectively). Both types of response were shown to be mainly climbing fiber in origin and therefore evoked by transmission in hindlimb SOCPs. Changes in response size (area of field, millivolts per millisecond) were used to monitor differences in transmission during rest and three phases of rearing: phase 1, rearing up; phase 2, upright; and phase 3, rearing down. Responses evoked during phase 2 were similar in size to rest but were smaller during phases 1 and 3, i.e., transmission was reduced during active movement when self-generated (predictable) sensory signals from the hindlimbs are likely to occur. To test whether the pattern of gating was related to the predictability of the sensory signal, some animals received the hindlimb stimulation only during phase 2. Over ∼10 d, the responses became progressively smaller in size, consistent with gating-out transmission of predictable sensory signals relayed via SOCPs. SIGNIFICANCE STATEMENT A major route for peripheral information to gain access to the cerebellum is via ascending climbing fiber pathways. During active movements, gating of transmission in these pathways controls when climbing fiber signals can modify cerebellar activity. We investigated this phenomenon in rats during their exploratory behavior of rearing. During rearing up and down, transmission was reduced at a time when self-generated, behaviorally irrelevant (predictable) signals occur. However, during the upright phase of rearing, transmission was increased when behaviorally relevant (unpredictable) signals may occur. When the peripheral stimulation was delivered only during the upright phase, so its occurrence became predictable over time, transmission was reduced. Therefore, the results indicate that the gating is related to the level of predictability of a sensory signal. PMID:27466330
Lawrenson, Charlotte L; Watson, Thomas C; Apps, Richard
2016-07-27
Pathways arising from the periphery that target the inferior olive [spino-olivocerebellar pathways (SOCPs)] are a vital source of information to the cerebellum and are modulated (gated) during active movements. This limits their ability to forward signals to climbing fibers in the cerebellar cortex. We tested the hypothesis that the temporal pattern of gating is related to the predictability of a sensory signal. Low-intensity electrical stimulation of the ipsilateral hindlimb in awake rats evoked field potentials in the C1 zone in the copula pyramidis of the cerebellar cortex. Responses had an onset latency of 12.5 ± 0.3 ms and were either short or long duration (8.7 ± 0.1 vs 31.2 ± 0.3 ms, respectively). Both types of response were shown to be mainly climbing fiber in origin and therefore evoked by transmission in hindlimb SOCPs. Changes in response size (area of field, millivolts per millisecond) were used to monitor differences in transmission during rest and three phases of rearing: phase 1, rearing up; phase 2, upright; and phase 3, rearing down. Responses evoked during phase 2 were similar in size to rest but were smaller during phases 1 and 3, i.e., transmission was reduced during active movement when self-generated (predictable) sensory signals from the hindlimbs are likely to occur. To test whether the pattern of gating was related to the predictability of the sensory signal, some animals received the hindlimb stimulation only during phase 2. Over ∼10 d, the responses became progressively smaller in size, consistent with gating-out transmission of predictable sensory signals relayed via SOCPs. A major route for peripheral information to gain access to the cerebellum is via ascending climbing fiber pathways. During active movements, gating of transmission in these pathways controls when climbing fiber signals can modify cerebellar activity. We investigated this phenomenon in rats during their exploratory behavior of rearing. During rearing up and down, transmission was reduced at a time when self-generated, behaviorally irrelevant (predictable) signals occur. However, during the upright phase of rearing, transmission was increased when behaviorally relevant (unpredictable) signals may occur. When the peripheral stimulation was delivered only during the upright phase, so its occurrence became predictable over time, transmission was reduced. Therefore, the results indicate that the gating is related to the level of predictability of a sensory signal. Copyright © 2016 Lawrenson et al.
Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B
2017-03-01
Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic biological mechanisms of muscle fiber hypertrophy. Copyright © 2017 the American Physiological Society.
Schwartz, Andrew J.; Grekin, Jeremy A.; Gumucio, Jonathan P.; Sugg, Kristoffer B.
2017-01-01
Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sFo), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic biological mechanisms of muscle fiber hypertrophy. PMID:27979985
Dietary Fiber Intake and Cardiometabolic Risks among US Adults, NHANES 1999–2010
Grooms, Kya N.; Ommerborn, Mark J.; Pham, Do Quyen; Djousse, Luc; Clark, Cheryl R.
2013-01-01
Background Dietary fiber may decrease the risk of cardiovascular disease and associated risk factors. We examined trends in dietary fiber intake among diverse US adults between 1999 and 2010, and investigated associations between dietary fiber intake and cardiometabolic risks including metabolic syndrome, cardiovascular inflammation, and obesity. Methods Our cross-sectional analysis included 23,168 men and non-pregnant women aged 20+ years from 1999–2010 National Health and Nutrition Examination Survey. We used weighted multivariable logistic regression models to estimate predicted marginal risk ratios and 95% confidence intervals (CIs) for the risks of having the metabolic syndrome, inflammation, and obesity associated with quintiles of dietary fiber intake. Results Dietary fiber intake remained consistently below recommended adequate intake levels for total fiber defined by the Institute of Medicine. Mean dietary fiber intake averaged 15.7g–17.0g. Mexican-Americans (18.8 g) consumed more fiber than non-Hispanic Whites (16.3 g) and non-Hispanic Blacks (13.1 g). Comparing the highest to lowest quintiles of dietary fiber intake, adjusted predicted marginal risk ratios (95% CI) for the metabolic syndrome, inflammation, and obesity were 0.78 (0.69–0.88), 0.66 (0.61–0.72), and 0.77 (0.71–0.84), respectively. Dietary fiber was associated with lower levels of inflammation within each racial and ethnic group, though statistically significant associations between dietary fiber and either obesity or metabolic syndrome were seen only among whites. Conclusions Low dietary fiber intake from 1999–2010 in the US, and associations between higher dietary fiber and a lower prevalence of cardiometabolic risks suggest the need to develop new strategies and policies to increase dietary fiber intake. PMID:24135514
Dietary fiber intake and cardiometabolic risks among US adults, NHANES 1999-2010.
Grooms, Kya N; Ommerborn, Mark J; Pham, Do Quyen; Djoussé, Luc; Clark, Cheryl R
2013-12-01
Dietary fiber may decrease the risk of cardiovascular disease and associated risk factors. We examined trends in dietary fiber intake among diverse US adults between 1999 and 2010, and investigated associations between dietary fiber intake and cardiometabolic risks including metabolic syndrome, cardiovascular inflammation, and obesity. Our cross-sectional analysis included 23,168 men and nonpregnant women aged 20+ years from the 1999-2010 National Health and Nutrition Examination Survey. We used weighted multivariable logistic regression models to estimate predicted marginal risk ratios and 95% confidence intervals for the risks of having the metabolic syndrome, inflammation, and obesity associated with quintiles of dietary fiber intake. Consistently, dietary fiber intake remained below recommended adequate intake levels for total fiber defined by the Institute of Medicine. Mean dietary fiber intake averaged 15.7-17.0 g. Mexican Americans (18.8 g) consumed more fiber than non-Hispanic whites (16.3 g) and non-Hispanic blacks (13.1 g). Comparing the highest with the lowest quintiles of dietary fiber intake, adjusted predicted marginal risk ratios (95% confidence interval) for the metabolic syndrome, inflammation, and obesity were 0.78 (0.69-0.88), 0.66 (0.61-0.72), and 0.77 (0.71-0.84), respectively. Dietary fiber was associated with lower levels of inflammation within each racial and ethnic group, although statistically significant associations between dietary fiber and either obesity or metabolic syndrome were seen only among whites. Low dietary fiber intake from 1999-2010 in the US, and associations between higher dietary fiber and a lower prevalence of cardiometabolic risks suggest the need to develop new strategies and policies to increase dietary fiber intake. Copyright © 2013 Elsevier Inc. All rights reserved.
Damage to lens fiber cells causes TRPV4-dependent Src family kinase activation in the epithelium.
Shahidullah, M; Mandal, A; Delamere, N A
2015-11-01
The bulk of the lens consists of tightly packed fiber cells. Because mature lens fibers lack mitochondria and other organelles, lens homeostasis relies on a monolayer of epithelial cells at the anterior surface. The detection of various signaling pathways in lens epithelial cells suggests they respond to stimuli that influence lens function. Focusing on Src Family Kinases (SFKs) and Transient Receptor Potential Vanilloid 4 (TRPV4), we tested whether the epithelium can sense and respond to an event that occurs in fiber mass. The pig lens was subjected to localized freeze-thaw (FT) damage to fibers at posterior pole then the lens was incubated for 1-10 min in Krebs solution at 37 °C. Transient SFK activation in the epithelium was detectable at 1 min. Using a western blot approach, the ion channel TRPV4 was detected in the epithelium but was sparse or absent in fiber cells. Even though TRPV4 expression appears low at the actual site of FT damage to the fibers, SFK activation in the epithelium was suppressed in lenses subjected to FT damage then incubated with the TRPV4 antagonist HC067047 (10 μM). Na,K-ATPase activity was examined because previous studies report changes of Na,K-ATPase activity associated with SFK activation. Na,K-ATPase activity doubled in the epithelium removed from FT-damaged lenses and the response was prevented by HC067047 or the SFK inhibitor PP2 (10 μM). Similar changes were observed in response to fiber damage caused by injection of 5 μl hyperosmotic NaCl or mannitol solution beneath the surface of the posterior pole. The findings point to a TRPV4-dependent mechanism that enables the epithelial cells to detect remote damage in the fiber mass and respond within minutes by activating SFK and increasing Na,K-ATPase activity. Because TRPV4 channels are mechanosensitive, we speculate they may be stimulated by swelling of the lens structure caused by damage to the fibers. Increased Na,K-ATPase activity gives the lens greater capacity to control ion concentrations in the fiber mass and the Na,K-ATPase response may reflect the critical contribution of the epithelium to lens ion homeostasis. Published by Elsevier Ltd.
USDA-ARS?s Scientific Manuscript database
In this cross-sectional study, an inverse association was found between intakes of total dietary fiber and five types of fiber with Body Mass Index, waist circumference, and percent obese, and with increased waist circumference. Intake of vegetable fiber was not associated with any of the weight mea...
Miyauchi, Minoru; Miao, Jianjun; Simmons, Trevor J.; Lee, Jong-Won; Doherty, Thomas V.; Dordick, Jonathan S.; Linhardt, Robert J.
2010-01-01
A core-sheath of multi-walled carbon nanotube (MWNT)-cellulose fibers of diameters from several hundreds nm to several µm were prepared by co-axial electrospinning from a non-valatile, non-flammable ionic liquid (IL) solvent, 1-methyl-3-methylimidazolium acetate ([EMIM][Ac]). MWNTs were dispersed in IL to form a gel solution. This gel core solution was electrospun surrounded by a sheath solution of cellulose disolved in the same IL. Electrospun fibers were collected in a coagulation bath containing ethanol-water to completely remove the IL and dried to form a core-sheath MWNT-cellulose fibers having a cable structure with a conductive core and insulating sheath. Enzymatic treatment of a portion of a mat of these fibers with cellulase selectively removed the cellulose sheath exposing the MWNT core for connection to an electrode. These MWNT-cellulose fiber mats demonstrated excellent conductivity due to a conductive pathway of bundleled MWNTs. Fiber mat conductivity increased with increasing ratio of MWNT in the fibers with a maximum conductivity of 10.7 S/m obtained at 45 wt% MWNT loading. PMID:20690644
Miyauchi, Minoru; Miao, Jianjun; Simmons, Trevor J; Lee, Jong-Won; Doherty, Thomas V; Dordick, Jonathan S; Linhardt, Robert J
2010-09-13
Core-sheath multiwalled carbon nanotube (MWNT)-cellulose fibers of diameters from several hundreds of nanometers to several micrometers were prepared by coaxial electrospinning from a nonvolatile, nonflammable ionic liquid (IL) solvent, 1-methyl-3-methylimidazolium acetate ([EMIM][Ac]). MWNTs were dispersed in IL to form a gel solution. This gel core solution was electrospun surrounded by a sheath solution of cellulose dissolved in the same IL. Electrospun fibers were collected in a coagulation bath containing ethanol-water to remove the IL completely and dried to form core-sheath MWNT-cellulose fibers having a cable structure with a conductive core and insulating sheath. Enzymatic treatment of a portion of a mat of these fibers with cellulase selectively removed the cellulose sheath exposing the MWNT core for connection to an electrode. These MWNT-cellulose fiber mats demonstrated excellent conductivity because of a conductive pathway of bundled MWNTs. Fiber mat conductivity increased with increasing ratio of MWNT in the fibers with a maximum conductivity of 10.7 S/m obtained at 45 wt % MWNT loading.
Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells.
Tan, Hwee Tong; Tan, Sandra; Lin, Qingsong; Lim, Teck Kwang; Hew, Choy Leong; Chung, Maxey C M
2008-06-01
Colorectal cancer is one of the most common cancers in developed countries, and its incidence is negatively associated with high dietary fiber intake. Butyrate, a short-chain fatty acid fermentation by-product of fiber induces cell maturation with the promotion of growth arrest, differentiation, and/or apoptosis of cancer cells. The stimulation of cell maturation by butyrate in colonic cancer cells follows a temporal progression from the early phase of growth arrest to the activation of apoptotic cascades. Previously we performed two-dimensional DIGE to identify differentially expressed proteins induced by 24-h butyrate treatment of HCT-116 colorectal cancer cells. Herein we used quantitative proteomics approaches using iTRAQ (isobaric tags for relative and absolute quantitation), a stable isotope labeling methodology that enables multiplexing of four samples, for a temporal study of HCT-116 cells treated with butyrate. In addition, cleavable ICAT, which selectively tags cysteine-containing proteins, was also used, and the results complemented those obtained from the iTRAQ strategy. Selected protein targets were validated by real time PCR and Western blotting. A model is proposed to illustrate our findings from this temporal analysis of the butyrate-responsive proteome that uncovered several integrated cellular processes and pathways involved in growth arrest, apoptosis, and metastasis. These signature clusters of butyrate-regulated pathways are potential targets for novel chemopreventive and therapeutic drugs for treatment of colorectal cancer.
Transneuronal pathways to the vestibulocerebellum
NASA Technical Reports Server (NTRS)
Kaufman, G. D.; Mustari, M. J.; Miselis, R. R.; Perachio, A. A.
1996-01-01
The alpha-herpes virus (pseudorabies, PRV) was used to observe central nervous system (CNS) pathways associated with the vestibulocerebellar system. Retrograde transneuronal migration of alpha-herpes virions from specific lobules of the gerbil and rat vestibulo-cerebellar cortex was detected immunohistochemically. Using a time series analysis, progression of infection along polyneuronal cerebellar afferent pathways was examined. Pressure injections of > 20 nanoliters of a 10(8) plaque forming units (pfu) per ml solution of virus were sufficient to initiate an infectious locus which resulted in labeled neurons in the inferior olivary subnuclei, vestibular nuclei, and their afferent cell groups in a progressive temporal fashion and in growing complexity with increasing incubation time. We show that climbing fibers and some other cerebellar afferent fibers transported the virus retrogradely from the cerebellum within 24 hours. One to three days after cerebellar infection discrete cell groups were labeled and appropriate laterality within crossed projections was preserved. Subsequent nuclei labeled with PRV after infection of the flocculus/paraflocculus, or nodulus/uvula, included the following: vestibular (e.g., z) and inferior olivary nuclei (e.g., dorsal cap), accessory oculomotor (e.g., Darkschewitsch n.) and accessory optic related nuclei, (e.g., the nucleus of the optic tract, and the medial terminal nucleus); noradrenergic, raphe, and reticular cell groups (e.g., locus coeruleus, dorsal raphe, raphe pontis, and the lateral reticular tract); other vestibulocerebellum sites, the periaqueductal gray, substantia nigra, hippocampus, thalamus and hypothalamus, amygdala, septal nuclei, and the frontal, cingulate, entorhinal, perirhinal, and insular cortices. However, there were differences in the resulting labeling between infection in either region. Double-labeling experiments revealed that vestibular efferent neurons are located adjacent to, but are not included among, flocculus-projecting supragenual neurons. PRV transport from the vestibular labyrinth and cervical muscles also resulted in CNS infections. Virus propagation in situ provides specific connectivity information based on the functional transport across synapses. The findings support and extend anatomical data regarding vestibulo-olivo-cerebellar pathways.
A physical chemical approach to understanding cellular dysfunction in type II diabetes
NASA Astrophysics Data System (ADS)
Miranker, Andrew
2013-03-01
The conversion of soluble protein into b-sheet rich amyloid fibers is the hallmark of a number of serious diseases. Precursors for many of these systems (e.g. Ab from Alzheimer's disease) reside in close association with a biological membranes. Membrane bilayers are reported to accelerate the rate of amyloid assembly. Furthermore, membrane permeabilization by amyloidogenic peptides can lead to toxicity. Given the b-sheet rich nature of mature amyloid, it is seemingly paradoxical that many precursors are either intrinsically b-helical, or transiently adopt an a-helical state upon association with membrane. We have investigated these phenomena in islet amyloid polypeptide (IAPP). IAPP is a 37-residue peptide hormone which forms amyloid fibers in individuals with type II diabetes. We report here the discovery of an oligomeric species that arises through stochastic nucleation on membranes, and results in disruption of the lipid bilayer. These species are stable, result in all-or-none leakage, and represent a definable protein/lipid phase that equilibrates over time. To characterize the reaction pathway of assembly, we apply an experimental design that includes ensemble and single particle evaluations in vitro and correlate these with quantitative measures of cellular toxicity.
Pan, Jiajia; Lordier, Larissa; Meyran, Deborah; Rameau, Philippe; Lecluse, Yann; Kitchen-Goosen, Susan; Badirou, Idinath; Mokrani, Hayat; Narumiya, Shuh; Alberts, Arthur S; Vainchenker, William; Chang, Yunhua
2014-12-18
Megakaryocytes are highly specialized precursor cells that produce platelets via cytoplasmic extensions called proplatelets. Proplatelet formation (PPF) requires profound changes in microtubule and actin organization. In this work, we demonstrated that DIAPH1 (mDia1), a mammalian homolog of Drosophila diaphanous that works as an effector of the small GTPase Rho, negatively regulates PPF by controlling the dynamics of the actin and microtubule cytoskeletons. Moreover, we showed that inhibition of both DIAPH1 and the Rho-associated protein kinase (Rock)/myosin pathway increased PPF via coordination of both cytoskeletons. We provide evidence that 2 major effectors of the Rho GTPase pathway (DIAPH1 and Rock/myosin II) are involved not only in Rho-mediated stress fibers assembly, but also in the regulation of microtubule stability and dynamics during PPF. © 2014 by The American Society of Hematology.
Ademe, Mulugeta Seyoum; He, Shoupu; Pan, Zhaoe; Sun, Junling; Wang, Qinglian; Qin, Hongde; Liu, Jinhai; Liu, Hui; Yang, Jun; Xu, Dongyong; Yang, Jinlong; Ma, Zhiying; Zhang, Jinbiao; Li, Zhikun; Cai, Zhongmin; Zhang, Xuelin; Zhang, Xin; Huang, Aifen; Yi, Xianda; Zhou, Guanyin; Li, Lin; Zhu, Haiyong; Pang, Baoyin; Wang, Liru; Jia, Yinhua; Du, Xiongming
2017-12-01
Fiber yield and quality are the most important traits for Upland cotton (Gossypium hirsutum L.). Identifying high yield and good fiber quality genes are the prime concern of researchers in cotton breeding. Association mapping offers an alternative and powerful method for detecting those complex agronomic traits. In this study, 198 simple sequence repeats (SSRs) were used to screen markers associated with fiber yield and quality traits with 302 elite Upland cotton accessions that were evaluated in 12 locations representing the Yellow River and Yangtze River cotton growing regions of China. Three subpopulations were found after the estimation of population structure. The pair-wise kinship values varied from 0 to 0.867. Only 1.59% of the total marker locus pairs showed significant linkage disequilibrium (LD, p < 0.001). The genome-wide LD decayed within the genetic distance of ~30 to 32 cM at r 2 = 0.1, and decreased to ~1 to 2 cM at r 2 = 0.2, indicating the potential for association mapping. Analysis based on a mixed linear model detected 57 significant (p < 0.01) marker-trait associations, including seven associations for fiber length, ten for fiber micronaire, nine for fiber strength, eight for fiber elongation, five for fiber uniformity index, five for fiber uniformity ratio, six for boll weight and seven for lint percent, for a total of 35 SSR markers, of which 11 markers were associated with more than one trait. Among marker-trait associations, 24 associations coincided with the previously reported quantitative trait loci (QTLs), the remainder were newly identified QTLs/genes. The QTLs identified in this study will potentially facilitate improvement of fiber yield and quality in the future cotton molecular breeding programs.
Lung Cancer Risk Associated with Regulated and Unregulated Chrysotile Asbestos Fibers.
Hamra, Ghassan B; Richardson, David B; Dement, John; Loomis, Dana
2017-03-01
Regulation of asbestos fibers in the workplace is partly determined by which fibers can be visually counted. However, a majority of fibers are too short and thin to count this way and are, consequently, not subject to regulation. We estimate lung cancer risk associated with asbestos fibers of varying length and width. We apply an order-constrained prior both to leverage external information from toxicological studies of asbestos health effects. This prior assumes that risk from asbestos fibers increases with increasing length and decreases with increasing width. When we apply a shared mean for the effect of all asbestos fiber exposure groups, the rate ratios for each fiber group per unit exposure appear mostly equal. Rate ratio estimates for fibers of diameter <0.25 μm and length <1.5 and 1.5-5.0 μm are the most precise. When applying an order-constrained prior, we find that estimates of lung cancer rate ratio per unit of exposure to unregulated fibers 20-40 and >40 μm in the thinnest fiber group are similar in magnitude to estimates of risk associated with long fibers in the regulated fraction of airborne asbestos fibers. Rate ratio estimates for longer fibers are larger than those for shorter fibers, but thicker and thinner fibers do not differ as the toxicologically derived prior had expected. Credible intervals for fiber size-specific risk estimates overlap; thus, we cannot conclude that there are substantial differences in effect by fiber size. Nonetheless, our results suggest that some unregulated asbestos fibers may be associated with increased incidence of lung cancer.
Krüger, Oliver; Shiozawa, Thomas; Kreifelts, Benjamin; Scheffler, Klaus; Ethofer, Thomas
2015-05-01
The bed nucleus of the stria terminalis (BNST) is an important relay for multiple cortical and subcortical regions involved in processing anxiety as well as neuroendocrine and autonomic responses to stress, and it is thought to play a role in the dysregulation of these functions as well as in addictive behavior. While its architecture and connection profile have been thoroughly examined in animals, studies in humans have been limited to post-mortem histological descriptions of the BNST itself, not accounting for the distribution of its various connections. In the current study, we used diffusion-weighted magnetic resonance imaging (DW-MRI) to investigate the courses of fiber tracks connected to the BNST in humans. We restricted our seed region for probabilistic fiber tracking to the dorsal part of the BNST, as the ventral BNST is not distinguishable from the surrounding grey matter structures using magnetic resonance imaging. Our results show two distinct pathways of the BNST to the amygdala via the stria terminalis and the ansa peduncularis, as well as connections to the hypothalamus. Finally, we distinguished a route to the orbitofrontal cortex (OFC) running through the head of the caudate nucleus (CN) and the nucleus accumbens (NAcc). Pathways to brainstem regions were found to show a considerable inter-individual variability and thus no common pathway could be identified across participants. In summary, our findings reveal a complex network of brain structures involved in behavioral and neuroendocrine regulation, with the BNST in a central position. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carreras, Francisco Javier; Medina, Javier; Ruiz-Lozano, Mariola; Carreras, Ignacio; Castro, Juan Luis
2014-04-17
As part of a larger project on virtual tissue engineering of the optic pathways, we describe the conditions that guide axons extending from the retina to the optic nerve head and formulate algorithms that meet such conditions. To find the entrance site on the optic nerve head of each axon, we challenge the fibers to comply with current models of axonal pathfinding. First, we build a retinal map using a single type of retinal ganglion cell (RGC) using density functions from the literature. Dendritic arbors are equated to receptive fields. Shape and size of retinal surface and optic nerve head (ONH) are defined. A computer model relates each soma to the corresponding entry point of its axon into the optic disc. Weights are given to the heuristics that guide the preference entry order in the nerve. Retinal ganglion cells from the area centralis saturate the temporal section of the disc. Retinal ganglion cells temporal to the area centralis curve their paths surrounding the fovea; some of these cells enter the disc centrally rather than peripherally. Nasal regions of the disc receive mixed axons from the far periphery of the temporal hemiretina, together with axons from the nasal half. The model plots the course of the axon using Bezier curves and compares them with clinical data, for a coincidence level of 86% or higher. Our model is able to simulate basic data of the early optic pathways including certain singularities and to mimic mechanisms operating during development, such as timing and fasciculation. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Ashtari, Manzar; Zhang, Hui; Cook, Philip A.; Cyckowski, Laura L.; Shindler, Kenneth S.; Marshall, Kathleen A.; Aravand, Puya; Vossough, Arastoo; Gee, James C.; Maguire, Albert M.; Baker, Chris I.; Bennett, Jean
2015-01-01
Much of our knowledge of the mechanisms underlying plasticity in the visual cortex in response to visual impairment, vision restoration, and environmental interactions comes from animal studies. We evaluated human brain plasticity in a group of patients with Leber’s congenital amaurosis (LCA), who regained vision through gene therapy. Using non-invasive multimodal neuroimaging methods, we demonstrated that reversing blindness with gene therapy promoted long-term structural plasticity in the visual pathways emanating from the treated retina of LCA patients. The data revealed improvements and normalization along the visual fibers corresponding to the site of retinal injection of the gene therapy vector carrying the therapeutic gene in the treated eye compared to the visual pathway for the untreated eye of LCA patients. After gene therapy, the primary visual pathways (for example, geniculostriate fibers) in the treated retina were similar to those of sighted control subjects, whereas the primary visual pathways of the untreated retina continued to deteriorate. Our results suggest that visual experience, enhanced by gene therapy, may be responsible for the reorganization and maturation of synaptic connectivity in the visual pathways of the treated eye in LCA patients. The interactions between the eye and the brain enabled improved and sustained long-term visual function in patients with LCA after gene therapy. PMID:26180100
AlEssa, Hala B; Ley, Sylvia H; Rosner, Bernard; Malik, Vasanti S; Willett, Walter C; Campos, Hannia; Hu, Frank B
2016-02-01
Carbohydrate quality has been consistently related to the risk of type 2 diabetes (T2D). However, limited information is available about the effect of carbohydrate quality on biomarkers related to T2D. We examined the associations of carbohydrate quality measures (CQMs) including carbohydrate intake; starch intake; glycemic index; glycemic load; total, cereal, fruit, and vegetable fiber intakes; and different combinations of these nutrients with plasma concentrations of adiponectin, C-reactive protein (CRP), and glycated hemoglobin (HbA1c). This is a cross-sectional analysis of 2458 diabetes-free women, ages 43-70 y, in the Nurses Health Study. CQMs were estimated from food-frequency questionnaires, and averages from 1984, 1986, and 1990 were used. Plasma biomarkers were collected in 1990. Multiple linear regression models were used to assess the associations between CQMs and biomarkers. After age, body mass index, lifestyle, and dietary variables were adjusted, 1) total fiber intake was positively associated with adiponectin (P-trend = 0.004); 2) cereal fiber intake was positively associated with adiponectin and inversely associated with CRP, and fruit fiber intake was negatively associated with HbA1c concentrations (all P-trend < 0.03); 3) starch intake was inversely associated with adiponectin (P-trend = 0.02); 4) a higher glycemic index was associated with lower adiponectin and higher HbA1c (both P-trend < 0.05); 5) a higher carbohydrate-to-total fiber intake ratio was associated with lower adiponectin (P-trend = 0.005); 6) a higher starch-to-total fiber intake ratio was associated with lower adiponectin and higher HbA1c (both P-trend < 0.05); and 7) a higher starch-to-cereal fiber intake ratio was associated with lower adiponectin (P-trend = 0.002). A greater fiber intake and a lower starch-to-fiber intake ratio are favorably associated with adiponectin and HbA1c, but only cereal fiber intake was associated with CRP in women. Further research is warranted to understand the potential mechanism of these associations in early progression of T2D. © 2016 American Society for Nutrition.
[Functional anatomy of the cochlear nerve and the central auditory system].
Simon, E; Perrot, X; Mertens, P
2009-04-01
The auditory pathways are a system of afferent fibers (through the cochlear nerve) and efferent fibers (through the vestibular nerve), which are not limited to a simple information transmitting system but create a veritable integration of the sound stimulus at the different levels, by analyzing its three fundamental elements: frequency (pitch), intensity, and spatial localization of the sound source. From the cochlea to the primary auditory cortex, the auditory fibers are organized anatomically in relation to the characteristic frequency of the sound signal that they transmit (tonotopy). Coding the intensity of the sound signal is based on temporal recruitment (the number of action potentials) and spatial recruitment (the number of inner hair cells recruited near the cell of the frequency that is characteristic of the stimulus). Because of binaural hearing, commissural pathways at each level of the auditory system and integration of the phase shift and the difference in intensity between signals coming from both ears, spatial localization of the sound source is possible. Finally, through the efferent fibers in the vestibular nerve, higher centers exercise control over the activity of the cochlea and adjust the peripheral hearing organ to external sound conditions, thus protecting the auditory system or increasing sensitivity by the attention given to the signal.
Harsan, Laura-Adela; Dávid, Csaba; Reisert, Marco; Schnell, Susanne; Hennig, Jürgen; von Elverfeldt, Dominik; Staiger, Jochen F.
2013-01-01
A major challenge in neuroscience is to accurately decipher in vivo the entire brain circuitry (connectome) at a microscopic level. Currently, the only methodology providing a global noninvasive window into structural brain connectivity is diffusion tractography. The extent to which the reconstructed pathways reflect realistic neuronal networks depends, however, on data acquisition and postprocessing factors. Through a unique combination of approaches, we designed and evaluated herein a framework for reliable fiber tracking and mapping of the living mouse brain connectome. One important wiring scheme, connecting gray matter regions and passing fiber-crossing areas, was closely examined: the lemniscal thalamocortical (TC) pathway. We quantitatively validated the TC projections inferred from in vivo tractography with correlative histological axonal tracing in the same wild-type and reeler mutant mice. We demonstrated noninvasively that changes in patterning of the cortical sheet, such as highly disorganized cortical lamination in reeler, led to spectacular compensatory remodeling of the TC pathway. PMID:23610438
Patay, Z; Enterkin, J; Harreld, J H; Yuan, Y; Löbel, U; Rumboldt, Z; Khan, R; Boop, F
2014-04-01
Posterior fossa syndrome is a severe postoperative complication occurring in up to 29% of children undergoing posterior fossa tumor resection; it is most likely caused by bilateral damage to the proximal efferent cerebellar pathways, whose fibers contribute to the Guillain-Mollaret triangle. When the triangle is disrupted, hypertrophic olivary degeneration develops. We hypothesized that MR imaging patterns of inferior olivary nucleus changes reflect patterns of damage to the proximal efferent cerebellar pathways and show association with clinical findings, in particular the presence or absence of posterior fossa syndrome. We performed blinded, randomized longitudinal MR imaging analyses of the inferior olivary nuclei of 12 children with and 12 without posterior fossa syndrome after surgery for midline intraventricular tumor in the posterior fossa. The Fisher exact test was performed to investigate the association between posterior fossa syndrome and hypertrophic olivary degeneration on MR imaging. The sensitivity and specificity of MR imaging findings of bilateral hypertrophic olivary degeneration for posterior fossa syndrome were measured. Of the 12 patients with posterior fossa syndrome, 9 had bilateral inferior olivary nucleus abnormalities. The 12 patients without posterior fossa syndrome had either unilateral or no inferior olivary nucleus abnormalities. The association of posterior fossa syndrome and hypertrophic olivary degeneration was statistically significant (P < .0001). Hypertrophic olivary degeneration may be a surrogate imaging indicator for damage to the contralateral proximal efferent cerebellar pathway. In the appropriate clinical setting, bilateral hypertrophic olivary degeneration may be a sensitive and specific indicator of posterior fossa syndrome.
Fu, Zhenming; Shrubsole, Martha J; Smalley, Walter E; Ness, Reid M; Zheng, Wei
2014-05-01
The association of dietary fiber intake with colorectal cancer risk is established. However, the association may differ between cigarette smokers and nonsmokers. We evaluated this hypothesis in a large colonoscopy-based case-control study. Dietary fiber intakes were estimated by self-administered food frequency questionnaire. Unconditional logistic regression analysis was used to estimate ORs and 95% CIs with adjustment for potential confounders. Analysis also was stratified by cigarette smoking and sex. High dietary fiber intake was associated with reduced risk of colorectal polyps (P-trend = 0.003). This association was found to be stronger among cigarette smokers (P-trend = 0.006) than nonsmokers (P-trend = 0.21), although the test for multiplicative interaction was not statistically significant (P = 0.11). This pattern of association was more evident for high-risk adenomatous polyps (ADs), defined as advanced or multiple ADs (P-interaction smoking and dietary fiber intake = 0.09). Among cigarette smokers who smoked ≥23 y, a 38% reduced risk of high-risk ADs was found to be associated with high intake of dietary fiber compared with those in the lowest quartile fiber intake group (P-trend = 0.004). No inverse association with dietary fiber intake was observed for low-risk ADs, defined as single nonadvanced ADs. Cigarette smoking may modify the association of dietary fiber intake with the risk of colorectal polyps, especially high-risk ADs, a well-established precursor of colorectal cancer.
A mathematical model of force transmission from intrafascicularly terminating muscle fibers.
Sharafi, Bahar; Blemker, Silvia S
2011-07-28
Many long skeletal muscles are comprised of fibers that terminate intrafascicularly. Force from terminating fibers can be transmitted through shear within the endomysium that surrounds fibers or through tension within the endomysium that extends from fibers to the tendon; however, it is unclear which pathway dominates in force transmission from terminating fibers. The purpose of this work was to develop mathematical models to (i) compare the efficacy of lateral (through shear) and longitudinal (through tension) force transmission in intrafascicularly terminating fibers, and (ii) determine how force transmission is affected by variations in the structure and properties of fibers and the endomysium. The models demonstrated that even though the amount of force that can be transmitted from an intrafascicularly terminating fiber is dependent on fiber resting length (the unstretched length at which passive stress is zero), endomysium shear modulus, and fiber volume fraction (the fraction of the muscle cross-sectional area that is occupied by fibers), fibers that have values of resting length, shear modulus, and volume fraction within physiologic ranges can transmit nearly all of their peak isometric force laterally through shearing of the endomysium. By contrast, the models predicted only limited force transmission ability through tension within the endomysium that extends from the fiber to the tendon. Moreover, when fiber volume fraction decreases to unhealthy ranges (less than 50%), the force-transmitting potential of terminating fibers through shearing of the endomysium decreases significantly. The models presented here support the hypothesis that lateral force transmission through shearing of the endomysium is an effective mode of force transmission in terminating fibers. Copyright © 2011 Elsevier Ltd. All rights reserved.
2013-01-01
Background Dietary fiber is beneficial for the treatment of type 2 diabetes mellitus, although it is consumed differently in ethnic foods around the world. We investigated the association between dietary fiber intake and obesity, glycemic control, cardiovascular risk factors and chronic kidney disease in Japanese type 2 diabetic patients. Methods A total of 4,399 patients were assessed for dietary fiber intake using a brief self-administered diet history questionnaire. The associations between dietary fiber intake and various cardiovascular risk factors were investigated cross-sectionally. Results Body mass index, fasting plasma glucose, HbA1c, triglyceride and high-sensitivity C-reactive protein negatively associated with dietary fiber intake after adjusting for age, sex, duration of diabetes, current smoking, current drinking, total energy intake, fat intake, saturated fatty acid intake, leisure-time physical activity and use of oral hypoglycemic agents or insulin. The homeostasis model assessment insulin sensitivity and HDL cholesterol positively associated with dietary fiber intake. Dietary fiber intake was associated with reduced prevalence of abdominal obesity, hypertension and metabolic syndrome after multivariate adjustments including obesity. Furthermore, dietary fiber intake was associated with lower prevalence of albuminuria, low estimated glomerular filtration rate and chronic kidney disease after multivariate adjustments including protein intake. Additional adjustments for obesity, hypertension or metabolic syndrome did not change these associations. Conclusion We demonstrated that increased dietary fiber intake was associated with better glycemic control and more favorable cardiovascular disease risk factors including chronic kidney disease in Japanese type 2 diabetic patients. Diabetic patients should be encouraged to consume more dietary fiber in daily life. PMID:24330576
Rad, Iman; Kouhzaei, Sogolie; Mobasheri, Hamid; Saberi, Hooshang
2015-02-01
The aim of the current study was to mimic mechanical impacts on the spinal cord by manifesting the effects of dorsoventral (DVMP) and lateral (LMP) mechanical pressure on neural activity to address points to be considered during surgery for different purposes, including spinal cord decompression. Spinal cords of anesthetized rats were compressed at T13. Different characteristics of axons, including vulnerability, excitability, and conduction velocity (CV), in response to promptness, severity, and duration of pressure were assessed by spinal cord evoked potentials (SCEPs). Real-time SCEPs recorded at L4-5 revealed N1, N2, and N3 peaks that were used to represent the activity of injured sensory afferents, interneurons, and MN fibers. The averaged SCEP recordings were fitted by trust-region algorithm to find the equivalent Gaussian and polynomial equations. The pyramidal and extrapyramidal pathways possessed CVs of 3-11 and 16-80 m s(-1), respectively. DVMP decreased the excitability of myelinated neural fibers in antidromic and orthodromic pathways. The excitability of fibers in extrapyramidal and pyramidal pathways of lateral corticospinal (LCS) and anterior corticospinal (ACS) tracts decreased following LMP. A significant drop in the amplitude of N3 and its conduction velocity (CV) revealed higher susceptibility of less-myelinated fibers to both DVMP and LMP. The best parametric fitting model for triplet healthy spinal cord CAP was a six-term Gaussian equation (G6) that fell into a five-term equation (G5) at the complete compression stage. The spinal cord is more susceptible to dorsoventral than lateral mechanical pressures, and this should be considered in spinal cord operations. SCEPs have shown promising capabilities for evaluating the severity of SCI and thus can be applied for diagnostic or prognostic intraoperative monitoring (IOM).
Fabricating and Characterizing Physical Properties of Electrospun Polypeptide-based Nanofibers
NASA Astrophysics Data System (ADS)
Khadka, Dhan Bahadur
This dissertation has aimed to fabricate polypeptide based biomaterial and characterize physical properties. Electrospinning is used as a tool for the sample fabrication. Project focused on determining the feasibility of electrospinning of certain synthetic polypeptides and certain elastin-like peptides from aqueous feedstocks and to characterize physical properties of polymer aqueous solution, cast film and spun fibers and fiber mats. The research involves peptide design, polymer electrospinning, fibers crosslinking, determining the extent of crosslinking, fibers protease degradation study, fibers stability and self-organization analysis, structure and composition determination by various spectroscopy and microscopy techniques and characterization of mechanical properties of individual suspended fibers. Fiber mats of a synthetic cationic polypeptide poly(L-ornithine) (PLO) and an anionic co-polypeptide of L-glutamic acid and L-tyrosine (PLEY) of defined composition have been produced by electrospinning. Fibers were obtained from polymer aqueous solution at concentrations of 20-45% (w/v) in PLO and at concentrations of 20-60% (w/v) in PLEY. Applied voltage and spinneret-collector distance were also found to influence polymer spinnability and fibers morphology. Oriented fibers were obtained by parallel electrodes geometry. Fiber diameter and morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). PLO fibers exposed on glutaraldehyde (GTA) vapor rendered fiber mats water-insoluble. A common chemical reagent, carbodiimide was used to crosslink PLEY fibers. Fiber solubility in aqueous solution varied as a function of crosslinking time and crosslinker concentration. Crosslink density has been quantified by a visible-wavelength dye-based method. Degradation of crosslinked fibers by different proteases has been demonstrated. Investigation of crosslinked PLEY fibers has provided insight into the mechanisms of stability at different pH values. Variations in fiber morphology, elemental composition and stability have been studied by microscopy and energy-dispersive X-ray spectroscopy (EDX), following the treatment of samples at different pH values in the 2-12 range. Fiber stability has been interpreted with reference to the pH dependence of the UV absorbance and fluorescence of PLEY chains in solution. The data show that fiber stability is crucially dependent on the extent of side chain ionization, even after crosslinking. Self-organization kinetics of electrospun PLO and PLEY fibers during solvent annealing has been studied. After being crosslinked in situ , fibers were annealed in water at 22 °C. Analysis by Fourier transform infrared spectroscopy (FTIR) has revealed that annealing involved fiber restructuring with an overall time constant of 29 min for PLO and 63 min for PLEY, and that changes in the distribution of polymer conformations occurred during the first 13 min of annealing. There was a substantial decrease in the amount of Na+ bound to PLEY fibers during annealing. Kinetic modeling has indicated that two parallel pathways better account for the annealing trajectory than a single pathway with multiple transition states. Taken together, the results will advance the rational design of polypeptides for peptide-based materials, especially materials prepared by electrospinning. It is believed that this research will increase basic knowledge of polymer electrospinning and advance the development of electrospun materials, especially in medicine and biotechnology. The study has yielded two advances on previous work in the area: avoidance of an animal source of peptides and avoidance of inorganic solvent. The present results thus advance the growing field of peptide-based materials. Non-woven electrospun fiber mats made of polypeptides are increasingly considered attractive for basic research and technology development in biotechnology, medicine and other areas. (Abstract shortened by UMI.)
Liu, Xia; Zhao, Bo; Zheng, Hua-Jun; Hu, Yan; Lu, Gang; Yang, Chang-Qing; Chen, Jie-Dan; Chen, Jun-Jian; Chen, Dian-Yang; Zhang, Liang; Zhou, Yan; Wang, Ling-Jian; Guo, Wang-Zhen; Bai, Yu-Lin; Ruan, Ju-Xin; Shangguan, Xiao-Xia; Mao, Ying-Bo; Shan, Chun-Min; Jiang, Jian-Ping; Zhu, Yong-Qiang; Jin, Lei; Kang, Hui; Chen, Shu-Ting; He, Xu-Lin; Wang, Rui; Wang, Yue-Zhu; Chen, Jie; Wang, Li-Jun; Yu, Shu-Ting; Wang, Bi-Yun; Wei, Jia; Song, Si-Chao; Lu, Xin-Yan; Gao, Zheng-Chao; Gu, Wen-Yi; Deng, Xiao; Ma, Dan; Wang, Sen; Liang, Wen-Hua; Fang, Lei; Cai, Cai-Ping; Zhu, Xie-Fei; Zhou, Bao-Liang; Jeffrey Chen, Z; Xu, Shu-Hua; Zhang, Yu-Gao; Wang, Sheng-Yue; Zhang, Tian-Zhen; Zhao, Guo-Ping; Chen, Xiao-Ya
2015-09-30
Of the two cultivated species of allopolyploid cotton, Gossypium barbadense produces extra-long fibers for the production of superior textiles. We sequenced its genome (AD)2 and performed a comparative analysis. We identified three bursts of retrotransposons from 20 million years ago (Mya) and a genome-wide uneven pseudogenization peak at 11-20 Mya, which likely contributed to genomic divergences. Among the 2,483 genes preferentially expressed in fiber, a cell elongation regulator, PRE1, is strikingly At biased and fiber specific, echoing the A-genome origin of spinnable fiber. The expansion of the PRE members implies a genetic factor that underlies fiber elongation. Mature cotton fiber consists of nearly pure cellulose. G. barbadense and G. hirsutum contain 29 and 30 cellulose synthase (CesA) genes, respectively; whereas most of these genes (>25) are expressed in fiber, genes for secondary cell wall biosynthesis exhibited a delayed and higher degree of up-regulation in G. barbadense compared with G. hirsutum, conferring an extended elongation stage and highly active secondary wall deposition during extra-long fiber development. The rapid diversification of sesquiterpene synthase genes in the gossypol pathway exemplifies the chemical diversity of lineage-specific secondary metabolites. The G. barbadense genome advances our understanding of allopolyploidy, which will help improve cotton fiber quality.
Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics
Lee, Byoungkoo; Konen, Jessica; Wilkinson, Scott; Marcus, Adam I.; Jiang, Yi
2017-01-01
Invasive cancer cells interact with the surrounding extracellular matrix (ECM), remodeling ECM fiber network structure by condensing, degrading, and aligning these fibers. We developed a novel local alignment vector analysis method to quantitatively measure collagen fiber alignment as a vector field using Circular Statistics. This method was applied to human non-small cell lung carcinoma (NSCLC) cell lines, embedded as spheroids in a collagen gel. Collagen remodeling was monitored using second harmonic generation imaging under normal conditions and when the LKB1-MARK1 pathway was disrupted through RNAi-based approaches. The results showed that inhibiting LKB1 or MARK1 in NSCLC increases the collagen fiber alignment and captures outward alignment vectors from the tumor spheroid, corresponding to high invasiveness of LKB1 mutant cancer cells. With time-lapse imaging of ECM micro-fiber morphology, the local alignment vector can measure the dynamic signature of invasive cancer cell activity and cell-migration-induced ECM and collagen remodeling and realigning dynamics. PMID:28045069
Naoumkina, Marina; Bechere, Efrem; Fang, David D; Thyssen, Gregory N; Florane, Christopher B
2017-07-01
In this work we describe a chemically-induced short fiber mutant cotton line, Ligon-lintless-y (li y ), which is controlled by a single recessive locus and affects multiple traits, including height of the plant, and length and maturity of fiber. An RNAseq analysis was used to evaluate global transcriptional changes during cotton fiber development at 3, 8 and 16days post anthesis. We found that 613, 2629 and 3397 genes were significantly down-regulated, while 2700, 477 and 3260 were significantly up-regulated in li y at 3, 8 and 16 DPA. Gene set enrichment analysis revealed that many metabolic pathways, including carbohydrate, cell wall, hormone metabolism and transport were substantially altered in li y developing fibers. We discuss perturbed expression of genes involved in signal transduction and biosynthesis of phytohormones, such as auxin, abscisic acid, gibberellin and ethylene. The results of this study provide new insights into transcriptional regulation of cotton fiber development. Published by Elsevier Inc.
Fiber intake modulates the association of alcohol intake with breast cancer.
Romieu, Isabelle; Ferrari, Pietro; Chajès, Veronique; de Batlle, Jordi; Biessy, Carine; Scoccianti, Chiara; Dossus, Laure; Christine Boutron, Marie; Bastide, Nadia; Overvad, Kim; Olsen, Anja; Tjønneland, Anne; Kaaks, Rudolf; Boeing, Heiner; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Sieri, Sabina; Tumino, Rosario; Vineis, Paolo; Panico, Salvatore; Bueno-de-Mesquita, H B As; Gils, Carla H; Peeters, Petra H; Lund, Eiliv; Skeie, Guri; Weiderpass, Elisabete; Ramón Quirós, J; Chirlaque, María-Dolores; Ardanaz, Eva; Sánchez, María-José; Duell, Eric J; Amiano Etxezarreta, Pilar; Borgquist, Signe; Hallmans, Göran; Johansson, Ingegerd; Maria Nilsson, Lena; Khaw, Kay-Tee; Wareham, Nick; Key, Timothy J; Travis, Ruth C; Murphy, Neil; Wark, Petra A; Riboli, Elio
2017-01-15
Alcohol intake has been related to an increased risk of breast cancer (BC) while dietary fiber intake has been inversely associated to BC risk. A beneficial effect of fibers on ethanol carcinogenesis through their impact on estrogen levels is still controversial. We investigated the role of dietary fiber as a modifying factor of the association of alcohol and BC using data from the European Prospective Investigation into Cancer and Nutrition (EPIC). This study included 334,850 women aged 35-70 years at baseline enrolled in the ten countries of the EPIC study and followed up for 11.0 years on average. Information on fiber and alcohol intake at baseline and average lifetime alcohol intake were calculated from country-specific dietary and lifestyle questionnaires. Hazard ratios (HR) of developing invasive BC according to different levels of alcohol and fiber intake were computed. During 3,670,439 person-years, 11,576 incident BC cases were diagnosed. For subjects with low intake of fiber (<18.5 g/day), the risk of BC per 10 g/day of alcohol intake was 1.06 (1.03-1.08) while among subjects with high intake of fiber (>24.2 g/day) the risk of BC was 1.02 (0.99-1.05) (test for interaction p = 0.011). This modulating effect was stronger for fiber from vegetables. Our results suggest that fiber intake may modulate the positive association of alcohol intake and BC. Alcohol is well known to increase the risk for BC, while a fiber-rich diet has the opposite effect. Here the authors find a significant interaction between both lifestyle factors indicating that high fiber intake can ease the adverse effects associated with alcohol consumption. Consequently, women with high alcohol intake and low fiber intake (<18.5 g/day) had the highest risk for BC. Specific benefits were associated with fibers from vegetable, warranting further investigations into specific fiber sources and their mechanistic interactions with alcohol-induced BC risk. © 2016 UICC.
Cardiovascular benefits of dietary fiber.
Satija, Ambika; Hu, Frank B
2012-12-01
The relationship between dietary fiber and risk of cardiovascular disease (CVD) has been extensively studied. There is considerable epidemiological evidence indicating an inverse association between dietary fiber intake and CVD risk. The association has been found to be stronger for cereal fiber than for fruit or vegetable fiber, and several studies have also found increased whole grain consumption to be associated with CVD risk reduction. In light of this evidence, recent US dietary guidelines have endorsed increased consumption of fiber rich whole grains. Regular consumption of dietary fiber, particularly fiber from cereal sources, may improve CVD health through multiple mechanisms including lipid reduction, body weight regulation, improved glucose metabolism, blood pressure control, and reduction of chronic inflammation. Future research should focus on various food sources of fiber, including different types of whole grains, legumes, fruits, vegetables, and nuts, as well as resistant starch in relation to CVD risk and weight control; explore the biological mechanisms underlying the cardioprotective effect of fiber-rich diets; and study different ethnic groups and populations with varying sources of dietary fiber.
Tang, Wenxin; Tu, Lili; Yang, Xiyan; Tan, Jiafu; Deng, Fenglin; Hao, Juan; Guo, Kai; Lindsey, Keith; Zhang, Xianlong
2014-04-01
Fiber elongation is the key determinant of fiber quality and output in cotton (Gossypium hirsutum). Although expression profiling and functional genomics provide some data, the mechanism of fiber development is still not well understood. Here, a gene encoding a calcium sensor, GhCaM7, was isolated based on its high expression level relative to other GhCaMs in fiber cells at the fast elongation stage. The level of expression of GhCaM7 in the wild-type and the fuzzless/lintless mutant correspond to the presence and absence, respectively, of fiber initials. Overexpressing GhCaM7 promotes early fiber elongation, whereas GhCaM7 suppression by RNAi delays fiber initiation and inhibits fiber elongation. Reactive oxygen species (ROS) play important roles in early fiber development. ROS induced by exogenous hydrogen peroxide (H2 O2 ) and Ca(2+) starvation promotes early fiber elongation. GhCaM7 overexpression fiber cells show increased ROS concentrations compared with the wild-type, while GhCaM7 RNAi fiber cells have reduced concentrations. Furthermore, we show that H2 O2 enhances Ca(2+) influx into the fiber and feedback-regulates the expression of GhCaM7. We conclude that GhCaM7, Ca(2+) and ROS are three important regulators involved in early fiber elongation. GhCaM7 might modulate ROS production and act as a molecular link between Ca(2+) and ROS signal pathways in early fiber development. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Raj Krishnamurthy, Vidya M.; Wei, Guo; Baird, Bradley C.; Murtaugh, Maureen; Chonchol, Michel B.; Raphael, Kalani L.; Greene, Tom; Beddhu, Srinivasan
2016-01-01
Chronic kidney disease is considered an inflammatory state and a high fiber intake is associated with decreased inflammation in the general population. Here, we determined whether fiber intake is associated with decreased inflammation and mortality in chronic kidney disease, and whether kidney disease modifies the associations of fiber intake with inflammation and mortality. To do this, we analyzed data from 14,543 participants in the National Health and Nutrition Examination Survey III. The prevalence of chronic kidney disease (estimated glomerular filtration rate less than 60 ml/min per 1.73 m2) was 5.8%. For each 10-g/day increase in total fiber intake, the odds of elevated serum C-reactive protein levels were decreased by 11% and 38% in those without and with kidney disease, respectively. Dietary total fiber intake was not significantly associated with mortality in those without but was inversely related to mortality in those with kidney disease. The relationship of total fiber with inflammation and mortality differed significantly in those with and without kidney disease. Thus, high dietary total fiber intake is associated with lower risk of inflammation and mortality in kidney disease and these associations are stronger in magnitude in those with kidney disease. Interventional trials are needed to establish the effects of fiber intake on inflammation and mortality in kidney disease. PMID:22012132
Hosseinpour-Niazi, Somayeh; Mirmiran, Parvin; Sohrab, Golbon; Hosseini-Esfahani, Firoozeh; Azizi, Fereidoun
2011-11-01
To evaluate the association between total dietary fiber and its types and sources with the risk of MetS. This population-based cross-sectional study was conducted on a representative sample of 2457 adults (1327 male and 1130 female), aged 19-84 years. Dietary intake was assessed using a validated semiquantitative food-frequency questionnaire. Anthropometrics, blood pressure, and fasting blood glucose and lipids were measured according to standard protocols. The MetS was defined according to definition by Adult Treatment Panel III. Multivariate-adjusted odds ratio of MetS between highest and lowest quartiles was 0.53 (95% CI: 0.39-0.74; P for trend <0.05) for total dietary fiber, 0.60 (0.43-0.84; P for trend <0.05) for soluble fiber, and 0.51 (0.35-0.72; P for trend <0.05) for insoluble fiber. Among sources of dietary fiber, fruit fiber (OR: 0.51; 95% CI: 0.37-0.72), cereal fiber (0.74; 0.57-0.97), and legume fiber (0.73; 0.53-0.99) were inversely associated with the risk of MetS, after adjustment for confounding factors. Intake of vegetable fiber and nut fiber were unrelated to the risk of MetS. Total dietary fiber, soluble- and insoluble fiber, fruit fiber, cereal fiber and legume fiber were associated with a protective effect for the presence of MetS among this Tehranian population. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.
Du, Huaidong; van der A, Daphne L; Boshuizen, Hendriek C; Forouhi, Nita G; Wareham, Nicolas J; Halkjaer, Jytte; Tjønneland, Anne; Overvad, Kim; Jakobsen, Marianne Uhre; Boeing, Heiner; Buijsse, Brian; Masala, Giovanna; Palli, Dominique; Sørensen, Thorkild I A; Saris, Wim H M; Feskens, Edith J M
2010-02-01
Dietary fiber may play a role in obesity prevention. Until now, the role that fiber from different sources plays in weight change had rarely been studied. Our aim was to investigate the association of total dietary fiber, cereal fiber, and fruit and vegetable fiber with changes in weight and waist circumference. We conducted a prospective cohort study with 89,432 European participants, aged 20-78 y, who were free of cancer, cardiovascular disease, and diabetes at baseline and who were followed for an average of 6.5 y. Dietary information was collected by using validated country-specific food-frequency questionnaires. Multiple linear regression analysis was performed in each center studied, and estimates were combined by using random-effects meta-analyses. Adjustments were made for follow-up duration, other dietary variables, and baseline anthropometric, demographic, and lifestyle factors. Total fiber was inversely associated with subsequent weight and waist circumference change. For a 10-g/d higher total fiber intake, the pooled estimate was -39 g/y (95% CI: -71, -7 g/y) for weight change and -0.08 cm/y (95% CI: -0.11, -0.05 cm/y) for waist circumference change. A 10-g/d higher fiber intake from cereals was associated with -77 g/y (95% CI: -127, -26 g/y) weight change and -0.10 cm/y (95% CI: -0.18, -0.02 cm/y) waist circumference change. Fruit and vegetable fiber was not associated with weight change but had a similar association with waist circumference change when compared with intake of total dietary fiber and cereal fiber. Our finding may support a beneficial role of higher intake of dietary fiber, especially cereal fiber, in prevention of body-weight and waist circumference gain.
Stuart, Charles A; Lee, Michelle L; South, Mark A; Howell, Mary E A; Cartwright, Brian M; Ramsey, Michael W; Stone, Michael H
2017-03-01
Stuart, CA, Lee, ML, South, MA, Howell, MEA, Cartwright, BM, Ramsey, MW, and Stone, MH. Pre-training muscle characteristics of subjects who are obese determine how well exercise training will improve their insulin responsiveness. J Strength Cond Res 31(3): 798-808, 2017-Only half of prediabetic subjects who are obese who underwent exercise training without weight loss increased their insulin responsiveness. We hypothesized that those who improved their insulin responsiveness might have pretraining characteristics favoring a positive response to exercise training. Thirty nondiabetic subjects who were obese volunteered for 8 weeks of either strength training or endurance training. During training, subjects increased their caloric intake to prevent weight loss. Insulin responsiveness by euglycemic clamps and muscle fiber composition, and expression of muscle key biochemical pathways were quantified. Positive responders initially had 52% higher intermediate muscle fibers (fiber type IIa) with 27% lower slow-twitch fibers (type I) and 23% lower expression of muscle insulin receptors. Whether after weight training or stationary bike training, positive responders' fiber type shifted away from type I and type IIa fibers to an increased proportion of type IIx fibers (fast twitch). Muscle insulin receptor expression and glucose transporter type 4 (GLUT4) expression increased in all trained subjects, but these moderate changes did not consistently translate to improvement in whole-body insulin responsiveness. Exercise training of previously sedentary subjects who are obese can result in muscle remodeling and increased expression of key elements of the insulin pathway, but in the absence of weight loss, insulin sensitivity improvement was modest and limited to about half of the participants. Our data suggest rather than responders being more fit, they may have been less fit, only catching up to the other half of subjects who are obese whose insulin responsiveness did not increase beyond their pretraining baseline.
Changes in Afferent Activity After Spinal Cord Injury
de Groat, William C.; Yoshimura, Naoki
2010-01-01
Aims To summarize the changes that occur in the properties of bladder afferent neurons following spinal cord injury. Methods Literature review of anatomical, immunohistochemical, and pharmacologic studies of normal and dysfunctional bladder afferent pathways. Results Studies in animals indicate that the micturition reflex is mediated by a spinobulbospinal pathway passing through coordination centers (periaqueductal gray and pontine micturition center) located in the rostral brain stem. This reflex pathway, which is activated by small myelinated (Aδ) bladder afferent nerves, is in turn modulated by higher centers in the cerebral cortex involved in the voluntary control of micturition. Spinal cord injury at cervical or thoracic levels disrupts voluntary voiding, as well as the normal reflex pathways that coordinate bladder and sphincter function. Following spinal cord injury, the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. The recovery of bladder function after spinal cord injury is dependent in part on the plasticity of bladder afferent pathways and the unmasking of reflexes triggered by unmyelinated, capsaicin-sensitive, C-fiber bladder afferent neurons. Plasticity is associated with morphologic, chemical, and electrical changes in bladder afferent neurons and appears to be mediated in part by neurotrophic factors released in the spinal cord and the peripheral target organs. Conclusions Spinal cord injury at sites remote from the lumbosacral spinal cord can indirectly influence properties of bladder afferent neurons by altering the function and chemical environment in the bladder or the spinal cord. PMID:20025033
Motor unit and muscle fiber type grouping after peripheral nerve injury in the rat.
Gordon, Tessa; de Zepetnek, Joanne E Totosy
2016-11-01
Muscle unit (MU) fibers innervated by one motoneuron and corresponding muscle fiber types are normally distributed in a mosaic. We asked whether, 4-8months after common peroneal nerve transection and random surgical alignment of nerve stumps in rat tibialis anterior muscles 1) reinnervated MU muscle and muscle fiber type clumping is invariant and 2) slow and fast motoneurons regenerate their nerve fibers within original endoneurial pathways. MU contractile forces were recorded in vivo, the MUs classified into types according to their contractile speed and fatigability, and one MU subjected to alternate exhaustive stimulation-recovery cycles to deplete glycogen for histochemical MU fiber recognition and enumeration, and muscle fiber typing. MU muscle fibers occupied defined territories whose size increased with MU force and muscle fiber numbers in normal and reinnervated muscles. The reinnervated MU muscle fiber territories were significantly smaller, the fibers clumped within 1-3 groups in 90% of the MUs, and each fiber lying adjacent to another significantly more frequently. Most reinnervated slow muscle fibers were normally located in the deep muscle compartment but substantial numbers were located abnormally in the superficial compartment. Our findings that well reinnervated muscle fibers clump in small muscles contrast with our earlier findings of clumping in large muscles only when reinnervated MU numbers were significantly reduced. We conclude that fiber type clumping is predictive of muscle reinnervation in small but not large muscles. In the latter muscles, clumping is more indicative of sprouting after partial nerve injuries than of muscle reinnervation after complete nerve injuries. Copyright © 2016 Elsevier Inc. All rights reserved.
Ruottinen, Soile; Lagström, Hanna K; Niinikoski, Harri; Rönnemaa, Tapani; Saarinen, Maiju; Pahkala, Katja A; Hakanen, Maarit; Viikari, Jorma Sa; Simell, Olli
2010-03-01
Dietary fiber has health benefits, but fiber recommendations for children are controversial because fiber may displace energy. The objective was to longitudinally evaluate dietary fiber intake in children and to study associations between growth variables, serum cholesterol concentrations, and intakes of fiber, energy, and nutrients. Altogether, 543 children from a prospective randomized atherosclerosis prevention trial (the Special Turku Coronary Risk factor Intervention Project; STRIP) participated in this study between the ages of 8 mo and 9 y. The intervention children (n = 264) were counseled to replace part of saturated fat with unsaturated fat. Nutrient intakes, weight, height, and serum total, HDL-, and LDL-cholesterol and triglyceride concentrations were analyzed. Children were divided into 3 groups according to mean dietary fiber intake in foods: low (lowest 10%), high (highest 10%), and average (middle 80%) fiber intakes. Fiber intake associated positively with energy intake and inversely with fat intake. Children with a high fiber intake received more vitamins and minerals than did children in other groups. In longitudinal growth analyses, weights and heights were similar in all 3 fiber intake groups, and fiber intake (g/d) associated positively with weight gain between 8 mo and 2 y. Serum cholesterol concentrations decreased with increasing fiber intakes. Children in the intervention group had a higher fiber intake than did the control children during the entire follow-up period. Fiber intake did not displace energy or disturb growth between 13 mo and 9 y of age. Serum cholesterol values correlated inversely with fiber intake, which indicated that part of the cholesterol-lowering intervention effect in the STRIP project may have been explained by dietary fiber.
Health Benefits of Fiber Fermentation.
Dahl, Wendy J; Agro, Nicole C; Eliasson, Åsa M; Mialki, Kaley L; Olivera, Joseph D; Rusch, Carley T; Young, Carly N
2017-02-01
Although fiber is well recognized for its effect on laxation, increasing evidence supports the role of fiber in the prevention and treatment of chronic disease. The aim of this review is to provide an overview of the health benefits of fiber and its fermentation, and describe how the products of fermentation may influence disease risk and treatment. Higher fiber intakes are associated with decreased risk of cardiovascular disease, type 2 diabetes, and some forms of cancer. Fiber may also have a role in lowering blood pressure and in preventing obesity by limiting weight gain. Fiber is effective in managing blood glucose in type 2 diabetes, useful for weight loss, and may provide therapeutic adjunctive roles in kidney and liver disease. In addition, higher fiber diets are not contraindicated in inflammatory bowel disease or irritable bowel syndrome and may provide some benefit. Common to the associations with disease reduction is fermentation of fiber and its potential to modulate microbiota and its activities and inflammation, specifically the production of anti-inflammatory short chain fatty acids, primarily from saccharolytic fermentation, versus the deleterious products of proteolytic activity. Because fiber intake is inversely associated with all-cause mortality, mechanisms by which fiber may reduce chronic disease risk and provide therapeutic benefit to those with chronic disease need further elucidation and large, randomized controlled trials are needed to confirm causality.Teaching Points• Strong evidence supports the association between higher fiber diets and reduced risk of cardiovascular disease, type 2 diabetes, and some forms of cancer.• Higher fiber intakes are associated with lower body weight and body mass index, and some types of fiber may facilitate weight loss.• Fiber is recommended as an adjunctive medical nutritional therapy for type 2 diabetes, chronic kidney disease, and certain liver diseases.• Fermentation and the resulting shifts in microbiota composition and its activity may be a common means by which fiber impacts disease risk and management.
Singh, Anita; Balasubramanian, Sriram; Murray, Marion; Lemay, Michel; Houle, John
2011-12-01
Body-weight-supported treadmill training (BWSTT)-related locomotor recovery has been shown in spinalized animals. Only a few animal studies have demonstrated locomotor recovery after BWSTT in an incomplete spinal cord injury (SCI) model, such as contusion injury. The contribution of spared descending pathways after BWSTT to behavioral recovery is unclear. Our goal was to evaluate locomotor recovery in contused rats after BWSTT, and to study the role of spared pathways in spinal plasticity after BWSTT. Forty-eight rats received a contusion, a transection, or a contusion followed at 9 weeks by a second transection injury. Half of the animals in the three injury groups were given BWSTT for up to 8 weeks. Kinematics and the Basso-Beattie-Bresnahan (BBB) test assessed behavioral improvements. Changes in Hoffmann-reflex (H-reflex) rate depression property, soleus muscle mass, and sprouting of primary afferent fibers were also evaluated. BWSTT-contused animals showed accelerated locomotor recovery, improved H-reflex properties, reduced muscle atrophy, and decreased sprouting of small caliber afferent fibers. BBB scores were not improved by BWSTT. Untrained contused rats that received a transection exhibited a decrease in kinematic parameters immediately after the transection; in contrast, trained contused rats did not show an immediate decrease in kinematic parameters after transection. This suggests that BWSTT with spared descending pathways leads to neuroplasticity at the lumbar spinal level that is capable of maintaining locomotor activity. Discontinuing training after the transection in the trained contused rats abolished the improved kinematics within 2 weeks and led to a reversal of the improved H-reflex response, increased muscle atrophy, and an increase in primary afferent fiber sprouting. Thus continued training may be required for maintenance of the recovery. Transected animals had no effect of BWSTT, indicating that in the absence of spared pathways this training paradigm did not improve function.
Norris, Leonie; Malkar, Aditya; Horner-Glister, Emma; Hakimi, Amirmansoor; Ng, Leong L; Gescher, Andreas J; Creaser, Colin; Sale, Stewart; Jones, Donald J L
2015-09-01
There is strong epidemiological evidence indicating that consumption by humans of whole-grain foods including rice bran may be associated with a low incidence of cancer, especially in the colorectum. Molecular processes associated with cancer development may be retarded by fiber consumption. Consequently, intervention with dietary fiber might be suitable as a cancer chemoprevention strategy in high-risk populations. Here, we searched for putative molecular mechanism-based efficacy biomarkers of rice fiber consumption in the plasma of mice characterized by a genetic propensity to develop gastrointestinal adenomas. The hypothesis was tested that metabolic and proteomic changes in blood reflect the chemopreventive activity of rice bran. Apc(Min) mice received diet supplemented with rice bran at 5, 15, and 30%. Blood and tissue samples were taken. Plasma was subjected to MS-based proteomic and metabolic profiling analyses as well as assessment of hematocrit values. Gastrointestinal tracts were removed and adenomas were counted and their size was measured so that total tumor burden could be calculated. The hypothesis was tested that metabolic and proteomic changes in blood reflect chemopreventive activity. Rice bran consumption reduced adenoma burden and number in a dose-related fashion when compared to controls. Metabolic profiling data demonstrated strong clustering of the groups indicating that metabolic pathways are perturbed. Proteomic analysis identified adiponectin as a molecule that was significantly altered, which may play a role in tumor suppression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yuan, Kai; Yu, Dahua; Bi, Yanzhi; Wang, Ruonan; Li, Min; Zhang, Yajuan; Dong, Minghao; Zhai, Jinquan; Li, Yangding; Lu, Xiaoqi; Tian, Jie
2017-09-01
Although the activation of the prefrontal cortex (PFC) and the striatum had been found in smoking cue induced craving task, whether and how the functional interactions and white matter integrity between these brain regions contribute to craving processing during smoking cue exposure remains unknown. Twenty-five young male smokers and 26 age- and gender-matched nonsmokers participated in the smoking cue-reactivity task. Craving related brain activation was extracted and psychophysiological interactions (PPI) analysis was used to specify the PFC-efferent pathways contributed to smoking cue-induced craving. Diffusion tensor imaging (DTI) and probabilistic tractography was used to explore whether the fiber connectivity strength facilitated functional coupling of the circuit with the smoking cue-induced craving. The PPI analysis revealed the negative functional coupling of the left dorsolateral prefrontal cortex (DLPFC) and the caudate during smoking cue induced craving task, which positively correlated with the craving score. Neither significant activation nor functional connectivity in smoking cue exposure task was detected in nonsmokers. DTI analyses revealed that fiber tract integrity negatively correlated with functional coupling in the DLPFC-caudate pathway and activation of the caudate induced by smoking cue in smokers. Moreover, the relationship between the fiber connectivity integrity of the left DLPFC-caudate and smoking cue induced caudate activation can be fully mediated by functional coupling strength of this circuit in smokers. The present study highlighted the left DLPFC-caudate pathway in smoking cue-induced craving in smokers, which may reflect top-down prefrontal modulation of striatal reward processing in smoking cue induced craving processing. Hum Brain Mapp 38:4644-4656, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Sparta, Dennis R.; Smithuis, Jim; Stamatakis, Alice M.; Jennings, Joshua H.; Kantak, Pranish A.; Ung, Randall L.; Stuber, Garret D.
2014-01-01
The development of excessive fear and/or stress responses to environmental cues such as contexts associated with a traumatic event is a hallmark of post-traumatic stress disorder (PTSD). The basolateral amygdala (BLA) has been implicated as a key structure mediating contextual fear conditioning. In addition, the hippocampus has an integral role in the encoding and processing of contexts associated with strong, salient stimuli such as fear. Given that both the BLA and hippocampus play an important role in the regulation of contextual fear conditioning, examining the functional connectivity between these two structures may elucidate a role for this pathway in the development of PTSD. Here, we used optogenetic strategies to demonstrate that the BLA sends a strong glutamatergic projection to the hippocampal formation through the entorhinal cortex (EC). Next, we photoinhibited glutamatergic fibers from the BLA terminating in the EC during the acquisition or expression of contextual fear conditioning. In mice that received optical inhibition of the BLA-to-EC pathway during the acquisition session, we observed a significant decrease in freezing behavior in a context re-exposure session. In contrast, we observed no differences in freezing behavior in mice that were only photoinhibited during the context re-exposure session. These data demonstrate an important role for the BLA-to-EC glutamatergic pathway in the acquisition of contextual fear conditioning. PMID:24834031
Baldwin, Kenneth M.; Haddad, Fadia; Pandorf, Clay E.; Roy, Roland R.; Edgerton, V. Reggie
2013-01-01
Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a motor unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC) gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s). Hence, this review will examine findings from three different animal models of unloading: (1) space flight (SF), i.e., microgravity; (2) hindlimb suspension (HS), a procedure that chronically eliminates weight bearing of the lower limbs; and (3) spinal cord isolation (SI), a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: (1) all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; (2) transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and (3) signaling pathways impacting these alterations appear to be similar in each of the models investigated. PMID:24130531
Altered white matter in early visual pathways of humans with amblyopia.
Allen, Brian; Spiegel, Daniel P; Thompson, Benjamin; Pestilli, Franco; Rokers, Bas
2015-09-01
Amblyopia is a visual disorder caused by poorly coordinated binocular input during development. Little is known about the impact of amblyopia on the white matter within the visual system. We studied the properties of six major visual white-matter pathways in a group of adults with amblyopia (n=10) and matched controls (n=10) using diffusion weighted imaging (DWI) and fiber tractography. While we did not find significant differences in diffusion properties in cortico-cortical pathways, patients with amblyopia exhibited increased mean diffusivity in thalamo-cortical visual pathways. These findings suggest that amblyopia may systematically alter the white matter properties of early visual pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Nuohan; Ma, Jianjiang; Pei, Wenfeng; Wu, Man; Li, Haijing; Li, Xingli; Yu, Shuxun; Zhang, Jinfa; Yu, Jiwen
2017-03-01
Lysophosphatidic acid acyltransferase (LPAAT) encoded by a multigene family is a rate-limiting enzyme in the Kennedy pathway in higher plants. Cotton is the most important natural fiber crop and one of the most important oilseed crops. However, little is known on genes coding for LPAATs involved in oil biosynthesis with regard to its genome organization, diversity, expression, natural genetic variation, and association with fiber development and oil content in cotton. In this study, a comprehensive genome-wide analysis in four Gossypium species with genome sequences, i.e., tetraploid G. hirsutum- AD 1 and G. barbadense- AD 2 and its possible ancestral diploids G. raimondii- D 5 and G. arboreum- A 2 , identified 13, 10, 8, and 9 LPAAT genes, respectively, that were divided into four subfamilies. RNA-seq analyses of the LPAAT genes in the widely grown G. hirsutum suggest their differential expression at the transcriptional level in developing cottonseeds and fibers. Although 10 LPAAT genes were co-localised with quantitative trait loci (QTL) for cottonseed oil or protein content within a 25-cM region, only one single strand conformation polymorphic (SSCP) marker developed from a synonymous single nucleotide polymorphism (SNP) of the At-Gh13LPAAT5 gene was significantly correlated with cottonseed oil and protein contents in one of the three field tests. Moreover, transformed yeasts using the At-Gh13LPAAT5 gene with the two sequences for the SNP led to similar results, i.e., a 25-31% increase in palmitic acid and oleic acid, and a 16-29% increase in total triacylglycerol (TAG). The results in this study demonstrated that the natural variation in the LPAAT genes to improving cottonseed oil content and fiber quality is limited; therefore, traditional cross breeding should not expect much progress in improving cottonseed oil content or fiber quality through a marker-assisted selection for the LPAAT genes. However, enhancing the expression of one of the LPAAT genes such as At-Gh13LPAAT5 can significantly increase the production of total TAG and other fatty acids, providing an incentive for further studies into the use of LPAAT genes to increase cottonseed oil content through biotechnology.
Pathophysiology of Small-Fiber Sensory System in Parkinson's Disease
Lin, Chin-Hsien; Chao, Chi-Chao; Wu, Shao-Wei; Hsieh, Paul-Chen; Feng, Fang-Ping; Lin, Yea-Huey; Chen, Ya-Mei; Wu, Ruey-Meei; Hsieh, Sung-Tsang
2016-01-01
Abstract Sensory symptoms are frequent nonmotor complaints in patients with Parkinson's disease (PD). However, few investigations integrally explored the physiology and pathology of the thermonociceptive pathway in PD. We aim to investigate the involvement of the thermonociceptive pathway in PD. Twenty-eight PD patients (16 men, with a mean age and standard deviation of 65.6 ± 10.7 years) free of neuropathic symptoms and systemic disorders were recruited for the study and compared to 23 age- and gender-matched control subjects (12 men, with a mean age and standard deviation of 65.1 ± 9.9 years). We performed skin biopsy, contact heat-evoked potential (CHEP), and quantitative sensory tests (QST) to study the involvement of the thermonociceptive pathway in PD. The duration of PD was 7.1 ± 3.2 (range 2–17 years) years and the UPDRS part III score was 25.6 ± 9.7 (range 10–48) during the off period. Compared to control subjects, PD patients had reduced intra-epidermal nerve fiber (IENF) density (2.48 ± 1.65 vs 6.36 ± 3.19 fibers/mm, P < 0.001) and CHEP amplitude (18.02 ± 10.23 vs 33.28 ± 10.48 μV, P < 0.001). Twenty-three patients (82.1%) had abnormal IENF densities and 18 (64.3%) had abnormal CHEP. Nine patients (32.1%) had abnormal thermal thresholds in the feet. In total 27 patients (96.4%) had at least 1 abnormality in IENF, CHEP, or thermal thresholds of the foot, indicating dysfunctions in the small-fiber nerve system. In control subjects, CHEP amplitude linearly correlated with IENF density (P < 0.001). In contrast, this relationship disappeared in PD (P = 0.312) and CHEP amplitude was negatively correlated with motor severity of PD independent of age, gender, and anti-PD medication dose (P = 0.036), suggesting the influences of central components on thermonociceptive systems in addition to peripheral small-fiber nerves in PD. The present study suggested impairment of small-fiber sensory system at both peripheral and central levels is an intrinsic feature of PD, and skin biopsy, CHEP, and QST provided an integral approach for assessing such dysfunctions. PMID:26962835
Strength of Temporal White Matter Pathways Predicts Semantic Learning.
Ripollés, Pablo; Biel, Davina; Peñaloza, Claudia; Kaufmann, Jörn; Marco-Pallarés, Josep; Noesselt, Toemme; Rodríguez-Fornells, Antoni
2017-11-15
Learning the associations between words and meanings is a fundamental human ability. Although the language network is cortically well defined, the role of the white matter pathways supporting novel word-to-meaning mappings remains unclear. Here, by using contextual and cross-situational word learning, we tested whether learning the meaning of a new word is related to the integrity of the language-related white matter pathways in 40 adults (18 women). The arcuate, uncinate, inferior-fronto-occipital and inferior-longitudinal fasciculi were virtually dissected using manual and automatic deterministic fiber tracking. Critically, the automatic method allowed assessing the white matter microstructure along the tract. Results demonstrate that the microstructural properties of the left inferior-longitudinal fasciculus predict contextual learning, whereas the left uncinate was associated with cross-situational learning. In addition, we identified regions of special importance within these pathways: the posterior middle temporal gyrus, thought to serve as a lexical interface and specifically related to contextual learning; the anterior temporal lobe, known to be an amodal hub for semantic processing and related to cross-situational learning; and the white matter near the hippocampus, a structure fundamental for the initial stages of new-word learning and, remarkably, related to both types of word learning. No significant associations were found for the inferior-fronto-occipital fasciculus or the arcuate. While previous results suggest that learning new phonological word forms is mediated by the arcuate fasciculus, these findings show that the temporal pathways are the crucial neural substrate supporting one of the most striking human abilities: our capacity to identify correct associations between words and meanings under referential indeterminacy. SIGNIFICANCE STATEMENT The language-processing network is cortically (i.e., gray matter) well defined. However, the role of the white matter pathways that support novel word learning within this network remains unclear. In this work, we dissected language-related (arcuate, uncinate, inferior-fronto-occipital, and inferior-longitudinal) fasciculi using manual and automatic tracking. We found the left inferior-longitudinal fasciculus to be predictive of word-learning success in two word-to-meaning tasks: contextual and cross-situational learning paradigms. The left uncinate was predictive of cross-situational word learning. No significant correlations were found for the arcuate or the inferior-fronto-occipital fasciculus. While previous results showed that learning new phonological word forms is supported by the arcuate fasciculus, these findings demonstrate that learning new word-to-meaning associations is mainly dependent on temporal white matter pathways. Copyright © 2017 the authors 0270-6474/17/3711102-13$15.00/0.
Xu, Ran; Andres-Mateos, Eva; Mejias, Rebeca; MacDonald, Elizabeth M.; Leinwand, Leslie A.; Merriman, Dana K.; Fink, Rainer H. A.; Cohn, Ronald D.
2013-01-01
Skeletal muscle atrophy is a very common clinical challenge in many disuse conditions. Maintenance of muscle mass is crucial to combat debilitating functional consequences evoked from these clinical conditions. In contrast, hibernation represents a physiological state in which there is natural protection against disuse atrophy despite prolonged periods of immobilization and lack of nutrient intake. Even though peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1-α (PGC-1α) is a central mediator in muscle remodeling pathways, its role in the preservation of skeletal muscle mass during hibernation remains unclear. Since PGC-1α regulates muscle fiber type formation and mitochondrial biogenesis, we analyzed muscles of 13-lined ground squirrels. We find that animals in torpor exhibit a shift to slow-twitch Type I muscle fibers. This switch is accompanied by activation of the PGC-1α-mediated endurance exercise pathway. In addition, we observe increased antioxidant capacity without evidence of oxidative stress, a marked decline in apoptotic susceptibility, and enhanced mitochondrial abundance and metabolism. These results show that activation of the endurance exercise pathway can be achieved in vivo despite prolonged periods of immobilization, and therefore might be an important mechanism for skeletal muscle preservation during hibernation. This PGC-1α regulated pathway may be a potential therapeutic target promoting skeletal muscle homeostasis and oxidative balance to prevent muscle loss in a variety of inherited and acquired neuromuscular disease conditions. PMID:23333568
Richard, Isabelle; Roudaut, Carinne; Marchand, Sylvie; Baghdiguian, Stephen; Herasse, Muriel; Stockholm, Daniel; Ono, Yasuko; Suel, Laurence; Bourg, Nathalie; Sorimachi, Hiroyuki; Lefranc, Gérard; Fardeau, Michel; Sébille, Alain; Beckmann, Jacques S.
2000-01-01
Calpain 3 is known as the skeletal muscle–specific member of the calpains, a family of intracellular nonlysosomal cysteine proteases. It was previously shown that defects in the human calpain 3 gene are responsible for limb girdle muscular dystrophy type 2A (LGMD2A), an inherited disease affecting predominantly the proximal limb muscles. To better understand the function of calpain 3 and the pathophysiological mechanisms of LGMD2A and also to develop an adequate model for therapy research, we generated capn3-deficient mice by gene targeting. capn3-deficient mice are fully fertile and viable. Allele transmission in intercross progeny demonstrated a statistically significant departure from Mendel's law. capn3-deficient mice show a mild progressive muscular dystrophy that affects a specific group of muscles. The age of appearance of myopathic features varies with the genetic background, suggesting the involvement of modifier genes. Affected muscles manifest a similar apoptosis-associated perturbation of the IκBα/nuclear factor κB pathway as seen in LGMD2A patients. In addition, Evans blue staining of muscle fibers reveals that the pathological process due to calpain 3 deficiency is associated with membrane alterations. PMID:11134085
Fiber Intake and Survival After Colorectal Cancer Diagnosis.
Song, Mingyang; Wu, Kana; Meyerhardt, Jeffrey A; Ogino, Shuji; Wang, Molin; Fuchs, Charles S; Giovannucci, Edward L; Chan, Andrew T
2018-01-01
Although high dietary fiber intake has been associated with a lower risk of colorectal cancer (CRC), it remains unknown whether fiber benefits CRC survivors. To assess the association of postdiagnostic fiber intake with mortality. A total of 1575 health care professionals with stage I to III CRC were evaluated in 2 prospective cohorts, Nurses' Health Study and Health Professionals Follow-up Study. Colorectal cancer-specific and overall mortality were determined after adjusting for other potential predictors for cancer survival. The study was conducted from December 23, 2016, to August 23, 2017. Consumption of total fiber and different sources of fiber and whole grains assessed by a validated food frequency questionnaire between 6 months and 4 years after CRC diagnosis. Hazard ratios (HRs) and 95% CIs of CRC-specific and overall mortality after adjusting for other potential predictors for cancer survival. Of the 1575 participants, 963 (61.1%) were women; mean (SD) age was 68.6 (8.9) years. During a median of 8 years of follow-up, 773 deaths were documented, including 174 from CRC. High intake of total fiber after diagnosis was associated with lower mortality. The multivariable HR per each 5-g increment in intake per day was 0.78 (95% CI, 0.65-0.93; P = .006) for CRC-specific mortality and 0.86 (95% CI, 0.79-0.93; P < .001) for all-cause mortality. Patients who increased their fiber intake after diagnosis from levels before diagnosis had a lower mortality, and each 5-g/d increase in intake was associated with 18% lower CRC-specific mortality (95% CI, 7%-28%; P = .002) and 14% lower all-cause mortality (95% CI, 8%-19%; P < .001). According to the source of fiber, cereal fiber was associated with lower CRC-specific mortality (HR per 5-g/d increment, 0.67; 95% CI, 0.50-0.90; P = .007) and all-cause mortality (HR, 0.78; 95% CI, 0.68-0.90; P < .001); vegetable fiber was associated with lower all-cause mortality (HR, 0.83; 95% CI, 0.72-0.96; P = .009) but not CRC-specific mortality (HR, 0.82; 95% CI, 0.60-1.13; P = .22); no association was found for fruit fiber. Whole grain intake was associated with lower CRC-specific mortality (HR per 20-g/d increment, 0.72; 95% CI, 0.59-0.88; P = .002), and this beneficial association was attenuated after adjusting for fiber intake (HR, 0.77; 95% CI, 0.62-0.96; P = .02). Higher fiber intake after the diagnosis of nonmetastatic CRC is associated with lower CRC-specific and overall mortality. Increasing fiber consumption after diagnosis may confer additional benefits to patients with CRC.
Peripheral Sensory Neurons Expressing Melanopsin Respond to Light
Matynia, Anna; Nguyen, Eileen; Sun, Xiaoping; Blixt, Frank W.; Parikh, Sachin; Kessler, Jason; Pérez de Sevilla Müller, Luis; Habib, Samer; Kim, Paul; Wang, Zhe Z.; Rodriguez, Allen; Charles, Andrew; Nusinowitz, Steven; Edvinsson, Lars; Barnes, Steven; Brecha, Nicholas C.; Gorin, Michael B.
2016-01-01
The ability of light to cause pain is paradoxical. The retina detects light but is devoid of nociceptors while the trigeminal sensory ganglia (TG) contain nociceptors but not photoreceptors. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are thought to mediate light-induced pain but recent evidence raises the possibility of an alternative light responsive pathway independent of the retina and optic nerve. Here, we show that melanopsin is expressed in both human and mouse TG neurons. In mice, they represent 3% of small TG neurons that are preferentially localized in the ophthalmic branch of the trigeminal nerve and are likely nociceptive C fibers and high-threshold mechanoreceptor Aδ fibers based on a strong size-function association. These isolated neurons respond to blue light stimuli with a delayed onset and sustained firing, similar to the melanopsin-dependent intrinsic photosensitivity observed in ipRGCs. Mice with severe bilateral optic nerve crush exhibit no light-induced responses including behavioral light aversion until treated with nitroglycerin, an inducer of migraine in people and migraine-like symptoms in mice. With nitroglycerin, these same mice with optic nerve crush exhibit significant light aversion. Furthermore, this retained light aversion remains dependent on melanopsin-expressing neurons. Our results demonstrate a novel light-responsive neural function independent of the optic nerve that may originate in the peripheral nervous system to provide the first direct mechanism for an alternative light detection pathway that influences motivated behavior. PMID:27559310
NASA Astrophysics Data System (ADS)
Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang
2018-04-01
Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.
Sangaramoorthy, Meera; Koo, Jocelyn; John, Esther M
2018-05-01
High dietary fiber intake has been associated with reduced breast cancer risk, but few studies considered tumor subtypes defined by estrogen receptor (ER) and progesterone receptor (PR) status or included racial/ethnic minority populations who vary in their fiber intake. We analyzed food frequency data from a population-based case-control study, including 2135 breast cancer cases (1070 Hispanics, 493 African Americans, and 572 non-Hispanic Whites (NHWs)) and 2571 controls (1391 Hispanics, 557 African Americans, and 623 NHWs). Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer associated with fiber intake were calculated using unconditional logistic regression. Breast cancer risk associated with high intake (high vs. low quartile) of bean fiber (p-trend = 0.01), total beans (p-trend = 0.03), or total grains (p-trend = 0.05) was reduced by 20%. Inverse associations were strongest for ER-PR- breast cancer, with risk reductions associated with high intake ranging from 28 to 36%. For bean fiber, risk was reduced among foreign-born Hispanics only, who had the highest fiber intake, whereas for grain intake, inverse associations were found among NHWs only. There was no evidence of association with fiber intake from vegetables and fruits or total intake of vegetables and fruits. A high dietary intake of bean fiber and fiber-rich foods such as beans and grains may lower the risk of ER-PR- breast cancer, an aggressive breast cancer subtype for which few risk factors have been identified. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Ma, Zhiying; He, Shoupu; Wang, Xingfen; Sun, Junling; Zhang, Yan; Zhang, Guiyin; Wu, Liqiang; Li, Zhikun; Liu, Zhihao; Sun, Gaofei; Yan, Yuanyuan; Jia, Yinhua; Yang, Jun; Pan, Zhaoe; Gu, Qishen; Li, Xueyuan; Sun, Zhengwen; Dai, Panhong; Liu, Zhengwen; Gong, Wenfang; Wu, Jinhua; Wang, Mi; Liu, Hengwei; Feng, Keyun; Ke, Huifeng; Wang, Junduo; Lan, Hongyu; Wang, Guoning; Peng, Jun; Wang, Nan; Wang, Liru; Pang, Baoyin; Peng, Zhen; Li, Ruiqiang; Tian, Shilin; Du, Xiongming
2018-05-07
Upland cotton is the most important natural-fiber crop. The genomic variation of diverse germplasms and alleles underpinning fiber quality and yield should be extensively explored. Here, we resequenced a core collection comprising 419 accessions with 6.55-fold coverage depth and identified approximately 3.66 million SNPs for evaluating the genomic variation. We performed phenotyping across 12 environments and conducted genome-wide association study of 13 fiber-related traits. 7,383 unique SNPs were significantly associated with these traits and were located within or near 4,820 genes; more associated loci were detected for fiber quality than fiber yield, and more fiber genes were detected in the D than the A subgenome. Several previously undescribed causal genes for days to flowering, fiber length, and fiber strength were identified. Phenotypic selection for these traits increased the frequency of elite alleles during domestication and breeding. These results provide targets for molecular selection and genetic manipulation in cotton improvement.
Hexosamine Biosynthetic Pathway Mutations Cause Neuromuscular Transmission Defect
Senderek, Jan; Müller, Juliane S.; Dusl, Marina; Strom, Tim M.; Guergueltcheva, Velina; Diepolder, Irmgard; Laval, Steven H.; Maxwell, Susan; Cossins, Judy; Krause, Sabine; Muelas, Nuria; Vilchez, Juan J.; Colomer, Jaume; Mallebrera, Cecilia Jimenez; Nascimento, Andres; Nafissi, Shahriar; Kariminejad, Ariana; Nilipour, Yalda; Bozorgmehr, Bita; Najmabadi, Hossein; Rodolico, Carmelo; Sieb, Jörn P.; Steinlein, Ortrud K.; Schlotter, Beate; Schoser, Benedikt; Kirschner, Janbernd; Herrmann, Ralf; Voit, Thomas; Oldfors, Anders; Lindbergh, Christopher; Urtizberea, Andoni; von der Hagen, Maja; Hübner, Angela; Palace, Jacqueline; Bushby, Kate; Straub, Volker; Beeson, David; Abicht, Angela; Lochmüller, Hanns
2011-01-01
Neuromuscular junctions (NMJs) are synapses that transmit impulses from motor neurons to skeletal muscle fibers leading to muscle contraction. Study of hereditary disorders of neuromuscular transmission, termed congenital myasthenic syndromes (CMS), has helped elucidate fundamental processes influencing development and function of the nerve-muscle synapse. Using genetic linkage, we find 18 different biallelic mutations in the gene encoding glutamine-fructose-6-phosphate transaminase 1 (GFPT1) in 13 unrelated families with an autosomal recessive CMS. Consistent with these data, downregulation of the GFPT1 ortholog gfpt1 in zebrafish embryos altered muscle fiber morphology and impaired neuromuscular junction development. GFPT1 is the key enzyme of the hexosamine pathway yielding the amino sugar UDP-N-acetylglucosamine, an essential substrate for protein glycosylation. Our findings provide further impetus to study the glycobiology of NMJ and synapses in general. PMID:21310273
Zhu, Siyuan; Tang, Shouwei; Tang, Qingming; Liu, Touming
2014-11-15
Ramie fiber extracted from stem bark is one of the most important natural fibers. The root-lesion nematode (RLN) Pratylenchus coffeae is a major ramie pest and causes large fiber yield losses in China annually. The response mechanism of ramie to RLN infection is poorly understood. In this study, we identified genes that are potentially involved in the RLN-resistance in ramie using Illumina pair-end sequencing in two RLN-infected plants (Inf1 and Inf2) and two control plants (CO1 and CO2). Approximately 56.3, 51.7, 43.4, and 45.0 million sequencing reads were generated from the libraries of CO1, CO2, Inf1, and Inf2, respectively. De novo assembly for these 196 million reads yielded 50,486 unigenes with an average length of 853.3bp. A total of 24,820 (49.2%) genes were annotated for their function. Comparison of gene expression levels between CO and Inf ramie revealed 777 differentially expressed genes (DEGs). The expression levels of 12 DEGs were further confirmed by real-time quantitative PCR (qRT-PCR). Pathway enrichment analysis showed that three pathways (phenylalanine metabolism, carotenoid biosynthesis, and phenylpropanoid biosynthesis) were strongly influenced by RLN infection. A series of candidate genes and pathways that may contribute to the defense response against RLN in ramie will be helpful for further improving resistance to RLN infection. Copyright © 2014. Published by Elsevier B.V.
Myoclonic epilepsy with ragged-red fibers without increased lactate levels.
Kimura, Shigemi; Ozasa, Shiro; Nakamura, Kyoko; Nomura, Keiko; Kosuge, Hirofumi
2009-07-01
Myoclonic epilepsy associated with ragged-red fibers is one of the mitochondrial encephalomyopathies. Pathogenic mitochondrial DNA mutations have been identified in the mitochondrial transfer RNA (tRNA)(Lys) at positions 8344 and 8356. Characteristics of myoclonic epilepsy associated with ragged-red fibers include myoclonic epilepsy, generalized epilepsy, hearing loss, exercise intolerance, lactic acidosis, and ragged-red fibers. The elevated lactate level is one of the most important symptoms needed to make a diagnosis of mitochondrial encephalomyopathy. In the present case, however, myoclonic epilepsy was associated with ragged-red fibers but without increased lactate levels. Therefore, myoclonic epilepsy associated with ragged-red fibers should be suspected in a patient who has myoclonic epilepsy that is difficult to control with antiepileptic medications and who has other symptoms of mitochondrial disease, such as mental retardation, even if the patient's lactate level is normal.
Han, Shu-Fen; Jiao, Jun; Zhang, Wei; Xu, Jia-Ying; Zhang, Weiguo; Fu, Chun-Ling; Qin, Li-Qiang
2017-01-01
Dietary fiber consumption is associated with reduced risk for the development of noncommunicable diseases. The aim of the present study was to evaluate the effects of cereal dietary fiber on the levels of proteins involved in lipolysis and thermogenesis in white adipose tissue (WAT) and brown adipose tissue (BAT) of C57 BL/6 J mice fed a high-fat diet (HFD). Male C57BL/6 J mice were fed normal chow diet (Chow), HFD, HFD plus oat fiber (H-oat), or HFD plus wheat bran fiber (H-wheat) for 24 wk. Body weight and food intake were recorded weekly. Serum adiponectin was assayed by an enzyme-linked immunosorbent assay kit. Western blotting was used to assess the protein expressions of adipose triacylglycerol lipase (ATGL), cAMP protein kinase catalytic subunit (cAMP), protein kinase A (PKA), perilipin A, hormone-sensitive lipase (HSL), uncoupling protein 1 (UCP1), fibroblast growth factor 21 (FGF-21), β3-adrenergic receptor (β3AR), and proliferator-activated receptor gamma coactivator-1 α (PGC-1 α) in the WAT and BAT. At the end of the feeding period, body and adipose tissues weight in both H-oat and H-wheat groups were lower than in the HFD group. Mice in the H-oat and H-wheat groups showed an increasing trend in serum adiponectin level. Compared with the HFD group, cereal dietary fiber increased protein expressions involved in the lipolysis and browning process. Compared with the H-wheat group, H-oat was more effective in protein expressions of PKA, PGC-1 α, and UCP1 of the WAT samples. Compared with the H-oat group, H-wheat was more effective in protein expressions of PKA, ATGL, UCP1, β3AR, and FGF-21 of the BAT samples. Taken together, our results suggested that cereal dietary fiber enhanced adipocyte lipolysis by the cAMP-PKA-HSL pathway and promoted WAT browning by activation of UCP1, and consequently reduced visceral fat mass in response to HFD feeding. Copyright © 2016 Elsevier Inc. All rights reserved.
Han, Shufen; Jiao, Jun; Zhang, Wei; Xu, Jiaying; Wan, Zhongxiao; Zhang, Weiguo; Gao, Xiaoran; Qin, Liqiang
2015-10-29
Adequate intake of dietary fibers has proven metabolic and cardiovascular benefits, molecular mechanisms remain still limited. This study was aimed to investigate the effects of cereal dietary fiber on obesity-related liver lipotoxicity in C57BL/6J mice fed a high-fat/cholesterol (HFC) diet and underlying mechanism. Forty-eight adult male C57BL/6J mice were randomly given a reference chow diet, or a high fat/cholesterol (HFC) diet supplemented with or without oat fiber or wheat bran fiber for 24 weeks. Our results showed mice fed oat or wheat bran fiber exhibited lower weight gain, lipid profiles and insulin resistance, compared with HFC diet. The two cereal dietary fibers potently decreased protein expressions of sterol regulatory element binding protein-1 and key factors involved in lipogenesis, including fatty acid synthase and acetyl-CoA carboxylase in target tissues. At molecular level, the two cereal dietary fibers augmented protein expressions of peroxisome proliferator-activated receptor alpha and gamma, liver X receptor alpha, and ATP-binding cassette transporter A1 in target tissues. Our findings indicated that cereal dietary fiber supplementation abrogated obesity-related liver lipotoxicity and dyslipidemia in C57BL/6J mice fed a HFC diet. In addition, the efficacy of oat fiber is greater than wheat bran fiber in normalizing these metabolic disorders and pathological profiles.
Han, Shufen; Jiao, Jun; Zhang, Wei; Xu, Jiaying; Wan, Zhongxiao; Zhang, Weiguo; Gao, Xiaoran; Qin, Liqiang
2015-01-01
Adequate intake of dietary fibers has proven metabolic and cardiovascular benefits, molecular mechanisms remain still limited. This study was aimed to investigate the effects of cereal dietary fiber on obesity-related liver lipotoxicity in C57BL/6J mice fed a high-fat/cholesterol (HFC) diet and underlying mechanism. Forty-eight adult male C57BL/6J mice were randomly given a reference chow diet, or a high fat/choleserol (HFC) diet supplemented with or without oat fiber or wheat bran fiber for 24 weeks. Our results showed mice fed oat or wheat bran fiber exhibtied lower weight gain, lipid profiles and insulin resistance, compared with HFC diet. The two cereal dietary fibers potently decreased protein expressions of sterol regulatory element binding protein-1 and key factors involved in lipogenesis, including fatty acid synthase and acetyl-CoA carboxylase in target tissues. At molecular level, the two cereal dietary fibers augmented protein expressions of peroxisome proliferator-activated receptor alpha and gamma, liver X receptor alpha, and ATP-binding cassette transporter A1 in target tissues. Our findings indicated that cereal dietary fiber supplementation abrogated obesity-related liver lipotoxicity and dyslipidemia in C57BL/6J mice fed a HFC diet. In addition, the efficacy of oat fiber is greater than wheat bran fiber in normalizing these metabolic disorders and pathological profiles. PMID:26510459
Efficient global fiber tracking on multi-dimensional diffusion direction maps
NASA Astrophysics Data System (ADS)
Klein, Jan; Köhler, Benjamin; Hahn, Horst K.
2012-02-01
Global fiber tracking algorithms have recently been proposed which were able to compute results of unprecedented quality. They account for avoiding accumulation errors by a global optimization process at the cost of a high computation time of several hours or even days. In this paper, we introduce a novel global fiber tracking algorithm which, for the first time, globally optimizes the underlying diffusion direction map obtained from DTI or HARDI data, instead of single fiber segments. As a consequence, the number of iterations in the optimization process can drastically be reduced by about three orders of magnitude. Furthermore, in contrast to all previous algorithms, the density of the tracked fibers can be adjusted after the optimization within a few seconds. We evaluated our method for diffusion-weighted images obtained from software phantoms, healthy volunteers, and tumor patients. We show that difficult fiber bundles, e.g., the visual pathways or tracts for different motor functions can be determined and separated in an excellent quality. Furthermore, crossing and kissing bundles are correctly resolved. On current standard hardware, a dense fiber tracking result of a whole brain can be determined in less than half an hour which is a strong improvement compared to previous work.
Relationship between Fiber Furnish and the Structural Performance of MDF
Leslie H. Groom; Laurence Mott; Stephen Shaler
1999-01-01
The structural performance of medium density fiberboard (MDF) is attributable to three primary variables which are: physical and mechanical properties of individual wood fibers; fiber-to-fiber stress transfer; and fiber orientation. These origins of fiber properties and stress transfer can be traced to the fiber generation method wherein fiber orientation is associated...
Lambeau, Kellen V; McRorie, Johnson W
2017-04-01
Only 5% of adults consume the recommended level of dietary fiber. Fiber supplements appear to be a convenient and concentrated source of fiber, but most do not provide the health benefits associated with dietary fiber. This review will summarize the physical effects of isolated fibers in small and large intestines, which drive clinically meaningful health benefits. A comprehensive literature review was conducted (Scopus and PubMed) without limits to year of publication (latest date included: October 31, 2016). The physical effects of fiber in the small intestine drive metabolic health effects (e.g., cholesterol lowering, improved glycemic control), and efficacy is a function of the viscosity of gel-forming fibers (e.g., psyllium, β-glucan). In the large intestine, fiber can provide a laxative effect if (a) it resists fermentation to remain intact throughout the large intestine, and (b) it increases percentage of water content to soften/bulk stool (e.g., wheat bran and psyllium). It is important for nurse practitioners to understand the underlying mechanisms that drive specific fiber-related health benefits, and which fiber supplements have rigorous clinical data to support a recommendation. For most fiber-related beneficial effects, "Fiber needs to gel to keep your patients well." ©2017 The Authors. Journal of the American Association of Nurse Practitioners published by Wiley Periodicals, Inc. on behalf of American Association of Nurse Practitioners.
Edlow, Brian L; Takahashi, Emi; Wu, Ona; Benner, Thomas; Dai, Guangping; Bu, Lihong; Grant, Patricia Ellen; Greer, David M; Greenberg, Steven M; Kinney, Hannah C; Folkerth, Rebecca D
2012-06-01
The ascending reticular activating system (ARAS) mediates arousal, an essential component of human consciousness. Lesions of the ARAS cause coma, the most severe disorder of consciousness. Because of current methodological limitations, including of postmortem tissue analysis, the neuroanatomic connectivity of the human ARAS is poorly understood. We applied the advanced imaging technique of high angular resolution diffusion imaging (HARDI) to elucidate the structural connectivity of the ARAS in 3 adult human brains, 2 of which were imaged postmortem. High angular resolution diffusion imaging tractography identified the ARAS connectivity previously described in animals and also revealed novel human pathways connecting the brainstem to the thalamus, the hypothalamus, and the basal forebrain. Each pathway contained different distributions of fiber tracts from known neurotransmitter-specific ARAS nuclei in the brainstem. The histologically guided tractography findings reported here provide initial evidence for human-specific pathways of the ARAS. The unique composition of neurotransmitter-specific fiber tracts within each ARAS pathway suggests structural specializations that subserve the different functional characteristics of human arousal. This ARAS connectivity analysis provides proof of principle that HARDI tractography may affect the study of human consciousness and its disorders, including in neuropathologic studies of patients dying in coma and the persistent vegetative state.
White matter tractography by means of Turboprop diffusion tensor imaging.
Arfanakis, Konstantinos; Gui, Minzhi; Lazar, Mariana
2005-12-01
White matter fiber-tractography by means of diffusion tensor imaging (DTI) is a noninvasive technique that provides estimates of the structural connectivity of the brain. However, conventional fiber-tracking methods using DTI are based on echo-planar image acquisitions (EPI), which suffer from image distortions and artifacts due to magnetic susceptibility variations and eddy currents. Thus, a large percentage of white matter fiber bundles that are mapped using EPI-based DTI data are distorted, and/or terminated early, while others are completely undetected. This severely limits the potential of fiber-tracking techniques. In contrast, Turboprop imaging is a multiple-shot gradient and spin-echo (GRASE) technique that provides images with significantly fewer susceptibility and eddy current-related artifacts than EPI. The purpose of this work was to evaluate the performance of fiber-tractography techniques when using data obtained with Turboprop-DTI. All fiber pathways that were mapped were found to be in agreement with the anatomy. There were no visible distortions in any of the traced fiber bundles, even when these were located in the vicinity of significant magnetic field inhomogeneities. Additionally, the Turboprop-DTI data used in this research were acquired in less than 19 min of scan time. Thus, Turboprop appears to be a promising DTI data acquisition technique for tracing white matter fibers.
Bradbury, Kathryn E; Appleby, Paul N; Key, Timothy J
2014-07-01
Fruit, vegetables, and certain components of plant foods, such as fiber, have long been thought to protect against cancer. The European Prospective Investigation into Cancer and Nutrition (EPIC) is a prospective cohort that includes >500,000 participants from 10 European countries and has made a substantial contribution to knowledge in this research area. The purpose of this article is to summarize the findings published thus far from the EPIC study on the associations between fruit, vegetable, or fiber consumption and the risk of cancer at 14 different sites. The risk of cancers of the upper gastrointestinal tract was inversely associated with fruit intake but was not associated with vegetable intake. The risk of colorectal cancer was inversely associated with intakes of total fruit and vegetables and total fiber, and the risk of liver cancer was also inversely associated with the intake of total fiber. The risk of cancer of the lung was inversely associated with fruit intake but was not associated with vegetable intake; this association with fruit intake was restricted to smokers and might be influenced by residual confounding due to smoking. There was a borderline inverse association of fiber intake with breast cancer risk. For the other 9 cancer sites studied (stomach, biliary tract, pancreas, cervix, endometrium, prostate, kidney, bladder, and lymphoma) there were no reported significant associations of risk with intakes of total fruit, vegetables, or fiber. © 2014 American Society for Nutrition.
Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion.
Ryu, Seongwoo; Lee, Phillip; Chou, Jeffrey B; Xu, Ruize; Zhao, Rong; Hart, Anastasios John; Kim, Sang-Gook
2015-06-23
The increasing demand for wearable electronic devices has made the development of highly elastic strain sensors that can monitor various physical parameters an essential factor for realizing next generation electronics. Here, we report an ultrahigh stretchable and wearable device fabricated from dry-spun carbon nanotube (CNT) fibers. Stretching the highly oriented CNT fibers grown on a flexible substrate (Ecoflex) induces a constant decrease in the conductive pathways and contact areas between nanotubes depending on the stretching distance; this enables CNT fibers to behave as highly sensitive strain sensors. Owing to its unique structure and mechanism, this device can be stretched by over 900% while retaining high sensitivity, responsiveness, and durability. Furthermore, the device with biaxially oriented CNT fiber arrays shows independent cross-sensitivity, which facilitates simultaneous measurement of strains along multiple axes. We demonstrated potential applications of the proposed device, such as strain gauge, single and multiaxial detecting motion sensors. These devices can be incorporated into various motion detecting systems where their applications are limited to their strain.
Sources and dispersive modes of micro-fibers in the environment.
Carr, Steve A
2017-05-01
Understanding the sources and distribution of microfibers (MFs) in the environment is critical if control and remediation measures are to be effective. Microfibers comprise an overwhelming fraction (>85%) of microplastic debris found on shorelines around the world. Although primary sources have not been fully vetted, until recently it was widely believed that domestic laundry discharges were the major source. It was also thought that synthetic fibers and particles having dimensions <5 mm easily bypassed filtration and other solid separation processes at wastewater treatment plants (WWTPs) and entered oceans and surface waters. A more thorough assessment of WWTP effluent discharges indicates, however, that fiber and particulate counts do not support the belief that plants are the primary vectors for fibers entering the environment. This finding may bolster concerns that active and pervasive shedding of fibers from common fabrics and textiles could be contributing significantly, via direct pathways, to burgeoning environmental loads. Integr Environ Assess Manag 2017;13:466-469. © 2017 SETAC. © 2017 SETAC.
Lu, Lu; Huang, Yan-Feng; Wang, Ming-Qing; Chen, De-Xiu; Wan, Heng; Wei, Lian-Bo; Xiao, Wei
Evidence suggests that dietary fiber benefits patients with chronic kidney disease (CKD); however, this conclusion requires further validation. In this study, we examined the effects of dietary fiber on kidney function, inflammation, indoxyl sulfate, nutritional status, and cardiovascular risk in patients with advanced CKD. We performed linear regressions to assess the association between dietary fiber intake and CKD parameters. The aforementioned parameters were compared over an 18-month follow- up period. Kaplan-Meier analysis was used to investigate the association between fiber intake and Cardiac vascular disease (CVD). In total, 157 patients were included in this study. Dietary fiber and inflammatory indices were associated (interleukin [IL]-6: β=-0.024, p=0.035). The differential estimated glomerular filtration rate (ΔeGFR) as well as levels of C-reactive protein, IL-6, indoxyl sulfate, and serum cholesterol in the higher fiber intake (>=25 g/day) group were lower than those in the lower fiber intake (<25 g/day) group (p<0.05). Differences in IL-6 and indoxyl sulfate levels were more significant in patients in the higher protein intake group (p<0.05). Dietary fiber intake may be a protective factor associated with CVD (hazard ratio=0.537 and 0.305- 0.947). The protein nutritional status was not different between the two groups (p>0.05). Our results suggest that increasing fiber intake can retard the decrease in the eGFR; can reduce the levels of proinflammatory factors, indoxyl sulfate, and serum cholesterol; and is negatively associated with cardiovascular risk, but does not disrupt the nutritional status of patients with CKD.
Dietary fiber intake in early pregnancy and risk of subsequent preeclampsia.
Qiu, Chunfang; Coughlin, Kara B; Frederick, Ihunnaya O; Sorensen, Tanya K; Williams, Michelle A
2008-08-01
Substantial epidemiological evidence documents diverse health benefits, including reduced risks of hypertension, associated with diets high in fiber. Few studies, however, have investigated the extent to which dietary fiber intake in early pregnancy is associated with reductions in preeclampsia risk. We assessed the relationship between maternal dietary fiber intake in early pregnancy and risk of preeclampsia. We also evaluated cross-sectional associations of maternal early pregnancy plasma lipid and lipoprotein concentrations with fiber intake. The study population comprised 1,538 pregnant Washington State residents. A 121-item food frequency questionnaire (FFQ) was used to assess maternal dietary intake, 3 months before and during early pregnancy; and generalized linear regression procedures were used to derive relative risk (RR) and 95% confidence intervals (CIs). Dietary total fiber intake was associated with reduced preeclampsia risk. After adjusting for confounders, the RR of preeclampsia for women in the highest (> or =21.2 g/day) vs. the lowest quartile (<11.9 g/day) was 0.28 (95% CI = 0.11-0.75). We observed associations of similar magnitude when the highest vs. the lowest quartiles of water-soluble fiber (RR = 0.30; 95% CI = 0.11-0.86) and insoluble fiber (RR = 0.35; 95% CI = 0.14-0.87) were evaluated. Mean triglyceride concentrations were lower (-11.9 mg/dl, P = 0.02) and high-density lipoprotein cholesterol concentrations were higher (+2.63 mg/dl, P = 0.09) for women in the highest quartile vs. those in the lowest quartile. These findings of reduced preeclampsia risk with higher total fiber intake corroborate an earlier report; and expand the literature by providing evidence, which suggests that dietary fiber may attenuate pregnancy-associated dyslipidemia, an important clinical characteristic of preeclampsia.
Presidential Green Chemistry Challenge: 2008 Greener Synthetic Pathways Award
Presidential Green Chemistry Challenge 2008 award winner, Battelle, developed a biobased soy toner for laser printers and copiers. The technology saves energy and improves de-inking, allowing more paper fiber to be recycled.
Yakhnitsa, V.
2013-01-01
Cerebellar Purkinje cells are excited by two afferent pathways: climbing and mossy fibers. Climbing fibers evoke large “complex spikes” (CSs) that discharge at low frequencies. Mossy fibers synapse on granule cells whose parallel fibers excite Purkinje cells and may contribute to the genesis of “simple spikes” (SSs). Both afferent systems convey vestibular information to folia 9c–10. After making a unilateral labyrinthectomy (UL) in mice, we tested how the discharge of CSs and SSs was changed by the loss of primary vestibular afferent mossy fibers during sinusoidal roll tilt. We recorded from cells identified by juxtacellular neurobiotin labeling. The UL preferentially reduced vestibular modulation of CSs and SSs in folia 8–10 contralateral to the UL. The effects of a UL on Purkinje cell discharge were similar in folia 9c–10, to which vestibular primary afferents project, and in folia 8–9a, to which they do not project, suggesting that vestibular primary afferent mossy fibers were not responsible for the UL-induced alteration of SS discharge. UL also induced reduced vestibular modulation of stellate cell discharge contralateral to the UL. We attribute the decreased modulation to reduced vestibular modulation of climbing fibers. In summary, climbing fibers modulate CSs directly and SSs indirectly through activation of stellate cells. Whereas vestibular primary afferent mossy fibers cannot account for the modulated discharge of SSs or stellate cells, the nonspecific excitation of Purkinje cells by parallel fibers may set an operating point about which the discharges of SSs are sculpted by climbing fibers. PMID:23966673
Antosova, Barbora; Smolikova, Jana; Borkovcova, Romana; Strnad, Hynek; Lachova, Jitka; Machon, Ondrej; Kozmik, Zbynek
2013-01-01
The Wnt/β-catenin signaling pathway controls many processes during development, including cell proliferation, cell differentiation and tissue homeostasis, and its aberrant regulation has been linked to various pathologies. In this study we investigated the effect of ectopic activation of Wnt/β-catenin signaling during lens fiber cell differentiation. To activate Wnt/β-catenin signaling in lens fiber cells, the transgenic mouse referred to as αA-CLEF was generated, in which the transactivation domain of β-catenin was fused to the DNA-binding protein LEF1, and expression of the transgene was controlled by αA-crystallin promoter. Constitutive activation of Wnt/β-catenin signaling in lens fiber cells of αA-CLEF mice resulted in abnormal and delayed fiber cell differentiation. Moreover, adult αA-CLEF mice developed cataract, microphthalmia and manifested downregulated levels of γ-crystallins in lenses. We provide evidence of aberrant expression of cell cycle regulators in embryonic lenses of αA-CLEF transgenic mice resulting in the delay in cell cycle exit and in the shift of fiber cell differentiation to the central fiber cell compartment. Our results indicate that precise regulation of the Wnt/β-catenin signaling activity during later stages of lens development is essential for proper lens fiber cell differentiation and lens transparency. PMID:24205179
Processing Pathways in Mental Arithmetic—Evidence from Probabilistic Fiber Tracking
Glauche, Volkmar; Weiller, Cornelius; Willmes, Klaus
2013-01-01
Numerical cognition is a case of multi-modular and distributed cerebral processing. So far neither the anatomo-functional connections between the cortex areas involved nor their integration into established frameworks such as the differentiation between dorsal and ventral processing streams have been specified. The current study addressed this issue combining a re-analysis of previously published fMRI data with probabilistic fiber tracking data from an independent sample. We aimed at differentiating neural correlates and connectivity for relatively easy and more difficult addition problems in healthy adults and their association with either rather verbally mediated fact retrieval or magnitude manipulations, respectively. The present data suggest that magnitude- and fact retrieval-related processing seem to be subserved by two largely separate networks, both of them comprising dorsal and ventral connections. Importantly, these networks not only differ in localization of activation but also in the connections between the cortical areas involved. However, it has to be noted that even though seemingly distinct anatomically, these networks operate as a functionally integrated circuit for mental calculation as revealed by a parametric analysis of brain activation. PMID:23383194
Schotzinger, R J; Landis, S C
1990-05-01
Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in developing and adult rats receives an abundant sympathetic catecholaminergic and sensory innervation, but not a cholinergic innervation.
Dietary fiber intakes and insulin requirements in pregnant women with type 1 diabetes.
Kalkwarf, H J; Bell, R C; Khoury, J C; Gouge, A L; Miodovnik, M
2001-03-01
To determine whether higher dietary fiber intake (water soluble and insoluble) is associated with lower insulin requirements and better glycemic control in pregnant women with type 1 diabetes consuming a self-selected diet. A longitudinal, observational study. Pregnant women (n=141) with type 1 diabetes participating in an interdisciplinary program examining the effects of glycemic control on pregnancy outcome (Diabetes and Pregnancy Program, University of Cincinnati Medical Center). We determined total, water soluble and insoluble fiber intakes from 3-day food records kept each trimester during pregnancy. Outcome measures were insulin dose, pre-meal blood glucose, and glycated hemoglobin concentrations. Correlation coefficients, multiple regression, mixed-model analysis of variance. Mean intakes (g/day) of total, water soluble fiber, and insoluble fiber were 14.0 (range, 1.8-33.1), 4.8 (range, 0.6-10.5) and 9.0 (range, 1.1-24.0), respectively. In the second and third trimesters of pregnancy, insulin requirements were inversely associated with total, water soluble, and insoluble fiber intakes; the correlation coefficients ranged from -0.22 to -0.17 (P=.02 to .08). Insulin requirements associated with a higher fiber intake (20.5 g/day) were 16% to 18% lower than for a lower fiber intake (8.1 g/day). These relations remained after adjustment for body weight, disease severity and duration, insulin type, and study year in the second (P=.03 to .10) but not in the third trimester. Pre-meal blood glucose and glycated hemoglobin concentrations were not associated with fiber intake. Among pregnant women with type 1 diabetes, higher fiber intake is associated with lower daily insulin requirements. Dietary fiber intake should be considered when counseling patients about the management of blood glucose concentrations.
Zhou, F C; Chiang, Y H; Wang, Y
1996-11-01
The physical repair and restoration of a completely damaged pathway in the brain has not been achieved previously. In a previous study, using excitatory amino acid bridging and fetal neural transplantation, we demonstrated that a bridged mesencephalic transplant in the substantia nigra generated an artificial nerve pathway that reinnervated the striatum of 6-hydroxydopamine (6-OHDA)-lesioned rats. In the current study, we report that a bridged mesencephalic transplant can anatomically, neurochemically, and functionally reinstate the 6-OHDA-eradicated nigro-striatal pathway. An excitatory amino acid, kainic acid, laid down in a track during the transplant generated a trophic environment that effectively guided the robust growth of transplanted neuronal fibers in a bundle to innervate the distal striatum. Growth occurred at the remarkable speed of approximately 200 microm/d. Two separate and distinct types of dopamine (DA) innervation from the transplant have been achieved for the first time: (1) DA innervation of the striatum, and (2) DA innervation of the pars reticularis of the substantia nigra. In addition, neuronal tracing revealed that reciprocal connections were achieved. The grafted DA neurons in the SNr innervated the host's striatum, whereas the host's striatal neurons, in turn, innervated the graft within 3-8 weeks. Electrochemical volt- ammetry recording revealed the restoration of DA release and clearance in a broad striatal area associated with the DA reinnervation. Furthermore, the amphetamine-induced rotation was attenuated, which indicates that the artificial pathways were motor functional. This study provides additional evidences that our bridged transplantation technique is a potential means for the repair of a completely damaged neuronal pathway.
Tricarico, Domenico; Camerino, Diana Conte
2011-01-01
The periodic paralysis (PP) are rare autosomal-dominant disorders associated to mutations in the skeletal muscle sodium, calcium, and potassium channel genes characterized by muscle fiber depolarization with un-excitability, episodes of weakness with variations in serum potassium concentrations. Recent advances in thyrotoxic PP and hypokalemic PP (hypoPP) confirm the involvement of the muscle potassium channels in the pathogenesis of the diseases and their role as target of action for drugs of therapeutic interest. The novelty in the gating pore currents theory help to explain the disease symptoms, and open the possibility to more specifically target the disease. It is now known that the fiber depolarization in the hypoPP is due to an unbalance between the novel identified depolarizing gating pore currents (Igp) carried by protons or Na+ ions flowing through aberrant alternative pathways of the mutant subunits and repolarizing inwardly rectifying potassium channel (Kir) currents which also includes the ATP-sensitive subtype. Abnormal activation of the Igp or deficiency in the Kir channels predispose to fiber depolarization. One pharmacological strategy is based on blocking the Igp without affecting normal channel gating. It remains safe and effective the proposal of targeting the KATP, Kir channels, or BK channels by drugs capable to specifically open at nanomolar concentrations the skeletal muscle subtypes with less side effects. PMID:21687503
Kadekawa, Katsumi; Majima, Tsuyoshi; Shimizu, Takahiro; Wada, Naoki; de Groat, William C; Kanai, Anthony J; Goto, Momokazu; Yoshiyama, Mitsuharu; Sugaya, Kimio; Yoshimura, Naoki
2017-09-01
We examined bladder and urethral sphincter activity in mice with or without spinal cord injury (SCI) after C-fiber afferent desensitization induced by capsaicin pretreatment and changes in electrophysiological properties of mouse bladder afferent neurons 4 wk after SCI. Female C57BL/6N mice were divided into four groups: 1 ) spinal intact (SI)-control, 2 ) SI-capsaicin pretreatment (Cap), 3 ) SCI-control, and 4 ) SCI-Cap groups. Continuous cystometry and external urethral sphincter (EUS)-electromyogram (EMG) were conducted under an awake condition. In the Cap groups, capsaicin (25, 50, or 100 mg/kg) was injected subcutaneously 4 days before the experiments. In the SI-Cap group, 100 mg/kg capsaicin pretreatment significantly increased bladder capacity and decreased the silent period duration of EUS/EMG compared with the SI-control group. In the SCI-Cap group, 50 and 100 mg/kg capsaicin pretreatment decreased the number of nonvoiding contractions (NVCs) and the duration of reduced EUS activity during voiding, respectively, compared with the SCI-control group. In SCI mice, hexamethonium, a ganglionic blocker, almost completely blocked NVCs, suggesting that they are of neurogenic origin. Patch-clamp recordings in capsaicin-sensitive bladder afferent neurons from SCI mice showed hyperexcitability, which was evidenced by decreased spike thresholds and increased firing rate compared with SI mice. These results indicate that capsaicin-sensitive C-fiber afferent pathways, which become hyperexcitable after SCI, can modulate bladder and urethral sphincter activity in awake SI and SCI mice. Detrusor overactivity as shown by NVCs in SCI mice is significantly but partially dependent on capsaicin-sensitive C-fiber afferents, whereas the EUS relaxation during voiding is enhanced by capsaicin-sensitive C-fiber bladder afferents in SI and SCI mice. Copyright © 2017 the American Physiological Society.
de Blank, Peter; Fisher, Michael J; Gittleman, Haley; Barnholtz-Sloan, Jill S; Badve, Chaitra; Berman, Jeffrey I
2018-01-01
Fractional anisotropy (FA) of the optic radiations has been associated with vision deficit in multiple intrinsic brain pathologies including NF1 associated optic pathway glioma, but hand-drawn regions of interest used in previous tractography methods limit consistency of this potential biomarker. We created an automated method to identify white matter tracts in the optic radiations and compared this method to previously reported hand-drawn tractography. Automated tractography of the optic radiation using probabilistic streamline fiber tracking between the lateral geniculate nucleus of the thalamus and the occipital cortex was compared to the hand-drawn method between regions of interest posterior to Meyer's loop and anterior to tract branching near the calcarine cortex. Reliability was assessed by two independent raters in a sample of 20 healthy child controls. Among 50 children with NF1-associated optic pathway glioma, the association of FA and visual acuity deficit was compared for both tractography methods. Hand-drawn tractography methods required 2.6±0.9min/participant; automated methods were performed in <1min of operator time for all participants. Cronbach's alpha was 0.83 between two independent raters for FA in hand-drawn tractography, but repeated automated tractography resulted in identical FA values (Cronbach's alpha=1). On univariate and multivariate analyses, FA was similarly associated with visual acuity loss using both methods. Receiver operator characteristic curves of both multivariate models demonstrated that both automated and hand-drawn tractography methods were equally able to distinguish normal from abnormal visual acuity. Automated tractography of the optic radiations offers a fast, reliable and consistent method of tract identification that is not reliant on operator time or expertise. This method of tract identification may be useful as DTI is developed as a potential biomarker for visual acuity. Copyright © 2017 Elsevier Inc. All rights reserved.
Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies.
Kim, Youngyo; Je, Youjin
2014-09-15
Greater intake of dietary fiber has been associated with lower risk of several chronic diseases. Some observational studies have examined the association between dietary fiber intake and total mortality, but the results were inconclusive. We conducted a meta-analysis of data from prospective cohort studies to quantitatively assess the association. Eligible studies were identified by searching the PubMed and Embase databases for all articles published through November 30, 2013, and by reviewing the reference lists of retrieved articles. Study-specific estimates adjusting for potential confounders were combined to calculate a pooled relative risk and 95% confidence interval using a random-effects model. Seven prospective cohort studies of dietary fiber intake and total mortality, including 62,314 deaths among 908,135 participants, were identified. The pooled adjusted relative risk of total mortality for the highest category of dietary fiber intake versus the lowest was 0.77 (95% confidence interval: 0.74, 0.80). In a dose-response meta-analysis, the pooled adjusted relative risk for a 10-g/day increment of dietary fiber intake was 0.89 (95% confidence interval: 0.85, 0 92). By source of fiber, cereal and, to a lesser extent, vegetable fiber were significantly associated with lower total mortality, while fruit fiber showed no association. In conclusion, high dietary fiber intake may reduce the risk of total mortality. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Rad, Iman; Kouhzaei, Sogolie; Mobasheri, Hamid; Saberi, Hooshang
2015-02-01
Objectives. The aim of the current study was to mimic mechanical impacts on the spinal cord by manifesting the effects of dorsoventral (DVMP) and lateral (LMP) mechanical pressure on neural activity to address points to be considered during surgery for different purposes, including spinal cord decompression. Approaches. Spinal cords of anesthetized rats were compressed at T13. Different characteristics of axons, including vulnerability, excitability, and conduction velocity (CV), in response to promptness, severity, and duration of pressure were assessed by spinal cord evoked potentials (SCEPs). Real-time SCEPs recorded at L4-5 revealed N1, N2, and N3 peaks that were used to represent the activity of injured sensory afferents, interneurons, and MN fibers. The averaged SCEP recordings were fitted by trust-region algorithm to find the equivalent Gaussian and polynomial equations. Main results. The pyramidal and extrapyramidal pathways possessed CVs of 3-11 and 16-80 m s-1, respectively. DVMP decreased the excitability of myelinated neural fibers in antidromic and orthodromic pathways. The excitability of fibers in extrapyramidal and pyramidal pathways of lateral corticospinal (LCS) and anterior corticospinal (ACS) tracts decreased following LMP. A significant drop in the amplitude of N3 and its conduction velocity (CV) revealed higher susceptibility of less-myelinated fibers to both DVMP and LMP. The best parametric fitting model for triplet healthy spinal cord CAP was a six-term Gaussian equation (G6) that fell into a five-term equation (G5) at the complete compression stage. Significance. The spinal cord is more susceptible to dorsoventral than lateral mechanical pressures, and this should be considered in spinal cord operations. SCEPs have shown promising capabilities for evaluating the severity of SCI and thus can be applied for diagnostic or prognostic intraoperative monitoring (IOM).
White matter integrity deficits in prefrontal-amygdala pathways in Williams syndrome.
Avery, Suzanne N; Thornton-Wells, Tricia A; Anderson, Adam W; Blackford, Jennifer Urbano
2012-01-16
Williams syndrome is a neurodevelopmental disorder associated with significant non-social fears. Consistent with this elevated non-social fear, individuals with Williams syndrome have an abnormally elevated amygdala response when viewing threatening non-social stimuli. In typically-developing individuals, amygdala activity is inhibited through dense, reciprocal white matter connections with the prefrontal cortex. Neuroimaging studies suggest a functional uncoupling of normal prefrontal-amygdala inhibition in individuals with Williams syndrome, which might underlie both the extreme amygdala activity and non-social fears. This functional uncoupling might be caused by structural deficits in underlying white matter pathways; however, prefrontal-amygdala white matter deficits have yet to be explored in Williams syndrome. We used diffusion tensor imaging to investigate prefrontal-amygdala white matter integrity differences in individuals with Williams syndrome and typically-developing controls with high levels of non-social fear. White matter pathways between the amygdala and several prefrontal regions were isolated using probabilistic tractography. Within each pathway, we tested for between-group differences in three measures of white matter integrity: fractional anisotropy (FA), radial diffusivity (RD), and parallel diffusivity (λ(1)). Individuals with Williams syndrome had lower FA, compared to controls, in several of the prefrontal-amygdala pathways investigated, indicating a reduction in white matter integrity. Lower FA in Williams syndrome was explained by significantly higher RD, with no differences in λ(1), suggestive of lower fiber density or axon myelination in prefrontal-amygdala pathways. These results suggest that deficits in the structural integrity of prefrontal-amygdala white matter pathways might underlie the increased amygdala activity and extreme non-social fears observed in Williams syndrome. Copyright © 2011 Elsevier Inc. All rights reserved.
Witkin, J W
1987-01-01
The luteinizing hormone-releasing hormone (LHRH) system was examined immunocytochemically in olfactory bulbs of adult monkeys, including two New World species (squirrel monkey, Saimiri sciureus and owl monkey, Aotus trivirgatus) and one Old World species (cynomolgus macaque, Macaca fasciculata), and in the brain and nasal region of a fetal rhesus macaque Macaca mulatta. LHRH neurons and fibers were found sparsely distributed in the olfactory bulbs in all adult monkeys. There was more LHRH in the accessory olfactory bulb (which is absent in Old World monkeys). In the fetal macaque there was a rich distribution of LHRH neurons and fibers along the pathway of the nervus terminalis, anterior and ventral to the olfactory bulb, and in the nasal septum, with fibers branching into the olfactory epithelium. In addition, there were LHRH neurons and fibers in the optic nerve.
Protein-induced Photophysical Changes to the Amyloid Indicator Dye Thioflavin T
DOE Office of Scientific and Technical Information (OSTI.GOV)
L Wolfe; M Calabrese; A Nath
2011-12-31
The small molecule thioflavin T (ThT) is a defining probe for the identification and mechanistic study of amyloid fiber formation. As such, ThT is fundamental to investigations of serious diseases such as Alzheimer's disease, Parkinson disease, and type II diabetes. For each disease, a different protein undergoes conformational conversion to a {beta}-sheet rich fiber. The fluorescence of ThT exhibits an increase in quantum yield upon binding these fibers. Despite its widespread use, the structural basis for binding specificity and for the changes to the photophysical properties of ThT remain poorly understood. Here, we report the co-crystal structures of ThT withmore » two alternative states of {beta}-2 microglobulin ({beta}2m); one monomeric, the other an amyloid-like oligomer. In the latter, the dye intercalates between {beta}-sheets orthogonal to the {beta}-strands. Importantly, the fluorophore is bound in such a manner that a photophysically relevant torsion is limited to a range of angles generally associated with low, not high, quantum yield. Quantum mechanical assessment of the fluorophore shows the electronic distribution to be strongly stabilized by aromatic interactions with the protein. Monomeric {beta}2m gives little increase in ThT fluorescence despite showing three fluorophores, at two binding sites, in configurations generally associated with high quantum yield. Our efforts fundamentally extend existing understanding about the origins of amyloid-induced photophysical changes. Specifically, the {beta}-sheet interface that characterizes amyloid acts both sterically and electronically to stabilize the fluorophore's ground state electronic distribution. By preventing the fluorophore from adopting its preferred excited state configuration, nonradiative relaxation pathways are minimized and quantum yield is increased.« less
Protein-induced photophysical changes to the amyloid indicator dye thioflavin T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, Leslie S.; Calabrese, Matthew F.; Nath, Abhinav
2010-10-04
The small molecule thioflavin T (ThT) is a defining probe for the identification and mechanistic study of amyloid fiber formation. As such, ThT is fundamental to investigations of serious diseases such as Alzheimer's disease, Parkinson disease, and type II diabetes. For each disease, a different protein undergoes conformational conversion to a {beta}-sheet rich fiber. The fluorescence of ThT exhibits an increase in quantum yield upon binding these fibers. Despite its widespread use, the structural basis for binding specificity and for the changes to the photophysical properties of ThT remain poorly understood. Here, we report the co-crystal structures of ThT withmore » two alternative states of {beta}-2 microglobulin ({beta}2m); one monomeric, the other an amyloid-like oligomer. In the latter, the dye intercalates between {beta}-sheets orthogonal to the {beta}-strands. Importantly, the fluorophore is bound in such a manner that a photophysically relevant torsion is limited to a range of angles generally associated with low, not high, quantum yield. Quantum mechanical assessment of the fluorophore shows the electronic distribution to be strongly stabilized by aromatic interactions with the protein. Monomeric {beta}2m gives little increase in ThT fluorescence despite showing three fluorophores, at two binding sites, in configurations generally associated with high quantum yield. Our efforts fundamentally extend existing understanding about the origins of amyloid-induced photophysical changes. Specifically, the {beta}-sheet interface that characterizes amyloid acts both sterically and electronically to stabilize the fluorophore's ground state electronic distribution. By preventing the fluorophore from adopting its preferred excited state configuration, nonradiative relaxation pathways are minimized and quantum yield is increased.« less
Lal, Rakesh M.; An, Michael; Poynton, Clare B.; Li, Muwei; Jiang, Hangyi; Oishi, Kenichi; Selemon, Lynn D.; Mori, Susumu; Miller, Michael I.
2013-01-01
Abstract Probabilistic methods have the potential to generate multiple and complex white matter fiber tracts in diffusion tensor imaging (DTI). Here, a method based on dynamic programming (DP) is introduced to reconstruct fibers pathways whose complex anatomical structures cannot be resolved beyond the resolution of standard DTI data. DP is based on optimizing a sequentially additive cost function derived from a Gaussian diffusion model whose covariance is defined by the diffusion tensor. DP is used to determine the optimal path between initial and terminal nodes by efficiently searching over all paths, connecting the nodes, and choosing the path in which the total probability is maximized. An ex vivo high-resolution scan of a macaque hemi-brain is used to demonstrate the advantages and limitations of DP. DP can generate fiber bundles between distant cortical areas (superior longitudinal fasciculi, arcuate fasciculus, uncinate fasciculus, and fronto-occipital fasciculus), neighboring cortical areas (dorsal and ventral banks of the principal sulcus), as well as cortical projections to the hippocampal formation (cingulum bundle), neostriatum (motor cortical projections to the putamen), thalamus (subcortical bundle), and hippocampal formation projections to the mammillary bodies via the fornix. Validation is established either by comparison with in vivo intracellular transport of horseradish peroxidase in another macaque monkey or by comparison with atlases. DP is able to generate known pathways, including crossing and kissing tracts. Thus, DP has the potential to enhance neuroimaging studies of cortical connectivity. PMID:23879573
Dietary fiber intake and risk factors for cardiovascular disease in French adults.
Lairon, Denis; Arnault, Nathalie; Bertrais, Sandrine; Planells, Richard; Clero, Enora; Hercberg, Serge; Boutron-Ruault, Marie-Christine
2005-12-01
Increased consumption of dietary fiber is widely recommended to maintain or improve health, but knowledge of the relation between dietary fiber sources and cardiovascular disease risk factors is limited. We examined the relation between the source or type of dietary fiber intake and cardiovascular disease risk factors in a cohort of adult men and women. In a cross-sectional study, quintiles of fiber intake were determined from dietary records, separately for 2532 men and 3429 women. Age- and multivariate-controlled logistic models investigated the odds ratios of abnormal markers for quintiles 2-5 of fiber intake compared with the lowest quintile. The highest total dietary fiber and nonsoluble dietary fiber intakes were associated with a significantly (P < 0.05) lower risk of overweight and elevated waist-to-hip ratio, blood pressure, plasma apolipoprotein (apo) B, apo B:apo A-I, cholesterol, triacylglycerols, and homocysteine. Soluble dietary fiber was less effective. Fiber from cereals was associated with a lower body mass index, blood pressure, and homocysteine concentration; fiber from vegetables with a lower blood pressure and homocysteine concentration; and fiber from fruit with a lower waist-to-hip ratio and blood pressure. Fiber from dried fruit or nuts and seeds was associated with a lower body mass index, waist-to-hip ratio, and fasting apo B and glucose concentrations. Fiber from pulses had no specific effect. Dietary fiber intake is inversely correlated with several cardiovascular disease risk factors in both sexes, which supports its protective role against cardiovascular disease and recommendations for its increased consumption.
Wannamethee, S Goya; Whincup, Peter H; Thomas, Mary C; Sattar, Naveed
2009-10-01
To examine the relationship between dietary fiber and the risk of type 2 diabetes in older men and the role of hepatic and inflammatory markers. The study was performed prospectively and included 3,428 nondiabetic men (age 60-79 years) followed up for 7 years, during which there were 162 incident cases of type 2 diabetes. Low total dietary fiber (lowest quartile < or =20 g/day) was associated with increased risk of diabetes after adjustment for total calorie intake and potential confounders (relative risk -1.47 [95% CI 1.03-2.11]). This increased risk was seen separately for both low cereal and low vegetable fiber intake. Dietary fiber was inversely associated with inflammatory markers (C-reactive protein, interleukin-6) and with tissue plasminogen activator and gamma-glutamyl transferase. Adjustment for these markers attenuated the increased risk (1.28 [0.88-1.86]). Dietary fiber is associated with reduced diabetes risk, which may be partly explained by inflammatory markers and hepatic fat deposition.
Effect of phosphodiesterase inhibitors in the bladder.
Chughtai, Bilal; Ali, Aizaz; Dunphy, Claire; Kaplan, Steven A
2015-01-01
Many aging men will experience lower urinary tract symptoms (LUTS). Phosphodiesterase type 5 (PDE5) inhibitors have shown promise in treating LUTS in these patients. PDE5 inhibitors mediate their effects through several pathways including cAMP, NO/cGMP, K-channel modulated pathways, and the l -cysteine/H 2 S pathway. PDE5 inhibitors exert their effect in muscle cells, nerve fibers, and interstitial cells (ICs). The use of PDE5 inhibitors led to improvement in LUTS. This included urodynamic parameters. PDE5 inhibitors may play a significant role in LUTS due to their effect on the bladder rather than the prostate.
Warner, Tamara Duckworth; Behnke, Marylou; Eyler, Fonda Davis; Padgett, Kyle; Leonard, Christiana; Hou, Wei; Garvan, Cynthia Wilson; Schmalfuss, Ilona M.; Blackband, Stephen J.
2011-01-01
BACKGROUND Although animal studies have demonstrated frontal white matter and behavioral changes resulting from prenatal cocaine exposure, no human studies have associated neuropsychological deficits in attention and inhibition with brain structure. We used diffusion tensor imaging to investigate frontal white matter integrity and executive functioning in cocaine-exposed children. METHODS Six direction diffusion tensor images were acquired using a Siemens 3T scanner with a spin-echo echo-planar imaging pulse sequence on right-handed cocaine-exposed (n = 28) and sociodemographically similar non-exposed children (n = 25; mean age: 10.6 years) drawn from a prospective, longitudinal study. Average diffusion and fractional anisotropy were measured in the left and right frontal callosal and frontal projection fibers. Executive functioning was assessed using two well-validated neuropsychological tests (Stroop color-word test and Trail Making Test). RESULTS Cocaine-exposed children showed significantly higher average diffusion in the left frontal callosal and right frontal projection fibers. Cocaine-exposed children were also significantly slower on a visual-motor set-shifting task with a trend toward lower scores on a verbal inhibition task. Controlling for gender and intelligence, average diffusion in the left frontal callosal fibers was related to prenatal exposure to alcohol and marijuana and an interaction between cocaine and marijuana exposure. Performance on the visual-motor set-shifting task was related to prenatal cocaine exposure and an interaction between cocaine and tobacco exposure. Significant correlations were found between test performance and fractional anisotropy in areas of the frontal white matter. CONCLUSIONS Prenatal cocaine exposure, alone and in combination with exposure to other drugs, is associated with slightly poorer executive functioning and subtle microstructural changes suggesting less mature development of frontal white matter pathways. The relative contribution of postnatal environmental factors, including characteristics of the caregiving environment and stressors associated with poverty and out-of-home placement, on brain development and behavioral functioning in polydrug-exposed children awaits further research. PMID:17079574
Warner, Tamara Duckworth; Behnke, Marylou; Eyler, Fonda Davis; Padgett, Kyle; Leonard, Christiana; Hou, Wei; Garvan, Cynthia Wilson; Schmalfuss, Ilona M; Blackband, Stephen J
2006-11-01
Although animal studies have demonstrated frontal white matter and behavioral changes resulting from prenatal cocaine exposure, no human studies have associated neuropsychological deficits in attention and inhibition with brain structure. We used diffusion tensor imaging to investigate frontal white matter integrity and executive functioning in cocaine-exposed children. Six direction diffusion tensor images were acquired using a Siemens 3T scanner with a spin-echo echo-planar imaging pulse sequence on right-handed cocaine-exposed (n = 28) and sociodemographically similar non-exposed children (n = 25; mean age: 10.6 years) drawn from a prospective, longitudinal study. Average diffusion and fractional anisotropy were measured in the left and right frontal callosal and frontal projection fibers. Executive functioning was assessed using two well-validated neuropsychological tests (Stroop color-word test and Trail Making Test). Cocaine-exposed children showed significantly higher average diffusion in the left frontal callosal and right frontal projection fibers. Cocaine-exposed children were also significantly slower on a visual-motor set-shifting task with a trend toward lower scores on a verbal inhibition task. Controlling for gender and intelligence, average diffusion in the left frontal callosal fibers was related to prenatal exposure to alcohol and marijuana and an interaction between cocaine and marijuana exposure. Performance on the visual-motor set-shifting task was related to prenatal cocaine exposure and an interaction between cocaine and tobacco exposure. Significant correlations were found between test performance and fractional anisotropy in areas of the frontal white matter. Prenatal cocaine exposure, alone and in combination with exposure to other drugs, is associated with slightly poorer executive functioning and subtle microstructural changes suggesting less mature development of frontal white matter pathways. The relative contribution of postnatal environmental factors, including characteristics of the caregiving environment and stressors associated with poverty and out-of-home placement, on brain development and behavioral functioning in polydrug-exposed children awaits further research.
Rittase, W Bradley; Dong, Yu; Barksdale, DaRel; Galdzicki, Zygmunt; Bausch, Suzanne B
2014-05-01
Emerging evidence suggests that neuronal responses to N-methyl-d-aspartate (NMDAR) activation/inactivation are influenced by subunit composition. For example, activation of synaptic NMDAR (comprised of GluN2A>GluN2B) phosphorylates cAMP-response-element-binding protein (CREB) at Ser 133, induces BDNF expression and promotes neuronal survival. Activation of extrasynaptic NMDAR (comprised of GluN2B>GluN2) dephosphorylates CREB (Ser 133), reduces BDNF expression and triggers neuronal death. These results led us to hypothesize that chronic inhibition of GluN2B-containing NMDAR would increase CREB (Ser 133) phosphorylation, increase BDNF levels and subsequently alter downstream dynorphin (DYN) and neuropeptide Y (NPY) expression. We focused on DYN and NPY because these neuropeptides can decrease excitatory neurotransmission and seizure occurrence and we reported previously that seizure-like events are reduced following chronic treatment with GluN2B antagonists. Consistent with our hypothesis, chronic treatment (17-21days) of hippocampal slice cultures with the GluN2B-selective antagonists ifenprodil or Ro25,6981 increased both CREB (Ser 133) phosphorylation and granule cell mossy fiber pathway DYN expression. Similar treatment with the non-subtype-selective NMDAR antagonists d-APV or memantine had no significant effect on either CREB (Ser 133) phosphorylation or DYN expression. In contrast to our hypothesis, BDNF levels were decreased following chronic treatment with Ro25,6981, but not ifenprodil, d-APV or memantine. Blockade of BDNF actions and TrkB activation did not significantly augment hilar DYN expression in vehicle-treated cultures and had no effect in Ro25,6981 treated cultures. These findings suggest that chronic exposure to GluN2B-selective NMDAR antagonists increased DYN expression through a putatively pCREB-dependent, but BDNF/TrkB-independent mechanism. Published by Elsevier Inc.
Nanoscale Morphology to Macroscopic Performance in Ultra High Molecular Weight Polyethylene Fibers
NASA Astrophysics Data System (ADS)
McDaniel, Preston B.
Ultra high molecular weight polyethylene (UHMWPE) fibers are increasingly used in high -performance applications where strength, stiffness, and the ability to dissipate energy are of critical importance. Despite their use in a variety of applications, the influence of morphological features at the meso/nanoscale on the macroscopic performance of the fibers has not been well understood. There is particular interest in gaining a better understanding of the nanoscale structure-property relationships in UHMWPE fibers used in ballistics applications. In order to accurately model and predict failure in the fiber, a more complete understanding of the complex load pathways that dictate the ways in which load is transferred through the fiber, across interfaces and length scales is required. The goal of the work discussed herein is to identify key meso/nanostructural features evolved in high performance fibers and determine how these features influence the performance of the fiber through a variety of different loading mechanisms. The important structural features in high-performance UHMWPE fibers are first identified through examination of the meso/nanostructure of a series of fibers with different processing conditions. This is achieved primarily through the use of wide-angle x-ray diffraction (WAXD) and atomic force microscopy (AFM). Analysis of AFM images and WAXD data allows identification and quantifications of important structural features at these length scales. Key meso/nanostructural features are then examined with respect to their influence on the transverse compression behavior of single fibers. Through post-mortem AFM analysis of samples at incremental compressive strains, the evolution of damage is examined and compared with macroscopic fiber mechanical response. It was found that collapse of mesoscale voids, followed by nanoscale fibrillation and reorganization of a fibrillar network has a significant influence on the mechanical response of the fiber. Through this work, the importance of nanoscale fibril adhesive interactions is highlighted. However, very little information exists in the literature as to the nature and magnitude of these interactions. Examination of nanoscale fibrillar adhesive interactions is experimentally difficult, and necessitated the development of an AFM based nanoscale splitting technique to quantify the interactions between fibrils. Through analysis of split geometry and careful partitioning of energies, the adhesive energy between fibrils in UHMWPE fibers are determined. The calculated average adhesive energies are significantly larger than the estimated energy due to van der Waals interactions, suggesting that there are physical connections (e.g., tie chains, tie fibrils, and lamellar crystalline bridges) that influence the interactions between fibrils. The interactions identified through this work are believed to be responsible for the creation of load pathways across fibril interfaces where load may be translated through the fiber in tension, compression, and shear. Finally, the nature of the mesoscale fibrillar network is explored through the development of a variable angle, single fiber peel test. This peel test enables the quantification of Mode I and Mode II peel energies. The modes of deformation observed in the peel test are representative of the mechanisms experienced during tensile and transverse compression loading. The quantification of peel energies in both Mode I and Mode II failure highlight the importance of the fibrillar network as a key mechanism for the translation of load through the fiber. In both modes of failure, the fibril network acts as a framework for the orientation and subsequent failure of nanoscale fibrils.
Application of neuroanatomical features to tractography clustering.
Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang
2013-09-01
Diffusion tensor imaging allows unprecedented insight into brain neural connectivity in vivo by allowing reconstruction of neuronal tracts via captured patterns of water diffusion in white matter microstructures. However, tractography algorithms often output hundreds of thousands of fibers, rendering subsequent data analysis intractable. As a remedy, fiber clustering techniques are able to group fibers into dozens of bundles and thus facilitate analyses. Most existing fiber clustering methods rely on geometrical information of fibers, by viewing them as curves in 3D Euclidean space. The important neuroanatomical aspect of fibers, however, is ignored. In this article, the neuroanatomical information of each fiber is encapsulated in the associativity vector, which functions as the unique "fingerprint" of the fiber. Specifically, each entry in the associativity vector describes the relationship between the fiber and a certain anatomical ROI in a fuzzy manner. The value of the entry approaches 1 if the fiber is spatially related to the ROI at high confidence; on the contrary, the value drops closer to 0. The confidence of the ROI is calculated by diffusing the ROI according to the underlying fibers from tractography. In particular, we have adopted the fast marching method for simulation of ROI diffusion. Using the associativity vectors of fibers, we further model fibers as observations sampled from multivariate Gaussian mixtures in the feature space. To group all fibers into relevant major bundles, an expectation-maximization clustering approach is employed. Experimental results indicate that our method results in anatomically meaningful bundles that are highly consistent across subjects. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.
Gebre, Samrawit A; Reeber, Stacey L; Sillitoe, Roy V
2012-04-01
The cerebellum receives sensory signals from spinocerebellar (lower limbs) and dorsal column nuclei (upper limbs) mossy fibers. In the cerebellum, mossy fibers terminate in bands that are topographically aligned with stripes of Purkinje cells. While much is known about the molecular heterogeneity of Purkinje cell stripes, little is known about whether mossy fiber compartments have distinct molecular profiles. Here, we show that the vesicular glutamate transporters VGLUT1 and VGLUT2, which mediate glutamate uptake into synaptic vesicles of excitatory neurons, are expressed in complementary bands of mossy fibers in the adult mouse cerebellum. Using a combination of immunohistochemistry and anterograde tracing, we found heavy VGLUT2 and weak VGLUT1 expression in bands of spinocerebellar mossy fibers. The adjacent bands, which are in part comprised of dorsal column nuclei mossy fibers, strongly express VGLUT1 and weakly express VGLUT2. Simultaneous injections of fluorescent tracers into the dorsal column nuclei and lower thoracic-upper lumbar spinal cord revealed that upper and lower limb sensory pathways innervate adjacent VGLUT1/VGLUT2 parasagittal bands. In summary, we demonstrate that VGLUT1 and VGLUT2 are differentially expressed by dorsal column nuclei and spinocerebellar mossy fibers, which project to complementary cerebellar bands and respect common compartmental boundaries in the adult mouse cerebellum.
Sánchez-Pérez, Ana M; Arnal-Vicente, Isabel; Santos, Fabio N; Pereira, Celia W; ElMlili, Nisrin; Sanjuan, Julio; Ma, Sherie; Gundlach, Andrew L; Olucha-Bordonau, Francisco E
2015-03-01
Projections from the nucleus incertus (NI) to the septum have been implicated in the modulation of hippocampal theta rhythm. In this study we describe a previously uncharacterized projection from the septum to the NI, which may provide feedback modulation of the ascending circuitry. Fluorogold injections into the NI resulted in retrograde labeling in the septum that was concentrated in the horizontal diagonal band and areas of the posterior septum including the septofimbrial and triangular septal nuclei. Double-immunofluorescent staining indicated that the majority of NI-projecting septal neurons were calretinin-positive and some were parvalbumin-, calbindin-, or glutamic acid decarboxylase (GAD)-67-positive. Choline acetyltransferase-positive neurons were Fluorogold-negative. Injection of anterograde tracers into medial septum, or triangular septal and septofimbrial nuclei, revealed fibers descending to the supramammillary nucleus, median raphe, and the NI. These anterogradely labeled varicosities displayed synaptophysin immunoreactivity, indicating septal inputs form synapses on NI neurons. Anterograde tracer also colocalized with GAD-67-positive puncta in labeled fibers, which in some cases made close synaptic contact with GAD-67-labeled NI neurons. These data provide evidence for the existence of an inhibitory descending projection from medial and posterior septum to the NI that provides a "feedback loop" to modulate the comparatively more dense ascending NI projections to medial septum and hippocampus. Neural processes and associated behaviors activated or modulated by changes in hippocampal theta rhythm may depend on reciprocal connections between ascending and descending pathways rather than on unidirectional regulation via the medial septum. © 2014 Wiley Periodicals, Inc.
Friedrich, Benjamin M.; Buxboim, Amnon; Discher, Dennis E.; Safran, Samuel A.
2011-01-01
The remarkable striation of muscle has fascinated many for centuries. In developing muscle cells, as well as in many adherent, nonmuscle cell types, striated, stress fiberlike structures with sarcomere-periodicity tend to register: Based on several studies, neighboring, parallel fibers at the basal membrane of cultured cells establish registry of their respective periodic sarcomeric architecture, but, to our knowledge, the mechanism has not yet been identified. Here, we propose for cells plated on an elastic substrate or adhered to a neighboring cell, that acto-myosin contractility in striated fibers close to the basal membrane induces substrate strain that gives rise to an elastic interaction between neighboring striated fibers, which in turn favors interfiber registry. Our physical theory predicts a dependence of interfiber registry on externally controllable elastic properties of the substrate. In developing muscle cells, registry of striated fibers (premyofibrils and nascent myofibrils) has been suggested as one major pathway of myofibrillogenesis, where it precedes the fusion of neighboring fibers. This suggests a mechanical basis for the optimal myofibrillogenesis on muscle-mimetic elastic substrates that was recently observed by several groups in cultures of mouse-, human-, and chick-derived muscle cells. PMID:21641316
Hatten, M E
1990-05-01
In vitro studies from our laboratory indicate that granule neurons, purified from early postnatal mouse cerebellum, migrate on astroglial fibers by forming a 'migration junction' with the glial fiber along the length of the neuronal soma and extending a motile 'leading process' in the direction of migration. Similar dynamics are seen for hippocampal neurons migrating along hippocampal astroglial fibers in vitro. In heterotypic recombinations of neurons and glia from mouse cerebellum and rat hippocampus, neurons migrate on astroglial processes with a cytology and neuron-glia relationship identical to that of homotypic neuronal migration in vitro. In all four cases, the migrating neuron presents a stereotyped posture, speed and mode of movement, suggesting that glial fibers provide a generic pathway for neuronal migration in developing brain. Studies on the molecular basis of glial-guided migration suggest that astrotactin, a neuronal antigen that functions as a neuron-glia ligand, is likely to play a crucial role in the locomotion of the neuron along glial fibers. The navigation of neurons from glial fibers into cortical layers, in turn, is likely to involve neuron-neuron adhesion ligands.
Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide
DAVEAU, RAPHAËL S.; BALRAM, KRISHNA C.; PREGNOLATO, TOMMASO; LIU, JIN; LEE, EUN H.; SONG, JIN D.; VERMA, VARUN; MIRIN, RICHARD; NAM, SAE WOO; MIDOLO, LEONARDO; STOBBE, SØREN; SRINIVASAN, KARTIK; LODAHL, PETER
2017-01-01
Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. PMID:28584859
Oh, Myung Eun; Driever, Pablo Hernáiz; Khajuria, Rajiv K; Rueckriegel, Stefan Mark; Koustenis, Elisabeth; Bruhn, Harald; Thomale, Ulrich-Wilhelm
2017-01-01
Pediatric posterior fossa (PF) tumor survivors experience long-term motor deficits. Specific cerebrocerebellar connections may be involved in incidence and severity of motor dysfunction. We examined the relationship between long-term ataxia as well as fine motor function and alteration of differential cerebellar efferent and afferent pathways using diffusion tensor imaging (DTI) and tractography. DTI-based tractography was performed in 19 patients (10 pilocytic astrocytoma (PA) and 9 medulloblastoma patients (MB)) and 20 healthy peers. Efferent Cerebello-Thalamo-Cerebral (CTC) and afferent Cerebro-Ponto-Cerebellar (CPC) tracts were reconstructed and analyzed concerning fractional anisotropy (FA) and volumetric measurements. Clinical outcome was assessed with the International Cooperative Ataxia Rating Scale (ICARS). Kinematic parameters of fine motor function (speed, automation, variability, and pressure) were obtained by employing a digitizing graphic tablet. ICARS scores were significantly higher in MB patients than in PA patients. Poorer ICARS scores and impaired fine motor function correlated significantly with volume loss of CTC pathway in MB patients, but not in PA patients. Patients with pediatric post-operative cerebellar mutism syndrome showed higher loss of CTC pathway volume and were more atactic. CPC pathway volume was significantly reduced in PA patients, but not in MB patients. Neither relationship was observed between the CPC pathway and ICARS or fine motor function. There was no group difference of FA values between the patients and healthy peers. Reduced CTC pathway volumes in our cohorts were associated with severity of long-term ataxia and impaired fine motor function in survivors of MBs. We suggest that the CTC pathway seems to play a role in extent of ataxia and fine motor dysfunction after childhood cerebellar tumor treatment. DTI may be a useful tool to identify relevant structures of the CTC pathway and possibly avoid surgically induced long-term neurological sequelae.
Miki, Takako; Eguchi, Masafumi; Kurotani, Kayo; Kochi, Takeshi; Kuwahara, Keisuke; Ito, Rie; Kimura, Yasumi; Tsuruoka, Hiroko; Akter, Shamima; Kashino, Ikuko; Kabe, Isamu; Kawakami, Norito; Mizoue, Tetsuya
2016-05-01
Dietary fiber may play a favorable role in mood through gut microbiota, but epidemiologic evidence linking mood to dietary fiber intake is scarce in free-living populations. We investigated cross-sectionally the associations of dietary intakes of total, soluble, insoluble, and sources of fiber with depressive symptoms among Japanese workers. Participants were 1977 employees ages 19-69 y. Dietary intake was assessed via a validated, brief self-administered diet history questionnaire. Depressive symptoms were assessed using the Center for Epidemiologic Studies Depression Scale. Logistic regression was used to estimate odds ratios of depressive symptoms adjusted for a range of dietary and non-dietary potential confounders. Dietary fiber intake from vegetables and fruits was significantly inversely associated with depressive symptoms. The multivariable-adjusted odds ratios (95% confidence intervals) for the lowest through the highest tertile of vegetable and fruit fiber were 1.00 (reference), 0.80 (0.60-1.05), and 0.65 (0.45-0.95), respectively (P for trend = 0.03). Dietary intake of total, soluble, insoluble, and cereal fiber was not associated with depressive symptoms. Higher dietary fiber intake from vegetables and fruits may be associated with lower likelihood of having depressive symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.
Dietary Fiber Intake Is Inversely Associated with Periodontal Disease among US Adults.
Nielsen, Samara Joy; Trak-Fellermeier, Maria Angelica; Joshipura, Kaumudi; Dye, Bruce A
2016-12-01
Approximately 47% of adults in the United States have periodontal disease. Dietary guidelines recommend a diet providing adequate fiber. Healthier dietary habits, particularly an increased fiber intake, may contribute to periodontal disease prevention. Our objective was to evaluate the relation of dietary fiber intake and its sources with periodontal disease in the US adult population (≥30 y of age). Data from 6052 adults participating in NHANES 2009-2012 were used. Periodontal disease was defined (according to the CDC/American Academy of Periodontology) as severe, moderate, mild, and none. Intake was assessed by 24-h dietary recalls. The relation between periodontal disease and dietary fiber, whole-grain, and fruit and vegetable intakes were evaluated by using multivariate models, adjusting for sociodemographic characteristics and dentition status. In the multivariate logistic model, the lowest quartile of dietary fiber was associated with moderate-severe periodontitis (compared with mild-none) compared with the highest dietary fiber intake quartile (OR: 1.30; 95% CI: 1.00, 1.69). In the multivariate multinomial logistic model, intake in the lowest quartile of dietary fiber was associated with higher severity of periodontitis than dietary fiber intake in the highest quartile (OR: 1.27; 95% CI: 1.00, 1.62). In the adjusted logistic model, whole-grain intake was not associated with moderate-severe periodontitis. However, in the adjusted multinomial logistic model, adults consuming whole grains in the lowest quartile were more likely to have more severe periodontal disease than were adults consuming whole grains in the highest quartile (OR: 1.32; 95% CI: 1.08, 1.62). In fully adjusted logistic and multinomial logistic models, fruit and vegetable intake was not significantly associated with periodontitis. We found an inverse relation between dietary fiber intake and periodontal disease among US adults ≥30 y old. Periodontal disease was associated with low whole-grain intake but not with low fruit and vegetable intake. © 2016 American Society for Nutrition.
Spicer, Olivia Smith; Zmora, Nilli; Wong, Ten-Tsao; Golan, Matan; Levavi-Sivan, Berta; Gothilf, Yoav; Zohar, Yonathan
2017-05-01
Gonadotropin-inhibitory hormone (GNIH) was discovered in quail with the ability to reduce gonadotropin expression/secretion in the pituitary. There have been few studies on GNIH orthologs in teleosts (LPXRFamide (Lpxrfa) peptides), which have provided inconsistent results. Therefore, the goal of this study was to determine the roles and modes of action by which Lpxrfa exerts its functions in the brain-pituitary axis of zebrafish (Danio rerio). We localized Lpxrfa soma to the ventral hypothalamus, with fibers extending throughout the brain and to the pituitary. In the preoptic area, Lpxrfa fibers interact with gonadotropin-releasing hormone 3 (Gnrh3) soma. In pituitary explants, zebrafish peptide Lpxrfa-3 downregulated luteinizing hormone beta subunit and common alpha subunit expression. In addition, Lpxrfa-3 reduced gnrh3 expression in brain slices, offering another pathway for Lpxrfa to exert its effects on reproduction. Receptor activation studies, in a heterologous cell-based system, revealed that all three zebrafish Lpxrfa peptides activate Lpxrf-R2 and Lpxrf-R3 via the PKA/cAMP pathway. Receptor activation studies demonstrated that, in addition to activating Lpxrf receptors, zebrafish Lpxrfa-2 and Lpxrfa-3 antagonize Kisspeptin-2 (Kiss2) activation of Kisspeptin receptor-1a (Kiss1ra). The fact that kiss1ra-expressing neurons in the preoptic area are innervated by Lpxrfa-ir fibers suggests an additional pathway for Lpxrfa action. Therefore, our results suggest that Lpxrfa may act as a reproductive inhibitory neuropeptide in the zebrafish that interacts with Gnrh3 neurons in the brain and with gonadotropes in the pituitary, while also potentially utilizing the Kiss2/Kiss1ra pathway. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Point Analysis in Java applied to histological images of the perforant pathway: a user's account.
Scorcioni, Ruggero; Wright, Susan N; Patrick Card, J; Ascoli, Giorgio A; Barrionuevo, Germán
2008-01-01
The freeware Java tool Point Analysis in Java (PAJ), created to perform 3D point analysis, was tested in an independent laboratory setting. The input data consisted of images of the hippocampal perforant pathway from serial immunocytochemical localizations of the rat brain in multiple views at different resolutions. The low magnification set (x2 objective) comprised the entire perforant pathway, while the high magnification set (x100 objective) allowed the identification of individual fibers. A preliminary stereological study revealed a striking linear relationship between the fiber count at high magnification and the optical density at low magnification. PAJ enabled fast analysis for down-sampled data sets and a friendly interface with automated plot drawings. Noted strengths included the multi-platform support as well as the free availability of the source code, conducive to a broad user base and maximum flexibility for ad hoc requirements. PAJ has great potential to extend its usability by (a) improving its graphical user interface, (b) increasing its input size limit, (c) improving response time for large data sets, and (d) potentially being integrated with other Java graphical tools such as ImageJ.
Mills, Brian; Lai, Janie; Brown, Timothy T.; Erhart, Matthew; Halgren, Eric; Reilly, Judy; Dale, Anders; Appelbaum, Mark; Moses, Pamela
2013-01-01
This study investigated the relationship between white matter microstructure and the development of morphosyntax in a spoken narrative in typically developing children (TD) and in children with high functioning autism (HFA). Autism is characterized by language and communication impairments, yet the relationship between morphosyntactic development in spontaneous discourse contexts and neural development is not well understood in either this population or typical development. Diffusion tensor imaging (DTI) was used to assess multiple parameters of diffusivity as indicators of white matter tract integrity in language-related tracts in children between 6 and 13 years of age. Children were asked to spontaneously tell a story about at time when someone made them sad, mad, or angry. The story was evaluated for morphological accuracy and syntactic complexity. Analysis of the relationship between white matter microstructure and language performance in TD children showed that diffusivity correlated with morphosyntax production in the superior longitudinal fasciculus (SLF), a fiber tract traditionally associated with language. At the anatomical level, the HFA group showed abnormal diffusivity in the right inferior longitudinal fasciculus (ILF) relative to the TD group. Within the HFA group, children with greater white matter integrity in the right ILF displayed greater morphological accuracy during their spoken narrative. Overall, the current study shows an association between white matter structure in a traditional language pathway and narrative performance in TD children. In the autism group, associations were only found in the ILF, suggesting that during real world language use, children with HFA rely less on typical pathways and instead rely on alternative ventral pathways that possibly mediate visual elements of language. PMID:23810972
Barmack, N.H.; Yakhnitsa, V.
2011-01-01
Cerebellar Purkinje cells have two distinct action potentials: Complex spikes (CSs) are evoked by single climbing fibers that originate from the contralateral inferior olive. Simple spikes (SSs) are often ascribed to mossy fiber---granule cell---parallel fiber inputs to Purkinje cells. Although generally accepted, this view lacks experimental support. Vestibular stimulation independently activates primary afferent mossy fibers and tertiary afferent climbing fibers that project to theuvula-nodulus (folia 8-10). CSs and SSs normally discharge antiphasically during sinusoidal roll-tilt. When CSs increase, SSs decrease. We tested the relative independence of these pathways in mice by making electrolytic microlesions of the two inferior olivary nuclei from which vestibular climbing fibers originate; the β-nucleus and dorsomedial cell column (DMCC). This reduced vestibular climbing fiber signaling to the contralateral folia 8-10, while leaving intact vestibular primary and secondary afferent mossy fibers. We recorded from Purkinje cells and interneurons in folia 8-10, identified by juxtacellular labeling with neurobiotin. Microlesions of the inferior olive increased the spontaneous discharge of SSs in contralateral folia 8-10, but blocked their modulation during vestibular stimulation. The vestibularly-evoked discharge of excitatory cerebellar interneurons (granule cells and unipolar brush cells) was not modified by olivary microlesions. The modulated discharge of stellate cells, but not Golgi cells was reduced by olivary microlesions. We conclude that vestibular modulation of CSs and SSs depends on intact climbing fibers. The absence of vestibularly-modulated SSs following olivary microlesions reflects the loss of climbing fiber-evoked stellate cell discharge. PMID:21734274
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mawet, D.; Ruane, G.; Xuan, W.
2017-04-01
High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolutionmore » spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.« less
NASA Astrophysics Data System (ADS)
Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wallace, J. K.; Wang, J.; Vasisht, G.; Dekany, R.; Mennesson, B.; Choquet, E.; Delorme, J.-R.; Serabyn, E.
2017-04-01
High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.
Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties
NASA Astrophysics Data System (ADS)
Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei
2016-03-01
Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm-1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue.
Schober, A; Meyer, D L; Von Bartheld, C S
1994-11-01
Lungfishes possess two cranial nerves that are associated with the olfactory system: the nervus terminalis enters the telencephalon with the olfactory nerve, and the nervus praeopticus enters the diencephalon at the level of the optic nerve. We investigated the central projections of the nervus terminalis and the nervus praeopticus in the Australian lungfish (Neoceratodus forsteri) and in the African lungfish (Protopterus dolloi) by NADPH-diaphorase histochemistry (nitric oxide synthase; NOS) and compared them with the projections of the nervus terminalis of the frog (Xenopus laevis). In Neoceratodus, NOS-positive fascicles of the nervus terminalis divide and project with a ventral component through the septum and with a dorsal component through the pallium; fibers of both trajectories extend caudally beyond the anterior commissure and join the lateral forebrain bundle. In the nervus praeopticus, about 300 fibers contain NOS; they innervate the preoptic nucleus and continue their course through the diencephalon; many fibers cross in the commissure of the posterior tuberculum. In Protopterus, ganglion cells of the nervus terminalis and of the nervus praeopticus contain NOS. NOS-positive fibers of the nervus terminalis project through the septal region but not through the pallium. Several major fascicles cross in the rostral part of the anterior commissure, where they are joined by a small number of NOS-containing fibers of the nervus praeopticus. Both nerves innervate the preoptic nucleus. The number and pathways of the fascicles of the nervus terminalis are not always symmetric between the two sides. The nervus terminalis fascicles remain in a ventral position, whereas the nervus praeopticus gives rise to the more dorsal fascicles. Many fibers of the two nerves extend throughout the diencephalon and cross in the commissure of the posterior tuberculum. These findings demonstrate many similarities but also significant differences between the contributions of the nervus terminalis and the nervus praeopticus to forebrain projections in the two lungfishes. They support the view that the nervus praeopticus is part of a nervus terminalis system comparable to that in frogs and other nonmammalian vertebrates.
Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications.
Meng, Fanran; McKechnie, Jon; Turner, Thomas; Wong, Kok H; Pickering, Stephen J
2017-11-07
The high cost and energy intensity of virgin carbon fiber manufacture provides an opportunity to recover substantial value from carbon fiber reinforced plastic wastes. In this study, we assess the life cycle environmental implications of recovering carbon fiber and producing composite materials as substitutes for conventional and proposed lightweight materials in automotive applications (e.g., steel, aluminum, virgin carbon fiber). Key parameters for the recycled carbon fiber materials, including fiber volume fraction and fiber alignment, are investigated to identify beneficial uses of recycled carbon fiber in the automotive sector. Recycled carbon fiber components can achieve the lowest life cycle environmental impacts of all materials considered, although the actual impact is highly dependent on the design criteria (λ value) of the specific component. Low production impacts associated with recycled carbon fiber components are observed relative to lightweight competitor materials (e.g., aluminum, virgin carbon fiber reinforced plastic). In addition, recycled carbon fiber components have low in-use energy use due to mass reductions and associated reduction in mass-induced fuel consumption. The results demonstrate environmental feasibility of the CFRP recycling materials, supporting the emerging commercialization of CF recycling technologies and identifying significant potential market opportunities in the automotive sector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirrione, M.M.; Mirrione, M.M.; Konomosa, D.K.
2010-04-01
Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine-induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 h prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activationmore » in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 h prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation.« less
The chemical and physical properties of different forms of mineral fibers impact biopersistence and pathology in the lung. Fiber chemistry, length, aspect ratio, surface area and dose are critical factors determining mineral fiber-associated health effects including cancer and as...
Cruce, W L
1975-01-01
Descending fiber projections to the lizard spinal cord were studied using anterograde axonal degeneration. Following hemisection of the cord at the first spinal segment, degeneration was found in the white and gray matter as far down as the 31st (caudal) segment. Degenerating fibers in the white matter were confined to the ipsilateral side and were found in the medial longitudinal fasiculus and the outer half ot the lateral and ventral funiculi. Degeneration was more intense in the dorsolateral and ventromedial funiculi than in the ventrolateral funiculus. In the gray matter, REXED's criteria were applied to Nissl-stained material to delimit boundaries of ten laminae. Degeneration of suprospinal axons was most intense in the medial part of VII, dorsal and ventral commissures to ramify contralaterally in the medial part of VII, in VII, and in medial IX. No degeneration was present in the lateral part of the spinal gray on the contralateral side. In Golgi-stained material, dendrites of lateral IX cells were seen to extend into lamina VII, the dorsolateral part of VII, and the lateral funiculus. Thus, fibers of the ventromedial supraspinal pathway may make axodendritic contact with motoneurons of lateral IX as well as medial IX, ipsilaterally. In addition, there is a possibility of a crossed connection to contralateral motoneurons.
NASA Astrophysics Data System (ADS)
Duncan, Elizabeth C.; Reddick, Wilburn E.; Glass, John O.; Hyun, Jung Won; Ji, Qing; Li, Yimei; Gajjar, Amar
2016-03-01
We applied a modified probabilistic fiber-tracking method for the extraction of fiber pathways to quantify decreased white matter integrity as a surrogate of structural loss in connectivity due to cranial radiation therapy (CRT) as treatment for pediatric medulloblastoma. Thirty subjects were examined (n=8 average-risk, n=22 high-risk) and the groups did not differ significantly in age at examination. The pathway analysis created a structural connectome focused on sub-networks within the central executive network (CEN) for comparison between baseline and post-CRT scans and for comparison between standard and high dose CRT. A paired-wise comparison of the connectivity between baseline and post-CRT scans showed the irradiation did have a significant detrimental impact on white matter integrity (decreased fractional anisotropy (FA) and decreased axial diffusivity (AX)) in most of the CEN sub-networks. Group comparisons of the change in the connectivity revealed that patients receiving high dose CRT experienced significant AX decreases in all sub-networks while the patients receiving standard dose CRT had relatively stable AX measures across time. This study on pediatric patients with medulloblastoma demonstrated the utility of this method to identify specific sub-networks within the developing brain affected by CRT.
Bultman, Scott J.
2013-01-01
Gene-environment interactions are so numerous and biologically complicated that it can be challenging to understand their role in cancer. However, dietary fiber and colorectal cancer prevention may represent a tractable model system. Fiber is fermented by colonic bacteria into short-chain fatty acids such as butyrate. One molecular pathway that has emerged involves butyrate having differential effects depending on its concentration and the metabolic state of the cell. Low-moderate concentrations, which are present near the base of colonic crypts, are readily metabolized in the mitochondria to stimulate cell proliferation via energetics. Higher concentrations, which are present near the lumen, exceed the metabolic capacity of the colonocyte. Unmetabolized butyrate enters the nucleus and functions as a histone deacetylase (HDAC) inhibitor that epigenetically regulates gene expression to inhibit cell proliferation and induce apoptosis as the colonocytes exfoliate into the lumen. Butyrate may therefore play a role in normal homeostasis by promoting turnover of the colonic epithelium. Because cancerous colonocytes undergo the Warburg effect, their preferred energy source is glucose instead of butyrate. Consequently, even moderate concentrations of butyrate accumulate in cancerous colonocytes and function as HDAC inhibitors to inhibit cell proliferation and induce apoptosis. These findings implicate a bacterial metabolite with metaboloepigenetic properties in tumor suppression. PMID:24270685
NASA Technical Reports Server (NTRS)
Fitts, R. H.; Hurst, J. E.; Norenberg, K. M.; Widrick, J. J.; Riley, D. A.; Bain, J. L. W.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.
1999-01-01
Exposure to microgravity or models designed to mimic the unloaded condition, such as bed rest in humans and hindlimb unloading (HU) in rats leads to skeletal muscle atrophy, a loss in peak force and power, and an increased susceptibility to fatigue. The posterior compartment muscles of the lower leg (calf muscle group) appear to be particularly susceptible. Following only 1 wk in space or HU, rat soleus muscle showed a 30 to 40% loss in wet weight. After 3 wk of HU, almost all of the atrophied soleus fibers showed a significant increase in maximal shortening velocity (V(sub 0)), while only 25 to 30 % actually transitioned to fast fibers. The increased V(sub 0), was protective in that it reduced the decline in peak power associated with the reduced peak force. When the soleus is stimulated in situ following HU or zero-g one observes an increased rate and extent of fatigue, and in the former the increased fatigue is associated with a more rapid depletion of muscle glycogen and lactate production. Our working hypothesis is that following HU or spaceflight in rats and bed rest or spaceflight in humans limb skeletal muscles during contractile activity depend more on carbohydrates and less on fatty acids for their substrate supply. Baldwin et al. found 9 days of spaceflight to reduce by 37% the ability of both the high and low oxidative regions of the vastus muscle to oxidize long-chain fatty acids. This decline was not associated with any change in the enzymes of the tricarboxylic acid cycle or oxidation pathway. The purpose of the current research was to establish the extent of functional change in the slow type I and fast type H fibers of the human calf muscle following 17 days of spaceflight, and determine the cellular mechanisms of the observed changes. A second goal was to study the effectiveness of high resistance isotonic and isometric exercise in preventing the deleterious functional changes associated with unloading.
Narita, Saki; Inoue, Manami; Saito, Eiko; Abe, Sarah K; Sawada, Norie; Ishihara, Junko; Iwasaki, Motoki; Yamaji, Taiki; Shimazu, Taichi; Sasazuki, Shizuka; Shibuya, Kenji; Tsugane, Shoichiro
2017-06-01
Epidemiological studies have suggested a protective effect of dietary fiber intake on breast cancer risk while the results have been inconsistent. Our study aimed to investigate the association between dietary fiber intake and breast cancer risk and to explore whether this association is modified by reproductive factors and hormone receptor status of the tumor. A total of 44,444 women aged 45 to 74 years from the Japan Public Health Center-based Prospective Study were included in analyses. Dietary intake assessment was performed using a validated 138-item food frequency questionnaire (FFQ). Hazard ratios (HRs) and 95% confidence intervals (CIs) for breast cancer incidence were calculated by multivariate Cox proportional hazards regression models. During 624,423 person-years of follow-up period, 681 breast cancer cases were identified. After adjusting for major confounders for breast cancer risk, inverse trends were observed but statistically non-significant. Extremely high intake of fiber was associated with decreased risk of breast cancer but this should be interpreted with caution due to limited statistical power. In stratified analyses by menopausal and hormone receptor status, null associations were observed except for ER-PR- status. Our findings suggest that extreme high fiber intake may be associated with decreased risk of breast cancer but the level of dietary fiber intake among Japanese population might not be sufficient to examine the association between dietary fiber intake and breast cancer risk.
Zelenka, P S
1984-11-01
Lens cells can synthesize, degrade, and remodel lipids. Endogenous lipid synthesis, in conjunction with uptake of exogenous cholesterol and certain fatty acids, leads to the formation of a plasma membrane that is especially rich in sphingomyelin, cholesterol, and long-chain saturated fatty acids. As a result of this unusual lipid composition, lens membranes have very low fluidity, which is restricted even further by lipid-protein interactions. The composition and metabolism of membrane lipids may affect the formation of various types of cataracts. Diets rich in vegetable oils offer some protection against the formation of osmotic cataracts and the hereditary cataract of the RCS rat, although the mechanism of this effect is not clear. Vitamin E also protects against the formation of several types of cataract in vivo and in vitro, suggesting that lipid peroxidation may play a role in cataractogenesis. Certain drugs which inhibit lipid synthesis or degradation are cataractogenic, and a deficiency in cataractogenic, and a deficiency in phosphatidylserine is associated with a loss of Na+/K+ ATPase activity in several types of cataract. Human senile cataracts show a marked loss of protein-lipid interactions, although the overall lipid composition is normal. This loss of protein-lipid interactions may be related to oxidative damage to membrane-associated proteins. Interestingly, the decrease in the fluidity of lens membranes with age would counteract the formation of aqueous pores in the membrane, which can result from the oxidative cross-linking of membrane-associated proteins. Certain pathways of lipid metabolism seem to have regulatory functions. Among these are phosphatidylinositol turnover, phosphatidylethanolamine methylation, and arachidonic acid metabolism. All of these pathways function in the lens. Phosphatidylinositol turnover is correlated with the rate of lens epithelial cell division, while phosphatidylethanolamine methylation seems to be related to the initiation of lens fiber cell formation. Both pathways are associated with the release and metabolism of arachidonic acid in other cell types. While it is not known whether phosphatidylinositol turnover or phosphatidylethanolamine methylation result in the release of arachidonic acid in the lens, recent work has shown that lens cells from a variety of species can metabolize arachidonic acid by both the cyclooxygenase and lipoxygenase pathways. The possible physiological significance of these metabolites to the lens is yet to be determined.
Ponsuksili, Siriluck; Du, Yang; Hadlich, Frieder; Siengdee, Puntita; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus
2013-08-05
Physiological processes aiding the conversion of muscle to meat involve many genes associated with muscle structure and metabolic processes. MicroRNAs regulate networks of genes to orchestrate cellular functions, in turn regulating phenotypes. We applied weighted gene co-expression network analysis to identify co-expression modules that correlated to meat quality phenotypes and were highly enriched for genes involved in glucose metabolism, response to wounding, mitochondrial ribosome, mitochondrion, and extracellular matrix. Negative correlation of miRNA with mRNA and target prediction were used to select transcripts out of the modules of trait-associated mRNAs to further identify those genes that are correlated with post mortem traits. Porcine muscle co-expression transcript networks that correlated to post mortem traits were identified. The integration of miRNA and mRNA expression analyses, as well as network analysis, enabled us to interpret the differentially-regulated genes from a systems perspective. Linking co-expression networks of transcripts and hierarchically organized pairs of miRNAs and mRNAs to meat properties yields new insight into several biological pathways underlying phenotype differences. These pathways may also be diagnostic for many myopathies, which are accompanied by deficient nutrient and oxygen supply of muscle fibers.
Chahales, Peter; Hoffman, Paul S.
2016-01-01
Many bacterial pathogens assemble surface fibers termed pili or fimbriae that facilitate attachment to host cells and colonization of host tissues. The chaperone/usher (CU) pathway is a conserved secretion system that is responsible for the assembly of virulence-associated pili by many different Gram-negative bacteria. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and an integral outer membrane (OM) assembly and secretion platform termed the usher. Nitazoxanide (NTZ), an antiparasitic drug, was previously shown to inhibit the function of aggregative adherence fimbriae and type 1 pili assembled by the CU pathway in enteroaggregative Escherichia coli, an important causative agent of diarrhea. We show here that NTZ also inhibits the function of type 1 and P pili from uropathogenic E. coli (UPEC). UPEC is the primary causative agent of urinary tract infections, and type 1 and P pili mediate colonization of the bladder and kidneys, respectively. By analysis of the different stages of the CU pilus biogenesis pathway, we show that treatment of bacteria with NTZ causes a reduction in the number of usher molecules in the OM, resulting in a loss of pilus assembly on the bacterial surface. In addition, we determine that NTZ specifically prevents proper folding of the usher β-barrel domain in the OM. Our findings demonstrate that NTZ is a pilicide with a novel mechanism of action and activity against diverse CU pathways. This suggests that further development of the NTZ scaffold may lead to new antivirulence agents that target the usher to prevent pilus assembly. PMID:26824945
Questioning the cerebellar doctrine.
Galliano, Elisa; De Zeeuw, Chris I
2014-01-01
The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells are the only cortical neuron receiving and integrating inputs from climbing fiber and mossy-parallel fiber pathways, and plastic modification at the parallel fiber synapses onto Purkinje cells constitutes the substrate of motor learning. Yet, because of recent technical advances and new angles of investigation, all pillars of the cerebellar doctrine now face regular re-examination. In this review, after summarizing the classic concepts and recent disputes, we attempt to synthesize an integrated view and propose a revisited version of the cerebellar doctrine. © 2014 Elsevier B.V. All rights reserved.
Szlavik, Robert B
2016-02-01
The characterization of peripheral nerve fiber distributions, in terms of diameter or velocity, is of clinical significance because information associated with these distributions can be utilized in the differential diagnosis of peripheral neuropathies. Electro-diagnostic techniques can be applied to the investigation of peripheral neuropathies and can yield valuable diagnostic information while being minimally invasive. Nerve conduction velocity studies are single parameter tests that yield no detailed information regarding the characteristics of the population of nerve fibers that contribute to the compound-evoked potential. Decomposition of the compound-evoked potential, such that the velocity or diameter distribution of the contributing nerve fibers may be determined, is necessary if information regarding the population of contributing nerve fibers is to be ascertained from the electro-diagnostic study. In this work, a perturbation-based decomposition of compound-evoked potentials is proposed that facilitates determination of the fiber diameter distribution associated with the compound-evoked potential. The decomposition is based on representing the single fiber-evoked potential, associated with each diameter class, as being perturbed by contributions, of varying degree, from all the other diameter class single fiber-evoked potentials. The resultant estimator of the contributing nerve fiber diameter distribution is valid for relatively large separations in diameter classes. It is also useful in situations where the separation between diameter classes is small and the concomitant single fiber-evoked potentials are not orthogonal.
Lin, Yi; Bolca, Selin; Vandevijvere, Stefanie; De Keyzer, Willem; Van Oyen, Herman; Van Camp, John; De Backer, Guy; De Henauw, Stefaan; Huybrechts, Inge
2011-01-01
The objectives were to assess total dietary fiber intake, identify the major sources of dietary fiber, and examine its association with socio-economic factors among Flemish preschoolers. Three-day estimated dietary records were collected from a representative sample of preschoolers 2.5–6.5 years old (n = 661; 338 boys, 323 girls). The mean dietary fiber intake (13.4 g/d) was lower than the intake level recommended by the Belgian Superior Health Council (70% boys and 81% girls below the guidelines). The most important contributor was the group of bread and cereals (29.5%), followed by fruits (17.8%), potatoes and grains (16.0%), energy-dense, low-nutritious foods (12.4%), and vegetables (11.8%). Multiple linear regression analyses showed that total fiber intake was associated with maternal education and parents’ employment. Overall, fiber intakes from high-nutritious foods (vegetables and fruits) were higher in preschoolers of higher educated mothers and those with one or both parents being employed. In conclusion, the majority of the preschoolers had dietary fiber intakes below the recommended level. Hence, dietary fiber should be promoted among parents of preschoolers and low socio-economic status families should be addressed in particular. PMID:21673925
Carbon Fiber Risk Analysis. [conference
NASA Technical Reports Server (NTRS)
1979-01-01
The scope and status of the effort to assess the risks associated with the accidental release of carbon/graphite fibers from civil aircraft is presented. Vulnerability of electrical and electronic equipment to carbon fibers, dispersal of carbon fibers, effectiveness of filtering systems, impact of fiber induced failures, and risk methodology are among the topics covered.
Sarubbo, Silvio; De Benedictis, Alessandro; Merler, Stefano; Mandonnet, Emmanuel; Barbareschi, Mattia; Dallabona, Monica; Chioffi, Franco; Duffau, Hugues
2016-11-01
The most accepted framework of language processing includes a dorsal phonological and a ventral semantic pathway, connecting a wide network of distributed cortical hubs. However, the cortico-subcortical connectivity and the reciprocal anatomical relationships of this dual-stream system are not completely clarified. We performed an original blunt microdissection of 10 hemispheres with the exposition of locoregional short fibers and six long-range fascicles involved in language elaboration. Special attention was addressed to the analysis of termination sites and anatomical relationships between long- and short-range fascicles. We correlated these anatomical findings with a topographical analysis of 93 functional responses located at the terminal sites of the language bundles, collected by direct electrical stimulation in 108 right-handers. The locations of phonological and semantic paraphasias, verbal apraxia, speech arrest, pure anomia, and alexia were statistically analyzed, and the respective barycenters were computed in the MNI space. We found that terminations of main language bundles and functional responses have a wider distribution in respect to the classical definition of language territories. Our analysis showed that dorsal and ventral streams have a similar anatomical layer organization. These pathways are parallel and relatively segregated over their subcortical course while their terminal fibers are strictly overlapped at the cortical level. Finally, the anatomical features of the U-fibers suggested a role of locoregional integration between the phonological, semantic, and executive subnetworks of language, in particular within the inferoventral frontal lobe and the temporoparietal junction, which revealed to be the main criss-cross regions between the dorsal and ventral pathways. Hum Brain Mapp 37:3858-3872, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Villaseñor, Adriana; Ambs, Anita; Ballard-Barbash, Rachel; Baumgartner, Kathy B.; McTiernan, Anne; Ulrich, Cornelia M.; Neuhouser, Marian L.
2013-01-01
Inflammation is a suspected risk factor for breast cancer and its subsequent prognosis. The extent to which dietary and lifestyle factors might influence inflammation is important to examine. Specifically, dietary fiber may reduce systemic inflammation, but this relationship has not been examined among breast cancer survivors. We examined associations between dietary fiber and serum concentrations of C-reactive protein (CRP) and serum amyloid-A (SAA), among 698 female breast cancer survivors from the Health, Eating, Activity, and Lifestyle (HEAL) Study. Data are from interviews and clinical visits conducted 24 months post-study enrollment. Multivariate-adjusted linear regression estimated associations of total, soluble and insoluble fiber with serum concentrations of CRP and SAA. Logistic regression estimated the odds of elevated CRP (defined as >3.0 mg/L) across tertiles of dietary fiber intake. Mean total dietary fiber intake was 13.9 ± 6.4 g/day. Mean CRP and SAA were 3.32 ± 3.66 mg/L and 7.73 ± 10.23 mg/L, respectively. We observed a multivariate-adjusted inverse association between total dietary fiber intake and CRP concentrations (β, −0.029; 95% CI, −0.049, −0.008). Results for insoluble fiber were similar (β, −0.039; 95% CI, −0.064, −0.013). Among survivors who consumed >15.5 g/day of insoluble dietary fiber, a 49% reduction in the likelihood of having elevated CRP concentrations (OR, 0.51; 95% CI, 0.27, 0.95) was observed compared to those who consumed <5.4 g/day (p = 0.053). Our results suggest that diets high in fiber may benefit breast cancer survivors via reductions in systemic inflammation; elevated inflammation may be prognostic for reduced survival. PMID:21455669
Fiber specific changes in sphingolipid metabolism in skeletal muscles of hyperthyroid rats.
Chabowski, A; Zendzian-Piotrowska, M; Mikłosz, A; Łukaszuk, B; Kurek, K; Górski, J
2013-07-01
Thyroid hormones (T3, T4) are well known modulators of different cellular signals including the sphingomyelin pathway. However, studies regarding downstream effects of T3 on sphingolipid metabolism in skeletal muscle are scarce. In the present work we sought to investigate the effects of hyperthyroidism on the activity of the key enzymes of ceramide metabolism as well as the content of fundamental sphingolipids. Based on fiber/metabolic differences, we chose three different skeletal muscles, with diverse fiber compositions: soleus (slow-twitch oxidative), red (fast-twitch oxidative-glycolytic) and white (fast-twitch glycolytic) section of gastrocnemius. We demonstrated that T3 induced accumulation of sphinganine, ceramide, sphingosine, as well as sphingomyelin, mostly in soleus and in red, but not white section of gastrocnemius. Concomitantly, the activity of serine palmitoyltransferase and acid/neutral ceramidase was increased in more oxidative muscles. In conclusion, hyperthyroidism induced fiber specific changes in the content of sphingolipids that were relatively more related to de novo synthesis of ceramide rather than to its generation via hydrolysis of sphingomyelin.
Selective spider toxins reveal a role for Nav1.1 channel in mechanical pain
Osteen, Jeremiah D.; Herzig, Volker; Gilchrist, John; Emrick, Joshua J.; Zhang, Chuchu; Wang, Xidao; Castro, Joel; Garcia-Caraballo, Sonia; Grundy, Luke; Rychkov, Grigori Y.; Weyer, Andy D.; Dekan, Zoltan; Undheim, Eivind A. B.; Alewood, Paul; Stucky, Cheryl L.; Brierley, Stuart M.; Basbaum, Allan I.; Bosmans, Frank; King, Glenn F.; Julius, David
2016-01-01
Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibers of the pain pathway. Local anesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes and their contributions to chemical, mechanical, or thermal pain. Here, we identify and characterize spider toxins that selectively activate the Nav1.1 subtype, whose role in nociception and pain has not been explored. We exploit these probes to demonstrate that Nav1.1-expressing fibers are modality-specific nociceptors: their activation elicits robust pain behaviors without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibers also express Nav1.1 and show enhanced toxin sensitivity in a model of irritable bowel syndrome. Altogether, these findings establish an unexpected role for Nav1.1 in regulating the excitability of sensory nerve fibers that underlie mechanical pain. PMID:27281198
Assessment of Carbon Fiber Electrical Effects
NASA Technical Reports Server (NTRS)
1980-01-01
The risks associated with the use of carbon fiber composites in civil aircraft are discussed along with the need for protection of civil aircraft equipment from fire-released carbon fibers. The size and number of carbon fibers released in civil aircraft crash fires, the downwind dissemination of the fibers, their penetration into buildings and equipment, and the vulnerability of electrical/electronic equipment to damage by the fibers are assessed.
Inorganic particles in human tissues and their association with neoplastic disease
Langer, Arthur M.
1974-01-01
An increased gastrointestinal cancer risk is associated with occupational exposure to asbestos fiber. Examination of tissues obtained from extrapulmonary organs of exposed workmen demonstrates the presence of asbestos fibers and bodies. The amount of fiber present in these tissues is many magnitudes less than encountered in the lung tissues from the same individuals. Ingestion of asbestos fiber in some environmental instances may approach in magnitude the amount resulting from occupational exposure. Disease factors are discussed. PMID:4470940
NASA Technical Reports Server (NTRS)
Pocinki, L. S.; Kaplan, L. D.; Cornell, M. E.; Greenstone, R.
1979-01-01
A model was developed to generate quantitative estimates of the risk associated with the release of graphite fibers during fires involving commercial aircraft constructed with graphite fiber composite materials. The model was used to estimate the risk associated with accidents at several U.S. airports. These results were then combined to provide an estimate of the total risk to the nation.
Monroe, Kristine R; Murphy, Suzanne P; Henderson, Brian E; Kolonel, Laurence N; Stanczyk, Frank Z; Adlercreutz, Herman; Pike, Malcolm C
2007-01-01
This study investigated dietary fiber intake in association with serum estrogen levels in naturally postmenopausal Latina women with a wide range of fiber intake. Estrone (E1), estradiol (E2), and sex-hormone-binding globulin (SHBG) were measured in 242 women. Associations between estrogen levels and intake of dietary fiber, including insoluble and soluble fractions, quantified from a food frequency questionnaire, were examined. The biomarker enterolactone was also measured. After adjustment for age, weight, and other nondietary factors, dietary fiber intake was inversely associated with E1 and E2; there was a 22% and 17% decrease (2Ptrend=0.023 and 0.045) among subjects in the highest quintile of intake compared with the lowest. Fitting dietary fiber together with soluble and insoluble nonstarch polysaccharides (NSP) showed a much greater decrease in E1 and E2 (47% and 41%, respectively) while increased soluble NSP intake showed increases in E1 and E2 (64% and 69%, respectively). Two foods, avocado and grapefruit, showed significant positive associations with E1 (2Ptrend=0.029 and 0.015, respectively). This study suggests that different components of dietary fiber may have very significant different effects on serum estrogen levels. The suggestive findings relating increased estrogen levels to avocado and grapefruit intakes need confirmation.
Lentz, Thomas J; Rice, Carol H; Succop, Paul A; Lockey, James E; Dement, John M; LeMasters, Grace K
2003-04-01
Increasing production of refractory ceramic fiber (RCF), a synthetic vitreous material with industrial applications (e.g., kiln insulation), has created interest in potential respiratory effects of exposure to airborne fibers during manufacturing. An ongoing study of RCF manufacturing workers in the United States has indicated an association between cumulative fiber exposure and pleural plaques. Fiber sizing data, obtained from electron microscopy analyses of 118 air samples collected in three independent studies over a 20-year period (1976-1995), were used with a computer deposition model to estimate pulmonary dose of fibers of specified dimensions for 652 former and current RCF production workers. Separate dose correction factors reflecting differences in fiber dimensions in six uniform job title groups were used with data on airborne fiber concentration and employment duration to calculate cumulative dose estimates for each worker. From review of the literature, critical dimensions (diameter <0.4 microm, length <10 microm) were defined for fibers that may translocate to the parietal pleura. Each of three continuous exposure/dose metrics analyzed in separate logistic regression models was significantly related to plaques, even after adjusting for possible past asbestos exposure: cumulative fiber exposure, chi(2) = 15.2 (p < 0.01); cumulative pulmonary dose (all fibers), chi(2) = 14.6 (p < 0.01); cumulative pulmonary dose (critical dimension fibers), chi(2) = 12.4 (p < 0.01). Odds ratios (ORs) were calculated for levels of each metric. Increasing ORs were statistically significant for the two highest dose levels of critical dimension fibers (level three, OR = 11, 95%CI = [1.4, 98]; level four, OR = 25, 95%CI = [3.2, 190]). Similar associations existed for all metrics after adjustment for possible asbestos exposure. It was concluded that development of pleural plaques follows exposure- and dose-response patterns, and that airborne fibers in RCF manufacturing facilities include those with critical dimensions associated with pleural plaque formation. Analysis of additional air samples may improve estimates of the dose-response relationship.
Dietary fiber, kidney function, inflammation, and mortality risk.
Xu, Hong; Huang, Xiaoyan; Risérus, Ulf; Krishnamurthy, Vidya M; Cederholm, Tommy; Arnlöv, Johan; Lindholm, Bengt; Sjögren, Per; Carrero, Juan Jesús
2014-12-05
In the United States population, high dietary fiber intake has been associated with a lower risk of inflammation and mortality in individuals with kidney dysfunction. This study aimed to expand such findings to a Northern European population. Dietary fiber intake was calculated from 7-day dietary records in 1110 participants aged 70-71 years from the Uppsala Longitudinal Study of Adult Men (examinations performed during 1991-1995). Dietary fiber was adjusted for total energy intake by the residual method. Renal function was estimated from the concentration of serum cystatin C, and deaths were registered prospectively during a median follow-up of 10.0 years. Dietary fiber independently and directly associated with eGFR (adjusted difference, 2.6 ml/min per 1.73 m(2) per 10 g/d higher; 95% confidence interval [95% CI], 0.3 to 4.9). The odds of C-reactive protein >3 mg/L were lower (linear trend, P=0.002) with higher fiber quartiles. During follow-up, 300 participants died (incidence rate of 2.87 per 100 person-years at risk). Multiplicative interactions were observed between dietary fiber intake and kidney dysfunction in the prediction of mortality. Higher dietary fiber was associated with lower mortality in unadjusted analysis. These associations were stronger in participants with kidney dysfunction (eGFR<60 ml/min per 1.73 m(2)) (hazard ratio [HR], 0.58; 95% CI, 0.35 to 0.98) than in those without (HR, 1.30; 95% CI, 0.76 to 2.22; P value for interaction, P=0.04), and were mainly explained by a lower incidence of cancer-related deaths (0.25; 95% CI, 0.10 to 0.65) in individuals with kidney dysfunction versus individuals with an eGFR≥60 ml/min per 1.73 m(2) (1.61; 95% CI, 0.69 to 3.74; P value for interaction, P=0.01). High dietary fiber was associated with better kidney function and lower inflammation in community-dwelling elderly men from Sweden. High dietary fiber was also associated with lower (cancer) mortality risk, especially in individuals with kidney dysfunction. Copyright © 2014 by the American Society of Nephrology.
Dietary Fiber, Kidney Function, Inflammation, and Mortality Risk
Xu, Hong; Huang, Xiaoyan; Risérus, Ulf; Krishnamurthy, Vidya M.; Cederholm, Tommy; Ärnlöv, Johan; Lindholm, Bengt; Sjögren, Per
2014-01-01
Background and objectives In the United States population, high dietary fiber intake has been associated with a lower risk of inflammation and mortality in individuals with kidney dysfunction. This study aimed to expand such findings to a Northern European population. Design, setting, participants, & measurements Dietary fiber intake was calculated from 7-day dietary records in 1110 participants aged 70–71 years from the Uppsala Longitudinal Study of Adult Men (examinations performed during 1991–1995). Dietary fiber was adjusted for total energy intake by the residual method. Renal function was estimated from the concentration of serum cystatin C, and deaths were registered prospectively during a median follow-up of 10.0 years. Results Dietary fiber independently and directly associated with eGFR (adjusted difference, 2.6 ml/min per 1.73 m2 per 10 g/d higher; 95% confidence interval [95% CI], 0.3 to 4.9). The odds of C-reactive protein >3 mg/L were lower (linear trend, P=0.002) with higher fiber quartiles. During follow-up, 300 participants died (incidence rate of 2.87 per 100 person-years at risk). Multiplicative interactions were observed between dietary fiber intake and kidney dysfunction in the prediction of mortality. Higher dietary fiber was associated with lower mortality in unadjusted analysis. These associations were stronger in participants with kidney dysfunction (eGFR<60 ml/min per 1.73 m2) (hazard ratio [HR], 0.58; 95% CI, 0.35 to 0.98) than in those without (HR, 1.30; 95% CI, 0.76 to 2.22; P value for interaction, P=0.04), and were mainly explained by a lower incidence of cancer-related deaths (0.25; 95% CI, 0.10 to 0.65) in individuals with kidney dysfunction versus individuals with an eGFR≥60 ml/min per 1.73 m2 (1.61; 95% CI, 0.69 to 3.74; P value for interaction, P=0.01). Conclusions High dietary fiber was associated with better kidney function and lower inflammation in community-dwelling elderly men from Sweden. High dietary fiber was also associated with lower (cancer) mortality risk, especially in individuals with kidney dysfunction. PMID:25280496
Basco, Davide; Nicchia, Grazia Paola; Desaphy, Jean-François; Camerino, Diana Conte; Frigeri, Antonio; Svelto, Maria
2010-12-01
Muscle atrophy occurring in several pathophysiological conditions determines decreases in muscle protein synthesis, increases in the rate of proteolysis and changes in muscle fiber composition. To determine the effect of muscle atrophy induced by hindlimb unloading (HU) on membrane proteins from rat soleus, a proteomic approach based on two-dimensional Blue Native/SDS-PAGE was performed. Proteomic analysis of normal and HU soleus muscle demonstrates statistically significant changes in the relative level of 36 proteins. Among the proteins identified by mass spectrometry, most are involved in pathways associated with muscle fuel utilization, indicating a shift in metabolism from oxidative to glycolytic. Moreover, immunoblotting analysis revealed an increase in aquaporin-4 (AQP4) water channel and an alteration of proteins belonging to the dystrophin-glycoprotein complex (DGC). AQP4 and DGC are regulated in soleus muscle subjected to simulated microgravity in response to compensatory mechanisms induced by muscle atrophy, and they parallel the slow-to-fast twitch conversion that occurs in soleus fibers during HU. In conclusion, the alterations of soleus muscle membrane proteome may play a pivotal role in the mechanisms involved in disuse-induced muscle atrophy.
Sugitani, Hideki; Hirano, Eiichi; Knutsen, Russell H.; Shifren, Adrian; Wagenseil, Jessica E.; Ciliberto, Christopher; Kozel, Beth A.; Urban, Zsolt; Davis, Elaine C.; Broekelmann, Thomas J.; Mecham, Robert P.
2012-01-01
Elastin is the extracellular matrix protein in vertebrates that provides elastic recoil to blood vessels, the lung, and skin. Because the elastin gene has undergone significant changes in the primate lineage, modeling elastin diseases in non-human animals can be problematic. To investigate the pathophysiology underlying a class of elastin gene mutations leading to autosomal dominant cutis laxa, we engineered a cutis laxa mutation (single base deletion) into the human elastin gene contained in a bacterial artificial chromosome. When expressed as a transgene in mice, mutant elastin was incorporated into elastic fibers in the skin and lung with adverse effects on tissue function. In contrast, only low levels of mutant protein incorporated into aortic elastin, which explains why the vasculature is relatively unaffected in this disease. RNA stability studies found that alternative exon splicing acts as a modifier of disease severity by influencing the spectrum of mutant transcripts that survive nonsense-mediated decay. Our results confirm the critical role of the C-terminal region of tropoelastin in elastic fiber assembly and suggest tissue-specific differences in the elastin assembly pathway. PMID:22573328
Allegra Mascaro, Anna Letizia; Cesare, Paolo; Sacconi, Leonardo; Grasselli, Giorgio; Mandolesi, Georgia; Maco, Bohumil; Knott, Graham W; Huang, Lieven; De Paola, Vincenzo; Strata, Piergiorgio; Pavone, Francesco S
2013-06-25
Plasticity in the central nervous system in response to injury is a complex process involving axonal remodeling regulated by specific molecular pathways. Here, we dissected the role of growth-associated protein 43 (GAP-43; also known as neuromodulin and B-50) in axonal structural plasticity by using, as a model, climbing fibers. Single axonal branches were dissected by laser axotomy, avoiding collateral damage to the adjacent dendrite and the formation of a persistent glial scar. Despite the very small denervated area, the injured axons consistently reshape the connectivity with surrounding neurons. At the same time, adult climbing fibers react by sprouting new branches through the intact surroundings. Newly formed branches presented varicosities, suggesting that new axons were more than just exploratory sprouts. Correlative light and electron microscopy reveals that the sprouted branch contains large numbers of vesicles, with varicosities in the close vicinity of Purkinje dendrites. By using an RNA interference approach, we found that downregulating GAP-43 causes a significant increase in the turnover of presynaptic boutons. In addition, silencing hampers the generation of reactive sprouts. Our findings show the requirement of GAP-43 in sustaining synaptic stability and promoting the initiation of axonal regrowth.
Papp, Rege S; Palkovits, Miklós
2014-01-01
The projections from the dorsolateral hypothalamic area (DLH) to the lower brainstem have been investigated by using biotinylated dextran amine (BDA), an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area), and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei, or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington's, and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline, and 9 serotonin cell groups) received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences.
Papp, Rege S.; Palkovits, Miklós
2014-01-01
The projections from the dorsolateral hypothalamic area (DLH) to the lower brainstem have been investigated by using biotinylated dextran amine (BDA), an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area), and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei, or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington's, and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline, and 9 serotonin cell groups) received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences. PMID:24904303
Lehman, M N; Robinson, J E; Karsch, F J; Silverman, A J
1986-02-01
The luteinizing hormone-releasing hormone (LHRH) system of the sheep brain was examined by light microscopic immunocytochemistry with thick, unembedded sections. We compared the distribution and morphology of LHRH cells and their fibers in intact and ovariectomized anestrous ewes, and in breeding season ewes during the mid-luteal phase of their estrous cycle. In all animals, a majority of LHRH neurons were found in the medial preoptic area adjacent to the organum vasculosum of the lamina terminalis. These cells formed a continuum rostrally with immunoreactive neurons in the diagonal band of Broca and medial septum and caudally with cells in the ventrolateral anterior hypothalamus and lateral hypothalamus. Relatively few cells (1-2%) were seen in the arcuate nucleus or its vicinity. Preoptic LHRH neurons project to the tubero-infundibular sulcus of the median eminence by at least two routes: a major ventrolateral projection above the optic tract in the anterior and lateral hypothalamus, and a less prominent periventricular pathway along the third ventricle. LHRH fibers were also observed in a number of extrahypothalamic regions, including the medial amygdala and the accessory olfactory bulb. Immunoreactive LHRH neurons in the sheep exhibited a complex light microscopic morphology unlike that seen in LHRH cells of any other species to date. LHRH cells with extensive, branching processes were frequently found in clusters with close somatic appositions between neighboring cells. Multiple thin protuberances emanated from the soma of many immunoreactive neurons. Immunoreactive fibers with beaded varicosities often were intimately associated with both cell bodies and their dendritic processes. Morphometric analyses revealed that preoptic LHRH neurons in three of four mid-luteal phase ewes had a shorter total dendritic length than those neurons in either intact or ovariectomized anestrous ewes, but this difference between breeding season and anestrous ewes was not statistically significant. Evidence for possible seasonal and/or steroid-induced alterations in the morphology of LHRH neurons must be documented by further studies, including immunocytochemical observations at an ultrastructural level.
[Dietary fibers: current trends and health benefits in the metabolic syndrome and type 2 diabetes].
Mello, Vanessa D de; Laaksonen, David E
2009-07-01
Dietary fiber may contribute to both the prevention and treatment of type 2 diabetes mellitus (T2DM). In epidemiological studies the intake of insoluble fiber, but not the intake of soluble fiber, has been inversely associated with the incidence of T2DM. In contrast, in postprandial studies, meals containing sufficiently quantities of beta-glucan, psyllium, or guar gum have decreased insulin and glucose responses in both healthy individuals and patients with T2DM. Diets enriched sufficiently in soluble fiber may also improve overall glycemic control in T2DM. Insoluble fiber has little effect on postprandial insulin and glucose responses. Fiber increases satiety. In some studies, insoluble fiber has been associated with less weight gain over time. Limited cross-sectional evidence suggests an inverse relationship between intake of cereal fiber and whole-grains and the prevalence of the metabolic syndrome. Although long-term data from trials focusing on specifically dietary fiber are lacking, meeting current recommendations for a minimum fiber intake of 25 g/d based on a diet rich in whole grains, fruits and legumes will probably decrease the risk of obesity, the metabolic syndrome and T2DM.
USDA-ARS?s Scientific Manuscript database
Background: Cotton supplies a great majority of natural fiber for the global textile industry. The negative correlation between yield and fiber quality has hindered breeders’ ability to improve these traits simultaneously. A multi-parent advanced generation inter-cross (MAGIC) population developed t...
Dietary Fat, Fiber, and Carbohydrate Intake in Relation to Risk of Endometrial Cancer
Cui, Xiaohui; Rosner, Bernard; Willett, Walter C; Hankinson, Susan E
2011-01-01
Background Macronutrients such as fat and fiber have been hypothesized to play a role in the etiology of endometrial cancer. Methods To investigate these associations, the authors analyzed data from the Nurses’ Health Study (NHS). From 1980 to 2006, 669 invasive adenocarcinoma cases were identified over 1.3 million person-years of follow-up. Dietary intake was assessed in 1980 and updated every 2–4 years. Cox proportional hazard models were used to calculate relative risks (RRs), controlling for total energy and other risk factors. Results Overall, the authors found no significant associations between most dietary factors and endometrial cancer risk. Total fat was associated with a borderline significant decreased risk (top vs. bottom quintile RR=0.78; 95% confidence interval [CI]=0.60, 0.99; Ptrend=0.18). Findings for animal fat were similar. No inverse associations between dietary fibers and cancer risk were observed. Cereal fiber was modestly positively associated with risk (top vs. bottom quintile RR=1.38, 95%CI=1.07, 1.79; Ptrend = 0.05). The inverse association with animal fat intake and a positive association with carbohydrate intake were observed among premenopausal but not among postmenopausal women. Conclusions In this large prospective study, no overall association was observed between dietary fat, fiber, or carbohydrates with endometrial cancer risk, although several of the relationships may vary by menopausal status. Impact Dietary fat and fiber intake do not appear to play a major role in endometrial cancer etiology overall. However, further evaluation of these associations, particularly in premenopausal women, is needed. PMID:21393567
Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits
Meyer, Sarah; Kessner, Simon S.; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C.; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert
2015-01-01
The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand. PMID:26900565
Modulation of neuronal signal transduction and memory formation by synaptic zinc.
Sindreu, Carlos; Storm, Daniel R
2011-01-01
The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling.
Modulation of Neuronal Signal Transduction and Memory Formation by Synaptic Zinc
Sindreu, Carlos; Storm, Daniel R.
2011-01-01
The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling. PMID:22084630
Association Between Dietary Fiber Intake and Bone Loss in the Framingham Offspring Study.
Dai, Zhaoli; Zhang, Yuqing; Lu, Na; Felson, David T; Kiel, Douglas P; Sahni, Shivani
2018-02-01
Dietary fiber may increase calcium absorption, but its role in bone mineralization is unclear. Furthermore, the health effect of dietary fiber may be different between sexes. We examined the association between dietary fiber (total fiber and fiber from cereal, fruits, vegetables, nuts, and legumes) and bone loss at the femoral neck, trochanter, and lumbar spine (L 2 to L 4 ) in older men and women. In the Framingham Offspring Study, at baseline (1996-2001), diet was assessed using the Willett food-frequency questionnaire, and bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Follow-up BMD was measured in 2001-2005 and 2005-2008 among 792 men (mean age 58.1 years; BMI 28.6 kg/m 2 ) and 1065 women (mean age 57.3 years; BMI 27.2 kg/m 2 ). We used sex-specific generalized estimating equations in multivariable regressions to estimate the difference (β) of annualized BMD change in percent (%ΔBMD) at each skeletal site per 5 g/d increase in dietary fiber. We further estimated the adjusted mean for bone loss (annualized %ΔBMD) among participants in each higher quartile (Q2, Q3, or Q4) compared with those in the lowest quartile (Q1) of fiber intake. Higher dietary total fiber (β = 0.06, p = 0.003) and fruit fiber (β = 0.10, p = 0.008) was protective against bone loss at the femoral neck in men but not in women. When examined in quartiles, men in Q2-Q4 of total fiber had significantly less bone loss at the femoral neck versus those in Q1 (all p < 0.04). For women, we did not observe associations with hip bone loss, although fiber from vegetables appeared to be protective against spine bone loss in women but not men. There were no associations with cereal fiber or nut and legume fiber and bone loss in men or women. Our findings suggest that higher dietary fiber may modestly reduce bone loss in men at the hip. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Association between dietary fiber intake and risk of coronary heart disease: A meta-analysis.
Wu, Yihua; Qian, Yufeng; Pan, Yiwen; Li, Peiwei; Yang, Jun; Ye, Xianhua; Xu, Geng
2015-08-01
The association between coronary heart disease (CHD) and dietary fiber intake is not consistent, especially for the subtypes of dietary fiber. The aim of our study was to conduct a meta-analysis of existing cohort published studies assessing the association between dietary fiber intake and risk of CHD, and quantitatively estimating their dose-response relationships. We searched PubMed and EMBASE before May 2013. Random-effect model was used to calculate the pool relative risk (RRs) for the incidence and mortality of CHD. Dose-response, subgroup analyses based on fiber subtypes, heterogeneity and publication bias were also carried out. Eighteen studies involving 672,408 individuals were finally included in the present study. The pooled-adjusted RRs of coronary heart disease for the highest versus lowest category of fiber intake were 0.93 (95% confidence interval (CI), 0.91-0.96, P < 0.001) for incidence of all coronary events and 0.83 (95% CI, 0.76-0.91, P < 0.001) for mortality. Further subgroup analyses based on fiber subtypes (cereal, fruit, and vegetable fiber), indicated that RRs were 0.92 (95% CI, 0.85-0.99, P = 0.032), 0.92 (95% CI, 0.86-0.98, P = 0.01), 0.95 (95% CI, 0.89-1.01, P = 0.098) respectively for all coronary event and 0.81 (95% CI, 0.72-0.92, P = 0.001), 0.68 (95% CI, 0.43-1.07, P = 0.094), 0.91 (95% CI, 0.74-1.12, P = 0.383) for mortality. In addition, a significant dose-response relationship was observed between fiber intake and the incidence and mortality of CHD (P < 0.001). Our results indicate that consumption of dietary fiber is inversely associated with risk of coronary heart disease, especially for fiber from cereals and fruits. Besides, soluble and insoluble fibers have the similar effect. A significant dose-response relationship is also observed between fiber intake and CHD risk. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
ERIC Educational Resources Information Center
Reese, Susan
2003-01-01
Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…
Sáyago-Ayerdi, Sonia G; Arranz, Sara; Serrano, José; Goñi, Isabel
2007-09-19
The beverage of Hibiscus sabdariffa flowers is widely consumed in Mexico. Polyphenols contained in plant foods are frequently associated with dietary fiber. The aim of this work is to quantify the dietary fiber, associated polyphenols, and antioxidant capacity of the Roselle flower and the beverage traditionally prepared from it and its contribution to the Mexican diet. Roselle flower contained dietary fiber as the largest component (33.9%) and was rich in phenolic compounds (6.13%). Soluble dietary fiber was 0.66 g/L in beverage, and 66% of total extractable polyphenols contained in Roselle flower passed to the beverage and showed an antioxidant capacity of 335 micromoL trolox equivalents/100 mL beverage measured by ABTS. These data suggest that Roselle flower beverage intake in the Mexican diet may contribute around 166 and 165 mg/per serving to the intake of dietary fiber and polyphenols, respectively. The health benefits from consumption of Hibiscus beverage could be of considerable benefit to the whole population.
Kim, Gap-Don; Yang, Han-Sul; Jeong, Jin-Yeon
2018-04-01
Proteome analysis was performed to understand intramuscular variations in muscle fiber distribution in semimembranosus (SM) and semitendinosus (ST) muscles associated with pork quality. Fifteen SM and ST muscles were separated into dark and light portions. The relative area of oxidative fiber was higher (P < .0001) in dark portion than that in light portion, while glycolytic fiber types were distributed primarily (P < .01) in light portions regardless of muscle types. Myosin-1, myosin-4, troponin complex (fast), myosin light chains, and metabolic enzymes responsible for fast-twitch glycolytic types were overexpressed in light portions (P < .05). However, myosin-2, myosin-7, myoglobin, and mitochondrial oxidative metabolic enzymes were closely related to slow-twitch oxidative fibers. These resulted in high pH, redness, and tenderness but low lightness and drip loss of pork quality. In conclusion, differentially expressed muscle proteins are associated with fiber type (oxidative vs. glycolytic) distribution, resulting in intramuscular variations of pork quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Background: Cotton fiber maturity refers the degree of fiber cell wall development and is an important factor for determining commercial value of cotton. The molecular mechanism regulating the fiber cell wall development has not been well characterized. Microscopic image analysis of the cross-sect...
The Secretory Response of Rat Peritoneal Mast Cells on Exposure to Mineral Fibers.
Borelli, Violetta; Trevisan, Elisa; Francesca, Vita; Zabucchi, Giuliano
2018-01-10
Exposure to mineral fibers is of substantial relevance to human health. A key event in exposure is the interaction with inflammatory cells and the subsequent generation of pro-inflammatory factors. Mast cells (MCs) have been shown to interact with titanium oxide (TiO₂) and asbestos fibers. In this study, we compared the response of rat peritoneal MCs challenged with the asbestos crocidolite and nanowires of TiO₂ to that induced by wollastonite employed as a control fiber. Rat peritoneal MCs (RPMCs), isolated from peritoneal lavage, were incubated in the presence of mineral fibers. The quantities of secreted enzymes were evaluated together with the activity of fiber-associated enzymes. The ultrastructural morphology of fiber-interacting RPMCs was analyzed with electron microscopy. Asbestos and TiO₂ stimulate MC secretion. Secreted enzymes bind to fibers and exhibit higher activity. TiO₂ and wollastonite bind and improve enzyme activity, but to a lesser degree than crocidolite. (1) Mineral fibers are able to stimulate the mast cell secretory process by both active (during membrane interaction) and/or passive (during membrane penetration) interaction; (2) fibers can be found to be associated with secreted enzymes-this process appears to create long-lasting pro-inflammatory environments and may represent the active contribution of MCs in maintaining the inflammatory process; (3) MCs and their enzymes should be considered as a therapeutic target in the pathogenesis of asbestos-induced lung inflammation; and (4) MCs can contribute to the inflammatory effect associated with selected engineered nanomaterials, such as TiO₂ nanoparticles.
Navarro, Sandi L; Neuhouser, Marian L; Cheng, Ting-Yuan David; Tinker, Lesley F; Shikany, James M; Snetselaar, Linda; Martinez, Jessica A; Kato, Ikuko; Beresford, Shirley A A; Chapkin, Robert S; Lampe, Johanna W
2016-11-30
Combined intakes of specific dietary fiber and fat subtypes protect against colon cancer in animal models. We evaluated associations between self-reported individual and combinations of fiber (insoluble, soluble, and pectins, specifically) and fat (omega-6, omega-3, and docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), specifically) and colorectal cancer (CRC) risk in the Women's Health Initiative prospective cohort ( n = 134,017). During a mean 11.7 years (1993-2010), 1952 incident CRC cases were identified. Cox regression models computed multivariate adjusted hazard ratios to estimate the association between dietary factors and CRC risk. Assessing fiber and fat individually, there was a modest trend for lower CRC risk with increasing intakes of total and insoluble fiber ( p-trend 0.09 and 0.08). An interaction ( p = 0.01) was observed between soluble fiber and DHA + EPA, with protective effects of DHA + EPA with lower intakes of soluble fiber and an attenuation at higher intakes, however this association was no longer significant after correction for multiple testing. These results suggest a modest protective effect of higher fiber intake on CRC risk, but not in combination with dietary fat subtypes. Given the robust results in preclinical models and mixed results in observational studies, controlled dietary interventions with standardized intakes are needed to better understand the interaction of specific fat and fiber subtypes on colon biology and ultimately CRC susceptibility in humans.
The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering.
Shen, Renze; Xu, Weihong; Xue, Yanxiang; Chen, Luyuan; Ye, Haicheng; Zhong, Enyi; Ye, Zhanchao; Gao, Jie; Yan, Yurong
2018-04-16
In this study, nanofibrous scaffolds base on pure polylactic acid (PLA) and chitosan/PLA blends were fabricated by emulsion eletrospinning. By modulating their mechanical and biological properties, cell-compatible and biodegradable scaffolds were developed for periodontal bone regeneration. Pure PLA and different weight ratios of chitosan nano-particle/PLA nano-fibers were fabricated by emulsion eletrospinning. Scanning electron microscope (SEM) was performed to observe the morphology of nano-fibers. Mechanical properties of nano-fibers were tested by single fiber strength tester. Hydrophilic/hydrophobic nature of the nano-fibers was observed by stereomicroscope. In vitro degradation was also tested. Cells were seeded on nano-fibers scaffolds. Changes in cell adhesion, proliferation and osteogenic differentiation were tested by MTT assay and Alizarin Red S staining. Reverse transcription-polymerase chain reaction (RT-PCR) assay was used to evaluate the expression of (Toll-like receptor 4) TLR4, IL-6, IL-8, IL-1β, OPG, RUNX2 mRNA. It is shown that the mean diameter of nano-fibers is about 200 nm. The mean diameter of chitosan nano-particles is about 50 nm. The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers. By adding a certain amount of chitosan nano-particles, it promoted cell adhesion. It also promoted the osteogenic differentiation of bone marrow stem cells (BMSCs) by elevating the expression of osteogenic marker genes such as BSP, Ocn, collagen I, and OPN and enhanced ECM mineralization. Nonetheless, it caused higher expression of inflammatory mediators and TLR4 of human periodontal ligament cells (hPDLCs). The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers and increased its hydrophilicity. Pure PLA nano-fibers scaffold facilitated BMSCs proliferation. Adding an appropriate amount of chitosan nano-particles may promote its properties of cell proliferation and osteogenic differentiation. The higher expression of inflammatory mediators caused by nano-fibers may be regulated via TLR4 pathway.
Alterations of intrinsic tongue muscle properties with aging.
Cullins, Miranda J; Connor, Nadine P
2017-12-01
Age-related decline in the intrinsic lingual musculature could contribute to swallowing disorders, yet the effects of age on these muscles is unknown. We hypothesized there is reduced muscle fiber size and shifts to slower myosin heavy chain (MyHC) fiber types with age. Intrinsic lingual muscles were sampled from 8 young adult (9 months) and 8 old (32 months) Fischer 344/Brown Norway rats. Fiber size and MyHC were determined by fluorescent immunohistochemistry. Age was associated with a reduced number of rapidly contracting muscle fibers, and more slowly contracting fibers. Decreased fiber size was found only in the transverse and verticalis muscles. Shifts in muscle composition from faster to slower MyHC fiber types may contribute to age-related changes in swallowing duration. Decreasing muscle fiber size in the protrusive transverse and verticalis muscles may contribute to reductions in maximum isometric tongue pressure found with age. Differences among regions and muscles may be associated with different functional demands. Muscle Nerve 56: E119-E125, 2017. © 2017 Wiley Periodicals, Inc.
Qa'aty, Nour; Vincent, Matthew; Wang, Yanting; Wang, Andrew; Mitts, Thomas F; Hinek, Aleksander
2015-12-01
We have previously reported that a mixture of peptides obtained after chemical or enzymatic degradation of bovine elastin, induced new elastogenesis in human skin. Now, we investigated the elastogenic potential of synthetic peptides mimicking the elastin-derived, VGVAPG sequence, IGVAPG sequence that we found in the rice bran, and a similar peptide, VGVTAG that we identified in the IGF-1-binding protein-1 (IGFBP-1). We now demonstrate that treatment with each of these xGVxxG peptides (recognizable by the anti-elastin antibody), up-regulated the levels of elastin-encoding mRNA, tropoelastin protein, and the deposition of new elastic fibers in cultures of human dermal fibroblasts and in cultured explants of human skin. Importantly, we found that such induction of new elastogenesis may involve two parallel signaling pathways triggered after activation of IGF-1 receptor. In the first one, the xGVxxG peptides interact with the cell surface elastin receptor, thereby causing the downstream activation of the c-Src kinase and a consequent cross-activation of the adjacent IGF-1R, even in the absence of its principal ligand. In the second pathway their hydrophobic association with the N-terminal domain (VGVTAG) of the serum-derived IGFBP-1 induces conformational changes of this IGF-1 chaperone allowing for the release of its cargo and a consequent ligand-specific phosphorylation of IGF-1R. We present a novel, clinically relevant mechanism in which products of partial degradation of dermal elastin may stimulate production of new elastic fibers by dermal fibroblasts. Our findings particularly encourage the use of biologically safe synthetic xGVxxG peptides for regeneration of the injured or aged human skin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Hau, Janice; Sarubbo, Silvio; Perchey, Guy; Crivello, Fabrice; Zago, Laure; Mellet, Emmanuel; Jobard, Gaël; Joliot, Marc; Mazoyer, Bernard M.; Tzourio-Mazoyer, Nathalie; Petit, Laurent
2016-01-01
We combined the neuroanatomists’ approach of defining a fascicle as all fibers passing through its compact stem with diffusion-weighted tractography to investigate the cortical terminations of two association tracts, the inferior fronto-occipital fasciculus (IFOF) and the uncinate fasciculus (UF), which have recently been implicated in the ventral language circuitry. The aim was to provide a detailed and quantitative description of their terminations in 60 healthy subjects and to do so to apply an anatomical stem-based virtual dissection, mimicking classical post-mortem dissection, to extract with minimal a priori the IFOF and UF from tractography datasets. In both tracts, we consistently observed more extensive termination territories than their conventional definitions, within the middle and superior frontal, superior parietal and angular gyri for the IFOF and the middle frontal gyrus and superior, middle and inferior temporal gyri beyond the temporal pole for the UF. We revealed new insights regarding the internal organization of these tracts by investigating for the first time the frequency, distribution and hemispheric asymmetry of their terminations. Interestingly, we observed a dissociation between the lateral right-lateralized and medial left-lateralized fronto-occipital branches of the IFOF. In the UF, we observed a rightward lateralization of the orbito-frontal and temporal branches. We revealed a more detailed map of the terminations of these fiber pathways that will enable greater specificity for correlating with diseased populations and other behavioral measures. The limitations of the diffusion tensor model in this study are also discussed. We conclude that anatomical stem-based virtual dissection with diffusion tractography is a fruitful method for studying the structural anatomy of the human white matter pathways. PMID:27252628
Shen, Hong; Lu, Zhongyan; Xu, Zhihui; Chen, Zhan; Shen, Zanming
2017-09-19
Diet-derived short-chain fatty acids (SCFAs) in the rumen have broad effects on the health and growth of ruminants. The microbe-G-protein-coupled receptor (GPR) and microbe-histone deacetylase (HDAC) axes might be the major pathway mediating these effects. Here, an integrated approach of transcriptome sequencing and 16S rRNA gene sequencing was applied to investigate the synergetic responses of rumen epithelium and rumen microbiota to the increased intake of dietary non-fiber carbohydrate (NFC) from 15 to 30% in the goat model. In addition to the analysis of the microbial composition and identification of the genes and signaling pathways related to the differentially expressed GPRs and HDACs, the combined data including the expression of HDACs and GPRs, the relative abundance of the bacteria, and the molar proportions of the individual SCFAs were used to identify the significant co-variation of the SCFAs, clades, and transcripts. The major bacterial clades promoted by the 30% NFC diet were related to lactate metabolism and cellulose degradation in the rumen. The predominant functions of the GPR and HDAC regulation network, under the 30% NFC diet, were related to the maintenance of epithelium integrity and the promotion of animal growth. In addition, the molar proportion of butyrate was inversely correlated with the expression of HDAC1, and the relative abundance of the bacteria belonging to Clostridum_IV was positively correlated with the expression of GPR1. This study revealed that the effects of rumen microbiota-derived SCFA on epithelium growth and metabolism were mediated by the GPR and HDAC regulation network. An understanding of these mechanisms and their relationships to dietary components provides better insights into the modulation of ruminal fermentation and metabolism in the promotion of livestock production.
Code of Federal Regulations, 2014 CFR
2014-01-01
... respirable free-form asbestos; risk of cancer associated with inhalation of asbestos fibers. 1145.4 Section... compounds containing respirable free-form asbestos; risk of cancer associated with inhalation of asbestos... associated with inhalation of asbestos fibers from consumer patching compounds containing respirable free...
Code of Federal Regulations, 2011 CFR
2011-01-01
... respirable free-form asbestos; risk of cancer associated with inhalation of asbestos fibers. 1145.4 Section... compounds containing respirable free-form asbestos; risk of cancer associated with inhalation of asbestos... associated with inhalation of asbestos fibers from consumer patching compounds containing respirable free...
Code of Federal Regulations, 2012 CFR
2012-01-01
... respirable free-form asbestos; risk of cancer associated with inhalation of asbestos fibers. 1145.4 Section... compounds containing respirable free-form asbestos; risk of cancer associated with inhalation of asbestos... associated with inhalation of asbestos fibers from consumer patching compounds containing respirable free...
Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions.
Girard, S; Laurent, A; Pinsard, E; Robin, T; Cadier, B; Boutillier, M; Marcandella, C; Boukenter, A; Ouerdane, Y
2014-05-01
We present a new structure for erbium-doped optical fibers [hole-assisted carbon-coated, (HACC)] that, combined with an appropriate choice of codopants in the core, strongly enhances their radiation tolerance. We built an erbium-doped fiber amplifier based on this HACC fiber and characterize its degradation under γ-ray doses up to 315 krad (SiO2) in the ON mode. The 31 dB amplifier is practically radiation insensitive, with a gain change of merely -2.2×10(-3) dB/krad. These performances authorize the use of HACC doped fibers and amplifiers for various applications in environments associated with today's missions (of doses up to 50 krad) and even for future space missions associated with higher dose constraints.
Taccardi, Bruno; Punske, Bonnie B; Sachse, Frank; Tricoche, Xavier; Colli-Franzone, Piero; Pavarino, Luca F; Zabawa, Christine
2005-10-01
There are no published data showing the three-dimensional sequence of repolarization and the associated potential fields in the ventricles. Knowledge of the sequence of repolarization has medical relevance because high spatial dispersion of recovery times and action potential durations favors cardiac arrhythmias. In this study we describe measured and simulated 3-D excitation and recovery sequences and activation-recovery intervals (ARIs) (measured) or action potential durations (APDs) (simulated) in the ventricular walls. We recorded from 600 to 1400 unipolar electrograms from canine ventricular walls during atrial and ventricular pacing at 350-450 ms cycle length. Measured excitation and recovery times and ARIs were displayed as 2-D maps in transmural planes or 3-D maps in the volume explored, using specially developed software. Excitation and recovery sequences and APD distributions were also simulated in parallelepipedal slabs using anisotropic monodomain or bidomain models based on the Lou-Rudy version 1 model with homogeneous membrane properties. Simulations showed that in the presence of homogeneous membrane properties, the sequence of repolarization was similar but not identical to the excitation sequence. In a transmural plane perpendicular to epicardial fiber direction, both activation and recovery pathways starting from an epicardial pacing site returned toward the epicardium at a few cm distance from the pacing site. However, APDs were not constant, but had a dispersion of approximately 14 ms in the simulated domain. The maximum APD value was near the pacing site and two minima appeared along a line perpendicular to fiber directions, passing through the pacing site. Electrical measurements in dog ventricles showed that, for short cycle lengths, both excitation and recovery pathways, starting from an epicardial pacing site, returned toward the epicardium. For slower pacing rates, pathways of recovery departed from the pathway of excitation. Highest ARI values were observed near the pacing site in part of the experiments. In addition, maps of activation-recovery intervals showed mid-myocardial clusters with activation-recovery intervals that were slightly longer than ARIs closer to the epi- or endocardium, suggesting the presence of M cells in those areas. Transmural dispersion of measured ARIs was on the order of 20-25 ms. Potential distributions during recovery were less affected by myocardial anisotropy than were excitation potentials.
Dietary fiber intake reduces risk for Barrett's esophagus and esophageal cancer.
Sun, Lingli; Zhang, Zhizhong; Xu, Jian; Xu, Gelin; Liu, Xinfeng
2017-09-02
Observational studies suggest an association between dietary fiber intake and risk of Barrett's esophagus and esophageal cancer. However, the results are inconsistent. To conduct a meta-analysis of observational studies to assess this association. All eligible studies were identified by electronic searches in PubMed and Embase through February 2015. Dose-response, subgroup, sensitivity, and publication bias analyses were performed. A total of 15 studies involving 16,885 subjects were included in the meta-analysis. The pooled odds ratio for the highest compared with the lowest dietary fiber intake was 0.52 (95% CI, 0.43-0.64). Stratified analyses for tumor subtype, study design, geographic location, fiber type, publication year, total sample size, and quality score yielded consistent results. Dose-response analysis indicated that a 10-g/d increment in dietary fiber intake was associated with a 31% reduction in Barrett's esophagus and esophageal cancer risk. Sensitivity analysis restricted to studies with control for conventional risk factors produced similar results, and omission of any single study had little effect on the overall risk estimate. Our findings indicate that dietary fiber intake is inversely associated with risk of Barrett's esophagus and esophageal cancer. Further large prospective studies are warranted.
Molecular Mechanisms Regulating Muscle Fiber Composition Under Microgravity
NASA Technical Reports Server (NTRS)
Rosenthal, Nadia A.
1999-01-01
The overall goal of this project is to reveal the molecular mechanisms underlying the selective and debilitating atrophy of specific skeletal muscle fiber types that accompanies sustained conditions of microgravity. Since little is currently known about the regulation of fiber-specific gene expression programs in mammalian muscle, elucidation of the basic mechanisms of fiber diversification is a necessary prerequisite to the generation of therapeutic strategies for attenuation of muscle atrophy on earth or in space. Vertebrate skeletal muscle development involves the fusion of undifferentiated mononucleated myoblasts to form multinucleated myofibers, with a concomitant activation of muscle-specific genes encoding proteins that form the force-generating contractile apparatus. The regulatory circuitry controlling skeletal muscle gene expression has been well studied in a number of vertebrate animal systems. The goal of this project has been to achieve a similar level of understanding of the mechanisms underlying the further specification of muscles into different fiber types, and the role played by innervation and physical activity in the maintenance and adaptation of different fiber phenotypes into adulthood. Our recent research on the genetic basis of fiber specificity has focused on the emergence of mature fiber types and have implicated a group of transcriptional regulatory proteins, known as E proteins, in the control of fiber specificity. The restriction of E proteins to selected muscle fiber types is an attractive hypothetical mechanism for the generation of muscle fiber-specific patterns of gene expression. To date our results support a model wherein different E proteins are selectively expressed in muscle cells to determine fiber-restricted gene expression. These studies are a first step to define the molecular mechanisms responsible for the shifts in fiber type under conditions of microgravity, and to determine the potential importance of E proteins as upstream targets for the effects of weightlessness. In the past year we have determined that the expression of E Proteins is restricted to specific fiber types by post-transcriptional mechanisms. By far, the most prevalent mechanism of cellular control for achieving post-transcriptional regulation of gene expression is selective proteolysis -through the ubiquitin -proteasome pathway. Steady-state levels of HEB message are similar in all fast and slow skeletal muscle fiber types, yet the protein is restricted to Type IIX fibers. HEB appears to be a nodal point for regulating fiber-specific transcription, as expression of the transcription factor is regulated at the post-transcriptional level. It is not clear at present whether the regulation is at the level of protein synthesis or degradation. We are now poised to evaluate the biological role of ubiquitination in fiber specific-gene expression by controlling the post-transcriptional expression of E Proteins. The use of metabolic labelling and pharmacological inhibitors of the ubiquitin pathway will be used to identify the mode of regulation of the Type IIX expression pattern. The potential role of specific kinases in effecting the restriction of HEB expression will be examined by using both inhibitors and activators. The results of these studies will provide the necessary information to evaluate the biological role of E proteins in controlling fiber type transitions, and in potentially attenuating the atrophic effects of microgravity conditions. We have also recently shown that ectopic expression of the HEB protein transactivates the Type IIX-specific skeletal a-actin reporter. The 218 bp skeletal a-actin promoter drives transgene expression solely in mature Type IIX fibers. A mouse also carrying the transgene MLCI/HEB (which ectopically expresses the E Protein HEB in Type IIB fibers) forces expression of the skeletal a-actin reporter gene in Type IIB fibers. We can now dissect the composition of this fiber-specific cis-element. The skeletal a-actin promoter is quite compact and has been extensively characterized in vitro for activity and binding factors. The single E box may act as a binding target of myogenic factor/HEB heterodimer to allow for IIX expression. The HEB transcription factor may recognize either the precise flanking sequences of the E Box, or perhaps interacting with other proteins bound nearby, and activating expression in Type IIX fibers. This E box will be both ablated, and alternatively, as ablation may well destroy any muscle-specific transcriptional activity, flanking sequences substituted with those surrounding the E box (El) of the myogenin promoter. Modification of fiber-specific transgene expression will be tested in transgenic mice. The results of these studies will provide basic information on the regulatory circuitry underlying fiber specificity, and will form the basis for building appropriate transgenic regulatory cassettes to effect fiber transitions in subsequent experimental manipulations on unweighted muscles.
Lemieux, Hélène; Blier, Pierre U; Gnaiger, Erich
2017-06-06
Fuel substrate supply and oxidative phosphorylation are key determinants of muscle performance. Numerous studies of mammalian mitochondria are carried out (i) with substrate supply that limits electron flow, and (ii) far below physiological temperature. To analyze potentially implicated biases, we studied mitochondrial respiratory control in permeabilized mouse myocardial fibers using high-resolution respirometry. The capacity of oxidative phosphorylation at 37 °C was nearly two-fold higher when fueled by physiological substrate combinations reconstituting tricarboxylic acid cycle function, compared with electron flow measured separately through NADH to Complex I or succinate to Complex II. The relative contribution of the NADH pathway to physiological respiratory capacity increased with a decrease in temperature from 37 to 25 °C. The apparent excess capacity of cytochrome c oxidase above physiological pathway capacity increased sharply under hypothermia due to limitation by NADH-linked dehydrogenases. This mechanism of mitochondrial respiratory control in the hypothermic mammalian heart is comparable to the pattern in ectotherm species, pointing towards NADH-linked mt-matrix dehydrogenases and the phosphorylation system rather than electron transfer complexes as the primary drivers of thermal sensitivity at low temperature. Delineating the link between stress and remodeling of oxidative phosphorylation is important for understanding metabolic perturbations in disease evolution and cardiac protection.
Exposure to asbestos is associated with respiratory diseases, including asbestosis, lung cancer and mesothelioma. Internal fiber dose depends on fiber inhalability and orientation, fiber density, length and width, and various deposition mechanisms (DM). Species-specific param...
Ballesteros, Kristen A; Sikorski, Angela; Orfila, James E; Martinez, Joe L
2012-01-01
Isoflurane is a preferred anesthetic, due to its properties that allow a precise concentration to be delivered continually during in vivo experimentation. The major mechanism of action of isoflurane is modulation of the γ-amino butyric acid (GABAA) receptor-chloride channel, mediating inhibitory synaptic transmission. Animal studies have shown that isoflurane does not cause cell death, but it does inhibit cell growth and causes long-term hippocampal learning deficits. As there are no studies characterizing the effects of isoflurane on electrophysiological aspects of long-term potentiation (LTP) in the hippocampus, it is important to determine whether isoflurane alters the characteristic responses of hippocampal afferents to cornu ammonis region 3 (CA3). We investigated the effects of isoflurane on adult male rats during in vivo induction of LTP, using the mossy fiber pathway, the lateral perforant pathway, the medial perforant pathway, and the commissural CA3 (cCA3) to CA3, with intracranial administration of Ringer’s solution, naloxone, RS-aminoindan-1, 5-dicarboxylic acid (AIDA), or 3-[(R)-2-carboxypiperazin-4-yl]-propo-2-enyl-1-phosphonic acid (CPP). Then, we compared these responses to published electrophysiological data, using sodium pentobarbital as an anesthetic, under similar experimental conditions. Our results showed that LTP was exhibited in animals anesthetized with isoflurane under vehicle conditions. With the exception of AIDA in the lateral perforant pathway, the defining characteristics of the four pathways appeared to remain intact, except for the observation that LTP was markedly reduced in animals anesthetized with isoflurane compared to those anesthetized with sodium pentobarbital. The results suggest that isoflurane may affect amplitude through activation of GABAA receptors or mechanisms important to LTP in CA3 afferent fibers. PMID:23204857
Ananthakrishnan, Ashwin N; Khalili, Hamed; Konijeti, Gauree G; Higuchi, Leslie M; de Silva, Punyanganie; Korzenik, Joshua R; Fuchs, Charles S; Willett, Walter C; Richter, James M; Chan, Andrew T
2013-11-01
Increased intake of dietary fiber has been proposed to reduce the risk of inflammatory bowel disease (Crohn's disease [CD] and ulcerative colitis [UC]). However, few prospective studies have examined associations between long-term intake of dietary fiber and risk of incident CD or UC. We collected and analyzed data from 170,776 women, followed up over 26 years, who participated in the Nurses' Health Study, followed up for 3,317,425 person-years. Dietary information was prospectively ascertained via administration of a validated semiquantitative food frequency questionnaire every 4 years. Self-reported CD and UC were confirmed through review of medical records. Cox proportional hazards models, adjusting for potential confounders, were used to calculate hazard ratios (HRs). We confirmed 269 incident cases of CD (incidence, 8/100,000 person-years) and 338 cases of UC (incidence, 10/100,000 person-years). Compared with the lowest quintile of energy-adjusted cumulative average intake of dietary fiber, intake of the highest quintile (median of 24.3 g/day) was associated with a 40% reduction in risk of CD (multivariate HR for CD, 0.59; 95% confidence interval, 0.39-0.90). This apparent reduction appeared to be greatest for fiber derived from fruits; fiber from cereals, whole grains, or legumes did not modify risk. In contrast, neither total intake of dietary fiber (multivariate HR, 0.82; 95% confidence interval, 0.58-1.17) nor intake of fiber from specific sources appeared to be significantly associated with risk of UC. Based on data from the Nurses' Health Study, long-term intake of dietary fiber, particularly from fruit, is associated with lower risk of CD but not UC. Further studies are needed to determine the mechanisms that mediate this association. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
Insulin-like growth factor I in inclusion-body myositis and human muscle cultures.
Broccolini, Aldobrando; Ricci, Enzo; Pescatori, Mario; Papacci, Manuela; Gliubizzi, Carla; D'Amico, Adele; Servidei, Serenella; Tonali, Pietro; Mirabella, Massimiliano
2004-06-01
Possible pathogenic mechanisms of sporadic inclusion-body myositis (sIBM) include abnormal production and accumulation of amyloid beta (A beta), muscle aging, and increased oxidative stress. Insulin-like growth factor I (IGF-I), an endocrine and autocrine/paracrine trophic factor, provides resistance against A beta toxicity and oxidative stress in vitro and promotes cell survival. In this study we analyzed the IGF-I signaling pathway in sIBM muscle and found that 16.2% +/- 2.5% of nonregenerating fibers showed increased expression of IGF-I, phosphatidylinositide 3'OH-kinase, and Akt. In the majority of sIBM abnormal muscle fibers, increased IGF-I mRNA and protein correlated with the presence of A beta cytoplasmic inclusions. To investigate a possible relationship between A beta toxicity and IGF-I upregulation, normal primary muscle cultures were stimulated for 24 hours with the A beta(25-35) peptide corresponding to the biologically active domain of A beta. This induced an increase of IGF-I mRNA and protein in myotubes at 6 hours, followed by a gradual reduction thereafter. The level of phosphorylated Akt showed similar changes. We suggest that in sIBM. IGF-I overexpression represents a reactive response to A beta toxicity, possibly providing trophic support to vulnerable fibers. Understanding the signaling pathways activated by IGF-I in sIBM may lead to novel therapeutic strategies for the disease.
Wu, Xi; Yang, Zhipeng; Bailey, Stephen K; Zhou, Jiliu; Cutting, Laurie E; Gore, John C; Ding, Zhaohua
2017-05-15
Functional MRI has proven to be effective in detecting neural activity in brain cortices on the basis of blood oxygenation level dependent (BOLD) contrast, but has relatively poor sensitivity for detecting neural activity in white matter. To demonstrate that BOLD signals in white matter are detectable and contain information on neural activity, we stimulated the somatosensory system and examined distributions of BOLD signals in related white matter pathways. The temporal correlation profiles and frequency contents of BOLD signals were compared between stimulation and resting conditions, and between relevant white matter fibers and background regions, as well as between left and right side stimulations. Quantitative analyses show that, overall, MR signals from white matter fiber bundles in the somatosensory system exhibited significantly greater temporal correlations with the primary sensory cortex and greater signal power during tactile stimulations than in a resting state, and were stronger than corresponding measurements for background white matter both during stimulations and in a resting state. The temporal correlation and signal power under stimulation were found to be twice those observed from the same bundle in a resting state, and bore clear relations with the side of stimuli. These indicate that BOLD signals in white matter fibers encode neural activity related to their functional roles connecting cortical volumes, which are detectable with appropriate methods. Copyright © 2017 Elsevier Inc. All rights reserved.
Paranodal permeability in `myelin mutants'
Shroff, S.; Mierzwa, A.; Scherer, S.S.; Peles, E.; Arevalo, J.C.; Chao, M.V.; Rosenbluth, J.
2011-01-01
Fluorescent dextran tracers of varying sizes have been used to assess paranodal permeability in myelinated sciatic nerve fibers from control and three `myelin mutant' mice, Caspr-null, cst-null and shaking. We demonstrate that in all of these the paranode is permeable to small tracers (3kDa, 10kDa), which penetrate most fibers, and to larger tracers (40kDa, 70kDa), which penetrate far fewer fibers and move shorter distances over longer periods of time. Despite gross diminution in transverse bands in the Caspr-null and cst-null mice, the permeability of their paranodal junctions is equivalent to that in controls. Thus, deficiency of transverse bands in these mutants does not increase the permeability of their paranodal junctions to the dextrans we used, moving from the perinodal space through the paranode to the internodal periaxonal space. In addition, we show that the shaking mice, which have thinner myelin and shorter paranodes, show increased permeability to the same tracers despite the presence of transverse bands. We conclude that the extent of penetration of these tracers does not depend on the presence or absence of transverse bands but does depend on the length of the paranode and, in turn, on the length of `pathway 3', the helical extracellular pathway that passes through the paranode parallel to the lateral edge of the myelin sheath. PMID:21618613
Zhang, Lei; Xu, Pengcheng; Wang, Xueer; Zhang, Min; Yan, Yuan; Chen, Yinghua; Zhang, Lu; Zhang, Lin
2017-06-01
Adipose-derived stem cells (ADSCs) are multipotent stromal cells that can differentiate into a variety of cell types, including skin cells, and they can provide an abundant source of cells for skin tissue engineering and skin wound healing. The purpose of this study is to explore the therapeutic effects of activin B in combination with ADSCs and the possible signaling mechanism. In this study, we found that activin B was able to promote ADSC migration by inducing actin stress fiber formation in vitro. In vivo, activin B in combination with ADSCs was capable of enhancing α-SMA expression and wound closure. This combined treatment also promoted fibroblast and keratinocyte proliferation and accelerated re-epithelialization and collagen deposition. Moreover, activin B in combination with ADSCs boosted angiogenesis in the wound area. Further study of the mechanism revealed that activation of JNK and ERK signaling, but not p38 signaling, were required for activin B-induced ADSC actin stress fiber formation and cell migration. These results showed that activin B was able to activate JNK and ERK signaling pathways to induce actin stress fiber formation and ADSC migration to promote wound healing. These results suggest that combined treatment with activin B and ADSCs is a promising therapeutic strategy for the management of serious skin wounds. Copyright © 2017. Published by Elsevier Ltd.
Gowthaman, Sivakumar; Nakashima, Kazunori; Kawasaki, Satoru
2018-04-04
Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line.
Gowthaman, Sivakumar; Nakashima, Kazunori; Kawasaki, Satoru
2018-01-01
Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line. PMID:29617285
Metabolic fuels: regulating fluxes to select mix.
Weber, Jean-Michel
2011-01-15
Animals must regulate the fluxes of multiple fuels to support changing metabolic rates that result from variation in physiological circumstances. The aim of fuel selection strategies is to exploit the advantages of individual substrates while minimizing the impact of disadvantages. All exercising mammals share a general pattern of fuel selection: at the same %V(O(2,max)) they oxidize the same ratio of lipids to carbohydrates. However, highly aerobic species rely more on intramuscular fuels because energy supply from the circulation is constrained by trans-sarcolemmal transfer. Fuel selection is performed by recruiting different muscles, different fibers within the same muscles or different pathways within the same fibers. Electromyographic analyses show that shivering humans can modulate carbohydrate oxidation either through the selective recruitment of type II fibers within the same muscles or by regulating pathway recruitment within type I fibers. The selection patterns of shivering and exercise are different: at the same %V(O(2,max)), a muscle producing only heat (shivering) or significant movement (exercise) strikes a different balance between lipid and carbohydrate oxidation. Long-distance migrants provide an excellent model to characterize how to increase maximal substrate fluxes. High lipid fluxes are achieved through the coordinated upregulation of mobilization, transport and oxidation by activating enzymes, lipid-solubilizing proteins and membrane transporters. These endurance athletes support record lipolytic rates in adipocytes, use lipoprotein shuttles to accelerate transport and show increased capacity for lipid oxidation in muscle mitochondria. Some migrant birds use dietary omega-3 fatty acids as performance-enhancing agents to boost their ability to process lipids. These dietary fatty acids become incorporated in membrane phospholipids and bind to peroxisome proliferator-activated receptors to activate membrane proteins and modify gene expression.
Engel, Jeff E.; Xie, Xian-Jin; Sokolowski, Marla B.; Wu, Chun-Fang
2000-01-01
The Drosophila giant fiber jump-and-flight escape response is a model for genetic analysis of both the physiology and the plasticity of a sensorimotor behavioral pathway. We previously established the electrically induced giant fiber response in intact tethered flies as a model for habituation, a form of nonassociative learning. Here, we show that the rate of stimulus-dependent response decrement of this neural pathway in a habituation protocol is correlated with PKG (cGMP-Dependent Protein Kinase) activity and foraging behavior. We assayed response decrement for natural and mutant rover and sitter alleles of the foraging (for) gene that encodes a Drosophila PKG. Rover larvae and adults, which have higher PKG activities, travel significantly farther while foraging than sitters with lower PKG activities. Response decrement was most rapid in genotypes previously shown to have low PKG activities and sitter-like foraging behavior. We also found differences in spontaneous recovery (the reversal of response decrement during a rest from stimulation) and a dishabituation-like phenomenon (the reversal of response decrement evoked by a novel stimulus). This electrophysiological study in an intact animal preparation provides one of the first direct demonstrations that PKG can affect plasticity in a simple learning paradigm. It increases our understanding of the complex interplay of factors that can modulate the sensitivity of the giant fiber escape response, and it defines a new adult-stage phenotype of the foraging locus. Finally, these results show that behaviorally relevant neural plasticity in an identified circuit can be influenced by a single-locus genetic polymorphism existing in a natural population of Drosophila. PMID:11040266
Engel, J E; Xie, X J; Sokolowski, M B; Wu, C F
2000-01-01
The Drosophila giant fiber jump-and-flight escape response is a model for genetic analysis of both the physiology and the plasticity of a sensorimotor behavioral pathway. We previously established the electrically induced giant fiber response in intact tethered flies as a model for habituation, a form of nonassociative learning. Here, we show that the rate of stimulus-dependent response decrement of this neural pathway in a habituation protocol is correlated with PKG (cGMP-Dependent Protein Kinase) activity and foraging behavior. We assayed response decrement for natural and mutant rover and sitter alleles of the foraging (for) gene that encodes a Drosophila PKG. Rover larvae and adults, which have higher PKG activities, travel significantly farther while foraging than sitters with lower PKG activities. Response decrement was most rapid in genotypes previously shown to have low PKG activities and sitter-like foraging behavior. We also found differences in spontaneous recovery (the reversal of response decrement during a rest from stimulation) and a dishabituation-like phenomenon (the reversal of response decrement evoked by a novel stimulus). This electrophysiological study in an intact animal preparation provides one of the first direct demonstrations that PKG can affect plasticity in a simple learning paradigm. It increases our understanding of the complex interplay of factors that can modulate the sensitivity of the giant fiber escape response, and it defines a new adult-stage phenotype of the foraging locus. Finally, these results show that behaviorally relevant neural plasticity in an identified circuit can be influenced by a single-locus genetic polymorphism existing in a natural population of Drosophila.
Arregui, Carlos O.; Balsamo, Janne; Lilien, Jack
1998-01-01
To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions. PMID:9813103
Approach to the assessment of the hazard. [fire released carbon fiber electrical effects
NASA Technical Reports Server (NTRS)
Huston, R. J.
1980-01-01
An overview of the carbon fiber hazard assessment is presented. The potential risk to the civil sector associated with the accidental release of carbon fibers from aircraft having composite structures was assessed along with the need for protection of civil aircraft from carbon fibers.
Position of the American Dietetic Association: health implications of dietary fiber.
Marlett, Judith A; McBurney, Michael I; Slavin, Joanne L
2002-07-01
Dietary fiber consists of the structural and storage polysaccharides and lignin in plants that are not digested in the human stomach and small intestine. A wealth of information supports the American Dietetic Association position that the public should consume adequate amounts of dietary fiber from a variety of plant foods. Recommended intakes, 20-35 g/day for healthy adults and age plus 5 g/day for children, are not being met, because intakes of good sources of dietary fiber, fruits, vegetables, whole and high-fiber grain products, and legumes are low. Consumption of dietary fibers that are viscous lowers blood cholesterol levels and helps to normalize blood glucose and insulin levels, making these kinds of fibers part of the dietary plans to treat cardiovascular disease and type 2 diabetes. Fibers that are incompletely or slowly fermented by microflora in the large intestine promote normal laxation and are integral components of diet plans to treat constipation and prevent the development of diverticulosis and diverticulitis. A diet adequate in fiber-containing foods is also usually rich in micronutrients and nonnutritive ingredients that have additional health benefits. It is unclear why several recently published clinical trials with dietary fiber intervention failed to show a reduction in colon polyps. Nonetheless, a fiber-rich diet is associated with a lower risk of colon cancer. A fiber-rich meal is processed more slowly, which promotes earlier satiety, and is frequently less calorically dense and lower in fat and added sugars. All of these characteristics are features of a dietary pattern to treat and prevent obesity. Appropriate kinds and amounts of dietary fiber for the critically ill and the very old have not been clearly delineated; both may need nonfood sources of fiber. Many factors confound observations of gastrointestinal function in the critically ill, and the kinds of fiber that would promote normal small and large intestinal function are usually not in a form suitable for the critically ill. Maintenance of body weight in the inactive older adult is accomplished in part by decreasing food intake. Even with a fiber-rich diet, a supplement may be needed to bring fiber intakes into a range adequate to prevent constipation. By increasing variety in the daily food pattern, the dietetics professional can help most healthy children and adults achieve adequate dietary fiber intakes.
Mirmiran, Parvin; Bahadoran, Zahra; Khalili Moghadam, Sajad; Zadeh Vakili, Azita; Azizi, Fereidoun
2016-11-07
This study was designed to examine the hypothesis that dietary of intake different types of fiber could modify the risk of cardiovascular disease (CVD) in a large prospective cohort among Iranian adults. In 2006-2008, we used a validated food frequency questionnaire to assess dietary fiber intake among 2295 health professionals with no previous history of heart disease. Subjects were subsequently followed until 2012 for incidence of CVD events. Multivariate Cox proportional hazard regression models, adjusted for potential confounders were used to estimate the risk of CVD across tertiles of total dietary fiber and different types of fiber. Linear regression models were also used to indicate the association of dietary fiber intakes with changes of cardiovascular risk factors during the follow-up. Mean age of participants (42.8% men) was 38.2 ± 13.4, at baseline. Mean (SD) dietary intake of total fiber was 23.4 (8.9) g/day. After adjustment for cardiovascular risk score and dietary confounders, a significant inverse association was observed between intakes of total, soluble and insoluble dietary fiber and CVD risk, in the highest compared to the lowest tertiles (HR = 0.39, 95% CI = 0.18-0.83, HR = 0.19, 95% CI = 0.09-0.41, and HR = 0.31, 95% CI = 0.14-0.69, respectively). Inverse relations were observed between risk of CVD and dietary fiber from legumes, fruits and vegetables; however, dietary fiber intake from grain and nut sources was not related to risk of CVD. Our findings confirmed that higher intakes of dietary fiber from different sources is associated with CVD events and modify its major risk-related factors.
Mirmiran, Parvin; Bahadoran, Zahra; Khalili Moghadam, Sajad; Zadeh Vakili, Azita; Azizi, Fereidoun
2016-01-01
Background and aim: This study was designed to examine the hypothesis that dietary of intake different types of fiber could modify the risk of cardiovascular disease (CVD) in a large prospective cohort among Iranian adults. Methods: In 2006–2008, we used a validated food frequency questionnaire to assess dietary fiber intake among 2295 health professionals with no previous history of heart disease. Subjects were subsequently followed until 2012 for incidence of CVD events. Multivariate Cox proportional hazard regression models, adjusted for potential confounders were used to estimate the risk of CVD across tertiles of total dietary fiber and different types of fiber. Linear regression models were also used to indicate the association of dietary fiber intakes with changes of cardiovascular risk factors during the follow-up. Results: Mean age of participants (42.8% men) was 38.2 ± 13.4, at baseline. Mean (SD) dietary intake of total fiber was 23.4 (8.9) g/day. After adjustment for cardiovascular risk score and dietary confounders, a significant inverse association was observed between intakes of total, soluble and insoluble dietary fiber and CVD risk, in the highest compared to the lowest tertiles (HR = 0.39, 95% CI = 0.18–0.83, HR = 0.19, 95% CI = 0.09–0.41, and HR = 0.31, 95% CI = 0.14–0.69, respectively). Inverse relations were observed between risk of CVD and dietary fiber from legumes, fruits and vegetables; however, dietary fiber intake from grain and nut sources was not related to risk of CVD. Conclusion: Our findings confirmed that higher intakes of dietary fiber from different sources is associated with CVD events and modify its major risk-related factors. PMID:27827978
Qin, Hongde; Chen, Min; Yi, Xianda; Bie, Shu; Zhang, Cheng; Zhang, Youchang; Lan, Jiayang; Meng, Yanyan; Yuan, Youlu; Jiao, Chunhai
2015-01-01
Detecting QTLs (quantitative trait loci) that enhance cotton yield and fiber quality traits and accelerate breeding has been the focus of many cotton breeders. In the present study, 359 SSR (simple sequence repeat) markers were used for the association mapping of 241 Upland cotton collections. A total of 333 markers, representing 733 polymorphic loci, were detected. The average linkage disequilibrium (LD) decay distances were 8.58 cM (r2 > 0.1) and 5.76 cM (r2 > 0.2). 241 collections were arranged into two subgroups using STRUCTURE software. Mixed linear modeling (MLM) methods (with population structure (Q) and relative kinship matrix (K)) were applied to analyze four phenotypic datasets obtained from four environments (two different locations and two years). Forty-six markers associated with the number of bolls per plant (NB), boll weight (BW), lint percentage (LP), fiber length (FL), fiber strength (FS) and fiber micornaire value (FM) were repeatedly detected in at least two environments. Of 46 associated markers, 32 were identified as new association markers, and 14 had been previously reported in the literature. Nine association markers were near QTLs (at a distance of less than 1-2 LD decay on the reference map) that had been previously described. These results provide new useful markers for marker-assisted selection in breeding programs and new insights for understanding the genetic basis of Upland cotton yields and fiber quality traits at the whole-genome level.
Fiber-type differences in muscle mitochondrial profiles.
Leary, S C; Lyons, C N; Rosenberger, A G; Ballantyne, J S; Stillman, J; Moyes, C D
2003-10-01
Although striated muscles differ in mitochondrial content, the extent of fiber-type specific mitochondrial specializations is not well known. To address this issue, we compared mitochondrial structural and functional properties in red muscle (RM), white muscle (WM), and cardiac muscle of rainbow trout. Overall preservation of the basic relationships between oxidative phosphorylation complexes among fiber types was confirmed by kinetic analyses, immunoblotting of native holoproteins, and spectroscopic measurements of cytochrome content. Fiber-type differences in mitochondrial properties were apparent when parameters were expressed per milligram mitochondrial protein. However, the differences diminished when expressed relative to cytochrome oxidase (COX), possibly a more meaningful denominator than mitochondrial protein. Expressed relative to COX, there were no differences in oxidative phosphorylation enzyme activities, pyruvate-based respiratory rates, H2O2 production, or state 4 proton leak respiration. These data suggest most mitochondrial qualitative properties are conserved across fiber types. However, there remained modest differences ( approximately 50%) in stoichiometries of selected enzymes of the Krebs cycle, beta-oxidation, and antioxidant enzymes. There were clear differences in membrane fluidity (RM > cardiac, WM) and proton conductance (H+/min/mV/U COX: WM > RM > cardiac). The pronounced differences in mitochondrial content between fiber types could be attributed to a combination of differences in myonuclear domain and modest effects on the expression of nuclear- and mitochondrially encoded respiratory genes. Collectively, these studies suggest constitutive pathways that transcend fiber types are primarily responsible for determining most quantitative and qualitative properties of mitochondria.
Risk Assessment of Carbon Fiber Composite in Surface Transportation
NASA Technical Reports Server (NTRS)
Hathaway, W. T.; Hergenrother, K. M.
1980-01-01
The vulnerability of surface transportation to airborne carbon fibers and the national risk associated with the potential use of carbon fibers in the surface transportation system were evaluated. Results show airborne carbon fibers may cause failure rates in surface transportation of less than one per year by 1995. The national risk resulting from the use of carbon fibers in the surface transportation system is discussed.
Translocation pathways for inhaled asbestos fibers
Miserocchi, G; Sancini, G; Mantegazza, F; Chiappino, Gerolamo
2008-01-01
We discuss the translocation of inhaled asbestos fibers based on pulmonary and pleuro-pulmonary interstitial fluid dynamics. Fibers can pass the alveolar barrier and reach the lung interstitium via the paracellular route down a mass water flow due to combined osmotic (active Na+ absorption) and hydraulic (interstitial pressure is subatmospheric) pressure gradient. Fibers can be dragged from the lung interstitium by pulmonary lymph flow (primary translocation) wherefrom they can reach the blood stream and subsequently distribute to the whole body (secondary translocation). Primary translocation across the visceral pleura and towards pulmonary capillaries may also occur if the asbestos-induced lung inflammation increases pulmonary interstitial pressure so as to reverse the trans-mesothelial and trans-endothelial pressure gradients. Secondary translocation to the pleural space may occur via the physiological route of pleural fluid formation across the parietal pleura; fibers accumulation in parietal pleura stomata (black spots) reflects the role of parietal lymphatics in draining pleural fluid. Asbestos fibers are found in all organs of subjects either occupationally exposed or not exposed to asbestos. Fibers concentration correlates with specific conditions of interstitial fluid dynamics, in line with the notion that in all organs microvascular filtration occurs from capillaries to the extravascular spaces. Concentration is high in the kidney (reflecting high perfusion pressure and flow) and in the liver (reflecting high microvascular permeability) while it is relatively low in the brain (due to low permeability of blood-brain barrier). Ultrafine fibers (length < 5 μm, diameter < 0.25 μm) can travel larger distances due to low steric hindrance (in mesothelioma about 90% of fibers are ultrafine). Fibers translocation is a slow process developing over decades of life: it is aided by high biopersistence, by inflammation-induced increase in permeability, by low steric hindrance and by fibers motion pattern at low Reynolds numbers; it is hindered by fibrosis that increases interstitial flow resistances. PMID:18218073
Navarro, Sandi L.; Neuhouser, Marian L.; Cheng, Ting-Yuan David; Tinker, Lesley F.; Shikany, James M.; Snetselaar, Linda; Martinez, Jessica A.; Kato, Ikuko; Beresford, Shirley A. A.; Chapkin, Robert S.; Lampe, Johanna W.
2016-01-01
Combined intakes of specific dietary fiber and fat subtypes protect against colon cancer in animal models. We evaluated associations between self-reported individual and combinations of fiber (insoluble, soluble, and pectins, specifically) and fat (omega-6, omega-3, and docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), specifically) and colorectal cancer (CRC) risk in the Women’s Health Initiative prospective cohort (n = 134,017). During a mean 11.7 years (1993–2010), 1952 incident CRC cases were identified. Cox regression models computed multivariate adjusted hazard ratios to estimate the association between dietary factors and CRC risk. Assessing fiber and fat individually, there was a modest trend for lower CRC risk with increasing intakes of total and insoluble fiber (p-trend 0.09 and 0.08). An interaction (p = 0.01) was observed between soluble fiber and DHA + EPA, with protective effects of DHA + EPA with lower intakes of soluble fiber and an attenuation at higher intakes, however this association was no longer significant after correction for multiple testing. These results suggest a modest protective effect of higher fiber intake on CRC risk, but not in combination with dietary fat subtypes. Given the robust results in preclinical models and mixed results in observational studies, controlled dietary interventions with standardized intakes are needed to better understand the interaction of specific fat and fiber subtypes on colon biology and ultimately CRC susceptibility in humans. PMID:27916893
2016-11-28
of low spontaneous rate auditory nerve fibers (ANFs) and reduction of auditory brainstem response wave-I amplitudes. The goal of this research is...auditory nerve (AN) responses to speech stimuli under a variety of difficult listening conditions. The resulting cochlear neurogram, a spectrogram
Prolonged leucine infusion differentially affects tissue protein synthesis in neonatal pigs
USDA-ARS?s Scientific Manuscript database
Leucine (Leu) acutely stimulates protein synthesis by activating the mammalian target of rapamycin complex 1 (mTORC1) pathway. To determine whether Leu can stimulate protein synthesis in muscles of different fiber types and visceral tissues of the neonate for a prolonged period and to determine the ...
Chahales, Peter; Hoffman, Paul S; Thanassi, David G
2016-04-01
Many bacterial pathogens assemble surface fibers termed pili or fimbriae that facilitate attachment to host cells and colonization of host tissues. The chaperone/usher (CU) pathway is a conserved secretion system that is responsible for the assembly of virulence-associated pili by many different Gram-negative bacteria. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and an integral outer membrane (OM) assembly and secretion platform termed the usher. Nitazoxanide (NTZ), an antiparasitic drug, was previously shown to inhibit the function of aggregative adherence fimbriae and type 1 pili assembled by the CU pathway in enteroaggregativeEscherichia coli, an important causative agent of diarrhea. We show here that NTZ also inhibits the function of type 1 and P pili from uropathogenicE. coli(UPEC). UPEC is the primary causative agent of urinary tract infections, and type 1 and P pili mediate colonization of the bladder and kidneys, respectively. By analysis of the different stages of the CU pilus biogenesis pathway, we show that treatment of bacteria with NTZ causes a reduction in the number of usher molecules in the OM, resulting in a loss of pilus assembly on the bacterial surface. In addition, we determine that NTZ specifically prevents proper folding of the usher β-barrel domain in the OM. Our findings demonstrate that NTZ is a pilicide with a novel mechanism of action and activity against diverse CU pathways. This suggests that further development of the NTZ scaffold may lead to new antivirulence agents that target the usher to prevent pilus assembly. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Yamada, Shinichiro; Hashizume, Atsushi; Hijikata, Yasuhiro; Inagaki, Tomonori; Suzuki, Keisuke; Kondo, Naohide; Kawai, Kaori; Noda, Seiya; Nakanishi, Hirotaka; Banno, Haruhiko; Hirakawa, Akihiro; Koike, Haruki; Halievski, Katherine; Jordan, Cynthia L.; Katsuno, Masahisa; Sobue, Gen
2016-01-01
The aim of this study was to characterize the respiratory function profile of subjects with spinal and bulbar muscular atrophy (SBMA), and to explore the underlying pathological mechanism by comparing the clinical and biochemical indices of this disease with those of amyotrophic lateral sclerosis (ALS). We enrolled male subjects with SBMA (n = 40) and ALS (n = 25) along with 15 healthy control subjects, and assessed their respiratory function, motor function, and muscle strength. Predicted values of peak expiratory flow (%PEF) and forced vital capacity were decreased in subjects with SBMA compared with controls. In SBMA, both values were strongly correlated with the trunk subscores of the motor function tests and showed deterioration relative to disease duration. Compared with activities of daily living (ADL)-matched ALS subjects, %PEF, tongue pressure, and grip power were substantially decreased in subjects with SBMA. Both immunofluorescence and RT-PCR demonstrated a selective decrease in the expression levels of the genes encoding the myosin heavy chains specific to fast-twitch fibers in SBMA subjects. The mRNA levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha and peroxisome proliferator-activated receptor delta were up-regulated in SBMA compared with ALS and controls. In conclusion, %PEF is a disease-specific respiratory marker for the severity and progression of SBMA. Explosive muscle strength, including %PEF, was selectively affected in subjects with SBMA and was associated with activation of the mitochondrial biogenesis-related molecular pathway in skeletal muscles. PMID:28005993
Jaacks, Lindsay M.; Crandell, Jamie; Liese, Angela D.; Lamichhane, Archana P.; Bell, Ronny A.; Dabelea, Dana; D'Agostino, Ralph B.; Dolan, Lawrence M.; Marcovina, Santica; Reynolds, Kristi; Shah, Amy S.; Urbina, Elaine M.; Wadwa, R. Paul; Mayer-Davis, Elizabeth J.
2014-01-01
Aim To examine the association of dietary fiber intake with inflammation and arterial stiffness among youth with type 1 diabetes (T1D) in the US. Methods Data are from youth ≥ 10 years old with clinically diagnosed T1D for ≥ 3 months and ≥ 1 positive diabetes autoantibody in the SEARCH for Diabetes in Youth Study. Fiber intake was assessed by food frequency questionnaire with measurement error (ME) accounted for by structural sub-models derived using additional 24-hour dietary recall data in a calibration sample and the respective exposure-disease model covariates. Markers of inflammation, measured at baseline, included IL-6 (n=1405), CRP (n=1387), and fibrinogen (n=1340); markers of arterial stiffness, measured approximately 19 months post-baseline, were available in a subset of participants and included augmentation index (n=180), pulse wave velocity (n=184), and brachial distensibility (n=177). Results Mean (SD) T1D duration was 47.9 (43.2) months; 12.5% of participants were obese. Mean (SD) ME-adjusted fiber intake was 15 (2.8) g/day. In multivariable analyses, fiber intake was not associated with inflammation or arterial stiffness. Conclusion Among youth with T1D, fiber intake does not meet recommendations and is not associated with measures of systemic inflammation or vascular stiffness. Further research is needed to evaluate whether fiber is associated with these outcomes in older individuals with T1D or among individuals with higher intakes than those observed in the present study. PMID:24613131
Fedirko, V; Lukanova, A; Bamia, C; Trichopolou, A; Trepo, E; Nöthlings, U; Schlesinger, S; Aleksandrova, K; Boffetta, P; Tjønneland, A; Johnsen, N F; Overvad, K; Fagherazzi, G; Racine, A; Boutron-Ruault, M C; Grote, V; Kaaks, R; Boeing, H; Naska, A; Adarakis, G; Valanou, E; Palli, D; Sieri, S; Tumino, R; Vineis, P; Panico, S; Bueno-de-Mesquita, H B; Siersema, P D; Peeters, P H; Weiderpass, E; Skeie, G; Engeset, D; Quirós, J R; Zamora-Ros, R; Sánchez, M J; Amiano, P; Huerta, J M; Barricarte, A; Johansen, D; Lindkvist, B; Sund, M; Werner, M; Crowe, F; Khaw, K T; Ferrari, P; Romieu, I; Chuang, S C; Riboli, E; Jenab, M
2013-02-01
The type and quantity of dietary carbohydrate as quantified by glycemic index (GI) and glycemic load (GL), and dietary fiber may influence the risk of liver and biliary tract cancers, but convincing evidence is lacking. The association between dietary GI/GL and carbohydrate intake with hepatocellular carcinoma (HCC; N = 191), intrahepatic bile duct (IBD; N = 66), and biliary tract (N = 236) cancer risk was investigated in 477 206 participants of the European Prospective Investigation into Cancer and Nutrition cohort. Dietary intake was assessed by country-specific, validated dietary questionnaires. Hazard ratios and 95% confidence intervals were estimated from proportional hazard models. HBV/HCV status was measured in a nested case-control subset. Higher dietary GI, GL, or increased intake of total carbohydrate was not associated with liver or biliary tract cancer risk. For HCC, divergent risk estimates were observed for total sugar = 1.43 (1.17-1.74) per 50 g/day, total starch = 0.70 (0.55-0.90) per 50 g/day, and total dietary fiber = 0.70 (0.52-0.93) per 10 g/day. The findings for dietary fiber were confirmed among HBV/HCV-free participants [0.48 (0.23-1.01)]. Similar associations were observed for IBD [dietary fiber = 0.59 (0.37-0.99) per 10 g/day], but not biliary tract cancer. Findings suggest that higher consumption of dietary fiber and lower consumption of total sugars are associated with lower HCC risk. In addition, high dietary fiber intake could be associated with lower IBD cancer risk.
de Haan, Bianca; Karnath, Hans-Otto
2017-12-01
Nowadays, different anatomical atlases exist for the anatomical interpretation of the results from neuroimaging and lesion analysis studies that investigate the contribution of white matter fiber tract integrity to cognitive (dys)function. A major problem with the use of different atlases in different studies, however, is that the anatomical interpretation of neuroimaging and lesion analysis results might vary as a function of the atlas used. This issue might be particularly prominent in studies that investigate the contribution of white matter fiber tract integrity to cognitive (dys)function. We used a single large-sample dataset of right brain damaged stroke patients with and without cognitive deficit (here: spatial neglect) to systematically compare the influence of three different, widely-used white matter fiber tract atlases (1 histology-based atlas and 2 DTI tractography-based atlases) on conclusions concerning the involvement of white matter fiber tracts in the pathogenesis of cognitive dysfunction. We both calculated the overlap between the statistical lesion analysis results and each long association fiber tract (topological analyses) and performed logistic regressions on the extent of fiber tract damage in each individual for each long association white matter fiber tract (hodological analyses). For the topological analyses, our results suggest that studies that use tractography-based atlases are more likely to conclude that white matter integrity is critical for a cognitive (dys)function than studies that use a histology-based atlas. The DTI tractography-based atlases classified approximately 10 times as many voxels of the statistical map as being located in a long association white matter fiber tract than the histology-based atlas. For hodological analyses on the other hand, we observed that the conclusions concerning the overall importance of long association fiber tract integrity to cognitive function do not necessarily depend on the white matter atlas used, but conclusions may vary as a function of atlas used at the level of individual fiber tracts. Moreover, these analyses revealed that hodological studies that express the individual extent of injury to each fiber tract as a binomial variable are more likely to conclude that white matter integrity is critical for a cognitive function than studies that express the individual extent of injury to each fiber tract as a continuous variable. Copyright © 2017 Elsevier Inc. All rights reserved.
Frankenfeld, Cara L
2014-09-01
The study objective was to evaluate independent and interactive associations of dietary fiber intake and high urinary enterolignans with cardiometabolic risk factors. The analysis included 2260 adults (≥20 y of age) from the 2003-2010 NHANES. Logistic regression models were used to evaluate obesity and clinically defined cardiometabolic risk factors in relation to dietary fiber intake and urinary enterolignan concentrations. Three sets of models were created: 1) independent associations, 2) mutually adjusted associations, and 3) interactions. Models were adjusted for age, gender, race/ethnicity, education, smoking status, and energy intake. High concentrations were considered to be above the 90th percentile of urinary enterolignan concentrations. Increasing dietary fiber intake was associated with high blood pressure (P = 0.02) and low serum HDL cholesterol (P-trend = 0.03). High urinary enterodiol concentration was not associated with obesity or cardiometabolic risk factors. High urinary enterolactone concentration was inversely associated with obesity (OR: 0.44; 95% CI: 0.29, 0.66), abdominal obesity (OR: 0.58; 95% CI: 0.39, 0.87), high serum C-reactive protein (CRP; OR: 0.52; 95% CI: 0.37, 0.74), high serum triglycerides (OR: 0.39; 95% CI: 0.23, 0.61), low serum HDL cholesterol (OR: 0.37; 95% CI: 0.23, 0.61), and metabolic syndrome (OR: 0.47; 95% CI: 0.30, 0.74). In mutually adjusted models, enterolactone associations observed in independent models remained similar, but associations for dietary fiber intake were attenuated, with the exception of blood pressure. In interaction models, there were 2 significant interactions: between high urinary enterodiol concentration and dietary fiber intake for high serum CRP (P = 0.04) and high plasma glucose (P = 0.04). Overall, being in the highest 10% of urinary enterolactone concentration was associated with cardiometabolic risk factors, independent of dietary fiber intake and enterodiol concentration. Future studies are warranted to evaluate physiologic actions of enterolactone or aspects of the gut microbial profile responsible for lignan metabolism to enterolactone. © 2014 American Society for Nutrition.
Brooks, Naomi E.; Myburgh, Kathryn H.
2014-01-01
Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilization, disuse, and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fiber attrition. Skeletal muscle stem cells (satellite cells) and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx, and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signaling pathways activated in muscle fibers by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g., amino acids) may further enhance recovery (or reduce atrophy despite unloading or ageing) is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy. PMID:24672488
Ni, Hong; Zhao, Dong-Jing; Tian, Tian
2016-02-01
Because the ketogenic diet (KD) was affecting expression of energy metabolism- related genes in hippocampus and because lipid membrane peroxidation and its associated autophagy stress were also found to be involved in energy depletion, we hypothesized that KD might exert its neuroprotective action via lipid membrane peroxidation and autophagic signaling. Here, we tested this hypothesis by examining the long-term expression of lipid membrane peroxidation-related cPLA2 and clusterin, its downstream autophagy marker Beclin-1, LC3 and p62, as well as its execution molecule Cathepsin-E following neonatal seizures and chronic KD treatment. On postnatal day 9 (P9), 48 Sprague-Dawley rats were randomly assigned to two groups: flurothyl-induced recurrent seizures group and control group. On P28, they were further randomly divided into the seizure group without ketogenic diet (RS+ND), seizure plus ketogenic diet (RS+KD), the control group without ketogenic diet (NS+ND), and the control plus ketogenic diet (NS+KD). Morris water maze test was performed during P37-P43. Then mossy fiber sprouting and the protein levels were detected by Timm staining and Western blot analysis, respectively. Flurothyl-induced RS+ND rats show a long-term lower amount of cPLA2 and LC3II/I, and higher amount of clusterin, Beclin-1, p62 and Cathepsin-E which are in parallel with hippocampal mossy fiber sprouting and cognitive deficits. Furthermore, chronic KD treatment (RS+KD) is effective in restoring these molecular, neuropathological and cognitive changes. The results imply that a lipid membrane peroxidation and autophagy-associated pathway is involved in the aberrant hippocampal mossy fiber sprouting and cognitive deficits following neonatal seizures, which might be a potential target of KD for the treatment of neonatal seizure-induced brain damage. Copyright © 2015 Elsevier B.V. All rights reserved.
Glass fiber addition strengthens low-density ablative compositions
NASA Technical Reports Server (NTRS)
Chandler, H. H.
1974-01-01
Approximately 15% of E-glass fibers was added to compositions under test and greatly improved char stability. Use of these fibers also reduced thermal strains which, in turn, minimized char shrinkage and associated cracks, subsurface voids, and disbonds. Increased strength allows honeycomb core reinforcement to be replaced by equivalent amount of glass fibers.
Morphology control in polymer blend fibers—a high throughput computing approach
NASA Astrophysics Data System (ADS)
Sesha Sarath Pokuri, Balaji; Ganapathysubramanian, Baskar
2016-08-01
Fibers made from polymer blends have conventionally enjoyed wide use, particularly in textiles. This wide applicability is primarily aided by the ease of manufacturing such fibers. More recently, the ability to tailor the internal morphology of polymer blend fibers by carefully designing processing conditions has enabled such fibers to be used in technologically relevant applications. Some examples include anisotropic insulating properties for heat and anisotropic wicking of moisture, coaxial morphologies for optical applications as well as fibers with high internal surface area for filtration and catalysis applications. However, identifying the appropriate processing conditions from the large space of possibilities using conventional trial-and-error approaches is a tedious and resource-intensive process. Here, we illustrate a high throughput computational approach to rapidly explore and characterize how processing conditions (specifically blend ratio and evaporation rates) affect the internal morphology of polymer blends during solvent based fabrication. We focus on a PS: PMMA system and identify two distinct classes of morphologies formed due to variations in the processing conditions. We subsequently map the processing conditions to the morphology class, thus constructing a ‘phase diagram’ that enables rapid identification of processing parameters for specific morphology class. We finally demonstrate the potential for time dependent processing conditions to get desired features of the morphology. This opens up the possibility of rational stage-wise design of processing pathways for tailored fiber morphology using high throughput computing.
Janjanam, Jagadeesh; Chandaka, Giri Kumar; Kotla, Sivareddy; Rao, Gadiparthi N.
2015-01-01
Monocyte chemotactic protein 1 (MCP1) stimulates vascular smooth muscle cell (VSMC) migration in vascular wall remodeling. However, the mechanisms underlying MCP1-induced VSMC migration have not been understood. Here we identify the signaling pathway associated with MCP1-induced human aortic smooth muscle cell (HASMC) migration. MCP1, a G protein–coupled receptor agonist, activates phosphorylation of cortactin on S405 and S418 residues in a time-dependent manner, and inhibition of its phosphorylation attenuates MCP1-induced HASMC G-actin polymerization, F-actin stress fiber formation, and migration. Cortactin phosphorylation on S405/S418 is found to be critical for its interaction with WAVE2, a member of the WASP family of cytoskeletal regulatory proteins required for cell migration. In addition, the MCP1-induced cortactin phosphorylation is dependent on PLCβ3-mediated PKCδ activation, and siRNA-mediated down-regulation of either of these molecules prevents cortactin interaction with WAVE2, affecting G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Upstream, MCP1 activates CCR2 and Gαq/11 in a time-dependent manner, and down-regulation of their levels attenuates MCP1-induced PLCβ3 and PKCδ activation, cortactin phosphorylation, cortactin–WAVE2 interaction, G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Together these findings demonstrate that phosphorylation of cortactin on S405 and S418 residues is required for its interaction with WAVE2 in MCP1-induced cytoskeleton remodeling, facilitating HASMC migration. PMID:26490115
Lipka, A; Paukszto, L; Majewska, M; Jastrzebski, J P; Myszczynski, K; Panasiewicz, G; Szafranska, B
2017-09-01
The Eurasian beaver is one of the largest rodents that, despite its high impact on the environment, is a non-model species that lacks a reference genome. Characterising genes critical for pregnancy outcome can serve as a basis for identifying mechanisms underlying effective reproduction, which is required for the success of endangered species conservation programs. In the present study, high-throughput RNA sequencing (RNA-seq) was used to analyse global changes in the Castor fiber subplacenta transcriptome during multiple pregnancy. De novo reconstruction of the C. fiber subplacenta transcriptome was used to identify genes that were differentially expressed in placentas (n=5) from two females (in advanced twin and triple pregnancy). Analyses of the expression values revealed 124 contigs with significantly different expression; of these, 55 genes were identified using MegaBLAST. Within this group of differentially expressed genes (DEGs), 18 were upregulated and 37 were downregulated in twins. Most DEGs were associated with the following gene ontology terms: cellular process, single organism process, response to stimulus, metabolic process and biological regulation. Some genes were also assigned to the developmental process, the reproductive process or reproduction. Among this group, four genes (namely keratin 19 (Krt19) and wingless-type MMTV integration site family - member 2 (Wnt2), which were downregulated in twins, and Nik-related kinase (Nrk) and gap junction protein β2 (Gjb2), which were upregulated in twins) were assigned to placental development and nine (Krt19, Wnt2 and integrin α 7 (Itga7), downregulated in twins, and Nrk, gap junction protein β6 (Gjb6), GATA binding protein 6 (Gata6), apolipoprotein A-I (ApoA1), apolipoprotein B (ApoB) and haemoglobin subunit α 1 (HbA1), upregulated in twins) were assigned to embryo development. The results of the present study indicate that the number of fetuses affects the expression profile in the C. fiber subplacental transcriptome. Enhancement of transcriptomic resources for C. fiber will improve understanding of the pathways relevant to proper placental development and successful reproduction.
Luo, Yuheng; Zhang, Ling; Li, Hua; Smidt, Hauke; Wright, André-Denis G; Zhang, Keying; Ding, Xuemei; Zeng, Qiufeng; Bai, Shiping; Wang, Jianping; Li, Jian; Zheng, Ping; Tian, Gang; Cai, Jingyi; Chen, Daiwen
2017-01-01
Soluble dietary fibers (SDF) are fermented more than insoluble dietary fibers (IDF), but their effect on colonic bacterial community structure and function remains unclear. Thus, bacterial community composition and function in the colon of BALB/c mice ( n = 7) fed with a high level (approximately 20%) of typical SDF, oat-derived β-glucan (G), microcrystalline cellulose (M) as IDF, or their mixture (GM), were compared. Mice in group G showed a lowest average feed intake ( p < 0.05) but no change on the average body weight gain ( p > 0.05) compared to other groups, which may be associated with the highest concentration of colonic propionate ( p < 0.05) in these mice. The bacterial α-diversity of group G was significantly lower than other groups ( p < 0.01). In group G, the relative abundance of bacteria belonging to the phylum Bacteroidetes was significantly increased, whereas bacteria from the phylum Firmicutes were significantly decreased ( p < 0.01). The core bacteria for different treatments showed distinct differences. Bacteroides , Dehalobacterium , and Prevotella , including known acetogens and carbohydrate fermenting organisms, were significantly increased in relative abundance in group G. In contrast, Adlercreutzia , Odoribacter , and Coprococcus were significantly more abundant in group M, whereas Oscillospira , Desulfovibrio , and Ruminoccaceae , typical hydrogenotrophs equipped with multiple carbohydrate active enzymes, were remarkably enriched in group GM ( p < 0.05). The relative abundance of bacteria from the three classes of Proteobacteria , Betaproteobacteria , Gammaproteobacteria (including Enterobacteriaceae ) and Deltaproteobacteria , were significantly more abundant in group G, indicating a higher ratio of conditional pathogenic bacteria in mice fed dietary β-glucan in current study. The predicted colonic microbial function showed an enrichment of "Energy metabolism" and "Carbohydrate metabolism" pathways in mice from group G and M, suggesting that the altered bacterial community in the colon of mice with the two dietary fibers probably resulted in a more efficient degradation of dietary polysaccharides. Our result suggests that the influence of dietary β-glucan (SDF) on colonic bacterial community of mice was more extensively than MCC (IDF). Co-supplementation of the two fibers may help to increase the bacterial diversity and reduce the conditional pathogens in the colon of mice.
Wang, Xueqin; Sha, Longze; Sun, Nannan; Shen, Yan; Xu, Qi
2017-01-01
Germline and somatic mutations in key genes of the mammalian target of rapamycin (mTOR) pathway have been identified in seizure-associated disorders. mTOR mutations lead to aberrant activation of mTOR signaling, and, although affected neurons are critical for epileptogenesis, the role of mTOR activation in glial cells remains poorly understood. We previously reported a consistent activation of the mTOR pathway in astrocytes in the epileptic foci of temporal lobe epilepsy. In this study, it was demonstrated that mTOR deletion from reactive astrocytes prevents increases in seizure frequency over the disease course. By using a tamoxifen-inducible mTOR conditional knockout system and kainic acid, a model was developed that allowed astrocyte-specific mTOR gene deletion in mice with chronic epilepsy. Animals in which mTOR was deleted from 44 % of the astrocyte population exhibited a lower seizure frequency compared with controls. Down-regulation of mTOR significantly ameliorated astrogliosis in the sclerotic hippocampus but did not rescue mossy fiber sprouting. In cultured astrocytes, the mTOR pathway modulated the stability of the astroglial glutamate transporter 1 (Glt1) and influenced the ability of astrocytes to remove extracellular glutamate. Taken together, these data indicate that astrocytes with activated mTOR signaling may provide conditions that are favorable for spontaneous recurrent seizures.
77 FR 234 - Rules and Regulations Under the Textile Fiber Products Identification Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-04
..., 2012. These six trade associations represent apparel retailers, consumer brand companies, importers... Identification Act, 15 U.S.C. 70-70k. On December 20, 2011, the American Apparel and Footwear Association, the American Fiber Manufacturers Association, Inc., the Canadian Apparel Federation, the National Retail...
Abdullah, Mohammad M. H.; Gyles, Collin L.; Marinangeli, Christopher P. F.; Carlberg, Jared G.; Jones, Peter J. H.
2015-01-01
Background: Type 2 diabetes (T2D) and cardiovascular disease (CVD) are leading causes of mortality and two of the most costly diet-related ailments worldwide. Consumption of fiber-rich diets has been repeatedly associated with favorable impacts on these co-epidemics, however, the healthcare cost-related economic value of altered dietary fiber intakes remains poorly understood. In this study, we estimated the annual cost savings accruing to the Canadian healthcare system in association with reductions in T2D and CVD rates, separately, following increased intakes of dietary fiber by adults. Methods: A three-step cost-of-illness analysis was conducted to identify the percentage of individuals expected to consume fiber-rich diets in Canada, estimate increased fiber intakes in relation to T2D and CVD reduction rates, and independently assess the potential annual savings in healthcare costs associated with the reductions in rates of these two epidemics. The economic model employed a sensitivity analysis of four scenarios (universal, optimistic, pessimistic, and very pessimistic) to cover a range of assumptions within each step. Results: Non-trivial healthcare and related savings of CAD$35.9-$718.8 million in T2D costs and CAD$64.8 million–$1.3 billion in CVD costs were calculated under a scenario where cereal fiber was used to increase current intakes of dietary fiber to the recommended levels of 38 g per day for men and 25 g per day for women. Each 1 g per day increase in fiber consumption resulted in annual CAD$2.6 to $51.1 million savings for T2D and $4.6 to $92.1 million savings for CVD. Conclusion: Findings of this analysis shed light on the economic value of optimal dietary fiber intakes. Strategies to increase consumers’ general knowledge of the recommended intakes of dietary fiber, as part of healthy diet, and to facilitate stakeholder synergy are warranted to enable better management of healthcare and related costs associated with T2D and CVD in Canada. PMID:26321953
Abdullah, Mohammad M H; Gyles, Collin L; Marinangeli, Christopher P F; Carlberg, Jared G; Jones, Peter J H
2015-01-01
Type 2 diabetes (T2D) and cardiovascular disease (CVD) are leading causes of mortality and two of the most costly diet-related ailments worldwide. Consumption of fiber-rich diets has been repeatedly associated with favorable impacts on these co-epidemics, however, the healthcare cost-related economic value of altered dietary fiber intakes remains poorly understood. In this study, we estimated the annual cost savings accruing to the Canadian healthcare system in association with reductions in T2D and CVD rates, separately, following increased intakes of dietary fiber by adults. A three-step cost-of-illness analysis was conducted to identify the percentage of individuals expected to consume fiber-rich diets in Canada, estimate increased fiber intakes in relation to T2D and CVD reduction rates, and independently assess the potential annual savings in healthcare costs associated with the reductions in rates of these two epidemics. The economic model employed a sensitivity analysis of four scenarios (universal, optimistic, pessimistic, and very pessimistic) to cover a range of assumptions within each step. Non-trivial healthcare and related savings of CAD$35.9-$718.8 million in T2D costs and CAD$64.8 million-$1.3 billion in CVD costs were calculated under a scenario where cereal fiber was used to increase current intakes of dietary fiber to the recommended levels of 38 g per day for men and 25 g per day for women. Each 1 g per day increase in fiber consumption resulted in annual CAD$2.6 to $51.1 million savings for T2D and $4.6 to $92.1 million savings for CVD. Findings of this analysis shed light on the economic value of optimal dietary fiber intakes. Strategies to increase consumers' general knowledge of the recommended intakes of dietary fiber, as part of healthy diet, and to facilitate stakeholder synergy are warranted to enable better management of healthcare and related costs associated with T2D and CVD in Canada.
A high-performance dual-scale porous electrode for vanadium redox flow batteries
NASA Astrophysics Data System (ADS)
Zhou, X. L.; Zeng, Y. K.; Zhu, X. B.; Wei, L.; Zhao, T. S.
2016-09-01
In this work, we present a simple and cost-effective method to form a dual-scale porous electrode by KOH activation of the fibers of carbon papers. The large pores (∼10 μm), formed between carbon fibers, serve as the macroscopic pathways for high electrolyte flow rates, while the small pores (∼5 nm), formed on carbon fiber surfaces, act as active sites for rapid electrochemical reactions. It is shown that the Brunauer-Emmett-Teller specific surface area of the carbon paper is increased by a factor of 16 while maintaining the same hydraulic permeability as that of the original carbon paper electrode. We then apply the dual-scale electrode to a vanadium redox flow battery (VRFB) and demonstrate an energy efficiency ranging from 82% to 88% at current densities of 200-400 mA cm-2, which is record breaking as the highest performance of VRFB in the open literature.
Stressed Oxidation of C/SiC Composites
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Brewer, David N.; Eckel, Andrew J.; Cawley, James D.
1997-01-01
Constant load, stressed oxidation testing was performed on T-300 C/SiC composites with a SiC seal coat. Test conditions included temperatures ranging from 350 C to 1500 C at stresses of 69 MPa and 172 MPa (10 and 25 ksi). The coupon subjected to stressed oxidation at 550 C/69 MPa for 25 hours had a room temperature residual strength one-half that of the as-received coupons. The coupon tested at the higher stress and all coupons tested at higher temperatures failed in less than 25 hr. Microstructural analysis of the fracture surfaces, using SEM (scanning electron microscopy), revealed the formation of reduced cross-sectional fibers with pointed tips. Analysis of composite cross-sections show pathways for oxygen ingress. The discussion will focus on fiber/matrix interphase oxidation and debonding as well as the formation and implications of the fiber tip morphology.
Loss of cIAP1 attenuates soleus muscle pathology and improves diaphragm function in mdx mice
Enwere, Emeka K.; Boudreault, Louise; Holbrook, Janelle; Timusk, Kristen; Earl, Nathalie; LaCasse, Eric; Renaud, Jean-Marc; Korneluk, Robert G.
2013-01-01
The cellular inhibitor of apoptosis 1 (cIAP1) protein is an essential regulator of canonical and noncanonical nuclear factor κB (NF-κB) signaling pathways. NF-κB signaling is known to play important roles in myogenesis and degenerative muscle disorders such as Duchenne muscular dystrophy (DMD), but the involvement of cIAP1 in muscle disease has not been studied directly. Here, we asked whether the loss of cIAP1 would influence the pathology of skeletal muscle in the mdx mouse model of DMD. Double-mutant cIAP1−/−;mdx mice exhibited reduced muscle damage and decreased fiber centronucleation in the soleus, compared with single-mutant cIAP1+/+;mdx mice. This improvement in pathology was associated with a reduction in muscle infiltration by macrophages and diminished expression of inflammatory cytokines such as IL-6 and tumor necrosis factor-α. Furthermore, the cIAP1−/−;mdx mice exhibited reduced serum creatine kinase, and improved exercise endurance associated with improved exercise resilience by the diaphragm. Mechanistically, the loss of cIAP1 was sufficient to drive constitutive activation of the noncanonical NF-κB pathway, which led to increased myoblast fusion in vitro and in vivo. Collectively, these results show that the loss of cIAP1 protects skeletal muscle from the degenerative pathology resulting from systemic loss of dystrophin. PMID:23184147
Asbestos exposure induces alveolar epithelial cell plasticity through MAPK/Erk signaling.
Tamminen, Jenni A; Myllärniemi, Marjukka; Hyytiäinen, Marko; Keski-Oja, Jorma; Koli, Katri
2012-07-01
The inhalation of asbestos fibers is considered to be highly harmful, and lead to fibrotic and/or malignant disease. Epithelial-to-mesenchymal transition (EMT) is a common pathogenic mechanism in asbestos associated fibrotic (asbestosis) and malignant lung diseases. The characterization of molecular pathways contributing to EMT may provide new possibilities for prognostic and therapeutic applications. The role of asbestos as an inducer of EMT has not been previously characterized. We exposed cultured human lung epithelial cells to crocidolite asbestos and analyzed alterations in the expression of epithelial and mesenchymal marker proteins and cell morphology. Asbestos was found to induce downregulation of E-cadherin protein levels in A549 lung carcinoma cells in 2-dimensional (2D) and 3D cultures. Similar findings were made in primary small airway epithelial cells cultured in 3D conditions where the cells retained alveolar type II cell phenotype. A549 cells also exhibited loss of cell-cell contacts, actin reorganization and expression of α-smooth muscle actin (α-SMA) in 2D cultures. These phenotypic changes were not associated with increased transforming growth factor (TGF)-β signaling activity. MAPK/Erk signaling pathway was found to mediate asbestos-induced downregulation of E-cadherin and alterations in cell morphology. Our results suggest that asbestos can induce epithelial plasticity, which can be interfered by blocking the MAPK/Erk kinase activity. Copyright © 2012 Wiley Periodicals, Inc.
Triple-Layer Vascular Grafts Fabricated by Combined E-Jet 3D Printing and Electrospinning.
Huang, Ruiying; Gao, Xiangkai; Wang, Jian; Chen, Haoxiang; Tong, Chunyi; Tan, Yongjun; Tan, Zhikai
2018-05-29
Small-diameter tissue-engineered vascular grafts are urgently needed for clinic arterial substitute. To simulate the structures and functions of natural blood vessels, we designed a novel triple-layer poly(ε-caprolactone) (PCL) fibrous vascular graft by combining E-jet 3D printing and electrospinning techniques. The resultant vascular graft consisted of an interior layer comprising 3D-printed highly aligned strong fibers, a middle layer made by electrospun densely fibers, and an exterior structure composed of mixed fibers fabricated by co-electrospraying. The biocompatible triple-layer graft was used for in vivo implantation, and results demonstrated that the longitudinally-aligned fibers within the lumen of the graft could enhance the proliferation and migration of endothelial cells, while maintained good mechanical properties. The exterior layer provided a pathway that encouraged cells to migrate into the scaffold after implantation. This experimental graft overcame the limitations of conventionally electrospun vascular grafts of inadequate porosity and lowly cell penetration. The unique structure of the triple-layer vascular graft promoted cell growth and infiltration in vivo, thus provided an encouraging substitute for in situ tissue engineering.
Viscosity as related to dietary fiber: a review.
Dikeman, Cheryl L; Fahey, George C
2006-01-01
Viscosity is a physicochemical property associated with dietary fibers, particularly soluble dietary fibers. Viscous dietary fibers thicken when mixed with fluids and include polysaccharides such as gums, pectins, psyllium, and beta-glucans. Although insoluble fiber particles may affect viscosity measurement, viscosity is not an issue regards insoluble dietary fibers. Viscous fibers have been credited for beneficial physiological responses in human, animal, and animal-alternative in vitro models. The following article provides a review of viscosity as related to dietary fiber including definitions and instrumentation, factors affecting viscosity of solutions, and effects of viscous polysaccharides on glycemic response, blood lipid attenuation, intestinal enzymatic activity, digestibility, and laxation.
Velázquez-López, Lubia; Muñoz-Torres, Abril Violeta; García-Peña, Carmen; López-Alarcón, Mardia; Islas-Andrade, Sergio; Escobedo-de la Peña, Jorge
2016-01-01
Objective. To assess the association of dietary fiber on current everyday diet and other dietary components with glycated hemoglobin levels (HbA1c), glucose, lipids profile, and body weight body weight, in patients with type 2 diabetes. Methods. A cross-sectional survey of 395 patients with type 2 diabetes was performed. HbA1c, fasting glucose, triglycerides, and lipids profile were measured. Weight, waist circumference, blood pressure, and body composition were measured. Everyday diet with a semiquantitative food frequency questionnaire was evaluated. ANOVA, Kruskal-Wallis, chi-square tests and multivariate logistic regression were used in statistical analysis. Results. Higher fiber intake was associated with a low HbA1c, high HDL-c levels, low weight, and waist circumference. The highest tertile of calories consumption was associated with a higher fasting glucose level and weight. The highest tertile of carbohydrate consumption was associated with a lower weight. The lowest tertile of total fat and saturated fat was associated with the highest tertile of HDL-c levels, and lower saturated fat intake was associated with lower weight (p < 0.05). Conclusions. A higher content of fiber in the diet reduces HbA1c and triglycerides, while improving HDL-c levels. Increasing fiber consumption while lowering calorie consumption seems to be an appropriate strategy to reduce body weight and promote blood glucose control.
Cuervo, Adriana; Valdés, Lorena; Salazar, Nuria; de los Reyes-Gavilán, Clara G; Ruas-Madiedo, Patricia; Gueimonde, Miguel; González, Sonia
2014-06-11
Several studies have addressed the use of dietary fibers in the modulation of intestinal microbiota; however, information about other highly correlated components in foods, such as polyphenols, is scarce. The aim of this work was to explore the association between the intake of fibers and polyphenols from a regular diet and fecal microbiota composition in 38 healthy adults. Food intake was recorded using an annual food frequency questionnaire (FFQ). Quantification of microbial populations in feces was performed by quantitative PCR. A negative association was found between the intake of pectins and flavanones from oranges and the levels of Blautia coccoides and Clostridium leptum. By contrast, white bread, providing hemicellulose and resistant starch, was directly associated with Lactobacillus. Because some effects on intestinal microbiota attributed to isolated fibers or polyphenols might be modified by other components present in the same food, future research should be focused on diet rather than individual compounds.
Fiber Intake and PAI-1 in type 2 diabetes: Look AHEAD Trial Findings at Baseline and Year 1
Belalcazar, L. Maria; Anderson, Andrea M.; Lang, Wei; Schwenke, Dawn C.; Haffner, Steven M.; Yatsuya, Hiroshi; Rushing, Julia; Vitolins, Mara Z.; Reeves, Rebecca; Pi-Sunyer, F. Xavier; Tracy, Russell P.; Ballantyne, Christie M.
2014-01-01
Plasminogen Activator Inhibitor 1 (PAI-1) is elevated in obese individuals with type 2 diabetes (T2DM) and may contribute, independently of traditional factors, to increased cardiovascular disease (CVD) risk. Fiber intake may decrease PAI-1 levels. We examined the associations of fiber intake and its changes with PAI-1, before and during an intensive lifestyle intervention for weight loss (ILI) in 1,701 Look AHEAD participants with dietary, fitness and PAI-1 data at baseline and 1-year. Look AHEAD was a randomized CVD trial in 5,145 overweight/obese subjects with T2DM, comparing ILI (goal of ≥7% reduction in baseline weight) with a control arm of diabetes support and education (DSE). ILI participants were encouraged to consume vegetables, fruits and grain products low in sugar and fat. At baseline, median fiber intake was 17.9 g/d. Each 8.3 g/day higher fiber intake was associated with a 9.2% lower PAI-1 level (p=0.008); this association persisted after weight and fitness adjustments (p=0.03). Higher baseline intake of fruit (p=0.019) and high-fiber grain and cereal (p=0.029) were related to lower PAI-1 levels. Although successful in improving weight and physical fitness at 1-year, ILI in Look AHEAD resulted in small increases in fiber intake (4.1g/day, compared with -2.35 g/day with DSE), which were not related to PAI-1 change (p=0.34). Only 31.3% of ILI participants (39.8% of women; 19.1% of men) met daily fiber intake recommendations. Increasing fiber intake in overweight/obese individuals with diabetes interested in weight loss is challenging. Future studies evaluating changes in fiber consumption during weight loss interventions are warranted. PMID:25131348
Rautiainen, Susanne; Wang, Lu; Lee, I-Min; Manson, JoAnn E; Buring, Julie E; Sesso, Howard D
2015-05-01
Fruit, vegetable, and dietary fiber intake have been associated with lower risk of cardiovascular disease (CVD); however, little is known about their role in obesity prevention. Our goal was to investigate whether intake of fruits, vegetables, and dietary fiber is associated with weight change and the risk of becoming overweight and obese. We studied 18,146 women aged ≥45 y from the Women's Health Study free of CVD and cancer with an initial body mass index (BMI) of 18.5 to <25 kg/m². Fruit, vegetable, and dietary fiber intakes were assessed at baseline through a 131-item food-frequency questionnaire, along with obesity-related risk factors. Women self-reported body weight on annual questionnaires. During a mean follow-up of 15.9 y, 8125 women became overweight or obese (BMI ≥25 kg/m²). Intakes of total fruits and vegetables, fruits, and dietary fiber were not associated with the longitudinal changes in body weight, whereas higher vegetable intake was associated with greater weight gain (P-trend: 0.02). In multivariable analyses, controlling for total energy intake and physical activity along with other lifestyle, clinical, and dietary factors, women in the highest vs. lowest quintile of fruit intake had an HR of 0.87 (95% CI: 0.80, 0.94; P-trend: 0.01) of becoming overweight or obese. No association was observed for vegetable or dietary fiber intake. The association between fruit intake and risk of becoming overweight or obese was modified by baseline BMI (P-interaction: <0.0001) where the strongest inverse association was observed among women with a BMI <23 kg/m² (HR: 0.82; 95% CI: 0.71, 0.94). Our results suggest that greater baseline intake of fruit, but not vegetables or fiber, by middle-aged and older women with a normal BMI at baseline is associated with lower risk of becoming overweight or obese. © 2015 American Society for Nutrition.
Rautiainen, Susanne; Wang, Lu; Lee, I-Min; Manson, JoAnn E; Buring, Julie E; Sesso, Howard D
2015-01-01
Background: Fruit, vegetable, and dietary fiber intake have been associated with lower risk of cardiovascular disease (CVD); however, little is known about their role in obesity prevention. Objective: Our goal was to investigate whether intake of fruits, vegetables, and dietary fiber is associated with weight change and the risk of becoming overweight and obese. Methods: We studied 18,146 women aged ≥45 y from the Women’s Health Study free of CVD and cancer with an initial body mass index (BMI) of 18.5 to <25 kg/m2. Fruit, vegetable, and dietary fiber intakes were assessed at baseline through a 131-item food-frequency questionnaire, along with obesity-related risk factors. Women self-reported body weight on annual questionnaires. Results: During a mean follow-up of 15.9 y, 8125 women became overweight or obese (BMI ≥25 kg/m2). Intakes of total fruits and vegetables, fruits, and dietary fiber were not associated with the longitudinal changes in body weight, whereas higher vegetable intake was associated with greater weight gain (P-trend: 0.02). In multivariable analyses, controlling for total energy intake and physical activity along with other lifestyle, clinical, and dietary factors, women in the highest vs. lowest quintile of fruit intake had an HR of 0.87 (95% CI: 0.80, 0.94; P-trend: 0.01) of becoming overweight or obese. No association was observed for vegetable or dietary fiber intake. The association between fruit intake and risk of becoming overweight or obese was modified by baseline BMI (P-interaction: <0.0001) where the strongest inverse association was observed among women with a BMI <23 kg/m2 (HR: 0.82; 95% CI: 0.71, 0.94). Conclusion: Our results suggest that greater baseline intake of fruit, but not vegetables or fiber, by middle-aged and older women with a normal BMI at baseline is associated with lower risk of becoming overweight or obese. PMID:25934663
Localization of α1-2 Fucose Glycan in the Mouse Olfactory Pathway.
Kondoh, Daisuke; Kamikawa, Akihiro; Sasaki, Motoki; Kitamura, Nobuo
2017-01-01
Glycoconjugates in the olfactory system play critical roles in neuronal formation, and α1-2 fucose (α1-2Fuc) glycan mediates neurite outgrowth and synaptic plasticity. Histochemical findings of α1-2Fuc glycan in the mouse olfactory system detected using Ulex europaeus agglutinin-I (UEA-I) vary. This study histochemically assessed the main olfactory and vomeronasal pathways in male and female ICR and C57BL/6J mice aged 3-4 months using UEA-I. Ulex europaeus agglutinin-I reacted with most receptor cells arranged mainly at the basal region of the olfactory epithelium. The olfactory nerve layer and glomerular layer of the main olfactory bulb were speckled with positive UEA-I staining, and positive fibers were scattered from the glomerular to the internal plexiform layer. The lateral olfactory tract and rostral migratory stream were also positive for UEA-I. We identified superficial short-axon cells, interneurons of the external plexiform layer, external, middle and internal tufted cells, mitral cells and granule cells as the origins of the UEA-I-positive fibers in the main olfactory bulb. The anterior olfactory nucleus, anterior piriform cortex and olfactory tubercle were negative for UEA-I. Most receptor cells in the vomeronasal epithelium and most glomeruli of the accessory olfactory bulb were positive for UEA-I. Our findings indicated that α1-2Fuc glycan is located within the primary and secondary, but not the ternary, pathways of the main olfactory system, in local circuits of the main olfactory bulb and within the primary, but not secondary, pathway of the vomeronasal system. © 2016 S. Karger AG, Basel.
Favoni, Roberto E; Florio, Tullio
2011-08-01
Human malignant pleural mesothelioma (hMPM) is an aggressive asbestos-associated cancer, the incidence of which is increasing and which, despite progress in diagnosis and therapy, continues to have a poor prognosis. Asbestos fibers induce aberrant cell signaling, leading to proto-oncogene activation and chemoresistance. In this review, we discuss the evolution of pharmacological management of hMPM up to the most recent advances. Monotherapy with single cytotoxic drugs achieves modest objective response rates, seldom reaching 30%. However, combination regimens using novel drugs and standard molecules are showing gradually improving responses and clinical benefits. Phase II/III studies have identified pemetrexed, a multitarget folate pathway inhibitor in combination with platinum derivatives, and the cisplatin/gemcitabine association as front-line chemotherapy for hMPM. Detailed knowledge of molecular mechanisms of signal transduction and neoangiogenesis in hMPM should aid in the design and screening of other promising compounds such as more efficacious receptor tyrosine kinase inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Desert, C; Baéza, E; Aite, M; Boutin, M; Le Cam, A; Montfort, J; Houee-Bigot, M; Blum, Y; Roux, P F; Hennequet-Antier, C; Berri, C; Metayer-Coustard, S; Collin, A; Allais, S; Le Bihan, E; Causeur, D; Gondret, F; Duclos, M J; Lagarrigue, S
2018-03-07
Because the cost of cereals is unstable and represents a large part of production charges for meat-type chicken, there is an urge to formulate alternative diets from more cost-effective feedstuff. We have recently shown that meat-type chicken source is prone to adapt to dietary starch substitution with fat and fiber. The aim of this study was to better understand the molecular mechanisms of this adaptation to changes in dietary energy sources through the fine characterization of transcriptomic changes occurring in three major metabolic tissues - liver, adipose tissue and muscle - as well as in circulating blood cells. We revealed the fine-tuned regulation of many hepatic genes encoding key enzymes driving glycogenesis and de novo fatty acid synthesis pathways and of some genes participating in oxidation. Among the genes expressed upon consumption of a high-fat, high-fiber diet, we highlighted CPT1A, which encodes a key enzyme in the regulation of fatty acid oxidation. Conversely, the repression of lipogenic genes by the high-fat diet was clearly associated with the down-regulation of SREBF1 transcripts but was not associated with the transcript regulation of MLXIPL and NR1H3, which are both transcription factors. This result suggests a pivotal role for SREBF1 in lipogenesis regulation in response to a decrease in dietary starch and an increase in dietary PUFA. Other prospective regulators of de novo hepatic lipogenesis were suggested, such as PPARD, JUN, TADA2A and KAT2B, the last two genes belonging to the lysine acetyl transferase (KAT) complex family regulating histone and non-histone protein acetylation. Hepatic glycogenic genes were also down-regulated in chickens fed a high-fat, high-fiber diet compared to those in chickens fed a starch-based diet. No significant dietary-associated variations in gene expression profiles was observed in the other studied tissues, suggesting that the liver mainly contributed to the adaptation of birds to changes in energy source and nutrients in their diets, at least at the transcriptional level. Moreover, we showed that PUFA deposition observed in the different tissues may not rely on transcriptional changes. We showed the major role of the liver, at the gene expression level, in the adaptive response of chicken to dietary starch substitution with fat and fiber.
Park, Song-Yi; Wilkens, Lynne R.; Kolonel, Laurence N.; Henderson, Brian E.; Le Marchand, Loïc
2017-01-01
In the Multiethnic Cohort Study, we previously reported that dietary fiber intake was inversely associated with colorectal cancer risk in men only. In women, the inverse relationship was weaker and appeared to be confounded by menopausal hormone therapy (MHT). We re-examined this observation with a greatly increased power. Using Cox proportional hazards models, we analyzed data from 187,674 participants with 4,692 cases identified during a mean follow-up period of 16 years. In multivariable-adjusted models, dietary fiber intake was inversely associated with colorectal cancer risk in both sexes: HR = 0.73, 95% CI: 0.61–0.89 for highest vs. lowest quintile, ptrend = 0.0020 in men and HR = 0.76, 95% CI: 0.62–0.91, ptrend = 0.0067 in women. Postmenopausal women who ever used MHT had a 19% lower risk of colorectal cancer (95% CI: 0.74–0.89) compared to MHT never users. In a joint analysis of dietary fiber and MHT, dietary fiber intake was associated with a lower colorectal cancer risk in MHT never users (HR = 0.75, 95% CI: 0.59–0.95, ptrend =0.045), but did not appear to further decrease the colorectal cancer risk of MHT ever users (ptrend = 0.11). Our results support the overall protective roles of dietary fiber and MHT against colorectal cancer and suggest that dietary fiber may not lower risk further among women who ever used MHT. If confirmed, these results would suggest that MHT and dietary fiber may share overlapping mechanisms in protecting against colorectal cancer. PMID:27137137
Park, Song-Yi; Wilkens, Lynne R; Kolonel, Laurence N; Henderson, Brian E; Le Marchand, Loïc
2016-09-15
In the Multiethnic Cohort Study, we previously reported that dietary fiber intake was inversely associated with colorectal cancer risk in men only. In women, the inverse relationship was weaker and appeared to be confounded by menopausal hormone therapy (MHT). We re-examined this observation with a greatly increased power. Using Cox proportional hazards models, we analyzed data from 187,674 participants with 4,692 cases identified during a mean follow-up period of 16 years. In multivariable-adjusted models, dietary fiber intake was inversely associated with colorectal cancer risk in both sexes: HR = 0.73, 95% CI: 0.61-0.89 for highest vs. lowest quintile, ptrend = 0.0020 in men and HR = 0.76, 95% CI: 0.62-0.91, ptrend = 0.0067 in women. Postmenopausal women who ever used MHT had a 19% lower risk of colorectal cancer (95% CI: 0.74-0.89) compared with MHT never users. In a joint analysis of dietary fiber and MHT, dietary fiber intake was associated with a lower colorectal cancer risk in MHT never users (HR = 0.75, 95% CI: 0.59-0.95, ptrend = 0.045), but did not appear to further decrease the colorectal cancer risk of MHT ever users (ptrend = 0.11). Our results support the overall protective roles of dietary fiber and MHT against colorectal cancer and suggest that dietary fiber may not lower risk further among women who ever used MHT. If confirmed, these results would suggest that MHT and dietary fiber may share overlapping mechanisms in protecting against colorectal cancer. © 2016 UICC.
A novel curcumin derivative for the treatment of diabetic neuropathy.
Daugherty, Daniel J; Marquez, Alexandra; Calcutt, Nigel A; Schubert, David
2018-02-01
Neuropathy is a common complication of long-term diabetes. Proposed mechanisms of neuronal damage caused by diabetes that are downstream of hyperglycemia and/or loss of insulin signaling include ischemic hypoxia, inflammation and loss of neurotrophic support. The curcumin derivative J147 is a potent neurogenic and neuroprotective drug candidate initially developed for the treatment of neurodegenerative conditions associated with aging that impacts many pathways implicated in the pathogenesis of diabetic neuropathy. Here, we demonstrate efficacy of J147 in ameliorating multiple indices of neuropathy in the streptozotocin-induced mouse model of type 1 diabetes. Diabetes was determined by blood glucose, HbA1c, and insulin levels and efficacy of J147 by behavioral, physiologic, biochemical, proteomic, and transcriptomic assays. Biological efficacy of systemic J147 treatment was confirmed by its capacity to decrease TNFα pathway activation and several other markers of neuroinflammation in the CNS. Chronic oral treatment with J147 protected the sciatic nerve from progressive diabetes-induced slowing of large myelinated fiber conduction velocity while single doses of J147 rapidly and transiently reversed established touch-evoked allodynia. Conduction slowing and allodynia are clinically relevant markers of early diabetic neuropathy and neuropathic pain, respectively. RNA expression profiling suggests that one of the pathways by which J147 imparts its protection against diabetic induced neuropathy may be through activation of the AMP kinase pathway. The diverse biological and therapeutic effects of J147 suggest it as an alternative to the polypharmaceutical approaches required to treat the multiple pathogenic mechanisms that contribute to diabetic neuropathy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury
NASA Technical Reports Server (NTRS)
Murashov, A. K.; Ul Haq, I.; Hill, C.; Park, E.; Smith, M.; Wang, X.; Wang, X.; Goldberg, D. J.; Wolgemuth, D. J.
2001-01-01
The p38 stress-activated protein kinase pathway is involved in regulation of phosphorylation of Hsp25, which in turn regulates actin filament dynamic in non-neuronal cells. We report that p38, Hsp25 and Akt signaling pathways were specifically activated in spinal motor neurons after sciatic nerve axotomy. The activation of the p38 kinase was required for induction of Hsp25 expression. Furthermore, Hsp25 formed a complex with Akt, a member of PI-3 kinase pathway that prevents neuronal cell death. Together, our observations implicate Hsp25 as a central player in a complex system of signaling that may both promote regeneration of nerve fibers and prevent neuronal cell death in the injured spinal cord.
Bliss, Donna Z.; Savik, Kay; Jung, Hans-Joachim G.; Whitebird, Robin; Lowry, Ann
2011-01-01
Background Knowledge about adverse symptoms over time from fiber supplementation is lacking. Purpose To compare the severity of adverse gastrointestinal (GI) symptoms during supplementation with dietary fiber or placebo over time in adults with fecal incontinence. Secondary aims were to determine the relationship between symptom severity and emotional upset and their association with study attrition and reducing fiber dose. Methods Subjects (N=189, 77% female, 92% white, (age = 58 years, SD = 14) with fecal incontinence were randomly assigned to placebo or a supplement of 16g total dietary fiber/day from one of three sources: gum arabic, psyllium, or carboxymethylcellulose. They reported GI symptoms daily during baseline (14 days), incremental fiber dosing (6 days), and two segments of steady full fiber dose (32 days total). Results Severity of symptoms in all groups was minimal. Adjusting for study segment and day, a greater feeling of fullness in the psyllium group was the only symptom that differed from symptoms in the placebo group. Odds of having greater severity of flatus, belching, fullness, and bloating were 1.2–2.0 times greater in the steady dose segment compared to baseline. There was a positive association between symptom severity and emotional upset. Subjects with a greater feeling of fullness or bloating or higher scores for total symptom severity or emotional upset were more likely to withdraw from the study sooner or reduce fiber dose. Conclusions Persons with fecal incontinence experience a variety of GI symptoms over time. Symptom severity and emotional upset appear to influence fiber tolerance and study attrition. Supplements seemed well tolerated. PMID:21543963
Zhai, Zu Wei; Yip, Sarah W; Morie, Kristen P; Sinha, Rajita; Mayes, Linda C; Potenza, Marc N
2018-04-01
While childhood stress may contribute risk to substance-use initiation and differences in brain white-matter development, understanding of the potential impact of substance-use initiation on the relationship between experienced stress and white-matter microstructure remains limited. This study examined whether substance-use initiation moderated the effect of perceived stress on white-matter differences using measures of primary white-matter fiber anisotropy. Forty adolescents (age 14.75 ± .87 years) were assessed on the Perceived Stress Scale, and 50% were determined to have presence of substance-use initiation. White-matter microstructure was examined using primary-fiber orientations anisotropy, which may reflect white-matter integrity, modeled separately from other fiber orientations in the same voxels. Analyses were conducted on regions of interest previously associated with childhood stress and substance use. Lower perceived stress and presence of substance-use initiation were related to greater right cingulum primary-fiber measures. Substance-use-initiation status moderated the association between perceived stress and right cingulum primary-fiber measures, such that higher perceived stress was associated with lower right cingulum primary-fiber anisotropy in adolescents without substance-use initiation, but not in those with substance-use initiation. Findings in primary-fiber anisotropy suggest differences in right cingulum white-matter integrity is associated with substance-use initiation in higher-stress adolescents. This reflects a possible pre-existing risk factor, an impact of early substance use, or a combination thereof. Examination of potential markers associated with substance-use initiation in white-matter microstructure among stress-exposed youth warrant additional investigation as such biomarkers may inform efforts relating to tailored interventions. (Am J Addict 2018;27:217-224). © 2018 American Academy of Addiction Psychiatry.
Dehghani, Cirous; Srinivasan, Sangeetha; Edwards, Katie; Pritchard, Nicola; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan
2017-05-01
Reduced retinal nerve fiber layer (RNFL) thickness has been demonstrated in patients with diabetic peripheral neuropathy (DPN) in cross-sectional studies. This prospective study defines longitudinal alterations to the RNFL thickness in individuals with type 1 diabetes without (DPN-ve) and with (DPN+ve) DPN and in relation to risk factors for nerve damage. A cohort of 105 individuals with type 1 diabetes (20% DPN+ve) with predominantly mild or no retinopathy and no previous retinal photocoagulation underwent spectral-domain optical coherence tomography (SD-OCT) at baseline, 2 years, and 4 years. SD-OCT scans were acquired at 3.45-mm diameter around the optic nerve head and the overall RNFL and RNFL in the nasal, superior, temporal, and inferior quadrants were quantified. By including serial quantified RNFL parameters, linear mixed models were applied to assess the change in RNFL thickness over time and to explore the associations with other clinical variables. There was a significant decline in the overall RNFL thickness (-0.7 μm/y, P = 0.02) and RNFL in the superior quadrant (-1.9 μm/y, P < 0.01) in the DPN+ve group compared with DPN-ve group. The overall RNFL thickness and RNFL in the superior and nasal quadrants were inversely associated with age (β = -0.29, -0.41, and -0.29, respectively; P ≤ 0.02). Sex, retinopathy, diabetes duration, hemoglobin A1c, lipid profile, blood pressure, cigarette use, alcohol consumption, and body mass index did not show any significant effects (P > 0.05). Individuals with DPN showed a progressive RNFL thinning overall and in the superior quadrant, which was more pronounced in older individuals. There may be common pathways for retinal and peripheral neurodegeneration that are independent of conventional DPN risk factors.
Takahashi, Ryosuke; Yoshizawa, Tsuyoshi; Yunoki, Takakazu; Tyagi, Pradeep; Naito, Seiji; de Groat, William C; Yoshimura, Naoki
2013-12-01
To clarify the functional and molecular mechanisms inducing hyperexcitability of C-fiber bladder afferent pathways after spinal cord injury we examined changes in the electrophysiological properties of bladder afferent neurons, focusing especially on voltage-gated K channels. Freshly dissociated L6-S1 dorsal root ganglion neurons were prepared from female spinal intact and spinal transected (T9-T10 transection) Sprague Dawley® rats. Whole cell patch clamp recordings were performed on individual bladder afferent neurons. Kv1.2 and Kv1.4 α-subunit expression levels were also evaluated by immunohistochemical and real-time polymerase chain reaction methods. Capsaicin sensitive bladder afferent neurons from spinal transected rats showed increased cell excitability, as evidenced by lower spike activation thresholds and a tonic firing pattern. The peak density of transient A-type K+ currents in capsaicin sensitive bladder afferent neurons from spinal transected rats was significantly less than that from spinal intact rats. Also, the KA current inactivation curve was displaced to more hyperpolarized levels after spinal transection. The protein and mRNA expression of Kv1.4 α-subunits, which can form transient A-type K+ channels, was decreased in bladder afferent neurons after spinal transection. Results indicate that the excitability of capsaicin sensitive C-fiber bladder afferent neurons is increased in association with reductions in transient A-type K+ current density and Kv1.4 α-subunit expression in injured rats. Thus, the Kv1.4 α-subunit could be a molecular target for treating overactive bladder due to neurogenic detrusor overactivity. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Adipose tissue fibrosis in human cancer cachexia: the role of TGFβ pathway.
Alves, Michele Joana; Figuerêdo, Raquel Galvão; Azevedo, Flavia Figueiredo; Cavallaro, Diego Alexandre; Neto, Nelson Inácio Pinto; Lima, Joanna Darck Carola; Matos-Neto, Emidio; Radloff, Katrin; Riccardi, Daniela Mendes; Camargo, Rodolfo Gonzalez; De Alcântara, Paulo Sérgio Martins; Otoch, José Pinhata; Junior, Miguel Luiz Batista; Seelaender, Marília
2017-03-14
Cancer cachexia is a multifactorial syndrome that dramatically decreases survival. Loss of white adipose tissue (WAT) is one of the key characteristics of cachexia. WAT wasting is paralleled by microarchitectural remodeling in cachectic cancer patients. Fibrosis results from uncontrolled ECM synthesis, a process in which, transforming growth factor-beta (TGFβ) plays a pivotal role. So far, the mechanisms involved in adipose tissue (AT) re-arrangement, and the role of TGFβ in inducing AT remodeling in weight-losing cancer patients are poorly understood. This study examined the modulation of ECM components mediated by TGFβ pathway in fibrotic AT obtained from cachectic gastrointestinal cancer patients. After signing the informed consent form, patients were enrolled into the following groups: cancer cachexia (CC, n = 21), weight-stable cancer (WSC, n = 17), and control (n = 21). The total amount of collagen and elastic fibers in the subcutaneous AT was assessed by histological analysis and by immunohistochemistry. TGFβ isoforms expression was analyzed by Multiplex assay and by immunohistochemistry. Alpha-smooth muscle actin (αSMA), fibroblast-specific protein (FSP1), Smad3 and 4 were quantified by qPCR and/or by immunohistochemistry. Interleukin (IL) 2, IL5, IL8, IL13 and IL17 content, cytokines known to be associated with fibrosis, was measured by Multiplex assay. There was an accumulation of collagen and elastic fibers in the AT of CC, as compared with WSC and controls. Collagens type I, III, VI, and fibronectin expression was enhanced in the tissue of CC, compared with both WSC and control. The pronounced expression of αSMA in the surrounding of adipocytes, and the increased mRNA content for FSP1 (20-fold) indicate the presence of activated myofibroblasts; particularly in CC. TGFβ1 and TGFβ3 levels were up-regulated by cachexia in AT, as well in the isolated adipocytes. Smad3 and Smad4 labeling was found to be more evident in the fibrotic areas of CC adipose tissue. Cancer cachexia promotes the development of AT fibrosis, in association with altered TGFβ signaling, compromising AT organization and function.
Lee, SungKyoung; Shatadal, Shalini; Griep, Anne E
2016-02-01
We previously showed that Discs large-1 (Dlg-1) regulates lens fiber cell structure and the fibroblast growth factor receptor (Fgfr) signaling pathway, a pathway required for fiber cell differentiation. Herein, we investigated the mechanism through which Dlg-1 regulates Fgfr signaling. Immunofluorescence was used to measure levels of Fgfr1, Fgfr2, and activated Fgfr signaling intermediates, pErk and pAkt, in control and Dlg-1-deficient lenses that were haplodeficient for Fgfr1 or Fgfr2. Immunoblotting was used to measure levels of N-cadherin, EphA2, β-catenin, and tyrosine-phosphorylated EphA2, Fgfr1, Fgfr2, and Fgfr3 in cytoskeletal-associated and cytosolic fractions of control and Dlg-1-deficient lenses. Complex formation between Dlg-1, N-cadherin, β-catenin, Fgfr1, Fgfr2, Fgfr3, and EphA2 was assessed by coimmunoprecipitation. Lenses deficient for Dlg-1 and haplodeficient for Fgfr1 or Fgfr2 showed increased levels of Fgfr2 or Fgfr1, respectively. Levels of pErk and pAkt correlated with the level of Fgfr2. N-cadherin was reduced in the cytoskeletal-associated fraction and increased in the cytosolic fraction of Dlg-1-deficient lenses. Dlg-1 complexed with β-catenin, EphA2, Fgfr1, Fgfr2, and Fgfr3. EphA2 complexed with N-cadherin, β-catenin, Fgfr1, Fgfr2, and Fgfr3. Levels of these interactions were altered in Dlg-1-deficient lenses. Loss of Dlg-1 led to changes in Fgfr1, Fgfr2, Fgfr3, and EphA2 levels and to greater changes in the levels of their activation. Dlg-1 complexes with and regulates the activities of EphA2, Fgfr1, Fgfr2, and Fgfr3. As EphA2 contains a Psd95/Dlg/ZO-1 (PDZ) binding motif, whereas Fgfrs do not, we propose that the PDZ protein, Dlg-1, modulates Fgfr signaling through regulation of EphA2.
Association between dietary fiber and endometrial cancer: a dose-response meta-analysis123
Bandera, Elisa V; Kushi, Lawrence H; Moore, Dirk F; Gifkins, Dina M; McCullough, Marjorie L
2008-01-01
Background Endometrial cancer is the most common female gynecologic cancer in the United States. Excessive and prolonged exposure of the endometrium to estrogens unopposed by progesterone and a high body mass are well-established risk factors for endometrial cancer. Although dietary fiber has been shown to beneficially reduce estrogen concentrations and prevent obesity, its role in endometrial cancer has received relatively little attention. Objective The objective was to summarize and quantify the current evidence of a role of dietary fiber consumption in endometrial cancer risk and to identify research gaps in this field. Design We conducted a systematic literature review of articles published through February 2007 to summarize the current evidence of a relation between dietary fiber consumption and endometrial cancer risk and to quantify the magnitude of the association by conducting a dose-response meta-analysis. Results Ten articles representing 1 case-cohort study and 9 case-control studies that evaluated several aspects of fiber consumption and endometrial cancer risk were identified through searches in various databases. On the basis of 7 case-control studies, the random-effects summary risk estimate was 0.82 (95% CI: 0.75, 0.90) per 5 g/1000 kcal dietary fiber, with no evidence of heterogeneity (I2: 0%, P for heterogeneity: 0.55). The random-effects summary estimate was 0.71 (95% CI: 0.59, 0.85) for the comparison of the highest with the lowest dietary fiber intake in 8 case-control studies, with little evidence of heterogeneity (I2: 20.8%, P for heterogeneity: 0.26). In contrast, the only prospective study that evaluated this association did not find an association. Conclusions Although the current evidence, based on data from case-control studies, supports an inverse association between dietary fiber and endometrial cancer, additional population-based studies, particularly cohort studies, are needed before definitive conclusions can be drawn. PMID:18065593
Clark, Greg; Torres, Jonathan; Finlayson, Scott; Guan, Xueying; Handley, Craig; Lee, Jinsuk; Kays, Julia E.; Chen, Z. Jeffery; Roux, Stanley J.
2010-01-01
Ectoapyrase enzymes remove the terminal phosphate from extracellular nucleoside tri- and diphosphates. In Arabidopsis (Arabidopsis thaliana), two ectoapyrases, AtAPY1 and AtAPY2, have been implicated as key modulators of growth. In fibers of cotton (Gossypium hirsutum), transcript levels for GhAPY1 and GhAPY2, two closely related ectoapyrases that have high sequence similarity to AtAPY1 and AtAPY2, are up-regulated when fibers enter their rapid growth phase. In an ovule culture system, fibers release ATP as they grow, and when their ectoapyrase activity is blocked by the addition of polyclonal anti-apyrase antibodies or by two different small molecule inhibitors, the medium ATP level rises and fiber growth is suppressed. High concentrations of the poorly hydrolyzable nucleotides ATPγS and ADPβS applied to the medium inhibit fiber growth, and low concentrations of them stimulate growth, but treatment with adenosine 5′-O-thiomonophosphate causes no change in the growth rate. Both the inhibition and stimulation of growth by applied nucleotides can be blocked by an antagonist that blocks purinoceptors in animal cells, and by adenosine. Treatment of cotton ovule cultures with ATPγS induces increased levels of ethylene, and two ethylene antagonists, aminovinylglycine and silver nitrate, block both the growth stimulatory and growth inhibitory effects of applied nucleotides. In addition, the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, lowers the concentration of nucleotide needed to promote fiber growth. These data indicate that ectoapyrases and extracellular nucleotides play a significant role in regulating cotton fiber growth and that ethylene is a likely downstream component of the signaling pathway. PMID:20018604
Van Acker, Nathalie; Ragé, Michael; Vermeirsch, Hilde; Schrijvers, Dorien; Nuydens, Rony; Byttebier, Geert; Timmers, Maarten; De Schepper, Stefanie; Streffer, Johannes; Andries, Luc; Plaghki, Léon; Cras, Patrick; Meert, Theo
2016-01-01
The in vivo cutaneous nerve regeneration model using capsaicin is applied extensively to study the regenerative mechanisms and therapeutic efficacy of disease modifying molecules for small fiber neuropathy (SFN). Since mismatches between functional and morphological nerve fiber recovery are described for this model, we aimed at determining the capability of the capsaicin model to truly mimic the morphological manifestations of SFN in diabetes. As nerve and blood vessel growth and regenerative capacities are defective in diabetes, we focused on studying the key regulator of these processes, the neuropilin-1 (NRP-1)/semaphorin pathway. This led us to the evaluation of NRP-1 receptor expression in epidermis and dermis of subjects presenting experimentally induced small fiber neuropathy, diabetic polyneuropathy and of diabetic subjects without clinical signs of small fiber neuropathy. The NRP-1 receptor was co-stained with CD31 vessel-marker using immunofluorescence and analyzed with Definiens® technology. This study indicates that capsaicin application results in significant loss of epidermal NRP-1 receptor expression, whereas diabetic subjects presenting small fiber neuropathy show full epidermal NRP-1 expression in contrast to the basal expression pattern seen in healthy controls. Capsaicin induced a decrease in dermal non-vascular NRP-1 receptor expression which did not appear in diabetic polyneuropathy. We can conclude that the capsaicin model does not mimic diabetic neuropathy related changes for cutaneous NRP-1 receptor expression. In addition, our data suggest that NRP-1 might play an important role in epidermal nerve fiber loss and/or defective regeneration and that NRP-1 receptor could change the epidermal environment to a nerve fiber repellant bed possibly through Sem3A in diabetes. PMID:27598321
Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
Khaled, S M Z; Charpentier, Paul A; Rizkalla, Amin S
2011-02-01
X-ray contrast medium (BaSO(4) or ZrO(2)) used in commercially available PMMA bone cements imparts a detrimental effect on mechanical properties, particularly on flexural strength and fracture toughness. These lower properties facilitate the chance of implant loosening resulting from cement mantle failure. The present study was performed to examine the mechanical properties of a commercially available cement (CMW1) by introducing novel nanostructured titania fibers (n-TiO(2) fibers) into the cement matrix, with the fibers acting as a reinforcing phase. The hydrophilic nature of the n-TiO(2) fibers was modified by using a bifunctional monomer, methacrylic acid. The n-TiO(2) fiber content of the cement was varied from 0 to 2 wt%. Along with the mechanical properties (fracture toughness (K (IC)), flexural strength (FS), and flexural modulus (FM)) of the reinforced cements the following properties were investigated: complex viscosity-versus-time, maximum polymerization temperature (T (max)), dough time (t (dough)), setting time (t (set)), radiopacity, and in vitro biocompatibility. On the basis of the determined mechanical properties, the optimized composition was found at 1 wt% n-TiO(2) fibers, which provided a significant increase in K (IC) (63%), FS (20%), and FM (22%), while retaining the handling properties and in vitro biocompatibility compared to that exhibited by the control cement (CMW1). Moreover, compared to the control cement, there was no significant change in the radiopacity of any of the reinforced cements at p = 0.05. This study demonstrated a novel pathway to augment the mechanical properties of PMMA-based cement by providing an enhanced interfacial interaction and strong adhesion between the functionalized n-TiO( 2) fibers and PMMA matrix, which enhanced the effective load transfer within the cement.
Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers
Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin
2018-01-01
Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB− fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. PMID:28600222
Beitzel, Christy S.; Houck, Brenda D.; Lewis, Samantha M.
2017-01-01
Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control. SIGNIFICANCE STATEMENT The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent comprised of feedback collaterals from premotor rubrospinal neurons can directly modulate IN output independent of Purkinje cell modulation. In contrast to the IN-RNm pathway, the RNm-IN feedback pathway targets multiple cell types, potentially influencing both motor output pathways and nucleo-olivary feedback. PMID:28916520
Beitzel, Christy S; Houck, Brenda D; Lewis, Samantha M; Person, Abigail L
2017-10-18
Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control. SIGNIFICANCE STATEMENT The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent comprised of feedback collaterals from premotor rubrospinal neurons can directly modulate IN output independent of Purkinje cell modulation. In contrast to the IN-RNm pathway, the RNm-IN feedback pathway targets multiple cell types, potentially influencing both motor output pathways and nucleo-olivary feedback. Copyright © 2017 the authors 0270-6474/17/3710085-12$15.00/0.
Fujiwara, Sachiko; Ohashi, Kazumasa; Mashiko, Toshiya; Kondo, Hiroshi; Mizuno, Kensaku
2016-01-01
Mechanical force–induced cytoskeletal reorganization is essential for cell and tissue remodeling and homeostasis; however, the underlying cellular mechanisms remain elusive. Solo (ARHGEF40) is a RhoA-targeting guanine nucleotide exchange factor (GEF) involved in cyclical stretch–induced human endothelial cell reorientation and convergent extension cell movement in zebrafish gastrula. In this study, we show that Solo binds to keratin-8/keratin-18 (K8/K18) intermediate filaments through multiple sites. Solo overexpression promotes the formation of thick actin stress fibers and keratin bundles, whereas knockdown of Solo, expression of a GEF-inactive mutant of Solo, or inhibition of ROCK suppresses stress fiber formation and leads to disorganized keratin networks, indicating that the Solo-RhoA-ROCK pathway serves to precisely organize keratin networks, as well as to promote stress fibers. Of importance, knockdown of Solo or K18 or overexpression of GEF-inactive or deletion mutants of Solo suppresses tensile force–induced stress fiber reinforcement. Furthermore, knockdown of Solo or K18 suppresses tensile force-induced RhoA activation. These results strongly suggest that the interplay between Solo and K8/K18 filaments plays a crucial role in tensile force–induced RhoA activation and consequent actin cytoskeletal reinforcement. PMID:26823019
Neuronal Determinants of Motor Disability in MS
2015-10-01
well as in partial development of fiber tracking techniques for segmentation of motor pathways in the brain, brainstem , and spinal cord. We have...of motor neurons at the cortex and axons traversing the brain, brainstem and spinal cord 4 - 6 Dr
Medial Auditory Thalamic Stimulation as a Conditioned Stimulus for Eyeblink Conditioning in Rats
ERIC Educational Resources Information Center
Campolattaro, Matthew M.; Halverson, Hunter E.; Freeman, John H.
2007-01-01
The neural pathways that convey conditioned stimulus (CS) information to the cerebellum during eyeblink conditioning have not been fully delineated. It is well established that pontine mossy fiber inputs to the cerebellum convey CS-related stimulation for different sensory modalities (e.g., auditory, visual, tactile). Less is known about the…
USDA-ARS?s Scientific Manuscript database
The ubiquitin-proteasome proteolysis pathway is responsible for the degradation of abnormal and short-lived proteins to regulate many important biochemical activities in eukaryotes. By employing affymetrix microarray analysis, we have identified a novel ubiquitin ligase E3 gene GhRING2 that is diffe...
Ferrera, Patricia; Zepeda, Angélica; Arias, Clorinda
2017-10-01
Amyloid-β protein (Aβ) neurotoxicity occurs along with the reorganization of the actin-cytoskeleton through the activation of the Rho GTPase pathway. In addition to the classical mode of action of the non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin, and ibuprofen have Rho-inhibiting effects. In order to evaluate the role of the Rho GTPase pathway on Aβ-induced neuronal death and on neuronal morphological modifications in the actin cytoskeleton, we explored the role of NSAIDS in human-differentiated neuroblastoma cells exposed to Aβ. We found that Aβ induced neurite retraction and promoted the formation of different actin-dependent structures such as stress fibers, filopodia, lamellipodia, and ruffles. In the presence of Aβ, both NSAIDs prevented neurite collapse and formation of stress fibers without affecting the formation of filopodia and lamellipodia. Similar results were obtained when the downstream effector, Rho kinase inhibitor Y27632, was applied in the presence of Aβ. These results demonstrate the potential benefits of the Rho-inhibiting NSAIDs in reducing Aβ-induced effects on neuronal structural alterations.
Fu, Xing; Zhu, Mei-Jun; Dodson, Mike V.; Du, Min
2015-01-01
Satellite cells are the major myogenic stem cells residing inside skeletal muscle and are indispensable for muscle regeneration. Satellite cells remain largely quiescent but are rapidly activated in response to muscle injury, and the derived myogenic cells then fuse to repair damaged muscle fibers or form new muscle fibers. However, mechanisms eliciting metabolic activation, an inseparable step for satellite cell activation following muscle injury, have not been defined. We found that a noncanonical Sonic Hedgehog (Shh) pathway is rapidly activated in response to muscle injury, which activates AMPK and induces a Warburg-like glycolysis in satellite cells. AMPKα1 is the dominant AMPKα isoform expressed in satellite cells, and AMPKα1 deficiency in satellite cells impairs their activation and myogenic differentiation during muscle regeneration. Drugs activating noncanonical Shh promote proliferation of satellite cells, which is abolished because of satellite cell-specific AMPKα1 knock-out. Taken together, AMPKα1 is a critical mediator linking noncanonical Shh pathway to Warburg-like glycolysis in satellite cells, which is required for satellite activation and muscle regeneration. PMID:26370082
Rho GTPases Control Polarity, Protrusion, and Adhesion during Cell Movement
Nobes, Catherine D.; Hall, Alan
1999-01-01
Cell movement is essential during embryogenesis to establish tissue patterns and to drive morphogenetic pathways and in the adult for tissue repair and to direct cells to sites of infection. Animal cells move by crawling and the driving force is derived primarily from the coordinated assembly and disassembly of actin filaments. The small GTPases, Rho, Rac, and Cdc42, regulate the organization of actin filaments and we have analyzed their contributions to the movement of primary embryo fibroblasts in an in vitro wound healing assay. Rac is essential for the protrusion of lamellipodia and for forward movement. Cdc42 is required to maintain cell polarity, which includes the localization of lamellipodial activity to the leading edge and the reorientation of the Golgi apparatus in the direction of movement. Rho is required to maintain cell adhesion during movement, but stress fibers and focal adhesions are not required. Finally, Ras regulates focal adhesion and stress fiber turnover and this is essential for cell movement. We conclude that the signal transduction pathways controlled by the four small GTPases, Rho, Rac, Cdc42, and Ras, cooperate to promote cell movement. PMID:10087266
Yang, Yan; Lisberger, Stephen G
2013-01-01
Motor learning occurs through interactions between the cerebellar circuit and cellular plasticity at different sites. Previous work has established plasticity in brain slices and suggested plausible sites of behavioral learning. We now reveal what actually happens in the cerebellum during short-term learning. We monitor the expression of plasticity in the simple-spike firing of cerebellar Purkinje cells during trial-over-trial learning in smooth pursuit eye movements of monkeys. Our findings imply that: 1) a single complex-spike response driven by one instruction for learning causes short-term plasticity in a Purkinje cell’s mossy fiber/parallel-fiber input pathways; 2) complex-spike responses and simple-spike firing rate are correlated across the Purkinje cell population; and 3) simple-spike firing rate at the time of an instruction for learning modulates the probability of a complex-spike response, possibly through a disynaptic feedback pathway to the inferior olive. These mechanisms may participate in long-term motor learning. DOI: http://dx.doi.org/10.7554/eLife.01574.001 PMID:24381248
Code of Federal Regulations, 2010 CFR
2010-01-01
...) containing respirable free-form asbestos; risk of cancer associated with inhalation of asbestos fibers. 1145... Emberizing materials (embers and ash) containing respirable free-form asbestos; risk of cancer associated... regulate the risk of cancer associated with inhalation of asbestos fibers from artificial emberizing...
USDA-ARS?s Scientific Manuscript database
Failure of lens fiber cell denucleation (LFCD) is associated with congenital cataracts, but the pathobiology awaits elucidation. Recent work has suggested that mechanisms that direct the unidirectional process of LFCD are analogous to the cyclic processes associated with mitosis. We found that lens-...
Islam, Md S; Zeng, Linghe; Thyssen, Gregory N; Delhom, Christopher D; Kim, Hee Jin; Li, Ping; Fang, David D
2016-06-01
Three QTL regions controlling three fiber quality traits were validated and further fine-mapped with 27 new single nucleotide polymorphism (SNP) markers. Transcriptome analysis suggests that receptor-like kinases found within the validated QTLs are potential candidate genes responsible for superior fiber strength in cotton line MD52ne. Fiber strength, length, maturity and fineness determine the market value of cotton fibers and the quality of spun yarn. Cotton fiber strength has been recognized as a critical quality attribute in the modern textile industry. Fine mapping along with quantitative trait loci (QTL) validation and candidate gene prediction can uncover the genetic and molecular basis of fiber quality traits. Four previously-identified QTLs (qFBS-c3, qSFI-c14, qUHML-c14 and qUHML-c24) related to fiber bundle strength, short fiber index and fiber length, respectively, were validated using an F3 population that originated from a cross of MD90ne × MD52ne. A group of 27 new SNP markers generated from mapping-by-sequencing (MBS) were placed in QTL regions to improve and validate earlier maps. Our refined QTL regions spanned 4.4, 1.8 and 3.7 Mb of physical distance in the Gossypium raimondii reference genome. We performed RNA sequencing (RNA-seq) of 15 and 20 days post-anthesis fiber cells from MD52ne and MD90ne and aligned reads to the G. raimondii genome. The QTL regions contained 21 significantly differentially expressed genes (DEGs) between the two near-isogenic parental lines. SNPs that result in non-synonymous substitutions to amino acid sequences of annotated genes were identified within these DEGs, and mapped. Taken together, transcriptome and amino acid mutation analysis indicate that receptor-like kinase pathway genes are likely candidates for superior fiber strength and length in MD52ne. MBS along with RNA-seq demonstrated a powerful strategy to elucidate candidate genes for the QTLs that control complex traits in a complex genome like tetraploid upland cotton.
Degeneration of oxidative muscle fibers in HTLV-1 tax transgenic mice.
Nerenberg, M I; Wiley, C A
1989-12-01
The HTLV-1 tax gene under control of the HTLV-1 long terminal repeat (LTR) was introduced into transgenic mice. Previously tax protein expression in the muscle and peripheral nerves of three independent mouse lines was reported. Here the localization of this transgenic protein at a cellular and subcellular level is described. Tax protein was expressed in oxidative muscle fibers that developed severe progressive atrophy. It localized to the cytoplasma where it was associated with structures resembling degenerating Z bands. This pattern of muscle fiber involvement is similar to that observed in human retroviral associated myopathy. This transgenic mouse model suggests that preferential expression of the HTLV-1 viral promoter in oxidative muscle fibers may explain the productive infection of these fibers in HTLV-1 myopathy.
Risk assessment due to environmental exposures to fibrous particulates associated with taconite ore.
Wilson, Richard; McConnell, Ernest E; Ross, M; Axten, Charles W; Nolan, Robert P
2008-10-01
In the early 1970s, it became a concern that exposure to the mineral fibers associated taconite ore processed in Silver Bay, Minnesota would cause asbestos-related disease including gastrointestinal cancer. At that time data gaps existed which have now been significantly reduced by further research. To further our understanding of the types of airborne fibers in Silver Bay we undertook a geological survey of their source the Peter Mitchell Pit, and found that there are no primary asbestos minerals at a detectable level. However we identified two non-asbestos types of fibrous minerals in very limited geological locales. Air sampling useful for risk assessment was done to determine the type, concentrations and size distribution of the population of airborne fibers around Silver Bay. Approximately 80% of the airborne fibers have elemental compositions consistent with cummingtonite-grunerite and the remaining 20% have elemental compositions in the tremolite-actinolite series. The mean airborne concentration of both fiber types is less than 0.00014 fibers per milliliter that is within the background level reported by the World Health Organization. We calculate the risk of asbestos-related mesothelioma and lung cancer using a variety of different pessimistic assumptions. (i) that all the non-asbestos fibers are as potent as asbestos fibers used in the EPA-IRIS listing for asbestos; with a calculated risk of asbestos-related cancer for environmental exposure at Silver Bay of 1 excess cancer in 28,500 lifetimes (or 35 excess cancers per 1,000,000 lifetimes) and secondly that taconite associated fibers are as potent as chrysotile the least potent form of asbestos. The calculated risk is less than 0.77 excess cancer case in 1,000,000 lifetimes. Finally, we briefly review the epidemiology studies of grunerite asbestos (amosite) focusing on the exposure conditions associated with increased risk of human mesothelioma.
Wu, I-Chien; Chang, Hsing-Yi; Hsu, Chih-Cheng; Chiu, Yen-Feng; Yu, Shu-Han; Tsai, Yi-Fen; Shen, Shi-Chen; Kuo, Ken N; Chen, Ching-Yu; Liu, Kiang; Lee, Marion M; Hsiung, Chao A
2013-01-01
Physical performance is a major determinant of health in older adults, and is related to lifestyle factors. Dietary fiber has multiple health benefits. It remains unclear whether fiber intake is independently linked to superior physical performance. We aimed to assess the association between dietary fiber and physical performance in older adults. This was a cross-sectional study conducted with community-dwelling adults aged 55 years and older (n=2680) from the ongoing Healthy Aging Longitudinal Study (HALST) in Taiwan 2008-2010. Daily dietary fiber intake was assessed using a validated food frequency questionnaire. Physical performance was determined objectively by measuring gait speed, 6-minute walk distance, timed "up and go" (TUG), summary performance score, hand grip strength. Adjusting for all potential confounders, participants with higher fiber intake had significantly faster gait speed, longer 6-minute walk distance, faster TUG, higher summary performance score, and higher hand grip strength (all P <.05). Comparing with the highest quartile of fiber intake, the lowest quartile of fiber intake was significantly associated with the lowest sex-specific quartile of gait speed (adjusted OR, 2.18 in men [95% CI, 1.33-3.55] and 3.65 in women [95% CI, 2.20-6.05]), 6-minute walk distance (OR, 2.40 in men [95% CI, 1.38-4.17] and 4.32 in women [95% CI, 2.37-7.89]), TUG (OR, 2.42 in men [95% CI, 1.43-4.12] and 3.27 in women [95% CI, 1.94-5.52]), summary performance score (OR, 2.12 in men [95% CI, 1.19-3.78] and 5.47 in women [95% CI, 3.20-9.35]), and hand grip strength (OR, 2.64 in men [95% CI, 1.61-4.32] and 4.43 in women [95% CI, 2.62-7.50]). Dietary fiber intake was independently associated with better physical performance.
Electronic equipment vulnerability to fire released carbon fibers
NASA Technical Reports Server (NTRS)
Pride, R. A.; Mchatton, A. D.; Musselman, K. A.
1980-01-01
The vulnerability of electronic equipment to damage by carbon fibers released from burning aircraft type structural composite materials was investigated. Tests were conducted on commercially available stereo power amplifiers which showed that the equipment was damaged by fire released carbon fibers but not by the composite resin residue, soot and products of combustion of the fuel associated with burning the carbon fiber composites. Results indicate that the failure rates of the equipment exposed to the fire released fiber were consistent with predictions based on tests using virgin fibers.
Dietary fiber intake and retinal vascular caliber in the Atherosclerosis Risk in Communities Study.
Kan, Haidong; Stevens, June; Heiss, Gerardo; Klein, Ronald; Rose, Kathryn M; London, Stephanie J
2007-12-01
Dietary fiber appears to decrease the risk of cardiovascular morbidity and mortality. Microvascular abnormalities can be observed by retinal examination and contribute to the pathogenesis of various cardiovascular diseases. The impact of dietary fiber on the retinal microvasculature is not known. We aimed to examine the association between dietary fiber intake and retinal vascular caliber. At the third visit (1993-1995) of the Atherosclerosis Risk in Communities (ARIC) Study, a population-based cohort of adults in 4 US communities, the retinal vascular caliber of 10,659 participants was measured and summarized from digital retinal photographs. Usual dietary intake during the same period was assessed with a 66-item food-frequency questionnaire. After control for potential confounders including hypertension, diabetes, lipids, demographic factors, cigarette smoking, total energy intake, micronutrients intake, and other cardiovascular disease risk factors, higher intake of fiber from all sources and from cereal were significantly associated with wider retinal arteriolar caliber and narrower venular caliber. Participants in the highest quintile of fiber intake from all sources had a 1.05-microm larger arteriolar caliber (P for trend = 0.012) and a 1.11-microm smaller venular caliber (P for trend = 0.029). Dietary fiber was related to wider retinal arteriolar caliber and narrower venular caliber, which are associated with a lower risk of cardiovascular disease. These data add to the growing evidence of the benefits of fiber intake on various aspects of cardiovascular pathogenesis.
The Cortical Connectivity of the Prefrontal Cortex in the Monkey Brain
Yeterian, Edward H.; Pandya, Deepak N.; Tomaiuolo, Francesco; Petrides, Michael
2011-01-01
One dimension of understanding the functions of the prefrontal cortex is knowledge of cortical connectivity. We have surveyed three aspects of prefrontal cortical connections: local projections (within the frontal lobe), the termination patterns of long association (post-Rolandic) projections, and the trajectories of major fiber pathways. The local connections appear to be organized in relation to dorsal (hippocampal origin) and ventral (paleocortical origin) architectonic trends. According to the proposal of a dual origin of the cerebral cortex, cortical areas can be traced as originating from archicortex (hippocampus) on the one hand, and paleocortex, on the other hand, in a stepwise manner (e.g., Sanides, 1969; Pandya and Yeterian, 1985). Prefrontal areas within each trend are connected with less architectonically differentiated areas, and, on the other hand, with more differentiated areas. Such organization may allow for the systematic exchange of information within each architectonic trend. The long connections of the prefrontal cortex with post-Rolandic regions seem to be organized preferentially in relation to dorsal and ventral prefrontal architectonic trends. Prefrontal areas are connected with post-Rolandic auditory, visual and somatosensory association areas, and with multimodal and paralimbic regions. This long connectivity likely works in conjunction with local connections to serve prefrontal cortical functions. The afferent and efferent connections of the prefrontal cortex with post-Rolandic regions are conveyed by specific long association pathways. These pathways as well appear to be organized in relation to dorsal and ventral prefrontal architectonic trends. Finally, although prefrontal areas have preferential connections in relation to dual architectonic trends, it is clear that there are interconnections between and among areas in each trend, which may provide a substrate for the overall integrative function of the prefrontal cortex. Prefrontal corticocortical connectivity may help to elucidate both region-specific and integrative perspectives on the functions of the prefrontal cortex. PMID:21481342
Fazal, Fabeha; Bijli, Kaiser M.; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N.; Rahman, Arshad
2009-01-01
Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-κB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-κB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser3 phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-κB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-κB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-κB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-κB activity and ICAM-1 expression occurred downstream of IκBα degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells. PMID:19483084
Fazal, Fabeha; Bijli, Kaiser M; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N; Rahman, Arshad
2009-07-31
Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-kappaB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-kappaB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser(3) phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-kappaB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-kappaB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-kappaB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-kappaB activity and ICAM-1 expression occurred downstream of IkappaBalpha degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells.
Hesterberg, T W; Axten, C; McConnell, E E; Oberdörster, G; Everitt, J; Miiller, W C; Chevalier, J; Chase, G R; Thevenaz, P
1997-09-01
The effects of chronic inhalation of glass fibers and amosite asbestos are currently under study in hamsters. The study includes 18 months of inhalation exposure followed by lifetime recovery. Syrian golden hamsters are exposed, nose only, for 6 hr/day, 5 day/week to size-selected test fibers: MMVF10a (Schuller 901 insulation glass); MMVF33 (Schuller 475 durable glass); amosite asbestos (three doses); or to filtered air (controls). Here we report interim results on airborne fiber characterization, lung fiber burden, and pathology (preliminary) through 12 months. Aerosolized test fibers averaged 15 to 20 microns in length and 0.5 to 1 micron in diameter. Target aerosol concentrations of World Health Organization (WHO) fibers (longer than 5 microns) were 250 fibers/cc for MMVF10a and MMVF33, and 25, 125, or 250 fibers/cc for amosite. WHO fiber lung burdens showed time-dependent and (for amosite) dose-dependent increases. After a 12-month exposure, lung burdens of fibers longer than 20 microns were greatest with amosite high and mid doses, similar for low-dose amosite and MMVF33, and smaller for MMVF10a. Biological responses of animals exposed for 12 months to MMVF10a were limited to nonspecific pulmonary inflammation. However, exposures to MMVF33 and each of three doses of amosite were associated with lung fibrosis and possible mesotheliomas (1 with MMVF33 and 2, 3, and 1 with amosite low, mid, and high doses, respectively). Pulmonary and pleural changes associated with amosite were qualitatively and quantitatively more severe than those associated with MMVF33. As of the 12-month time point, this study demonstrates that two different fiber glass compositions with similar fiber dimensions but different durabilities can have distinctly different effects on the hamster lung and pleura after inhalation exposure. (Preliminary tumor data through 18 months of exposure and 6 weeks of postexposure recovery became available as this manuscript went to press: No tumors were observed in the control or MMVF10a groups, and no additional tumors were observed in the MMVF33 group; however, a number of additional mesotheliomas were observed in the amosite groups.
Hesterberg, T W; Axten, C; McConnell, E E; Oberdörster, G; Everitt, J; Miiller, W C; Chevalier, J; Chase, G R; Thevenaz, P
1997-01-01
The effects of chronic inhalation of glass fibers and amosite asbestos are currently under study in hamsters. The study includes 18 months of inhalation exposure followed by lifetime recovery. Syrian golden hamsters are exposed, nose only, for 6 hr/day, 5 day/week to size-selected test fibers: MMVF10a (Schuller 901 insulation glass); MMVF33 (Schuller 475 durable glass); amosite asbestos (three doses); or to filtered air (controls). Here we report interim results on airborne fiber characterization, lung fiber burden, and pathology (preliminary) through 12 months. Aerosolized test fibers averaged 15 to 20 microns in length and 0.5 to 1 micron in diameter. Target aerosol concentrations of World Health Organization (WHO) fibers (longer than 5 microns) were 250 fibers/cc for MMVF10a and MMVF33, and 25, 125, or 250 fibers/cc for amosite. WHO fiber lung burdens showed time-dependent and (for amosite) dose-dependent increases. After a 12-month exposure, lung burdens of fibers longer than 20 microns were greatest with amosite high and mid doses, similar for low-dose amosite and MMVF33, and smaller for MMVF10a. Biological responses of animals exposed for 12 months to MMVF10a were limited to nonspecific pulmonary inflammation. However, exposures to MMVF33 and each of three doses of amosite were associated with lung fibrosis and possible mesotheliomas (1 with MMVF33 and 2, 3, and 1 with amosite low, mid, and high doses, respectively). Pulmonary and pleural changes associated with amosite were qualitatively and quantitatively more severe than those associated with MMVF33. As of the 12-month time point, this study demonstrates that two different fiber glass compositions with similar fiber dimensions but different durabilities can have distinctly different effects on the hamster lung and pleura after inhalation exposure. (Preliminary tumor data through 18 months of exposure and 6 weeks of postexposure recovery became available as this manuscript went to press: No tumors were observed in the control or MMVF10a groups, and no additional tumors were observed in the MMVF33 group; however, a number of additional mesotheliomas were observed in the amosite groups. PMID:9400728
Birc7: A Late Fiber Gene of the Crystalline Lens.
De Maria, Alicia; Bassnett, Steven
2015-07-01
A distinct subset of genes, so-called "late fiber genes," is expressed in cells bordering the central, organelle-free zone (OFZ) of the lens. The purpose of this study was to identify additional members of this group. Fiber cells were harvested from various layers of the lens by laser micro-dissection and subjected to microarray, in situ hybridization, and Western blot analysis. Expression of Livin, a member of the inhibitor of apoptosis protein (IAP) family encoded by Birc7, was strongly upregulated in deep cortical fiber cells. The depth-dependent distribution of Livin mRNA was confirmed by quantitative PCR and in situ hybridization. The onset of Livin expression coincided with loss of organelles from primary fiber cells. Livin expression peaked at 1 month but was sustained even in aged lenses. Antibodies raised against mouse Livin labeled multiple bands on immunoblots, reflecting progressive proteolysis of the parent molecule during differentiation. Mice harboring a floxed Birc7 allele were generated and used to conditionally delete Birc7 in lens. Lenses from knockout mice grew normally and retained their transparency, suggesting that Livin does not have an indispensable role in fiber cell differentiation. Birc7 is a late fiber gene of the mouse lens. In tumor cells, Livin acts as an antiapoptotic protein, but its function in the lens is enigmatic. Livin is a RING domain protein with putative E3 ubiquitin ligase activity. Its expression in cells bordering the OFZ is consistent with a role in organelle degradation, a process in which the ubiquitin proteasome pathway has been implicated previously.
Birc7: A Late Fiber Gene of the Crystalline Lens
De Maria, Alicia; Bassnett, Steven
2015-01-01
Purpose A distinct subset of genes, so-called “late fiber genes,” is expressed in cells bordering the central, organelle-free zone (OFZ) of the lens. The purpose of this study was to identify additional members of this group. Methods Fiber cells were harvested from various layers of the lens by laser micro-dissection and subjected to microarray, in situ hybridization, and Western blot analysis. Results Expression of Livin, a member of the inhibitor of apoptosis protein (IAP) family encoded by Birc7, was strongly upregulated in deep cortical fiber cells. The depth-dependent distribution of Livin mRNA was confirmed by quantitative PCR and in situ hybridization. The onset of Livin expression coincided with loss of organelles from primary fiber cells. Livin expression peaked at 1 month but was sustained even in aged lenses. Antibodies raised against mouse Livin labeled multiple bands on immunoblots, reflecting progressive proteolysis of the parent molecule during differentiation. Mice harboring a floxed Birc7 allele were generated and used to conditionally delete Birc7 in lens. Lenses from knockout mice grew normally and retained their transparency, suggesting that Livin does not have an indispensable role in fiber cell differentiation. Conclusions Birc7 is a late fiber gene of the mouse lens. In tumor cells, Livin acts as an antiapoptotic protein, but its function in the lens is enigmatic. Livin is a RING domain protein with putative E3 ubiquitin ligase activity. Its expression in cells bordering the OFZ is consistent with a role in organelle degradation, a process in which the ubiquitin proteasome pathway has been implicated previously. PMID:26218911
A survey of fiber-positioning technologies
NASA Astrophysics Data System (ADS)
Smith, Greg; Brzeski, Jurek; Miziarski, Stan; Gillingham, Peter R.; Moore, Anna; McGrath, Andrew
2004-09-01
A wide range of positioning technologies has been exploited to flexibly configure fiber ends on the focal surfaces of telescopes. The earliest instruments used manual plugging, or glued buttons on the focal plane. Later instruments have used robotic fisherman-round-the-pond probes and articulated armsto position fibres, each probe or arm operated by its own motors, or buttons on fiber ends moved by pick-and-place robotic positioners. A positioner using fiber spines incorporating individual actuators operating over limited patrol areas is currently being manufactured and a derivative proposed for future large telescopes. Other techniques, using independent agents carrying the fiber ends about the focal plane have been prototyped. We describe these various fiber positioning techniques and compare them, listing the issues associated with their implementation, and consider the factors which make each of them suitable for a given situation. Factors considered include: robot geometries; costs; inherent limits to the number of fibers; clustering of targets; serial and parallel positioning and reconfiguration times; adaptability to curved focal surfaces; the virtues of on-telescope versus off-telescope configuration of the field, and suitability for the various telescope foci. The design issues include selection of actuators and encoding systems, counterbalancing, configuration of fiber buttons and their associated grippers, interchanging field plates, and the need for fiber retractors. Finally we consider the competing technologies: fiber and reflective image slicer IFUs, multislit masks and reconfigurable slits.
Bishehsari, Faraz; Engen, Phillip A.; Naqib, Ankur; Shaikh, Maliha; Rossi, Marco; Wilber, Sherry; Hamaker, Bruce R.; Khazaie, Khashayarsha; Voigt, Robin M.; Forsyth, Christopher B.; Keshavarzian, Ali
2018-01-01
Epidemiological studies propose a protective role for dietary fiber in colon cancer (CRC). One possible mechanism of fiber is its fermentation property in the gut and ability to change microbiota composition and function. Here, we investigate the role of a dietary fiber mixture in polyposis and elucidate potential mechanisms using TS4Cre × cAPCl°x468 mice. Stool microbiota profiling was performed, while functional prediction was done using PICRUSt. Stool short-chain fatty acid (SCFA) metabolites were measured. Histone acetylation and expression of SCFA butyrate receptor were assessed. We found that SCFA-producing bacteria were lower in the polyposis mice, suggesting a decline in the fermentation product of dietary fibers with polyposis. Next, a high fiber diet was given to polyposis mice, which significantly increased SCFA-producing bacteria as well as SCFA levels. This was associated with an increase in SCFA butyrate receptor and a significant decrease in polyposis. In conclusion, we found polyposis to be associated with dysbiotic microbiota characterized by a decline in SCFA-producing bacteria, which was targetable by high fiber treatment, leading to an increase in SCFA levels and amelioration of polyposis. The prebiotic activity of fiber, promoting beneficial bacteria, could be the key mechanism for the protective effects of fiber on colon carcinogenesis. SCFA-promoting fermentable fibers are a promising dietary intervention to prevent CRC. PMID:29462896
In vitro assessment of biodurability: acellular systems.
de Meringo, A; Morscheidt, C; Thélohan, S; Tiesler, H
1994-01-01
The assessment of biodurability of man-made vitreous fibers is essential to the limitation of health hazards associated with human exposure to environments in which respirable fibers are present. In vitro acellular systems provide effective test methods of measuring fiber solubility provided care is taken to select the most suitable solvent and test conditions for the specific fiber type and dimension. PMID:7882955
The Production of Curli Amyloid Fibers Is Deeply Integrated into the Biology of Escherichia coli
Smith, Daniel R.; Price, Janet E.; Burby, Peter E.; Blanco, Luz P.; Chamberlain, Justin; Chapman, Matthew R.
2017-01-01
Curli amyloid fibers are the major protein component of the extracellular matrix produced by Enterobacteriaceae during biofilm formation. Curli are required for proper biofilm development and environmental persistence by Escherichia coli. Here, we present a complete and vetted genetic analysis of functional amyloid fiber biogenesis. The Keio collection of single gene deletions was screened on Congo red indicator plates to identify E. coli mutants that had defective amyloid production. We discovered that more than three hundred gene products modulated curli production. These genes were involved in fundamental cellular processes such as regulation, environmental sensing, respiration, metabolism, cell envelope biogenesis, transport, and protein turnover. The alternative sigma factors, σS and σE, had opposing roles in curli production. Mutations that induced the σE or Cpx stress response systems had reduced curli production, while mutant strains with increased σS levels had increased curli production. Mutations in metabolic pathways, including gluconeogenesis and the biosynthesis of lipopolysaccharide (LPS), produced less curli. Regulation of the master biofilm regulator, CsgD, was diverse, and the screen revealed several proteins and small RNAs (sRNA) that regulate csgD messenger RNA (mRNA) levels. Using previously published studies, we found minimal overlap between the genes affecting curli biogenesis and genes known to impact swimming or swarming motility, underlying the distinction between motile and sessile lifestyles. Collectively, the diversity and number of elements required suggest curli production is part of a highly regulated and complex developmental pathway in E. coli. PMID:29088115
Segmentation of the Canine Corpus Callosum using Diffusion Tensor Imaging Tractography
Pierce, T.T.; Calabrese, E.; White, L.E.; Chen, S.D.; Platt, S.R.; Provenzale, J.M.
2014-01-01
Background We set out to determine functional white matter (WM) connections passing through the canine corpus callosum useful for subsequent studies of canine brains that serve as models for human WM pathway disease. Based on prior studies, we anticipated that the anterior corpus callosum would send projections to the anterior cerebral cortex while progressively posterior segments would send projections to more posterior cortex. Methods A post mortem canine brain was imaged using a 7T MRI producing 100 micron isotropic resolution DTI analyzed by tractography. Using ROIs within cortical locations, which were confirmed by a Nissl stain that identified distinct cortical architecture, we successfully identified 6 important WM pathways. We also compared fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity (RD), and axial diffusivity (AD) in tracts passing through the genu and splenium. Results Callosal fibers were organized based upon cortical destination, i.e. fibers from the genu project to the frontal cortex. Histologic results identified the motor cortex based on cytoarchitectonic criteria that allowed placement of ROIs to discriminate between frontal and parietal lobes. We also identified cytoarchitecture typical of the orbital frontal, anterior frontal, and occipital regions and placed ROIs accordingly. FA, ADC, RD and AD values were all higher in posterior corpus callosum fiber tracts. Conclusions Using 6 cortical ROIs, we identified 6 major white matter tracts that reflect major functional divisions of the cerebral hemispheres and we derived quantitative values that can be used for study of canine models of human WM pathological states. PMID:24370161
Waaijer, Mariëtte E. C.; Gunn, David A.; Adams, Peter D.; Pawlikowski, Jeff S.; Griffiths, Christopher E. M.; van Heemst, Diana; Slagboom, P. Eline; Westendorp, Rudi G. J.; Maier, Andrea B.
2016-01-01
Senescent cells are more prevalent in aged human skin compared to young, but evidence that senescent cells are linked to other biomarkers of aging is scarce. We counted cells positive for the tumor suppressor and senescence associated protein p16INK4a in sun-protected upper-inner arm skin biopsies from 178 participants (aged 45–81 years) of the Leiden Longevity Study. Local elastic fiber morphology, facial wrinkles, and perceived facial age were compared to tertiles of p16INK4a counts, while adjusting for chronological age and other potential confounders. The numbers of epidermal and dermal p16INK4a positive cells were significantly associated with age-associated elastic fiber morphologic characteristics, such as longer and a greater number of elastic fibers. The p16INK4a positive epidermal cells (identified as primarily melanocytes) were also significantly associated with more facial wrinkles and a higher perceived age. Participants in the lowest tertile of epidermal p16INK4a counts looked 3 years younger than those in the highest tertile, independently of chronological age and elastic fiber morphology. In conclusion, p16INK4a positive cell numbers in sun-protected human arm skin are indicative of both local elastic fiber morphology and the extent of aging visible in the face. PMID:26286607
Petersen, Jessica L; Valberg, Stephanie J; Mickelson, James R; McCue, Molly E
2014-01-01
Summary Two variants in the equine myostatin gene (MSTN), including a T/C SNP substitution in the first intron and a 227-bp SINE insertion in the promoter, are associated with muscle fiber type proportions in the Quarter Horse (QH) and with the prediction of race distance propensity in the Thoroughbred (TB). Genotypes from these loci, along with 18 additional variants surrounding MSTN, were examined in 301 horses of 14 breeds to evaluate haplotype relationships and diversity. The C allele of intron 1 was found in 12 of 14 breeds at a frequency of 0.27; the SINE was observed in five breeds, but common in only the TB and QH (0.73 and 0.48 respectively). Haplotype data suggest the SINE insertion is contemporary to and arose upon a haplotype containing the intron 1 C allele. Gluteal muscle biopsies of TBs showed a significant association of the intron 1 C allele and SINE with a higher proportion of Type 2B and lower proportion of Type 1 fibers. However, in the Belgian horse, in which the SINE is not present, the intron 1 SNP was not associated with fiber type proportions, and evaluation of fiber type proportions across the Belgian, TB and QH breeds shows the significant effect of breed on fiber type proportions is negated when evaluating horses without the SINE variant. These data suggest the SINE, rather than the intron 1 SNP, is driving the observed muscle fiber type characteristics and is the variant targeted by selection for short-distance racing. PMID:25160752
Testing of a Fiber Optic Wear, Erosion and Regression Sensor
NASA Technical Reports Server (NTRS)
Korman, Valentin; Polzin, Kurt A.
2011-01-01
The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.
Hopkins, William D.; Pilger, John F.; Storz, Rachel; Ambrose, Alex; Hof, Patrick R.; Sherwood, Chet C.
2012-01-01
The corpus callosum (CC) is the major white matter tract that connects the two cerebral hemispheres. Some have theorized that individual differences in behavioral and brain asymmetries are linked to variation in the density of axon fibers that traverse different sections of the CC. In this study, we examined whether variation in axon fiber density in the CC was associated with variation in asymmetries in the planum temporale (PT) in a sample of 20 post-mortem chimpanzee brains. We further tested for sex differences in small and large CC fiber proportions and density in the chimpanzees. We found that the distribution of small and large fibers within the CC of chimpanzees follows a similar pattern to those reported in humans. We also found that chimpanzees with larger asymmetries in the PT had fewer large fibers in the posterior portion of the CC, particularly among females. As has been reported in human brains, the findings reported here indicate that individual differences in brain asymmetries are associated with variation in interhemispheric connectivity as manifest in axon fiber density and size. PMID:22766214
Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber.
Dahl, Wendy J; Stewart, Maria L
2015-11-01
It is the position of the Academy of Nutrition and Dietetics that the public should consume adequate amounts of dietary fiber from a variety of plant foods. Dietary fiber is defined by the Institute of Medicine Food Nutrition Board as "nondigestible carbohydrates and lignin that are intrinsic and intact in plants." Populations that consume more dietary fiber have less chronic disease. Higher intakes of dietary fiber reduce the risk of developing several chronic diseases, including cardiovascular disease, type 2 diabetes, and some cancers, and have been associated with lower body weights. The Adequate Intake for fiber is 14 g total fiber per 1,000 kcal, or 25 g for adult women and 38 g for adult men, based on research demonstrating protection against coronary heart disease. Properties of dietary fiber, such as fermentability and viscosity, are thought to be important parameters influencing the risk of disease. Plant components associated with dietary fiber may also contribute to reduced disease risk. The mean intake of dietary fiber in the United States is 17 g/day with only 5% of the population meeting the Adequate Intake. Healthy adults and children can achieve adequate dietary fiber intakes by increasing their intake of plant foods while concurrently decreasing energy from foods high in added sugar and fat, and low in fiber. Dietary messages to increase consumption of whole grains, legumes, vegetables, fruits, and nuts should be broadly supported by food and nutrition practitioners. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Presence of Tungsten-Containing Fibers in Tungsten Refining and Manufacturing Processes
Mckernan, John L.; Toraason, Mark A.; Fernback, Joseph E.; Petersen, Martin R.
2009-01-01
In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 μm, diameter >0.01 μm and aspect ratios ≥3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length ≈3 μm and diameter ≈0.3 μm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter ≤ 10 μm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting ‘B’ rules (length > 5 μm, diameter < 3 μm and aspect ratio ≥ 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm−3, with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in this occupational setting needs to be confirmed in similar settings and demonstrates the need to obtain information on the durability and associated health effects of these fibers. PMID:19126624
Doolin, Paul F.; Birge, Wesley J.
1966-01-01
Ultrastructural studies were performed on normal and abnormal cilia and basal bodies associated with the choroidal epithelium of the chick embryo. Tissues were prepared in each of several fixatives including: 1% osmium tetroxide, in both phosphate and veronal acetate buffers; 2% glutaraldehyde, followed by postfixation in osmium tetroxide; 1% potassium permanganate in veronal acetate buffer. Normal cilia display the typical pattern of 9 peripheral doublets and 2 central fibers, as well as a system of 9 secondary fibers. The latter show distinct interconnections between peripheral and central fibers. Supernumerary fibers were found to occur in certain abnormal cilia. The basal body is complex, bearing 9 transitional fibers at the distal end and numerous cross-striated rootlets at the proximal end. The distal end of the basal body is delimited by a basal plate of moderate density. The tubular cylinder consists of 9 triple fibers. The C subfibers end at the basal plate, whereas subfibers A and B continue into the shaft of the cilium. The 9 transitional fibers radiate out from the distal end of the basal body, ending in bulblike terminal enlargements which are closely associated with the cell membrane in the area of the basal cup. One or 2 prominent basal feet project laterally from the basal body. These structures characteristically show several dense cross-bands and, on occasion, are found associated with microtubules. PMID:5335827
Code of Federal Regulations, 2013 CFR
2013-01-01
... respirable free-form asbestos; risk of cancer associated with inhalation of asbestos fibers. § 1145.4... Consumer patching compounds containing respirable free-form asbestos; risk of cancer associated with inhalation of asbestos fibers. (a) The Commission finds that it is in the public interest to regulate the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... respirable free-form asbestos; risk of cancer associated with inhalation of asbestos fibers. 1145.4 Section... compounds containing respirable free-form asbestos; risk of cancer associated with inhalation of asbestos fibers. (a) The Commission finds that it is in the public interest to regulate the risk of cancer...
Takayama, Kohei; Ooto, Sotaro; Hangai, Masanori; Ueda-Arakawa, Naoko; Yoshida, Sachiko; Akagi, Tadamichi; Ikeda, Hanako Ohashi; Nonaka, Atsushi; Hanebuchi, Masaaki; Inoue, Takashi; Yoshimura, Nagahisa
2013-05-01
To detect pathologic changes in retinal nerve fiber bundles in glaucomatous eyes seen on images obtained by adaptive optics (AO) scanning laser ophthalmoscopy (AO SLO). Prospective cross-sectional study. Twenty-eight eyes of 28 patients with open-angle glaucoma and 21 normal eyes of 21 volunteer subjects underwent a full ophthalmologic examination, visual field testing using a Humphrey Field Analyzer, fundus photography, red-free SLO imaging, spectral-domain optical coherence tomography, and imaging with an original prototype AO SLO system. The AO SLO images showed many hyperreflective bundles suggesting nerve fiber bundles. In glaucomatous eyes, the nerve fiber bundles were narrower than in normal eyes, and the nerve fiber layer thickness was correlated with the nerve fiber bundle widths on AO SLO (P < .001). In the nerve fiber layer defect area on fundus photography, the nerve fiber bundles on AO SLO were narrower compared with those in normal eyes (P < .001). At 60 degrees on the inferior temporal side of the optic disc, the nerve fiber bundle width was significantly lower, even in areas without nerve fiber layer defect, in eyes with glaucomatous eyes compared with normal eyes (P = .026). The mean deviations of each cluster in visual field testing were correlated with the corresponding nerve fiber bundle widths (P = .017). AO SLO images showed reduced nerve fiber bundle widths both in clinically normal and abnormal areas of glaucomatous eyes, and these abnormalities were associated with visual field defects, suggesting that AO SLO may be useful for detecting early nerve fiber bundle abnormalities associated with loss of visual function. Copyright © 2013 Elsevier Inc. All rights reserved.
The energy dissipative mechanisms of the particle-fiber interface in a textile composite
NASA Astrophysics Data System (ADS)
McAllister, Quinn Patrick
Impact resistant fabrics comprised of woven high performance fibers (e.g., Kevlar) have exhibited improved energy dissipative capability with the inclusion of nano- to micrometer sized particles. Upon impact, the particles embed and gouge adjacent fiber surfaces. While the particle-fiber interactions appear to be a primary mechanism for the increase in energy dissipation, the fundamentals of the nano- to micrometer sized gouging response of high performance fibers and the dissipation of energy due to particle gouging have not been studied previously. In this research, nanoindentation and nanoscratching techniques, which exploit probe sizes in the range of nano- to micrometers, were used to study the particle-fiber contact and develop nanoscale structure-property relationships of single Kevlar fibers. Atomic force microscopy based methods were used to create high resolution stiffness maps of fiber cross-sections, the results of which indicated that the stiffness of Kevlar 49 fibers is independent of radial position, while Kevlar KM2 fibers exhibit a reduced stiffness "shell" region (up to ˜300-350 nm thick). Instrumented indentation was used to evaluate the local response of Kevlar fibers with respect to orientation and contact size. For radial indentation, modifications to the traditional indentation analysis were developed to account for fiber curvature and finite size effects. A critical contact size was established above which the fiber response was independent of indenter size. This "homogeneous" response was used to estimate the local material properties of the Kevlar fibers through the application of an analytical model for indentation of a transversely isotropic material. The local properties of both fibers differed from their previously measured bulk properties, which was likely due, at least in part, to the deformation mechanisms of the fiber microstructure during indentation. Nanoindentation and nanoscratch tests were then conducted to study the deformation mechanisms of the fiber microstructure associated with a nano- to micrometer sized gouge of the fiber surface. Relationships between the observed mechanisms and the measured friction and energy were developed, resulting in new insights into the relevant energy dissipation processes of the particle-fiber interface. The level of apparent friction increased with increasing levels of strain imparted on the fiber surface, reaching values of up to ˜300% of the previously reported Kevlar yarn-yarn friction. Increased levels of friction during impact of a fabric have been shown to increase the energy required for the relative yarn translations, increasing the number of fibers strained and failed in tension. The energy of a single gouge made using probes exhibiting contact geometries similar to a particle-fiber contact was on the order of just 1% of the energy required to fail a fiber in tension (calculated based on a particle gouge and fiber tensile strain over one particle diameter). In the case of multiple particles distributed within a fabric, an impact event will involve energy dissipation from particle gouging, transverse fiber compression, and fiber tensile failure, where the ratio of the total energies associated with each of these processes was estimated to be on the order of 0.2:1:1 (assuming a limit at a transverse compressive strain of 0.3). Therefore, both the energy and the friction associated with particle gouging can increase the energy dissipative capabilities of a fabric, where the maximum contribution of the particle-fiber interface is likely related to the fabric's energy dissipative mechanisms that depend on friction.
A Visual-Cue-Dependent Memory Circuit for Place Navigation.
Qin, Han; Fu, Ling; Hu, Bo; Liao, Xiang; Lu, Jian; He, Wenjing; Liang, Shanshan; Zhang, Kuan; Li, Ruijie; Yao, Jiwei; Yan, Junan; Chen, Hao; Jia, Hongbo; Zott, Benedikt; Konnerth, Arthur; Chen, Xiaowei
2018-06-05
The ability to remember and to navigate to safe places is necessary for survival. Place navigation is known to involve medial entorhinal cortex (MEC)-hippocampal connections. However, learning-dependent changes in neuronal activity in the distinct circuits remain unknown. Here, by using optic fiber photometry in freely behaving mice, we discovered the experience-dependent induction of a persistent-task-associated (PTA) activity. This PTA activity critically depends on learned visual cues and builds up selectively in the MEC layer II-dentate gyrus, but not in the MEC layer III-CA1 pathway, and its optogenetic suppression disrupts navigation to the target location. The findings suggest that the visual system, the MEC layer II, and the dentate gyrus are essential hubs of a memory circuit for visually guided navigation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
McDougal, David H.; Gamlin, Paul D.
2016-01-01
The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia. PMID:25589275
Timofeeva, Olga; Nadler, J Victor
2006-03-17
Recurrent mossy fiber synapses in the dentate gyrus of epileptic brain facilitate the synchronous firing of granule cells and may promote seizure propagation. Mossy fiber terminals contain and release zinc. Released zinc inhibits the activation of NMDA receptors and may therefore oppose the development of granule cell epileptiform activity. Hippocampal slices from rats that had experienced pilocarpine-induced status epilepticus and developed a recurrent mossy fiber pathway were used to investigate this possibility. Actions of released zinc were inferred from the effects of chelation with 1 mM calcium disodium EDTA (CaEDTA). When granule cell population bursts were evoked by mossy fiber stimulation in the presence of 6 mM K(+) and 30 microM bicuculline, CaEDTA slowed the rate at which evoked bursting developed, but did not change the magnitude of the bursts once they had developed fully. The effects of CaEDTA were then studied on the pharmacologically isolated NMDA receptor- and AMPA/kainate receptor-mediated components of the fully developed bursts. CaEDTA increased the magnitude of NMDA receptor-mediated bursts and reduced the magnitude of AMPA/kainate receptor-mediated bursts. CaEDTA did not affect the granule cell bursts evoked in slices from untreated rats by stimulating the perforant path in the presence of bicuculline and 6 mM K(+). These results suggest that zinc released from the recurrent mossy fibers serves mainly to facilitate the recruitment of dentate granule cells into population bursts.
A comparison of three fiber tract delineation methods and their impact on white matter analysis.
Sydnor, Valerie J; Rivas-Grajales, Ana María; Lyall, Amanda E; Zhang, Fan; Bouix, Sylvain; Karmacharya, Sarina; Shenton, Martha E; Westin, Carl-Fredrik; Makris, Nikos; Wassermann, Demian; O'Donnell, Lauren J; Kubicki, Marek
2018-05-19
Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge. Copyright © 2018. Published by Elsevier Inc.
Neural learning rules for the vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Raymond, J. L.; Lisberger, S. G.
1998-01-01
Mechanisms for the induction of motor learning in the vestibulo-ocular reflex (VOR) were evaluated by recording the patterns of neural activity elicited in the cerebellum by a range of stimuli that induce learning. Patterns of climbing-fiber, vestibular, and Purkinje cell simple-spike signals were examined during sinusoidal head movement paired with visual image movement at stimulus frequencies from 0.5 to 10 Hz. A comparison of simple-spike and vestibular signals contained the information required to guide learning only at low stimulus frequencies, and a comparison of climbing-fiber and simple-spike signals contained the information required to guide learning only at high stimulus frequencies. Learning could be guided by comparison of climbing-fiber and vestibular signals at all stimulus frequencies tested, but only if climbing fiber responses were compared with the vestibular signals present 100 msec earlier. Computational analysis demonstrated that this conclusion is valid even if there is a broad range of vestibular signals at the site of plasticity. Simulations also indicated that the comparison of vestibular and climbing-fiber signals across the 100 msec delay must be implemented by a subcellular "eligibility" trace rather than by neural circuits that delay the vestibular inputs to the site of plasticity. The results suggest two alternative accounts of learning in the VOR. Either there are multiple mechanisms of learning that use different combinations of neural signals to drive plasticity, or there is a single mechanism tuned to climbing-fiber activity that follows activity in vestibular pathways by approximately 100 msec.
Quantum Dots Microstructured Optical Fiber for X-Ray Detection
NASA Technical Reports Server (NTRS)
DeHaven, Stan; Williams, Phillip; Burke, Eric
2015-01-01
Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.
Majzoub, Ramsey K; Bardoel, Janou W J M; Maldonado, Claudio; Barker, John H; Stadelmann, Wayne K
2003-01-01
Dynamic skeletal muscle flaps are designed to perform a specific functional task through contraction and relaxation of their muscle fibers. The most commonly used dynamic skeletal flaps today are for cardiomyoplasty and anal or urinary myoplasty. Low-frequency chronic stimulation of these flaps enables them to use their intrinsic energy stores in a more efficient manner through aerobic metabolic pathways for increased endurance and improved work capacity. The purpose of this study was to (1) determine whether fiber type transformation from fatigue-prone (type II) muscle fibers to fatigue-resistant (type I) muscle fibers could be demonstrated in the authors' chronic canine stomal sphincter model where the rectus abdominis muscle was used to create a functional stomal sphincter, (2) assess whether there is any correlation between the degree of muscle fiber type transformation and the continence times, and (3) examine the long-term effects of the training regimens on the skeletal muscle fibers through histologic and volumetric analysis. Eight dynamic island-flap sphincters were created from a part of the rectus abdominis muscle in mongrel dogs by preserving the deep inferior epigastric vascular pedicle and the most caudal investing intercostal nerve. The muscular sphincters were wrapped around a blind loop of distal ileum and trained with pacing electrodes. Two different training protocols were used. In group A (n = 4), a preexisting anal dynamic graciloplasty training protocol was used. A revised protocol was used in group B (n = 4). Muscle biopsy specimens were obtained before and after training from the rectus abdominis muscle sphincter. Fiber type transformation was assessed using a monoclonal antibody directed against the fatigue-prone type II fibers. Pretraining and posttraining skeletal muscle specimens were examined histologically. A significant fiber type conversion was achieved in both group A and group B animals, with each group achieving greater than 50 percent conversion from fatigue-prone (type II) muscle fibers to fatigue-resistant (type I) muscle fibers. The continence time was different for both groups. Biopsy specimens 1 cm from the electrodes revealed that fiber type transformation was uniform throughout this region of the sphincters. Skeletal muscle fibers within both groups demonstrated a reduction in their fiber diameter and volume. Fiber type transformation is possible in this unique canine island-flap rectus abdominis sphincter model. The relative design of the flap with preservation of the skeletal muscle resting length and neuronal and vascular supply are important characteristics when designing a functional dynamic flap for stomal continence.
Allodi, S; Reese, B E; Cavalcante, L A
1990-01-01
The spectra of fiber sizes at different depths of the optic tract of the opossum Didelphis marsupialis were examined by electron microscopy in order to test for correlations between the eventual location of axons and relevant developmental events. Frequency histograms showed 1) a predominant representation of medium-sized axons and the virtual exclusion of coarse fibers from the deepest portion of that pathway, and 2) a progressive increase in the proportion of thin axons from deep to superficial sites of the tract. These findings are discussed in terms of the view of the optic tract as a chronological map of axon arrival.
Fiber-Coupled Acousto-Optical-Filter Spectrometer
NASA Technical Reports Server (NTRS)
Levin, Kenneth H.; Li, Frank Yanan
1993-01-01
Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.
Advanced risk assessment of the effects of graphite fibers on electronic and electric equipment
NASA Technical Reports Server (NTRS)
Pocinki, L.; Cornell, M.; Kaplan, L.
1980-01-01
An assessment of the risk associated with accidents involving aircraft with carbon fiber composite structural components is examined. The individual fiber segments cause electrical and electronic equipment to fail under certain operating conditions. A Monte Carlo simulation model was used to computer the risk. Aircraft accidents with fire, release of carbon fiber material, entrainment of carbon fibers in a smoke plume transport of fibers downwind, transfer of some fibers/into the the interior of buildings, failures of electrical and electronic equipment, and economic impact of failures are discussed. Risk profiles were prepared for individual airports and the Nation. The vulnerability of electrical transmission equipment to carbon fiber incursion and aircraft accident total costs is investigated.
Optical Fiber Grating Hydrogen Sensors: A Review
Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong
2017-01-01
In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed. PMID:28287499
Optical Fiber Grating Hydrogen Sensors: A Review.
Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong
2017-03-12
In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.
Kronenberg, Peter; Traxer, Olivier
2015-03-01
We assessed whether stripping and cleaving the laser fiber tip with specialized tools, namely laser fiber strippers, or ceramic or metal scissors, would influence lithotripsy performance. Laser fiber tips were stripped with a specialized laser fiber stripper or remained coated. The tips were then cleaved with metal or ceramic scissors. Laser lithotripsy experiments were performed with the 4 fiber tip combinations using an automated laser fragmentation testing system with artificial stones made of plaster of Paris or BegoStone Plus (Bego, Lincoln, Rhode Island). High frequency-low pulse energy (20 Hz and 0.5 J) and low frequency-high pulse energy (5 Hz and 2.0 J) settings were used for 30 seconds. Fissure width, depth and volume, and laser fiber tip photos were analyzed. Coated laser fiber tips always achieved significantly higher ablation volumes (sometimes greater than 50%) than stripped laser fiber tips (p <0.00001) regardless of cleaving scissor type, stone material or lithotripter setting. Coated fiber tips cleaved with metal scissors ablated as well as those cleaved with ceramic scissors (p = 0.16). However, stripped fibers were much less ablative when they were cut with metal scissors compared to ceramic scissors (p <0.00001). Harder stone material decreased ablation volume (p <0.00001). Low frequency-high pulse energy settings were an average of 3 times more ablative than high frequency-low pulse energy settings (p <0.00001). Stripping the fibers, a harder stone material and low frequency-high pulse energy settings were associated with increased fiber tip degradation. Coated laser fibers provided better lithotripsy performance and metal scissors were as good as ceramic scissors to cleave coated fibers. This knowledge may improve and simplify the way that laser lithotripsy procedures are done worldwide. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Evidence-Based Approach to Fiber Supplements and Clinically Meaningful Health Benefits, Part 1
McRorie, Johnson W.
2015-01-01
Dietary fiber that is intrinsic and intact in fiber-rich foods (eg, fruits, vegetables, legumes, whole grains) is widely recognized to have beneficial effects on health when consumed at recommended levels (25 g/d for adult women, 38 g/d for adult men). Most (90%) of the US population does not consume this level of dietary fiber, averaging only 15 g/d. In an attempt to bridge this “fiber gap,” many consumers are turning to fiber supplements, which are typically isolated from a single source. Fiber supplements cannot be presumed to provide the health benefits that are associated with dietary fiber from whole foods. Of the fiber supplements on the market today, only a minority possess the physical characteristics that underlie the mechanisms driving clinically meaningful health benefits. The first part (current issue) of this 2-part series will focus on the 4 main characteristics of fiber supplements that drive clinical efficacy (solubility, degree/rate of fermentation, viscosity, and gel formation), the 4 clinically meaningful designations that identify which health benefits are associated with specific fibers, and the gel-dependent mechanisms in the small bowel that drive specific health benefits (eg, cholesterol lowering, improved glycemic control). The second part (next issue) of this 2-part series will focus on the effects of fiber supplements in the large bowel, including the 2 mechanisms by which fiber prevents/relieves constipation (insoluble mechanical irritant and soluble gel-dependent water-holding capacity), the gel-dependent mechanism for attenuating diarrhea and normalizing stool form in irritable bowel syndrome, and the combined large bowel/small bowel fiber effects for weight loss/maintenance. The second part will also discuss how processing for marketed products can attenuate efficacy, why fiber supplements can cause gastrointestinal symptoms, and how to avoid symptoms for better long-term compliance. PMID:25972618
Evidence-Based Approach to Fiber Supplements and Clinically Meaningful Health Benefits, Part 2
McRorie, Johnson W.
2015-01-01
Dietary fiber that is intrinsic and intact in fiber-rich foods (eg, fruits, vegetables, legumes, whole grains) is widely recognized to have beneficial effects on health when consumed at recommended levels (25 g/d for adult women, 38 g/d for adult men). Most (90%) of the US population does not consume this level of dietary fiber, averaging only 15 g/d. In an attempt to bridge this “fiber gap,” many consumers are turning to fiber supplements, which are typically isolated from a single source. Fiber supplements cannot be presumed to provide the health benefits that are associated with dietary fiber from whole foods. Of the fiber supplements on the market today, only a minority possess the physical characteristics that underlie the mechanisms driving clinically meaningful health benefits. In this 2-part series, the first part (previous issue) described the 4 main characteristics of fiber supplements that drive clinical efficacy (solubility, degree/rate of fermentation, viscosity, and gel formation), the 4 clinically meaningful designations that identify which health benefits are associated with specific fibers, and the gel-dependent mechanisms in the small bowel that drive specific health benefits (eg, cholesterol lowering, improved glycemic control). The second part (current issue) of this 2-part series will focus on the effects of fiber supplements in the large bowel, including the 2 mechanisms by which fiber prevents/relieves constipation (insoluble mechanical irritant and soluble gel-dependent water-holding capacity), the gel-dependent mechanism for attenuating diarrhea and normalizing stool form in irritable bowel syndrome, and the combined large bowel/small bowel fiber effects for weight loss/maintenance. The second part will also discuss how processing for marketed products can attenuate efficacy, why fiber supplements can cause gastrointestinal symptoms, and how to avoid symptoms for better long-term compliance. PMID:25972619
Raninen, Kaisa; Lappi, Jenni; Mykkänen, Hannu; Poutanen, Kaisa
2011-01-01
Dietary fiber is a nutritional concept based not on physiological functions but on defined chemical and physical properties. Recent definitions of dietary fiber differentiate inherent plant cell wall-associated fiber from isolated or synthetic fiber. For the latter to be defined as fiber, beneficial physiological effects should be demonstrated, such as laxative effects, fermentability, attenuation of blood cholesterol levels, or postprandial glucose response. Grain fibers are a major natural source of dietary fiber worldwide, while inulin, a soluble indigestible fructose polymer isolated from chicory, and polydextrose, a synthetic indigestible glucose polymer, have more simple structures. Inulin and polydextrose show many of the same functionalities of grain fiber in the large intestine, in that they are fermentable, bifidogenic, and laxative. The reported effects on postprandial blood glucose and fasting cholesterol levels have been modest, but grain fibers also show variable effects. New biomarkers are needed to link the physiological functions of specific fibers with long-term health benefits. © 2011 International Life Sciences Institute.
Role of Fiber Length on Phagocytosis & Inflammatory Response
NASA Astrophysics Data System (ADS)
Turkevich, Leonid; Stark, Carahline; Champion, Julie
2014-03-01
Asbestos fibers have long been associated with lung cancer death. The inability of immune cells (e.g. macrophages) to effectively remove asbestos leads to chronic inflammation and disease. This study examines the role of fiber length on toxicity at the cellular level using model glass fibers. A major challenge is obtaining single diameter fibers but differing in length. Samples of 1 micron diameter fibers with different length distributions were prepared: short fibers (less than 15 microns) by aggressive crushing, and long fibers (longer than 15 microns) by successive sedimentation. Time-lapse video microscopy monitored the interaction of MH-S murine alveolar macrophages with the fibers: short fibers were easily internalized by the macrophages, but long fibers resisted internalization over many hours. Production of TNF- α (tumor necrosis factor alpha), a general inflammatory secreted cytokine, and Cox-2 (cyclo-oxygenase-2), an enzyme that produces radicals, each exhibited a dose-dependence that was greater for long than for short fibers. These results corroborate the importance of fiber length in both physical and biochemical cell response and support epidemiological observations of higher toxicity for longer fibers.
Bedi, Supinder S; Yang, Qing; Crook, Robyn J; Du, Junhui; Wu, Zizhen; Fishman, Harvey M; Grill, Raymond J; Carlton, Susan M; Walters, Edgar T
2010-11-03
Mechanisms underlying chronic pain that develops after spinal cord injury (SCI) are incompletely understood. Most research on SCI pain mechanisms has focused on neuronal alterations within pain pathways at spinal and supraspinal levels associated with inflammation and glial activation. These events might also impact central processes of primary sensory neurons, triggering in nociceptors a hyperexcitable state and spontaneous activity (SA) that drive behavioral hypersensitivity and pain. SCI can sensitize peripheral fibers of nociceptors and promote peripheral SA, but whether these effects are driven by extrinsic alterations in surrounding tissue or are intrinsic to the nociceptor, and whether similar SA occurs in nociceptors in vivo are unknown. We show that small DRG neurons from rats (Rattus norvegicus) receiving thoracic spinal injury 3 d to 8 months earlier and recorded 1 d after dissociation exhibit an elevated incidence of SA coupled with soma hyperexcitability compared with untreated and sham-treated groups. SA incidence was greatest in lumbar DRG neurons (57%) and least in cervical neurons (28%), and failed to decline over 8 months. Many sampled SA neurons were capsaicin sensitive and/or bound the nociceptive marker, isolectin B4. This intrinsic SA state was correlated with increased behavioral responsiveness to mechanical and thermal stimulation of sites below and above the injury level. Recordings from C- and Aδ-fibers revealed SCI-induced SA generated in or near the somata of the neurons in vivo. SCI promotes the entry of primary nociceptors into a chronic hyperexcitable-SA state that may provide a useful therapeutic target in some forms of persistent pain.
Sakuma, Kunihiro; Nishikawa, Junji; Nakao, Ryuta; Watanabe, Kimi; Totsuka, Tsuyoshi; Nakano, Hiroshi; Sano, Mamoru; Yasuhara, Masahiro
2003-03-01
The molecular signaling pathways involved in regeneration after muscle damage have not been identified. In the present study, we tested the hypothesis that calcineurin, a calcium-regulated phosphatase recently implicated in the signaling of fiber-type conversion and muscle hypertrophy, is required to induce skeletal muscle remodeling. The amount of calcineurin and dephosphorylated nuclear factor of activated T cells c1 (NFATc1) proteins was markedly increased in the regenerating muscle of rats. The amount of calcineurin co-precipitating with NFATc1 and GATA-2, and NFATc1 co-precipitating with GATA-2 gradually increased in the tibialis anterior muscle after bupivacaine injection. Calcineurin protein was present in the proliferating satellite cells labeled with BrdU in the damaged muscle after 4 days. In contrast, calcineurin was not detected in the quiescent nonactivating satellite cells expressing Myf-5. At 4 days post injection, many macrophages detected in the damaged and regenerating area did not possess calcineurin protein. Calcineurin protein was abundant in many myoblasts and myotubes that expressed MyoD and myogenin at 4 and 6 days post injection. In the intact muscle, no immunoreactivity of calcineurin or BrdU was detected in the cell membrane, cytosol or the extracellular connective tissue. In mice, intraperitoneal injection of cyclosporin A, a potent inhibitor of calcineurin, induced extensive inflammation, marked fiber atrophy, the appearance of immature myotubes, and calcification in the regenerating muscle compared with phosphate-buffered saline-administered mice. Thus, calcineurin may have an important role in muscle regeneration in association with NFATc1 and GATA-2.
Juranek, Jenifer; Romanowska-Pawliczek, Anna; Hannay, H. Julia; Cirino, Paul T.; Dennis, Maureen; Kramer, Larry A.; Fletcher, Jack M.
2016-01-01
Abstract Spina bifida myelomeningocele (SBM) is commonly associated with anomalous development of the corpus callosum (CC) because of congenital partial hypogenesis and hydrocephalus-related hypoplasia. It represents a model disorder to examine the effects of early disruption of CC neurodevelopment and the plasticity of interhemispheric white matter connections. Diffusion tensor imaging was acquired on 76 individuals with SBM and 27 typically developing individuals, aged 8–36 years. Probabilistic tractography was used to isolate the interhemispheric connections between the posterior superior temporal lobes, which typically traverse the posterior third of the CC. Early disruption of CC development resulted in restructuring of interhemispheric connections through alternate commissures, particularly the anterior commissure (AC). These rerouted fibers were present in people with SBM and both CC hypoplasia and hypogenesis. In addition, microstructural integrity was reduced in the interhemispheric temporal tract in people with SBM, indexed by lower fractional anisotropy, axial diffusivity, and higher radial diffusivity. Interhemispheric temporal tract volume was positively correlated with total volume of the CC, such that more severe underdevelopment of the CC was associated with fewer connections between the posterior temporal lobes. Therefore, both the macrostructure and microstructure of this interhemispheric tract were reduced, presumably as a result of more extensive CC malformation. The current findings suggest that early disruption in CC development reroutes interhemispheric temporal fibers through both the AC and more anterior sections of the CC in support of persistent hypotheses that the AC may serve a compensatory function in atypical CC development. PMID:26798959
Alkali Halide Microstructured Optical Fiber for X-Ray Detection
NASA Technical Reports Server (NTRS)
DeHaven, S. L.; Wincheski, R. A.; Albin, S.
2014-01-01
Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.
Dietary Fiber Intake in Relation to Knee Pain Trajectory.
Dai, Zhaoli; Lu, Na; Niu, Jingbo; Felson, David T; Zhang, Yuqing
2017-09-01
Dietary fiber may reduce knee pain, in part by lowering body weight and reducing inflammation. In this study, we assessed whether fiber intake was associated with patterns of knee pain development. In a prospective, multicenter cohort of 4,796 men and women ages 45-79 years with or at risk of knee osteoarthritis, participants underwent annual followups for 8 years. Dietary fiber intake was estimated using a validated food frequency questionnaire at baseline. Group-based trajectory modeling was used to identify Western Ontario and McMaster Universities Osteoarthritis Index pain trajectories, which were assessed for associations with dietary fiber intake using polytomous regression models. Of the eligible participants (4,470 persons and 8,940 knees, mean ± SD age 61.3 ± 9.1 years, 58% women), 4.9% underwent knee replacement and were censored at the time of surgery. Four distinct knee pain patterns were identified: no pain (34.5%), mild pain (38.1%), moderate pain (21.2%), and severe pain (6.2%). Dietary total fiber was inversely related to membership in the moderate or severe pain groups (P ≤ 0.006 for trend for both). Subjects in the highest versus those in the lowest quartile of total fiber intake had a lower risk of belonging to the moderate pain pattern group (odds ratio [OR] 0.76 [95% confidence interval (95% CI) 0.61-0.93]) and severe pain pattern group (OR 0.56 [95% CI 0.41-0.78]). Similar results were found with grain fiber and these 2 pain pattern groups. Our findings suggest that a high intake of dietary total or grain fiber, particularly the recommended daily fiber average intake of 25 gm per day, is associated with a lower risk of developing moderate or severe knee pain over time. © 2016, American College of Rheumatology.
Fiber effects in nutrition and gut health in pigs
2014-01-01
Dietary fiber is associated with impaired nutrient utilization and reduced net energy values. However, fiber has to be included in the diet to maintain normal physiological functions in the digestive tract. Moreover, the negative impact of dietary fiber will be determined by the fiber properties and may differ considerably between fiber sources. Various techniques can be applied to enhance nutritional value and utilization of available feed resources. In addition, the extent of fiber utilization is affected by the age of the pig and the pig breed. The use of potential prebiotic effects of dietary fiber is an attractive way to stimulate gut health and thereby minimize the use of anti-microbial growth promoters. Inclusion of soluble non-starch polysaccharides (NSP) in the diet can stimulate the growth of commensal gut microbes. Inclusion of NSP from chicory results in changes in gut micro-environment and gut morphology of pigs, while growth performance remains unaffected and digestibility was only marginally reduced. The fermentation products and pH in digesta responded to diet type and were correlated with shifts in the microbiota. Interestingly, fiber intake will have an impact on the expression of intestinal epithelial heat-shock proteins in the pig. Heat-shock proteins have an important physiological role in the gut and carry out crucial housekeeping functions in order to maintain the mucosal barrier integrity. Thus, there are increasing evidence showing that fiber can have prebiotic effects in pigs due to interactions with the gut micro-environment and the gut associated immune system. PMID:24580966
High amount of dietary fiber not harmful but favorable for Crohn disease.
Chiba, Mitsuro; Tsuji, Tsuyotoshi; Nakane, Kunio; Komatsu, Masafumi
2015-01-01
Current chronic diseases are a reflection of the westernized diet that features a decreased consumption of dietary fiber. Indigestible dietary fiber is metabolized by gut bacteria, including Faecalibacterium prausnitzii, to butyrate, which has a critical role in colonic homeostasis owing to a variety of functions. Dietary fiber intake has been significantly inversely associated with the risk of chronic diseases. Crohn disease (CD) is not an exception. However, even authors who reported the inverse association between dietary fiber and a risk of CD made no recommendation of dietary fiber intake to CD patients. Some correspondence was against advocating high fiber intake in CD. We initiated a semivegetarian diet (SVD), namely a lacto-ovo-vegetarian diet, for patients with inflammatory bowel disease. Our SVD contains 32.4 g of dietary fiber in 2000 kcal. There was no untoward effect of the SVD. The remission rate with combined infliximab and SVD for newly diagnosed CD patients was 100%. Maintenance of remission on SVD without scheduled maintenance therapy with biologic drugs was 92% at 2 years. These excellent short- and long-term results can be explained partly by SVD. The fecal bacterial count of F prausnitzii in patients with CD is significantly lower than in healthy controls. Diet reviews recommend plant-based diets to treat and to prevent a variety of chronic diseases. SVD belongs to plant-based diets that inevitably contain considerable amounts of dietary fiber. Our clinical experience and available data provide a rationale to recommend a high fiber intake to treat CD.
Assessment of the risks associated with the use of carbon fibers in surface transportation
DOT National Transportation Integrated Search
1980-06-01
This report presents the results of an assessment of the potential risks associated with the use of carbon-fiber composites in the surface transportation system and the development of a data base on the vulnerability of the surface transportation sys...
Identifying biomarkers of dietary patterns by using metabolomics123
Derkach, Andriy; Reedy, Jill; Subar, Amy F; Sampson, Joshua N; Albanes, Demetrius; Gu, Fangyi; Kontto, Jukka; Lassale, Camille; Liao, Linda M; Männistö, Satu; Mondul, Alison M; Weinstein, Stephanie J; Irwin, Melinda L; Mayne, Susan T; Stolzenberg-Solomon, Rachael
2017-01-01
Background: Healthy dietary patterns that conform to national dietary guidelines are related to lower chronic disease incidence and longer life span. However, the precise mechanisms involved are unclear. Identifying biomarkers of dietary patterns may provide tools to validate diet quality measurement and determine underlying metabolic pathways influenced by diet quality. Objective: The objective of this study was to examine the correlation of 4 diet quality indexes [the Healthy Eating Index (HEI) 2010, the Alternate Mediterranean Diet Score (aMED), the WHO Healthy Diet Indicator (HDI), and the Baltic Sea Diet (BSD)] with serum metabolites. Design: We evaluated dietary patterns and metabolites in male Finnish smokers (n = 1336) from 5 nested case-control studies within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study cohort. Participants completed a validated food-frequency questionnaire and provided a fasting serum sample before study randomization (1985–1988). Metabolites were measured with the use of mass spectrometry. We analyzed cross-sectional partial correlations of 1316 metabolites with 4 diet quality indexes, adjusting for age, body mass index, smoking, energy intake, education, and physical activity. We pooled estimates across studies with the use of fixed-effects meta-analysis with Bonferroni correction for multiple comparisons, and conducted metabolic pathway analyses. Results: The HEI-2010, aMED, HDI, and BSD were associated with 23, 46, 23, and 33 metabolites, respectively (17, 21, 11, and 10 metabolites, respectively, were chemically identified; r-range: −0.30 to 0.20; P = 6 × 10−15 to 8 × 10−6). Food-based diet indexes (HEI-2010, aMED, and BSD) were associated with metabolites correlated with most components used to score adherence (e.g., fruit, vegetables, whole grains, fish, and unsaturated fat). HDI correlated with metabolites related to polyunsaturated fat and fiber components, but not other macro- or micronutrients (e.g., percentages of protein and cholesterol). The lysolipid and food and plant xenobiotic pathways were most strongly associated with diet quality. Conclusions: Diet quality, measured by healthy diet indexes, is associated with serum metabolites, with the specific metabolite profile of each diet index related to the diet components used to score adherence. This trial was registered at clinicaltrials.gov as NCT00342992. PMID:28031192
Chhim, Anne-Sophie; Fassier, Philippine; Latino-Martel, Paule; Druesne-Pecollo, Nathalie; Zelek, Laurent; Duverger, Lucie; Hercberg, Serge; Galan, Pilar; Deschasaux, Mélanie; Touvier, Mathilde
2015-07-01
Alcohol intake is associated with increased circulating concentrations of sex hormones, which in turn may increase hormone-dependent cancer risk. This association may be modulated by dietary fiber intake, which has been shown to decrease steroid hormone bioavailability (decreased blood concentration and increased sex hormone-binding globulin concentration). However, this potential modulation has not been investigated in any prospective cohort. Our objectives were to study the relation between alcohol intake and the risk of hormone-dependent cancers (breast, prostate, ovarian, endometrial, and testicular) and to investigate whether dietary fiber intake modulated these associations. This prospective observational analysis included 3771 women and 2771 men who participated in the Supplémentation en Vitamines et Minéraux Antioxydants study (1994-2007) and completed at least 6 valid 24-h dietary records during the first 2 y of follow-up. After a median follow-up of 12.1 y, 297 incident hormone-dependent cancer cases, including 158 breast and 123 prostate cancers, were diagnosed. Associations were tested via multivariate Cox proportional hazards models. Overall, alcohol intake was directly associated with the risk of hormone-dependent cancers (tertile 3 vs. tertile 1: HR: 1.36; 95% CI: 1.00, 1.84; P-trend = 0.02) and breast cancer (HR: 1.70; 95% CI: 1.11, 2.61; P-trend = 0.04) but not prostate cancer (P-trend = 0.3). In stratified analyses (by sex-specific median of dietary fiber intake), alcohol intake was directly associated with hormone-dependent cancer (tertile 3 vs. tertile 1: HR: 1.76; 95% CI: 1.10, 2.82; P-trend = 0.002), breast cancer (HR: 2.53; 95% CI: 1.30, 4.95; P-trend = 0.02), and prostate cancer (HR: 1.37; 95% CI: 0.65, 2.89; P-trend = 0.02) risk among individuals with low dietary fiber intake but not among their counterparts with higher dietary fiber intake (P-trend = 0.9, 0.8, and 0.6, respectively). The P-interaction between alcohol and dietary fiber intake was statistically significant for prostate cancer (P = 0.01) but not for overall hormone-dependent (P = 0.2) or breast (P = 0.9) cancer. In line with mechanistic hypotheses and experimental data, this prospective study suggested that dietary fiber intake might modulate the association between alcohol intake and risk of hormone-dependent cancer. This trial was registered at clinicaltrials.gov as NCT00272428. © 2015 American Society for Nutrition.
Omnidirectional fiber optic tiltmeter
Benjamin, B.C.; Miller, H.M.
1983-06-30
A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.
BREAST CANCER-INDUCED BONE REMODELING, SKELETAL PAIN AND SPROUTING OF SENSORY NERVE FIBERS
Bloom, Aaron P.; Jimenez-Andrade, Juan M.; Taylor, Reid N.; Castañeda-Corral, Gabriela; Kaczmarska, Magdalena J.; Freeman, Katie T.; Coughlin, Kathleen A.; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.
2011-01-01
Breast cancer metastasis to bone is frequently accompanied by pain. What remains unclear is why this pain tends to become more severe and difficult to control with disease progression. Here we test the hypothesis that with disease progression sensory nerve fibers that innervate the breast cancer bearing bone undergo a pathological sprouting and reorganization, which in other non-malignant pathologies has been shown to generate and maintain chronic pain. Injection of human breast cancer cells (MDA-MB-231-BO) into the femoral intramedullary space of female athymic nude mice induces sprouting of calcitonin gene-related peptide (CGRP+) sensory nerve fibers. Nearly all CGRP+ nerve fibers that undergo sprouting also co-express tropomyosin receptor kinase A (TrkA+) and growth associated protein-43 (GAP43+). This ectopic sprouting occurs in periosteal sensory nerve fibers that are in close proximity to breast cancer cells, tumor-associated stromal cells and remodeled cortical bone. Therapeutic treatment with an antibody that sequesters nerve growth factor (NGF), administered when the pain and bone remodeling were first observed, blocks this ectopic sprouting and attenuates cancer pain. The present data suggest that the breast cancer cells and tumor-associated stromal cells express and release NGF, which drives bone pain and the pathological reorganization of nearby CGRP+ / TrkA+ / GAP43+ sensory nerve fibers. PMID:21497141
Cotton genotypes selection through artificial neural networks.
Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B
2017-09-27
Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.
Wakeman, Dustin R; Redmond, D Eugene; Dodiya, Hemraj B; Sladek, John R; Leranth, Csaba; Teng, Yang D; Samulski, R Jude; Snyder, Evan Y
2014-06-01
Transplanted multipotent human fetal neural stem cells (hfNSCs) significantly improved the function of parkinsonian monkeys in a prior study primarily by neuroprotection, with only 3%-5% of cells expressing a dopamine (DA) phenotype. In this paper, we sought to determine whether further manipulation of the neural microenvironment by overexpression of a developmentally critical molecule, glial cell-derived neurotrophic factor (GDNF), in the host striatum could enhance DA differentiation of hfNSCs injected into the substantia nigra and elicit growth of their axons to the GDNF-expressing target. hfNSCs were transplanted into the midbrain of 10 green monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine. GDNF was delivered concomitantly to the striatum via an adeno-associated virus serotype 5 vector, and the fate of grafted cells was assessed after 11 months. Donor cells remained predominantly within the midbrain at the injection site and sprouted numerous neurofilament-immunoreactive fibers that appeared to course rostrally toward the striatum in parallel with tyrosine hydroxylase-immunoreactive fibers from the host substantia nigra but did not mature into DA neurons. This work suggests that hfNSCs can generate neurons that project long fibers in the adult primate brain. However, in the absence of region-specific signals and despite GDNF overexpression, hfNSCs did not differentiate into mature DA neurons in large numbers. It is encouraging, however, that the adult primate brain appeared to retain axonal guidance cues. We believe that transplantation of stem cells, specifically instructed ex vivo to yield DA neurons, could lead to reconstruction of some portion of the nigrostriatal pathway and prove beneficial for the parkinsonian condition. ©AlphaMed Press.
Wu, Jin; Racine, Fred; Wismer, Michael K; Young, Katherine; Carr, Donna M; Xiao, Jing C; Katwaru, Ravi; Si, Qian; Harradine, Paul; Motyl, Mary; Bhagunde, Pratik R; Rizk, Matthew L
2018-05-01
Resistance to antibiotics among bacterial pathogens is rapidly spreading, and therapeutic options against multidrug-resistant bacteria are limited. There is an urgent need for new drugs, especially those that can circumvent the broad array of resistance pathways that bacteria have evolved. In this study, we assessed the pharmacokinetic/pharmacodynamic relationship of the novel β-lactamase inhibitor relebactam (REL; MK-7655) in a hollow-fiber infection model. REL is intended for use with the carbapenem β-lactam antibiotic imipenem for the treatment of Gram-negative bacterial infections. In this study, we used an in vitro hollow-fiber infection model to confirm the efficacy of human exposures associated with the phase 2 doses (imipenem at 500 mg plus REL at 125 or 250 mg administered intravenously every 6 h as a 30-min infusion) against imipenem-resistant strains of Pseudomonas aeruginosa and Klebsiella pneumoniae Dose fractionation experiments confirmed that the pharmacokinetic parameter that best correlated with REL activity is the area under the concentration-time curve, consistent with findings in a murine pharmacokinetic/pharmacodynamic model. Determination of the pharmacokinetic/pharmacodynamic relationship between β-lactam antibiotics and β-lactamase inhibitors is complex, as there is an interdependence between their respective exposure-response relationships. Here, we show that this interdependence could be captured by treating the MIC of imipenem as dynamic: it changes with time, and this change is directly related to REL levels. For the strains tested, the percentage of the dosing interval time that the concentration remains above the dynamic MIC for imipenem was maintained at the carbapenem target of 30 to 40%, required for maximum efficacy, for imipenem at 500 mg plus REL at 250 mg. Copyright © 2018 American Society for Microbiology.
Chacon-Cabrera, Alba; Mateu-Jimenez, Mercè; Langohr, Klaus; Fermoselle, Clara; García-Arumí, Elena; Andreu, Antoni L; Yelamos, Jose; Barreiro, Esther
2017-12-01
Strategies to treat cachexia are still at its infancy. Enhanced muscle protein breakdown and ubiquitin-proteasome system are common features of cachexia associated with chronic conditions including lung cancer (LC). Poly(ADP-ribose) polymerases (PARP), which play a major role in chromatin structure regulation, also underlie maintenance of muscle metabolism and body composition. We hypothesized that protein catabolism, proteolytic markers, muscle fiber phenotype, and muscle anabolism may improve in respiratory and limb muscles of LC-cachectic Parp-1-deficient (Parp-1 -/- ) and Parp-2 -/- mice. In diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing mice (wild type, Parp-1 -/- , and Parp-2 -/- ), PARP activity (ADP-ribose polymers, pADPr), redox balance, muscle fiber phenotype, apoptotic nuclei, tyrosine release, protein ubiquitination, muscle-specific E3 ligases, NF-κB signaling pathway, markers of muscle anabolism (Akt, mTOR, p70S6K, and mitochondrial DNA) were evaluated along with body and muscle weights, and limb muscle force. Compared to wild type cachectic animals, in both respiratory and limb muscles of Parp-1 -/- and Parp-2 -/- cachectic mice: cancer induced-muscle wasting characterized by increased PARP activity, protein oxidation, tyrosine release, and ubiquitin-proteasome system (total protein ubiquitination, atrogin-1, and 20S proteasome C8 subunit) were blunted, the reduction in contractile myosin and atrophy of the fibers was attenuated, while no effects were seen in other structural features (inflammatory cells, internal or apoptotic nuclei), and markers of muscle anabolism partly improved. Activation of either PARP-1 or -2 is likely to play a role in muscle protein catabolism via oxidative stress, NF-κB signaling, and enhanced proteasomal degradation in cancer-induced cachexia. Therapeutic potential of PARP activity inhibition deserves attention. © 2017 Wiley Periodicals, Inc.
Buyken, Anette E; Cheng, Guo; Günther, Anke Lb; Liese, Angela D; Remer, Thomas; Karaolis-Danckert, Nadina
2008-09-01
Observational studies in adults suggest that a diet with a high glycemic index (GI) or glycemic load (GL), a high intake of sugary foods, or a low fiber intake may increase the risk of overweight. We aimed to examine prospectively whether dietary GI, GL, added sugar intake, or fiber intake between age 2 and 7 y are associated with the development of body composition. If so, we aimed to ascertain whether these associations are modified by meal frequency. Linear mixed-effect regression analyses were performed in 380 participants of the DOrtmund Nutrition and Anthropometric Longitudinally Designed (DONALD) Study for whom 4-6 weighed 3-d dietary records and anthropometric data were obtained between ages 2 and 7 y. Changes in dietary GI, GL, or added sugar intake between ages 2 and 7 y were not associated with concurrent changes in percentage body fat (%BF, as estimated from skinfold thicknesses) or body mass index SD scores. An increase in fiber intake was related to a concurrent decrease in %BF between ages 2 and 7 y only in children who consumed <6 meals/d as toddlers (beta +/- SE from fully adjusted model: -0.26 +/- 0.09%BF per 1-SD increase in fiber intake, P = 0.005), whereas children with a higher meal frequency had no concurrent change (0.07 +/- 0.07%BF per 1-SD increase in fiber intake, P = 0.3). Dietary GI, GL, or added sugar intake between ages 2 and 7 y does not appear to influence the development of body composition. Potential benefits associated with increasing fiber intake throughout childhood may be limited to toddlers with a lower meal frequency.
Makarem, Nour; Nicholson, Joseph M.; Bandera, Elisa V.; McKeown, Nicola M.
2016-01-01
Context: Evidence from previous reviews is supportive of the hypothesis that whole grains may protect against various cancers. However, the reviews did not report risk estimates for both whole grains and cereal fiber and only case–control studies were evaluated. It is unclear whether longitudinal studies support this conclusion. Objective: To evaluate associations between whole grains and cereal fiber in relation to risk of lifestyle-related cancers data from longitudinal studies was evaluated. Data Sources: The following 3 databases were systematically searched: PubMed, EMBASE, and Cochrane CENTRAL. Study Selection: A total of 43 longitudinal studies conducted in Europe and North America that reported multivariable-adjusted risk estimates for whole grains (n = 14), cereal fiber (n = 23), or both (n = 6) in relation to lifestyle-related cancers were included. Data Extraction: Information on study location, cohort name, follow-up duration, sample characteristics, dietary assessment method, risk estimates, and confounders was extracted. Data Synthesis: Of 20 studies examining whole grains and cancer, 6 studies reported a statistically significant 6%–47% reduction in risk, but 14 studies showed no association. Of 29 studies examining cereal fiber intake in relation to cancer, 8 showed a statistically significant 6%–49% reduction in risk, whereas 21 studies reported no association. Conclusions: This systematic review concludes that most studies were suggestive of a null association. Whole grains and cereal fiber may protect against gastrointestinal cancers, but these findings require confirmation in additional studies. PMID:27257283
Cough reflex sensitization from esophagus and nose
Hennel, Michal; Brozmanova, Mariana; Kollarik, Marian
2015-01-01
The diseases of the esophagus and nose are among the major factors contributing to chronic cough although their role in different patient populations is debated. Studies in animal models and in humans show that afferent C-fiber activators applied on esophageal or nasal mucosa do not initiate cough, but enhance cough induced by inhaled irritants. These results are consistent with the hypothesis that activation of esophageal and nasal C-fibers contribute to cough reflex hypersensitivity observed in chronic cough patients with gastroesophageal reflux disease (GERD) and chronic rhinitis, respectively. The afferent nerves mediating cough sensitization from the esophagus are probably the neural crest-derived vagal jugular C-fibers. In addition to their responsiveness to high concentration of acid typical for gastroesophageal reflux (pH<5), esophageal C-fibers also express receptors for activation by weakly acidic reflux such as receptors highly sensitive to acid and receptors for bile acids. The nature of sensory pathways from the nose and their activators relevant for cough sensitization are less understood. Increased cough reflex sensitivity was also reported in many patients with GERD or rhinitis who do not complain of cough indicating that additional endogenous or exogenous factors may be required to develop chronic coughing in these diseases. PMID:26498387
Dual function of TGFβ in lens epithelial cell fate: implications for secondary cataract
Boswell, Bruce A.; Korol, Anna; West-Mays, Judith A.; Musil, Linda S.
2017-01-01
The most common vision-disrupting complication of cataract surgery is posterior capsule opacification (PCO; secondary cataract). PCO is caused by residual lens cells undergoing one of two very different cell fates: either transdifferentiating into myofibroblasts or maturing into lens fiber cells. Although TGFβ has been strongly implicated in lens cell fibrosis, the factors responsible for the latter process have not been identified. We show here for the first time that TGFβ can induce purified primary lens epithelial cells within the same culture to undergo differentiation into either lens fiber cells or myofibroblasts. Marker analysis confirmed that the two cell phenotypes were mutually exclusive. Blocking the p38 kinase pathway, either with direct inhibitors of the p38 MAP kinase or a small-molecule therapeutic that also inhibits the activation of p38, prevented TGFβ from inducing epithelial–myofibroblast transition and cell migration but did not prevent fiber cell differentiation. Rapamycin had the converse effect, linking MTOR signaling to induction of fiber cell differentiation by TGFβ. In addition to providing novel potential therapeutic strategies for PCO, our findings extend the so-called TGFβ paradox, in which TGFβ can induce two disparate cell fates, to a new epithelial disease state. PMID:28209733
Shen, Tiansheng; Liu, Yewei; Schneider, Martin F
2012-01-01
The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) regulates expression of genes for metabolism and muscle fiber type. Recently, a novel splice variant of PGC-1α (NT-PGC-1α, amino acids 1-270) was cloned and found to be expressed in muscle. Here we use Flag-tagged NT-PGC-1α to examine the subcellular localization and regulation of NT-PGC-1α in skeletal muscle fibers. Flag-NT-PGC-1α is located predominantly in the myoplasm. Nuclear NT-PGC-1α can be increased by activation of protein kinase A. Activation of p38 MAPK by muscle activity or of AMPK had no effect on the subcellular distribution of NT-PGC-1α. Inhibition of CRM1-mediated export only caused relatively slow nuclear accumulation of NT-PGC-1α, indicating that nuclear export of NT-PGC-1α may be mediated by both CRM1-dependent and -independent pathways. Together these results suggest that the regulation of NT-PGC-1α in muscle fibers may be very different from that of the full-length PGC-1α, which is exclusively nuclear.
Aleksandrova, E V; Batalov, A I; Pogosbekyan, E L; Zakharova, N E; Fadeeva, L M; Kravchuk, A D; Pronin, I N; Potapov, A A
2018-01-01
The study purpose was to develop a technique for intravital visualization of the brainstem reticular formation fibers in healthy volunteers using magnetic resonance imaging (MRI). The study included 21 subjects (13 males and 8 females) aged 21 to 62 years. The study was performed on a magnetic resonance imaging scanner with a magnetic field strength of 3 T in T1, T2, T2-FLAIR, DWI, and SWI modes. A CSD-HARDI algorithm was used to identify thin intersecting fibers of the reticular formatio. We developed a technique for reconstructing the reticular formation pathways, tested it in healthy volunteers, and obtained standard quantitative indicators (fractional anisotropy (FA), apparent diffusion coefficient (ACD), fiber length and density, and axial and radial diffusion). We performed a comparative analysis of these indicators in males and females. There was no difference between these groups and between indicators for the right and left brainstem. Our findings will enable comparative analysis of examination results in patients with brain pathology accompanied by brainstem injury, which may help predict the outcome. This work was supported by a grant of the Russian Foundation for Basic Research (#16-04-01472).