Science.gov

Sample records for associative memory model

  1. Associative memory model with spontaneous neural activity

    NASA Astrophysics Data System (ADS)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  2. Generalized memory associativity in a network model for the neuroses

    NASA Astrophysics Data System (ADS)

    Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.

    2009-03-01

    We review concepts introduced in earlier work, where a neural network mechanism describes some mental processes in neurotic pathology and psychoanalytic working-through, as associative memory functioning, according to the findings of Freud. We developed a complex network model, where modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's idea that consciousness is related to symbolic and linguistic memory activity in the brain. We have introduced a generalization of the Boltzmann machine to model memory associativity. Model behavior is illustrated with simulations and some of its properties are analyzed with methods from statistical mechanics.

  3. Generalized memory associativity in a network model for the neuroses.

    PubMed

    Wedemann, Roseli S; Donangelo, Raul; de Carvalho, Luís A V

    2009-03-01

    We review concepts introduced in earlier work, where a neural network mechanism describes some mental processes in neurotic pathology and psychoanalytic working-through, as associative memory functioning, according to the findings of Freud. We developed a complex network model, where modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's idea that consciousness is related to symbolic and linguistic memory activity in the brain. We have introduced a generalization of the Boltzmann machine to model memory associativity. Model behavior is illustrated with simulations and some of its properties are analyzed with methods from statistical mechanics.

  4. On a Model of Associative Memory with Huge Storage Capacity

    NASA Astrophysics Data System (ADS)

    Demircigil, Mete; Heusel, Judith; Löwe, Matthias; Upgang, Sven; Vermet, Franck

    2017-07-01

    In Krotov et al. (in: Lee (eds) Advances in Neural Information Processing Systems, Curran Associates, Inc., Red Hook, 2016) Krotov and Hopfield suggest a generalized version of the well-known Hopfield model of associative memory. In their version they consider a polynomial interaction function and claim that this increases the storage capacity of the model. We prove this claim and take the "limit" as the degree of the polynomial becomes infinite, i.e. an exponential interaction function. With this interaction we prove that model has an exponential storage capacity in the number of neurons, yet the basins of attraction are almost as large as in the standard Hopfield model.

  5. Distributed Cognition (DCOG): Foundations for a Computational Associative Memory Model

    DTIC Science & Technology

    2006-08-01

    This isolates the skateboard as the one that doesn’t belong. Certain automatic, attention-shifting mechanisms will be required in our model . We...STINFO COPY AFRL-HE-WP-TR-2006-0160 Distributed Cognition (DCOG): Foundations for a Computational Associative Memory Model Robert G. Eggleston...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions , searching

  6. Electronic implementation of associative memory based on neural network models

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Lambe, John; Thakoor, A. P.

    1987-01-01

    An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.

  7. Electronic implementation of associative memory based on neural network models

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Lambe, John; Thakoor, A. P.

    1987-01-01

    An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.

  8. Novel associative-memory-based self-learning neurocontrol model

    NASA Astrophysics Data System (ADS)

    Chen, Ke

    1992-09-01

    Intelligent control is an important field of AI application, which is closely related to machine learning, and the neurocontrol is a kind of intelligent control that controls actions of a physical system or a plant. Linear associative memory model is a good analytic tool for artificial neural networks. In this paper, we present a novel self-learning neurocontrol on the basis of the linear associative memory model to support intelligent control. Using our self-learning neurocontrol model, the learning process is viewed as an extension of one of J. Piaget's developmental stages. After a particular linear associative model developed by us is presented, a brief introduction to J. Piaget's cognitive theory is described as the basis of our self-learning style control. It follows that the neurocontrol model is presented, which usually includes two learning stages, viz. primary learning and high-level learning. As a demonstration of our neurocontrol model, an example is also presented with simulation techniques, called that `bird' catches an aim. The tentative experimental results show that the learning and controlling performance of this approach is surprisingly good. In conclusion, future research is pointed out to improve our self-learning neurocontrol model and explore other areas of application.

  9. Cerebellar models of associative memory: Three papers from IEEE COMPCON spring 1989

    NASA Technical Reports Server (NTRS)

    Raugh, Michael R. (Editor)

    1989-01-01

    Three papers are presented on the following topics: (1) a cerebellar-model associative memory as a generalized random-access memory; (2) theories of the cerebellum - two early models of associative memory; and (3) intelligent network management and functional cerebellum synthesis.

  10. Immunological memory is associative

    SciTech Connect

    Smith, D.J.; Forrest, S.; Perelson, A.S.

    1996-12-31

    The purpose of this paper is to show that immunological memory is an associative and robust memory that belongs to the class of sparse distributed memories. This class of memories derives its associative and robust nature by sparsely sampling the input space and distributing the data among many independent agents. Other members of this class include a model of the cerebellar cortex and Sparse Distributed Memory (SDM). First we present a simplified account of the immune response and immunological memory. Next we present SDM, and then we show the correlations between immunological memory and SDM. Finally, we show how associative recall in the immune response can be both beneficial and detrimental to the fitness of an individual.

  11. Order-memory and association-memory.

    PubMed

    Caplan, Jeremy B

    2015-09-01

    Two highly studied memory functions are memory for associations (items presented in pairs, such as SALT-PEPPER) and memory for order (a list of items whose order matters, such as a telephone number). Order- and association-memory are at the root of many forms of behaviour, from wayfinding, to language, to remembering people's names. Most researchers have investigated memory for order separately from memory for associations. Exceptions to this, associative-chaining models build an ordered list from associations between pairs of items, quite literally understanding association- and order-memory together. Alternatively, positional-coding models have been used to explain order-memory as a completely distinct function from association-memory. Both classes of model have found empirical support and both have faced serious challenges. I argue that models that combine both associative chaining and positional coding are needed. One such hybrid model, which relies on brain-activity rhythms, is promising, but remains to be tested rigourously. I consider two relatively understudied memory behaviours that demand a combination of order- and association-information: memory for the order of items within associations (is it William James or James William?) and judgments of relative order (who left the party earlier, Hermann or William?). Findings from these underexplored procedures are already difficult to reconcile with existing association-memory and order-memory models. Further work with such intermediate experimental paradigms has the potential to provide powerful findings to constrain and guide models into the future, with the aim of explaining a large range of memory functions, encompassing both association- and order-memory. (c) 2015 APA, all rights reserved).

  12. Associative memory in chronic schizophrenia: a computational model

    PubMed Central

    Han, S. Duke; Nestor, Paul G.; Shenton, Martha E.; Niznikiewicz, Margaret; Hannah, Gordon; McCarley, Robert W.

    2010-01-01

    We developed a computer model to simulate associative memory recall of patients with chronic schizophrenia. Model inputs consisted of words derived from normative data that differed in terms of connectivity and network size, with the former quantitatively represented by parametric weights and the latter by the specific number of word associates that formed a particular network. Previous behavioral studies of normal subjects indicated better recall for words of high connectivity-small network (HCSN), followed by low connectivity-small network (LCSN), high connectivity-large network (HCLN), and low connectivity-large network (LCLN). This pattern of recall differed from that observed in behavioral studies of schizophrenic patients, which showed better recall for high connectivity words, regardless of network size. Holding constant network size while manipulating connection weights effectively simulated this schizophrenic pattern of recall. That is, manipulation of parametric weights coupled with a slight increase in noise significantly and reliably elicited the response pattern of abnormal connectivity demonstrated in the prior behavioral study of patients with chronic schizophrenia. An increase in noise was a necessary, but insufficient step in modeling the response pattern of abnormal connectivity. These findings provide support for the use of computational models to investigate dynamics of associative word recall in patients with chronic schizophrenia. PMID:12729877

  13. Properties of Coupled Oscillator Model for Bidirectional Associative Memory

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Satoshi

    2016-08-01

    In this study, we consider the stationary state and dynamical properties of a coupled oscillator model for bidirectional associative memory. For the stationary state, we apply the replica method to obtain self-consistent order parameter equations. The theoretical results for the storage capacity and overlap agree well with the numerical simulation. For the retrieval process, we apply statistical neurodynamics to include temporal noise correlations. For the successful retrieval process, the theoretical result obtained with the fourth-order approximation qualitatively agrees with the numerical simulation. However, for the unsuccessful retrieval process, higher-order noise correlations suppress severely; therefore, the maximum value of the overlap and the relaxation time are smaller than those of the numerical simulation. The reasons for the discrepancies between the theoretical result and numerical simulation, and the validity of our analysis are discussed.

  14. A Cerebellar-model Associative Memory as a Generalized Random-access Memory

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1989-01-01

    A versatile neural-net model is explained in terms familiar to computer scientists and engineers. It is called the sparse distributed memory, and it is a random-access memory for very long words (for patterns with thousands of bits). Its potential utility is the result of several factors: (1) a large pattern representing an object or a scene or a moment can encode a large amount of information about what it represents; (2) this information can serve as an address to the memory, and it can also serve as data; (3) the memory is noise tolerant--the information need not be exact; (4) the memory can be made arbitrarily large and hence an arbitrary amount of information can be stored in it; and (5) the architecture is inherently parallel, allowing large memories to be fast. Such memories can become important components of future computers.

  15. Oscillations in Spurious States of the Associative Memory Model with Synaptic Depression

    NASA Astrophysics Data System (ADS)

    Murata, Shin; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato

    2014-12-01

    The associative memory model is a typical neural network model that can store discretely distributed fixed-point attractors as memory patterns. When the network stores the memory patterns extensively, however, the model has other attractors besides the memory patterns. These attractors are called spurious memories. Both spurious states and memory states are in equilibrium, so there is little difference between their dynamics. Recent physiological experiments have shown that the short-term dynamic synapse called synaptic depression decreases its efficacy of transmission to postsynaptic neurons according to the activities of presynaptic neurons. Previous studies revealed that synaptic depression destabilizes the memory states when the number of memory patterns is finite. However, it is very difficult to study the dynamical properties of the spurious states if the number of memory patterns is proportional to the number of neurons. We investigate the effect of synaptic depression on spurious states by Monte Carlo simulation. The results demonstrate that synaptic depression does not affect the memory states but mainly destabilizes the spurious states and induces periodic oscillations.

  16. An algebraic model of an associative noise-like coding memory.

    PubMed

    Bottini, S

    1980-01-01

    A mathematical model of an associative memory is presented, sharing with the optical holography memory systems the properties which establish an analogy with biological memory. This memory system--developed from Gabor's model of memory--is based on a noise-like coding of the information by which it realizes a distributed, damage-tolerant, "equipotential" storage through simultaneous state changes of discrete substratum elements. Each two associated items being stored are coded by each other by means of two noise-like patterns obtained from them through a randomizing preprocessing. The algebraic transformations operating the information storage and retrieval are matrix-vector products involving Toeplitz type matrices. Several noise-like coded memory traces are superimposed on a common substratum without crosstalk interference; moreover, extraneous noise added to these memory traces does not injure the stored information. The main performances shown by this memory model are: i) the selective, complete recovering of stored information from incomplete keys, both mixed with extraneous information and translated from the position learnt; ii) a dynamic recollection where the information just recovered acts as a new key for a sequential retrieval process; iii) context-dependent responses. The hypothesis that the information is stored in the nervous system through a noise-like coding is suggested. The model has been simulated on a digital computer using bidimensional images.

  17. Working memory contributes to the encoding of object location associations: Support for a 3-part model of object location memory.

    PubMed

    Gillis, M Meredith; Garcia, Sarah; Hampstead, Benjamin M

    2016-09-15

    A recent model by Postma and colleagues posits that the encoding of object location associations (OLAs) requires the coordination of several cognitive processes mediated by ventral (object perception) and dorsal (spatial perception) visual pathways as well as the hippocampus (feature binding) [1]. Within this model, frontoparietal network recruitment is believed to contribute to both the spatial processing and working memory task demands. The current study used functional magnetic resonance imaging (fMRI) to test each step of this model in 15 participants who encoded OLAs and performed standard n-back tasks. As expected, object processing resulted in activation of the ventral visual stream. Object in location processing resulted in activation of both the ventral and dorsal visual streams as well as a lateral frontoparietal network. This condition was also the only one to result in medial temporal lobe activation, supporting its role in associative learning. A conjunction analysis revealed areas of shared activation between the working memory and object in location phase within the lateral frontoparietal network, anterior insula, and basal ganglia; consistent with prior working memory literature. Overall, findings support Postma and colleague's model and provide clear evidence for the role of working memory during OLA encoding. Published by Elsevier B.V.

  18. A cross-lagged model of the reciprocal associations of loneliness and memory functioning.

    PubMed

    Ayalon, Liat; Shiovitz-Ezra, Sharon; Roziner, Ilan

    2016-05-01

    The study was designed to evaluate the reciprocal associations of loneliness and memory functioning using a cross-lagged model. The study was based on the psychosocial questionnaire of the Health and Retirement Study, which is a U.S. nationally representative survey of individuals over the age of 50 and their spouses of any age. A total of 1,225 respondents had complete data on the loneliness measure in 2004 and at least in 1 of the subsequent waves (e.g., 2008, 2012) and were maintained for analysis. A cross-lagged model was estimated to examine the reciprocal associations of loneliness and memory functioning, controlling for age, gender, education, depressive symptoms, number of medical conditions, and the number of close social relationships. The model had adequate fit indices: χ2(860, N = 1,225) = 1,401.54, p < .001, Tucker-Lewis index = .957, comparative fit index = .963, and root mean square error of approximation = .023 (90% confidence interval [.021, .025]). The lagged effect of loneliness on memory functioning was nonsignificant, B(SE) = -.11(.08), p = .15, whereas the lagged effect of memory functioning on loneliness was significant, B(SE) = -.06(.02), p = .01, indicating that lower levels of memory functioning precede higher levels of loneliness 4 years afterward. Further research is required to better understand the mechanisms responsible for the temporal association between reduced memory functioning and increased loneliness. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. A Self-Organizing Incremental Spatiotemporal Associative Memory Networks Model for Problems with Hidden State

    PubMed Central

    2016-01-01

    Identifying the hidden state is important for solving problems with hidden state. We prove any deterministic partially observable Markov decision processes (POMDP) can be represented by a minimal, looping hidden state transition model and propose a heuristic state transition model constructing algorithm. A new spatiotemporal associative memory network (STAMN) is proposed to realize the minimal, looping hidden state transition model. STAMN utilizes the neuroactivity decay to realize the short-term memory, connection weights between different nodes to represent long-term memory, presynaptic potentials, and synchronized activation mechanism to complete identifying and recalling simultaneously. Finally, we give the empirical illustrations of the STAMN and compare the performance of the STAMN model with that of other methods. PMID:27891146

  20. Associative memory model with long-tail-distributed Hebbian synaptic connections

    PubMed Central

    Hiratani, Naoki; Teramae, Jun-Nosuke; Fukai, Tomoki

    2013-01-01

    The postsynaptic potentials of pyramidal neurons have a non-Gaussian amplitude distribution with a heavy tail in both hippocampus and neocortex. Such distributions of synaptic weights were recently shown to generate spontaneous internal noise optimal for spike propagation in recurrent cortical circuits. However, whether this internal noise generation by heavy-tailed weight distributions is possible for and beneficial to other computational functions remains unknown. To clarify this point, we construct an associative memory (AM) network model of spiking neurons that stores multiple memory patterns in a connection matrix with a lognormal weight distribution. In AM networks, non-retrieved memory patterns generate a cross-talk noise that severely disturbs memory recall. We demonstrate that neurons encoding a retrieved memory pattern and those encoding non-retrieved memory patterns have different subthreshold membrane-potential distributions in our model. Consequently, the probability of responding to inputs at strong synapses increases for the encoding neurons, whereas it decreases for the non-encoding neurons. Our results imply that heavy-tailed distributions of connection weights can generate noise useful for AM recall. PMID:23403536

  1. Neural networks: Implementing associative memory models in neurocomputers

    SciTech Connect

    Miller, R.K.

    1987-01-01

    Neurocomputers are a new breed of computer based on models of the human brain. Applications include image processing, vision, speech recognition, fuzzy knowledge processing, data/sensor fusion, and coordination and control of robot motion. This report explains the workings of neural networks in non-theoretical terminology. Potential applications are explained. The activities of virtually every company and research group in the field are assessed. Bibliography contains over 400 citations.

  2. Experimental Optoelectronic Associative Memory

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1992-01-01

    Optoelectronic associative memory responds to input image by displaying one of M remembered images. Which image to display determined by optoelectronic analog computation of resemblance between input image and each remembered image. Does not rely on precomputation and storage of outer-product synapse matrix. Size of memory needed to store and process images reduced.

  3. Experimental Optoelectronic Associative Memory

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1992-01-01

    Optoelectronic associative memory responds to input image by displaying one of M remembered images. Which image to display determined by optoelectronic analog computation of resemblance between input image and each remembered image. Does not rely on precomputation and storage of outer-product synapse matrix. Size of memory needed to store and process images reduced.

  4. Associative memory model for searching an image database by image snippet

    NASA Astrophysics Data System (ADS)

    Khan, Javed I.; Yun, David Y.

    1994-09-01

    This paper presents an associative memory called an multidimensional holographic associative computing (MHAC), which can be potentially used to perform feature based image database query using image snippet. MHAC has the unique capability to selectively focus on specific segments of a query frame during associative retrieval. As a result, this model can perform search on the basis of featural significance described by a subset of the snippet pixels. This capability is critical for visual query in image database because quite often the cognitive index features in the snippet are statistically weak. Unlike, the conventional artificial associative memories, MHAC uses a two level representation and incorporates additional meta-knowledge about the reliability status of segments of information it receives and forwards. In this paper we present the analysis of focus characteristics of MHAC.

  5. Application of neural network to humanoid robots-development of co-associative memory model.

    PubMed

    Itoh, Kazuko; Miwa, Hiroyasu; Takanobu, Hideaki; Takanishi, Atsuo

    2005-01-01

    We have been studying a system of many harmonic oscillators (neurons) interacting via a chaotic force since 2002. Each harmonic oscillator is driven by chaotic force whose bifurcation parameter is modulated by the position of the harmonic oscillator. Moreover, a system of mutually coupled chaotic neural networks was investigated. Different patterns were stored in each network and the associative memory problem was discussed in these networks. Each network can retrieve the pattern stored in the other network. On the other hand, we have been developing new mechanisms and functions for a humanoid robot with the ability to express emotions and communicate with humans in a human-like manner. We introduced a mental model which consisted of the mental space, the mood, the equations of emotion, the robot personality, the need model, the consciousness model and the behavior model. This type of mental model was implemented in Emotion Expression Humanoid Robot WE-4RII (Waseda Eye No.4 Refined II). In this paper, an associative memory model using mutually coupled chaotic neural networks is proposed for retrieving optimum memory (recognition) in response to a stimulus. We implemented this model in Emotion Expression Humanoid Robot WE-4RII (Waseda Eye No.4 Refined II).

  6. Aging and associative recognition: A view from the DRYAD model of age-related memory deficits.

    PubMed

    Benjamin, Aaron S

    2016-02-01

    How do we best characterize the memory deficits that accompany aging? A popular hypothesis, articulated originally by Naveh-Benjamin (2000) and reviewed in the accompanying article by Smyth and Naveh-Benjamin (2016), suggests that older adults are selectively deficient in establishing associations between to-be-learned memoranda and as a result have deficits in memory for sources or contexts. An alternative proposal, called density of representations yields age-related deficits (DRYAD) and outlined in recent articles by Benjamin (2010) and colleagues (Benjamin, Diaz, Matzen, & Johnson, 2012), attributes disproportionate deficits in memory to a global, rather than a selective, deficit of memory. In an attempt to adjudicate between these competing positions, Smyth and Naveh-Benjamin (2016) discussed 2 sets of experimental data that they claim speak against the global deficit model. Here I review some general principles of how the global-deficit view is applied to experimental paradigms and demonstrate that even a simplified form of DRYAD can comfortably accommodate the critical findings cited by Smyth and Naveh-Benjamin. I also evaluate aspects of their results that may be problematic for DRYAD and describe ways in which DRYAD's account of associative recognition can be falsified. I end with a discussion of the complementary strengths and weaknesses of the 2 approaches and consider ways in which the associative deficit hypothesis and DRYAD might work more profitably together than apart.

  7. Memory for Sentences: Implications for Human Associative Memory

    ERIC Educational Resources Information Center

    Foss, Donald J.; Harwood, David A.

    1975-01-01

    This paper evaluates associative theories of sentence memory, based on the model of J.R. Anderson and G.H. Bower. A model of Human Associative Memory (HAM) is generalized and defined, and alternative models incorporating configural information are presented. (CK)

  8. Judgments of Associative Memory

    ERIC Educational Resources Information Center

    Maki, William S.

    2007-01-01

    Judgments of associative memory (JAM) were indexed by ratings given to pairs of cue and response words. The normed probabilities, p(response|cue), were obtained from free association norms. The ratings were linearly related to the probabilities. The JAM functions were characterized by high intercepts (approximately 50 on a 100 point scale) and…

  9. Judgments of Associative Memory

    ERIC Educational Resources Information Center

    Maki, William S.

    2007-01-01

    Judgments of associative memory (JAM) were indexed by ratings given to pairs of cue and response words. The normed probabilities, p(response|cue), were obtained from free association norms. The ratings were linearly related to the probabilities. The JAM functions were characterized by high intercepts (approximately 50 on a 100 point scale) and…

  10. Graph-Theoretic Properties of Networks Based on Word Association Norms: Implications for Models of Lexical Semantic Memory

    ERIC Educational Resources Information Center

    Gruenenfelder, Thomas M.; Recchia, Gabriel; Rubin, Tim; Jones, Michael N.

    2016-01-01

    We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network…

  11. Graph-Theoretic Properties of Networks Based on Word Association Norms: Implications for Models of Lexical Semantic Memory

    ERIC Educational Resources Information Center

    Gruenenfelder, Thomas M.; Recchia, Gabriel; Rubin, Tim; Jones, Michael N.

    2016-01-01

    We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network…

  12. Reversal learning and associative memory impairments in a BACHD rat model for Huntington disease.

    PubMed

    Abada, Yah-Se K; Nguyen, Huu Phuc; Ellenbroek, Bart; Schreiber, Rudy

    2013-01-01

    Chorea and psychiatric symptoms are hallmarks of Huntington disease (HD), a neurodegenerative disorder, genetically characterized by the presence of expanded CAG repeats (>35) in the Huntingtin (HTT) gene. HD patients present psychiatric symptoms prior to the onset of motor symptoms and we recently found a similar emergence of non motor and motor deficits in BACHD rats carrying the human full length mutated HTT (97 CAG-CAA repeats). We evaluated cognitive performance in reversal learning and associative memory tests in different age cohorts of BACHD rats. Male wild type (WT) and transgenic (TG) rats between 2 and 12 months of age were tested. Learning and strategy shifting were assessed in a cross-maze test. Associative memory was evaluated in different fear conditioning paradigms (context, delay and trace). The possible confound of a fear conditioning phenotype by altered sensitivity to a 'painful' stimulus was assessed in a flinch-jump test. In the cross maze, 6 months old TG rats showed a mild impairment in reversal learning. In the fear conditioning tasks, 4, 6 and 12 months old TG rats showed a marked reduction in contextual fear conditioning. In addition, TG rats showed impaired delay conditioning (9 months) and trace fear conditioning (3 months). This phenotype was unlikely to be affected by a change in 'pain' sensitivity as WT and TG rats showed no difference in their threshold response in the flinch-jump test. Our results suggest that BACHD rats have a profound associative memory deficit and, possibly, a deficit in reversal learning as assessed in a cross maze task. The time course for the emergence of these symptoms (i.e., before the occurrence of motor symptoms) in this rat model for HD appears similar to the time course in patients. These data suggest that BACHD rats may be a useful model for preclinical drug discovery.

  13. Reversal Learning and Associative Memory Impairments in a BACHD Rat Model for Huntington Disease

    PubMed Central

    Abada, Yah-se K.; Nguyen, Huu Phuc; Ellenbroek, Bart; Schreiber, Rudy

    2013-01-01

    Chorea and psychiatric symptoms are hallmarks of Huntington disease (HD), a neurodegenerative disorder, genetically characterized by the presence of expanded CAG repeats (>35) in the HUNTINGTIN (HTT) gene. HD patients present psychiatric symptoms prior to the onset of motor symptoms and we recently found a similar emergence of non motor and motor deficits in BACHD rats carrying the human full length mutated HTT (97 CAG-CAA repeats). We evaluated cognitive performance in reversal learning and associative memory tests in different age cohorts of BACHD rats. Male wild type (WT) and transgenic (TG) rats between 2 and 12 months of age were tested. Learning and strategy shifting were assessed in a cross-maze test. Associative memory was evaluated in different fear conditioning paradigms (context, delay and trace). The possible confound of a fear conditioning phenotype by altered sensitivity to a ‘painful’ stimulus was assessed in a flinch-jump test. In the cross maze, 6 months old TG rats showed a mild impairment in reversal learning. In the fear conditioning tasks, 4, 6 and 12 months old TG rats showed a marked reduction in contextual fear conditioning. In addition, TG rats showed impaired delay conditioning (9 months) and trace fear conditioning (3 months). This phenotype was unlikely to be affected by a change in ‘pain’ sensitivity as WT and TG rats showed no difference in their threshold response in the flinch-jump test. Our results suggest that BACHD rats have a profound associative memory deficit and, possibly, a deficit in reversal learning as assessed in a cross maze task. The time course for the emergence of these symptoms (i.e., before the occurrence of motor symptoms) in this rat model for HD appears similar to the time course in patients. These data suggest that BACHD rats may be a useful model for preclinical drug discovery. PMID:24223692

  14. The concept models and implementations of multiport neural net associative memory for 2D patterns

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Yatskovskaya, Rimma A.; Yatskovsky, Victor I.

    2011-04-01

    The paper considers neural net models and training and recognizing algorithms with base neurobiologic operations: p-step autoequivalence and non-equivalenc The Modified equivalently models (MEMs) of multiport neural net associative memory (MNNAM) are offered with double adaptive - equivalently weighing (DAEW) for recognition of 2D-patterns (images). It is shown, the computing process in MNNAM under using the proposed MEMs, is reduced to two-step and multi-step algorithms and step-by-step matrix-matrix (tensor-tensor) procedures. The given results of computer simulations confirmed the perspective of such models. Besides the result was received when MNNAM capacity on base of MEMs exceeded the amount of neurons.

  15. Protein Folding and Structure Prediction from the Ground Up: The Atomistic Associative Memory, Water Mediated, Structure and Energy Model.

    PubMed

    Chen, Mingchen; Lin, Xingcheng; Zheng, Weihua; Onuchic, José N; Wolynes, Peter G

    2016-08-25

    The associative memory, water mediated, structure and energy model (AWSEM) is a coarse-grained force field with transferable tertiary interactions that incorporates local in sequence energetic biases using bioinformatically derived structural information about peptide fragments with locally similar sequences that we call memories. The memory information from the protein data bank (PDB) database guides proper protein folding. The structural information about available sequences in the database varies in quality and can sometimes lead to frustrated free energy landscapes locally. One way out of this difficulty is to construct the input fragment memory information from all-atom simulations of portions of the complete polypeptide chain. In this paper, we investigate this approach first put forward by Kwac and Wolynes in a more complete way by studying the structure prediction capabilities of this approach for six α-helical proteins. This scheme which we call the atomistic associative memory, water mediated, structure and energy model (AAWSEM) amounts to an ab initio protein structure prediction method that starts from the ground up without using bioinformatic input. The free energy profiles from AAWSEM show that atomistic fragment memories are sufficient to guide the correct folding when tertiary forces are included. AAWSEM combines the efficiency of coarse-grained simulations on the full protein level with the local structural accuracy achievable from all-atom simulations of only parts of a large protein. The results suggest that a hybrid use of atomistic fragment memory and database memory in structural predictions may well be optimal for many practical applications.

  16. High density associative memory

    NASA Technical Reports Server (NTRS)

    Moopenn, Alexander W. (Inventor); Thakoor, Anilkumar P. (Inventor); Daud, Taher (Inventor); Lambe, John J. (Inventor)

    1989-01-01

    A multi-layered, thin-film, digital memory having associative recall. There is a first memory matrix and a second memory matrix. Each memory matrix comprises, a first layer comprising a plurality of electrically separated row conductors; a second layer comprising a plurality of electrically separated column conductors intersecting but electrically separated from the row conductors; and, a plurality of resistance elements electrically connected between the row condutors and the column conductors at respective intersections of the row conductors and the column conductors, each resistance element comprising, in series, a first resistor of sufficiently high ohmage to conduct a sensible element current therethrough with virtually no heat-generating power consumption when a low voltage as employed in thin-film applications is applied thereacross and a second resistor of sufficiently high ohmage to conduct no sensible current therethrough when a low voltage as employed in thin-film applications is applied thereacross, the second resistor having the quality of breaking down to create a short therethrough upon the application of a breakdown level voltage across the first and second resistors.

  17. Fuzzy associative memories

    NASA Technical Reports Server (NTRS)

    Kosko, Bart

    1991-01-01

    Mappings between fuzzy cubes are discussed. This level of abstraction provides a surprising and fruitful alternative to the propositional and predicate-calculas reasoning techniques used in expert systems. It allows one to reason with sets instead of propositions. Discussed here are fuzzy and neural function estimators, neural vs. fuzzy representation of structured knowledge, fuzzy vector-matrix multiplication, and fuzzy associative memory (FAM) system architecture.

  18. Hippocampus, microcircuits and associative memory.

    PubMed

    Cutsuridis, Vassilis; Wennekers, Thomas

    2009-10-01

    The hippocampus is one of the most widely studied brain region. One of its functional roles is the storage and recall of declarative memories. Recent hippocampus research has yielded a wealth of data on network architecture, cell types, the anatomy and membrane properties of pyramidal cells and interneurons, and synaptic plasticity. Understanding the functional roles of different families of hippocampal neurons in information processing, synaptic plasticity and network oscillations poses a great challenge but also promises deep insight into one of the major brain systems. Computational and mathematical models play an instrumental role in exploring such functions. In this paper, we provide an overview of abstract and biophysical models of associative memory with particular emphasis on the operations performed by the diverse (inter)neurons in encoding and retrieval of memories in the hippocampus.

  19. Optoelectronic associative memory

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor)

    1993-01-01

    An associative optical memory including an input spatial light modulator (SLM) in the form of an edge enhanced liquid crystal light valve (LCLV) and a pair of memory SLM's in the form of liquid crystal televisions (LCTV's) forms a matrix array of an input image which is cross correlated with a matrix array of stored images. The correlation product is detected and nonlinearly amplified to illuminate a replica of the stored image array to select the stored image correlating with the input image. The LCLV is edge enhanced by reducing the bias frequency and voltage and rotating its orientation. The edge enhancement and nonlinearity of the photodetection improves the orthogonality of the stored image. The illumination of the replicate stored image provides a clean stored image, uncontaminated by the image comparison process.

  20. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models. [Sparse, Distributed Memory

    NASA Technical Reports Server (NTRS)

    Keeler, James D.

    1988-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  1. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models. [Sparse, Distributed Memory

    NASA Technical Reports Server (NTRS)

    Keeler, James D.

    1988-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  2. Optical Bidirectional Associative Memories

    NASA Astrophysics Data System (ADS)

    Kosko, Bart; Guest, Clark

    1987-06-01

    Four optical implementations of bidirectional associative memories (BAMs) are presented. BAMs are heteroassociative content addressable memories (CAMs). A BAM stores the m binary associations (A1, B1), ..., (Am, Bm) , where A is a point in the Boolean n-cube and B is a point in the Boolean p-cube. A is a neural network of n bivalent or continuous neurons ai; B is a network of p bivalent or continuous neurons bi. The fixed synaptic connections between the A and B networks are represented by some n-by-p real matrix M. Bidirectionality, forward and backward information flow, in neural nets produces two-way associative search for the nearest stored pair (Ai, Bi) to an input key. Every matrix is a bidirectionally stable hetero-associative CAM for boh bivalent and continuous networks. This generalizes the well-known unidirectional stability for autoassociative networks with square symmetric M. When the BAM neurons are activated, the network quickly evolves to a stable state of two-pattern reverberation, or pseudo-adaptive resonance. The stable reverberation corresponds to a system energy local minimum. Heteroassociative pairs (Ai, Bi) are encoded in a BAM M by summing bipolar correlation matrices, M = X1T Y1 + ... + XmT Ym , where Xi (Yi) is the bipolar version of Ai (Bi), with -1s replacing Os. the BAM storage capacity for reliable recall is roughly m < min(n, p)--pattern number is bounded by pattern dimensionality. BAM optical implementations are divided into two approaches: matrix vector multipliers and holographic correlators. The four optical BAMs described respectively emphasize a spatial light modulator, laser diodes and high-speed detectors, a reflection hologram, and a transmission hologram.

  3. Hopf bifurcation of an (n + 1) -neuron bidirectional associative memory neural network model with delays.

    PubMed

    Xiao, Min; Zheng, Wei Xing; Cao, Jinde

    2013-01-01

    Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.

  4. Negative affect impairs associative memory but not item memory.

    PubMed

    Bisby, James A; Burgess, Neil

    2013-12-17

    The formation of associations between items and their context has been proposed to rely on mechanisms distinct from those supporting memory for a single item. Although emotional experiences can profoundly affect memory, our understanding of how it interacts with different aspects of memory remains unclear. We performed three experiments to examine the effects of emotion on memory for items and their associations. By presenting neutral and negative items with background contexts, Experiment 1 demonstrated that item memory was facilitated by emotional affect, whereas memory for an associated context was reduced. In Experiment 2, arousal was manipulated independently of the memoranda, by a threat of shock, whereby encoding trials occurred under conditions of threat or safety. Memory for context was equally impaired by the presence of negative affect, whether induced by threat of shock or a negative item, relative to retrieval of the context of a neutral item in safety. In Experiment 3, participants were presented with neutral and negative items as paired associates, including all combinations of neutral and negative items. The results showed both above effects: compared to a neutral item, memory for the associate of a negative item (a second item here, context in Experiments 1 and 2) is impaired, whereas retrieval of the item itself is enhanced. Our findings suggest that negative affect impairs associative memory while recognition of a negative item is enhanced. They support dual-processing models in which negative affect or stress impairs hippocampal-dependent associative memory while the storage of negative sensory/perceptual representations is spared or even strengthened.

  5. Protein Folding and Structure Prediction from the Ground Up: The Atomistic Associative Memory, Water Mediated, Structure and Energy Model

    PubMed Central

    Chen, Mingchen; Lin, Xingcheng; Zheng, Weihua; Onuchic, José N.; Wolynes, Peter G.

    2016-01-01

    The associative memory, water mediated, structure and energy model (AWSEM) is a coarse-grained force field with transferable tertiary interactions that incorporates local in sequence energetic biases using bioinformatically derived structural information about peptide fragments with locally similar sequence that we call memories. The memory information from the protein data bank (PDB) database guides proper protein folding. The structural information about available sequences in the database varies in quality and can sometimes lead to frustrated free energy landscapes locally. One way out of this difficulty is to construct the input fragment memory information from all-atom simulations of portions of the complete polypeptide chain. In this paper, we investigate this approach first put forward by Kwac and Wolynes in a more complete way by studying the structure prediction capabilities of this approach for six alpha-helical proteins. This scheme which we call the atomistic associative memory, water mediated, structure and energy model (AAWSEM) amounts to an ab initio protein structure prediction method that starts from the ground-up without using bioinformatic input. The free energy profiles from AAWSEM show that atomistic fragment memories are sufficient to guide the correct folding when tertiary forces are included. AAWSEM combines the efficiency of coarse-grained simulations on the full protein level with the local structural accuracy achievable from all-atom simulations of only parts of a large protein. The results suggest that a hybrid use of atomistic fragment memory and database memory in structural predictions may well be optimal for many practical applications. PMID:27148634

  6. Associative memory in phasing neuron networks

    SciTech Connect

    Nair, Niketh S; Bochove, Erik J.; Braiman, Yehuda

    2014-01-01

    We studied pattern formation in a network of coupled Hindmarsh-Rose model neurons and introduced a new model for associative memory retrieval using networks of Kuramoto oscillators. Hindmarsh-Rose Neural Networks can exhibit a rich set of collective dynamics that can be controlled by their connectivity. Specifically, we showed an instance of Hebb's rule where spiking was correlated with network topology. Based on this, we presented a simple model of associative memory in coupled phase oscillators.

  7. Thermodynamic Model of Spatial Memory

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Allen, P.

    1998-03-01

    We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.

  8. An Associative Memory Model for Integration of Fragmented Research Data and Identification of Treatment Correlations in Breast Cancer Care

    PubMed Central

    Banerjee, Ashis Gopal; Khan, Mridul; Higgins, John; Giani, Annarita; Das, Amar K.

    2015-01-01

    A major challenge in advancing scientific discoveries using data-driven clinical research is the fragmentation of relevant data among multiple information systems. This fragmentation requires significant data-engineering work before correlations can be found among data attributes in multiple systems. In this paper, we focus on integrating information on breast cancer care, and present a novel computational approach to identify correlations between administered drugs captured in an electronic medical records and biological factors obtained from a tumor registry through rapid data aggregation and analysis. We use an associative memory (AM) model to encode all existing associations among the data attributes from both systems in a high-dimensional vector space. The AM model stores highly associated data items in neighboring memory locations to enable efficient querying operations. The results of applying AM to a set of integrated data on tumor markers and drug administrations discovered anomalies between clinical recommendations and derived associations. PMID:26958161

  9. Adiabatic Quantum Optimization for Associative Memory Recall

    NASA Astrophysics Data System (ADS)

    Seddiqi, Hadayat; Humble, Travis

    2014-12-01

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  10. Adiabatic quantum optimization for associative memory recall

    DOE PAGES

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  11. Adiabatic quantum optimization for associative memory recall

    SciTech Connect

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  12. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  13. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  14. Anisomycin in the medial prefrontal cortex reduces reconsolidation of cocaine-associated memories in the rat self-administration model.

    PubMed

    Sorg, Barbara A; Todd, Ryan P; Slaker, Megan; Churchill, Lynn

    2015-05-01

    We tested the hypothesis that infusion of anisomycin into the medial prefrontal cortex (mPFC) disrupts the reconsolidation of a cocaine-associated memory in the rat cocaine self-administration model. Male Sprague-Dawley rats were trained to lever press for cocaine self-administration (0.5 mg/kg/infusion) along with a cue light presentation on an FR1 followed by an FR3 schedule of reinforcement for 2 h/day. Rats were then given extinction sessions or an equivalent forced abstinence period followed by a 5 min memory reactivation session during which time they received an ip cocaine injection (10 mg/kg, ip) and were allowed to press for contingent cue light presentation. Immediately after reactivation, they were administered an intra-mPFC infusion of vehicle or anisomycin. Two additional control groups received extinction and either no memory reactivation and intra-mPFC infusions as above or intra-mPFC infusions 6 h after memory reactivation. A fourth group received forced abstinence and intra-mPFC infusions immediately after memory reactivation. Combined cocaine + cue-induced reinstatement was given 2-3 days (early) and 8-12 days (late) later. Rats given anisomycin in the Extinction + Reactivation demonstrated decreased reinstatement, while anisomycin treatment did not alter behavior in any of the other three groups. These results suggest that extinction training may recruit the mPFC such that it renders the memory susceptible to disruption by anisomycin. These findings have implications for using extinction training prior to or in conjunction with other therapies, including reconsolidation disruption, to enhance prefrontal control over drug-seeking behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models

    NASA Technical Reports Server (NTRS)

    Keeler, James D.

    1987-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  16. Animal models of source memory.

    PubMed

    Crystal, Jonathon D

    2016-01-01

    Source memory is the aspect of episodic memory that encodes the origin (i.e., source) of information acquired in the past. Episodic memory (i.e., our memories for unique personal past events) typically involves source memory because those memories focus on the origin of previous events. Source memory is at work when, for example, someone tells a favorite joke to a person while avoiding retelling the joke to the friend who originally shared the joke. Importantly, source memory permits differentiation of one episodic memory from another because source memory includes features that were present when the different memories were formed. This article reviews recent efforts to develop an animal model of source memory using rats. Experiments are reviewed which suggest that source memory is dissociated from other forms of memory. The review highlights strengths and weaknesses of a number of animal models of episodic memory. Animal models of source memory may be used to probe the biological bases of memory. Moreover, these models can be combined with genetic models of Alzheimer's disease to evaluate pharmacotherapies that ultimately have the potential to improve memory.

  17. Single-Item Memory, Associative Memory, and the Human Hippocampus

    ERIC Educational Resources Information Center

    Squire, Larry R.; Gold, Jeffrey J.; Hopkins, Ramona O.

    2006-01-01

    We tested recognition memory for items and associations in memory-impaired patients with bilateral lesions thought to be limited to the hippocampal region. In Experiment 1 (Combined memory test), participants studied words and then took a memory test in which studied words, new words, studied word pairs, and recombined word pairs were presented in…

  18. Single-Item Memory, Associative Memory, and the Human Hippocampus

    ERIC Educational Resources Information Center

    Squire, Larry R.; Gold, Jeffrey J.; Hopkins, Ramona O.

    2006-01-01

    We tested recognition memory for items and associations in memory-impaired patients with bilateral lesions thought to be limited to the hippocampal region. In Experiment 1 (Combined memory test), participants studied words and then took a memory test in which studied words, new words, studied word pairs, and recombined word pairs were presented in…

  19. Glutamatergic signaling and low prodynorphin expression are associated with intact memory and reduced anxiety in rat models of healthy aging

    PubMed Central

    Ménard, Caroline; Quirion, Rémi; Bouchard, Sylvain; Ferland, Guylaine; Gaudreau, Pierrette

    2014-01-01

    The LOU/C/Jall (LOU) rat strain is considered a model of healthy aging due to its increased longevity, maintenance of stable body weight (BW) throughout life and low incidence of age-related diseases. However, aging LOU rat cognitive and anxiety status has yet to be investigated. In the present study, male and female LOU rat cognitive performances (6–42 months) were assessed using novel object recognition and Morris Water Maze tasks. Recognition memory remained intact in all LOU rats up to 42 months of age. As for spatial memory, old LOU rat performed similarly as young animals for learning acquisition, reversal learning, and retention. While LOU rat BW remained stable despite aging, 20-month-old ad-libitum-fed (OAL) male Sprague Dawley rats become obese. We determined if long-term caloric restriction (LTCR) prevents age-related BW increase and cognitive deficits in this rat strain, as observed in the obesity-resistant LOU rats. Compared to young animals, recognition memory was impaired in OAL but intact in 20-month-old calorie-restricted (OCR) rats. Similarly, OAL spatial learning acquisition was impaired but LTCR prevented the deficits. Exacerbated stress responses may favor age-related cognitive decline. In the elevated plus maze and open field tasks, LOU and OCR rats exhibited high levels of exploratory activity whereas OAL rats displayed anxious behaviors. Expression of prodynorphin (Pdyn), an endogenous peptide involved in stress-related memory impairments, was increased in the hippocampus of OAL rats. Group 1 metabotropic glutamate receptor 5 and immediate early genes Homer 1a and Arc expression, both associated with successful cognitive aging, were unaltered in aging LOU rats but lower in OAL than OCR rats. Altogether, our results, supported by principal component analysis and correlation matrix, suggest that intact memory and low anxiety are associated with glutamatergic signaling and low Pdyn expression in the hippocampus of non-obese aging rats. PMID

  20. Synaptic conditions for auto-associative memory storage and pattern completion in Jensen et al.'s model of hippocampal area CA3.

    PubMed

    Cheu, Eng Yeow; Yu, Jiali; Tan, Chin Hiong; Tang, Huajin

    2012-12-01

    Jensen et al. (Learn Memory 3(2-3):243-256, 1996b) proposed an auto-associative memory model using an integrated short-term memory (STM) and long-term memory (LTM) spiking neural network. Their model requires that distinct pyramidal cells encoding different STM patterns are fired in different high-frequency gamma subcycles within each low-frequency theta oscillation. Auto-associative LTM is formed by modifying the recurrent synaptic efficacy between pyramidal cells. In order to store auto-associative LTM correctly, the recurrent synaptic efficacy must be bounded. The synaptic efficacy must be upper bounded to prevent re-firing of pyramidal cells in subsequent gamma subcycles. If cells encoding one memory item were to re-fire synchronously with other cells encoding another item in subsequent gamma subcycle, LTM stored via modifiable recurrent synapses would be corrupted. The synaptic efficacy must also be lower bounded so that memory pattern completion can be performed correctly. This paper uses the original model by Jensen et al. as the basis to illustrate the following points. Firstly, the importance of coordinated long-term memory (LTM) synaptic modification. Secondly, the use of a generic mathematical formulation (spiking response model) that can theoretically extend the results to other spiking network utilizing threshold-fire spiking neuron model. Thirdly, the interaction of long-term and short-term memory networks that possibly explains the asymmetric distribution of spike density in theta cycle through the merger of STM patterns with interaction of LTM network.

  1. Associative memory through rigid origami

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Brenner, Michael

    2015-03-01

    Mechanisms such as Miura Ori have proven useful in diverse contexts since they have only one degree of freedom that is easily controlled. We combine the theory of rigid origami and associative memory in frustrated neural networks to create structures that can ``learn'' multiple generic folding mechanisms and yet can be robustly controlled. We show that such rigid origami structures can ``recall'' a specific learned mechanism when induced by a physical impulse that only need resemble the desired mechanism (i.e. robust recall through association). Such associative memory in matter, seen before in self-assembly, arises due to a balance between local promiscuity (i.e., many local degrees of freedom) and global frustration which minimizes interference between different learned behaviors. Origami with associative memory can lead to a new class of deployable structures and kinetic architectures with multiple context-dependent behaviors.

  2. Sleep Alterations Following Exposure to Stress Predict Fear-Associated Memory Impairments in a Rodent Model of PTSD

    PubMed Central

    Vanderheyden, William M.; George, Sophie A.; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R.

    2015-01-01

    Sleep abnormalities such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of post-traumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating these sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stress exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops in rats. SPS resulted in acutely increased REM sleep, transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. We also report reductions in theta (4–10 Hz) and sigma (10–15 Hz) band power during transition to REM sleep which also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure. PMID:26019008

  3. Modeling the Kinetics of a Memory-Associated Immediate Early Gene's Compartmental Expression After Sensory Experience

    NASA Astrophysics Data System (ADS)

    Willats, Adam; Ivanova, Tamara; Prinz, Astrid; Liu, Robert

    2015-03-01

    Immediate Early Genes (IEGs) are rapidly and transiently transcribed in neurons after a sensory experience. Some of these genes act as effector IEGs, which mediate specific effects on cellular function. Arc is one such effector IEG that is essential for synaptic plasticity and memory consolidation in hippocampus and cortex. The expression of Arc in neurons has previously been examined using an imaging method known as Compartmental Analysis of Temporal Fluorescent In-Situ Hybridization. Previous work found that the time course of Arc expression within the nuclear and perinuclear cytoplasmic compartments of a neuron is altered by prior sensory experience. We explore a simple model of the kinetics of IEG transcription and nuclear export, with the aim of eventually uncovering possible mechanisms for how experience alters expression kinetics. Thus far, we characterize our compartmental model using phase-plane analysis and validate it against several IEG expression data sets, including one where prior experience with vocalizing mice alters the time course of call-induced Arc expression in the auditory cortex of a listening mouse. Our model provides a framework to explore why Arc expression may change depending on a receiver's past sound experience and internal state. Adam Willats was supported by NIH Training Grant 5T90DA032466. This research was also supported by NIDCD R01 DC8343.

  4. Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer’s disease

    PubMed Central

    Ardiles, Álvaro O.; Tapia-Rojas, Cheril C.; Mandal, Madhuchhanda; Alexandre, Frédéric; Kirkwood, Alfredo; Inestrosa, Nibaldo C.; Palacios, Adrian G.

    2012-01-01

    Alzheimer’s disease (AD) is an age-related neurodegenerative disorder associated with progressive memory loss, severe dementia, and hallmark neuropathological markers, such as deposition of amyloid-β (Aβ) peptides in senile plaques and accumulation of hyperphosphorylated tau proteins in neurofibrillary tangles. Recent evidence obtained from transgenic mouse models suggests that soluble, nonfibrillar Aβ oligomers may induce synaptic failure early in AD. Despite their undoubted value, these transgenic models rely on genetic manipulations that represent the inherited and familial, but not the most abundant, sporadic form of AD. A nontransgenic animal model that still develops hallmarks of AD would be an important step toward understanding how sporadic AD is initiated. Here we show that starting between 12 and 36 mo of age, the rodent Octodon degus naturally develops neuropathological signs of AD, such as accumulation of Aβ oligomers and phosphorylated tau proteins. Moreover, age-related changes in Aβ oligomers and tau phosphorylation levels are correlated with decreases in spatial and object recognition memory, postsynaptic function, and synaptic plasticity. These findings validate O. degus as a suitable natural model for studying how sporadic AD may be initiated. PMID:22869717

  5. Associative memory in networks of spiking neurons.

    PubMed

    Sommer, F T; Wennekers, T

    2001-01-01

    Here, we develop and investigate a computational model of a network of cortical neurons on the base of biophysically well constrained and tested two-compartmental neurons developed by Pinsky and Rinzel [Pinsky, P. F., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. Journal of Computational Neuroscience, 1, 39-60]. To study associative memory, we connect a pool of cells by a structured connectivity matrix. The connection weights are shaped by simple Hebbian coincidence learning using a set of spatially sparse patterns. We study the neuronal activity processes following an external stimulation of a stored memory. In two series of simulation experiments, we explore the effect of different classes of external input, tonic and flashed stimulation. With tonic stimulation, the addressed memory is an attractor of the network dynamics. The memory is displayed rhythmically, coded by phase-locked bursts or regular spikes. The participating neurons have rhythmic activity in the gamma-frequency range (30-80 Hz). If the input is switched from one memory to another, the network activity can follow this change within one or two gamma cycles. Unlike similar models in the literature, we studied the range of high memory capacity (in the order of 0.1 bit/synapse), comparable to optimally tuned formal associative networks. We explored the robustness of efficient retrieval varying the memory load, the excitation/inhibition parameters, and background activity. A stimulation pulse applied to the identical simulation network can push away ongoing network activity and trigger a phase-locked association event within one gamma period. Unlike as under tonic stimulation, the memories are not attractors. After one association process, the network activity moves to other states. Applying in close succession pulses addressing different memories, one can switch through the space of memory patterns. The readout speed can be increased up to the

  6. Negative Affect Impairs Associative Memory but Not Item Memory

    ERIC Educational Resources Information Center

    Bisby, James A.; Burgess, Neil

    2014-01-01

    The formation of associations between items and their context has been proposed to rely on mechanisms distinct from those supporting memory for a single item. Although emotional experiences can profoundly affect memory, our understanding of how it interacts with different aspects of memory remains unclear. We performed three experiments to examine…

  7. Negative Affect Impairs Associative Memory but Not Item Memory

    ERIC Educational Resources Information Center

    Bisby, James A.; Burgess, Neil

    2014-01-01

    The formation of associations between items and their context has been proposed to rely on mechanisms distinct from those supporting memory for a single item. Although emotional experiences can profoundly affect memory, our understanding of how it interacts with different aspects of memory remains unclear. We performed three experiments to examine…

  8. Associative Memories for Supercomputers

    DTIC Science & Technology

    1992-12-01

    algorithms such as the Hopfield network and its variants suffer several disadvantages when compared to parallel inner-product methods [ 13,14]. The critical...the Hopfield neural network as a nearest neighbour algorithm" Appl. Opt. 25, pp3759-3766, October 1986. 14. E. B. Baum, J. Moody, F. Wilczek...design 2 model of operation: 1. Preset threshold : All images that satisfy threshold are retrieved in one rotation 2. Best match : detect smallest

  9. Two Unipolar Terminal-Attractor-Based Associative Memories

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Wu, Chwan-Hwa

    1995-01-01

    Two unipolar mathematical models of electronic neural network functioning as terminal-attractor-based associative memory (TABAM) developed. Models comprise sets of equations describing interactions between time-varying inputs and outputs of neural-network memory, regarded as dynamical system. Simplifies design and operation of optoelectronic processor to implement TABAM performing associative recall of images. TABAM concept described in "Optoelectronic Terminal-Attractor-Based Associative Memory" (NPO-18790). Experimental optoelectronic apparatus that performed associative recall of binary images described in "Optoelectronic Inner-Product Neural Associative Memory" (NPO-18491).

  10. Trial-by-Trial Modulation of Associative Memory Formation by Reward Prediction Error and Reward Anticipation as Revealed by a Biologically Plausible Computational Model.

    PubMed

    Aberg, Kristoffer C; Müller, Julia; Schwartz, Sophie

    2017-01-01

    Anticipation and delivery of rewards improves memory formation, but little effort has been made to disentangle their respective contributions to memory enhancement. Moreover, it has been suggested that the effects of reward on memory are mediated by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory improvements to actual reward computations reflected in the activity of the dopaminergic system, i.e., prediction errors and expected values, is scarce and inconclusive. For example, different previous studies reported that the magnitude of prediction errors during a reinforcement learning task was a positive, negative, or non-significant predictor of successfully encoding simultaneously presented images. Individual sensitivities to reward and punishment have been found to influence the activation of the dopaminergic reward system and could therefore help explain these seemingly discrepant results. Here, we used a novel associative memory task combined with computational modeling and showed independent effects of reward-delivery and reward-anticipation on memory. Strikingly, the computational approach revealed positive influences from both reward delivery, as mediated by prediction error magnitude, and reward anticipation, as mediated by magnitude of expected value, even in the absence of behavioral effects when analyzed using standard methods, i.e., by collapsing memory performance across trials within conditions. We additionally measured trait estimates of reward and punishment sensitivity and found that individuals with increased reward (vs. punishment) sensitivity had better memory for associations encoded during positive (vs. negative) prediction errors when tested after 20 min, but a negative trend when tested after 24 h. In conclusion, modeling trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors and expected value computations, provides a comprehensive and biologically plausible description of

  11. Trial-by-Trial Modulation of Associative Memory Formation by Reward Prediction Error and Reward Anticipation as Revealed by a Biologically Plausible Computational Model

    PubMed Central

    Aberg, Kristoffer C.; Müller, Julia; Schwartz, Sophie

    2017-01-01

    Anticipation and delivery of rewards improves memory formation, but little effort has been made to disentangle their respective contributions to memory enhancement. Moreover, it has been suggested that the effects of reward on memory are mediated by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory improvements to actual reward computations reflected in the activity of the dopaminergic system, i.e., prediction errors and expected values, is scarce and inconclusive. For example, different previous studies reported that the magnitude of prediction errors during a reinforcement learning task was a positive, negative, or non-significant predictor of successfully encoding simultaneously presented images. Individual sensitivities to reward and punishment have been found to influence the activation of the dopaminergic reward system and could therefore help explain these seemingly discrepant results. Here, we used a novel associative memory task combined with computational modeling and showed independent effects of reward-delivery and reward-anticipation on memory. Strikingly, the computational approach revealed positive influences from both reward delivery, as mediated by prediction error magnitude, and reward anticipation, as mediated by magnitude of expected value, even in the absence of behavioral effects when analyzed using standard methods, i.e., by collapsing memory performance across trials within conditions. We additionally measured trait estimates of reward and punishment sensitivity and found that individuals with increased reward (vs. punishment) sensitivity had better memory for associations encoded during positive (vs. negative) prediction errors when tested after 20 min, but a negative trend when tested after 24 h. In conclusion, modeling trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors and expected value computations, provides a comprehensive and biologically plausible description of

  12. On Modeling of the Biological Memory Associative Properties by the Volume Superimposed Holograms Technique

    NASA Astrophysics Data System (ADS)

    Orlov, V. V.; Pavlov, A. V.

    2015-01-01

    We consider two phenomena that are typical of the volume superimposed holograms, namely, the formation of the dielectric-permittivity structures corresponding to interference of the reference waves, which did not interfere in reality, due to the nonlinearity of the medium, and double diffraction of the waves in the hologram volume. It is shown that when the holograms are recovered, these mechanisms form associations between the waves which are not linked explicitly by virtue of the different-time record of individual holograms. The strengths of the associative links are proportional to the scalar product of the signal images. A neural network model that allows for the described mechanisms as related to recording of the volume superimposed holograms using the Fourier holography scheme with plane off-axis reference beams is proposed.

  13. Molecular associative memory built on DNA

    NASA Astrophysics Data System (ADS)

    Nowak, Robert M.; Mulawka, Jan J.; Pucienniczak, Andrzej

    2006-03-01

    This paper describes an associative memory based on DNA strands practically build in laboratory. The method for suppressing DNA fragment amplification during polymerase chain reaction (PCR) was used. Such memory exhibits a number of advantages over Baum's associative molecular memory as well as traditional electronic implementations.

  14. Audiovisual integration supports face-name associative memory formation.

    PubMed

    Lee, Hweeling; Stirnberg, Rüdiger; Stöcker, Tony; Axmacher, Nikolai

    2017-10-01

    Prior multisensory experience influences how we perceive our environment, and hence how memories are encoded for subsequent retrieval. This study investigated if audiovisual (AV) integration and associative memory formation rely on overlapping or distinct processes. Our functional magnetic resonance imaging results demonstrate that the neural mechanisms underlying AV integration and associative memory overlap substantially. In particular, activity in anterior superior temporal sulcus (STS) is increased during AV integration and also determines the success of novel AV face-name association formation. Dynamic causal modeling results further demonstrate how the anterior STS interacts with the associative memory system to facilitate successful memory formation for AV face-name associations. Specifically, the connection of fusiform gyrus to anterior STS is enhanced while the reverse connection is reduced when participants subsequently remembered both face and name. Collectively, our results demonstrate how multisensory associative memories can be formed for subsequent retrieval.

  15. Modeling the Cray memory scheduler

    SciTech Connect

    Wickham, K.L.; Litteer, G.L.

    1992-04-01

    This report documents the results of a project to evaluate low cost modeling and simulation tools when applied to modeling the Cray memory scheduler. The specific tool used is described and the basics of the memory scheduler are covered. Results of simulations using the model are discussed and a favorable recommendation is made to make more use of this inexpensive technology.

  16. Modeling the Cray memory scheduler

    SciTech Connect

    Wickham, K.L.; Litteer, G.L.

    1992-04-01

    This report documents the results of a project to evaluate low cost modeling and simulation tools when applied to modeling the Cray memory scheduler. The specific tool used is described and the basics of the memory scheduler are covered. Results of simulations using the model are discussed and a favorable recommendation is made to make more use of this inexpensive technology.

  17. Sparse distributed memory and related models

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1992-01-01

    Described here is sparse distributed memory (SDM) as a neural-net associative memory. It is characterized by two weight matrices and by a large internal dimension - the number of hidden units is much larger than the number of input or output units. The first matrix, A, is fixed and possibly random, and the second matrix, C, is modifiable. The SDM is compared and contrasted to (1) computer memory, (2) correlation-matrix memory, (3) feet-forward artificial neural network, (4) cortex of the cerebellum, (5) Marr and Albus models of the cerebellum, and (6) Albus' cerebellar model arithmetic computer (CMAC). Several variations of the basic SDM design are discussed: the selected-coordinate and hyperplane designs of Jaeckel, the pseudorandom associative neural memory of Hassoun, and SDM with real-valued input variables by Prager and Fallside. SDM research conducted mainly at the Research Institute for Advanced Computer Science (RIACS) in 1986-1991 is highlighted.

  18. Associative memory cells: Formation, function and perspective

    PubMed Central

    Wang, Jin-Hui; Cui, Shan

    2017-01-01

    Associative learning and memory are common activities in life, and their cellular infrastructures constitute the basis of cognitive processes. Although neuronal plasticity emerges after memory formation, basic units and their working principles for the storage and retrieval of associated signals remain to be revealed. Current reports indicate that associative memory cells, through their mutual synapse innervations among the co-activated sensory cortices, are recruited to fulfill the integration, storage and retrieval of multiple associated signals, and serve associative thinking and logical reasoning. In this review, we aim to summarize associative memory cells in their formation, features and functional impacts. PMID:28408978

  19. Linking Associative and Serial List Memory: Pairs Versus Triples

    ERIC Educational Resources Information Center

    Caplan, Jeremy B.; Glaholt, Mackenzie G.; McIntosh, Anthony R.

    2006-01-01

    Paired associates and serial list memory are typically investigated separately. An "isolation principle" (J. B. Caplan, 2005) was proposed to explain behavior in both paradigms by using a single model, in which serial list and paired associates memory differ only in how isolated pairs of items are from interference from other studied items. In…

  20. Total recall in distributive associative memories

    NASA Technical Reports Server (NTRS)

    Danforth, Douglas G.

    1991-01-01

    Iterative error correction of asymptotically large associative memories is equivalent to a one-step learning rule. This rule is the inverse of the activation function of the memory. Spectral representations of nonlinear activation functions are used to obtain the inverse in closed form for Sparse Distributed Memory, Selected-Coordinate Design, and Radial Basis Functions.

  1. Programming Robots with Associative Memories

    SciTech Connect

    Touzet, C

    1999-07-10

    Today, there are several drawbacks that impede the necessary and much needed use of robot learning techniques in real applications. First, the time needed to achieve the synthesis of any behavior is prohibitive. Second, the robot behavior during the learning phase is "by definition" bad, it may even be dangerous. Third, except within the lazy learning approach, a new behavior implies a new learning phase. We propose in this paper to use self-organizing maps to encode the non explicit model of the robot-world interaction sampled by the lazy memory, and then generate a robot behavior by means of situations to be achieved, i.e., points on the self-organizing maps. Any behavior can instantaneously be synthesized by the definition of a goal situation. Its performance will be minimal (not evidently bad) and will improve by the mere repetition of the behavior.

  2. Robert Hooke's model of memory.

    PubMed

    Hintzman, Douglas L

    2003-03-01

    In 1682 the scientist and inventor Robert Hooke read a lecture to the Royal Society of London, in which he described a mechanistic model of human memory. Yet few psychologists today seem to have heard of Hooke's memory model. The lecture addressed questions of encoding, memory capacity, repetition, retrieval, and forgetting--some of these in a surprisingly modern way. Hooke's model shares several characteristics with the theory of Richard Semon, which came more than 200 years later, but it is more complete. Among the model's interesting properties are that (1) it allows for attention and other top-down influences on encoding; (2) it uses resonance to implement parallel, cue-dependent retrieval; (3) it explains memory for recency; (4) it offers a single-system account of repetition priming; and (5) the power law of forgetting can be derived from the model's assumptions in a straightforward way.

  3. Learned Interval Time Facilitates Associate Memory Retrieval

    ERIC Educational Resources Information Center

    van de Ven, Vincent; Kochs, Sarah; Smulders, Fren; De Weerd, Peter

    2017-01-01

    The extent to which time is represented in memory remains underinvestigated. We designed a time paired associate task (TPAT) in which participants implicitly learned cue-time-target associations between cue-target pairs and specific cue-target intervals. During subsequent memory testing, participants showed increased accuracy of identifying…

  4. Learned interval time facilitates associate memory retrieval

    PubMed Central

    van de Ven, Vincent; Kochs, Sarah; Smulders, Fren; De Weerd, Peter

    2017-01-01

    The extent to which time is represented in memory remains underinvestigated. We designed a time paired associate task (TPAT) in which participants implicitly learned cue–time–target associations between cue–target pairs and specific cue–target intervals. During subsequent memory testing, participants showed increased accuracy of identifying matching cue–target pairs if the time interval during testing matched the implicitly learned interval. A control experiment showed that participants had no explicit knowledge about the cue–time associations. We suggest that “elapsed time” can act as a temporal mnemonic associate that can facilitate retrieval of events associated in memory. PMID:28298554

  5. The optical implementation of inner product neural associative memory

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1990-01-01

    A liquid-crystal TV spatial light modulator (LCTV SLM) input device and LCTV nonlinear thresholding element are presently used to accomplish an all-optical implementation of an inner-product neural associative memory. This architecture represents an alternative to the vector-matrix multiplication method of the Hopfield model, which is most often employed by neural network associative memory models. LCTV SLM experimental results are presented and discussed.

  6. Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference.

    PubMed

    Ellenbogen, Jeffrey M; Hulbert, Justin C; Stickgold, Robert; Dinges, David F; Thompson-Schill, Sharon L

    2006-07-11

    Mounting behavioral evidence in humans supports the claim that sleep leads to improvements in recently acquired, nondeclarative memories. Examples include motor-sequence learning; visual-discrimination learning; and perceptual learning of a synthetic language. In contrast, there are limited human data supporting a benefit of sleep for declarative (hippocampus-mediated) memory in humans (for review, see). This is particularly surprising given that animal models (e.g.,) and neuroimaging studies (e.g.,) predict that sleep facilitates hippocampus-based memory consolidation. We hypothesized that we could unmask the benefits of sleep by challenging the declarative memory system with competing information (interference). This is the first study to demonstrate that sleep protects declarative memories from subsequent associative interference, and it has important implications for understanding the neurobiology of memory consolidation.

  7. Optoelectronic Inner-Product Neural Associative Memory

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1993-01-01

    Optoelectronic apparatus acts as artificial neural network performing associative recall of binary images. Recall process is iterative one involving optical computation of inner products between binary input vector and one or more reference binary vectors in memory. Inner-product method requires far less memory space than matrix-vector method.

  8. Plant memory: a tentative model.

    PubMed

    Thellier, M; Lüttge, U

    2013-01-01

    All memory functions have molecular bases, namely in signal reception and transduction, and in storage and recall of information. Thus, at all levels of organisation living organisms have some kind of memory. In plants one may distinguish two types. There are linear pathways from reception of signals and propagation of effectors to a type of memory that may be described by terms such as learning, habituation or priming. There is a storage and recall memory based on a complex network of elements with a high degree of integration and feedback. The most important elements envisaged are calcium waves, epigenetic modifications of DNA and histones, and regulation of timing via a biological clock. Experiments are described that document the occurrence of the two sorts of memory and which show how they can be distinguished. A schematic model of plant memory is derived as emergent from integration of the various modules. Possessing the two forms of memory supports the fitness of plants in response to environmental stimuli and stress.

  9. Spatially Extended Memory Models of Cardiac Tissue

    NASA Astrophysics Data System (ADS)

    Fox, Jeffrey; Riccio, Mark; Hua, Fei; Bodenschatz, Eberhard; Gilmour, Robert

    2002-03-01

    Beat-to-beat alternation of cardiac electrical properties (alternans) commonly occurs during rapid periodic pacing. Although alternans is generally associated with a resititution curve with slope >=1, recent studies by Gauthier and co-workers reported the absence of alternans in frog heart tissue with a restitution curve of slope >=1. These experimental findings were understood in terms of a memory model in which the duration D of an action potential depends on the preceding rest interval I as well as a memory variable M that accumulates during D and dissipates during I. We study the spatiotemporal dynamics of a spatially extended 1-d fiber using an ionic model that exhibits memory effects. We find that while a single cell can have a restitution slope >=1 and not show alternans (because of memory), the spatially extended system exhibits alternans. To understand the dynamical mechanism of this behavior, we study a coupled maps memory model both numerically and analytically. These results illustrate that spatial effects and memory effects can play a significant role in determining the dynamics of wave propagation in cardiac tissue.

  10. The capacity of the Hopfield associative memory

    NASA Technical Reports Server (NTRS)

    Mceliece, Robert J.; Posner, Edward C.; Rodemich, Eugene R.; Venkatesh, Santosh S.

    1987-01-01

    Techniques from coding theory are applied to study rigorously the capacity of the Hopfield associative memory. Such a memory stores n-tuple of + or - 1s. The components change depending on a hard-limited version of linear functions of all other components. With symmetric connections between components, a stable state is ultimately reached. By building up the connection matrix as a sum-of-outer products of m fundamental memories, it may be possible to recover a certain one of the m memories by using an initial n-tuple probe vector less than a Hamming distance n/2 away from the fundamental memory. If m fundamental memories are chosen at random, the maximum asymptotic value of m in order that most of the m original memories are exactly recoverable is n/(2 log n). With the added restriction that every one of the m fundamental memories be recoverable exactly, m can be no more than n/(4 log n) asymptotically as n approaches infinity. Extensions are also considered, in particular to capacity under quantization of the outer-product connection matrix. This quantized memory-capacity problem is closely related to the capacity of the quantized Gaussian channel.

  11. A Temporal Ratio Model of Memory

    ERIC Educational Resources Information Center

    Brown, Gordon D. A.; Neath, Ian; Chater, Nick

    2007-01-01

    A model of memory retrieval is described. The model embodies four main claims: (a) temporal memory--traces of items are represented in memory partly in terms of their temporal distance from the present; (b) scale-similarity--similar mechanisms govern retrieval from memory over many different timescales; (c) local distinctiveness--performance on a…

  12. A Temporal Ratio Model of Memory

    ERIC Educational Resources Information Center

    Brown, Gordon D. A.; Neath, Ian; Chater, Nick

    2007-01-01

    A model of memory retrieval is described. The model embodies four main claims: (a) temporal memory--traces of items are represented in memory partly in terms of their temporal distance from the present; (b) scale-similarity--similar mechanisms govern retrieval from memory over many different timescales; (c) local distinctiveness--performance on a…

  13. Target-specific vulnerability of excitatory synapses leads to deficits in associative memory in a model of intellectual disorder.

    PubMed

    Houbaert, Xander; Zhang, Chun-Lei; Gambino, Frédéric; Lepleux, Marilyn; Deshors, Melissa; Normand, Elisabeth; Levet, Florian; Ramos, Mariana; Billuart, Pierre; Chelly, Jamel; Herzog, Etienne; Humeau, Yann

    2013-08-21

    Intellectual disorders (IDs) have been regularly associated with morphological and functional deficits at glutamatergic synapses in both humans and rodents. How these synaptic deficits may lead to the variety of learning and memory deficits defining ID is still unknown. Here we studied the functional and behavioral consequences of the ID gene il1rapl1 deficiency in mice and reported that il1rapl1 constitutive deletion alters cued fear memory formation. Combined in vivo and in vitro approaches allowed us to unveil a causal relationship between a marked inhibitory/excitatory (I/E) imbalance in dedicated amygdala neuronal subcircuits and behavioral deficits. Cell-targeted recordings further demonstrated a morpho-functional impact of the mutation at thalamic projections contacting principal cells, whereas the same afferents on interneurons are unaffected by the lack of Il1rapl1. We thus propose that excitatory synapses have a heterogeneous vulnerability to il1rapl1 gene constitutive mutation and that alteration of a subset of excitatory synapses in neuronal circuits is sufficient to generate permanent cognitive deficits.

  14. A model for visual memory encoding.

    PubMed

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  15. Optoelectronic Terminal-Attractor-Based Associative Memory

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Barhen, Jacob; Farhat, Nabil H.

    1994-01-01

    Report presents theoretical and experimental study of optically and electronically addressable optical implementation of artificial neural network that performs associative recall. Shows by computer simulation that terminal-attractor-based associative memory can have perfect convergence in associative retrieval and increased storage capacity. Spurious states reduced by exploiting terminal attractors.

  16. Optoelectronic Terminal-Attractor-Based Associative Memory

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Barhen, Jacob; Farhat, Nabil H.

    1994-01-01

    Report presents theoretical and experimental study of optically and electronically addressable optical implementation of artificial neural network that performs associative recall. Shows by computer simulation that terminal-attractor-based associative memory can have perfect convergence in associative retrieval and increased storage capacity. Spurious states reduced by exploiting terminal attractors.

  17. Linking Microcircuit Dysfunction to Cognitive Impairment: Effects of Disinhibition Associated with Schizophrenia in a Cortical Working Memory Model

    PubMed Central

    Murray, John D.; Anticevic, Alan; Gancsos, Mark; Ichinose, Megan; Corlett, Philip R.; Krystal, John H.; Wang, Xiao-Jing

    2014-01-01

    Excitation–inhibition balance (E/I balance) is a fundamental property of cortical microcircuitry. Disruption of E/I balance in prefrontal cortex is hypothesized to underlie cognitive deficits observed in neuropsychiatric illnesses such as schizophrenia. To elucidate the link between these phenomena, we incorporated synaptic disinhibition, via N-methyl-D-aspartate receptor perturbation on interneurons, into a network model of spatial working memory (WM). At the neural level, disinhibition broadens the tuning of WM-related, stimulus-selective persistent activity patterns. The model predicts that this change at the neural level leads to 2 primary behavioral deficits: 1) increased behavioral variability that degrades the precision of stored information and 2) decreased ability to filter out distractors during WM maintenance. We specifically tested the main model prediction, broadened WM representation under disinhibition, using behavioral data from human subjects performing a spatial WM task combined with ketamine infusion, a pharmacological model of schizophrenia hypothesized to induce disinhibition. Ketamine increased errors in a pattern predicted by the model. Finally, as proof-of-principle, we demonstrate that WM deteriorations in the model can be ameliorated by compensations that restore E/I balance. Our findings identify specific ways by which cortical disinhibition affects WM, suggesting new experimental designs for probing the brain mechanisms of WM deficits in schizophrenia. PMID:23203979

  18. Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model.

    PubMed

    Murray, John D; Anticevic, Alan; Gancsos, Mark; Ichinose, Megan; Corlett, Philip R; Krystal, John H; Wang, Xiao-Jing

    2014-04-01

    Excitation-inhibition balance (E/I balance) is a fundamental property of cortical microcircuitry. Disruption of E/I balance in prefrontal cortex is hypothesized to underlie cognitive deficits observed in neuropsychiatric illnesses such as schizophrenia. To elucidate the link between these phenomena, we incorporated synaptic disinhibition, via N-methyl-D-aspartate receptor perturbation on interneurons, into a network model of spatial working memory (WM). At the neural level, disinhibition broadens the tuning of WM-related, stimulus-selective persistent activity patterns. The model predicts that this change at the neural level leads to 2 primary behavioral deficits: 1) increased behavioral variability that degrades the precision of stored information and 2) decreased ability to filter out distractors during WM maintenance. We specifically tested the main model prediction, broadened WM representation under disinhibition, using behavioral data from human subjects performing a spatial WM task combined with ketamine infusion, a pharmacological model of schizophrenia hypothesized to induce disinhibition. Ketamine increased errors in a pattern predicted by the model. Finally, as proof-of-principle, we demonstrate that WM deteriorations in the model can be ameliorated by compensations that restore E/I balance. Our findings identify specific ways by which cortical disinhibition affects WM, suggesting new experimental designs for probing the brain mechanisms of WM deficits in schizophrenia.

  19. Island cells control temporal association memory.

    PubMed

    Kitamura, Takashi; Pignatelli, Michele; Suh, Junghyup; Kohara, Keigo; Yoshiki, Atsushi; Abe, Kuniya; Tonegawa, Susumu

    2014-02-21

    Episodic memory requires associations of temporally discontiguous events. In the entorhinal-hippocampal network, temporal associations are driven by a direct pathway from layer III of the medial entorhinal cortex (MECIII) to the hippocampal CA1 region. However, the identification of neural circuits that regulate this association has remained unknown. In layer II of entorhinal cortex (ECII), we report clusters of excitatory neurons called island cells, which appear in a curvilinear matrix of bulblike structures, directly project to CA1, and activate interneurons that target the distal dendrites of CA1 pyramidal neurons. Island cells suppress the excitatory MECIII input through the feed-forward inhibition to control the strength and duration of temporal association in trace fear memory. Together, the two EC inputs compose a control circuit for temporal association memory.

  20. Longitudinal Associations of Subjective Memory with Memory Performance and Depressive Symptoms: Between-Person and Within-Person Perspectives

    PubMed Central

    Hülür, Gizem; Hertzog, Christopher; Pearman, Ann; Ram, Nilam; Gerstorf, Denis

    2015-01-01

    Clinical diagnostic criteria for memory loss in adults typically assume that subjective memory ratings accurately reflect compromised memory functioning. Research has documented small positive between-person associations between subjective memory and memory performance in older adults. Less is known, however, about whether within-person fluctuations in subjective memory covary with within-person variance in memory performance and depressive symptoms. The present study applied multilevel models of change to nine waves of data from 27,395 participants of the Health and Retirement Study (HRS; mean age at baseline = 63.78; SD = 10.30; 58% women) to examine whether subjective memory is associated with both between-person differences and within-person variability in memory performance and depressive symptoms and explored the moderating role of known correlates (age, gender, education, and functional limitations). Results revealed that across persons, level of subjective memory indeed covaried with level of memory performance and depressive symptoms, with small-to-moderate between-person standardized effect sizes (0.19 for memory performance and 0.21 for depressive symptoms). Within individuals, occasions when participants scored higher than usual on a test of episodic memory or reported fewer-than-average depressive symptoms generated above-average subjective memory. At the within-person level, subjective memory ratings became more sensitive to within-person alterations in memory performance over time and those suffering from functional limitations were more sensitive to within-person alterations in memory performance and depressive symptoms. We take our results to suggest that within-person changes in subjective memory in part reflect monitoring flux in one’s own memory functioning, but are also influenced by flux in depressive symptoms. PMID:25244464

  1. Longitudinal associations of subjective memory with memory performance and depressive symptoms: between-person and within-person perspectives.

    PubMed

    Hülür, Gizem; Hertzog, Christopher; Pearman, Ann; Ram, Nilam; Gerstorf, Denis

    2014-12-01

    Clinical diagnostic criteria for memory loss in adults typically assume that subjective memory ratings accurately reflect compromised memory functioning. Research has documented small positive between-person associations between subjective memory and memory performance in older adults. Less is known, however, about whether within-person fluctuations in subjective memory covary with within-person variance in memory performance and depressive symptoms. The present study applied multilevel models of change to 9 waves of data from 27,395 participants of the Health and Retirement Study (HRS; mean age at baseline = 63.78; SD = 10.30; 58% women) to examine whether subjective memory is associated with both between-person differences and within-person variability in memory performance and depressive symptoms and explored the moderating role of known correlates (age, gender, education, and functional limitations). Results revealed that across persons, level of subjective memory indeed covaried with level of memory performance and depressive symptoms, with small-to-moderate between-person standardized effect sizes (0.19 for memory performance and -0.21 for depressive symptoms). Within individuals, occasions when participants scored higher than usual on a test of episodic memory or reported fewer-than-average depressive symptoms generated above-average subjective memory. At the within-person level, subjective memory ratings became more sensitive to within-person alterations in memory performance over time and those suffering from functional limitations were more sensitive to within-person alterations in memory performance and depressive symptoms. We take our results to suggest that within-person changes in subjective memory in part reflect monitoring flux in one's own memory functioning, but are also influenced by flux in depressive symptoms.

  2. Associative Memory Biological and Mathematical Aspects.

    DTIC Science & Technology

    1987-12-29

    was unable to store new information in long term memory. Yet previous long term memory (stored prior to the surgery) remained intact [II]. Thus...theories, IWO describing the hippocampus as a source encoder necessary for long term storage received i credibility. ""𔃽 ."-’ 9...W-0199 15 ASSOCIATIVE MEORY BIOLOGICAL AND MTHEATICL ASPECTS 1/1(U) MASSACHUSETTS INST F TECH LEXINGTON LINCOLN LAB "EGGERS 29 DEC 8? TR-799 ESO-TR

  3. Optical implementation of terminal-attractor-based associative memory

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Barhen, Jacob; Farhat, Nabil H.

    1992-01-01

    For the purpose of reducing the spurious states in a Hopfield neural net for associative memory, we invoke terminal attractors. In achieving the optical implementation of the terminal-attractor-based associative memory (TABAM) as described in this paper, we first prove the existence of the terminal-attractor model with binary neuron representation. We then present several one- and two-dimensional optical architectures for the TABAM. Finally, as an example, we experimentally demonstrate an inner-product optical neural model using liquid-crystal spatial light modulators with engineering approximations and discuss how to apply the inner-product model to build a two-dimensional parallel processing TABAM.

  4. The OpenMP Memory Model

    SciTech Connect

    Hoeflinger, J P; de Supinski, B R

    2005-06-01

    The memory model of OpenMP has been widely misunderstood since the first OpenMP specification was published in 1997 (Fortran 1.0). The proposed OpenMP specification (version 2.5) includes a memory model section to address this issue. This section unifies and clarifies the text about the use of memory in all previous specifications, and relates the model to well-known memory consistency semantics. In this paper, we discuss the memory model and show its implications for future distributed shared memory implementations of OpenMP.

  5. Sequential associative memory with nonuniformity of the layer sizes

    SciTech Connect

    Teramae, Jun-nosuke; Fukai, Tomoki

    2007-01-15

    Sequence retrieval has a fundamental importance in information processing by the brain, and has extensively been studied in neural network models. Most of the previous sequential associative memory embedded sequences of memory patterns have nearly equal sizes. It was recently shown that local cortical networks display many diverse yet repeatable precise temporal sequences of neuronal activities, termed ''neuronal avalanches.'' Interestingly, these avalanches displayed size and lifetime distributions that obey power laws. Inspired by these experimental findings, here we consider an associative memory model of binary neurons that stores sequences of memory patterns with highly variable sizes. Our analysis includes the case where the statistics of these size variations obey the above-mentioned power laws. We study the retrieval dynamics of such memory systems by analytically deriving the equations that govern the time evolution of macroscopic order parameters. We calculate the critical sequence length beyond which the network cannot retrieve memory sequences correctly. As an application of the analysis, we show how the present variability in sequential memory patterns degrades the power-law lifetime distribution of retrieved neural activities.

  6. Close Associations and Memory in Brainwriting Groups

    ERIC Educational Resources Information Center

    Coskun, Hamit

    2011-01-01

    The present experiment examined whether or not the type of associations (close (e.g. apple-pear) and distant (e.g. apple-fish) word associations) and memory instruction (paying attention to the ideas of others) had effects on the idea generation performances in the brainwriting paradigm in which all participants shared their ideas by using paper…

  7. Close Associations and Memory in Brainwriting Groups

    ERIC Educational Resources Information Center

    Coskun, Hamit

    2011-01-01

    The present experiment examined whether or not the type of associations (close (e.g. apple-pear) and distant (e.g. apple-fish) word associations) and memory instruction (paying attention to the ideas of others) had effects on the idea generation performances in the brainwriting paradigm in which all participants shared their ideas by using paper…

  8. Effects of Aging and IQ on Item and Associative Memory

    ERIC Educational Resources Information Center

    Ratcliff, Roger; Thapar, Anjali; McKoon, Gail

    2011-01-01

    The effects of aging and IQ on performance were examined in 4 memory tasks: item recognition, associative recognition, cued recall, and free recall. For item and associative recognition, accuracy and the response time (RT) distributions for correct and error responses were explained by Ratcliff's (1978) diffusion model at the level of individual…

  9. Effects of Aging and IQ on Item and Associative Memory

    ERIC Educational Resources Information Center

    Ratcliff, Roger; Thapar, Anjali; McKoon, Gail

    2011-01-01

    The effects of aging and IQ on performance were examined in 4 memory tasks: item recognition, associative recognition, cued recall, and free recall. For item and associative recognition, accuracy and the response time (RT) distributions for correct and error responses were explained by Ratcliff's (1978) diffusion model at the level of individual…

  10. A Memory-Based Model of Hick's Law

    ERIC Educational Resources Information Center

    Schneider, Darryl W.; Anderson, John R.

    2011-01-01

    We propose and evaluate a memory-based model of Hick's law, the approximately linear increase in choice reaction time with the logarithm of set size (the number of stimulus-response alternatives). According to the model, Hick's law reflects a combination of associative interference during retrieval from declarative memory and occasional savings…

  11. A Memory-Based Model of Hick's Law

    ERIC Educational Resources Information Center

    Schneider, Darryl W.; Anderson, John R.

    2011-01-01

    We propose and evaluate a memory-based model of Hick's law, the approximately linear increase in choice reaction time with the logarithm of set size (the number of stimulus-response alternatives). According to the model, Hick's law reflects a combination of associative interference during retrieval from declarative memory and occasional savings…

  12. Attempting to model dissociations of memory.

    PubMed

    Reber, Paul J.

    2002-05-01

    Kinder and Shanks report simulations aimed at describing a single-system model of the dissociation between declarative and non-declarative memory. This model attempts to capture both Artificial Grammar Learning (AGL) and recognition memory with a single underlying representation. However, the model fails to reflect an essential feature of recognition memory - that it occurs after a single exposure - and the simulations may instead describe a potentially interesting property of over-training non-declarative memory.

  13. Finite Memory Model for Haptic Recognition

    DTIC Science & Technology

    1991-12-01

    Slot 4 bu f fer s hort- term storel Slot N Long- ’erm store The model of memory proposed by Atkinson and Shiffrin . Primary memory here is as rehearsal...7 NAVAL POSTGRADUATE SCHOOL Monterey, Califormia AD-A245 342 THESIS Finite Memory Model for Haptic Recognition by Philip G. Beieri December 1991...ELEMEN1 No.) NO. No. ACCESSION NO. I1. TITLE (include Securitn Classification) FINITE MEMORY MODEL FOR HAPTIC RECOGNITION’ 12. PERSONALEAUTHOR(S) Philip

  14. Associative memory - An optimum binary neuron representation

    NASA Technical Reports Server (NTRS)

    Awwal, A. A.; Karim, M. A.; Liu, H. K.

    1989-01-01

    Convergence mechanism of vectors in the Hopfield's neural network is studied in terms of both weights (i.e., inner products) and Hamming distance. It is shown that Hamming distance should not always be used in determining the convergence of vectors. Instead, weights (which in turn depend on the neuron representation) are found to play a more dominant role in the convergence mechanism. Consequently, a new binary neuron representation for associative memory is proposed. With the new neuron representation, the associative memory responds unambiguously to the partial input in retrieving the stored information.

  15. Sources of interference in item and associative recognition memory.

    PubMed

    Osth, Adam F; Dennis, Simon

    2015-04-01

    A powerful theoretical framework for exploring recognition memory is the global matching framework, in which a cue's memory strength reflects the similarity of the retrieval cues being matched against the contents of memory simultaneously. Contributions at retrieval can be categorized as matches and mismatches to the item and context cues, including the self match (match on item and context), item noise (match on context, mismatch on item), context noise (match on item, mismatch on context), and background noise (mismatch on item and context). We present a model that directly parameterizes the matches and mismatches to the item and context cues, which enables estimation of the magnitude of each interference contribution (item noise, context noise, and background noise). The model was fit within a hierarchical Bayesian framework to 10 recognition memory datasets that use manipulations of strength, list length, list strength, word frequency, study-test delay, and stimulus class in item and associative recognition. Estimates of the model parameters revealed at most a small contribution of item noise that varies by stimulus class, with virtually no item noise for single words and scenes. Despite the unpopularity of background noise in recognition memory models, background noise estimates dominated at retrieval across nearly all stimulus classes with the exception of high frequency words, which exhibited equivalent levels of context noise and background noise. These parameter estimates suggest that the majority of interference in recognition memory stems from experiences acquired before the learning episode.

  16. Dissociations in the effect of delay on object recognition: evidence for an associative model of recognition memory.

    PubMed

    Tam, Shu K E; Robinson, Jasper; Jennings, Dómhnall J; Bonardi, Charlotte

    2014-01-01

    Rats were administered 3 versions of an object recognition task: In the spontaneous object recognition task (SOR) animals discriminated between a familiar object and a novel object; in the temporal order task they discriminated between 2 familiar objects, 1 of which had been presented more recently than the other; and, in the object-in-place task, they discriminated among 4 previously presented objects, 2 of which were presented in the same locations as in preexposure and 2 in different but familiar locations. In each task animals were tested at 2 delays (5 min and 2 hr) between the sample and test phases in the SOR and object-in-place task, and between the 2 sample phases in the temporal order task. Performance in the SOR was poorer with the longer delay, whereas in the temporal order task performance improved with delay. There was no effect of delay on object-in-place performance. In addition the performance of animals with neurotoxic lesions of the dorsal hippocampus was selectively impaired in the object-in-place task at the longer delay. These findings are interpreted within the framework of Wagner's (1981) model of memory.

  17. Associative Interference and Recognition Memory.

    ERIC Educational Resources Information Center

    Underwood, Benton J.; And Others

    Three experiments tested the generality of the conclusion that associative unlearning is minimal in the A-B, A-D paradigm. In Experiment 1, single-trial study of A-D, following single-trial study of A-B, did not produce retroactive inhibition in the recognition of A-B. In Experiment 2, A-B was acquired by associative matching. The interpolated…

  18. Soil Moisture Memory in Climate Models

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    Water balance considerations at the soil surface lead to an equation that relates the autocorrelation of soil moisture in climate models to (1) seasonality in the statistics of the atmospheric forcing, (2) the variation of evaporation with soil moisture, (3) the variation of runoff with soil moisture, and (4) persistence in the atmospheric forcing, as perhaps induced by land atmosphere feedback. Geographical variations in the relative strengths of these factors, which can be established through analysis of model diagnostics and which can be validated to a certain extent against observations, lead to geographical variations in simulated soil moisture memory and thus, in effect, to geographical variations in seasonal precipitation predictability associated with soil moisture. The use of the equation to characterize controls on soil moisture memory is demonstrated with data from the modeling system of the NASA Seasonal-to-Interannual Prediction Project.

  19. Structural brain correlates of associative memory in older adults.

    PubMed

    Becker, Nina; Laukka, Erika J; Kalpouzos, Grégoria; Naveh-Benjamin, Moshe; Bäckman, Lars; Brehmer, Yvonne

    2015-09-01

    Associative memory involves binding two or more items into a coherent memory episode. Relative to memory for single items, associative memory declines greatly in aging. However, older individuals vary substantially in their ability to memorize associative information. Although functional studies link associative memory to the medial temporal lobe (MTL) and prefrontal cortex (PFC), little is known about how volumetric differences in MTL and PFC might contribute to individual differences in associative memory. We investigated regional gray-matter volumes related to individual differences in associative memory in a sample of healthy older adults (n=54; age=60years). To differentiate item from associative memory, participants intentionally learned face-scene picture pairs before performing a recognition task that included single faces, scenes, and face-scene pairs. Gray-matter volumes were analyzed using voxel-based morphometry region-of-interest (ROI) analyses. To examine volumetric differences specifically for associative memory, item memory was controlled for in the analyses. Behavioral results revealed large variability in associative memory that mainly originated from differences in false-alarm rates. Moreover, associative memory was independent of individuals' ability to remember single items. Older adults with better associative memory showed larger gray-matter volumes primarily in regions of the left and right lateral PFC. These findings provide evidence for the importance of PFC in intentional learning of associations, likely because of its involvement in organizational and strategic processes that distinguish older adults with good from those with poor associative memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Prefrontal Dopamine in Associative Learning and Memory

    PubMed Central

    Puig, M. Victoria; Antzoulatos, Evan G.; Miller, Earl K.

    2014-01-01

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulate associative learning and memory processes in frontostriatal systems. PMID:25241063

  1. Prefrontal dopamine in associative learning and memory.

    PubMed

    Puig, M V; Antzoulatos, E G; Miller, E K

    2014-12-12

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems.

  2. The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia.

    PubMed

    Griebel, Guy; Pichat, Philippe; Boulay, Denis; Naimoli, Vanessa; Potestio, Lisa; Featherstone, Robert; Sahni, Sukhveen; Defex, Henry; Desvignes, Christophe; Slowinski, Franck; Vigé, Xavier; Bergis, Olivier E; Sher, Rosy; Kosley, Raymond; Kongsamut, Sathapana; Black, Mark D; Varty, Geoffrey B

    2016-10-13

    Normalization of altered glutamate neurotransmission through activation of the mGluR2 has emerged as a new approach to treat schizophrenia. These studies describe a potent brain penetrant mGluR2 positive allosteric modulator (PAM), SAR218645. The compound behaves as a selective PAM of mGluR2 in recombinant and native receptor expression systems, increasing the affinity of glutamate at mGluR2 as inferred by competition and GTPγ(35)S binding assays. SAR218645 augmented the mGluR2-mediated response to glutamate in a rat recombinant mGluR2 forced-coupled Ca(2+) mobilization assay. SAR218645 potentiated mGluR2 agonist-induced contralateral turning. When SAR218645 was tested in models of the positive symptoms of schizophrenia, it reduced head twitch behavior induced by DOI, but it failed to inhibit conditioned avoidance and hyperactivity using pharmacological and transgenic models. Results from experiments in models of the cognitive symptoms associated with schizophrenia showed that SAR218645 improved MK-801-induced episodic memory deficits in rats and attenuated working memory impairment in NMDA Nr1(neo-/-) mice. The drug reversed disrupted latent inhibition and auditory-evoked potential in mice and rats, respectively, two endophenotypes of schizophrenia. This profile positions SAR218645 as a promising candidate for the treatment of cognitive symptoms of patients with schizophrenia, in particular those with abnormal attention and sensory gating abilities.

  3. The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia

    PubMed Central

    Griebel, Guy; Pichat, Philippe; Boulay, Denis; Naimoli, Vanessa; Potestio, Lisa; Featherstone, Robert; Sahni, Sukhveen; Defex, Henry; Desvignes, Christophe; Slowinski, Franck; Vigé, Xavier; Bergis, Olivier E.; Sher, Rosy; Kosley, Raymond; Kongsamut, Sathapana; Black, Mark D.; Varty, Geoffrey B.

    2016-01-01

    Normalization of altered glutamate neurotransmission through activation of the mGluR2 has emerged as a new approach to treat schizophrenia. These studies describe a potent brain penetrant mGluR2 positive allosteric modulator (PAM), SAR218645. The compound behaves as a selective PAM of mGluR2 in recombinant and native receptor expression systems, increasing the affinity of glutamate at mGluR2 as inferred by competition and GTPγ35S binding assays. SAR218645 augmented the mGluR2-mediated response to glutamate in a rat recombinant mGluR2 forced-coupled Ca2+ mobilization assay. SAR218645 potentiated mGluR2 agonist-induced contralateral turning. When SAR218645 was tested in models of the positive symptoms of schizophrenia, it reduced head twitch behavior induced by DOI, but it failed to inhibit conditioned avoidance and hyperactivity using pharmacological and transgenic models. Results from experiments in models of the cognitive symptoms associated with schizophrenia showed that SAR218645 improved MK-801-induced episodic memory deficits in rats and attenuated working memory impairment in NMDA Nr1neo−/− mice. The drug reversed disrupted latent inhibition and auditory-evoked potential in mice and rats, respectively, two endophenotypes of schizophrenia. This profile positions SAR218645 as a promising candidate for the treatment of cognitive symptoms of patients with schizophrenia, in particular those with abnormal attention and sensory gating abilities. PMID:27734956

  4. Optoelectronic fuzzy associative memory with controllable attraction basin sizes

    NASA Astrophysics Data System (ADS)

    Wen, Zhiqing; Campbell, Scott; Wu, Weishu; Yeh, Pochi

    1995-10-01

    We propose and demonstrate a new fuzzy associative memory model that provides an option to control the sizes of the attraction basins in neural networks. In our optoelectronic implementation we use spatial/polarization encoding to represent the fuzzy variables. Shadow casting of the encoded patterns is employed to yield the fuzzy-absolute difference between fuzzy variables.

  5. A model of the mechanism of cooperativity and associativity of long-term potentiation in the hippocampus: a fundamental mechanism of associative memory and learning.

    PubMed

    Kitajima, T; Hara, K

    1991-01-01

    Long-Term Potentiation (LTP) has three properties: (1) input specificity, (2) cooperativity and (3) associativity. In a previous paper, we proposed an integrated model of the mechanisms of the induction and maintenance of LTP with input specificity. In this paper, a model of the mechanism of cooperative and associative LTP is described. According to computer simulations of the model, its mechanism is based on the spread of synaptic potentials.

  6. Examining the Association between Patient-Reported Symptoms of Attention and Memory Dysfunction with Objective Cognitive Performance: A Latent Regression Rasch Model Approach

    PubMed Central

    Li, Yuelin; Root, James C.; Atkinson, Thomas M.; Ahles, Tim A.

    2016-01-01

    Objective. Patient-reported cognition generally exhibits poor concordance with objectively assessed cognitive performance. In this article, we introduce latent regression Rasch modeling and provide a step-by-step tutorial for applying Rasch methods as an alternative to traditional correlation to better clarify the relationship of self-report and objective cognitive performance. An example analysis using these methods is also included. Method. Introduction to latent regression Rasch modeling is provided together with a tutorial on implementing it using the JAGS programming language for the Bayesian posterior parameter estimates. In an example analysis, data from a longitudinal neurocognitive outcomes study of 132 breast cancer patients and 45 non-cancer matched controls that included self-report and objective performance measures pre- and post-treatment were analyzed using both conventional and latent regression Rasch model approaches. Results. Consistent with previous research, conventional analysis and correlations between neurocognitive decline and self-reported problems were generally near zero. In contrast, application of latent regression Rasch modeling found statistically reliable associations between objective attention and processing speed measures with self-reported Attention and Memory scores. Conclusions. Latent regression Rasch modeling, together with correlation of specific self-reported cognitive domains with neurocognitive measures, helps to clarify the relationship of self-report with objective performance. While the majority of patients attribute their cognitive difficulties to memory decline, the Rash modeling suggests the importance of processing speed and initial learning. To encourage the use of this method, a step-by-step guide and programming language for implementation is provided. Implications of this method in cognitive outcomes research are discussed. PMID:27193366

  7. Examining the Association between Patient-Reported Symptoms of Attention and Memory Dysfunction with Objective Cognitive Performance: A Latent Regression Rasch Model Approach.

    PubMed

    Li, Yuelin; Root, James C; Atkinson, Thomas M; Ahles, Tim A

    2016-06-01

    Patient-reported cognition generally exhibits poor concordance with objectively assessed cognitive performance. In this article, we introduce latent regression Rasch modeling and provide a step-by-step tutorial for applying Rasch methods as an alternative to traditional correlation to better clarify the relationship of self-report and objective cognitive performance. An example analysis using these methods is also included. Introduction to latent regression Rasch modeling is provided together with a tutorial on implementing it using the JAGS programming language for the Bayesian posterior parameter estimates. In an example analysis, data from a longitudinal neurocognitive outcomes study of 132 breast cancer patients and 45 non-cancer matched controls that included self-report and objective performance measures pre- and post-treatment were analyzed using both conventional and latent regression Rasch model approaches. Consistent with previous research, conventional analysis and correlations between neurocognitive decline and self-reported problems were generally near zero. In contrast, application of latent regression Rasch modeling found statistically reliable associations between objective attention and processing speed measures with self-reported Attention and Memory scores. Latent regression Rasch modeling, together with correlation of specific self-reported cognitive domains with neurocognitive measures, helps to clarify the relationship of self-report with objective performance. While the majority of patients attribute their cognitive difficulties to memory decline, the Rash modeling suggests the importance of processing speed and initial learning. To encourage the use of this method, a step-by-step guide and programming language for implementation is provided. Implications of this method in cognitive outcomes research are discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Activity in the hippocampus and neocortical working memory regions predicts successful associative memory for temporally-discontiguous events

    PubMed Central

    Hales, J. B.; Brewer, J. B.

    2010-01-01

    Models of mnemonic function suggest that the hippocampus binds temporally-discontiguous events in memory (Wallenstein, G.V., Eichenbaum, H., & Hasselmo, M.E., (1998). The hippocampus as an associator of discontiguous events. Trends Neurosci, 21 (8), 317–323), which has been supported by recent studies in humans. Less is known, however, about the involvement of working memory in bridging the temporal gap between to-be-associated events. In this study, subsequent memory for associations between temporally-discontiguous stimuli was examined using functional magnetic resonance imaging. In the scanner, subjects were instructed to remember sequentially-presented images. Occasionally, a plus-sign was presented during the interstimulus-interval between two images, instructing subjects to associate the two images as a pair. Following the scan, subjects identified remembered images and their pairs. Images following the plus-sign were separated into trials in which items were later recognized and the pair remembered, recognized and the pair forgotten, or not recognized. Blood-oxygen-level-dependent responses were measured to identify regions where response amplitude predicted subsequent associative- or item-memory. Distinct neocortical regions were involved in each memory condition, where activity in bilateral frontal and parietal regions predicted memory for associative-information and bilateral occipital and medial frontal regions for item-information. While activity in posterior regions of the medial temporal lobe showed an intermediate response predicting memory for both conditions, bilateral hippocampal activity only predicted associative memory. PMID:20667491

  9. Associative Memory Hardware Elements for Cognitive Systems

    DTIC Science & Technology

    2006-01-01

    produced by Saffron applications. For these tests, a standard TREC database, the entire year of Wall Street Journal articles from 1987, was ingested...associative memories for a wide variety of problems. Our proof points range from powering the “World’s Best Spam Blocker” (PC User Magazine review of...the WSJ data, sorting was applied to over 2,000 matrices below this size. As in Figure 39, strength sorting was found to compress these matrices

  10. Memory for stress-associated acute pain.

    PubMed

    Gedney, Jeffrey J; Logan, Henrietta

    2004-03-01

    Negative emotions (eg, tension, anxiety, fear, anger) influence acute pain recall. Given reliance on patient-provided pain reports across the care continuum, an understanding of factors that modulate pain memory processing become important to patients, clinicians, and health care organizations. The purpose of this study was to investigate the influence of negative emotions on the prediction of 6-month pain recall by using an experimental stress manipulation (speech task) + pain (forehead cold pressor) versus nonstress control + pain crossover design (n = 68). Results showed that (1) negative emotions were greater in the stress session than the nonstress session, and experienced pain levels did not differ by condition or sex; (2) the level negative emotions at the time of the pain stimuli mediated the ability of experienced pain to predict pain recall; and (3) women recalled more stress session pain than men, and nonstress pain was accurately recalled. Integrating these findings with those of others, we present a model of acute pain memory recall in which negative emotions influence pain memory processing wherein the level of experienced pain predicts short-term recall and affective state at the time of the experience becomes a powerful predictor for the long-term recall of experienced pain level. After 6 months the level of recalled experimental pain delivered within a stressful context becomes exaggerated. Negative emotions at the time of the painful stimuli and at recall influenced the prediction of the level of recalled pain. Emotional arousal may influence how memory for pain is encoded, processed, and retrieved.

  11. Cascade models of synaptically stored memories.

    PubMed

    Fusi, Stefano; Drew, Patrick J; Abbott, L F

    2005-02-17

    Storing memories of ongoing, everyday experiences requires a high degree of plasticity, but retaining these memories demands protection against changes induced by further activity and experience. Models in which memories are stored through switch-like transitions in synaptic efficacy are good at storing but bad at retaining memories if these transitions are likely, and they are poor at storage but good at retention if they are unlikely. We construct and study a model in which each synapse has a cascade of states with different levels of plasticity, connected by metaplastic transitions. This cascade model combines high levels of memory storage with long retention times and significantly outperforms alternative models. As a result, we suggest that memory storage requires synapses with multiple states exhibiting dynamics over a wide range of timescales, and we suggest experimental tests of this hypothesis.

  12. RAMBOT (Restructuring Associative Memory Based on Training): A Connectionist Expert System That Learns by Example.

    DTIC Science & Technology

    1986-08-01

    system RAMBOT and even managed to make RAMBOT into an acronym on the somewhat generic phrase "Restructuring Associative Memory Based On Training." I also...intermediate units in turn activate the output units. This type of network implements an associative memory : an input activity pattern is mapped into an...information processing in the brain. In G. E. Hin- ton & J. A. Anderson (Eds.), Parallel models of associative memory . Hillsdale, NJ: Lawrence Erl- baum

  13. The Bifurcating Neuron Network 2: an analog associative memory.

    PubMed

    Lee, Geehyuk; Farhat, Nabil H

    2002-01-01

    The Bifurcating Neuron (BN), a chaotic integrate-and-fire neuron, is a model of a neuron augmented by coherent modulation from its environment. The BN is mathematically equivalent to the sine-circle map, and this equivalence relationship allowed us to apply the mathematics of one-dimensional maps to the design of a BN network. The study of the bifurcating diagram of the BN revealed that the BN, under a suitable condition, can function as an amplitude-to-phase converter. Also, being an integrate-and-fire neuron, it has an inherent capability to function as a coincidence detector. These two observations led us to the design of the BN Network 2 (BNN-2), a pulse-coupled neural network that exhibits associative memory of multiple analog patterns. In addition to the usual dynamical properties as an associative memory, the BNN-2 was shown to exhibit volume-holographic memory: it switches to different pages of its memory space as the frequency of the coherent modulation changes, meaning context-sensitive memory.

  14. Forward Association, Backward Association, and the False-Memory Illusion

    ERIC Educational Resources Information Center

    Brainerd, C. J.; Wright, Ron

    2005-01-01

    In the Deese-Roediger-McDermott false-memory illusion, forward associative strength (FAS) is unrelated to the strength of the illusion; this is puzzling, because high-FAS lists ought to share more semantic features with critical unpresented words than should low-FAS lists. The authors show that this null result is probably a truncated range…

  15. Forward Association, Backward Association, and the False-Memory Illusion

    ERIC Educational Resources Information Center

    Brainerd, C. J.; Wright, Ron

    2005-01-01

    In the Deese-Roediger-McDermott false-memory illusion, forward associative strength (FAS) is unrelated to the strength of the illusion; this is puzzling, because high-FAS lists ought to share more semantic features with critical unpresented words than should low-FAS lists. The authors show that this null result is probably a truncated range…

  16. Modeling soil moisture memory in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Gou, S.; Miller, G. R.

    2011-12-01

    Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants

  17. Emotional Arousal Does Not Enhance Association-Memory

    ERIC Educational Resources Information Center

    Madan, Christopher R.; Caplan, Jeremy B.; Lau, Christine S. M.; Fujiwara, Esther

    2012-01-01

    Emotionally arousing information is remembered better than neutral information. This enhancement effect has been shown for memory for items. In contrast, studies of association-memory have found both impairments and enhancements of association-memory by arousal. We aimed to resolve these conflicting results by using a cued-recall paradigm combined…

  18. Emotional Arousal Does Not Enhance Association-Memory

    ERIC Educational Resources Information Center

    Madan, Christopher R.; Caplan, Jeremy B.; Lau, Christine S. M.; Fujiwara, Esther

    2012-01-01

    Emotionally arousing information is remembered better than neutral information. This enhancement effect has been shown for memory for items. In contrast, studies of association-memory have found both impairments and enhancements of association-memory by arousal. We aimed to resolve these conflicting results by using a cued-recall paradigm combined…

  19. Modeling of SONOS Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  20. Modeling of Sonos Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile semiconductor memories (NVSMS) have many advantages. These memories are electrically erasable programmable read-only memories (EEPROMs). They utilize low programming voltages, endure extended erase/write cycles, are inherently resistant to radiation, and are compatible with high-density scaled CMOS for low power, portable electronics. The SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. The SONOS floating gate charge and voltage, tunneling current, threshold voltage, and drain current were characterized during an erase cycle. Comparisons were made between the model predictions and experimental device data.

  1. A model of the interaction between mood and memory.

    PubMed

    Rolls, E T; Stringer, S M

    2001-05-01

    This paper investigates a neural network model of the interaction between mood and memory. The model has two attractor networks that represent the inferior temporal cortex (IT), which stores representations of visual stimuli, and the amygdala, the activity of which reflects the mood state. The two attractor networks are coupled by forward and backward projections. The model is however generic, and is relevant to understanding the interaction between different pairs of modules in the brain, particularly, as is the case with moods and memories, when there are fewer states represented in one module than in the other. During learning, a large number of patterns are presented to the IT, each paired with one of two mood states represented in the amygdala. The recurrent connections within each module, the forward connections from the memory module to the amygdala, and the backward connections from the amygdala to the memory module, are associatively modified. It is shown how the mood state in the amygdala can influence which memory patterns are recalled in the memory module. Further, it is shown that if there is an existing mood state in the amygdala, it can be difficult to change it even when a retrieval cue is presented to the memory module that is associated with a different mood state. It is also shown that the backprojections from the amygdala to the memory module must be relatively weak if memory retrieval in the memory module is not to be disrupted. The results are relevant to understanding the interaction between structures important in mood and emotion (such as the amygdala and orbitofrontal cortex) and other brain areas involved in storing objects and faces (such as the inferior temporal visual cortex) and memories (such as the hippocampus).

  2. Auto- and hetero-associative memory using a 2-D optical logic gate

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1989-01-01

    An optical associative memory system suitable for both auto- and hetero-associative recall is demonstrated. This system utilizes Hamming distance as the similarity measure between a binary input and a memory image with the aid of a two-dimensional optical EXCLUSIVE OR (XOR) gate and a parallel electronics comparator module. Based on the Hamming distance measurement, this optical associative memory performs a nearest neighbor search and the result is displayed in the output plane in real-time. This optical associative memory is fast and noniterative and produces no output spurious states as compared with that of the Hopfield neural network model.

  3. Auto- and hetero-associative memory using a 2-D optical logic gate

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1989-01-01

    An optical associative memory system suitable for both auto- and hetero-associative recall is demonstrated. This system utilizes Hamming distance as the similarity measure between a binary input and a memory image with the aid of a two-dimensional optical EXCLUSIVE OR (XOR) gate and a parallel electronics comparator module. Based on the Hamming distance measurement, this optical associative memory performs a nearest neighbor search and the result is displayed in the output plane in real-time. This optical associative memory is fast and noniterative and produces no output spurious states as compared with that of the Hopfield neural network model.

  4. Applying a dual process model of self-regulation: The association between executive working memory capacity, negative urgency, and negative mood induction on pre-potent response inhibition

    PubMed Central

    Gunn, Rachel L.; Finn, Peter R.

    2014-01-01

    This study tested a dual-process model of self-control where the combination of high impulsivity (negative urgency – NU), weak reflective / control processes (low executive working memory capacity - E-WMC), and a cognitive load is associated with increased failures to inhibit pre-potent responses on a cued go/no-go task. Using a within-subjects design, a cognitive load with and without negative emotional load was implemented to consider situational factors. Results suggested that: (1) high NU was associated with low E-WMC; (2) low E-WMC significantly predicted more inhibitory control failures across tasks; and (3) there was a significant interaction of E-WMC and NU, revealing those with low E-WMC and high NU had the highest rates of inhibitory control failures on all conditions of the task. In conclusion, results suggest that while E-WMC is a strong independent predictor of inhibitory control, NU provides additional information for vulnerability to problems associated with self-regulation. PMID:25530648

  5. Applying a dual process model of self-regulation: The association between executive working memory capacity, negative urgency, and negative mood induction on pre-potent response inhibition.

    PubMed

    Gunn, Rachel L; Finn, Peter R

    2015-03-01

    This study tested a dual-process model of self-control where the combination of high impulsivity (negative urgency - NU), weak reflective / control processes (low executive working memory capacity - E-WMC), and a cognitive load is associated with increased failures to inhibit pre-potent responses on a cued go/no-go task. Using a within-subjects design, a cognitive load with and without negative emotional load was implemented to consider situational factors. Results suggested that: (1) high NU was associated with low E-WMC; (2) low E-WMC significantly predicted more inhibitory control failures across tasks; and (3) there was a significant interaction of E-WMC and NU, revealing those with low E-WMC and high NU had the highest rates of inhibitory control failures on all conditions of the task. In conclusion, results suggest that while E-WMC is a strong independent predictor of inhibitory control, NU provides additional information for vulnerability to problems associated with self-regulation.

  6. No Evidence for Improved Associative Memory Performance Following Process-Based Associative Memory Training in Older Adults

    PubMed Central

    Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne

    2017-01-01

    Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults (Mage = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults. PMID:28119597

  7. Fragile Associations Coexist with Robust Memories for Precise Details in Long-Term Memory

    ERIC Educational Resources Information Center

    Lew, Timothy F.; Pashler, Harold E.; Vul, Edward

    2016-01-01

    What happens to memories as we forget? They might gradually lose fidelity, lose their associations (and thus be retrieved in response to the incorrect cues), or be completely lost. Typical long-term memory studies assess memory as a binary outcome (correct/incorrect), and cannot distinguish these different kinds of forgetting. Here we assess…

  8. Fragile Associations Coexist with Robust Memories for Precise Details in Long-Term Memory

    ERIC Educational Resources Information Center

    Lew, Timothy F.; Pashler, Harold E.; Vul, Edward

    2016-01-01

    What happens to memories as we forget? They might gradually lose fidelity, lose their associations (and thus be retrieved in response to the incorrect cues), or be completely lost. Typical long-term memory studies assess memory as a binary outcome (correct/incorrect), and cannot distinguish these different kinds of forgetting. Here we assess…

  9. Memory B cells in mouse models.

    PubMed

    Bergmann, B; Grimsholm, O; Thorarinsdottir, K; Ren, W; Jirholt, P; Gjertsson, I; Mårtensson, I-L

    2013-08-01

    One of the principles behind vaccination, as shown by Edward Jenner in 1796, and host protection is immunological memory, and one of the cells central to this is the antigen-experienced memory B cell that responds rapidly upon re-exposure to the initiating antigen. Classically, memory B cells have been defined as progenies of germinal centre (GC) B cells expressing isotype-switched and substantially mutated B cell receptors (BCRs), that is, membrane-bound antibodies. However, it has become apparent over the last decade that this is not the only pathway to B cell memory. Here, we will discuss memory B cells in mice, as defined by (1) cell surface markers; (2) multiple layers; (3) formation in a T cell-dependent and either GC-dependent or GC-independent manner; (4) formation in a T cell-independent fashion. Lastly, we will touch upon memory B cells in; (5) mouse models of autoimmune diseases.

  10. Conditions for the Existence and Stability of the Continuous Attractor in the Classical XY Model with an Associative-Memory-Type Interaction

    NASA Astrophysics Data System (ADS)

    Yoshida, Risa; Kimoto, Tomoyuki; Uezu, Tatsuya

    2017-03-01

    We analyze the structure of attractors in the classical XY model with an associative-memory-type interaction by the statistical mechanical method. Previously, it was found that when patterns are uncorrelated, points on a path connecting two memory patterns in the space of the order parameters are solutions of the saddle point equations (SPEs) in the case that p is O(1) irrespective of N and N ≫ 1, where p and N are the numbers of patterns and spins, respectively. This state is called the continuous attractor (CA). In this paper, we clarify the conditions for the existence and stability of the CA with and without the correlation a (0 ≤ a < 1) between any two patterns in the case that N ≫ 1 and the self-averaging property holds. We find that the CA exists for any p ≥ 2 when a = 0, but it exists only for p = 2 when 0 < a < 1 and for p = 3 when a < 1/3. For p = 2 and 3, and for a < 1, we analyze the SPEs and find all solutions and study their stabilities. We perform Markov chain Monte Carlo simulations and compare numerical and theoretical results. We find that for a finite system of size N and for a = 0, owing to the breakdown of the self-averaging property, the CA ceases to exist at a finite value of p. We define the critical value of pc until which the CA exists and numerically study the system size N dependence of pc. We find that the numerical results are consistent with the theoretical results obtained by taking into account the breakdown of the self-averaging property. Furthermore, for a > 0, we numerically study the case that patterns are subject to external noise and find that pc increases as the noise amplitude increases.

  11. Learned reward association improves visual working memory.

    PubMed

    Gong, Mengyuan; Li, Sheng

    2014-04-01

    Statistical regularities in the natural environment play a central role in adaptive behavior. Among other regularities, reward association is potentially the most prominent factor that influences our daily life. Recent studies have suggested that pre-established reward association yields strong influence on the spatial allocation of attention. Here we show that reward association can also improve visual working memory (VWM) performance when the reward-associated feature is task-irrelevant. We established the reward association during a visual search training session, and investigated the representation of reward-associated features in VWM by the application of a change detection task before and after the training. The results showed that the improvement in VWM was significantly greater for items in the color associated with high reward than for those in low reward-associated or nonrewarded colors. In particular, the results from control experiments demonstrate that the observed reward effect in VWM could not be sufficiently accounted for by attentional capture toward the high reward-associated item. This was further confirmed when the effect of attentional capture was minimized by presenting the items in the sample and test displays of the change detection task with the same color. The results showed significantly larger improvement in VWM performance when the items in a display were in the high reward-associated color than those in the low reward-associated or nonrewarded colors. Our findings suggest that, apart from inducing space-based attentional capture, the learned reward association could also facilitate the perceptual representation of high reward-associated items through feature-based attentional modulation.

  12. Common Kibra alleles are associated with human memory performance.

    PubMed

    Papassotiropoulos, Andreas; Stephan, Dietrich A; Huentelman, Matthew J; Hoerndli, Frederic J; Craig, David W; Pearson, John V; Huynh, Kim-Dung; Brunner, Fabienne; Corneveaux, Jason; Osborne, David; Wollmer, M Axel; Aerni, Amanda; Coluccia, Daniel; Hänggi, Jürgen; Mondadori, Christian R A; Buchmann, Andreas; Reiman, Eric M; Caselli, Richard J; Henke, Katharina; de Quervain, Dominique J-F

    2006-10-20

    Human memory is a polygenic trait. We performed a genome-wide screen to identify memory-related gene variants. A genomic locus encoding the brain protein KIBRA was significantly associated with memory performance in three independent, cognitively normal cohorts from Switzerland and the United States. Gene expression studies showed that KIBRA was expressed in memory-related brain structures. Functional magnetic resonance imaging detected KIBRA allele-dependent differences in hippocampal activations during memory retrieval. Evidence from these experiments suggests a role for KIBRA in human memory.

  13. Neural Network Model of Memory Retrieval

    PubMed Central

    Recanatesi, Stefano; Katkov, Mikhail; Romani, Sandro; Tsodyks, Misha

    2015-01-01

    Human memory can store large amount of information. Nevertheless, recalling is often a challenging task. In a classical free recall paradigm, where participants are asked to repeat a briefly presented list of words, people make mistakes for lists as short as 5 words. We present a model for memory retrieval based on a Hopfield neural network where transition between items are determined by similarities in their long-term memory representations. Meanfield analysis of the model reveals stable states of the network corresponding (1) to single memory representations and (2) intersection between memory representations. We show that oscillating feedback inhibition in the presence of noise induces transitions between these states triggering the retrieval of different memories. The network dynamics qualitatively predicts the distribution of time intervals required to recall new memory items observed in experiments. It shows that items having larger number of neurons in their representation are statistically easier to recall and reveals possible bottlenecks in our ability of retrieving memories. Overall, we propose a neural network model of information retrieval broadly compatible with experimental observations and is consistent with our recent graphical model (Romani et al., 2013). PMID:26732491

  14. Psychobiological models of hippocampal function in learning and memory.

    PubMed

    Gluck, M A; Myers, C E

    1997-01-01

    We review current computational models of hippocampal function in learning and memory, concentrating on those that make strongest contact with psychological issues and behavioral data. Some models build upon Marr's early theories for modeling hippocampal field CA3's putative role in the fast, temporary storage of episodic memories. Other models focus on hippocampal involvement in incrementally learned associations, such as classical conditioning. More recent efforts have attempted to bring functional interpretations of the hippocampal region in closer contact with underlying anatomy and physiology. In reviewing these psychobiological models, three major themes emerge. First, computational models provide the conceptual glue to bind together data from multiple levels of analysis. Second, models serve as important tools to integrate data from both animal and human studies. Third, previous psychological models that capture important behavioral principles of memory provide an important top-down constraint for developing computational models of the neural bases of these behaviors.

  15. Kanerva's sparse distributed memory: An associative memory algorithm well-suited to the Connection Machine

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1988-01-01

    The advent of the Connection Machine profoundly changes the world of supercomputers. The highly nontraditional architecture makes possible the exploration of algorithms that were impractical for standard Von Neumann architectures. Sparse distributed memory (SDM) is an example of such an algorithm. Sparse distributed memory is a particularly simple and elegant formulation for an associative memory. The foundations for sparse distributed memory are described, and some simple examples of using the memory are presented. The relationship of sparse distributed memory to three important computational systems is shown: random-access memory, neural networks, and the cerebellum of the brain. Finally, the implementation of the algorithm for sparse distributed memory on the Connection Machine is discussed.

  16. Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware

    PubMed Central

    Stöckel, Andreas; Jenzen, Christoph; Thies, Michael; Rückert, Ulrich

    2017-01-01

    Large-scale neuromorphic hardware platforms, specialized computer systems for energy efficient simulation of spiking neural networks, are being developed around the world, for example as part of the European Human Brain Project (HBP). Due to conceptual differences, a universal performance analysis of these systems in terms of runtime, accuracy and energy efficiency is non-trivial, yet indispensable for further hard- and software development. In this paper we describe a scalable benchmark based on a spiking neural network implementation of the binary neural associative memory. We treat neuromorphic hardware and software simulators as black-boxes and execute exactly the same network description across all devices. Experiments on the HBP platforms under varying configurations of the associative memory show that the presented method allows to test the quality of the neuron model implementation, and to explain significant deviations from the expected reference output.

  17. Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware.

    PubMed

    Stöckel, Andreas; Jenzen, Christoph; Thies, Michael; Rückert, Ulrich

    2017-01-01

    Large-scale neuromorphic hardware platforms, specialized computer systems for energy efficient simulation of spiking neural networks, are being developed around the world, for example as part of the European Human Brain Project (HBP). Due to conceptual differences, a universal performance analysis of these systems in terms of runtime, accuracy and energy efficiency is non-trivial, yet indispensable for further hard- and software development. In this paper we describe a scalable benchmark based on a spiking neural network implementation of the binary neural associative memory. We treat neuromorphic hardware and software simulators as black-boxes and execute exactly the same network description across all devices. Experiments on the HBP platforms under varying configurations of the associative memory show that the presented method allows to test the quality of the neuron model implementation, and to explain significant deviations from the expected reference output.

  18. Optical associative memories for sensor fusion

    NASA Astrophysics Data System (ADS)

    Ralston, Lynda M.; Yoepp, John H.; Bardos, Andrew M.

    1992-08-01

    Modern military mission scenarios require very efficient access to multiple, large databases. Static `reference' databases and highly volatile databases which contain intelligence from sensors and other sources must be processed, cross referenced, and correlated. An architecture has been developed for a content addressable (associative) optical memory system. The system exploits the parallel access capabilities of optical disk memories to provide keyword correlation of free form text or structured databases within one revolution of the disk. The system consists of an optical disk drive augmented with an optical correlator and related electronics and software. The search string (keyword) is loaded into a spatial light modulator and optical matched filtering provides massively parallel readout to locate the desired data patterns on the disk. A digital degree-of-match (DOM) word is generated for each sector on the disk. Post processing based in digital electronics and software performs fuzzy computations to combine the DOMs for the current and previous keywords enabling the system to efficiently perform multi-step, content-based searches of the disk. Data stored in the best matching sectors is retrieved during the next revolution of the disk using the drive's standard read mechanism. The sustained processing rate of the optical correlator is 71 gigabits per second.

  19. Dopamine Receptor Genes Modulate Associative Memory in Old Age.

    PubMed

    Papenberg, Goran; Becker, Nina; Ferencz, Beata; Naveh-Benjamin, Moshe; Laukka, Erika J; Bäckman, Lars; Brehmer, Yvonne

    2017-02-01

    Previous research shows that associative memory declines more than item memory in aging. Although the underlying mechanisms of this selective impairment remain poorly understood, animal and human data suggest that dopaminergic modulation may be particularly relevant for associative binding. We investigated the influence of dopamine (DA) receptor genes on item and associative memory in a population-based sample of older adults (n = 525, aged 60 years), assessed with a face-scene item associative memory task. The effects of single-nucleotide polymorphisms of DA D1 (DRD1; rs4532), D2 (DRD2/ANKK1/Taq1A; rs1800497), and D3 (DRD3/Ser9Gly; rs6280) receptor genes were examined and combined into a single genetic score. Individuals carrying more beneficial alleles, presumably associated with higher DA receptor efficacy (DRD1 C allele; DRD2 A2 allele; DRD3 T allele), performed better on associative memory than persons with less beneficial genotypes. There were no effects of these genes on item memory or other cognitive measures, such as working memory, executive functioning, fluency, and perceptual speed, indicating a selective association between DA genes and associative memory. By contrast, genetic risk for Alzheimer disease (AD) was associated with worse item and associative memory, indicating adverse effects of APOE ε4 and a genetic risk score for AD (PICALM, BIN1, CLU) on episodic memory in general. Taken together, our results suggest that DA may be particularly important for associative memory, whereas AD-related genetic variations may influence overall episodic memory in older adults without dementia.

  20. Dissociating Measures of Associative Memory: Evidence and Theoretical Implications

    ERIC Educational Resources Information Center

    Cohn, Melanie; Moscovitch, Morris

    2007-01-01

    In four experiments, the authors investigated whether two measures of associative recognition memory (associative identification and associative reinstatement) are dissociable from one-another on the basis of their reliance on strategic retrieval and are dissociable from item recognition memory. Experiment 1 showed that deep encoding of relational…

  1. Dissociating Measures of Associative Memory: Evidence and Theoretical Implications

    ERIC Educational Resources Information Center

    Cohn, Melanie; Moscovitch, Morris

    2007-01-01

    In four experiments, the authors investigated whether two measures of associative recognition memory (associative identification and associative reinstatement) are dissociable from one-another on the basis of their reliance on strategic retrieval and are dissociable from item recognition memory. Experiment 1 showed that deep encoding of relational…

  2. Hippocampal signals for strong memory when associative memory is available and when it is not.

    PubMed

    Wais, Peter E

    2011-01-01

    The paired-associate task has been used with functional magnetic resonance imaging (fMRI) in studies that assessed the role of the medial temporal lobe (MTL) subserving recollection and familiarity.Some researchers have interpreted their results to mean that the hippocampus selectively subserves recollection and not familiarity[cf., Eichenbaum et al., (2007) Annu Rev Neurosci 30:123–152]. Yet many of these results confound recollection and familiarity with strong and weak memories, and it is not clear whether the conclusions represent differences between memory processes or memory strength. In the current study, participants were scanned with fMRI during retrieval in a paired-associate task, and a new approach separated the analysis of memory strength from the analysis of memory processes. The data were sorted by confidence level in an old/new task, and the high-confidence responses were compared in categories when associative memory was highly accurate and when it was not available. The results show that high-confidence memory produced increased activity in the hippocampus,relative to the level for forgotten pairs, both when associative memory was available and when it was not. Two interpretations are discussed for the behavioral results for when associative memory was not available: one account based on familiarity and the other account based on noncriterial recollection. The conclusion is that recognition of the word-pairs was based on familiarity when associative memory was not available. Together with the fMRI results that activity in two regions associated with cognitive control (left ventrolateral prefrontal cortex and left inferior parietal lobule) was greater when responses were based on associative memory than when based on familiarity, the findings suggest that the hippocampus supports strong memory and that cortical regions make an additional contribution to recollection.

  3. Noise tolerant dendritic lattice associative memories

    NASA Astrophysics Data System (ADS)

    Ritter, Gerhard X.; Schmalz, Mark S.; Hayden, Eric; Tucker, Marc

    2011-09-01

    Linear classifiers based on computation over the real numbers R (e.g., with operations of addition and multiplication) denoted by (R, +, x), have been represented extensively in the literature of pattern recognition. However, a different approach to pattern classification involves the use of addition, maximum, and minimum operations over the reals in the algebra (R, +, maximum, minimum) These pattern classifiers, based on lattice algebra, have been shown to exhibit superior information storage capacity, fast training and short convergence times, high pattern classification accuracy, and low computational cost. Such attributes are not always found, for example, in classical neural nets based on the linear inner product. In a special type of lattice associative memory (LAM), called a dendritic LAM or DLAM, it is possible to achieve noise-tolerant pattern classification by varying the design of noise or error acceptance bounds. This paper presents theory and algorithmic approaches for the computation of noise-tolerant lattice associative memories (LAMs) under a variety of input constraints. Of particular interest are the classification of nonergodic data in noise regimes with time-varying statistics. DLAMs, which are a specialization of LAMs derived from concepts of biological neural networks, have successfully been applied to pattern classification from hyperspectral remote sensing data, as well as spatial object recognition from digital imagery. The authors' recent research in the development of DLAMs is overviewed, with experimental results that show utility for a wide variety of pattern classification applications. Performance results are presented in terms of measured computational cost, noise tolerance, classification accuracy, and throughput for a variety of input data and noise levels.

  4. An interference model of visual working memory.

    PubMed

    Oberauer, Klaus; Lin, Hsuan-Yu

    2017-01-01

    The article introduces an interference model of working memory for information in a continuous similarity space, such as the features of visual objects. The model incorporates the following assumptions: (a) Probability of retrieval is determined by the relative activation of each retrieval candidate at the time of retrieval; (b) activation comes from 3 sources in memory: cue-based retrieval using context cues, context-independent memory for relevant contents, and noise; (c) 1 memory object and its context can be held in the focus of attention, where it is represented with higher precision, and partly shielded against interference. The model was fit to data from 4 continuous-reproduction experiments testing working memory for colors or orientations. The experiments involved variations of set size, kind of context cues, precueing, and retro-cueing of the to-be-tested item. The interference model fit the data better than 2 competing models, the Slot-Averaging model and the Variable-Precision resource model. The interference model also fared well in comparison to several new models incorporating alternative theoretical assumptions. The experiments confirm 3 novel predictions of the interference model: (a) Nontargets intrude in recall to the extent that they are close to the target in context space; (b) similarity between target and nontarget features improves recall, and (c) precueing-but not retro-cueing-the target substantially reduces the set-size effect. The success of the interference model shows that working memory for continuous visual information works according to the same principles as working memory for more discrete (e.g., verbal) contents. Data and model codes are available at https://osf.io/wgqd5/. (PsycINFO Database Record

  5. Uridine prodrug improves memory in Tg2576 and TAPP mice and reduces pathological factors associated with Alzheimer's disease in related models.

    PubMed

    Saydoff, Joel A; Olariu, Ana; Sheng, Jin; Hu, Zhongyi; Li, Qin; Garcia, Rolando; Pei, Jiong; Sun, Grace Y; von Borstel, Reid

    2013-01-01

    Uridine prodrug PN401 has been shown to have neuroprotective effects in models of Parkinson's disease and Huntington's disease. These age-related neurodegenerative diseases including Alzheimer's disease (AD) are associated with mitochondrial dysfunction, oxidative stress, and inflammation. Attenuation of these pathological factors in AD, in addition to amyloid fibrils and neurofibrillary tangles, is critical to prevent cognitive impairment. The effects of PN401 treatment were tested in the Tg2576 and Tg2576 X P301L (TAPP) mouse models of AD. Treatment with PN401 reduced impairments in the Tg2576 mice in contextual fear conditioning and novel object recognition. In the TAPP mice, PN401 reduced the impairments in novel object recognition and social transmission of food preference. PN401 also improved motor behavior and reduced anxiety-like behavior in the TAPP mice. TAPP mouse hippocampal tau phosphorylation and lipid peroxidation were reduced by PN401 treatment. Increased tau phosphorylation was significantly correlated with worsening novel object recognition memory. PN401 did not affect amyloid plaque area in the AD mice. In other AD-related animal studies, PN401 treatment reduced blood-brain barrier damage due to intracortical LPS, elevation of serum TNFα due to systemic LPS, and hippocampal CA1 neuronal loss in the gerbil stroke model. Uridine dose-dependently protected cells from chemical hypoxia and ceramide, and decreased formation of reactive oxygen species and mitochondrial DNA damage due to hydrogen peroxide. These protective effects were achieved by raising uridine levels to at least 25-50 μM and serum uridine levels in this range in humans were obtained with oral PN401.

  6. Effects of non-invasive brain stimulation on associative memory

    SciTech Connect

    Matzen, Laura E.; Trumbo, Michael C.; Leach, Ryan C.; Leshikar, Eric D.

    2015-07-30

    Associative memory refers to remembering the association between two items, such as a face and a name. It is a crucial part of daily life, but it is also one of the first aspects of memory performance that is impacted by aging and by Alzheimer’s disease. Evidence suggests that transcranial direct current stimulation (tDCS) can improve memory performance, but few tDCS studies have investigated its impact on associative memory. In addition, no prior study of the effects of tDCS on memory performance has systematically evaluated the impact of tDCS on different types of memory assessments, such as recognition and recall tests. In this study, we measured the effects of tDCS on associative memory performance in healthy adults, using both recognition and recall tests. Participants studied face-name pairs while receiving either active (30 minutes, 2 mA) or sham (30 minutes, 0.1 mA) stimulation with the anode placed at F9 and the cathode placed on the contralateral upper arm. Participants in the active stimulation group performed significantly better on the recall test than participants in the sham group, recalling 50% more names, on average, and making fewer recall errors. However, the two groups did not differ significantly in terms of their performance on the recognition memory test. This investigation provides evidence that stimulation at the time of study improves associative memory encoding, but that this memory benefit is evident only under certain retrieval conditions.

  7. Single-Item and Associative Working Memory in Stroke Patients

    PubMed Central

    van Geldorp, Bonnie; Kessels, Roy P. C.; Hendriks, Marc P. H.

    2013-01-01

    In this study, we examined working memory performance of stroke patients. A previous study assessing amnesia patients found deficits on an associative working memory task, although standard neuropsychological working memory tests did not detect any deficits. We now examine whether this may be the case for stoke patients as well. The current task contained three conditions: one spatial condition, one object condition and one binding condition in which both object and location had to be remembered. In addition, subsequent long-term memory was assessed. The results indicate that our sample of stroke patients shows a working memory deficit, but only on the single-feature conditions. The binding condition was more difficult than both single-feature conditions, but patients performed equally well as compared to matched healthy controls. No deficits were found on the subsequent long-term memory task. These results suggest that associative working memory may be mediated by structures of the medial temporal lobe. PMID:22713422

  8. Sleep-induced changes in associative memory.

    PubMed

    Stickgold, R; Scott, L; Rittenhouse, C; Hobson, J A

    1999-03-01

    The notion that dreaming might alter the strength of associative links in memory was first proposed almost 200 years ago. But no strong evidence of such altered associative links has been obtained. Semantic priming can be used to quantify the strength of associative links between pairs of words; it is thought to measure the automatic spread of activation from a "node" representing one word to nodes representing semantically related words. Semantic priming could thus be used to test for global alterations in the strengths of associative links across the wake-sleep cycle. Awakenings from REM and nonREM (NREM) sleep produce a period of state carry-over during which performance is altered as a result of the brain's slow transition to full wakefulness, and cognitive testing in this period can provide information about the functioning of the brain during the prior sleep period. When subjects were tested across the night--before and after a night's sleep as well as immediately following forced awakenings from REM and NREM sleep--weak priming (e. g., thief-wrong) was found to be state dependent (p = 0.016), whereas strong priming (e.g., hot-cold) was not (p = 0.89). Weak primes were most effective in the presleep and REM sleep conditions and least effective in NREM and postsleep conditions. Most striking are analyses comparing weak and strong priming within each wake-sleep state. Contrary to the normal pattern of priming, subjects awakened from REM sleep showed greater priming by weak primes than by strong primes (p = 0.01). This result was seen in each of three protocols. In contrast, strong priming exceeded weak priming in NREM sleep. The shift in weak priming seen after REM sleep awakenings suggests that cognition during REM sleep is qualitatively different from that of waking and NREM sleep and may reflect a shift in associative memory systems, a shift that we hypothesize underlies the bizarre and hyperassociative character of REM-sleep dreaming. Known changes in

  9. Age effects on associative memory for novel picture pairings.

    PubMed

    Bridger, Emma K; Kursawe, Anna-Lena; Bader, Regine; Tibon, Roni; Gronau, Nurit; Levy, Daniel A; Mecklinger, Axel

    2017-04-01

    Normal aging is usually accompanied by greater memory decline for associations than for single items. Though associative memory is generally supported by recollection, it has been suggested that familiarity can also contribute to associative memory when stimuli can be unitized and encoded as a single entity. Given that familiarity remains intact during healthy aging, this may be one route to reducing age-related associative deficits. The current study investigated age-related differences in associative memory under conditions that were expected to differentially promote unitization, in this case by manipulating the spatial arrangement of two semantically unrelated objects positioned relative to each other in either spatially implausible or plausible orientations. Event-related potential (ERP) correlates of item and associative memory were recorded whilst younger and older adults were required to discriminate between old, recombined and new pairs of objects. These ERP correlates of item and associative memory did not vary with plausibility, whereas behavioral measures revealed that both associative and item memory were greater for spatially plausible than implausible pair arrangements. Contrary to predictions, older adults were less able to take advantage of this memory benefit than younger participants. Potential reasons for this are considered, and these are informed by those lines of evidence which indicate older participants were less sensitive to the bottom-up spatial manipulation employed here. It is recommended that future strategies for redressing age-related associative deficits should take account of the aging brain's increasing reliance on pre-existing semantic associations.

  10. Strategies to associate memories by unsupervised learning in neural networks

    NASA Astrophysics Data System (ADS)

    Agnes, E. J.; Mizusaki, B. E. P.; Erichsen, R., Jr.; Brunnet, L. G.

    2013-01-01

    In this work we study the effects of three different strategies to associate memories in a neural network composed by both excitatory and inhibitory spiking neurons, which are randomly connected through recurrent excitatory and inhibitory synapses. The system is intended to store a number of memories, associated to spatial external inputs. The strategies consist in the presentation of the input patterns through trials in: i) ordered sequence; ii) random sequence; iii) clustered sequences. In addition, an order parameter indicating the correlation between the trials' activities is introduced to compute associative memory capacities and the quality of memory retrieval.

  11. Working memory, situation models, and synesthesia

    DOE PAGES

    Radvansky, Gabriel A.; Gibson, Bradley S.; McNerney, M. Windy

    2013-03-04

    Research on language comprehension suggests a strong relationship between working memory span measures and language comprehension. However, there is also evidence that this relationship weakens at higher levels of comprehension, such as the situation model level. The current study explored this relationship by comparing 10 grapheme–color synesthetes who have additional color experiences when they read words that begin with different letters and 48 normal controls on a number of tests of complex working memory capacity and processing at the situation model level. On all tests of working memory capacity, the synesthetes outperformed the controls. Importantly, there was no carryover benefitmore » for the synesthetes for processing at the situation model level. This reinforces the idea that although some aspects of language comprehension are related to working memory span scores, this applies less directly to situation model levels. As a result, this suggests that theories of working memory must take into account this limitation, and the working memory processes that are involved in situation model construction and processing must be derived.« less

  12. Working memory, situation models, and synesthesia

    SciTech Connect

    Radvansky, Gabriel A.; Gibson, Bradley S.; McNerney, M. Windy

    2013-03-04

    Research on language comprehension suggests a strong relationship between working memory span measures and language comprehension. However, there is also evidence that this relationship weakens at higher levels of comprehension, such as the situation model level. The current study explored this relationship by comparing 10 grapheme–color synesthetes who have additional color experiences when they read words that begin with different letters and 48 normal controls on a number of tests of complex working memory capacity and processing at the situation model level. On all tests of working memory capacity, the synesthetes outperformed the controls. Importantly, there was no carryover benefit for the synesthetes for processing at the situation model level. This reinforces the idea that although some aspects of language comprehension are related to working memory span scores, this applies less directly to situation model levels. As a result, this suggests that theories of working memory must take into account this limitation, and the working memory processes that are involved in situation model construction and processing must be derived.

  13. Rejuvenation and Memory in Model Spin Glasses

    NASA Astrophysics Data System (ADS)

    Jiménez, S.; Martín-Mayor, V.; Pérez-Gaviro, S.

    We study memory and rejuvenation effects in Isingspin-glasses in 3 and 4 dimensions. In D=3, 1000 times larger than in previous work are reached using the SUE machine. Memory and rejuvenation are found in a 2 temperatures cycle. Similar effects are reported for the site-diluted Ising model (without chaos). However, rejuvenation is reduced if off-equilibrium corrections to the fluctuation-dissipation theorem are considered. Memory and rejuvenation are describable in terms of the growth-regime of a coherence-length.

  14. The Generalized Quantum Episodic Memory Model.

    PubMed

    Trueblood, Jennifer S; Hemmer, Pernille

    2016-12-21

    Recent evidence suggests that experienced events are often mapped to too many episodic states, including those that are logically or experimentally incompatible with one another. For example, episodic over-distribution patterns show that the probability of accepting an item under different mutually exclusive conditions violates the disjunction rule. A related example, called subadditivity, occurs when the probability of accepting an item under mutually exclusive and exhaustive instruction conditions sums to a number >1. Both the over-distribution effect and subadditivity have been widely observed in item and source-memory paradigms. These phenomena are difficult to explain using standard memory frameworks, such as signal-detection theory. A dual-trace model called the over-distribution (OD) model (Brainerd & Reyna, 2008) can explain the episodic over-distribution effect, but not subadditivity. Our goal is to develop a model that can explain both effects. In this paper, we propose the Generalized Quantum Episodic Memory (GQEM) model, which extends the Quantum Episodic Memory (QEM) model developed by Brainerd, Wang, and Reyna (2013). We test GQEM by comparing it to the OD model using data from a novel item-memory experiment and a previously published source-memory experiment (Kellen, Singmann, & Klauer, 2014) examining the over-distribution effect. Using the best-fit parameters from the over-distribution experiments, we conclude by showing that the GQEM model can also account for subadditivity. Overall these results add to a growing body of evidence suggesting that quantum probability theory is a valuable tool in modeling recognition memory.

  15. Neural correlates underlying true and false associative memories.

    PubMed

    Dennis, Nancy A; Johnson, Christina E; Peterson, Kristina M

    2014-07-01

    Despite the fact that associative memory studies produce a large number of false memories, neuroimaging analyses utilizing this paradigm typically focus only on neural activity mediating successful retrieval. The current study sought to expand on this prior research by examining the neural basis of both true and false associative memories. Though associative false memories are substantially different than those found in semantic or perceptual false memory paradigms, results suggest that associative false memories are mediated by similar neural mechanisms. Specifically, we found increased frontal activity that likely represents enhanced monitoring and evaluation compared to that needed for true memories and correct rejections. Results also indicated that true, and not false associative memories, are mediated by neural activity in the MTL, specifically the hippocampus. Finally, while activity in early visual cortex distinguished true from false memories, a lack of neural differences between hits and correct rejections failed to support previous findings suggesting that activity in early visual cortex represents sensory reactivation of encoding-related processing.

  16. A macroscopic model for magnetic shape-memory single crystals

    NASA Astrophysics Data System (ADS)

    Bessoud, Anne-Laure; Kružík, Martin; Stefanelli, Ulisse

    2013-04-01

    A rate-independent model for the quasi-static magneto-elastic evolution of a magnetic shape-memory single crystal is presented. In particular, the purely mechanical Souza-Auricchio model for shape-memory alloys is here combined with classical micro-magnetism by suitably associating magnetization and inelastic strain. By balancing the effect of conservative and dissipative actions, a nonlinear evolution PDE system of rate-independent type is obtained. We prove the existence of so-called energetic solutions to this system. Moreover, we discuss several limits for the model corresponding to parameter asymptotics by means of a rigorous Γ-convergence argument.

  17. Sensitivity of negative subsequent memory and task-negative effects to age and associative memory performance.

    PubMed

    de Chastelaine, Marianne; Mattson, Julia T; Wang, Tracy H; Donley, Brian E; Rugg, Michael D

    2015-07-01

    The present fMRI experiment employed associative recognition to investigate the relationships between age and encoding-related negative subsequent memory effects and task-negative effects. Young, middle-aged and older adults (total n=136) were scanned while they made relational judgments on visually presented word pairs. In a later memory test, the participants made associative recognition judgments on studied, rearranged (items studied on different trials) and new pairs. Several regions, mostly localized to the default mode network, demonstrated negative subsequent memory effects in an across age-group analysis. All but one of these regions also demonstrated task-negative effects, although there was no correlation between the size of the respective effects. Whereas negative subsequent memory effects demonstrated a graded attenuation with age, task-negative effects declined markedly between the young and the middle-aged group, but showed no further reduction in the older group. Negative subsequent memory effects did not correlate with memory performance within any age group. By contrast, in the older group only, task-negative effects predicted later memory performance. The findings demonstrate that negative subsequent memory and task-negative effects depend on dissociable neural mechanisms and likely reflect distinct cognitive processes. The relationship between task-negative effects and memory performance in the older group might reflect the sensitivity of these effects to variations in amount of age-related neuropathology. This article is part of a Special Issue entitled SI: Memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Can DRYAD explain age-related associative memory deficits?

    PubMed

    Smyth, Andrea C; Naveh-Benjamin, Moshe

    2016-02-01

    A recent interesting theoretical account of aging and memory judgments, the DRYAD (density of representations yields age-related deficits; Benjamin, 2010; Benjamin, Diaz, Matzen, & Johnson, 2012), attributes the extensive findings of disproportional age-related deficits in memory for source, context, and associations, to a global decline in memory fidelity. It is suggested that this global deficit, possibly due to a decline in attentional processes, is moderated by weak representation of contextual information to result in disproportional age-related declines. In the current article, we evaluate the DRYAD model, comparing it to specific age-related deficits theories, in particular, the ADH (associative deficit hypothesis, Naveh-Benjamin, 2000). We question some of the main assumptions/hypotheses of DRYAD in light of data reported in the literature, and we directly assess the role of attention in age-related deficits by manipulations of divided attention and of the instructions regarding what to pay attention to in 2 experiments (one from the literature and a new one). The results of these experiments fit the predictions of the ADH and do not support the main assumption/hypotheses of DRYAD. (c) 2016 APA, all rights reserved).

  19. Modeling floating body memory devices

    NASA Astrophysics Data System (ADS)

    Hindupur, Ramya

    TCAD simulations have been performed using SILVACO ATLAS 2D device simulator for a Zero-Capacitor Random Access Memory (ZRAM), a new generation memory cell which is being researched as an alternative for DRAM memory cells in order to get rid of the bulky storage capacitor. In our study we have taken into consideration a Dual Gate-ZRAM (DGZRAM) as it helps reduce drain-induced barrier lowering and hence leakage, while having better control of the charge in the substrate. The states are written into the device using impact ionization to generate a large number of holes in the substrate, which alter the threshold voltage of the device. The effect of the gate oxide thickness and substrate body thickness are being taken into consideration to increase the change in the threshold voltage and thereby the noise margin. A DGZRAM structure with a Quantum well introduced into the substrate via a SiGe layer was also simulated. The quantum well introduces a hole storage pocket in the substrate. Comparisons in terms of noise margin have been made for both the devices, which show that the structure with the quantum well in the substrate performs better than the bulk structure. Simulations have been performed taking into consideration gate electrodes with different work functions and it has been observed that while n-polysilicon has a detrimental impact in conventional MOSFETs due to high off-state leakage current, it can be used to obtain low power memory cells. Parameters such as the quantum well doping density, composition of Ge in the quantum well, channel length of the device, SiGe layer thickness and its position with respect to the top gate have been varied to obtain the optimum noise margin for the device.

  20. Physical Activity Is Positively Associated with Episodic Memory in Aging

    PubMed Central

    Hayes, Scott M.; Alosco, Michael L.; Hayes, Jasmeet P.; Cadden, Margaret; Peterson, Kristina M.; Allsup, Kelly; Forman, Daniel E.; Sperling, Reisa A.; Verfaellie, Mieke

    2016-01-01

    Aging is associated with performance reductions in executive function and episodic memory, although there is substantial individual variability in cognition among older adults. One factor that may be positively associated with cognition in aging is physical activity. To date, few studies have objectively assessed physical activity in young and older adults, and examined whether physical activity is differentially associated with cognition in aging. Young (n = 29, age 18–31 years) and older adults (n = 31, ages 55–82 years) completed standardized neuropsychological testing to assess executive function and episodic memory capacities. An experimental face-name relational memory task was administered to augment assessment of episodic memory. Physical activity (total step count and step rate) was objectively assessed using an accelerometer, and hierarchical regressions were used to evaluate relationships between cognition and physical activity. Older adults performed more poorly on tasks of executive function and episodic memory. Physical activity was positively associated with a composite measure of visual episodic memory and face-name memory accuracy in older adults. Physical activity associations with cognition were independent of sedentary behavior, which was negatively correlated with memory performance. Physical activity was not associated with cognitive performance in younger adults. Physical activity is positively associated with episodic memory performance in aging. The relationship appears to be strongest for face-name relational memory and visual episodic memory, likely attributable to the fact that these tasks make strong demands on the hippocampus. The results suggest that physical activity relates to cognition in older, but not younger adults. PMID:26581790

  1. Neural network based feed-forward high density associative memory

    NASA Technical Reports Server (NTRS)

    Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.

    1987-01-01

    A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.

  2. For a Cognitive Model of Subjective Memory Awareness.

    PubMed

    Dalla Barba, Gianfranco; La Corte, Valentina; Dubois, Bruno

    2015-09-24

    The clinical challenge in subjective memory decline (SMD) is to identify which individuals will present memory deficits. Since its early description from Babinsky, who coined the term 'anosognosia' (i.e., the lack of awareness of deficit), the awareness of cognitive impairment is crucial in clinical neuropsychology. We propose a cognitive model in which SMD and anosognosia can be considered two opposite forms of distorted awareness of cognitive performance and can be accounted for within a model in which consciousness of memory performance can vary in a continuum from normal awareness of performance (preserved or impaired) to anosognosia through a disorder of consciousness related to SMD that we call "cognitive dysgnosia", i.e., awareness of normal performance as impaired. This model suggests that the neuropsychological assessment of memory performance should always be coupled with a deep evaluation of awareness of the subject's memory profile, which allow to better identify the disorder of consciousness with or without cognitive impairment. In this line, it seems necessary to develop more sensitive neuropsychological tools in order to discriminate, within the SMD, individuals who are likely to develop clinical Alzheimer's disease from those whose memory decline complaint is not associated with an underlying neurodegenerative pathology.

  3. Associative-Memory Array Of Optical Logic Gates

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1991-01-01

    Experimental optical associative-memory apparatus measures similarity or dissimilarity between input binary image and each of M binary images in memory. Uses Hamming distance as measure of dissimilarity, determines which (if any) of memory images closely or most closely resembles input image. Indicates this match by displaying image (e.g., recognized image or symbol, word, number, or other substitute image) in real time on output plane.

  4. IMPLICIT MEMORY FOR NOVEL CONCEPTUAL ASSOCIATIONS IN AMNESIA

    PubMed Central

    Verfaellie, Mieke; Martin, Elizabeth; Page, Katie; Keane, Margaret M.

    2006-01-01

    In two experiments, we evaluated the status of implicit memory for novel associations in amnesia. Experiment 1 assessed priming in a category exemplar generation task in which contextual information associated with a target could increase the likelihood of target generation. Control participants, but not amnesic patients, showed associative priming. Amnesics’ impairment was not due to the use of explicit memory by control subjects, but reflected a genuine impairment in implicit memory for novel conceptual associations. Experiment 2 assessed priming in a relatedness judgment task, in which associative priming was manifest as slower latencies for old than for recombined pairs of unrelated words. Amnesic patients showed intact associative priming in this task. We discuss differences in the status of implicit memory for novel conceptual associations in amnesia with reference to the nature of the representation that supports priming in the two tasks and the type of processing that is required at test. PMID:17007230

  5. Automatic ground control point recognition with parallel associative memory

    NASA Technical Reports Server (NTRS)

    Al-Tahir, Raid; Toth, Charles K.; Schenck, Anton F.

    1990-01-01

    The basic principle of the associative memory is to match the unknown input pattern against a stored training set, and responding with the 'closest match' and the corresponding label. Generally, an associative memory system requires two preparatory steps: selecting attributes of the pattern class, and training the system by associating patterns with labels. Experimental results gained from using Parallel Associative Memory are presented. The primary concern is an automatic search for ground control points in aerial photographs. Synthetic patterns are tested followed by real data. The results are encouraging as a relatively high level of correct matches is reached.

  6. Modulation of working memory updating: Does long-term memory lexical association matter?

    PubMed

    Artuso, Caterina; Palladino, Paola

    2016-02-01

    The aim of the present study was to investigate how working memory updating for verbal material is modulated by enduring properties of long-term memory. Two coexisting perspectives that account for the relation between long-term representation and short-term performance were addressed. First, evidence suggests that performance is more closely linked to lexical properties, that is, co-occurrences within the language. Conversely, other evidence suggests that performance is linked more to long-term representations which do not entail lexical/linguistic representations. Our aim was to investigate how these two kinds of long-term memory associations (i.e., lexical or nonlexical) modulate ongoing working memory activity. Therefore, we manipulated (between participants) the strength of the association in letters based on either frequency of co-occurrences (lexical) or contiguity along the sequence of the alphabet (nonlexical). Results showed a cost in working memory updating for strongly lexically associated stimuli only. Our findings advance knowledge of how lexical long-term memory associations between consonants affect working memory updating and, in turn, contribute to the study of factors which impact the updating process across memory systems.

  7. Sensitivity of Negative Subsequent Memory and Task-Negative Effects to Age and Associative Memory Performance

    PubMed Central

    de Chastelaine, Marianne; Mattson, Julia T.; Wang, Tracy H.; Donley, Brian E.; Rugg, Michael D.

    2014-01-01

    The present fMRI experiment employed associative recognition to investigate the relationships between age and encoding-related negative subsequent memory effects and task-negative effects. Young, middle-aged and older adults (total n = 136) were scanned while they made relational judgments on visually presented word pairs. In a later memory test, the participants made associative recognition judgments on studied, rearranged (items studied on different trials) and new pairs. Several regions, mostly localized to the default mode network, demonstrated negative subsequent memory effects in an across age-group analysis. All but one of these regions also demonstrated task-negative effects, although there was no correlation between the size of the respective effects. Whereas negative subsequent memory effects demonstrated a graded attenuation with age, task-negative effects declined markedly between the young and the middle-aged group, but showed no further reduction in the older group. Negative subsequent memory effects did not correlate with memory performance within any age group. By contrast, in the older group only, task-negative effects predicted later memory performance. The findings demonstrate that negative subsequent memory and task-negative effects depend on dissociable neural mechanisms and likely reflect distinct cognitive processes. The relationship between task-negative effects and memory performance in the older group might reflect the sensitivity of these effects to variations in amount of age-related neuropathology. PMID:25264353

  8. Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress.

    PubMed

    Patki, Gaurav; Solanki, Naimesh; Atrooz, Fatin; Allam, Farida; Salim, Samina

    2013-11-20

    In the present study, we have examined the behavioral and biochemical effect of induction of psychological stress using a modified version of the resident-intruder model for social stress (social defeat). At the end of the social defeat protocol, body weights, food and water intake were recorded, depression and anxiety-like behaviors as well as memory function was examined. Biochemical analysis including oxidative stress measurement, inflammatory markers and other molecular parameters, critical to behavioral effects were examined. We observed a significant decrease in the body weight in the socially defeated rats as compared to the controls. Furthermore, social defeat increased anxiety-like behavior and caused memory impairment in rats (P<0.05). Socially defeated rats made significantly more errors in long term memory tests (P<0.05) as compared to control rats. Furthermore, brain extracellular signal-regulated kinase-1/2 (ERK1/2), and an inflammatory marker, interleukin (IL)-6 were activated (P<0.05), while the protein levels of glyoxalase (GLO)-1, glutathione reductase (GSR)-1, calcium/calmodulin-dependent protein kinase type (CAMK)-IV, cAMP-response-element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were significantly less (P<0.05) in the hippocampus, but not in the prefrontal cortex and amygdala of socially defeated rats, when compared to control rats. We suggest that social defeat stress alters ERK1/2, IL-6, GLO1, GSR1, CAMKIV, CREB, and BDNF levels in specific brain areas, leading to oxidative stress-induced anxiety-depression-like behaviors and as well as memory impairment in rats.

  9. The Associative Structure of Memory for Multi-Element Events

    PubMed Central

    2013-01-01

    The hippocampus is thought to be an associative memory “convergence zone,” binding together the multimodal elements of an experienced event into a single engram. This predicts a degree of dependency between the retrieval of the different elements comprising an event. We present data from a series of studies designed to address this prediction. Participants vividly imagined a series of person–location–object events, and memory for these events was assessed across multiple trials of cued retrieval. Consistent with the prediction, a significant level of dependency was found between the retrieval of different elements from the same event. Furthermore, the level of dependency was sensitive both to retrieval task, with higher dependency during cued recall than cued recognition, and to subjective confidence. We propose a simple model, in which events are stored as multiple pairwise associations between individual event elements, and dependency is captured by a common factor that varies across events. This factor may relate to between-events modulation of the strength of encoding, or to a process of within-event “pattern completion” at retrieval. The model predicts the quantitative pattern of dependency in the data when changes in the level of guessing with retrieval task and confidence are taken into account. Thus, we find direct behavioral support for the idea that memory for complex multimodal events depends on the pairwise associations of their constituent elements and that retrieval of the various elements corresponding to the same event reflects a common factor that varies from event to event. PMID:23915127

  10. A Mathematical Model for the Hippocampus: Towards the Understanding of Episodic Memory and Imagination

    NASA Astrophysics Data System (ADS)

    Tsuda, I.; Yamaguti, Y.; Kuroda, S.; Fukushima, Y.; Tsukada, M.

    How does the brain encode episode? Based on the fact that the hippocampus is responsible for the formation of episodic memory, we have proposed a mathematical model for the hippocampus. Because episodic memory includes a time series of events, an underlying dynamics for the formation of episodic memory is considered to employ an association of memories. David Marr correctly pointed out in his theory of archecortex for a simple memory that the hippocampal CA3 is responsible for the formation of associative memories. However, a conventional mathematical model of associative memory simply guarantees a single association of memory unless a rule for an order of successive association of memories is given. The recent clinical studies in Maguire's group for the patients with the hippocampal lesion show that the patients cannot make a new story, because of the lack of ability of imagining new things. Both episodic memory and imagining things include various common characteristics: imagery, the sense of now, retrieval of semantic information, and narrative structures. Taking into account these findings, we propose a mathematical model of the hippocampus in order to understand the common mechanism of episodic memory and imagination.

  11. FMRI signals associated with memory strength in the medial temporal lobes: a meta-analysis.

    PubMed

    Wais, Peter E

    2008-12-01

    To identify patterns of memory-related neural activity in the medial temporal lobes (MTL), a quantitative meta-analysis of 17 functional magnetic resonance imaging (fMRI) studies was performed. The analysis shows that increased activity in the hippocampus and the parahippocampal cortex predicts subsequent memory strength. During retrieval, activity in the hippocampus increases in association with strong memory. In the perirhinal cortex, increased activity predicts subsequent recognition, whether based on weak or strong memory, whereas during retrieval activity decreases below the level for misses in association with both weak and strong memory. The results are consistent with the claim that the hippocampus selectively subserves recollection, whereas adjacent structures subserve familiarity [Eichenbaum, H., Yonelinas, A., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. The Annual Review of Neuroscience, 30, 123-152]. However, this conclusion depends on a specific dual-process theory of recognition memory that has been used to interpret the results. An alternative dual-process model holds that the behavioral methods used to differentiate recollection from familiarity instead separate strong memories from weak memories. When the fMRI data are interpreted in terms of the alternative theory, the fMRI results do not point to selective roles for the hippocampus or the adjacent MTL structures. The fMRI data alone cannot distinguish between these two models, so other methods are needed to resolve the issue.

  12. Associative Memory in Three Aplysiids: Correlation with Heterosynaptic Modulation

    ERIC Educational Resources Information Center

    Thompson, Laura; Wright, William G.; Hoover, Brian A.; Nguyen, Hoang

    2006-01-01

    Much recent research on mechanisms of learning and memory focuses on the role of heterosynaptic neuromodulatory signaling. Such neuromodulation appears to stabilize Hebbian synaptic changes underlying associative learning, thereby extending memory. Previous comparisons of three related sea-hares (Mollusca, Opisthobranchia) uncovered interspecific…

  13. Memory Asymmetry of Forward and Backward Associations in Recognition Tasks

    ERIC Educational Resources Information Center

    Yang, Jiongjiong; Zhao, Peng; Zhu, Zijian; Mecklinger, Axel; Fang, Zhiyong; Li, Han

    2013-01-01

    There is an intensive debate on whether memory for serial order is symmetric. The objective of this study was to explore whether associative asymmetry is modulated by memory task (recognition vs. cued recall). Participants were asked to memorize word triples (Experiments 1-2) or pairs (Experiments 3-6) during the study phase. They then recalled…

  14. Associative Memory in Three Aplysiids: Correlation with Heterosynaptic Modulation

    ERIC Educational Resources Information Center

    Thompson, Laura; Wright, William G.; Hoover, Brian A.; Nguyen, Hoang

    2006-01-01

    Much recent research on mechanisms of learning and memory focuses on the role of heterosynaptic neuromodulatory signaling. Such neuromodulation appears to stabilize Hebbian synaptic changes underlying associative learning, thereby extending memory. Previous comparisons of three related sea-hares (Mollusca, Opisthobranchia) uncovered interspecific…

  15. Memory Asymmetry of Forward and Backward Associations in Recognition Tasks

    ERIC Educational Resources Information Center

    Yang, Jiongjiong; Zhao, Peng; Zhu, Zijian; Mecklinger, Axel; Fang, Zhiyong; Li, Han

    2013-01-01

    There is an intensive debate on whether memory for serial order is symmetric. The objective of this study was to explore whether associative asymmetry is modulated by memory task (recognition vs. cued recall). Participants were asked to memorize word triples (Experiments 1-2) or pairs (Experiments 3-6) during the study phase. They then recalled…

  16. The association between involuntary memory and emotional adjustment after childbirth.

    PubMed

    Briddon, Emma; Isaac, Claire; Slade, Pauline

    2015-11-01

    A woman's memory of her experience of giving birth can strongly influence her mental health, and the development of her relationship with her infant, in a positive or negative direction. Highly distressing, involuntary memories of the birth may indicate symptoms of post-traumatic stress (PTS), which is increasingly recognized as a possible outcome of childbirth. Involuntary memories are not, however, exclusive to trauma and can also be experienced after positive events. This study sought to investigate involuntary memories for childbirth, as this is an event that is known to be potentially experienced both as highly positive and negative, and associated with a range of emotional outcomes, including greater well-being and symptoms of PTS. A total of 122 women completed a measure of their emotional experience of giving birth within 3 days of the event, and 65 of these women responded to a postal follow-up at 6 weeks, with measures of involuntary memory experience, PTS symptoms and well-being. Experiencing pleasant involuntary memories was more common than experiencing unpleasant involuntary memories of the birth. The frequency of these memories and how they were experienced as either distressing or enjoyable was associated with post-partum emotional adjustment, demonstrated by the development of PTS symptoms or greater well-being. These results are important because to date, little research has examined the development of positive involuntary memories and their association with positive emotional adjustment. Statement of contribution What is already known on this subject? Positive and negative emotional experiences can coexist in childbirth. Involuntary memories after negative events can be associated with post-traumatic stress. Involuntary memories can also occur after strongly positive events. What does this study add? Women can experience both positive and negative involuntary memories after childbirth. Involuntary negative memories mediate the link between birth

  17. Effects of non-invasive brain stimulation on associative memory

    DOE PAGES

    Matzen, Laura E.; Trumbo, Michael C.; Leach, Ryan C.; ...

    2015-07-30

    Associative memory refers to remembering the association between two items, such as a face and a name. It is a crucial part of daily life, but it is also one of the first aspects of memory performance that is impacted by aging and by Alzheimer’s disease. Evidence suggests that transcranial direct current stimulation (tDCS) can improve memory performance, but few tDCS studies have investigated its impact on associative memory. In addition, no prior study of the effects of tDCS on memory performance has systematically evaluated the impact of tDCS on different types of memory assessments, such as recognition and recallmore » tests. In this study, we measured the effects of tDCS on associative memory performance in healthy adults, using both recognition and recall tests. Participants studied face-name pairs while receiving either active (30 minutes, 2 mA) or sham (30 minutes, 0.1 mA) stimulation with the anode placed at F9 and the cathode placed on the contralateral upper arm. Participants in the active stimulation group performed significantly better on the recall test than participants in the sham group, recalling 50% more names, on average, and making fewer recall errors. However, the two groups did not differ significantly in terms of their performance on the recognition memory test. This investigation provides evidence that stimulation at the time of study improves associative memory encoding, but that this memory benefit is evident only under certain retrieval conditions.« less

  18. Brain serotonin 4 receptor binding is inversely associated with verbal memory recall.

    PubMed

    Stenbæk, Dea S; Fisher, Patrick M; Ozenne, Brice; Andersen, Emil; Hjordt, Liv V; McMahon, Brenda; Hasselbalch, Steen G; Frokjaer, Vibe G; Knudsen, Gitte M

    2017-04-01

    We have previously identified an inverse relationship between cerebral serotonin 4 receptor (5-HT 4R) binding and nonaffective episodic memory in healthy individuals. Here, we investigate in a novel sample if the association is related to affective components of memory, by examining the association between cerebral 5-HT 4R binding and affective verbal memory recall. Twenty-four healthy volunteers were scanned with the 5-HT 4R radioligand [(11)C]SB207145 and positron emission tomography, and were tested with the Verbal Affective Memory Test-24. The association between 5-HT 4R binding and affective verbal memory was evaluated using a linear latent variable structural equation model. We observed a significant inverse association across all regions between 5-HT 4R binding and affective verbal memory performances for positive (p = 5.5 × 10(-4)) and neutral (p = .004) word recall, and an inverse but nonsignificant association for negative (p = .07) word recall. Differences in the associations with 5-HT 4R binding between word categories (i.e., positive, negative, and neutral) did not reach statistical significance. Our findings replicate our previous observation of a negative association between 5-HT 4R binding and memory performance in an independent cohort and provide novel evidence linking 5-HT 4R binding, as a biomarker for synaptic 5-HT levels, to the mnestic processing of positive and neutral word stimuli in healthy humans.

  19. Neurotrophin receptor p75(NTR) mediates Huntington's disease-associated synaptic and memory dysfunction.

    PubMed

    Brito, Verónica; Giralt, Albert; Enriquez-Barreto, Lilian; Puigdellívol, Mar; Suelves, Nuria; Zamora-Moratalla, Alfonsa; Ballesteros, Jesús J; Martín, Eduardo D; Dominguez-Iturza, Nuria; Morales, Miguel; Alberch, Jordi; Ginés, Sílvia

    2014-10-01

    Learning and memory deficits are early clinical manifestations of Huntington's disease (HD). These cognitive impairments have been mainly associated with frontostriatal HD pathology; however, compelling evidence provided by several HD murine models suggests that the hippocampus may contribute to synaptic deficits and memory dysfunction in HD. The neurotrophin receptor p75(NTR) negatively regulates spine density, which is associated with learning and memory; therefore, we explored whether disturbed p75(NTR) function in the hippocampus could contribute to synaptic dysfunction and memory deficits in HD. Here, we determined that levels of p75(NTR) are markedly increased in the hippocampus of 2 distinct mouse models of HD and in HD patients. Normalization of p75(NTR) levels in HD mutant mice heterozygous for p75(NTR) prevented memory and synaptic plasticity deficits and ameliorated dendritic spine abnormalities, likely through normalization of the activity of the GTPase RhoA. Moreover, viral-mediated overexpression of p75(NTR) in the hippocampus of WT mice reproduced HD learning and memory deficits, while knockdown of p75(NTR) in the hippocampus of HD mice prevented cognitive decline. Together, these findings provide evidence of hippocampus-associated memory deficits in HD and demonstrate that p75(NTR) mediates synaptic, learning, and memory dysfunction in HD.

  20. Neurotrophin receptor p75NTR mediates Huntington’s disease–associated synaptic and memory dysfunction

    PubMed Central

    Brito, Verónica; Giralt, Albert; Enriquez-Barreto, Lilian; Puigdellívol, Mar; Suelves, Nuria; Zamora-Moratalla, Alfonsa; Ballesteros, Jesús J.; Martín, Eduardo D.; Dominguez-Iturza, Nuria; Morales, Miguel; Alberch, Jordi; Ginés, Sílvia

    2014-01-01

    Learning and memory deficits are early clinical manifestations of Huntington’s disease (HD). These cognitive impairments have been mainly associated with frontostriatal HD pathology; however, compelling evidence provided by several HD murine models suggests that the hippocampus may contribute to synaptic deficits and memory dysfunction in HD. The neurotrophin receptor p75NTR negatively regulates spine density, which is associated with learning and memory; therefore, we explored whether disturbed p75NTR function in the hippocampus could contribute to synaptic dysfunction and memory deficits in HD. Here, we determined that levels of p75NTR are markedly increased in the hippocampus of 2 distinct mouse models of HD and in HD patients. Normalization of p75NTR levels in HD mutant mice heterozygous for p75NTR prevented memory and synaptic plasticity deficits and ameliorated dendritic spine abnormalities, likely through normalization of the activity of the GTPase RhoA. Moreover, viral-mediated overexpression of p75NTR in the hippocampus of WT mice reproduced HD learning and memory deficits, while knockdown of p75NTR in the hippocampus of HD mice prevented cognitive decline. Together, these findings provide evidence of hippocampus-associated memory deficits in HD and demonstrate that p75NTR mediates synaptic, learning, and memory dysfunction in HD. PMID:25180603

  1. Working memory and reward association learning impairments in obesity

    PubMed Central

    Coppin, Géraldine; Nolan-Poupart, Sarah; Jones-Gotman, Marilyn; Small, Dana M.

    2014-01-01

    Obesity has been associated with impaired executive functions including working memory. Less explored is the influence of obesity on learning and memory. In the current study we assessed stimulus reward association learning, explicit learning and memory and working memory in healthy weight, overweight and obese individuals. Explicit learning and memory did not differ as a function of group. In contrast, working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group. In the first reward association learning task the obese, but not healthy weight or overweight participants consistently formed paradoxical preferences for a pattern associated with a negative outcome (fewer food rewards). To determine if the deficit was specific to food reward a second experiment was conducted using money. Consistent with experiment 1, obese individuals selected the pattern associated with a negative outcome (fewer monetary rewards) more frequently than healthy weight individuals and thus failed to develop a significant preference for the most rewarded patterns as was observed in the healthy weight group. Finally, on a probabilistic learning task, obese compared to healthy weight individuals showed deficits in negative, but not positive outcome learning. Taken together, our results demonstrate deficits in working memory and stimulus reward learning in obesity and suggest that obese individuals are impaired in learning to avoid negative outcomes. PMID:25447070

  2. Working memory and reward association learning impairments in obesity.

    PubMed

    Coppin, Géraldine; Nolan-Poupart, Sarah; Jones-Gotman, Marilyn; Small, Dana M

    2014-12-01

    Obesity has been associated with impaired executive functions including working memory. Less explored is the influence of obesity on learning and memory. In the current study we assessed stimulus reward association learning, explicit learning and memory and working memory in healthy weight, overweight and obese individuals. Explicit learning and memory did not differ as a function of group. In contrast, working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group. In the first reward association learning task the obese, but not healthy weight or overweight participants consistently formed paradoxical preferences for a pattern associated with a negative outcome (fewer food rewards). To determine if the deficit was specific to food reward a second experiment was conducted using money. Consistent with Experiment 1, obese individuals selected the pattern associated with a negative outcome (fewer monetary rewards) more frequently than healthy weight individuals and thus failed to develop a significant preference for the most rewarded patterns as was observed in the healthy weight group. Finally, on a probabilistic learning task, obese compared to healthy weight individuals showed deficits in negative, but not positive outcome learning. Taken together, our results demonstrate deficits in working memory and stimulus reward learning in obesity and suggest that obese individuals are impaired in learning to avoid negative outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Functional neuroanatomical associations of working memory in early-onset Alzheimer's disease.

    PubMed

    Kobylecki, Christopher; Haense, Cathleen; Harris, Jennifer M; Stopford, Cheryl L; Segobin, Shailendra H; Jones, Matthew; Richardson, Anna M T; Gerhard, Alexander; Anton-Rodriguez, José; Thompson, Jennifer C; Herholz, Karl; Snowden, Julie S

    2017-03-16

    To characterize metabolic correlates of working memory impairment in clinically defined subtypes of early-onset Alzheimer's disease. Established models of working memory suggest a key role for frontal lobe function, yet the association in Alzheimer's disease between working memory impairment and visuospatial and language symptoms suggests that temporoparietal neocortical dysfunction may be responsible. Twenty-four patients with predominantly early-onset Alzheimer's disease were clinically classified into groups with predominantly amnestic, multidomain or visual deficits. Patients underwent neuropsychological evaluation focused on the domains of episodic and working memory, T1-weighted magnetic resonance imaging and brain fluorodeoxyglucose positron emission tomography. Fluorodeoxyglucose positron emission tomography data were analysed by using a region-of-interest approach. Patients with multidomain and visual presentations performed more poorly on tests of working memory compared with amnestic Alzheimer's disease. Working memory performance correlated with glucose metabolism in left-sided temporoparietal, but not frontal neocortex. Carriers of the apolipoprotein E4 gene showed poorer episodic memory and better working memory performance compared with noncarriers. Our findings support the hypothesis that working memory changes in early-onset Alzheimer's disease are related to temporoparietal rather than frontal hypometabolism and show dissociation from episodic memory performance. They further support the concept of subtypes of Alzheimer's disease with distinct cognitive profiles due to prominent neocortical dysfunction early in the disease course. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. A new approach for implementation of associative memory using volume holographic materials

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad; Pashaie, Ramin

    2012-02-01

    Associative memory, also known as fault tolerant or content-addressable memory, has gained considerable attention in last few decades. This memory possesses important advantages over the more common random access memories since it provides the capability to correct faults and/or partially missing information in a given input pattern. There is general consensus that optical implementation of connectionist models and parallel processors including associative memory has a better record of success compared to their electronic counterparts. In this article, we describe a novel optical implementation of associative memory which not only has the advantage of all optical learning and recalling capabilities, it can also be realized easily. We present a new approach, inspired by tomographic imaging techniques, for holographic implementation of associative memories. In this approach, a volume holographic material is sandwiched within a matrix of inputs (optical point sources) and outputs (photodetectors). The memory capacity is realized by the spatial modulation of refractive index of the holographic material. Constructing the spatial distribution of the refractive index from an array of known inputs and outputs is formulated as an inverse problem consisting a set of linear integral equations.

  5. A general model for memory interference in a multiprocessor system with memory hierarchy

    NASA Technical Reports Server (NTRS)

    Taha, Badie A.; Standley, Hilda M.

    1989-01-01

    The problem of memory interference in a multiprocessor system with a hierarchy of shared buses and memories is addressed. The behavior of the processors is represented by a sequence of memory requests with each followed by a determined amount of processing time. A statistical queuing network model for determining the extent of memory interference in multiprocessor systems with clusters of memory hierarchies is presented. The performance of the system is measured by the expected number of busy memory clusters. The results of the analytic model are compared with simulation results, and the correlation between them is found to be very high.

  6. A general model for memory interference in a multiprocessor system with memory hierarchy

    NASA Technical Reports Server (NTRS)

    Taha, Badie A.; Standley, Hilda M.

    1989-01-01

    The problem of memory interference in a multiprocessor system with a hierarchy of shared buses and memories is addressed. The behavior of the processors is represented by a sequence of memory requests with each followed by a determined amount of processing time. A statistical queuing network model for determining the extent of memory interference in multiprocessor systems with clusters of memory hierarchies is presented. The performance of the system is measured by the expected number of busy memory clusters. The results of the analytic model are compared with simulation results, and the correlation between them is found to be very high.

  7. Early Fear Memory Defects Are Associated with Altered Synaptic Plasticity and Molecular Architecture in the TgCRND8 Alzheimer's Disease Mouse Model

    PubMed Central

    Steele, John W.; Brautigam, Hannah; Short, Jennifer A.; Sowa, Allison; Shi, Mengxi; Yadav, Aniruddha; Weaver, Christina M.; Westaway, David; Fraser, Paul E.; St George-Hyslop, Peter H.; Gandy, Sam; Hof, Patrick R.; Dickstein, Dara L.

    2014-01-01

    Alzheimer's disease (AD) is a complex and slowly progressing dementing disorder that results in neuronal and synaptic loss, deposition in brain of aberrantly folded proteins, and impairment of spatial and episodic memory. Most studies of mouse models of AD have employed analyses of cognitive status and assessment of amyloid burden, gliosis, and molecular pathology during disease progression. Here, we sought to understand the behavioral, cellular, ultrastructural, and molecular changes that occur at a pathological stage equivalent to early stages of human AD. We studied the TgCRND8 mouse, a model of aggressive AD amyloidosis, at an early stage of plaque pathology (3 months of age) in comparison to their wild-type littermates and assessed changes in cognition, neuron and spine structure, and expression of synaptic glutamate receptor proteins. We found that, at this age, TgCRND8 mice display substantial plaque deposition in the neocortex and hippocampus and impairment on cued and contextual memory tasks. Of particular interest, we also observed a significant decrease in the number of neurons in the hippocampus. Furthermore, analysis of CA1 neurons revealed significant changes in apical and basal dendritic spine types, as well as altered expression of GluN1 and GluA2 receptors. This change in molecular architecture within the hippocampus may reflect a rising representation of inherently less stable thin spine populations, which can cause cognitive decline. These changes, taken together with toxic insults from amyloid-β protein, may underlie the observed neuronal loss. PMID:24415002

  8. Factorial Comparison of Working Memory Models

    PubMed Central

    van den Berg, Ronald; Awh, Edward; Ma, Wei Ji

    2014-01-01

    Three questions have been prominent in the study of visual working memory limitations: (a) What is the nature of mnemonic precision (e.g., quantized or continuous)? (b) How many items are remembered? (c) To what extent do spatial binding errors account for working memory failures? Modeling studies have typically focused on comparing possible answers to a single one of these questions, even though the result of such a comparison might depend on the assumed answers to both others. Here, we consider every possible combination of previously proposed answers to the individual questions. Each model is then a point in a 3-factor model space containing a total of 32 models, of which only 6 have been tested previously. We compare all models on data from 10 delayed-estimation experiments from 6 laboratories (for a total of 164 subjects and 131,452 trials). Consistently across experiments, we find that (a) mnemonic precision is not quantized but continuous and not equal but variable across items and trials; (b) the number of remembered items is likely to be variable across trials, with a mean of 6.4 in the best model (median across subjects); (c) spatial binding errors occur but explain only a small fraction of responses (16.5% at set size 8 in the best model). We find strong evidence against all 6 documented models. Our results demonstrate the value of factorial model comparison in working memory. PMID:24490791

  9. Prose memory deficits associated with schizophrenia.

    PubMed

    Lee, Tatia M C; Chan, Michelle W C; Chan, Chetwyn C H; Gao, Junling; Wang, Kai; Chen, Eric Y H

    2006-01-31

    Memory of contextual information is essential to one's quality of living. This study investigated if the different components of prose memory, across three recall conditions: first learning trial immediate recall, fifth learning trial immediate recall, and 30-min delayed recall, are differentially impaired in people with schizophrenia, relative to healthy controls. A total of 39 patients with schizophrenia and 39 matched healthy controls were recruited. Their prose memory, in terms of recall accuracy, temporal sequence, recognition accuracy and false positives, commission of distortions, and rates of learning, forgetting, and retention were tested and compared. After controlling for the level of intelligence and depression, the patients with schizophrenia were found to commit more distortions. Furthermore, they performed poorer on recall accuracy and temporal sequence accuracy only during the first initial immediate recall. On the other hand, the rates of forgetting/retention and recognition accuracy were comparable between the two groups. These findings suggest that people with schizophrenia could be benefited by repeated exposure to the materials to be remembered. These results may have important implications for rehabilitation of verbal declarative memory deficits in schizophrenia.

  10. Noradrenergic regulation of fear and drug-associated memory reconsolidation.

    PubMed

    Otis, James M; Werner, Craig T; Mueller, Devin

    2015-03-01

    Emotional and traumatic experiences lead to the development of particularly strong memories that can drive neuropsychiatric disorders, such as posttraumatic stress disorder (PTSD) and drug addiction. Disruption of these memories would therefore serve as a powerful treatment option, and targeting the pathologic emotional, but not declarative, component of a memory would be ideal for clinical intervention. Research reveals that after retrieval of a consolidated memory, the memory can be destabilized, and must then be reconsolidated through synaptic plasticity to allow subsequent retrieval. Disruption of reconsolidation-related plasticity would therefore impair specific, reactivated memories. Noradrenergic signaling strengthens synaptic plasticity and is essential for encoding the emotional components of memory. Consistent with this, investigations have now revealed that noradrenergic signaling is a critical mechanism for reconsolidation of emotional memories in rodent and human models. Here, we discuss these investigations and promising clinical trials indicating that disruption of noradrenergic signaling during reconsolidation may abolish the pathologic emotional, but not declarative, component of memories allowing alleviation of neuropsychiatric disorders including PTSD and drug addiction.

  11. Noradrenergic Regulation of Fear and Drug-Associated Memory Reconsolidation

    PubMed Central

    Otis, James M; Werner, Craig T; Mueller, Devin

    2015-01-01

    Emotional and traumatic experiences lead to the development of particularly strong memories that can drive neuropsychiatric disorders, such as posttraumatic stress disorder (PTSD) and drug addiction. Disruption of these memories would therefore serve as a powerful treatment option, and targeting the pathologic emotional, but not declarative, component of a memory would be ideal for clinical intervention. Research reveals that after retrieval of a consolidated memory, the memory can be destabilized, and must then be reconsolidated through synaptic plasticity to allow subsequent retrieval. Disruption of reconsolidation-related plasticity would therefore impair specific, reactivated memories. Noradrenergic signaling strengthens synaptic plasticity and is essential for encoding the emotional components of memory. Consistent with this, investigations have now revealed that noradrenergic signaling is a critical mechanism for reconsolidation of emotional memories in rodent and human models. Here, we discuss these investigations and promising clinical trials indicating that disruption of noradrenergic signaling during reconsolidation may abolish the pathologic emotional, but not declarative, component of memories allowing alleviation of neuropsychiatric disorders including PTSD and drug addiction. PMID:25315025

  12. Central Adiposity is Negatively Associated with Hippocampal-Dependent Relational Memory among Overweight and Obese Children

    PubMed Central

    Khan, Naiman A.; Baym, Carol L.; Monti, Jim M.; Raine, Lauren B.; Drollette, Eric S.; Scudder, Mark R.; Moore, R. Davis; Kramer, Arthur F.; Hillman, Charles H.; Cohen, Neal J.

    2014-01-01

    Objective To assess associations between adiposity and hippocampal-dependent and hippocampal-independent memory forms among prepubertal children. Study design Prepubertal children (7–9-year-olds, n = 126), classified as non-overweight (<85th %tile BMI-for-age [n = 73]) or overweight/obese (≥85th %tile BMI-for-age [n = 53]), completed relational (hippocampal-dependent) and item (hippocampal-independent) memory tasks, and performance was assessed with both direct (behavioral accuracy) and indirect (preferential disproportionate viewing [PDV]) measures. Adiposity (%whole body fat mass, subcutaneous abdominal adipose tissue, visceral adipose tissue, and total abdominal adipose tissue) was assessed using DXA. Backward regressions identified significant (P <0.05) predictive models of memory performance. Covariates included age, sex, pubertal timing, socioeconomic status, IQ, oxygen consumption (VO2max), and body mass index (BMI) z-score. Results Among overweight/obese children, total abdominal adipose tissue was a significant negative predictor of relational memory behavioral accuracy, and pubertal timing together with socioeconomic status jointly predicted the PDV measure of relational memory. In contrast, among non-overweight children, male sex predicted item memory behavioral accuracy, and a model consisting of socioeconomic status and BMI z-score jointly predicted the PDV measure of relational memory. Conclusions Regional, and not whole body, fat deposition was selectively and negatively associated with hippocampal-dependent relational memory among overweight/obese prepubertal children. PMID:25454939

  13. Central adiposity is negatively associated with hippocampal-dependent relational memory among overweight and obese children.

    PubMed

    Khan, Naiman A; Baym, Carol L; Monti, Jim M; Raine, Lauren B; Drollette, Eric S; Scudder, Mark R; Moore, R Davis; Kramer, Arthur F; Hillman, Charles H; Cohen, Neal J

    2015-02-01

    To assess associations between adiposity and hippocampal-dependent and hippocampal-independent memory forms among prepubertal children. Prepubertal children (age 7-9 years; n = 126), classified as non-overweight (<85th percentile body mass index [BMI]-for-age [n = 73]) or overweight/obese (≥85th percentile BMI-for-age [n = 53]), completed relational (hippocampal-dependent) and item (hippocampal-independent) memory tasks. Performance was assessed with both direct (behavioral accuracy) and indirect (preferential disproportionate viewing [PDV]) measures. Adiposity (ie, percent whole-body fat mass, subcutaneous abdominal adipose tissue, visceral adipose tissue, and total abdominal adipose tissue) was assessed by dual-energy X-ray absorptiometry. Backward regression identified significant (P < .05) predictive models of memory performance. Covariates included age, sex, pubertal timing, socioeconomic status (SES), IQ, oxygen consumption, and BMI z-score. Among overweight/obese children, total abdominal adipose tissue was a significant negative predictor of relational memory behavioral accuracy, and pubertal timing together with SES jointly predicted the PDV measure of relational memory. In contrast, among non-overweight children, male sex predicted item memory behavioral accuracy, and a model consisting of SES and BMI z-score jointly predicted the PDV measure of relational memory. Regional, but not whole-body, fat deposition was selectively and negatively associated with hippocampal-dependent relational memory among overweight/obese prepubertal children. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Associations Between White Matter Microstructure and Infants’ Working Memory

    PubMed Central

    Short, Sarah J.; Elison, Jed T.; Goldman, Barbara Davis; Styner, Martin; Gu, Hongbin; Connelly, Mark; Maltbie, Eric; Woolson, Sandra; Lin, Weili; Gerig, Guido; Reznick, J. Steven; Gilmore, John H.

    2013-01-01

    Working memory emerges in infancy and plays a privileged role in subsequent adaptive cognitive development. The neural networks important for the development of working memory during infancy remain unknown. We used diffusion tensor imaging (DTI) and deterministic fiber tracking to characterize the microstructure of white matter fiber bundles hypothesized to support working memory in 12-month-old infants (n=73). Here we show robust associations between infants’ visuospatial working memory performance and microstructural characteristics of widespread white matter. Significant associations were found for white matter tracts that connect brain regions known to support working memory in older children and adults (genu, anterior and superior thalamic radiations, anterior cingulum, arcuate fasciculus, and the temporal-parietal segment). Better working memory scores were associated with higher FA and lower RD values in these selected white matter tracts. These tract-specific brain-behavior relationships accounted for a significant amount of individual variation above and beyond infants’ gestational age and developmental level, as measured with the Mullen Scales of Early Learning. Working memory was not associated with global measures of brain volume, as expected, and few associations were found between working memory and control white matter tracts. To our knowledge, this study is among the first demonstrations of brain-behavior associations in infants using quantitative tractography. The ability to characterize subtle individual differences in infant brain development associated with complex cognitive functions holds promise for improving our understanding of normative development, biomarkers of risk, experience-dependent learning and neuro-cognitive periods of developmental plasticity. PMID:22989623

  15. Transcutaneous vagus nerve stimulation boosts associative memory in older individuals.

    PubMed

    Jacobs, Heidi I L; Riphagen, Joost M; Razat, Chantalle M; Wiese, Svenja; Sack, Alexander T

    2015-05-01

    Direct vagus nerve stimulation (dVNS) is known to improve mood, epilepsy, and memory. Memory improvements have been observed in Alzheimer's disease patients after long-term stimulation. The potential of transcutaneous vagus nerve stimulation (tVNS), a noninvasive alternative to dVNS, to alter memory performance remains unknown. We aimed to investigate the effect of a single-session tVNS on associative memory performance in healthy older individuals. To investigate this, we performed a single-blind sham-controlled randomized crossover pilot study in healthy older individuals (n = 30, 50% female). During the stimulation or sham condition, participants performed an associative face-name memory task. tVNS enhanced the number of hits of the memory task, compared with the sham condition. This effect was specific to the experimental task. Participants reported few side effects. We conclude that tVNS is a promising neuromodulatory technique to improve associative memory performance in older individuals, even after a single session. More research is necessary to investigate its underlying neural mechanisms, the impact of varying stimulation parameters, and its applicability in patients with cognitive decline.

  16. Reduced goal specificity is associated with reduced memory specificity in depressed adults.

    PubMed

    Belcher, Jessica; Kangas, Maria

    2014-01-01

    Models of autobiographical memory suggest a close association between memories, future imagination and setting specific personal goals. However this association has yet to be tested with depressed individuals. The aim of this study was to examine whether the specificity of remembering past and imagining future personal events is associated with the specificity of approach and avoidance goals in depressed individuals. Two samples comprising adults who met criteria for major depressive disorder (MDD; N=30) and adults who had no prior history or current depression (N=30) completed autobiographical memory and future event tests, and a personal goal task. In the depressed sample, the specificity with which participants remembered the past was significantly associated with the specificity with which they generated future goals. The depressed sample also elicited fewer specific approach and avoidance goals compared to the non-depressed sample. These findings suggest that an overgeneral memory deficit extends to impairments in goal specificity.

  17. Neural correlates of episodic memory: associative memory and confidence drive hippocampus activations.

    PubMed

    Kuchinke, Lars; Fritzemeier, Steffen; Hofmann, Markus J; Jacobs, Arthur M

    2013-10-01

    The present study used a study-test recognition memory task to examine the brain regions engaged in episodic and associative memory processes. Participants evaluated on a six-point rating scale how confident they were on whether or not an item was presented in a previous study phase. Neural activations for high- and low-confidence decisions were examined in old and new items at two levels of between-item-associations. Items had different amounts of associations within the stimulus set, while associations were defined by co-occurrence statistics. The medial frontal gyrus, the posterior cingulate gyrus, the superior temporal gyrus and the right hippocampus revealed U-shaped activation functions with greater activations for high-confidence OLD and NEW decisions. This was independent of the associative memory manipulation, which suggests that not episodic memory, but rather processes related to confidence account for the activation in these brain regions. In contrast, left hippocampus followed a different activation pattern that was modulated by the amount of associations. This provides evidence for the role of the left hippocampus in associative memory.

  18. Study of performance on SMP and distributed memory architectures using a shared memory programming model

    SciTech Connect

    Brooks, E.D.; Warren, K.H.

    1997-08-08

    In this paper we examine the use of a shared memory programming model to address the problem of portability of application codes between distributed memory and shared memory architectures. We do this with an extension of the Parallel C Preprocessor. The extension, borrowed from Split-C and AC, uses type qualifiers instead of storage class modifiers to declare variables that are shared among processors. The type qualifier declaration supports an abstract shared memory facility on distributed memory machines while making direct use of hardware support on shared memory architectures. Our benchmarking study spans a wide range of shared memory and distributed memory platforms. Benchmarks include Gaussian elimination with back substitution, a two-dimensional fast Fourier transform, and a matrix-matrix multiply. We find that the type-qualifier-based shared memory programming model is capable of efficiently spanning both distributed memory and shared memory architectures. Although the resulting shared memory programming model is portable, it does not remove the need to arrange for overlapped or blocked remote memory references on platforms that require these tuning measures in order to obtain good performance.

  19. Sleep directly following learning benefits consolidation of spatial associative memory.

    PubMed

    Talamini, Lucia M; Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Jensen, Ole

    2008-04-01

    The last decade has brought forth convincing evidence for a role of sleep in non-declarative memory. A similar function of sleep in episodic memory is supported by various correlational studies, but direct evidence is limited. Here we show that cued recall of face-location associations is significantly higher following a 12-h retention interval containing sleep than following an equally long period of waking. Furthermore, retention is significantly higher over a 24-h sleep-wake interval than over an equally long wake-sleep interval. This difference occurs because retention during sleep was significantly better when sleep followed learning directly, rather than after a day of waking. These data demonstrate a beneficial effect of sleep on memory that cannot be explained solely as a consequence of reduced interference. Rather, our findings suggest a competitive consolidation process, in which the fate of a memory depends, at least in part, on its relative stability at sleep onset: Strong memories tend to be preserved, while weaker memories erode still further. An important aspect of memory consolidation may thus result from the removal of irrelevant memory "debris."

  20. When memory pays: Discord in hidden Markov models

    NASA Astrophysics Data System (ADS)

    Lathouwers, Emma; Bechhoefer, John

    2017-06-01

    When is keeping a memory of observations worthwhile? We use hidden Markov models to look at phase transitions that emerge when comparing state estimates in systems with discrete states and noisy observations. We infer the underlying state of the hidden Markov models from the observations in two ways: through naive observations, which take into account only the current observation, and through Bayesian filtering, which takes the history of observations into account. Defining a discord order parameter to distinguish between the different state estimates, we explore hidden Markov models with various numbers of states and symbols and varying transition-matrix symmetry. All behave similarly. We calculate analytically the critical point where keeping a memory of observations starts to pay off. A mapping between hidden Markov models and Ising models gives added insight into the associated phase transitions.

  1. Separating Bias and Sensitivity in Judgments of Associative Memory

    ERIC Educational Resources Information Center

    Maki, William S.

    2007-01-01

    Ratings of the degree of association between words are linearly related to normed associative strengths, but the intercept is high, and the slope is shallow (the judgments of associative memory [JAM] function). Two experiments included manipulations intended to decrease the intercept and increase the slope. Discrimination training on many pairs…

  2. Separating Bias and Sensitivity in Judgments of Associative Memory

    ERIC Educational Resources Information Center

    Maki, William S.

    2007-01-01

    Ratings of the degree of association between words are linearly related to normed associative strengths, but the intercept is high, and the slope is shallow (the judgments of associative memory [JAM] function). Two experiments included manipulations intended to decrease the intercept and increase the slope. Discrimination training on many pairs…

  3. Developmental Differences in Memory for Cross-Modal Associations

    ERIC Educational Resources Information Center

    Pirogovsky, Eva; Murphy, Claire; Gilbert, Paul E.

    2009-01-01

    Associative learning is critical to normal cognitive development in children. However, young adults typically outperform children on paired-associate tasks involving visual, verbal and spatial location stimuli. The present experiment investigated cross-modal odour-place associative memory in children (7-10 years) and young adults (18-24 years).…

  4. Developmental Differences in Memory for Cross-Modal Associations

    ERIC Educational Resources Information Center

    Pirogovsky, Eva; Murphy, Claire; Gilbert, Paul E.

    2009-01-01

    Associative learning is critical to normal cognitive development in children. However, young adults typically outperform children on paired-associate tasks involving visual, verbal and spatial location stimuli. The present experiment investigated cross-modal odour-place associative memory in children (7-10 years) and young adults (18-24 years).…

  5. The Benefits of Targeted Memory Reactivation for Consolidation in Sleep are Contingent on Memory Accuracy and Direct Cue-Memory Associations.

    PubMed

    Cairney, Scott A; Lindsay, Shane; Sobczak, Justyna M; Paller, Ken A; Gaskell, M Gareth

    2016-05-01

    To investigate how the effects of targeted memory reactivation (TMR) are influenced by memory accuracy prior to sleep and the presence or absence of direct cue-memory associations. 30 participants associated each of 50 pictures with an unrelated word and then with a screen location in two separate tasks. During picture-location training, each picture was also presented with a semantically related sound. The sounds were therefore directly associated with the picture locations but indirectly associated with the words. During a subsequent nap, half of the sounds were replayed in slow wave sleep (SWS). The effect of TMR on memory for the picture locations (direct cue-memory associations) and picture-word pairs (indirect cue-memory associations) was then examined. TMR reduced overall memory decay for recall of picture locations. Further analyses revealed a benefit of TMR for picture locations recalled with a low degree of accuracy prior to sleep, but not those recalled with a high degree of accuracy. The benefit of TMR for low accuracy memories was predicted by time spent in SWS. There was no benefit of TMR for memory of the picture-word pairs, irrespective of memory accuracy prior to sleep. TMR provides the greatest benefit to memories recalled with a low degree of accuracy prior to sleep. The memory benefits of TMR may also be contingent on direct cue-memory associations. © 2016 Associated Professional Sleep Societies, LLC.

  6. Phospholipase A2 – nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment

    PubMed Central

    Hermann, Petra M.; Watson, Shawn N.; Wildering, Willem C.

    2014-01-01

    The aging brain undergoes a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (per)oxidation of membrane lipids and activation of phospholipase A2 (PLA2) enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the biology of cognitive aging we portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain. PMID:25538730

  7. Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation

    PubMed Central

    Johansen, Joshua P.; Diaz-Mataix, Lorenzo; Hamanaka, Hiroki; Ozawa, Takaaki; Ycu, Edgar; Koivumaa, Jenny; Kumar, Ashwani; Hou, Mian; Deisseroth, Karl; Boyden, Edward S.; LeDoux, Joseph E.

    2014-01-01

    A long-standing hypothesis termed “Hebbian plasticity” suggests that memories are formed through strengthening of synaptic connections between neurons with correlated activity. In contrast, other theories propose that coactivation of Hebbian and neuromodulatory processes produce the synaptic strengthening that underlies memory formation. Using optogenetics we directly tested whether Hebbian plasticity alone is both necessary and sufficient to produce physiological changes mediating actual memory formation in behaving animals. Our previous work with this method suggested that Hebbian mechanisms are sufficient to produce aversive associative learning under artificial conditions involving strong, iterative training. Here we systematically tested whether Hebbian mechanisms are necessary and sufficient to produce associative learning under more moderate training conditions that are similar to those that occur in daily life. We measured neural plasticity in the lateral amygdala, a brain region important for associative memory storage about danger. Our findings provide evidence that Hebbian mechanisms are necessary to produce neural plasticity in the lateral amygdala and behavioral memory formation. However, under these conditions Hebbian mechanisms alone were not sufficient to produce these physiological and behavioral effects unless neuromodulatory systems were coactivated. These results provide insight into how aversive experiences trigger memories and suggest that combined Hebbian and neuromodulatory processes interact to engage associative aversive learning. PMID:25489081

  8. Exploring anterograde associative memory in London taxi drivers.

    PubMed

    Woollett, Katherine; Maguire, Eleanor A

    2012-10-24

    London taxi drivers are renowned for their navigation ability, spending a number of years acquiring 'The Knowledge' of London's complex layout and having to pass stringent examinations to obtain an operating licence. In several studies, this navigation skill has been associated with increased posterior but also decreased anterior hippocampal grey matter volume. Neuropsychologically, gain and loss has also been documented in taxi drivers; while very skilled at navigation in London, they are significantly poorer than controls at learning and recalling new object-location associations. Here we tested a group of London taxi drivers and matched control participants on this object-location associations task, while also subjecting them to a battery of challenging anterograde associative memory tests involving verbal, visual and auditory material both within and across modalities. Our aim was to assess whether their difficulty in previous studies reflected a general problem with associative memory, or was restricted to the spatial domain. We replicated previous findings of poor learning and memory of object-location associations. By contrast, their performance on the other anterograde associative memory tasks was comparable with controls. This resolves an outstanding question in the memory profile of London taxi drivers following hippocampal plasticity, and underlines the close relationship between space and the hippocampus.

  9. Exploring anterograde associative memory in London taxi drivers

    PubMed Central

    Woollett, Katherine; Maguire, Eleanor A.

    2013-01-01

    London taxi drivers are renowned for their navigation ability, spending a number of years acquiring ‘The Knowledge’ of London’s complex layout and having to pass stringent examinations to obtain an operating licence. In several studies, this navigation skill has been associated with increased posterior but also decreased anterior hippocampal grey matter volume. Neuropsychologically, gain and loss has also been documented in taxi drivers; while very skilled at navigation in London, they are significantly poorer than controls at learning and recalling new object-location associations. Here we tested a group of London taxi drivers and matched control participants on this object-location associations task, while also submitting them to a battery of challenging anterograde associative memory tests involving verbal, visual and auditory material both within and across modalities. Our aim was to assess whether their difficulty in previous studies reflected a general problem with associative memory, or was restricted to the spatial domain. We replicated previous findings of poor learning and memory of object-location associations. By contrast, their performance on the other anterograde associative memory tasks was comparable to controls. This resolves an outstanding question in the memory profile of London taxi drivers following hippocampal plasticity, and underlines the close relationship between space and the hippocampus. PMID:22955143

  10. Search-Related Suppression of Hippocampus and Default Network Activity during Associative Memory Retrieval

    PubMed Central

    Reas, Emilie T.; Gimbel, Sarah I.; Hales, Jena B.; Brewer, James B.

    2011-01-01

    Episodic memory retrieval involves the coordinated interaction of several cognitive processing stages such as mental search, access to a memory store, associative re-encoding, and post-retrieval monitoring. The neural response during memory retrieval is an integration of signals from multiple regions that may subserve supportive cognitive control, attention, sensory association, encoding, or working memory functions. It is particularly challenging to dissociate contributions of these distinct components to brain responses in regions such as the hippocampus, which lies at the interface between overlapping memory encoding and retrieval, and “default” networks. In the present study, event-related functional magnetic resonance imaging (fMRI) and measures of memory performance were used to differentiate brain responses to memory search from subcomponents of episodic memory retrieval associated with successful recall. During the attempted retrieval of both poorly and strongly remembered word pair associates, the hemodynamic response was negatively deflected below baseline in anterior hippocampus and regions of the default network. Activations in anterior hippocampus were functionally distinct from those in posterior hippocampus and negatively correlated with response times. Thus, relative to the pre-stimulus period, the hippocampus shows reduced activity during intensive engagement in episodic memory search. Such deactivation was most salient during trials that engaged only pre-retrieval search processes in the absence of successful recollection or post-retrieval processing. Implications for interpretation of hippocampal fMRI responses during retrieval are discussed. A model is presented to interpret such activations as representing modulation of encoding-related activity, rather than retrieval-related activity. Engagement in intensive mental search may reduce neural and attentional resources that are otherwise tonically devoted to encoding an individual’s stream

  11. Obesity and insulin resistance are associated with reduced activity in core memory regions of the brain.

    PubMed

    Cheke, Lucy G; Bonnici, Heidi M; Clayton, Nicola S; Simons, Jon S

    2017-02-01

    Increasing research in animals and humans suggests that obesity may be associated with learning and memory deficits, and in particular with reductions in episodic memory. Rodent models have implicated the hippocampus in obesity-related memory impairments, but the neural mechanisms underlying episodic memory deficits in obese humans remain undetermined. In the present study, lean and obese human participants were scanned using fMRI while completing a What-Where-When episodic memory test (the "Treasure-Hunt Task") that assessed the ability to remember integrated item, spatial, and temporal details of previously encoded complex events. In lean participants, the Treasure-Hunt task elicited significant activity in regions of the brain known to be important for recollecting episodic memories, such as the hippocampus, angular gyrus, and dorsolateral prefrontal cortex. Both obesity and insulin resistance were associated with significantly reduced functional activity throughout the core recollection network. These findings indicate that obesity is associated with reduced functional activity in core brain areas supporting episodic memory and that insulin resistance may be a key player in this association.

  12. Content-Addressable Memory Storage by Neural Networks: A General Model and Global Liapunov Method,

    DTIC Science & Technology

    1988-03-01

    field, bidirectional associative memory, Volterra - Lotka , Gilpin-Ayala, and Eigen- Schuster models. The Cohen-Grossberg model thus defines a general...masking field, bidirectional associative memory. Volterra - Lotka , Gilpin-Ayala. and Eigen-Schuster models. The Cohen-Grossberg model thus defines a...Liapinov function for - . , a - p a a ~ ~I proving local asymptotic stability of isolated e(quilibrium points of Volterra - Lotka systems with symmetric

  13. Towards Modeling False Memory With Computational Knowledge Bases.

    PubMed

    Li, Justin; Kohanyi, Emma

    2017-01-01

    One challenge to creating realistic cognitive models of memory is the inability to account for the vast common-sense knowledge of human participants. Large computational knowledge bases such as WordNet and DBpedia may offer a solution to this problem but may pose other challenges. This paper explores some of these difficulties through a semantic network spreading activation model of the Deese-Roediger-McDermott false memory task. In three experiments, we show that these knowledge bases only capture a subset of human associations, while irrelevant information introduces noise and makes efficient modeling difficult. We conclude that the contents of these knowledge bases must be augmented and, more important, that the algorithms must be refined and optimized, before large knowledge bases can be widely used for cognitive modeling. Copyright © 2016 Cognitive Science Society, Inc.

  14. Constitutive Models for Shape Memory Alloy Polycrystals

    NASA Technical Reports Server (NTRS)

    Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.

    1996-01-01

    Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.

  15. Constitutive Models for Shape Memory Alloy Polycrystals

    NASA Technical Reports Server (NTRS)

    Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.

    1996-01-01

    Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.

  16. Protein-Based Three-Dimensional Memories and Associative Processors

    NASA Astrophysics Data System (ADS)

    Birge, Robert

    2008-03-01

    The field of bioelectronics has benefited from the fact that nature has often solved problems of a similar nature to those which must be solved to create molecular electronic or photonic devices that operate with efficiency and reliability. Retinal proteins show great promise in bioelectronic devices because they operate with high efficiency (˜0.65%), high cyclicity (>10^7), operate over an extended wavelength range (360 -- 630 nm) and can convert light into changes in voltage, pH, absorption or refractive index. This talk will focus on a retinal protein called bacteriorhodopsin, the proton pump of the organism Halobacterium salinarum. Two memories based on this protein will be described. The first is an optical three-dimensional memory. This memory stores information using volume elements (voxels), and provides as much as a thousand-fold improvement in effective capacity over current technology. A unique branching reaction of a variant of bacteriorhodopsin is used to turn each protein into an optically addressed latched AND gate. Although three working prototypes have been developed, a number of cost/performance and architectural issues must be resolved prior to commercialization. The major issue is that the native protein provides a very inefficient branching reaction. Genetic engineering has improved performance by nearly 500-fold, but a further order of magnitude improvement is needed. Protein-based holographic associative memories will also be discussed. The human brain stores and retrieves information via association, and human intelligence is intimately connected to the nature and enormous capacity of this associative search and retrieval process. To a first order approximation, creativity can be viewed as the association of two seemingly disparate concepts to form a totally new construct. Thus, artificial intelligence requires large scale associative memories. Current computer hardware does not provide an optimal environment for creating artificial

  17. CPEB3 is associated with human episodic memory.

    PubMed

    Vogler, Christian; Spalek, Klara; Aerni, Amanda; Demougin, Philippe; Müller, Ariane; Huynh, Kim-Dung; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2009-01-01

    Cytoplasmic polyadenylation element-binding (CPEB) proteins are crucial for synaptic plasticity and memory in model organisms. A highly conserved, mammalian-specific short intronic sequence within CPEB3 has been identified as a ribozyme with self-cleavage properties. In humans, the ribozyme sequence is polymorphic and harbors a single nucleotide polymorphism that influences cleavage activity of the ribozyme. Here we show that this variation is related to performance in an episodic memory task and that the effect of the variation depends on the emotional valence of the presented material. Our data suggest a role for human CPEB3 in human episodic memory.

  18. A Multinomial Model of Event-Based Prospective Memory

    ERIC Educational Resources Information Center

    Smith, Rebekah E.; Bayen, Ute J.

    2004-01-01

    Prospective memory is remembering to perform an action in the future. The authors introduce the 1st formal model of event-based prospective memory, namely, a multinomial model that includes 2 separate parameters related to prospective memory processes. The 1st measures preparatory attentional processes, and the 2nd measures retrospective memory…

  19. A Formal Model of Capacity Limits in Working Memory

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Kliegl, Reinhold

    2006-01-01

    A mathematical model of working-memory capacity limits is proposed on the key assumption of mutual interference between items in working memory. Interference is assumed to arise from overwriting of features shared by these items. The model was fit to time-accuracy data of memory-updating tasks from four experiments using nonlinear mixed effect…

  20. A Multinomial Model of Event-Based Prospective Memory

    ERIC Educational Resources Information Center

    Smith, Rebekah E.; Bayen, Ute J.

    2004-01-01

    Prospective memory is remembering to perform an action in the future. The authors introduce the 1st formal model of event-based prospective memory, namely, a multinomial model that includes 2 separate parameters related to prospective memory processes. The 1st measures preparatory attentional processes, and the 2nd measures retrospective memory…

  1. A Formal Model of Capacity Limits in Working Memory

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Kliegl, Reinhold

    2006-01-01

    A mathematical model of working-memory capacity limits is proposed on the key assumption of mutual interference between items in working memory. Interference is assumed to arise from overwriting of features shared by these items. The model was fit to time-accuracy data of memory-updating tasks from four experiments using nonlinear mixed effect…

  2. The Effects of Valence and Arousal on Associative Working Memory and Long-Term Memory

    PubMed Central

    Bergmann, Heiko C.; Rijpkema, Mark; Fernández, Guillén; Kessels, Roy P. C.

    2012-01-01

    Background Emotion can either facilitate or impair memory, depending on what, when and how memory is tested and whether the paradigm at hand is administered as a working memory (WM) or a long-term memory (LTM) task. Whereas emotionally arousing single stimuli are more likely to be remembered, memory for the relationship between two or more component parts (i.e., relational memory) appears to be worse in the presence of emotional stimuli, at least in some relational memory tasks. The current study investigated the effects of both valence (neutral vs. positive vs. negative) and arousal (low vs. high) in an inter-item WM binding and LTM task. Methodology/Principal Findings A five-pair delayed-match-to-sample (WM) task was administered. In each trial, study pairs consisted of one neutral picture and a second picture of which the emotional qualities (valence and arousal levels) were manipulated. These pairs had to be remembered across a delay interval of 10 seconds. This was followed by a probe phase in which five pairs were tested. After completion of this task, an unexpected single item LTM task as well as an LTM task for the pairs was assessed. As expected, emotional arousal impaired WM processing. This was reflected in lower accuracy for pairs consisting of high-arousal pictures compared to pairs with low-arousal pictures. A similar effect was found for the associative LTM task. However, the arousal effect was modulated by affective valence for the WM but not the LTM task; pairs with low-arousal negative pictures were not processed as well in the WM task. No significant differences were found for the single-item LTM task. Conclusions/Significance The present study provides additional evidence that processes during initial perception/encoding and post-encoding processes, the time interval between study and test and the interaction between valence and arousal might modulate the effects of “emotion” on associative memory. PMID:23300724

  3. The effects of valence and arousal on associative working memory and long-term memory.

    PubMed

    Bergmann, Heiko C; Rijpkema, Mark; Fernández, Guillén; Kessels, Roy P C

    2012-01-01

    Emotion can either facilitate or impair memory, depending on what, when and how memory is tested and whether the paradigm at hand is administered as a working memory (WM) or a long-term memory (LTM) task. Whereas emotionally arousing single stimuli are more likely to be remembered, memory for the relationship between two or more component parts (i.e., relational memory) appears to be worse in the presence of emotional stimuli, at least in some relational memory tasks. The current study investigated the effects of both valence (neutral vs. positive vs. negative) and arousal (low vs. high) in an inter-item WM binding and LTM task. A five-pair delayed-match-to-sample (WM) task was administered. In each trial, study pairs consisted of one neutral picture and a second picture of which the emotional qualities (valence and arousal levels) were manipulated. These pairs had to be remembered across a delay interval of 10 seconds. This was followed by a probe phase in which five pairs were tested. After completion of this task, an unexpected single item LTM task as well as an LTM task for the pairs was assessed. As expected, emotional arousal impaired WM processing. This was reflected in lower accuracy for pairs consisting of high-arousal pictures compared to pairs with low-arousal pictures. A similar effect was found for the associative LTM task. However, the arousal effect was modulated by affective valence for the WM but not the LTM task; pairs with low-arousal negative pictures were not processed as well in the WM task. No significant differences were found for the single-item LTM task. The present study provides additional evidence that processes during initial perception/encoding and post-encoding processes, the time interval between study and test and the interaction between valence and arousal might modulate the effects of "emotion" on associative memory.

  4. Associative reinstatement memory measures hippocampal function in Parkinson's Disease.

    PubMed

    Cohn, Melanie; Giannoylis, Irene; De Belder, Maya; Saint-Cyr, Jean A; McAndrews, Mary Pat

    2016-09-01

    In Parkinson's Disease (PD), hippocampal atrophy is associated with rapid cognitive decline. Hippocampal function is typically assessed using memory tests but current clinical tools (e.g., free recall) also rely on executive functions or use material that is not optimally engaging hippocampal memory networks. Because of the ubiquity of executive dysfunction in PD, our ability to detect true memory deficits is suboptimal. Our previous behavioural and neuroimaging work in other populations suggests that an experimental memory task - Associative Reinstatement Memory (ARM) - may prove useful in investigating hippocampal function in PD. In this study, we investigated whether ARM is compromised in PD and we assessed its convergent and divergent validity by comparing it to standardized measures of memory and of attention and executive functioning in PD, respectively. Using fMRI, we also investigated whether performance in PD relates to degree of hippocampal engagement. Fifteen participants with PD and 13 age-matched healthy controls completed neuropsychological testing as well as an ARM fMRI recognition paradigm in which they were instructed to identify word pairs comprised of two studied words (intact or rearranged pairs) and those containing at least one new word (new or half new pairs). ARM is measured by the differences in hit rates between intact and rearranged pairs. Behaviourally, ARM was poorer in PD relative to controls and was correlated with verbal memory measures, but not with attention or executive functioning in the PD group. Hippocampal activation associated with ARM was reduced in PD relative to controls and covaried with ARM scores in both groups. To conclude, ARM is a sensitive measure of hippocampal memory function that is unaffected by attention or executive dysfunction in PD. Our study highlights the benefit of integrating cognitive neuroscience frameworks and novel experimental tasks to improve the practice of clinical neuropsychology in PD

  5. Machine parts recognition using a trinary associative memory

    NASA Technical Reports Server (NTRS)

    Awwal, Abdul Ahad S.; Karim, Mohammad A.; Liu, Hua-Kuang

    1989-01-01

    The convergence mechanism of vectors in Hopfield's neural network in relation to recognition of partially known patterns is studied in terms of both inner products and Hamming distance. It has been shown that Hamming distance should not always be used in determining the convergence of vectors. Instead, inner product weighting coefficients play a more dominant role in certain data representations for determining the convergence mechanism. A trinary neuron representation for associative memory is found to be more effective for associative recall. Applications of the trinary associative memory to reconstruct machine part images that are partially missing are demonstrated by means of computer simulation as examples of the usefulness of this approach.

  6. A simplified computational memory model from information processing

    PubMed Central

    Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang

    2016-01-01

    This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view. PMID:27876847

  7. A simplified computational memory model from information processing

    NASA Astrophysics Data System (ADS)

    Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang

    2016-11-01

    This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view.

  8. Reward associations impact both iconic and visual working memory.

    PubMed

    Infanti, Elisa; Hickey, Clayton; Turatto, Massimo

    2015-02-01

    Reward plays a fundamental role in human behavior. A growing number of studies have shown that stimuli associated with reward become salient and attract attention. The aim of the present study was to extend these results into the investigation of iconic memory and visual working memory. In two experiments we asked participants to perform a visual-search task where different colors of the target stimuli were paired with high or low reward. We then tested whether the pre-established feature-reward association affected performance on a subsequent visual memory task, in which no reward was provided. In this test phase participants viewed arrays of 8 objects, one of which had unique color that could match the color associated with reward during the previous visual-search task. A probe appeared at varying intervals after stimulus offset to identify the to-be-reported item. Our results suggest that reward biases the encoding of visual information such that items characterized by a reward-associated feature interfere with mnemonic representations of other items in the test display. These results extend current knowledge regarding the influence of reward on early cognitive processes, suggesting that feature-reward associations automatically interact with the encoding and storage of visual information, both in iconic memory and visual working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. No association between CTNNBL1 and episodic memory performance.

    PubMed

    Liu, T; Li, S-C; Papenberg, G; Schröder, J; Roehr, J T; Nietfeld, W; Lindenberger, U; Bertram, L

    2014-09-30

    Polymorphisms in the gene encoding catenin-β-like 1 (CTNNBL1) were recently reported to be associated with verbal episodic memory performance--in particular, delayed verbal free recall assessed between 5 and 30 min after encoding--in a genome-wide association study on healthy young adults. To further examine the genetic effects of CTNNBL1, we tested for association between 455 single-nucleotide polymorphisms (SNPs) in or near CTNNBL1 and 14 measures of episodic memory performance from three different tasks in 1743 individuals. Probands were part of a population-based study of mentally healthy adult men and women, who were between 20 and 70 years old and were recruited as participants for the Berlin Aging Study II. Associations were assessed using linear regression analysis. Despite having sufficient power to detect the previously reported effect sizes, we found no evidence for statistically significant associations between the tested CTNNBL1 SNPs and any of the 14 measures of episodic memory. The previously reported effects of genetic polymorphisms in CTNNBL1 on episodic memory performance do not generalize to the broad range of tasks assessed in our cohort. If not altogether spurious, the effects may be limited to a very narrow phenotypic domain (that is, verbal delayed free recall between 5 and 30 min). More studies are needed to further clarify the role of CTNNBL1 in human memory.

  10. The timing of associative memory formation: frontal lobe and anterior medial temporal lobe activity at associative binding predicts memory

    PubMed Central

    Hales, J. B.

    2011-01-01

    The process of associating items encountered over time and across variable time delays is fundamental for creating memories in daily life, such as for stories and episodes. Forming associative memory for temporally discontiguous items involves medial temporal lobe structures and additional neocortical processing regions, including prefrontal cortex, parietal lobe, and lateral occipital regions. However, most prior memory studies, using concurrently presented stimuli, have failed to examine the temporal aspect of successful associative memory formation to identify when activity in these brain regions is predictive of associative memory formation. In the current study, functional MRI data were acquired while subjects were shown pairs of sequentially presented visual images with a fixed interitem delay within pairs. This design allowed the entire time course of the trial to be analyzed, starting from onset of the first item, across the 5.5-s delay period, and through offset of the second item. Subjects then completed a postscan recognition test for the items and associations they encoded during the scan and their confidence for each. After controlling for item-memory strength, we isolated brain regions selectively involved in associative encoding. Consistent with prior findings, increased regional activity predicting subsequent associative memory success was found in anterior medial temporal lobe regions of left perirhinal and entorhinal cortices and in left prefrontal cortex and lateral occipital regions. The temporal separation within each pair, however, allowed extension of these findings by isolating the timing of regional involvement, showing that increased response in these regions occurs during binding but not during maintenance. PMID:21248058

  11. The Quantum Binding Problem in the Context of Associative Memory

    PubMed Central

    Wichert, Andreas

    2016-01-01

    We present a method to solve the binding problem by using a quantum algorithm for the retrieval of associations from associative memory during visual scene analysis. The problem is solved by mapping the information representing different objects into superposition by using entanglement and Grover’s amplification algorithm. PMID:27603782

  12. Development of Working Memory for Verbal-Spatial Associations

    ERIC Educational Resources Information Center

    Cowan, Nelson; Saults, J. Scott; Morey, Candice C.

    2006-01-01

    Verbal-to-spatial associations in working memory may index a core capacity for abstract information limited in the amount concurrently retained. However, what look like associative, abstract representations could instead reflect verbal and spatial codes held separately and then used in parallel. We investigated this issue in two experiments on…

  13. Robust hippocampal responsivity during retrieval of consolidated associative memory.

    PubMed

    Hattori, Shoai; Chen, Lillian; Weiss, Craig; Disterhoft, John F

    2015-05-01

    A contentious point in memory research is whether or not the hippocampus plays a time-limited role in the consolidation of declarative memories. A widely held view is that declarative memories are initially encoded in the hippocampus, then transferred to the neocortex for long-term storage. Alternate views argue instead that the hippocampus continues to play a role in remote memory recall. These competing theories are largely based on human amnesic and animal lesion/inactivation studies. However, in vivo electrophysiological evidence supporting these views is scarce. Given that other studies examining the role of the hippocampus in remote memory retrieval using lesion and imaging techniques in human and animal models have provided mixed results, it would be particularly useful to gain insight at the in vivo electrophysiological level. Here we report hippocampal single-neuron and theta activity recorded longitudinally during acquisition and remote retrieval of trace eyeblink conditioning. Results from conditioned rabbits were compared to those obtained from yoked pseudo-conditioned control rabbits. Results reveal continued learning-specific hippocampal activity one month after initial acquisition of the task. Our findings yield insight into the normal physiological responses of the hippocampus during memory processes and provide compelling in vivo electrophysiological evidence that the hippocampus is involved in both acquisition and retrieval of consolidated memories. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  14. Robust hippocampal responsivity during retrieval of consolidated associative memory

    PubMed Central

    Hattori, Shoai; Chen, Lillian; Weiss, Craig

    2015-01-01

    ABSTRACT A contentious point in memory research is whether or not the hippocampus plays a time‐limited role in the consolidation of declarative memories. A widely held view is that declarative memories are initially encoded in the hippocampus, then transferred to the neocortex for long‐term storage. Alternate views argue instead that the hippocampus continues to play a role in remote memory recall. These competing theories are largely based on human amnesic and animal lesion/inactivation studies. However, in vivo electrophysiological evidence supporting these views is scarce. Given that other studies examining the role of the hippocampus in remote memory retrieval using lesion and imaging techniques in human and animal models have provided mixed results, it would be particularly useful to gain insight at the in vivo electrophysiological level. Here we report hippocampal single‐neuron and theta activity recorded longitudinally during acquisition and remote retrieval of trace eyeblink conditioning. Results from conditioned rabbits were compared to those obtained from yoked pseudo‐conditioned control rabbits. Results reveal continued learning‐specific hippocampal activity one month after initial acquisition of the task. Our findings yield insight into the normal physiological responses of the hippocampus during memory processes and provide compelling in vivo electrophysiological evidence that the hippocampus is involved in both acquisition and retrieval of consolidated memories. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:25515308

  15. Do automatic mental associations detect a flashbulb memory?

    PubMed

    Lanciano, Tiziana; Curci, Antonietta; Mastandrea, Stefano; Sartori, Giuseppe

    2013-01-01

    Flashbulb memories (FBMs) are defined as detailed memories for the reception context in which people first heard of a public and emotionally relevant event. For many years researchers have been debating whether FBMs can be considered a special class of emotional memories, or whether they suffer the same fate as ordinary autobiographical formations. The debate on the real existence of this special class of memories reflects the difficulty of establishing their accuracy. Three indices have been defined as proxies for FBM accuracy: specificity of recalled details, individuals' confidence in their memory, and memory consistency over time. However, all approaches to FBM assessment have been based on explicit self-report measures. In two studies we aimed to detect FBMs for two emotional public events, by simultaneously employing explicit traditional FBM measures and implicit measures based on the autobiographical Implicit Association Test (aIAT). Jointly considered, the results from the two studies showed that the implicit measures were able to discriminate a FBM, and appeared significantly associated with explicit traditional measures of FBM Specificity, Confidence, and Consistency. Both explicit and implicit assessments concurred to correctly estimate a FBM. Implications for the FBM debate are discussed.

  16. Critical dynamics in associative memory networks

    PubMed Central

    Uhlig, Maximilian; Levina, Anna; Geisel, Theo; Herrmann, J. Michael

    2013-01-01

    Critical behavior in neural networks is characterized by scale-free avalanche size distributions and can be explained by self-regulatory mechanisms. Theoretical and experimental evidence indicates that information storage capacity reaches its maximum in the critical regime. We study the effect of structural connectivity formed by Hebbian learning on the criticality of network dynamics. The network only endowed with Hebbian learning does not allow for simultaneous information storage and criticality. However, the critical regime can be stabilized by short-term synaptic dynamics in the form of synaptic depression and facilitation or, alternatively, by homeostatic adaptation of the synaptic weights. We show that a heterogeneous distribution of maximal synaptic strengths does not preclude criticality if the Hebbian learning is alternated with periods of critical dynamics recovery. We discuss the relevance of these findings for the flexibility of memory in aging and with respect to the recent theory of synaptic plasticity. PMID:23898261

  17. The Benefits of Targeted Memory Reactivation for Consolidation in Sleep are Contingent on Memory Accuracy and Direct Cue-Memory Associations

    PubMed Central

    Cairney, Scott A.; Lindsay, Shane; Sobczak, Justyna M.; Paller, Ken A.; Gaskell, M. Gareth

    2016-01-01

    Study Objectives: To investigate how the effects of targeted memory reactivation (TMR) are influenced by memory accuracy prior to sleep and the presence or absence of direct cue-memory associations. Methods: 30 participants associated each of 50 pictures with an unrelated word and then with a screen location in two separate tasks. During picture-location training, each picture was also presented with a semantically related sound. The sounds were therefore directly associated with the picture locations but indirectly associated with the words. During a subsequent nap, half of the sounds were replayed in slow wave sleep (SWS). The effect of TMR on memory for the picture locations (direct cue-memory associations) and picture-word pairs (indirect cue-memory associations) was then examined. Results: TMR reduced overall memory decay for recall of picture locations. Further analyses revealed a benefit of TMR for picture locations recalled with a low degree of accuracy prior to sleep, but not those recalled with a high degree of accuracy. The benefit of TMR for low accuracy memories was predicted by time spent in SWS. There was no benefit of TMR for memory of the picture-word pairs, irrespective of memory accuracy prior to sleep. Conclusions: TMR provides the greatest benefit to memories recalled with a low degree of accuracy prior to sleep. The memory benefits of TMR may also be contingent on direct cue-memory associations. Citation: Cairney SA, Lindsay S, Sobczak JM, Paller KA, Gaskell MG. The benefits of targeted memory reactivation for consolidation in sleep are contingent on memory accuracy and direct cue-memory associations. SLEEP 2016;39(5):1139–1150. PMID:26856905

  18. Fragile associations coexist with robust memories for precise details in long-term memory.

    PubMed

    Lew, Timothy F; Pashler, Harold E; Vul, Edward

    2016-03-01

    What happens to memories as we forget? They might gradually lose fidelity, lose their associations (and thus be retrieved in response to the incorrect cues), or be completely lost. Typical long-term memory studies assess memory as a binary outcome (correct/incorrect), and cannot distinguish these different kinds of forgetting. Here we assess long-term memory for scalar information, thus allowing us to quantify how different sources of error diminish as we learn, and accumulate as we forget. We trained subjects on visual and verbal continuous quantities (the locations of objects and the distances between major cities, respectively), tested subjects after extended delays, and estimated whether recall errors arose due to imprecise estimates, misassociations, or complete forgetting. Although subjects quickly formed precise memories and retained them for a long time, they were slow to learn correct associations and quick to forget them. These results suggest that long-term recall is especially limited in its ability to form and retain associations. (c) 2016 APA, all rights reserved).

  19. Age-related differences in recognition memory for items and associations: contribution of individual differences in working memory and metamemory.

    PubMed

    Bender, Andrew R; Raz, Naftali

    2012-09-01

    Ability to form new associations between unrelated items is particularly sensitive to aging, but the reasons for such differential vulnerability are unclear. In this study, we examined the role of objective and subjective factors (working memory and beliefs about memory strategies) on differential relations of age with recognition of items and associations. Healthy adults (N = 100, age 21 to 79) studied word pairs, completed item and association recognition tests, and rated the effectiveness of shallow (e.g., repetition) and deep (e.g., imagery or sentence generation) encoding strategies. Advanced age was associated with reduced working memory (WM) capacity and poorer associative recognition. In addition, reduced WM capacity, beliefs in the utility of ineffective encoding strategies, and lack of endorsement of effective ones were independently associated with impaired associative memory. Thus, maladaptive beliefs about memory in conjunction with reduced cognitive resources account in part for differences in associative memory commonly attributed to aging.

  20. A Memory-Based Model of Hick’s Law

    PubMed Central

    Schneider, Darryl W.; Anderson, John R.

    2010-01-01

    We propose and evaluate a memory-based model of Hick’s law, the approximately linear increase in choice reaction time with the logarithm of set size (the number of stimulus–response alternatives). According to the model, Hick’s law reflects a combination of associative interference during retrieval from declarative memory and occasional savings for stimulus–response repetitions due to non-retrieval. Fits to existing data sets show that the model accounts for the basic set-size effect, changes in the set-size effect with practice, and stimulus–response repetition effects that challenge the information-theoretic view of Hick’s law. We derive the model’s prediction of an interaction between set size, stimulus fan (the number of responses associated with a particular stimulus), and stimulus–response transition, which is subsequently tested and confirmed in two experiments. Collectively, the results support the core structure of the model and its explanation of Hick’s law in terms of basic memory effects. PMID:21293788

  1. An empirical hierarchical memory model based on hardware performance counters

    SciTech Connect

    Lubeck, O.M.; Luo, Y.; Wasserman, H.; Bassetti, F.

    1998-09-01

    In this paper, the authors characterize application performance with a memory-centric view. Using a simple strategy and performance data measured by on-chip hardware performance counters, they model the performance of a simple memory hierarchy and infer the contribution of each level in the memory system to an application`s overall cycles per instruction (cpi). They account for the overlap of processor execution with memory accesses--a key parameter not directly measurable on most systems. They infer the separate contributions of three major architecture features in the memory subsystem of the Origin 2000: cache size, outstanding loads-under-miss, and memory latency.

  2. A dynamic model of reasoning and memory.

    PubMed

    Hawkins, Guy E; Hayes, Brett K; Heit, Evan

    2016-02-01

    Previous models of category-based induction have neglected how the process of induction unfolds over time. We conceive of induction as a dynamic process and provide the first fine-grained examination of the distribution of response times observed in inductive reasoning. We used these data to develop and empirically test the first major quantitative modeling scheme that simultaneously accounts for inductive decisions and their time course. The model assumes that knowledge of similarity relations among novel test probes and items stored in memory drive an accumulation-to-bound sequential sampling process: Test probes with high similarity to studied exemplars are more likely to trigger a generalization response, and more rapidly, than items with low exemplar similarity. We contrast data and model predictions for inductive decisions with a recognition memory task using a common stimulus set. Hierarchical Bayesian analyses across 2 experiments demonstrated that inductive reasoning and recognition memory primarily differ in the threshold to trigger a decision: Observers required less evidence to make a property generalization judgment (induction) than an identity statement about a previously studied item (recognition). Experiment 1 and a condition emphasizing decision speed in Experiment 2 also found evidence that inductive decisions use lower quality similarity-based information than recognition. The findings suggest that induction might represent a less cautious form of recognition. We conclude that sequential sampling models grounded in exemplar-based similarity, combined with hierarchical Bayesian analysis, provide a more fine-grained and informative analysis of the processes involved in inductive reasoning than is possible solely through examination of choice data.

  3. The Associative Memory System for the Ftk Processor at Atlas

    NASA Astrophysics Data System (ADS)

    Magalotti, D.; Citraro, S.; Donati, S.; Luciano, P.; Piendibene, M.; Giannetti, P.; Lanza, A.; Verzellesi, G.; Andreas, Sakellariou; Billereau, W.; Combe, J. M.

    2014-06-01

    In high energy physics experiments, the most interesting processes are very rare and hidden in an extremely large level of background. As the experiment complexity, accelerator backgrounds, and instantaneous luminosity increase, more effective and accurate data selection techniques are needed. The Fast TracKer processor (FTK) is a real time tracking processor designed for the ATLAS trigger upgrade. The FTK core is the Associative Memory system. It provides massive computing power to minimize the processing time of complex tracking algorithms executed online. This paper reports on the results and performance of a new prototype of Associative Memory system.

  4. Physical Performance Is Associated with Working Memory in Older People with Mild to Severe Cognitive Impairment

    PubMed Central

    Volkers, K. M.; Scherder, E. J. A.

    2014-01-01

    Background. Physical performances and cognition are positively related in cognitively healthy people. The aim of this study was to examine whether physical performances are related to specific cognitive functioning in older people with mild to severe cognitive impairment. Methods. This cross-sectional study included 134 people with a mild to severe cognitive impairment (mean age 82 years). Multiple linear regression was performed, after controlling for covariates and the level of global cognition, with the performances on mobility, strength, aerobic fitness, and balance as predictors and working memory and episodic memory as dependent variables. Results. The full models explain 49–57% of the variance in working memory and 40–43% of episodic memory. Strength, aerobic fitness, and balance are significantly associated with working memory, explaining 3–7% of its variance, irrespective of the severity of the cognitive impairment. Physical performance is not related to episodic memory in older people with mild to severe cognitive impairment. Conclusions. Physical performance is associated with working memory in older people with cognitive impairment. Future studies should investigate whether physical exercise for increased physical performance can improve cognitive functioning. This trial is registered with ClinicalTrials.gov NTR1482. PMID:24757674

  5. Physical performance is associated with working memory in older people with mild to severe cognitive impairment.

    PubMed

    Volkers, K M; Scherder, E J A

    2014-01-01

    Physical performances and cognition are positively related in cognitively healthy people. The aim of this study was to examine whether physical performances are related to specific cognitive functioning in older people with mild to severe cognitive impairment. This cross-sectional study included 134 people with a mild to severe cognitive impairment (mean age 82 years). Multiple linear regression was performed, after controlling for covariates and the level of global cognition, with the performances on mobility, strength, aerobic fitness, and balance as predictors and working memory and episodic memory as dependent variables. The full models explain 49-57% of the variance in working memory and 40-43% of episodic memory. Strength, aerobic fitness, and balance are significantly associated with working memory, explaining 3-7% of its variance, irrespective of the severity of the cognitive impairment. Physical performance is not related to episodic memory in older people with mild to severe cognitive impairment. Physical performance is associated with working memory in older people with cognitive impairment. Future studies should investigate whether physical exercise for increased physical performance can improve cognitive functioning. This trial is registered with ClinicalTrials.gov NTR1482.

  6. Age-effects on associative object-location memory.

    PubMed

    Meulenbroek, Olga; Kessels, Roy P C; de Rover, Mischa; Petersson, Karl Magnus; Rikkert, Marcel G M Olde; Rijpkema, Mark; Fernández, Guillén

    2010-02-22

    Aging is accompanied by an impairment of associative memory. The medial temporal lobe and fronto-striatal network, both involved in associative memory, are known to decline functionally and structurally with age, leading to the so-called associative binding deficit and the resource deficit. Because the MTL and fronto-striatal network interact, they might also be able to support each other. We therefore employed an episodic memory task probing memory for sequences of object-location associations, where the demand on self-initiated processing was manipulated during encoding: either all the objects were visible simultaneously (rich environmental support) or every object became visible transiently (poor environmental support). Following the concept of resource deficit, we hypothesised that the elderly probably have difficulty using their declarative memory system when demands on self-initiated processing are high (poor environmental support). Our behavioural study showed that only the young use the rich environmental support in a systematic way, by placing the objects next to each other. With the task adapted for fMRI, we found that elderly showed stronger activity than young subjects during retrieval of environmentally richly encoded information in the basal ganglia, thalamus, left middle temporal/fusiform gyrus and right medial temporal lobe (MTL). These results indicate that rich environmental support leads to recruitment of the declarative memory system in addition to the fronto-striatal network in elderly, while the young use more posterior brain regions likely related to imagery. We propose that elderly try to solve the task by additional recruitment of stimulus-response associations, which might partly compensate their limited attentional resources. 2009 Elsevier B.V. All rights reserved.

  7. Attention and the acquisition of new knowledge: their effects on older adults' associative memory deficit.

    PubMed

    Cooper, Crystal M; Odegard, Timothy N

    2011-12-01

    Older adults experience a selective associative memory deficit by demonstrating intact item memory relative to impaired associative memory when compared with younger adults. Age-related deficits in associative memory have been suggested to arise from declines in attentional resources, and the role of attention during encoding and retrieval in associative memory for words and their spatial locations was investigated in the current experiment. Additionally, the tendency of younger and older adults to use knowledge acquired during encoding to improve their associative memory judgments through a strategic associative memory process was also investigated. Younger and older adults studied a list of words with each word belonging to one of four categories, which followed one of four mathematical probability structures for their presentation. Older adults exhibited intact item memory and impaired associative memory relative to full attention younger adults. In addition, both older and younger adults demonstrated an ability to engage in strategic associative memory, by learning and later using the probability structure introduced at study to guide their associative memory judgments. In contrast, dividing the attention of younger adults during encoding impaired item memory, associative memory and strategic associative memory, whereas dividing attention at retrieval did not result in similar deficits. These data add to a growing body of literature demonstrating older adults to exhibit a selective associative memory deficit that is not simulated by dividing the attention of younger adults at encoding or retrieval. Furthermore, younger and older adults maintain the ability to use new knowledge to guide their associative judgments.

  8. Brain Connectivity Variation Topography Associated with Working Memory

    PubMed Central

    Ma, Xiaofei; Huang, Xiaolin; Ge, Yun; Hu, Yueming; Chen, Wei; Liu, Aili; Liu, Hongxing; Chen, Ying; Li, Bin; Ning, Xinbao

    2016-01-01

    Brain connectivity analysis plays an essential role in the research of working memory that involves complex coordination of various brain regions. In this research, we present a comprehensive view of trans-states brain connectivity variation based on continuous scalp EEG, extending beyond traditional stimuli-lock averaging or restriction to short time scales of hundreds of milliseconds after stimulus onset. The scalp EEG was collected under three conditions: quiet, memory, and control. The only difference between the memory and control conditions was that in the memory condition, subjects made an effort to retain information. We started our investigation with calibrations of Pearson correlation in EEG analysis and then derived two indices, link strength and node connectivity, to make comparisons between different states. Finally, we constructed and studied trans-state brain connectivity variation topography. Comparing memory and control states with quiet state, we found that the beta topography highlights links between T5/T6 and O1/O2, which represents the visual ventral stream, and the gamma topography conveys strengthening of inter-hemisphere links and weakening of intra-hemisphere frontal-posterior links, implying parallel inter-hemisphere coordination combined with sequential intra-hemisphere coordination when subjects are confronted with visual stimuli and a motor task. For comparison between memory and control states, we also found that the node connectivity of T6 stands out in gamma topography, which provides strong proof from scalp EEG for the information binding or relational processing function of the temporal lobe in memory formation. To our knowledge, this is the first time for any method to effectively capture brain connectivity variation associated with working memory from a relatively large scale both in time (from a second to a minute) and in space (from the scalp). The method can track brain activity continuously with minimal manual interruptions

  9. Brain Connectivity Variation Topography Associated with Working Memory.

    PubMed

    Ma, Xiaofei; Huang, Xiaolin; Ge, Yun; Hu, Yueming; Chen, Wei; Liu, Aili; Liu, Hongxing; Chen, Ying; Li, Bin; Ning, Xinbao

    2016-01-01

    Brain connectivity analysis plays an essential role in the research of working memory that involves complex coordination of various brain regions. In this research, we present a comprehensive view of trans-states brain connectivity variation based on continuous scalp EEG, extending beyond traditional stimuli-lock averaging or restriction to short time scales of hundreds of milliseconds after stimulus onset. The scalp EEG was collected under three conditions: quiet, memory, and control. The only difference between the memory and control conditions was that in the memory condition, subjects made an effort to retain information. We started our investigation with calibrations of Pearson correlation in EEG analysis and then derived two indices, link strength and node connectivity, to make comparisons between different states. Finally, we constructed and studied trans-state brain connectivity variation topography. Comparing memory and control states with quiet state, we found that the beta topography highlights links between T5/T6 and O1/O2, which represents the visual ventral stream, and the gamma topography conveys strengthening of inter-hemisphere links and weakening of intra-hemisphere frontal-posterior links, implying parallel inter-hemisphere coordination combined with sequential intra-hemisphere coordination when subjects are confronted with visual stimuli and a motor task. For comparison between memory and control states, we also found that the node connectivity of T6 stands out in gamma topography, which provides strong proof from scalp EEG for the information binding or relational processing function of the temporal lobe in memory formation. To our knowledge, this is the first time for any method to effectively capture brain connectivity variation associated with working memory from a relatively large scale both in time (from a second to a minute) and in space (from the scalp). The method can track brain activity continuously with minimal manual interruptions

  10. A Dynamic Model of Reaction Time in a Short-Term Memory Task.

    ERIC Educational Resources Information Center

    Cooney, John B; Troyer, Rod

    1994-01-01

    Illustrates some of the analytic tools and conventions associated with the construction and evaluation of dynamic models of the processes underlying learning, memory, and development. Describes a study finding that children may exhibit slower disintegration of verbatim memory traces than adults due to interference; however, adults may be more…

  11. A CREB1 Gene Polymorphism (rs2253206) Is Associated with Prospective Memory in a Healthy Cohort

    PubMed Central

    Avgan, Nesli; Sutherland, Heidi G.; Lea, Rodney A.; Spriggens, Lauren K.; Haupt, Larisa M.; Shum, David H. K.; Griffiths, Lyn R.

    2017-01-01

    Prospective memory (PM) is generally defined as remembering to perform intended actions in the future and is important for functioning in daily life. Cyclic adenosine monophosphate (cAMP) responsive element binding protein 1 (CREB1) plays an important role in cognitive functions. In this study, we hypothesized that genetic variation in the CREB1 gene is associated with PM. We genotyped a CREB1 promoter polymorphism rs2253206 and tested it for association with PM in 619 healthy subjects. PM performance was measured using the Prospective and Retrospective Memory Questionnaire (PRMQ), the Comprehensive Assessment of Prospective Memory (CAPM), and the Memory for Intentions Screening Test (MIST). Generalized linear model analysis was conducted for each PM test independently using different inheritance models to identify any associations (p < 0.05). After multiple testing adjustments, a significant association was found between the rs2253206 genotype and PM performance for CAPM instrumental activities of daily living measure (p = 0.016). These results suggest that the rs2253206 polymorphism in the CREB1 gene locus is associated with PM in healthy individuals and contributes to knowledge on the genetics of this particular type of memory. PMID:28559802

  12. A CREB1 Gene Polymorphism (rs2253206) Is Associated with Prospective Memory in a Healthy Cohort.

    PubMed

    Avgan, Nesli; Sutherland, Heidi G; Lea, Rodney A; Spriggens, Lauren K; Haupt, Larisa M; Shum, David H K; Griffiths, Lyn R

    2017-01-01

    Prospective memory (PM) is generally defined as remembering to perform intended actions in the future and is important for functioning in daily life. Cyclic adenosine monophosphate (cAMP) responsive element binding protein 1 (CREB1) plays an important role in cognitive functions. In this study, we hypothesized that genetic variation in the CREB1 gene is associated with PM. We genotyped a CREB1 promoter polymorphism rs2253206 and tested it for association with PM in 619 healthy subjects. PM performance was measured using the Prospective and Retrospective Memory Questionnaire (PRMQ), the Comprehensive Assessment of Prospective Memory (CAPM), and the Memory for Intentions Screening Test (MIST). Generalized linear model analysis was conducted for each PM test independently using different inheritance models to identify any associations (p < 0.05). After multiple testing adjustments, a significant association was found between the rs2253206 genotype and PM performance for CAPM instrumental activities of daily living measure (p = 0.016). These results suggest that the rs2253206 polymorphism in the CREB1 gene locus is associated with PM in healthy individuals and contributes to knowledge on the genetics of this particular type of memory.

  13. Molecular regulation of synaptogenesis during associative learning and memory.

    PubMed

    Nelson, Thomas J; Alkon, Daniel L

    2015-09-24

    Synaptogenesis plays a central role in associative learning and memory. The biochemical pathways that underlie synaptogenesis are complex and incompletely understood. Nevertheless, research has so far identified three conceptually distinct routes to synaptogenesis: cell-cell contact mediated by adhesion proteins, cell-cell biochemical signaling from astrocytes and other cells, and neuronal signaling through classical ion channels and cell surface receptors. The cell adhesion pathways provide the physical substrate to the new synaptic connection, while cell-cell signaling may provide a global or regional signal, and the activity-dependent pathways provide the neuronal specificity that is required for the new synapses to produce functional neuronal networks capable of storing associative memories. These three aspects of synaptogenesis require activation of a variety of interacting biochemical pathways that converge on the actin cytoskeleton and strengthen the synapse in an information-dependent manner. This article is part of a Special Issue titled SI: Brain and Memory.

  14. The endocannabinoid system and associative learning and memory in zebrafish.

    PubMed

    Ruhl, Tim; Moesbauer, Kirstin; Oellers, Nadine; von der Emde, Gerhard

    2015-09-01

    In zebrafish the medial pallium of the dorsal telencephalon represents an amygdala homolog structure, which is crucially involved in emotional associative learning and memory. Similar to the mammalian amygdala, the medial pallium contains a high density of endocannabinoid receptor CB1. To elucidate the role of the zebrafish endocannabinoid system in associative learning, we tested the influence of acute and chronic administration of receptor agonists (THC, WIN55,212-2) and antagonists (Rimonabant, AM-281) on two different learning paradigms. In an appetitively motivated two-alternative choice paradigm, animals learned to associate a certain color with a food reward. In a second set-up, a fish shuttle-box, animals associated the onset of a light stimulus with the occurrence of a subsequent electric shock (avoidance conditioning). Once fish successfully had learned to solve these behavioral tasks, acute receptor activation or inactivation had no effect on memory retrieval, suggesting that established associative memories were stable and not alterable by the endocannabinoid system. In both learning tasks, chronic treatment with receptor antagonists improved acquisition learning, and additionally facilitated reversal learning during color discrimination. In contrast, chronic CB1 activation prevented aversively motivated acquisition learning, while different effects were found on appetitively motivated acquisition learning. While THC significantly improved behavioral performance, WIN55,212-2 significantly impaired color association. Our findings suggest that the zebrafish endocannabinoid system can modulate associative learning and memory. Stimulation of the CB1 receptor might play a more specific role in acquisition and storage of aversive learning and memory, while CB1 blocking induces general enhancement of cognitive functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Modeling active memory: Experiment, theory and simulation

    NASA Astrophysics Data System (ADS)

    Amit, Daniel J.

    2001-06-01

    Neuro-physiological experiments on cognitively performing primates are described to argue that strong evidence exists for localized, non-ergodic (stimulus specific) attractor dynamics in the cortex. The specific phenomena are delay activity distributions-enhanced spike-rate distributions resulting from training, which we associate with working memory. The anatomy of the relevant cortex region and the physiological characteristics of the participating elements (neural cells) are reviewed to provide a substrate for modeling the observed phenomena. Modeling is based on the properties of the integrate-and-fire neural element in presence of an input current of Gaussian distribution. Theory of stochastic processes provides an expression for the spike emission rate as a function of the mean and the variance of the current distribution. Mean-field theory is then based on the assumption that spike emission processes in different neurons in the network are independent, and hence the input current to a neuron is Gaussian. Consequently, the dynamics of the interacting network is reduced to the computation of the mean and the variance of the current received by a cell of a given population in terms of the constitutive parameters of the network and the emission rates of the neurons in the different populations. Within this logic we analyze the stationary states of an unstructured network, corresponding to spontaneous activity, and show that it can be stable only if locally the net input current of a neuron is inhibitory. This is then tested against simulations and it is found that agreement is excellent down to great detail. A confirmation of the independence hypothesis. On top of stable spontaneous activity, keeping all parameters fixed, training is described by (Hebbian) modification of synapses between neurons responsive to a stimulus and other neurons in the module-synapses are potentiated between two excited neurons and depressed between an excited and a quiescent neuron

  16. The Parahippocampal Cortex Mediates Contextual Associative Memory: Evidence from an fMRI Study

    PubMed Central

    Li, Mi; Zhong, Ning

    2016-01-01

    The parahippocampal cortex (PHC) plays a key role in episodic memory, spatial processing, and the encoding of novel stimuli. Recent studies proposed that the PHC is largely involved in contextual associative processing. Consequently, the function of this region has been a hot debate in cognitive neuroscience. To test this assumption, we used two types of experimental materials to form the contextual associative memory: visual objects in reality and meaningless visual shapes. New associations were modeled from either the contextual objects or the contextual shapes. Both contextual objects and shapes activated the bilateral PHC more than the noncontextual ones. The contextual objects with semantics significantly activated the left PHC areas, whereas the meaningless contextual shapes significantly elicited the right PHC. The results clearly demonstrate that the PHC influences the processing of contextual information and provides experimental evidence for an understanding of the different functions of bilateral PHC in contextual associative memory. PMID:27247946

  17. Aging-associated excess formaldehyde leads to spatial memory deficits.

    PubMed

    Tong, Zhiqian; Han, Chanshuai; Luo, Wenhong; Li, Hui; Luo, Hongjun; Qiang, Min; Su, Tao; Wu, Beibei; Liu, Ying; Yang, Xu; Wan, You; Cui, Dehua; He, Rongqiao

    2013-01-01

    Recent studies show that formaldehyde participates in DNA demethylation/methylation cycle. Emerging evidence identifies that neuronal activity induces global DNA demethylation and re-methylation; and DNA methylation is a critical step for memory formation. These data suggest that endogenous formaldehyde may intrinsically link learning-responsive DNA methylation status and memory formation. Here, we report that during spatial memory formation process, spatial training induces an initial global DNA demethylation and subsequent re-methylation associated with hippocampal formaldehyde elevation then decline to baseline level in Sprague Dawley rats. Scavenging this elevated formaldehyde by formaldehyde-degrading enzyme (FDH), or enhancing DNA demethylation by a DNA demethylating agent, both led to spatial memory deficits by blocking DNA re-methylation in rats. Furthermore, we found that the normal adult rats intrahippocampally injected with excess formaldehyde can imitate the aged-related spatial memory deficits and global DNA methylation decline. These findings indicate that aging-associated excess formaldheyde contributes to cognitive decline during aging.

  18. Aging-associated excess formaldehyde leads to spatial memory deficits

    PubMed Central

    Tong, Zhiqian; Han, Chanshuai; Luo, Wenhong; Li, Hui; Luo, Hongjun; Qiang, Min; Su, Tao; Wu, Beibei; Liu, Ying; Yang, Xu; Wan, You; Cui, Dehua; He, Rongqiao

    2013-01-01

    Recent studies show that formaldehyde participates in DNA demethylation/methylation cycle. Emerging evidence identifies that neuronal activity induces global DNA demethylation and re-methylation; and DNA methylation is a critical step for memory formation. These data suggest that endogenous formaldehyde may intrinsically link learning-responsive DNA methylation status and memory formation. Here, we report that during spatial memory formation process, spatial training induces an initial global DNA demethylation and subsequent re-methylation associated with hippocampal formaldehyde elevation then decline to baseline level in Sprague Dawley rats. Scavenging this elevated formaldehyde by formaldehyde-degrading enzyme (FDH), or enhancing DNA demethylation by a DNA demethylating agent, both led to spatial memory deficits by blocking DNA re-methylation in rats. Furthermore, we found that the normal adult rats intrahippocampally injected with excess formaldehyde can imitate the aged-related spatial memory deficits and global DNA methylation decline. These findings indicate that aging-associated excess formaldheyde contributes to cognitive decline during aging. PMID:23657727

  19. Longitudinal association between hippocampus atrophy and episodic-memory decline.

    PubMed

    Gorbach, Tetiana; Pudas, Sara; Lundquist, Anders; Orädd, Greger; Josefsson, Maria; Salami, Alireza; de Luna, Xavier; Nyberg, Lars

    2017-03-01

    There is marked variability in both onset and rate of episodic-memory decline in aging. Structural magnetic resonance imaging studies have revealed that the extent of age-related brain changes varies markedly across individuals. Past studies of whether regional atrophy accounts for episodic-memory decline in aging have yielded inconclusive findings. Here we related 15-year changes in episodic memory to 4-year changes in cortical and subcortical gray matter volume and in white-matter connectivity and lesions. In addition, changes in word fluency, fluid IQ (Block Design), and processing speed were estimated and related to structural brain changes. Significant negative change over time was observed for all cognitive and brain measures. A robust brain-cognition change-change association was observed for episodic-memory decline and atrophy in the hippocampus. This association was significant for older (65-80 years) but not middle-aged (55-60 years) participants and not sensitive to the assumption of ignorable attrition. Thus, these longitudinal findings highlight medial-temporal lobe system integrity as particularly crucial for maintaining episodic-memory functioning in older age.

  20. Revised associative inference paradigm confirms relational memory impairment in schizophrenia

    PubMed Central

    Armstrong, Kristan; Williams, Lisa E.; Heckers, Stephan

    2013-01-01

    Objective Patients with schizophrenia have widespread cognitive impairments, with selective deficits in relational memory. We previously reported a differential relational memory deficit in schizophrenia using the Associative Inference Paradigm (AIP), a task suggested by the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative to examine relational memory. However, the AIP had limited feasibility for testing in schizophrenia due to high attrition of schizophrenia patients during training. Here we developed and tested a revised version of the AIP to improve feasibility. Method 30 healthy control and 37 schizophrenia subjects received 3 study-test sessions on 3 sets of paired associates: H-F1 (house paired with face), H-F2 (same house paired with new face), and F3-F4 (two novel faces). After training, subjects were tested on the trained, non-inferential Face-Face pairs (F3-F4) and novel, inferential Face-Face pairs (F1-F2), constructed from the faces of the trained House-Face pairs. Results Schizophrenia patients were significantly more impaired on the inferential F1-F2 pairs than the non-inferential F3-F4 pairs, providing evidence for a differential relational memory deficit. Only 8 percent of schizophrenia patients were excluded from testing due to poor training performance. Conclusions The revised AIP confirmed the previous finding of a relational memory deficit in a larger and more representative sample of schizophrenia patients. PMID:22612578

  1. Memory Asymmetry of Forward and Backward Associations in Recognition Tasks

    PubMed Central

    Yang, Jiongjiong; Zhu, Zijian; Mecklinger, Axel; Fang, Zhiyong; Li, Han

    2013-01-01

    There is an intensive debate on whether memory for serial order is symmetric. The objective of this study was to explore whether associative asymmetry is modulated by memory task (recognition vs. cued recall). Participants were asked to memorize word triples (Experiment 1–2) or pairs (Experiment 3–6) during the study phase. They then recalled the word by a cue during a cued recall task (Experiment 1–4), and judged whether the presented two words were in the same or in a different order compared to the study phase during a recognition task (Experiment 1–6). To control for perceptual matching between the study and test phase, participants were presented with vertical test pairs when they made directional judgment in Experiment 5. In Experiment 6, participants also made associative recognition judgments for word pairs presented at the same or the reversed position. The results showed that forward associations were recalled at similar levels as backward associations, and that the correlations between forward and backward associations were high in the cued recall tasks. On the other hand, the direction of forward associations was recognized more accurately (and more quickly) than backward associations, and their correlations were comparable to the control condition in the recognition tasks. This forward advantage was also obtained for the associative recognition task. Diminishing positional information did not change the pattern of associative asymmetry. These results suggest that associative asymmetry is modulated by cued recall and recognition manipulations, and that direction as a constituent part of a memory trace can facilitate associative memory. PMID:22924326

  2. The effect of emotional facial expressions on children's working memory: associations with age and behavior.

    PubMed

    Augusti, Else-Marie; Torheim, Hanna Karoline; Melinder, Annika

    2014-01-01

    Studies on adults have revealed a disadvantageous effect of negative emotional stimuli on executive functions (EF), and it is suggested that this effect is amplified in children. The present study's aim was to assess how emotional facial expressions affected working memory in 9- to 12-year-olds, using a working memory task with emotional facial expressions as stimuli. Additionally, we explored how degree of internalizing and externalizing symptoms in typically developing children was related to performance on the same task. Before employing the working memory task with emotional facial expressions as stimuli, an independent sample of 9- to 12-year-olds was asked to recognize the facial expressions intended to serve as stimuli for the working memory task and to rate the facial expressions on the degree to which the emotion was expressed and for arousal to obtain a baseline for how children during this age recognize and react to facial expressions. The first study revealed that children rated the facial expressions with similar intensity and arousal across age. When employing the working memory task with facial expressions, results revealed that negatively valenced expressions impaired working memory more than neutral and positively valenced expressions. The ability to successfully complete the working memory task increased between 9 to 12 years of age. Children's total problems were associated with poorer performance on the working memory task with facial expressions. Results on the effect of emotion on working memory are discussed in light of recent models and empirical findings on how emotional information might interact and interfere with cognitive processes such as working memory.

  3. Optical implementation of a shift-invariant associative memory

    NASA Astrophysics Data System (ADS)

    Wei, I.-Wen; Gruber, Matthias; Hsu, Ken Y.; Hsieh, Tai Chiung

    1992-10-01

    We have proposed and demonstrated a shift-invariant optical associative memory by the modified Hausler/Lange algorithm. It is a feedback network with space invariant coupling by the convolution operation. The system is shown to have the capabilities of error correction and pattern recognition. Both computer simulations and optical experiments are presented in this paper.

  4. Associative Information in Memory: Evidence from Cued Recall

    ERIC Educational Resources Information Center

    Aue, William R.; Criss, Amy H.; Fischetti, Nicholas W.

    2012-01-01

    The representation of item and associative information in episodic memory was investigated using cued recall and single item recognition. In the first four experiments, participants studied two lists constructed such that some items presented in a pair during List 1 were rearranged to create new pairs in List 2 and were accompanied by pairs…

  5. Associative Information in Memory: Evidence from Cued Recall

    ERIC Educational Resources Information Center

    Aue, William R.; Criss, Amy H.; Fischetti, Nicholas W.

    2012-01-01

    The representation of item and associative information in episodic memory was investigated using cued recall and single item recognition. In the first four experiments, participants studied two lists constructed such that some items presented in a pair during List 1 were rearranged to create new pairs in List 2 and were accompanied by pairs…

  6. Shifting self, shifting memory: testing the self-memory system model with hypnotic identity delusions.

    PubMed

    Cox, Rochelle E; Barnier, Amanda J

    2013-01-01

    According to Conway's self-memory system (SMS) model, autobiographical memories may be facilitated, inhibited, or misremembered to be consistent with current self. In 3 experiments, the authors tested this by hypnotically suggesting an identity delusion and indexing whether this shift in self produced a corresponding shift in autobiographical memory. High hypnotizable participants displayed a compelling identity delusion and elicited specific autobiographical events that they could justify when challenged. These memories were reinterpretations of previous experiences that supported the suggested identity. Importantly, autobiographical memories that were no longer consistent with the hypnotically deluded self were less accessible than other memories. The authors discuss these findings in the context of Conway's SMS model and propose 2 accounts of autobiographical remembering during hypnotic and clinical delusions.

  7. Long-Term Memory Deficits are Associated with Elevated Synaptic ERK1/2 Activation and Reversed by mGluR5 Antagonism in an Animal Model of Autism

    PubMed Central

    Seese, Ronald R; Maske, Anna R; Lynch, Gary; Gall, Christine M

    2014-01-01

    A significant proportion of patients with autism exhibit some degree of intellectual disability. The BTBR T+ Itpr3tf/J mouse strain exhibits behaviors that align with the major diagnostic criteria of autism. To further evaluate the BTBR strain's cognitive impairments, we quantified hippocampus-dependent object location memory (OLM) and found that one-third of the BTBR mice exhibited robust memory, whereas the remainder did not. Fluorescence deconvolution tomography was used to test whether synaptic levels of activated extracellular signal-regulated kinase 1/2 (ERK1/2), a protein that contributes importantly to plasticity, correlate with OLM scores in individual mice. In hippocampal field CA1, the BTBRs had fewer post-synaptic densities associated with high levels of phosphorylated (p-) ERK1/2 as compared with C57BL/6 mice. Although counts of p-ERK1/2 immunoreactive synapses did not correlate with OLM performance, the intensity of synaptic p-ERK1/2 immunolabeling was negatively correlated with OLM scores across BTBRs. Metabotropic glutamate receptor (mGluR) 5 signaling activates ERK1/2. Therefore, we tested whether treatment with the mGluR5 antagonist MPEP normalizes synaptic and learning measures in BTBR mice: MPEP facilitated OLM and decreased synaptic p-ERK1/2 immunolabeling intensity without affecting numbers of p-ERK1/2+ synapses. In contrast, semi-chronic ampakine treatment, which facilitates memory in other models of cognitive impairment, had no effect on OLM in BTBRs. These results suggest that intellectual disabilities associated with different neurodevelopmental disorders on the autism spectrum require distinct therapeutic strategies based on underlying synaptic pathology. PMID:24448645

  8. Increased Interhemispheric Interaction Is Associated with Decreased False Memories in a Verbal Converging Semantic Associates Paradigm

    ERIC Educational Resources Information Center

    Christman, S.D.; Propper, R.E.; Dion, A.

    2004-01-01

    Recent evidence indicates that task and subject variables that are associated with increased interaction between the left and right cerebral hemispheres result in enhanced performance on tests of episodic memory. The current study looked at the effects of increased interhemispheric interaction on false memories using a verbal converging semantic…

  9. Increased Interhemispheric Interaction Is Associated with Decreased False Memories in a Verbal Converging Semantic Associates Paradigm

    ERIC Educational Resources Information Center

    Christman, S.D.; Propper, R.E.; Dion, A.

    2004-01-01

    Recent evidence indicates that task and subject variables that are associated with increased interaction between the left and right cerebral hemispheres result in enhanced performance on tests of episodic memory. The current study looked at the effects of increased interhemispheric interaction on false memories using a verbal converging semantic…

  10. Effects of learning experience on forgetting rates of item and associative memories.

    PubMed

    Yang, Jiongjiong; Zhan, Lexia; Wang, Yingying; Du, Xiaoya; Zhou, Wenxi; Ning, Xueling; Sun, Qing; Moscovitch, Morris

    2016-07-01

    Are associative memories forgotten more quickly than item memories, and does the level of original learning differentially influence forgetting rates? In this study, we addressed these questions by having participants learn single words and word pairs once (Experiment 1), three times (Experiment 2), and six times (Experiment 3) in a massed learning (ML) or a distributed learning (DL) mode. Then they were tested for item and associative recognition separately after four retention intervals: 10 min, 1 d, 1 wk, and 1 mo. The contribution of recollection and familiarity processes were assessed by participants' remember/know judgments. The results showed that for both item and associative memories, across different degrees of learning, recollection decreased significantly and was the main source of forgetting over time, whereas familiarity remained relatively stable over time. Learning multiple times led to slower forgetting at shorter intervals, depending on recollection and familiarity processes. Compared with massed learning, distributed learning (six times) especially benefited associative memory by increasing recollection, leading to slower forgetting at longer intervals. This study highlighted the importance of process contribution and learning experiences in modulating the forgetting rates of item and associative memories. We interpret these results within the framework of a dual factor representational model of forgetting (as noted in a previous study) in which recollection is more prone to decay over time than familiarity.

  11. Development of Working Memory for Verbal-Spatial Associations.

    PubMed

    Cowan, Nelson; Saults, J Scott; Morey, Candice C

    2006-08-01

    Verbal-to-spatial associations in working memory may index a core capacity for abstract information limited in the amount concurrently retained. However, what look like associative, abstract representations could instead reflect verbal and spatial codes held separately and then used in parallel. We investigated this issue in two experiments on memory for associations between names and spatial locations, with or without a 1-to-1 correspondence between the two. Participants (children 9-10 and 12-13 years old and college students) saw series of names presented at spatial locations occupied by house icons and indicated the location at which a probe name had appeared. Only adults benefited from 1-to-1 correspondence between names and locations, and this benefit was eliminated by articulatory suppression. We maintain that the 1-to-1 benefit stems from verbal and spatial codes used in parallel. Without rehearsal, performance appears to index working memory for abstract, cross-modal information. Correlations with other tasks suggest that it is an excellent measure of working memory capacity.

  12. Pain is Associated with Prospective Memory Dysfunction in Multiple Sclerosis

    PubMed Central

    Miller, Ashley K.; Basso, Michael R.; Candilis, Philip J.; Combs, Dennis R.; Woods, Steven Paul

    2014-01-01

    Prospective memory (PM) pertains to the execution of a future goal or behavior. Initial research implies that people with multiple sclerosis (MS) are apt to show impaired prospective memory for activities of daily living (Rendell, Jensen, & Henry, 2007; Rendell et al., 2012). Yet, PM impairment does not occur in all people with MS. Thus, some other variable besides disease status alone may contribute to PM dysfunction in people with MS. Chronic pain may be such a variable. Approximately 50-70% of people with MS experience significant pain, and such pain has been thought to diminish memory function (Moore, Keogh, and Eccleston, 2009). To investigate this possibility, 96 patients with MS and 29 healthy subjects were administered the Memory for Intentions Screening Test (MIST) (Raskin, Buckheit, & Sherrod, 2010), a well-validated measure of prospective memory, and the Medical Outcomes Study Pain Effects Scale (PES) (Fischer, Rudick, Cutter, & Reingold, 1999) to assess chronic pain. After controlling for demographic variables and disability severity, subjective pain accounted for significant variance in PM, particularly for time-based intentions over sustained delay periods. These data accord well with assertions that pain may degrade ability to remember new intentions, and suggests that pain is associated with PM dysfunction in people with MS. PMID:25338929

  13. Beneficial effects of semantic memory support on older adults' episodic memory: Differential patterns of support of item and associative information.

    PubMed

    Mohanty, Praggyan Pam; Naveh-Benjamin, Moshe; Ratneshwar, Srinivasan

    2016-02-01

    The effects of two types of semantic memory support-meaningfulness of an item and relatedness between items-in mitigating age-related deficits in item and associative, memory are examined in a marketing context. In Experiment 1, participants studied less (vs. more) meaningful brand logo graphics (pictures) paired with meaningful brand names (words) and later were assessed by item (old/new) and associative (intact/recombined) memory recognition tests. Results showed that meaningfulness of items eliminated age deficits in item memory, while equivalently boosting associative memory for older and younger adults. Experiment 2, in which related and unrelated brand logo graphics and brand name pairs served as stimuli, revealed that relatedness between items eliminated age deficits in associative memory, while improving to the same degree item memory in older and younger adults. Experiment 2 also provided evidence for a probable boundary condition that could reconcile seemingly contradictory extant results. Overall, these experiments provided evidence that although the two types of semantic memory support can improve both item and associative memory in older and younger adults, older adults' memory deficits can be eliminated when the type of support provided is compatible with the type of information required to perform well on the test. (c) 2016 APA, all rights reserved).

  14. Quantum-Inspired Multidirectional Associative Memory With a Self-Convergent Iterative Learning.

    PubMed

    Masuyama, Naoki; Loo, Chu Kiong; Seera, Manjeevan; Kubota, Naoyuki

    2017-02-06

    Quantum-inspired computing is an emerging research area, which has significantly improved the capabilities of conventional algorithms. In general, quantum-inspired hopfield associative memory (QHAM) has demonstrated quantum information processing in neural structures. This has resulted in an exponential increase in storage capacity while explaining the extensive memory, and it has the potential to illustrate the dynamics of neurons in the human brain when viewed from quantum mechanics perspective although the application of QHAM is limited as an autoassociation. We introduce a quantum-inspired multidirectional associative memory (QMAM) with a one-shot learning model, and QMAM with a self-convergent iterative learning model (IQMAM) based on QHAM in this paper. The self-convergent iterative learning enables the network to progressively develop a resonance state, from inputs to outputs. The simulation experiments demonstrate the advantages of QMAM and IQMAM, especially the stability to recall reliability.

  15. Towards Automated Memory Model Generation Via Event Tracing

    SciTech Connect

    Perks, O. F. J.; Beckingsale, D. A.; Hammond, S. D.; Miller, I.; Herdman, J. A.; Vadgama, A.; Bhalerao, A. H.; He, L.; Jarvis, S. A.

    2012-06-04

    The importance of memory performance and capacity is a growing concern for high performance computing laboratories around the world. It has long been recognized that improvements in processor speed exceed the rate of improvement in dynamic random access memory speed and, as a result, memory access times can be the limiting factor in high performance scientific codes. The use of multi-core processors exacerbates this problem with the rapid growth in the number of cores not being matched by similar improvements in memory capacity, increasing the likelihood of memory contention. In this paper, we present WMTools , a lightweight memory tracing tool and analysis framework for parallel codes, which is able to identify peak memory usage and also analyse per-function memory use over time. An evaluation of WMTools , in terms of its effectiveness and also its overheads, is performed using nine established scientific applications/benchmark codes representing a variety of programming languages and scientific domains. We also show how WMTools can be used to automatically generate a parameterized memory model for one of these applications, a two-dimensional non-linear magnetohydrodynamics application, Lare2D . Through the memory model we are able to identify an unexpected growth term which becomes dominant at scale. With a refined model we are able to predict memory consumption with under 7% error.

  16. Name that percussive tune: Associative memory and amplitude envelope.

    PubMed

    Schutz, Michael; Stefanucci, Jeanine K; H Baum, Sarah; Roth, Amber

    2017-07-01

    A series of experiments demonstrated novel effects of amplitude envelope on associative memory, with tones exhibiting naturally decaying amplitude envelopes (e.g., those made by two wine glasses clinking) better associated with target objects than amplitude-invariant tones. In Experiment 1 participants learned associations between household objects and 4-note tone sequences constructed of spectrally matched pure tones with either "flat" or "percussive" amplitude envelopes. Those hearing percussive tones correctly recalled significantly more sequence-object associations. Experiment 2 demonstrated that participants hearing percussive tones learned the associations more quickly. Experiment 3 used "reverse percussive" tones (percussive tones played backwards) to test whether differences in overall energy might account for this effect, finding they did not lead to the same level of performance as percussive tones. Experiment 4 varied the envelope at encoding and retrieval to determine which stage of the task was most affected by the envelope manipulation. Participants hearing percussive tones at both encoding and retrieval performed significantly better than the other three groups (i.e., flat at encoding/percussive at retrieval, etc.). We conclude that amplitude envelope plays an important role in learning and memory, a finding with relevance to psychological research on audition and associative memory, as well as practical relevance for improving human-computer interface design.

  17. Modeling aspects of human memory for scientific study.

    SciTech Connect

    Caudell, Thomas P.; Watson, Patrick; McDaniel, Mark A.; Eichenbaum, Howard B.; Cohen, Neal J.; Vineyard, Craig Michael; Taylor, Shawn Ellis; Bernard, Michael Lewis; Morrow, James Dan; Verzi, Stephen J.

    2009-10-01

    Working with leading experts in the field of cognitive neuroscience and computational intelligence, SNL has developed a computational architecture that represents neurocognitive mechanisms associated with how humans remember experiences in their past. The architecture represents how knowledge is organized and updated through information from individual experiences (episodes) via the cortical-hippocampal declarative memory system. We compared the simulated behavioral characteristics with those of humans measured under well established experimental standards, controlling for unmodeled aspects of human processing, such as perception. We used this knowledge to create robust simulations of & human memory behaviors that should help move the scientific community closer to understanding how humans remember information. These behaviors were experimentally validated against actual human subjects, which was published. An important outcome of the validation process will be the joining of specific experimental testing procedures from the field of neuroscience with computational representations from the field of cognitive modeling and simulation.

  18. Modeling Recognition Memory Using the Similarity Structure of Natural Input

    ERIC Educational Resources Information Center

    Lacroix, Joyca P. W.; Murre, Jaap M. J.; Postma, Eric O.; van den Herik, H. Jaap

    2006-01-01

    The natural input memory (NAM) model is a new model for recognition memory that operates on natural visual input. A biologically informed perceptual preprocessing method takes local samples (eye fixations) from a natural image and translates these into a feature-vector representation. During recognition, the model compares incoming preprocessed…

  19. Modeling Recognition Memory Using the Similarity Structure of Natural Input

    ERIC Educational Resources Information Center

    Lacroix, Joyca P. W.; Murre, Jaap M. J.; Postma, Eric O.; van den Herik, H. Jaap

    2006-01-01

    The natural input memory (NAM) model is a new model for recognition memory that operates on natural visual input. A biologically informed perceptual preprocessing method takes local samples (eye fixations) from a natural image and translates these into a feature-vector representation. During recognition, the model compares incoming preprocessed…

  20. Differential Age Effects for Implicit and Explicit Conceptual Associative Memory

    PubMed Central

    Dew, Ilana T. Z.; Giovanello, Kelly S.

    2010-01-01

    Older adults show disproportionate declines in explicit memory for associative relative to item information. However, the source of these declines is still uncertain. One explanation is a generalized impairment in the processing of associative information. A second explanation is a more specialized impairment in the strategic, effortful recollection of associative information, leaving less effortful forms of associative retrieval preserved. Assessing implicit memory of new associations is a way to distinguish between these viewpoints. To date, mixed findings have emerged from studies of associative priming in aging. One factor that may account for the variability is whether the manipulations inadvertently involve strategic, explicit processes. In 2 experiments we present a novel paradigm of conceptual associative priming in which subjects make speeded associative judgments about unrelated objects. Using a size classification task, Experiment 1 showed equivalent associative priming between young and older adults. Experiment 2 generalized the results of Experiment 1 to an inside/outside classification task, while replicating the typical age-related impairment in associative but not item recognition. Taken together, the findings support the viewpoint that older adults can incidentally encode and retrieve new meaningful associations despite difficulty with the intentional recollection of the same information. PMID:21077717

  1. Hypergraph-based recognition memory model for lifelong experience.

    PubMed

    Kim, Hyoungnyoun; Park, Ji-Hyung

    2014-01-01

    Cognitive agents are expected to interact with and adapt to a nonstationary dynamic environment. As an initial process of decision making in a real-world agent interaction, familiarity judgment leads the following processes for intelligence. Familiarity judgment includes knowing previously encoded data as well as completing original patterns from partial information, which are fundamental functions of recognition memory. Although previous computational memory models have attempted to reflect human behavioral properties on the recognition memory, they have been focused on static conditions without considering temporal changes in terms of lifelong learning. To provide temporal adaptability to an agent, in this paper, we suggest a computational model for recognition memory that enables lifelong learning. The proposed model is based on a hypergraph structure, and thus it allows a high-order relationship between contextual nodes and enables incremental learning. Through a simulated experiment, we investigate the optimal conditions of the memory model and validate the consistency of memory performance for lifelong learning.

  2. Hypergraph-Based Recognition Memory Model for Lifelong Experience

    PubMed Central

    2014-01-01

    Cognitive agents are expected to interact with and adapt to a nonstationary dynamic environment. As an initial process of decision making in a real-world agent interaction, familiarity judgment leads the following processes for intelligence. Familiarity judgment includes knowing previously encoded data as well as completing original patterns from partial information, which are fundamental functions of recognition memory. Although previous computational memory models have attempted to reflect human behavioral properties on the recognition memory, they have been focused on static conditions without considering temporal changes in terms of lifelong learning. To provide temporal adaptability to an agent, in this paper, we suggest a computational model for recognition memory that enables lifelong learning. The proposed model is based on a hypergraph structure, and thus it allows a high-order relationship between contextual nodes and enables incremental learning. Through a simulated experiment, we investigate the optimal conditions of the memory model and validate the consistency of memory performance for lifelong learning. PMID:25371665

  3. Spatial working memory deficits in GluA1 AMPA receptor subunit knockout mice reflect impaired short-term habituation: Evidence for Wagner's dual-process memory model

    PubMed Central

    Sanderson, David J.; McHugh, Stephen B.; Good, Mark A.; Sprengel, Rolf; Seeburg, Peter H.; Rawlins, J. Nicholas P.; Bannerman, David M.

    2010-01-01

    Genetically modified mice, lacking the GluA1 AMPA receptor subunit, are impaired on spatial working memory tasks, but display normal acquisition of spatial reference memory tasks. One explanation for this dissociation is that working memory, win-shift performance engages a GluA1-dependent, non-associative, short-term memory process through which animals choose relatively novel arms in preference to relatively familiar options. In contrast, spatial reference memory, as exemplified by the Morris water maze task, reflects a GluA1-independent, associative, long-term memory mechanism. These results can be accommodated by Wagner's dual-process model of memory in which short and long-term memory mechanisms exist in parallel and, under certain circumstances, compete with each other. According to our analysis, GluA1−/− mice lack short-term memory for recently experienced spatial stimuli. One consequence of this impairment is that these stimuli should remain surprising and thus be better able to form long-term associative representations. Consistent with this hypothesis, we have recently shown that long-term spatial memory for recently visited locations is enhanced in GluA1−/− mice, despite impairments in hippocampal synaptic plasticity. Taken together, these results support a role for GluA1-containing AMPA receptors in short-term habituation, and in modulating the intensity or perceived salience of stimuli. PMID:20350557

  4. Parallel interactive retrieval of item and associative information from event memory.

    PubMed

    Cox, Gregory E; Criss, Amy H

    2017-09-01

    Memory contains information about individual events (items) and combinations of events (associations). Despite the fundamental importance of this distinction, it remains unclear exactly how these two kinds of information are stored and whether different processes are used to retrieve them. We use both model-independent qualitative properties of response dynamics and quantitative modeling of individuals to address these issues. Item and associative information are not independent and they are retrieved concurrently via interacting processes. During retrieval, matching item and associative information mutually facilitate one another to yield an amplified holistic signal. Modeling of individuals suggests that this kind of facilitation between item and associative retrieval is a ubiquitous feature of human memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A Probabilistic Model of Visual Working Memory: Incorporating Higher Order Regularities into Working Memory Capacity Estimates

    ERIC Educational Resources Information Center

    Brady, Timothy F.; Tenenbaum, Joshua B.

    2013-01-01

    When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…

  6. A Probabilistic Model of Visual Working Memory: Incorporating Higher Order Regularities into Working Memory Capacity Estimates

    ERIC Educational Resources Information Center

    Brady, Timothy F.; Tenenbaum, Joshua B.

    2013-01-01

    When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…

  7. Effects of an Acute Seizure on Associative Learning and Memory

    PubMed Central

    Holley, Andrew J.; Lugo, Joaquin N.

    2015-01-01

    Past studies have demonstrated that inducing several seizures or continuous seizures in neonatal or adult rats results in impairments in learning and memory. The impact of a single acute seizure on learning and memory has not been investigated in mice. In this study, we exposed an adult 129SvEvTac mouse to the inhalant flurothyl until a behavioral seizure was induced. Our study consisted of 4 experiments where we examined the effect of one seizure before or after delay fear conditioning. We also included a separate cohort of animals that was tested in the open field after a seizure to rule out changes in locomotor activity influencing the results of memory tests. Mice that had experienced a single seizure 1 hour, but not 6 hours, prior to training showed a significant impairment in associative conditioning to the conditioned stimulus when compared to controls 24 hours later. There were no differences in freezing one day later for animals that experienced a single seizure 1 hour after associative learning. We also found that an acute seizure reduced activity levels in an open field test 2 hours but not 24 hours later. These findings suggest that an acute seizure occurring immediately before learning can have an effect on the recall of events occurring shortly after that seizure. In contrast, an acute seizure occurring shortly after learning appears to have little or no effect on long-term memory. These findings have implications for understanding the acute effects of seizures on the acquisition of new knowledge. PMID:26655449

  8. Subjective memory complaints among patients on sick leave are associated with symptoms of fatigue and anxiety

    PubMed Central

    Aasvik, Julie K.; Woodhouse, Astrid; Jacobsen, Henrik B.; Borchgrevink, Petter C.; Stiles, Tore C.; Landrø, Nils I.

    2015-01-01

    Objective: The aim of this study was to identify symptoms associated with subjective memory complaints (SMCs) among subjects who are currently on sick leave due to symptoms of chronic pain, fatigue, depression, anxiety, and insomnia. Methods: This was a cross-sectional study, subjects (n = 167) who were currently on sick leave were asked to complete an extensive survey consisting of the following: items addressing their sociodemographics, one item from the SF-8 health survey measuring pain, Chalder Fatigue Questionnaire, Hospital Anxiety and Depression Scale, Insomnia Severity Index, and Everyday Memory Questionnaire – Revised. General linear modeling was used to analyze variables associated with SMCs. Results: Symptoms of fatigue (p-value < 0.001) and anxiety (p-value = 0.001) were uniquely and significantly associated with perceived memory failures. The associations with symptoms of pain, depression, and insomnia were not statistically significant. Conclusions: Subjective memory complaints should be recognized as part of the complex symptomatology among patients who report multiple symptoms, especially in cases of fatigue and anxiety. Self-report questionnaires measuring perceived memory failures may be a quick and easy way to incorporate and extend this knowledge into clinical practice. PMID:26441716

  9. Elements of episodic-like memory in animal models.

    PubMed

    Crystal, Jonathon D

    2009-03-01

    Representations of unique events from one's past constitute the content of episodic memories. A number of studies with non-human animals have revealed that animals remember specific episodes from their past (referred to as episodic-like memory). The development of animal models of memory holds enormous potential for gaining insight into the biological bases of human memory. Specifically, given the extensive knowledge of the rodent brain, the development of rodent models of episodic memory would open new opportunities to explore the neuroanatomical, neurochemical, neurophysiological, and molecular mechanisms of memory. Development of such animal models holds enormous potential for studying functional changes in episodic memory in animal models of Alzheimer's disease, amnesia, and other human memory pathologies. This article reviews several approaches that have been used to assess episodic-like memory in animals. The approaches reviewed include the discrimination of what, where, and when in a radial arm maze, dissociation of recollection and familiarity, object recognition, binding, unexpected questions, and anticipation of a reproductive state. The diversity of approaches may promote the development of converging lines of evidence on the difficult problem of assessing episodic-like memory in animals.

  10. Using visual lateralization to model learning and memory in zebrafish larvae

    PubMed Central

    Andersson, Madelene Åberg; Ek, Fredrik; Olsson, Roger

    2015-01-01

    Impaired learning and memory are common symptoms of neurodegenerative and neuropsychiatric diseases. Present, there are several behavioural test employed to assess cognitive functions in animal models, including the frequently used novel object recognition (NOR) test. However, although atypical functional brain lateralization has been associated with neuropsychiatric conditions, spanning from schizophrenia to autism, few animal models are available to study this phenomenon in learning and memory deficits. Here we present a visual lateralization NOR model (VLNOR) in zebrafish larvae as an assay that combines brain lateralization and NOR. In zebrafish larvae, learning and memory are generally assessed by habituation, sensitization, or conditioning paradigms, which are all representatives of nondeclarative memory. The VLNOR is the first model for zebrafish larvae that studies a memory similar to the declarative memory described for mammals. We demonstrate that VLNOR can be used to study memory formation, storage, and recall of novel objects, both short and long term, in 10-day-old zebrafish. Furthermore we show that the VLNOR model can be used to study chemical modulation of memory formation and maintenance using dizocilpine (MK-801), a frequently used non-competitive antagonist of the NMDA receptor, used to test putative antipsychotics in animal models. PMID:25727677

  11. Cannabinoid CB1 receptor antagonist rimonabant disrupts nicotine reward-associated memory in rats.

    PubMed

    Fang, Qin; Li, Fang-Qiong; Li, Yan-Qin; Xue, Yan-Xue; He, Ying-Ying; Liu, Jian-Feng; Lu, Lin; Wang, Ji-Shi

    2011-10-01

    Exposure to cues previously associated with drug intake leads to relapse by activating previously acquired memories. Based on previous findings, in which cannabinoid CB(1) receptors were found to be critically involved in specific aspects of learning and memory, we investigated the role of CB(1) receptors in nicotine reward memory using a rat conditioned place preference (CPP) model. In Experiment 1, rats were trained for CPP with alternating injections of nicotine (0.5mg/kg, s.c.) and saline to acquire the nicotine-conditioned memory. To examine the effects of rimonabant on the reconsolidation of nicotine reward memory, rats were administered rimonabant (0, 0.3, and 3.0mg/kg, i.p.) immediately after reexposure to the drug-paired context. In Experiment 2, rats were trained for CPP similarly to Experiment 1. To examine the effects of rimonabant on the reinstatement of nicotine reward memory, rimonabant (0, 0.3, and 3.0mg/kg, i.p.) was administered before the test of nicotine-induced CPP reinstatement. In Experiment 3, to evaluate whether rimonabant itself produces a reward memory, rats were trained for CPP with alternating injections of different doses of rimonabant (0, 0.3, and 3.0mg/kg) and saline. Rimonabant at a dose of 3.0mg/kg significantly disrupted the reconsolidation of nicotine memory and significantly blocked the reinstatement of nicotine-induced CPP. However, rimonabant itself did not produce CPP. These findings provide clear evidence that CB(1) receptors play a role in nicotine reward memory, suggesting that CB(1) receptor antagonists may be a potential target for managing nicotine addiction.

  12. Aging and memory for numerical information: the role of specificity and expertise in associative memory.

    PubMed

    Castel, Alan D

    2007-05-01

    In order to examine the nature of associative memory deficits in old age, the present study examined how younger and older adults link numerical and object information to other items. The hypothesis was that there would be large age differences for numerical information caused by the arbitrariness and specificity of this type of information, but that this could be reduced by expertise. Participants studied sentences that contained numeric quantity, object, and location information (e.g., 26 cherries in the bowl); they were later cued with the location and had to recall the object and quantity. In general, there were significant age differences for quantity recall but negligible age differences for recall of related objects but not unrelated objects. However, a group of older retired accountants and bookkeepers showed exceptional memory for quantity information. The findings suggest that the associative deficit in old age is based on the linking of specific arbitrary information.

  13. Low levels of estradiol are associated with elevated conditioned responding during fear extinction and with intrusive memories in daily life

    PubMed Central

    Wegerer, Melanie; Kerschbaum, Hubert; Blechert, Jens; Wilhelm, Frank H.

    2014-01-01

    Posttraumatic stress disorder (PTSD) can be conceptualized as a disorder of emotional memory showing strong (conditioned) responses to trauma reminders and intrusive memories among other symptoms. Women are at greater risk of developing PTSD than men. Recent studies have demonstrated an influence of ovarian steroid hormones in both fear conditioning and intrusive memory paradigms. However, although intrusive memories are considered non-extinguished emotional reactions to trauma reminders, none of the previous studies has investigated effects of ovarian hormones on fear conditioning mechanisms and intrusive memories in conjunction. This may have contributed to an overall inconsistent picture of the role of these hormones in emotional learning and memory. To remedy this, we exposed 37 healthy women with a natural menstrual cycle (during early follicular or luteal cycle phase) to a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with short violent film clips as unconditioned stimuli. Intrusive memories about the film clips were assessed ambulatorily on subsequent days. Women with lower levels of estradiol displayed elevated differential conditioned skin conductance responding during fear extinction and showed stronger intrusive memories. The inverse relationship between estradiol and intrusive memories was at least partially accounted for by the conditioned responding observed during fear extinction. Progesterone levels were not associated with either fear acquisition/extinction or with intrusive memories. This suggests that lower levels of estradiol might promote stronger symptoms of PTSD through associative processes. PMID:25463649

  14. The differential effects of emotional salience on direct associative and relational memory during a nap.

    PubMed

    Alger, Sara E; Payne, Jessica D

    2016-12-01

    Relational memories are formed from shared components between directly learned memory associations, flexibly linking learned information to better inform future judgments. Sleep has been found to facilitate both direct associative and relational memories. However, the impact of incorporating emotionally salient information into learned material and the interaction of emotional salience and sleep in facilitating both types of memory is unknown. Participants encoded two sets of picture pairs, with either emotionally negative or neutral objects paired with neutral faces. The same objects were present in both sets, paired with two different faces across the sets. Baseline memory for these directly paired associates was tested immediately after encoding, followed by either a 90-min nap opportunity or wakefulness. Five hours after learning, a surprise test assessed relational memory, the indirect association between two faces paired with the same object during encoding, followed by a retest of direct associative memory. Overall, negative information was remembered better than neutral for directly learned pairs. A nap facilitated both preservation of direct associative memories and formation of relational memories, compared to remaining awake. Interestingly, however, this sleep benefit was observed specifically for neutral directly paired associates, while both neutral and negative relational associations benefitted from a nap. Finally, REM sleep played opposing roles in neutral direct and relational associative memory formation, with more REM sleep leading to forgetting of direct associations but promoting relational associations, suggesting that, while not benefitting memory consolidation for directly learned details, REM sleep may foster the memory reorganization needed for relational memory.

  15. Statistical Mechanics Model of the Speed - Accuracy Tradeoff in Spatial and Lexical Memory

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Allen, Philip

    2000-03-01

    The molar neural network model of P. Allen, M. Kaufman, A. F. Smith, R. E. Popper, Psychology and Aging 13, 501 (1998) and Experimental Aging Research, 24, 307 (1998) is extended to incorporate reaction times. In our model the entropy associated with a particular task determines the reaction time. We use this molar neural model to directly analyze experimental data on episodic (spatial) memory and semantic (lexical) memory tasks. In particular we are interested in the effect of aging on the two types of memory. We find that there is no difference in performance levels for lexical memory tasks between younger and older adults. In the case spatial memory tasks we find that aging has a detrimental effect on the performance level. This work is supported by NIH/NIA grant AG09282-06.

  16. Recognition memory for faces: when familiarity supports associative recognition judgments.

    PubMed

    Yonelinas, A P; Kroll, N E; Dobbins, I G; Soltani, M

    1999-12-01

    Recognition memory for single items can be dissociated from recognition memory for the associations between items. For example, recognition tests for single words produce curvilinear receiver operating characteristics (ROCs), but associative recognition tests for word pairs produce linear ROCs. These dissociations are consistent with dual-process theories of recognition and suggest that associative recognition relies on recollection but that item recognition relies on a combination of recollection and assessments of familiarity. In the present study, we examined associative recognition ROCs for facial stimuli by manipulating the central and external features, in order to determine whether linear ROCs would be observed for stimuli other than arbitrary word pairs. When the faces were presented upright, familiarity estimates were significantly above zero, and the associative ROCs were curvilinear, suggesting that familiarity contributed to associative judgments. However, presenting the faces upside down effectively eliminated the contribution of familiarity to associative recognition, and the ROCs were linear. The results suggest that familiarity can support associative recognition judgments, if the associated components are encoded as a coherent gestalt, as in upright faces.

  17. Limbic hyperactivity associated to verbal memory deficit in schizophrenia.

    PubMed

    Suazo, Vanessa; Díez, Álvaro; Tamayo, Pilar; Montes, Carlos; Molina, Vicente

    2013-06-01

    In schizophrenia there seems to be an inefficient activation of prefrontal and hippocampal regions. Patients tend to show worse cognitive performance in functions subserved by those regions as compared to healthy controls in spite of higher regional activation. However, the association between activation abnormalities and cognitive deficits remains without being understood. In the present study, we compared cerebral perfusion using single-photon emission tomography (SPECT) in patients and controls to study the association between activation patterns and cognitive performance in this disease. The SPECT studies were simultaneously obtained with an electrophysiological recording during a P300 paradigm to elicit P3a and P3b components. We included 23 stable patients with paranoid schizophrenia and 29 healthy controls that underwent clinical and cognitive assessments. Patients with schizophrenia showed an increased perfusion in the right hippocampus with respect to healthy controls, they also displayed a statistically significant inverse association between perfusion in the left hippocampus and verbal memory performance. Healthy controls showed an inverse association between perfusion in the left dorsolateral prefrontal (DLPFC) region and working memory performance. P3b but not P3a amplitude was significantly lower in patients. The limbic overactivation in the patients may contribute to their cognitive deficits in verbal memory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Modeling Confidence and Response Time in Recognition Memory

    ERIC Educational Resources Information Center

    Ratcliff, Roger; Starns, Jeffrey J.

    2009-01-01

    A new model for confidence judgments in recognition memory is presented. In the model, the match between a single test item and memory produces a distribution of evidence, with better matches corresponding to distributions with higher means. On this match dimension, confidence criteria are placed, and the areas between the criteria under the…

  19. Modeling Confidence and Response Time in Recognition Memory

    ERIC Educational Resources Information Center

    Ratcliff, Roger; Starns, Jeffrey J.

    2009-01-01

    A new model for confidence judgments in recognition memory is presented. In the model, the match between a single test item and memory produces a distribution of evidence, with better matches corresponding to distributions with higher means. On this match dimension, confidence criteria are placed, and the areas between the criteria under the…

  20. Differential association of left and right hippocampal volumes with verbal episodic and spatial memory in older adults.

    PubMed

    Ezzati, Ali; Katz, Mindy J; Zammit, Andrea R; Lipton, Michael L; Zimmerman, Molly E; Sliwinski, Martin J; Lipton, Richard B

    2016-12-01

    The hippocampus plays a critical role in verbal and spatial memory, thus any pathological damage to this formation may lead to cognitive impairment. It is suggested that right and left hippocampi are affected differentially in healthy or pathologic aging. The purpose of this study was to test the hypothesis that verbal episodic memory performance is associated with left hippocampal volume (HV) while spatial memory is associated with right HV. 115 non-demented adults over age 70 were drawn from the Einstein Aging Study. Verbal memory was measured using the free recall score from the Free and Cued Selective Reminding Test - immediate recall (FCSRT-IR), logical memory immediate and delayed subtests (LM-I and LM-II) from the Wechsler Memory Scale-Revised (WMS-R). Spatial Memory was measured using a computerized dot memory paradigm that has been validated for use in older adults. All participants underwent 3T MRI with subsequent automatized measurement of the volume of each hippocampus. The sample had a mean age of 78.7 years (SD=5.0); 57% were women, and 52% were white. Participants had a mean of 14.3 years (SD=3.5) of education. In regression models, two tests of verbal memory (FCSRT-IR free recall and LM-II) were positively associated with left HV, but not with right HV. Performance on the spatial memory task was associated with right HV, but not left HV. Our findings support the hypothesis that the left hippocampus plays a critical role in episodic verbal memory, while right hippocampus might be more important for spatial memory processing among non-demented older adults. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory.

    PubMed

    Gyurkó, M Dávid; Csermely, Péter; Sőti, Csaba; Steták, Attila

    2015-10-15

    The Ras GTPase activating proteins (RasGAPs) are regulators of the conserved Ras/MAPK pathway. Various roles of some of the RasGAPs in learning and memory have been reported in different model systems, yet, there is no comprehensive study to characterize all gap genes in any organism. Here, using reverse genetics and neurobehavioural tests, we studied the role of all known genes of the rasgap family in C. elegans in associative learning and memory. We demonstrated that their proteins are implicated in different parts of the learning and memory processes. We show that gap-1 contribute redundantly with gap-3 to the chemosensation of volatile compounds, gap-1 plays a major role in associative learning, while gap-2 and gap-3 are predominantly required for short- and long-term associative memory. Our results also suggest that the C. elegans Ras orthologue let-60 is involved in multiple processes during learning and memory. Thus, we show that the different classes of RasGAP proteins are all involved in cognitive function and their complex interplay ensures the proper formation and storage of novel information in C. elegans.

  2. Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory

    PubMed Central

    Gyurkó, M. Dávid; Csermely, Péter; Sőti, Csaba; Steták, Attila

    2015-01-01

    The Ras GTPase activating proteins (RasGAPs) are regulators of the conserved Ras/MAPK pathway. Various roles of some of the RasGAPs in learning and memory have been reported in different model systems, yet, there is no comprehensive study to characterize all gap genes in any organism. Here, using reverse genetics and neurobehavioural tests, we studied the role of all known genes of the rasgap family in C. elegans in associative learning and memory. We demonstrated that their proteins are implicated in different parts of the learning and memory processes. We show that gap-1 contribute redundantly with gap-3 to the chemosensation of volatile compounds, gap-1 plays a major role in associative learning, while gap-2 and gap-3 are predominantly required for short- and long-term associative memory. Our results also suggest that the C. elegans Ras orthologue let-60 is involved in multiple processes during learning and memory. Thus, we show that the different classes of RasGAP proteins are all involved in cognitive function and their complex interplay ensures the proper formation and storage of novel information in C. elegans. PMID:26469632

  3. Parallel optical fuzzy logic inference using improved fuzzy associative memories

    NASA Astrophysics Data System (ADS)

    Zhang, ShuQun; Karim, Mohammad A.

    1999-10-01

    A new optoelectronic fuzzy inference system is proposed for processing a large number of fuzzy rules in parallel. The proposed system using spatial light modulator implements various membership functions as well as max-min inference. It has the features of easy implementation and large data processing capability. The membership function decomposition method in the improved fuzzy associative memory is used to save both space bandwidth and accommodate multiple-input fuzzy inference.

  4. Instrumental learning: an animal model for sleep dependent memory enhancement.

    PubMed

    Leenaars, Cathalijn H C; Girardi, Carlos E N; Joosten, Ruud N J M A; Lako, Irene M; Ruimschotel, Emma; Hanegraaf, Maaike A J; Dematteis, Maurice; Feenstra, Matthijs G P; Van Someren, Eus J W

    2013-07-15

    The relationship between learning and sleep is multifaceted; learning influences subsequent sleep characteristics, which may in turn influence subsequent memory. Studies in humans indicate that sleep may not only prevent degradation of acquired memories, but even enhance performance without further practice. In a rodent instrumental learning task, individual differences occur in how fast rats learn to associate lever pressing with food reward. Rats habitually sleep between learning sessions, and may differ in this respect. The current study assessed if the instrumental leaning paradigm could serve as a model to study sleep-dependent memory enhancement. Male Wistar rats performed 2 sessions of instrumental learning per day for 1-3 days. Electroencephalography was recorded both before and after the sessions. Sleep deprivation (3 h) was applied between the first and second session in a subgroup of rats. Measurements comprised the number of lever presses in each session, slow wave sleep (SWS) duration, Rapid Eye Movement Sleep (REMS) duration and sleep spindles. Baseline sleep parameters were similar for fast and slow learning rats. Task-exposure increased REMS-duration. The increase in REMS-duration was observed specifically after sessions in which learning occurred, but not after a later session. Sleep deprivation during the 3h period between the initial two sessions interfered with performance enhancement, but did not prevent this in all rats. Our considered movement control protocol induced partial sleep deprivation and also interfered with performance enhancement. The classic instrumental learning task provides a practical model for animal studies on sleep-dependent memory enhancement.

  5. Lexical association and false memory for words in two cultures.

    PubMed

    Lee, Yuh-shiow; Chiang, Wen-Chi; Hung, Hsu-Ching

    2008-01-01

    This study examined the relationship between language experience and false memory produced by the DRM paradigm. The word lists used in Stadler, et al. (Memory & Cognition, 27, 494-500, 1999) were first translated into Chinese. False recall and false recognition for critical non-presented targets were then tested on a group of Chinese users. The average co-occurrence rate of the list word and the critical word was calculated based on two large Chinese corpuses. List-level analyses revealed that the correlation between the American and Taiwanese participants was significant only in false recognition. More importantly, the co-occurrence rate was significantly correlated with false recall and recognition of Taiwanese participants, and not of American participants. In addition, the backward association strength based on Nelson et al. (The University of South Florida word association, rhyme and word fragment norms, 1999) was significantly correlated with false recall of American participants and not of Taiwanese participants. Results are discussed in terms of the relationship between language experiences and lexical association in creating false memory for word lists.

  6. The theater management model of plant memory

    PubMed Central

    Norris, Vic; Ripoll, Camille; Thellier, Michel

    2015-01-01

    The existence of a memory in plants raises several fundamental questions. What might be the function of a plant memory? How might it work? Which molecular mechanisms might be responsible? Here, we sketch out the landscape of plant memory with particular reference to the concepts of functioning-dependent structures and competitive coherence. We illustrate how these concepts might be relevant with reference to the metaphor of a traveling, avant-garde theater company and we suggest how using a program that simulates competitive coherence might help answer some of the questions about plant memory. PMID:25482789

  7. Face recognition by applying wavelet subband representation and kernel associative memory.

    PubMed

    Zhang, Bai-Ling; Zhang, Haihong; Ge, Shuzhi Sam

    2004-01-01

    In this paper, we propose an efficient face recognition scheme which has two features: 1) representation of face images by two-dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalised classification method based on kernel associative memory models. Compared to PCA projections and low resolution "thumb-nail" image representations, wavelet subband coefficients can efficiently capture substantial facial features while keeping computational complexity low. As there are usually very limited samples, we constructed an associative memory (AM) model for each person and proposed to improve the performance of AM models by kernel methods. Specifically, we first applied kernel transforms to each possible training pair of faces sample and then mapped the high-dimensional feature space back to input space. Our scheme using modular autoassociative memory for face recognition is inspired by the same motivation as using autoencoders for optical character recognition (OCR), for which the advantages has been proven. By associative memory, all the prototypical faces of one particular person are used to reconstruct themselves and the reconstruction error for a probe face image is used to decide if the probe face is from the corresponding person. We carried out extensive experiments on three standard face recognition datasets, the FERET data, the XM2VTS data, and the ORL data. Detailed comparisons with earlier published results are provided and our proposed scheme offers better recognition accuracy on all of the face datasets.

  8. Do intensive studies of a foreign language improve associative memory performance?

    PubMed

    Mårtensson, Johan; Lövdén, Martin

    2011-01-01

    Formal education has been proposed to shape life-long cognitive development. Studies reporting that gains from cognitive training transfer to untrained tasks suggest direct effects of mental activity on cognitive processing efficiency. However, associative memory practice has not been known to produce transfer effects, which is odd considering that the key neural substrate of associative memory, the hippocampus, is known to be particularly plastic. We investigated whether extremely intensive studies of a foreign language, entailing demands on associative memory, cause improvements in associative memory performance. In a pretest-training-post-test design, military conscript interpreters and undergraduate students were measured on a battery of cognitive tasks. We found transfer from language studies to a face-name associative-memory task, but not to measures of working memory, strategy-sensitive episodic memory, or fluid intelligence. These findings provide initial evidence suggesting that associative memory performance can be improved in early adulthood, and that formal education can have such effects.

  9. Modeling selective local interactions with memory

    NASA Astrophysics Data System (ADS)

    Galante, Amanda; Levy, Doron

    2013-10-01

    Recently we developed a stochastic particle system describing local interactions between cyanobacteria. We focused on the common freshwater cyanobacteria Synechocystis sp., which are coccoidal bacteria that utilize group dynamics to move toward a light source, a motion referred to as phototaxis. We were particularly interested in the local interactions between cells that were located in low to medium density areas away from the front. The simulations of our stochastic particle system in 2D replicated many experimentally observed phenomena, such as the formation of aggregations and the quasi-random motion of cells. In this paper, we seek to develop a better understanding of group dynamics produced by this model. To facilitate this study, we replace the stochastic model with a system of ordinary differential equations describing the evolution of particles in 1D. Unlike many other models, our emphasis is on particles that selectively choose one of their neighbors as the preferred direction of motion. Furthermore, we incorporate memory by allowing persistence in the motion. We conduct numerical simulations which allow us to efficiently explore the space of parameters, in order to study the stability, size, and merging of aggregations.

  10. Feasibility of using associative memories for static security assessment of power system overloads. Final report

    SciTech Connect

    Pao, Y.H.

    1982-04-01

    As the cost of computer memory continues to decrease, at a rate about ten times that of the cost of processers, it becomes reasonable to ask whether some power systems monitoring and control tasks might be carried out more effectively with pattern recognition methodology which requires a larger memory size. Pattern recognition methods consist, in effect, of comparing a current system state with a pre-established set of data whose relative degree of security has been evaluated. This is in contrast to calculating an answer anew every time a need for information arises. This report explores the feasibility of the use of that approach for the task of static security assessment. The actual methods used are somewhat different from those used in conventional pattern recognition methodology. The two implementations explored are called associative memory patten recognition and rule-based (or rule-directed) associative memory pattern recognition. In both cases training set data are stored in association between training set patterns and attribute lists and the primary process is that of estimation of attributes. In the latter case, the entire procedure is guided on some rules providing strategy for localizing the search of training set data. The methods were investigated using a computer model of an actual transmission network comprising 196 buses at 328 branches. Our results indicate that this approach is indeed feasible and with the use of a multilevel tree-like structure of associative memories real time processing can be obtained. The rule directed associative memory pattern recognition techniques can accommodate changes in network topology. These new computer science based alternative techniques for steady states security assessment can also be applied to system control and planning.

  11. Attention, Working Memory, and Long-Term Memory in Multimedia Learning: An Integrated Perspective Based on Process Models of Working Memory

    ERIC Educational Resources Information Center

    Schweppe, Judith; Rummer, Ralf

    2014-01-01

    Cognitive models of multimedia learning such as the Cognitive Theory of Multimedia Learning (Mayer 2009) or the Cognitive Load Theory (Sweller 1999) are based on different cognitive models of working memory (e.g., Baddeley 1986) and long-term memory. The current paper describes a working memory model that has recently gained popularity in basic…

  12. Attention, Working Memory, and Long-Term Memory in Multimedia Learning: An Integrated Perspective Based on Process Models of Working Memory

    ERIC Educational Resources Information Center

    Schweppe, Judith; Rummer, Ralf

    2014-01-01

    Cognitive models of multimedia learning such as the Cognitive Theory of Multimedia Learning (Mayer 2009) or the Cognitive Load Theory (Sweller 1999) are based on different cognitive models of working memory (e.g., Baddeley 1986) and long-term memory. The current paper describes a working memory model that has recently gained popularity in basic…

  13. Nap sleep preserves associative but not item memory performance.

    PubMed

    Studte, Sara; Bridger, Emma; Mecklinger, Axel

    2015-04-01

    Many studies have shown that sleep improves memory performance, and that even short naps during the day are beneficial. Certain physiological components of sleep such as spindles and slow-wave-sleep are thought to be particularly important for memory consolidation. The aim of this experiment was to reveal the role of naps for hippocampus-dependent associative memory (AM) and hippocampus-independent item memory (IM) alongside their corresponding ERP old/new effects. Participants learnt single words and word-pairs before performing an IM- and an AM-test (baseline). One group was subsequently allowed to nap (∼90min) while the other watched DVDs (control group). Afterwards, both groups performed a final IM- and AM-test for the learned stimuli (posttest). IM performance decreased for both groups, while AM performance decreased for the control group but remained constant for the nap group, consistent with predictions concerning the selective impact of napping on hippocampus-dependent recognition. Putative ERP correlates of familiarity and recollection were observed in the IM posttest, whereas only the later recollection-related effect was present in the AM test. Notably, none of these effects varied with group. Positive correlations were observed between spindle density during slow-wave-sleep and AM posttest performance as well as between spindle density during non-REM sleep and AM baseline performance, showing that successful learning and retrieval both before and after sleep relates to spindle density during nap sleep. Together, these results speak for a selective beneficial impact of naps on hippocampus-dependent memories.

  14. Memory

    MedlinePlus

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  15. Ventromedial prefrontal cortex pyramidal cells have a temporal dynamic role in recall and extinction of cocaine-associated memory.

    PubMed

    Van den Oever, Michel C; Rotaru, Diana C; Heinsbroek, Jasper A; Gouwenberg, Yvonne; Deisseroth, Karl; Stuber, Garret D; Mansvelder, Huibert D; Smit, August B

    2013-11-13

    In addicts, associative memories related to the rewarding effects of drugs of abuse can evoke powerful craving and drug seeking urges, but effective treatment to suppress these memories is not available. Detailed insight into the neural circuitry that mediates expression of drug-associated memory is therefore of crucial importance. Substantial evidence from rodent models of addictive behavior points to the involvement of the ventromedial prefrontal cortex (vmPFC) in conditioned drug seeking, but specific knowledge of the temporal role of vmPFC pyramidal cells is lacking. To this end, we used an optogenetics approach to probe the involvement of vmPFC pyramidal cells in expression of a recent and remote conditioned cocaine memory. In mice, we expressed Channelrhodopsin-2 (ChR2) or Halorhodopsin (eNpHR3.0) in pyramidal cells of the vmPFC and studied the effect of activation or inhibition of these cells during expression of a cocaine-contextual memory on days 1-2 (recent) and ∼3 weeks (remote) after conditioning. Whereas optical activation of pyramidal cells facilitated extinction of remote memory, without affecting recent memory, inhibition of pyramidal cells acutely impaired recall of recent cocaine memory, without affecting recall of remote memory. In addition, we found that silencing pyramidal cells blocked extinction learning at the remote memory time-point. We provide causal evidence of a critical time-dependent switch in the contribution of vmPFC pyramidal cells to recall and extinction of cocaine-associated memory, indicating that the circuitry that controls expression of cocaine memories reorganizes over time.

  16. The dorsal prefrontal and dorsal anterior cingulate cortices exert complementary network signatures during encoding and retrieval in associative memory.

    PubMed

    Woodcock, Eric A; White, Richard; Diwadkar, Vaibhav A

    2015-09-01

    Cognitive control includes processes that facilitate execution of effortful cognitive tasks, including associative memory. Regions implicated in cognitive control during associative memory include the dorsal prefrontal (dPFC) and dorsal anterior cingulate cortex (dACC). Here we investigated the relative degrees of network-related interactions originating in the dPFC and dACC during oscillating phases of associative memory: encoding and cued retrieval. Volunteers completed an established object-location associative memory paradigm during fMRI. Psychophysiological interactions modeled modulatory network interactions from the dPFC and dACC during memory encoding and retrieval. Results were evaluated in second level analyses of variance with seed region and memory process as factors. Each seed exerted differentiable modulatory effects during encoding and retrieval. The dACC exhibited greater modulation (than the dPFC) on the fusiform and parahippocampal gyrus during encoding, while the dPFC exhibited greater modulation (than the dACC) on the fusiform, hippocampus, dPFC and basal ganglia. During retrieval, the dPFC exhibited greater modulation (than the dACC) on the parahippocampal gyrus, hippocampus, superior parietal lobule, and dPFC. The most notable finding was a seed by process interaction indicating that the dACC and the dPFC exerted complementary modulatory control on the hippocampus during each of the associative memory processes. These results provide evidence for differentiable, yet complementary, control-related modulation by the dACC and dPFC, while establishing the primacy of dPFC in exerting network control during both associative memory phases. Our approach and findings are relevant for understanding basic processes in human memory and psychiatric disorders that impact associative memory-related networks.

  17. Neural correlates of strategic memory retrieval: differentiating between spatial-associative and temporal-associative strategies.

    PubMed

    de Rover, Mischa; Petersson, Karl Magnus; van der Werf, Sieberen P; Cools, Alexander R; Berger, Hans J; Fernández, Guillén

    2008-09-01

    Remembering complex, multidimensional information typically requires strategic memory retrieval, during which information is structured, for instance by spatial- or temporal associations. Although brain regions involved in strategic memory retrieval in general have been identified, differences in retrieval operations related to distinct retrieval strategies are not well-understood. Thus, our aim was to identify brain regions whose activity is differentially involved in spatial-associative and temporal-associative retrieval. First, we showed that our behavioral paradigm probing memory for a set of object-location associations promoted the use of a spatial-associative structure following an encoding condition that provided multiple associations to neighboring objects (spatial-associative condition) and the use of a temporal-associative structure following another study condition that provided predominantly temporal associations between sequentially presented items (temporal-associative condition). Next, we used an adapted version of this paradigm for functional MRI, where we contrasted brain activity related to the recall of object-location associations that were either encoded in the spatial- or the temporal-associative condition. In addition to brain regions generally involved in recall, we found that activity in higher-order visual regions, including the fusiform gyrus, the lingual gyrus, and the cuneus, was relatively enhanced when subjects used a spatial-associative structure for retrieval. In contrast, activity in the globus pallidus and the thalamus was relatively enhanced when subjects used a temporal-associative structure for retrieval. In conclusion, we provide evidence for differential involvement of these brain regions related to different types of strategic memory retrieval and the neural structures described play a role in either spatial-associative or temporal-associative memory retrieval. (c) 2007 Wiley-Liss, Inc.

  18. Development and Validation of a Hierarchical Memory Model Incorporating CPU- and Memory-Operation Overlap

    SciTech Connect

    Lubeck, Olaf M.; Luo, Yong; Wasserman, Harvey J.; Bassetti, Federico

    1997-12-31

    Distributed shared memory architectures (DSM`s) such as the Origin 2000 are being implemented which extend the concept of single-processor cache hierarchies across an entire physically-distributed multiprocessor machine. The scalability of a DSM machine is inherently tied to memory hierarchy performance, including such issues as latency hiding techniques in the architecture, global cache-coherence protocols, memory consistency models and, of course, the inherent locality of reference in algorithms of interest. In this paper, we characterize application performance with a {open_quotes}memory-centric{close_quotes} view. Using a simple mean value analysis (MVA) strategy and empirical performance data, we infer the contribution of each level in the memory system to the application`s overall cycles per instruction (cpi). We account for the overlap of processor execution with memory accesses - a key parameter which is not directly measurable on the Origin systems. We infer the separate contributions of three major architecture features in the memory subsystem of the Origin 2000: cache size, outstanding loads-under-miss, and memory latency.

  19. Modeling Coevolution between Language and Memory Capacity during Language Origin.

    PubMed

    Gong, Tao; Shuai, Lan

    2015-01-01

    Memory is essential to many cognitive tasks including language. Apart from empirical studies of memory effects on language acquisition and use, there lack sufficient evolutionary explorations on whether a high level of memory capacity is prerequisite for language and whether language origin could influence memory capacity. In line with evolutionary theories that natural selection refined language-related cognitive abilities, we advocated a coevolution scenario between language and memory capacity, which incorporated the genetic transmission of individual memory capacity, cultural transmission of idiolects, and natural and cultural selections on individual reproduction and language teaching. To illustrate the coevolution dynamics, we adopted a multi-agent computational model simulating the emergence of lexical items and simple syntax through iterated communications. Simulations showed that: along with the origin of a communal language, an initially-low memory capacity for acquired linguistic knowledge was boosted; and such coherent increase in linguistic understandability and memory capacities reflected a language-memory coevolution; and such coevolution stopped till memory capacities became sufficient for language communications. Statistical analyses revealed that the coevolution was realized mainly by natural selection based on individual communicative success in cultural transmissions. This work elaborated the biology-culture parallelism of language evolution, demonstrated the driving force of culturally-constituted factors for natural selection of individual cognitive abilities, and suggested that the degree difference in language-related cognitive abilities between humans and nonhuman animals could result from a coevolution with language.

  20. Modeling Coevolution between Language and Memory Capacity during Language Origin

    PubMed Central

    Gong, Tao; Shuai, Lan

    2015-01-01

    Memory is essential to many cognitive tasks including language. Apart from empirical studies of memory effects on language acquisition and use, there lack sufficient evolutionary explorations on whether a high level of memory capacity is prerequisite for language and whether language origin could influence memory capacity. In line with evolutionary theories that natural selection refined language-related cognitive abilities, we advocated a coevolution scenario between language and memory capacity, which incorporated the genetic transmission of individual memory capacity, cultural transmission of idiolects, and natural and cultural selections on individual reproduction and language teaching. To illustrate the coevolution dynamics, we adopted a multi-agent computational model simulating the emergence of lexical items and simple syntax through iterated communications. Simulations showed that: along with the origin of a communal language, an initially-low memory capacity for acquired linguistic knowledge was boosted; and such coherent increase in linguistic understandability and memory capacities reflected a language-memory coevolution; and such coevolution stopped till memory capacities became sufficient for language communications. Statistical analyses revealed that the coevolution was realized mainly by natural selection based on individual communicative success in cultural transmissions. This work elaborated the biology-culture parallelism of language evolution, demonstrated the driving force of culturally-constituted factors for natural selection of individual cognitive abilities, and suggested that the degree difference in language-related cognitive abilities between humans and nonhuman animals could result from a coevolution with language. PMID:26544876

  1. Executive function, but not memory, associates with incident coronary heart disease and stroke.

    PubMed

    Rostamian, Somayeh; van Buchem, Mark A; Westendorp, Rudi G J; Jukema, J Wouter; Mooijaart, Simon P; Sabayan, Behnam; de Craen, Anton J M

    2015-09-01

    To evaluate the association of performance in cognitive domains executive function and memory with incident coronary heart disease and stroke in older participants without dementia. We included 3,926 participants (mean age 75 years, 44% male) at risk for cardiovascular diseases from the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) with Mini-Mental State Examination score ≥24 points. Scores on the Stroop Color-Word Test (selective attention) and the Letter Digit Substitution Test (processing speed) were converted to Z scores and averaged into a composite executive function score. Likewise, scores of the Picture Learning Test (immediate and delayed memory) were transformed into a composite memory score. Associations of executive function and memory were longitudinally assessed with risk of coronary heart disease and stroke using multivariable Cox regression models. During 3.2 years of follow-up, incidence rates of coronary heart disease and stroke were 30.5 and 12.4 per 1,000 person-years, respectively. In multivariable models, participants in the lowest third of executive function, as compared to participants in the highest third, had 1.85-fold (95% confidence interval [CI] 1.39-2.45) higher risk of coronary heart disease and 1.51-fold (95% CI 0.99-2.30) higher risk of stroke. Participants in the lowest third of memory had no increased risk of coronary heart disease (hazard ratio 0.99, 95% CI 0.74-1.32) or stroke (hazard ratio 0.87, 95% CI 0.57-1.32). Lower executive function, but not memory, is associated with higher risk of coronary heart disease and stroke. Lower executive function, as an independent risk indicator, might better reflect brain vascular pathologies. © 2015 American Academy of Neurology.

  2. A Comparison of Shared Memory Parallel Programming Models

    SciTech Connect

    Mogill, Jace A; Haglin, David J

    2010-05-24

    The dominant parallel programming models for shared memory computers, Pthreads and OpenMP, are both thread-centric in that they are based on explicit management of tasks and enforce data dependencies and output ordering through task management. By comparison, the Cray XMT programming model is data-centric where the primary concern of the programmer is managing data dependencies, allowing threads to progress in a data flow fashion. The XMT implements this programming model by associating tag bits with each word of memory, affording efficient fine grained data synchronization independent of the number of processors or how tasks are scheduled. When task management is implicit and synchronization is abundant, efficient, and easy to use, programmers have viable alternatives to traditional thread-centric algorithms. In this paper we compare the amount of available parallelism relative to the amount of work in a variety of different algorithms and data structures when synchronization does not need to be rationed, as well as identify opportunities for platform and performance portability of the data-centric programming model on multi-core processors.

  3. Explicit Associative Learning and Memory in Synesthetes and Nonsynesthetes

    PubMed Central

    Aslin, Richard N.

    2016-01-01

    Most current theories regarding the development of synesthesia focus on cross-modal neural connections and genetic underpinnings, but recent evidence has revitalized the potential role of associative learning. In the present study, we compared synesthetes’ and controls’ ability to explicitly learn shape-color pairings. Using a continuous measure of accuracy and multiple testing blocks, we found that synesthetes learned these pairings faster than controls. In a delayed retest, synesthetes outperformed controls, demonstrating enhanced long-term memory for shape–color associations. Following this retest, participants learned shuffled associations, and we found little evidence for group differences in subsequent learning ability. Overall, our findings support the hypothesis that synesthetes have exceptional associative learning abilities and further specify that this advantage pertains to the initial learning rate and long-term retention of associations. PMID:27698986

  4. Spatial memory tasks in rodents: what do they model?

    PubMed

    Morellini, Fabio

    2013-10-01

    The analysis of spatial learning and memory in rodents is commonly used to investigate the mechanisms underlying certain forms of human cognition and to model their dysfunction in neuropsychiatric and neurodegenerative diseases. Proper interpretation of rodent behavior in terms of spatial memory and as a model of human cognitive functions is only possible if various navigation strategies and factors controlling the performance of the animal in a spatial task are taken into consideration. The aim of this review is to describe the experimental approaches that are being used for the study of spatial memory in rats and mice and the way that they can be interpreted in terms of general memory functions. After an introduction to the classification of memory into various categories and respective underlying neuroanatomical substrates, I explain the concept of spatial memory and its measurement in rats and mice by analysis of their navigation strategies. Subsequently, I describe the most common paradigms for spatial memory assessment with specific focus on methodological issues relevant for the correct interpretation of the results in terms of cognitive function. Finally, I present recent advances in the use of spatial memory tasks to investigate episodic-like memory in mice.

  5. Spatial memory impairments in a prediabetic rat model.

    PubMed

    Soares, E; Prediger, R D; Nunes, S; Castro, A A; Viana, S D; Lemos, C; De Souza, C M; Agostinho, P; Cunha, R A; Carvalho, E; Fontes Ribeiro, C A; Reis, F; Pereira, F C

    2013-10-10

    Diabetes is associated with an increased risk for brain disorders, namely cognitive impairments associated with hippocampal dysfunction underlying diabetic encephalopathy. However, the impact of a prediabetic state on cognitive function is unknown. Therefore, we now investigated whether spatial learning and memory deficits and the underlying hippocampal dysfunction were already present in a prediabetic animal model. Adult Wistar rats drinking high-sucrose (HSu) diet (35% sucrose solution during 9 weeks) were compared to controls' drinking water. HSu rats exhibited fasting normoglycemia accompanied by hyperinsulinemia and hypertriglyceridemia in the fed state, and insulin resistance with impaired glucose tolerance confirming them as a prediabetic rodent model. HSu rats displayed a poorer performance in hippocampal-dependent short- and long-term spatial memory performance, assessed with the modified Y-maze and Morris water maze tasks, respectively; this was accompanied by a reduction of insulin receptor-β density with normal levels of insulin receptor substrate-1 pSer636/639, and decreased hippocampal glucocorticoid receptor levels without changes of the plasma corticosterone levels. Importantly, HSu animals exhibited increased hippocampal levels of AMPA and NMDA receptor subunits GluA1 and GLUN1, respectively, whereas the levels of protein markers related to nerve terminals (synaptophysin) and oxidative stress/inflammation (HNE, RAGE, TNF-α) remained unaltered. These findings indicate that 9 weeks of sucrose consumption resulted in a metabolic condition suggestive of a prediabetic state, which translated into short- and long-term spatial memory deficits accompanied by alterations in hippocampal glutamatergic neurotransmission and abnormal glucocorticoid signaling. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Path Analysis Tests of Theoretical Models of Children's Memory Performance

    ERIC Educational Resources Information Center

    DeMarie, Darlene; Miller, Patricia H.; Ferron, John; Cunningham, Walter R.

    2004-01-01

    Path analysis was used to test theoretical models of relations among variables known to predict differences in children's memory--strategies, capacity, and metamemory. Children in kindergarten to fourth grade (chronological ages 5 to 11) performed different memory tasks. Several strategies (i.e., sorting, clustering, rehearsal, and self-testing)…

  7. An Integrative Model of the Development of Autobiographical Memory.

    ERIC Educational Resources Information Center

    Welch-Ross, Melissa K.

    1995-01-01

    Presents a working model for studying development of autobiographical memory based on literatures concerning children's metacognitive capacities, social construction of personal narratives, and development of self-concept. Notes that source monitoring and parental styles of discussing the past affect autobiographical memory, and emphasizes the…

  8. Toward a high performance distributed memory climate model

    SciTech Connect

    Wehner, M.F.; Ambrosiano, J.J.; Brown, J.C.; Dannevik, W.P.; Eltgroth, P.G.; Mirin, A.A.; Farrara, J.D.; Ma, C.C.; Mechoso, C.R.; Spahr, J.A.

    1993-02-15

    As part of a long range plan to develop a comprehensive climate systems modeling capability, the authors have taken the Atmospheric General Circulation Model originally developed by Arakawa and collaborators at UCLA and have recast it in a portable, parallel form. The code uses an explicit time-advance procedure on a staggered three-dimensional Eulerian mesh. The authors have implemented a two-dimensional latitude/longitude domain decomposition message passing strategy. Both dynamic memory management and interprocessor communication are handled with macro constructs that are preprocessed prior to compilation. The code can be moved about a variety of platforms, including massively parallel processors, workstation clusters, and vector processors, with a mere change of three parameters. Performance on the various platforms as well as issues associated with coupling different models for major components of the climate system are discussed.

  9. Cue-Focused and Reflexive-Associative Processes in Prospective Memory Retrieval

    ERIC Educational Resources Information Center

    McDaniel, Mark A.; Guynn, Melissa J.; Einstein, Gilles O.; Breneiser, Jennifer

    2004-01-01

    Several theories of event-based prospective memory were evaluated in 3 experiments. The results depended on the association between the target event and the intended action. For associated target-action pairs (a) preexposure of nontargets did not reduce prospective memory, (b) divided attention did not reduce prospective memory, (c) prospective…

  10. A Reevaluation of Age-Related Changes in Associative Memory Organization.

    ERIC Educational Resources Information Center

    Lindauer, Barbara K.; Paris, Scott G.

    This paper focuses on a study which replicates and extends earlier work employing a recognition memory paradigm to investigate children's memory and developmental changes in dominant word associations. On the recognition test the implicit associative response can lead to better memory for the original items (this is the hit rate), and it can also…

  11. A molecular mechanism underlying gustatory memory trace for an association in the insular cortex

    PubMed Central

    Adaikkan, Chinnakkaruppan; Rosenblum, Kobi

    2015-01-01

    Events separated in time are associatively learned in trace conditioning, recruiting more neuronal circuits and molecular mechanisms than in delay conditioning. However, it remains unknown whether a given sensory memory trace is being maintained as a unitary item to associate. Here, we used conditioned taste aversion learning in the rat model, wherein animals associate a novel taste with visceral nausea, and demonstrate that there are two parallel memory traces of a novel taste: a short-duration robust trace, lasting approximately 3 hr, and a parallel long-duration weak one, lasting up to 8 hr, and dependent on the strong trace for its formation. Moreover, only the early robust trace is maintained by a NMDAR-dependent CaMKII- AMPAR pathway in the insular cortex. These findings suggest that a memory trace undergoes rapid modifications, and that the mechanisms underlying trace associative learning differ when items in the memory are experienced at different time points. DOI: http://dx.doi.org/10.7554/eLife.07582.001 PMID:26452094

  12. Performance analysis and comparison of a minimum interconnections direct storage model with traditional neural bidirectional memories.

    PubMed

    Bhatti, A Aziz

    2009-12-01

    This study proposes an efficient and improved model of a direct storage bidirectional memory, improved bidirectional associative memory (IBAM), and emphasises the use of nanotechnology for efficient implementation of such large-scale neural network structures at a considerable lower cost reduced complexity, and less area required for implementation. This memory model directly stores the X and Y associated sets of M bipolar binary vectors in the form of (MxN(x)) and (MxN(y)) memory matrices, requires O(N) or about 30% of interconnections with weight strength ranging between +/-1, and is computationally very efficient as compared to sequential, intraconnected and other bidirectional associative memory (BAM) models of outer-product type that require O(N(2)) complex interconnections with weight strength ranging between +/-M. It is shown that it is functionally equivalent to and possesses all attributes of a BAM of outer-product type, and yet it is simple and robust in structure, very large scale integration (VLSI), optical and nanotechnology realisable, modular and expandable neural network bidirectional associative memory model in which the addition or deletion of a pair of vectors does not require changes in the strength of interconnections of the entire memory matrix. The analysis of retrieval process, signal-to-noise ratio, storage capacity and stability of the proposed model as well as of the traditional BAM has been carried out. Constraints on and characteristics of unipolar and bipolar binaries for improved storage and retrieval are discussed. The simulation results show that it has log(e) N times higher storage capacity, superior performance, faster convergence and retrieval time, when compared to traditional sequential and intraconnected bidirectional memories.

  13. Genome-wide association study of working memory brain activation.

    PubMed

    Blokland, Gabriëlla A M; Wallace, Angus K; Hansell, Narelle K; Thompson, Paul M; Hickie, Ian B; Montgomery, Grant W; Martin, Nicholas G; McMahon, Katie L; de Zubicaray, Greig I; Wright, Margaret J

    2017-05-01

    In a population-based genome-wide association (GWA) study of n-back working memory task-related brain activation, we extracted the average percent BOLD signal change (2-back minus 0-back) from 46 regions-of-interest (ROIs) in functional MRI scans from 863 healthy twins and siblings. ROIs were obtained by creating spheres around group random effects analysis local maxima, and by thresholding a voxel-based heritability map of working memory brain activation at 50%. Quality control for test-retest reliability and heritability of ROI measures yielded 20 reliable (r>0.7) and heritable (h(2)>20%) ROIs. For GWA analysis, the cohort was divided into a discovery (n=679) and replication (n=97) sample. No variants survived the stringent multiple-testing-corrected genome-wide significance threshold (p<4.5×10(-9)), or were replicated (p<0.0016), but several genes were identified that are worthy of further investigation. A search of 529,379 genomic markers resulted in discovery of 31 independent single nucleotide polymorphisms (SNPs) associated with BOLD signal change at a discovery level of p<1×10(-5). Two SNPs (rs7917410 and rs7672408) were associated at a significance level of p<1×10(-7). Only one, most strongly affecting BOLD signal change in the left supramarginal gyrus (R(2)=5.5%), had multiple SNPs associated at p<1×10(-5) in linkage disequilibrium with it, all located in and around the BANK1 gene. BANK1 encodes a B-cell-specific scaffold protein and has been shown to negatively regulate CD40-mediated AKT activation. AKT is part of the dopamine-signaling pathway, suggesting a mechanism for the involvement of BANK1 in the BOLD response to working memory. Variants identified here may be relevant to (the susceptibility to) common disorders affecting brain function. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Formal Specification of the OpenMP Memory Model

    SciTech Connect

    Bronevetsky, G; de Supinski, B

    2006-12-19

    OpenMP [2] is an important API for shared memory programming, combining shared memory's potential for performance with a simple programming interface. Unfortunately, OpenMP lacks a critical tool for demonstrating whether programs are correct: a formal memory model. Instead, the current official definition of the OpenMP memory model (the OpenMP 2.5 specification [2]) is in terms of informal prose. As a result, it is impossible to verify OpenMP applications formally since the prose does not provide a formal consistency model that precisely describes how reads and writes on different threads interact. We expand on our previous work that focused on the formal verification of OpenMP programs through a formal memory model [?]. As in that work, our formalization, which is derived from the existing prose model [2], provides a two-step process to verify whether an observed OpenMP execution is conformant. This paper extends the model to cover the entire specification. In addition to this formalization, our contributions include a discussion of ambiguities in the current prose-based memory model description. Although our formal model may not capture the current informal memory model perfectly, in part due to these ambiguities, our model reflects our understanding of the informal model's intent. We conclude with several examples that may indicate areas of the OpenMP memory model that need further refinement, however it is specified. Our goal is to motivate the OpenMP community to adopt those refinements eventually, ideally through a formal model, in later OpenMP specifications.

  15. Memory Dysfunction

    PubMed Central

    Matthews, Brandy R.

    2015-01-01

    Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844

  16. Memory.

    ERIC Educational Resources Information Center

    McKean, Kevin

    1983-01-01

    Discusses current research (including that involving amnesiacs and snails) into the nature of the memory process, differentiating between and providing examples of "fact" memory and "skill" memory. Suggests that three brain parts (thalamus, fornix, mammilary body) are involved in the memory process. (JN)

  17. Memory.

    ERIC Educational Resources Information Center

    McKean, Kevin

    1983-01-01

    Discusses current research (including that involving amnesiacs and snails) into the nature of the memory process, differentiating between and providing examples of "fact" memory and "skill" memory. Suggests that three brain parts (thalamus, fornix, mammilary body) are involved in the memory process. (JN)

  18. Does your species have memory? Analyzing capture-recapture data with memory models.

    PubMed

    Cole, Diana J; Morgan, Byron J T; McCrea, Rachel S; Pradel, Roger; Gimenez, Olivier; Choquet, Remi

    2014-06-01

    We examine memory models for multisite capture-recapture data. This is an important topic, as animals may exhibit behavior that is more complex than simple first-order Markov movement between sites, when it is necessary to devise and fit appropriate models to data. We consider the Arnason-Schwarz model for multisite capture-recapture data, which incorporates just first-order Markov movement, and also two alternative models that allow for memory, the Brownie model and the Pradel model. We use simulation to compare two alternative tests which may be undertaken to determine whether models for multisite capture-recapture data need to incorporate memory. Increasing the complexity of models runs the risk of introducing parameters that cannot be estimated, irrespective of how much data are collected, a feature which is known as parameter redundancy. Rouan et al. (JABES, 2009, pp 338-355) suggest a constraint that may be applied to overcome parameter redundancy when it is present in multisite memory models. For this case, we apply symbolic methods to derive a simpler constraint, which allows more parameters to be estimated, and give general results not limited to a particular configuration. We also consider the effect sparse data can have on parameter redundancy and recommend minimum sample sizes. Memory models for multisite capture-recapture data can be highly complex and difficult to fit to data. We emphasize the importance of a structured approach to modeling such data, by considering a priori which parameters can be estimated, which constraints are needed in order for estimation to take place, and how much data need to be collected. We also give guidance on the amount of data needed to use two alternative families of tests for whether models for multisite capture-recapture data need to incorporate memory.

  19. Memory liabilities associated with hypnosis: does low hypnotizability confer immunity?

    PubMed

    Orne, E C; Whitehouse, W G; Dinges, D F; Orne, M T

    1996-10-01

    Retrospective analyses of data from the authors' program of research on hypnosis and memory are presented, with special emphasis on effects observed among low hypnotizable individuals. In Experiment 1, participants completed seven forced-recall trials in an attempt to remember a series of pictures that had been shown 1 week earlier. For half the participants, the middle five trials were carried out using hypnotic procedures; the remaining participants performed all recall attempts in a motivated waking condition. Hypnosis failed to enhance correct recall for either high or low hypnotizable participants beyond the hypermnesia and reminiscence effects associated with repeated retrieval attempts over time. However, whereas high hypnotizable participants produced substantial numbers of confident recall errors (i.e., intrusions) independent of the use of hypnosis, low hypnotizable participants exposed to hypnotic procedures reported significantly more intrusions than their counterparts in the waking condition. In Experiment 2, participants were asked to identify whether specific recollections, reported during two forced-interrogatory recall tests conducted 1 week earlier, had originated in the first or second of those tests. A general bias to misattribute previously reported recollections to the first of two recall occasions was observed; however, the effect was greatest among low hypnotizables who had undergone the second recall attempt in hypnosis. The findings imply that highly hypnotizable individuals are not unique in their vulnerability to distortions of memory induced by hypnotic techniques. Individuals of lesser hypnotic capacity also manifest memory alterations when exposed to such procedures.

  20. Structure and strategy in the associative false memory paradigm.

    PubMed

    Libby, L K; Neisser, U

    2001-05-01

    List-learning experiments can have several levels of structure: individual words, the gist (if any) of each list, and the task in which those lists are embedded. The usual presentation of the DRM associative paradigm (Deese, 1959; Roediger & McDermott, 1995) strongly encourages a focus on gist and produces a high rate of false recall of key words (FRK). The experiments reported here were designed to invite the use of memory strategies based on structures other than the gist and thus reduce FRK. The crucial condition of Experiment 1, short lists followed by rehearsal, encouraged a focus on individual words and produced a low rate of FRK. In Experiment 2, the lists were embedded in a guessing game, which virtually eliminated FRK. FRK was also low in Experiments 3a and 3b when participants engaged in a complex task involving the first letters of list words. The relevance of these findings to false memories in the DRM and the connection of false autobiographical memories is discussed.

  1. Maintained memory in aging is associated with young epigenetic age.

    PubMed

    Degerman, Sofie; Josefsson, Maria; Nordin Adolfsson, Annelie; Wennstedt, Sigrid; Landfors, Mattias; Haider, Zahra; Pudas, Sara; Hultdin, Magnus; Nyberg, Lars; Adolfsson, Rolf

    2017-02-20

    Epigenetic alterations during aging have been proposed to contribute to decline in physical and cognitive functions, and accelerated epigenetic aging has been associated with disease and all-cause mortality later in life. In this study, we estimated epigenetic age dynamics in groups with different memory trajectories (maintained high performance, average decline, and accelerated decline) over a 15-year period. Epigenetic (DNA-methylation [DNAm]) age was assessed, and delta age (DNAm age - chronological age) was calculated in blood samples at baseline (age: 55-65 years) and 15 years later in 52 age- and gender-matched individuals from the Betula study in Sweden. A lower delta DNAm age was observed for those with maintained memory functions compared with those with average (p = 0.035) or accelerated decline (p = 0.037). Moreover, separate analyses revealed that DNAm age at follow-up, but not chronologic age, was a significant predictor of dementia (p = 0.019). Our findings suggest that young epigenetic age contributes to maintained memory in aging.

  2. Modeling shape-memory behavior of dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Xiao, Rui

    2016-04-01

    In this study, we present a constitutive model to couple the shape memory and dielectric behaviors of polymers. The model adopted multiple relaxation processes and temperature-dependent relaxation time to describe the glass transition behaviors. The model was applied to simulate the thermal-mechanical-electrical behaviors of the dielectric elastomer VHB 4905. We investigated the influence of deformation temperature, voltage rate, relaxation time on the electromechanical and shape-memory behavior of dielectric elastomers. This work provides a method for combining the shape-memory properties and electroactive polymers, which can expand the applications of these soft active materials.

  3. Modeling memory consolidation during posttraining periods in cerebellovestibular learning.

    PubMed

    Yamazaki, Tadashi; Nagao, Soichi; Lennon, William; Tanaka, Shigeru

    2015-03-17

    Long-term depression (LTD) at parallel fiber-Purkinje cell (PF-PC) synapses is thought to underlie memory formation in cerebellar motor learning. Recent experimental results, however, suggest that multiple plasticity mechanisms in the cerebellar cortex and cerebellar/vestibular nuclei participate in memory formation. To examine this possibility, we formulated a simple model of the cerebellum with a minimal number of components based on its known anatomy and physiology, implementing both LTD and long-term potentiation (LTP) at PF-PC synapses and mossy fiber-vestibular nuclear neuron (MF-VN) synapses. With this model, we conducted a simulation study of the gain adaptation of optokinetic response (OKR) eye movement. Our model reproduced several important aspects of previously reported experimental results in wild-type and cerebellum-related gene-manipulated mice. First, each 1-h training led to the formation of short-term memory of learned OKR gain at PF-PC synapses, which diminished throughout the day. Second, daily repetition of the training gradually formed long-term memory that was maintained for days at MF-VN synapses. We reproduced such memory formation under various learning conditions. Third, long-term memory formation occurred after training but not during training, indicating that the memory consolidation occurred during posttraining periods. Fourth, spaced training outperformed massed training in long-term memory formation. Finally, we reproduced OKR gain changes consistent with the changes in the vestibuloocular reflex (VOR) previously reported in some gene-manipulated mice.

  4. Spatial But Not Oculomotor Information Biases Perceptual Memory: Evidence From Face Perception and Cognitive Modeling.

    PubMed

    Wantz, Andrea L; Lobmaier, Janek S; Mast, Fred W; Senn, Walter

    2017-08-01

    Recent research put forward the hypothesis that eye movements are integrated in memory representations and are reactivated when later recalled. However, "looking back to nothing" during recall might be a consequence of spatial memory retrieval. Here, we aimed at distinguishing between the effect of spatial and oculomotor information on perceptual memory. Participants' task was to judge whether a morph looked rather like the first or second previously presented face. Crucially, faces and morphs were presented in a way that the morph reactivated oculomotor and/or spatial information associated with one of the previously encoded faces. Perceptual face memory was largely influenced by these manipulations. We considered a simple computational model with an excellent match (4.3% error) that expresses these biases as a linear combination of recency, saccade, and location. Surprisingly, saccades did not play a role. The results suggest that spatial and temporal rather than oculomotor information biases perceptual face memory. Copyright © 2016 Cognitive Science Society, Inc.

  5. Memory deficits associated with khat (Catha edulis) use in rodents.

    PubMed

    Kimani, S T; Patel, N B; Kioy, P G

    2016-02-01

    Khat products and chewing practices are common in East Africa, Middle East for centuries with concomitant socio-economic and public health repercussions. We assessed memory deficits associated with khat use in rodents. Young male CBA mice, 5-7 weeks old (n = 20), weighing 25-35 g were used. Mice were treated with either 40, 120 or 360 mg/kg body weight (bw) methanolic khat extract, or 0.5 ml saline for 10 days. Spatial acquisition, reversal and reference memory were assessed using modified Morris Water maze (MMWM). Mice treated with 40 mg/kg khat extract had longer (t4 = 4.12 p = 0.015) and t4 = 2.28 p = 0.065) escape latency on first and second day during reversal relative to the baseline. Under 120 mg/kg khat dose, the escape latency was shorter (t4 = -2.49 p = 0.05) vs (t3 = -2.5 p = 0.05) on third and fourth day. Further, treatment with 360 mg/kg khat extract resulted in significantly longer time (49.13, 33.5, 40.2 and 35.75) vs. (23.5 s), compared to baseline. Mice treated with khat or control preferred the target quadrant post acquisition while differential pattern was seen during reversal phase. Mice treated with 40 or 120 mg/kg khat showed significant preference for target quadrant. Substantial time (19.9) was spent in the old target compared to the new (16.9 s) by animals treated with highest dose however, the difference was not significant. There is a biological plausibility that chronic khat use may induce memory deficits and impair cognitive flexibility. The differential patterns of memory deficits may reflect the differences in dose effect as well as time dependent impairment.

  6. Neuropathologic Associations of Learning and Memory in Primary Progressive Aphasia

    PubMed Central

    Kielb, Stephanie; Cook, Amanda; Wieneke, Christina; Rademaker, Alfred; Bigio, Eileen H.; Mesulam, Marek-Marsel; Rogalski, Emily; Weintraub, Sandra

    2016-01-01

    IMPORTANCE The dementia syndrome of primary progressive aphasia (PPA) can be caused by 1 of several neuropathologic entities, including forms of frontotemporal lobar degeneration (FTLD) or Alzheimer disease (AD). Although episodic memory is initially spared in this syndrome, the subtle learning and memory features of PPA and their neuropathologic associations have not been characterized. OBJECTIVE To detect subtle memory differences on the basis of autopsy-confirmed neuropathologic diagnoses in PPA. DESIGN, SETTING, AND PARTICIPANTS Retrospective analysis was conducted at the Northwestern Cognitive Neurology and Alzheimer’s Disease Center in August 2015 using clinical and postmortem autopsy data that had been collected between August 1983 and June 2012. Thirteen patients who had the primary clinical diagnosis of PPA and an autopsy-confirmed diagnosis of either AD (PPA-AD) or a tau variant of FTLD (PPA-FTLD) and 6 patients who had the clinical diagnosis of amnestic dementia and autopsy-confirmed AD (AMN-AD) were included. MAIN OUTCOMES AND MEASURES Scores on the effortless learning, delayed retrieval, and retention conditions of the Three Words Three Shapes test, a specialized measure of verbal and nonverbal episodic memory. RESULTS The PPA-FTLD (n = 6), PPA-AD (n = 7), and AMN-AD (n = 6) groups did not differ by demographic composition (all P > .05). The sample mean (SD) age was 64.1 (10.3) years at symptom onset and 67.9 (9.9) years at Three Words Three Shapes test administration. The PPA-FTLD group had normal (ie, near-ceiling) scores on all verbal and nonverbal test conditions. Both the PPA-AD and AMN-AD groups had deficits in verbal effortless learning (mean [SD] number of errors, 9.9 [4.6] and 14.2 [2.0], respectively) and verbal delayed retrieval (mean [SD] number of errors, 6.1 [5.9] and 12.0 [4.4], respectively). The AMN-AD group had additional deficits in nonverbal effortless learning (mean [SD] number of errors, 10.3 [4.0]) and verbal retention (mean

  7. Neuropathologic Associations of Learning and Memory in Primary Progressive Aphasia.

    PubMed

    Kielb, Stephanie; Cook, Amanda; Wieneke, Christina; Rademaker, Alfred; Bigio, Eileen H; Mesulam, Marek-Marsel; Rogalski, Emily; Weintraub, Sandra

    2016-07-01

    The dementia syndrome of primary progressive aphasia (PPA) can be caused by 1 of several neuropathologic entities, including forms of frontotemporal lobar degeneration (FTLD) or Alzheimer disease (AD). Although episodic memory is initially spared in this syndrome, the subtle learning and memory features of PPA and their neuropathologic associations have not been characterized. To detect subtle memory differences on the basis of autopsy-confirmed neuropathologic diagnoses in PPA. Retrospective analysis was conducted at the Northwestern Cognitive Neurology and Alzheimer's Disease Center in August 2015 using clinical and postmortem autopsy data that had been collected between August 1983 and June 2012. Thirteen patients who had the primary clinical diagnosis of PPA and an autopsy-confirmed diagnosis of either AD (PPA-AD) or a tau variant of FTLD (PPA-FTLD) and 6 patients who had the clinical diagnosis of amnestic dementia and autopsy-confirmed AD (AMN-AD) were included. Scores on the effortless learning, delayed retrieval, and retention conditions of the Three Words Three Shapes test, a specialized measure of verbal and nonverbal episodic memory. The PPA-FTLD (n = 6), PPA-AD (n = 7), and AMN-AD (n = 6) groups did not differ by demographic composition (all P > .05). The sample mean (SD) age was 64.1 (10.3) years at symptom onset and 67.9 (9.9) years at Three Words Three Shapes test administration. The PPA-FTLD group had normal (ie, near-ceiling) scores on all verbal and nonverbal test conditions. Both the PPA-AD and AMN-AD groups had deficits in verbal effortless learning (mean [SD] number of errors, 9.9 [4.6] and 14.2 [2.0], respectively) and verbal delayed retrieval (mean [SD] number of errors, 6.1 [5.9] and 12.0 [4.4], respectively). The AMN-AD group had additional deficits in nonverbal effortless learning (mean [SD] number of errors, 10.3 [4.0]) and verbal retention (mean [SD] number of errors, 8.33 [5.2]), which were not observed in the PPA-FTLD or

  8. Adolescent tobacco-related associative memory: A cross-sectional and contextual analysis.

    PubMed

    Kelly, Adrian B; Masterman, Paul; Alan Marlatt, G

    2006-02-01

    Tobacco use is prevalent in adolescents, and understanding factors that contribute to its uptake and early development remains a critical public health priority. Implicit drug-related memory associations (DMAs) are predictive of drug use in older samples, but such models have little application to adolescent tobacco use. Moreover, extant research on memory associations yields little information on contextual factors that may be instrumental in the development of DMAs. The present study examined (a) the degree to which tobacco-related memory associations (TMAs) were associated with concurrent tobacco use and (b) the extent to which TMAs mediated the association of peer and self-use. A sample of 210 Australian high school students was recruited. Participants completed TMA tasks and behavioral checklists designed to obscure the tobacco-related focus of the study. Results showed that TMAs were associated with peer use, and TMAs predicted self-use. We found no evidence that TMAs mediated the association of peer and self-use. Future research might examine the emotive valence of implicit nodes and drinking behavior. The results have implications for testing the efficacy of consciousness-raising interventions for adolescents at risk of tobacco experimentation or regular use.

  9. Selectivity in Postencoding Connectivity with High-Level Visual Cortex Is Associated with Reward-Motivated Memory.

    PubMed

    Murty, Vishnu P; Tompary, Alexa; Adcock, R Alison; Davachi, Lila

    2017-01-18

    Reward motivation has been demonstrated to enhance declarative memory by facilitating systems-level consolidation. Although high-reward information is often intermixed with lower reward information during an experience, memory for high value information is prioritized. How is this selectivity achieved? One possibility is that postencoding consolidation processes bias memory strengthening to those representations associated with higher reward. To test this hypothesis, we investigated the influence of differential reward motivation on the selectivity of postencoding markers of systems-level memory consolidation. Human participants encoded intermixed, trial-unique memoranda that were associated with either high or low-value during fMRI acquisition. Encoding was interleaved with periods of rest, allowing us to investigate experience-dependent changes in connectivity as they related to later memory. Behaviorally, we found that reward motivation enhanced 24 h associative memory. Analysis of patterns of postencoding connectivity showed that, even though learning trials were intermixed, there was significantly greater connectivity with regions of high-level, category-selective visual cortex associated with high-reward trials. Specifically, increased connectivity of category-selective visual cortex with both the VTA and the anterior hippocampus predicted associative memory for high- but not low-reward memories. Critically, these results were independent of encoding-related connectivity and univariate activity measures. Thus, these findings support a model by which the selective stabilization of memories for salient events is supported by postencoding interactions with sensory cortex associated with reward. Reward motivation is thought to promote memory by supporting memory consolidation. Yet, little is known as to how brain selects relevant information for subsequent consolidation based on reward. We show that experience-dependent changes in connectivity of both the

  10. Selectivity in Postencoding Connectivity with High-Level Visual Cortex Is Associated with Reward-Motivated Memory

    PubMed Central

    Murty, Vishnu P.; Tompary, Alexa; Adcock, R. Alison

    2017-01-01

    Reward motivation has been demonstrated to enhance declarative memory by facilitating systems-level consolidation. Although high-reward information is often intermixed with lower reward information during an experience, memory for high value information is prioritized. How is this selectivity achieved? One possibility is that postencoding consolidation processes bias memory strengthening to those representations associated with higher reward. To test this hypothesis, we investigated the influence of differential reward motivation on the selectivity of postencoding markers of systems-level memory consolidation. Human participants encoded intermixed, trial-unique memoranda that were associated with either high or low-value during fMRI acquisition. Encoding was interleaved with periods of rest, allowing us to investigate experience-dependent changes in connectivity as they related to later memory. Behaviorally, we found that reward motivation enhanced 24 h associative memory. Analysis of patterns of postencoding connectivity showed that, even though learning trials were intermixed, there was significantly greater connectivity with regions of high-level, category-selective visual cortex associated with high-reward trials. Specifically, increased connectivity of category-selective visual cortex with both the VTA and the anterior hippocampus predicted associative memory for high- but not low-reward memories. Critically, these results were independent of encoding-related connectivity and univariate activity measures. Thus, these findings support a model by which the selective stabilization of memories for salient events is supported by postencoding interactions with sensory cortex associated with reward. SIGNIFICANCE STATEMENT Reward motivation is thought to promote memory by supporting memory consolidation. Yet, little is known as to how brain selects relevant information for subsequent consolidation based on reward. We show that experience-dependent changes in

  11. Performance of defect-tolerant set-associative cache memories

    NASA Technical Reports Server (NTRS)

    Frenzel, J. F.

    1991-01-01

    The increased use of on-chip cache memories has led researchers to investigate their performance in the presence of manufacturing defects. Several techniques for yield improvement are discussed and results are presented which indicate that set-associativity may be used to provide defect tolerance as well as improve the cache performance. Tradeoffs between several cache organizations and replacement strategies are investigated and it is shown that token-based replacement may be a suitable alternative to the widely-used LRU strategy.

  12. Problems of neural memory

    NASA Astrophysics Data System (ADS)

    Mikaelian, Andrei L.

    2005-01-01

    The paper considers the neural memory of the human brain from the viewpoint of visual information processing. A model that explains the principle of data recording and storing, memory relaxation, associative remembering and other memory functions is offered. The model of associative memory is based on the methods of holography, "wave biochemistry" and autowaves. Brief consideration is given to the associative properties of holographic neural structures and the memory architecture using running chemical reactions. The paper also outlines the problem of developing artificial memory elements for restoring the brain functions and possible interface devices for coupling neurons to electronic systems.

  13. Overlapping parietal activity in memory and perception: evidence for the attention to memory model.

    PubMed

    Cabeza, Roberto; Mazuz, Yonatan S; Stokes, Jared; Kragel, James E; Woldorff, Marty G; Ciaramelli, Elisa; Olson, Ingrid R; Moscovitch, Morris

    2011-11-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval output or the retrieval cue. This model also hypothesizes that the attentional functions of DPC and VPC are similar for memory and perception. To investigate this last hypothesis, we scanned participants with event-related fMRI whereas they performed memory and perception tasks, each comprising an orienting phase (top-down attention) and a detection phase (bottom-up attention). The study yielded two main findings. First, consistent with the AtoM model, orienting-related activity for memory and perception overlapped in DPC, whereas detection-related activity for memory and perception overlapped in VPC. The DPC overlap was greater in the left intraparietal sulcus, and the VPC overlap in the left TPJ. Around overlapping areas, there were differences in the spatial distribution of memory and perception activations, which were consistent with trends reported in the literature. Second, both DPC and VPC showed stronger connectivity with medial-temporal lobe during the memory task and with visual cortex during the perception task. These findings suggest that, during memory tasks, some parietal regions mediate similar attentional control processes to those involved in perception tasks (orienting in DPC vs. detection in VPC), although on different types of information (mnemonic vs. sensory).

  14. Binge drinking during adolescence and young adulthood is associated with deficits in verbal episodic memory

    PubMed Central

    Cadaveira, Fernando; Caamaño-Isorna, Francisco; Rodríguez-Holguín, Socorro

    2017-01-01

    Binge drinking (BD), a harmful pattern of alcohol consumption, is common during adolescence. Young adults with alcohol use disorders exhibit hippocampal alterations and episodic memory deficits. However, it is not known how these difficulties progress in community BD adolescents. Our objective was to analyze the relationship between BD trajectory and verbal episodic memory during the developmental period spanning from adolescence and to early adulthood. An initial sample of 155 male and female first-year university students with no other risk factors were followed over six years. Participants were classified as stable non-BDs, stable BDs and ex-BDs according to the third AUDIT item. At baseline, participants comprised 36 ♂/ 40 ♀ non-BDs (18.58 years), 40 ♂/ 39 ♀ BDs (18.87 years), and at the third follow-up, they comprised 8 ♂/ 8 ♀ stable non-BDs (25.49 years), 2 ♂/ 2 ♀ stable BDs (25.40) and 8 ♂/ 12 ♀ ex-BDs (24.97 years). Episodic memory was assessed four times with the Logical Memory subtest (WMS-III) and the Rey Auditory Verbal Learning Test (RAVLT). Generalized linear mixed models were applied. The results showed that, relative to non-BDs, stable BDs presented difficulties in immediate and delayed recall in the Logical Memory subtest. These difficulties remained stable over time. The short-term ex-BDs continued to display difficulties in immediate and delayed recall in the Logical Memory subtest, but long-term ex-BDs did not. The effects were not influenced by age of alcohol onset, frequency of cannabis use, tobacco use or psychopathological distress. In conclusion, BD during adolescence and young adulthood is associated with episodic memory deficits. Abandoning the BD pattern may lead to partial recovery. These findings are consistent with the vulnerability of the adolescent hippocampus to the neurotoxic effects of alcohol. PMID:28152062

  15. Binge drinking during adolescence and young adulthood is associated with deficits in verbal episodic memory.

    PubMed

    Carbia, Carina; Cadaveira, Fernando; Caamaño-Isorna, Francisco; Rodríguez-Holguín, Socorro; Corral, Montse

    2017-01-01

    Binge drinking (BD), a harmful pattern of alcohol consumption, is common during adolescence. Young adults with alcohol use disorders exhibit hippocampal alterations and episodic memory deficits. However, it is not known how these difficulties progress in community BD adolescents. Our objective was to analyze the relationship between BD trajectory and verbal episodic memory during the developmental period spanning from adolescence and to early adulthood. An initial sample of 155 male and female first-year university students with no other risk factors were followed over six years. Participants were classified as stable non-BDs, stable BDs and ex-BDs according to the third AUDIT item. At baseline, participants comprised 36 ♂/ 40 ♀ non-BDs (18.58 years), 40 ♂/ 39 ♀ BDs (18.87 years), and at the third follow-up, they comprised 8 ♂/ 8 ♀ stable non-BDs (25.49 years), 2 ♂/ 2 ♀ stable BDs (25.40) and 8 ♂/ 12 ♀ ex-BDs (24.97 years). Episodic memory was assessed four times with the Logical Memory subtest (WMS-III) and the Rey Auditory Verbal Learning Test (RAVLT). Generalized linear mixed models were applied. The results showed that, relative to non-BDs, stable BDs presented difficulties in immediate and delayed recall in the Logical Memory subtest. These difficulties remained stable over time. The short-term ex-BDs continued to display difficulties in immediate and delayed recall in the Logical Memory subtest, but long-term ex-BDs did not. The effects were not influenced by age of alcohol onset, frequency of cannabis use, tobacco use or psychopathological distress. In conclusion, BD during adolescence and young adulthood is associated with episodic memory deficits. Abandoning the BD pattern may lead to partial recovery. These findings are consistent with the vulnerability of the adolescent hippocampus to the neurotoxic effects of alcohol.

  16. Memory responses of jasmonic acid-associated Arabidopsis genes to a repeated dehydration stress.

    PubMed

    Liu, Ning; Staswick, Paul E; Avramova, Zoya

    2016-11-01

    Dehydration stress activates numerous genes co-regulated by diverse signaling pathways. Upon repeated exposures, however, a subset of these genes does not respond maintaining instead transcription at their initial pre-stressed levels ('revised-response' genes). Most of these genes are involved in jasmonic acid (JA) biosynthesis, JA-signaling and JA-mediated stress responses. How these JA-associated genes are regulated to provide different responses to similar dehydration stresses is an enigma. Here, we investigate molecular mechanisms that contribute to this transcriptional behavior. The memory-mechanism is stress-specific: one exposure to dehydration stress or to abscisic acid (ABA) is required to prevent transcription in the second. Both ABA-mediated and JA-mediated pathways are critical for the activation of these genes, but the two signaling pathways interact differently during a single or multiple encounters with dehydration stress. Synthesis of JA during the first (S1) but not the second dehydration stress (S2) accounts for the altered transcriptional responses. We propose a model for these memory responses, wherein lack of MYC2 and of JA synthesis in S2 is responsible for the lack of expression of downstream genes. The similar length of the memory displayed by different memory-type genes suggests biological relevance for transcriptional memory as a gene-regulating mechanism during recurring bouts of drought. © 2016 John Wiley & Sons Ltd.

  17. Enhanced associative memory for colour (but not shape or location) in synaesthesia.

    PubMed

    Pritchard, Jamie; Rothen, Nicolas; Coolbear, Daniel; Ward, Jamie

    2013-05-01

    People with grapheme-colour synaesthesia have been shown to have enhanced memory on a range of tasks using both stimuli that induce synaesthesia (e.g. words) and, more surprisingly, stimuli that do not (e.g. certain abstract visual stimuli). This study examines the latter by using multi-featured stimuli consisting of shape, colour and location conjunctions (e.g. shape A+colour A+location A; shape B+colour B+location B) presented in a recognition memory paradigm. This enables distractor items to be created in which one of these features is 'unbound' with respect to the others (e.g. shape A+colour B+location A; shape A+colour A+location C). Synaesthetes had higher recognition rates suggesting an enhanced ability to bind certain visual features together into memory. Importantly, synaesthetes' false alarm rates were lower only when colour was the unbound feature, not shape or location. We suggest that synaesthetes are "colour experts" and that enhanced perception can lead to enhanced memory in very specific ways; but, not for instance, an enhanced ability to form associations per se. The results support contemporary models that propose a continuum between perception and memory.

  18. Why Narrating Changes Memory: A Contribution to an Integrative Model of Memory and Narrative Processes.

    PubMed

    Smorti, Andrea; Fioretti, Chiara

    2016-06-01

    This paper aims to reflect on the relation between autobiographical memory (ME) and autobiographical narrative (NA), examining studies on the effects of narrating on the narrator and showing how studying these relations can make more comprehensible both memory's and narrating's way of working. Studies that address explicitly on ME and NA are scarce and touch this issue indirectly. Authors consider different trends of studies of ME and NA: congruency vs incongruency hypotheses on retrieving, the way of organizing memories according to gist or verbatim format and their role in organizing positive and negative emotional experiences, the social roots of ME and NA, the rules of conversation based on narrating. Analysis of investigations leads the Authors to point out three basic results of their research. Firstly, NA transforms ME because it narrativizes memories according to a narrative format. This means that memories, when are narrated, are transformed in stories (verbal language) and socialised. Secondly, the narrativization process is determined by the act of telling something within a communicative situation. Thus, relational situation of narrating act, by modifying the story, modifies also memories. The Authors propose the RE.NA.ME model (RElation, NArration, MEmory) to understand and study ME and NA. Finally, this study claims that ME and NA refer to two different types of processes having a wide area of overlapping. This is due to common social, developmental and cultural roots that make NA to include part of ME (narrative of memory) and ME to include part of NA (memory of personal events that have been narrated).

  19. Unipolar terminal-attractor based neural associative memory with adaptive threshold

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Barhen, Jacob (Inventor); Farhat, Nabil H. (Inventor); Wu, Chwan-Hwa (Inventor)

    1993-01-01

    A unipolar terminal-attractor based neural associative memory (TABAM) system with adaptive threshold for perfect convergence is presented. By adaptively setting the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal-attractors for the purpose of reducing the spurious states in a Hopfield neural network for associative memory and using the inner product approach, perfect convergence and correct retrieval is achieved. Simulation is completed with a small number of stored states (M) and a small number of neurons (N) but a large M/N ratio. An experiment with optical exclusive-OR logic operation using LCTV SLMs shows the feasibility of optoelectronic implementation of the models. A complete inner-product TABAM is implemented using a PC for calculation of adaptive threshold values to achieve a unipolar TABAM (UIT) in the case where there is no crosstalk, and a crosstalk model (CRIT) in the case where crosstalk corrupts the desired state.

  20. Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory.

    PubMed

    Izhikevich, E M

    1999-01-01

    We study pulse-coupled neural networks that satisfy only two assumptions: each isolated neuron fires periodically, and the neurons are weakly connected. Each such network can be transformed by a piece-wise continuous change of variables into a phase model, whose synchronization behavior and oscillatory associative properties are easier to analyze and understand. Using the phase model, we can predict whether a given pulse-coupled network has oscillatory associative memory, or what minimal adjustments should be made so that it can acquire memory. In the search for such minimal adjustments we obtain a large class of simple pulse-coupled neural networks that can memorize and reproduce synchronized temporal patterns the same way a Hopfield network does with static patterns. The learning occurs via modification of synaptic weights and/or synaptic transmission delays.

  1. Unipolar Terminal-Attractor Based Neural Associative Memory with Adaptive Threshold

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Barhen, Jacob (Inventor); Farhat, Nabil H. (Inventor); Wu, Chwan-Hwa (Inventor)

    1996-01-01

    A unipolar terminal-attractor based neural associative memory (TABAM) system with adaptive threshold for perfect convergence is presented. By adaptively setting the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal-attractors for the purpose of reducing the spurious states in a Hopfield neural network for associative memory and using the inner-product approach, perfect convergence and correct retrieval is achieved. Simulation is completed with a small number of stored states (M) and a small number of neurons (N) but a large M/N ratio. An experiment with optical exclusive-OR logic operation using LCTV SLMs shows the feasibility of optoelectronic implementation of the models. A complete inner-product TABAM is implemented using a PC for calculation of adaptive threshold values to achieve a unipolar TABAM (UIT) in the case where there is no crosstalk, and a crosstalk model (CRIT) in the case where crosstalk corrupts the desired state.

  2. Toxin-Induced Experimental Models of Learning and Memory Impairment.

    PubMed

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-09-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.

  3. Toxin-Induced Experimental Models of Learning and Memory Impairment

    PubMed Central

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-01-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson’s disease dementia and Alzheimer’s disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders. PMID:27598124

  4. Network Profiles of the Dorsal Anterior Cingulate and Dorsal Prefrontal Cortex in Schizophrenia During Hippocampal-Based Associative Memory

    PubMed Central

    Woodcock, Eric A.; Wadehra, Sunali; Diwadkar, Vaibhav A.

    2016-01-01

    Schizophrenia is a disorder characterized by brain network dysfunction, particularly during behavioral tasks that depend on frontal and hippocampal mechanisms. Here, we investigated network profiles of the regions of the frontal cortex during memory encoding and retrieval, phases of processing essential to associative memory. Schizophrenia patients (n = 12) and healthy control (HC) subjects (n = 10) participated in an established object-location associative memory paradigm that drives frontal-hippocampal interactions. Network profiles were modeled of both the dorsal prefrontal (dPFC) and the dorsal anterior cingulate cortex (dACC) as seeds using psychophysiological interaction analyses, a robust framework for investigating seed-based connectivity in specific task contexts. The choice of seeds was motivated by previous evidence of involvement of these regions during associative memory. Differences between patients and controls were evaluated using second-level analyses of variance (ANOVA) with seed (dPFC vs. dACC), group (patients vs. controls), and memory process (encoding and retrieval) as factors. Patients showed a pattern of exaggerated modulation by each of the dACC and the dPFC during memory encoding and retrieval. Furthermore, group by memory process interactions were observed within regions of the hippocampus. In schizophrenia patients, relatively diminished modulation during encoding was associated with increased modulation during retrieval. These results suggest a pattern of complex dysfunctional network signatures of critical forebrain regions in schizophrenia. Evidence of dysfunctional frontal-medial temporal lobe network signatures in schizophrenia is consistent with the illness’ characterization as a disconnection syndrome. PMID:27092063

  5. Network Profiles of the Dorsal Anterior Cingulate and Dorsal Prefrontal Cortex in Schizophrenia During Hippocampal-Based Associative Memory.

    PubMed

    Woodcock, Eric A; Wadehra, Sunali; Diwadkar, Vaibhav A

    2016-01-01

    Schizophrenia is a disorder characterized by brain network dysfunction, particularly during behavioral tasks that depend on frontal and hippocampal mechanisms. Here, we investigated network profiles of the regions of the frontal cortex during memory encoding and retrieval, phases of processing essential to associative memory. Schizophrenia patients (n = 12) and healthy control (HC) subjects (n = 10) participated in an established object-location associative memory paradigm that drives frontal-hippocampal interactions. Network profiles were modeled of both the dorsal prefrontal (dPFC) and the dorsal anterior cingulate cortex (dACC) as seeds using psychophysiological interaction analyses, a robust framework for investigating seed-based connectivity in specific task contexts. The choice of seeds was motivated by previous evidence of involvement of these regions during associative memory. Differences between patients and controls were evaluated using second-level analyses of variance (ANOVA) with seed (dPFC vs. dACC), group (patients vs. controls), and memory process (encoding and retrieval) as factors. Patients showed a pattern of exaggerated modulation by each of the dACC and the dPFC during memory encoding and retrieval. Furthermore, group by memory process interactions were observed within regions of the hippocampus. In schizophrenia patients, relatively diminished modulation during encoding was associated with increased modulation during retrieval. These results suggest a pattern of complex dysfunctional network signatures of critical forebrain regions in schizophrenia. Evidence of dysfunctional frontal-medial temporal lobe network signatures in schizophrenia is consistent with the illness' characterization as a disconnection syndrome.

  6. Cellular Shape Memory Alloy Structures: Experiments & Modeling (Part 1)

    DTIC Science & Technology

    2012-08-01

    AFOSR  Grant  #FA9550-­‐08-­‐1-­‐0313 Cellular  Shape  Memory   Alloy  Structures:   Experiments  &  Modeling J.  Shaw  (UM...2012 4. TITLE AND SUBTITLE Cellular Shape Memory Alloy Structures: Experiments & Modeling (Part 1) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...dense,  0.37  g/cc) Combine benefits of light-weight cellular structures with Shape Memory Alloy (SMA) adaptive behavior CombinaKon •Amplified

  7. True but not false memories are associated with the HTR2A gene.

    PubMed

    Zhu, Bi; Chen, Chuansheng; Loftus, Elizabeth F; Moyzis, Robert K; Dong, Qi; Lin, Chongde

    2013-11-01

    Previous research reported that serotonin receptor 2A gene (HTR2A) polymorphisms were associated with memory. However, it is unknown whether these genetic variants were associated with both true and false memories. The current study of 336 Han Chinese subjects tested 30 single nucleotide polymorphisms (SNPs) within the HTR2A gene for potential associations with true and false memories. False memories were assessed using the Deese-Roediger-McDermott (DRM) paradigm, in which people falsely remember semantically related (but unpresented) words. We found that 11 SNPs within the HTR2A gene were associated with true memory (p=0.000076-0.043). The associations between true memory and seven adjacent SNPs (i.e., rs1923888, rs1745837, rs9567739, rs3742279, rs655888, rs655854, and rs2296972) were still significant after multiple testing corrections. Haplotype-based association analysis revealed that, true memory was positively associated with haplotype A-C-C-G-C-T-A for these seven adjacent SNPs (p=0.000075), which was still significant after multiple testing correction. Only one SNP rs655854 was associated with false memory (p=0.023), and it was not significant after multiple testing correction. This study replicates, in an Asian population, that genetic variation in HTR2A is associated with episodic memory, and also suggests that this association is restricted to true memory.

  8. Results from the Gardner-Derrida-Mottishaw theory of associative memory.

    PubMed

    Koyama, Hideyuki; Fujie, Norio; Seyama, Hiroyuki

    1999-03-01

    General computable formulas for overlap and the other parameters are derived from the Gardner-Derrida-Mottishaw theory of associative memory on the Little-Hopfield model. The overlap is expressed in terms of integral of many-dimensional Gaussian functions. A method of approximation is developed to make numerical computation easy. It is shown that the numerical results are totally in good agreement with simulation.

  9. Effects of Aβ exposure on long-term associative memory and its neuronal mechanisms in a defined neuronal network.

    PubMed

    Ford, Lenzie; Crossley, Michael; Williams, Thomas; Thorpe, Julian R; Serpell, Louise C; Kemenes, György

    2015-05-29

    Amyloid beta (Aβ) induced neuronal death has been linked to memory loss, perhaps the most devastating symptom of Alzheimer's disease (AD). Although Aβ-induced impairment of synaptic or intrinsic plasticity is known to occur before any cell death, the links between these neurophysiological changes and the loss of specific types of behavioral memory are not fully understood. Here we used a behaviorally and physiologically tractable animal model to investigate Aβ-induced memory loss and electrophysiological changes in the absence of neuronal death in a defined network underlying associative memory. We found similar behavioral but different neurophysiological effects for Aβ 25-35 and Aβ 1-42 in the feeding circuitry of the snail Lymnaea stagnalis. Importantly, we also established that both the behavioral and neuronal effects were dependent upon the animals having been classically conditioned prior to treatment, since Aβ application before training caused neither memory impairment nor underlying neuronal changes over a comparable period of time following treatment.

  10. A simple neural network model of the hippocampus suggesting its pathfinding role in episodic memory retrieval.

    PubMed

    Samsonovich, Alexei V; Ascoli, Giorgio A

    2005-01-01

    The goal of this work is to extend the theoretical understanding of the relationship between hippocampal spatial and memory functions to the level of neurophysiological mechanisms underlying spatial navigation and episodic memory retrieval. The proposed unifying theory describes both phenomena within a unique framework, as based on one and the same pathfinding function of the hippocampus. We propose a mechanism of reconstruction of the context of experience involving a search for a nearly shortest path in the space of remembered contexts. To analyze this concept in detail, we define a simple connectionist model consistent with available rodent and human neurophysiological data. Numerical study of the model begins with the spatial domain as a simple analogy for more complex phenomena. It is demonstrated how a nearly shortest path is quickly found in a familiar environment. We prove numerically that associative learning during sharp waves can account for the necessary properties of hippocampal place cells. Computational study of the model is extended to other cognitive paradigms, with the main focus on episodic memory retrieval. We show that the ability to find a correct path may be vital for successful retrieval. The model robustly exhibits the pathfinding capacity within a wide range of several factors, including its memory load (up to 30,000 abstract contexts), the number of episodes that become associated with potential target contexts, and the level of dynamical noise. We offer several testable critical predictions in both spatial and memory domains to validate the theory. Our results suggest that (1) the pathfinding function of the hippocampus, in addition to its associative and memory indexing functions, may be vital for retrieval of certain episodic memories, and (2) the hippocampal spatial navigation function could be a precursor of its memory function.

  11. A simple neural network model of the hippocampus suggesting its pathfinding role in episodic memory retrieval

    PubMed Central

    Samsonovich, Alexei V.; Ascoli, Giorgio A.

    2005-01-01

    The goal of this work is to extend the theoretical understanding of the relationship between hippocampal spatial and memory functions to the level of neurophysiological mechanisms underlying spatial navigation and episodic memory retrieval. The proposed unifying theory describes both phenomena within a unique framework, as based on one and the same pathfinding function of the hippocampus. We propose a mechanism of reconstruction of the context of experience involving a search for a nearly shortest path in the space of remembered contexts. To analyze this concept in detail, we define a simple connectionist model consistent with available rodent and human neurophysiological data. Numerical study of the model begins with the spatial domain as a simple analogy for more complex phenomena. It is demonstrated how a nearly shortest path is quickly found in a familiar environment. We prove numerically that associative learning during sharp waves can account for the necessary properties of hippocampal place cells. Computational study of the model is extended to other cognitive paradigms, with the main focus on episodic memory retrieval. We show that the ability to find a correct path may be vital for successful retrieval. The model robustly exhibits the pathfinding capacity within a wide range of several factors, including its memory load (up to 30,000 abstract contexts), the number of episodes that become associated with potential target contexts, and the level of dynamical noise. We offer several testable critical predictions in both spatial and memory domains to validate the theory. Our results suggest that (1) the pathfinding function of the hippocampus, in addition to its associative and memory indexing functions, may be vital for retrieval of certain episodic memories, and (2) the hippocampal spatial navigation function could be a precursor of its memory function. PMID:15774943

  12. Object selection costs in visual working memory: A diffusion model analysis of the focus of attention.

    PubMed

    Sewell, David K; Lilburn, Simon D; Smith, Philip L

    2016-11-01

    A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can occur. The need to orient the focus of attention implies that single-object accounts typically predict response time costs associated with object selection even when working memory is not full (i.e., memory load is less than 4 items). For other theories that assume storage of multiple items in the focus of attention, predictions depend on specific assumptions about the way resources are allocated among items held in the focus, and how this affects the time course of retrieval of items from the focus. These broad theoretical accounts have been difficult to distinguish because conventional analyses fail to separate components of empirical response times related to decision-making from components related to selection and retrieval processes associated with accessing information in working memory. To better distinguish these response time components from one another, we analyze data from a probed visual working memory task using extensions of the diffusion decision model. Analysis of model parameters revealed that increases in memory load resulted in (a) reductions in the quality of the underlying stimulus representations in a manner consistent with a sample size model of visual working memory capacity and (b) systematic increases in the time needed to selectively access a probed representation in memory. The results are consistent with single-object theories of the focus of attention. The results are also consistent with a subset of theories that assume a multiobject focus of attention in which resource allocation diminishes both the quality and accessibility of the underlying representations. (PsycINFO Database Record

  13. A new concept of vertically integrated pattern recognition associative memory

    SciTech Connect

    Liu, Ted; Hoff, Jim; Deptuch, Grzegorz; Yarema, Ray; /Fermilab

    2011-11-01

    Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing fast pattern recognition for a track trigger, requiring about three orders of magnitude more associative memory patterns than what was used in the original CDF SVT. Scaling of current technologies is unlikely to satisfy the scientific needs of the future, and investments in transformational new technologies need to be made. In this paper, we will discuss a new concept of using the emerging 3D vertical integration technology to significantly advance the state-of-the-art for fast pattern recognition within and outside HEP. A generic R and D proposal based on this new concept, with a few institutions involved, has recently been submitted to DOE with the goal to design and perform the ASIC engineering necessary to realize a prototype device. The progress of this R and D project will be reported in the future. Here we will only focus on the concept of this new approach.

  14. Failure of delayed nonsynaptic neuronal plasticity underlies age-associated long-term associative memory impairment

    PubMed Central

    2012-01-01

    Background Cognitive impairment associated with subtle changes in neuron and neuronal network function rather than widespread neuron death is a feature of the normal aging process in humans and animals. Despite its broad evolutionary conservation, the etiology of this aging process is not well understood. However, recent evidence suggests the existence of a link between oxidative stress in the form of progressive membrane lipid peroxidation, declining neuronal electrical excitability and functional decline of the normal aging brain. The current study applies a combination of behavioural and electrophysiological techniques and pharmacological interventions to explore this hypothesis in a gastropod model (Lymnaea stagnalis feeding system) that allows pinpointing the molecular and neurobiological foundations of age-associated long-term memory (LTM) failure at the level of individual identified neurons and synapses. Results Classical appetitive reward-conditioning induced robust LTM in mature animals in the first quartile of their lifespan but failed to do so in animals in the last quartile of their lifespan. LTM failure correlated with reduced electrical excitability of two identified serotonergic modulatory interneurons (CGCs) critical in chemosensory integration by the neural network controlling feeding behaviour. Moreover, while behavioural conditioning induced delayed-onset persistent depolarization of the CGCs known to underlie appetitive LTM formation in this model in the younger animals, it failed to do so in LTM-deficient senescent animals. Dietary supplementation of the lipophilic anti-oxidant α-tocopherol reversed the effect of age on CGCs electrophysiological characteristics but failed to restore appetitive LTM function. Treatment with the SSRI fluoxetine reversed both the neurophysiological and behavioural effects of age in senior animals. Conclusions The results identify the CGCs as cellular loci of age-associated appetitive learning and memory

  15. Empirical Memory-Access Cost Models in Multicore NUMA Architectures

    SciTech Connect

    McCormick, Patrick S.; Braithwaite, Ryan Karl; Feng, Wu-chun

    2011-01-01

    Data location is of prime importance when scheduling tasks in a non-uniform memory access (NUMA) architecture. The characteristics of the NUMA architecture must be understood so tasks can be scheduled onto processors that are close to the task's data. However, in modern NUMA architectures, such as AMD Magny-Cours and Intel Nehalem, there may be a relatively large number of memory controllers with sockets that are connected in a non-intuitive manner, leading to performance degradation due to uninformed task-scheduling decisions. In this paper, we provide a method for experimentally characterizing memory-access costs for modern NUMA architectures via memory latency and bandwidth microbenchmarks. Using the results of these benchmarks, we propose a memory-access cost model to improve task-scheduling decisions by scheduling tasks near the data they need. Simple task-scheduling experiments using the memory-access cost models validate the use of empirical memory-access cost models to significantly improve program performance.

  16. Complex associative memory processing and sleep: a systematic review and meta-analysis of behavioural evidence and underlying EEG mechanisms.

    PubMed

    Chatburn, Alex; Lushington, Kurt; Kohler, Mark J

    2014-11-01

    The beneficial influence of sleep on memory consolidation is well established; however, the mechanisms by which sleep can dynamically consolidate new memories into existing networks for the continued environmental adaptation of the individual are unclear. The role of sleep in complex associative memory is an emerging field and the literature has not yet been systematically reviewed. Here, we systematically review the published literature on the role of sleep in complex associative memory processing to determine (i) if there is reasonable published evidence to support an active role for sleep facilitating complex associative processes such rule and gist extraction and false memory; (ii) to determine which sleep physiological events and states impact these processes, and to quantify the strength of these relationships through meta-analysis. Twenty-seven studies in healthy adults were identified which combined indicate a moderate effect of sleep in facilitating associative memory as tested behaviourally. Studies which have measured sleep physiology have reported mixed findings. Significant associations between sleep electrophysiology and outcome appear to be based largely on mode of acquisition. We interpret these findings as supporting reactivation based models of associative processing.

  17. Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates.

    PubMed

    Bethus, Ingrid; Tse, Dorothy; Morris, Richard G M

    2010-02-03

    Three experiments investigated the role in memory processing of dopamine (DA) afferents to the hippocampus (HPC) that arise from the ventral tegmental area. One hypothesis is that D(1)/D(5) receptor activation in HPC is necessary for the encoding of novel, episodic-like information; the other is that DA activation ensures the greater temporal persistence of transient hippocampal memory traces. Rats (n = 35) were trained, in separate experiments using an episodic-like memory task, to learn six paired associates (PAs) in an "event arena" involving a repeated association between specific flavors of food and locations in space. After 6 weeks of training, rats had learned a "schema" such that two new paired associates could be acquired in a single trial in one session (episodic-like memory). We show that encoding of novel PAs is sensitive to intrahippocampal microinfusion of the NMDA antagonist d-AP-5. Experiment 1 established that intrahippocampal infusion of the D(1)/D(5) dopaminergic antagonist SCH23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride] before encoding of new PAs caused impaired memory 24 h later but that SCH23390 had no effect on the later memory of previously established PAs. Experiment 2 established that SCH23390 modulated the persistence of new memories over time (30 min vs 24 h) rather than affecting initial encoding. Experiment 3 revealed that the impact of SCH23390 was not mediated by state dependence nor had an effect on memory retrieval. These findings support the second hypothesis and establish that persistent, long-term memory of rapid, hippocampal-mediated acquisition of new paired associates requires activation of D(1)/D(5) receptors in HPC at or around the time of encoding.

  18. Short-Term Memory for Serial Order: A Recurrent Neural Network Model

    ERIC Educational Resources Information Center

    Botvinick, Matthew M.; Plaut, David C.

    2006-01-01

    Despite a century of research, the mechanisms underlying short-term or working memory for serial order remain uncertain. Recent theoretical models have converged on a particular account, based on transient associations between independent item and context representations. In the present article, the authors present an alternative model, according…

  19. A Memory-Based Model of Posttraumatic Stress Disorder: Evaluating Basic Assumptions Underlying the PTSD Diagnosis

    ERIC Educational Resources Information Center

    Rubin, David C.; Berntsen, Dorthe; Bohni, Malene Klindt

    2008-01-01

    In the mnemonic model of posttraumatic stress disorder (PTSD), the current memory of a negative event, not the event itself, determines symptoms. The model is an alternative to the current event-based etiology of PTSD represented in the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed., text rev.; American Psychiatric Association,…

  20. A Memory-Based Model of Posttraumatic Stress Disorder: Evaluating Basic Assumptions Underlying the PTSD Diagnosis

    ERIC Educational Resources Information Center

    Rubin, David C.; Berntsen, Dorthe; Bohni, Malene Klindt

    2008-01-01

    In the mnemonic model of posttraumatic stress disorder (PTSD), the current memory of a negative event, not the event itself, determines symptoms. The model is an alternative to the current event-based etiology of PTSD represented in the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed., text rev.; American Psychiatric Association,…

  1. Short-Term Memory for Serial Order: A Recurrent Neural Network Model

    ERIC Educational Resources Information Center

    Botvinick, Matthew M.; Plaut, David C.

    2006-01-01

    Despite a century of research, the mechanisms underlying short-term or working memory for serial order remain uncertain. Recent theoretical models have converged on a particular account, based on transient associations between independent item and context representations. In the present article, the authors present an alternative model, according…

  2. Face-Memory and Emotion: Associations with Major Depression in Children and Adolescents

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Lissek, Shmuel; Klein, Rachel G.; Mannuzza, Salvatore; Moulton, John L., III; Guardino, Mary; Woldehawariat, Girma

    2004-01-01

    Background: Studies in adults with major depressive disorder (MDD) document abnormalities in both memory and face-emotion processing. The current study used a novel face-memory task to test the hypothesis that adolescent MDD is associated with a deficit in memory for face-emotions. The study also examines the relationship between parental MDD and…

  3. A Computational Model of Implicit Memory Captures Dyslexics' Perceptual Deficits.

    PubMed

    Jaffe-Dax, Sagi; Raviv, Ofri; Jacoby, Nori; Loewenstein, Yonatan; Ahissar, Merav

    2015-09-02

    Dyslexics are diagnosed for their poor reading skills, yet they characteristically also suffer from poor verbal memory and often from poor auditory skills. To date, this combined profile has been accounted for in broad cognitive terms. Here we hypothesize that the perceptual deficits associated with dyslexia can be understood computationally as a deficit in integrating prior information with noisy observations. To test this hypothesis we analyzed the performance of human participants in an auditory discrimination task using a two-parameter computational model. One parameter captures the internal noise in representing the current event, and the other captures the impact of recently acquired prior information. Our findings show that dyslexics' perceptual deficit can be accounted for by inadequate adjustment of these components; namely, low weighting of their implicit memory of past trials relative to their internal noise. Underweighting the stimulus statistics decreased dyslexics' ability to compensate for noisy observations. ERP measurements (P2 component) while participants watched a silent movie indicated that dyslexics' perceptual deficiency may stem from poor automatic integration of stimulus statistics. This study provides the first description of a specific computational deficit associated with dyslexia. This study presents the first attempt to specify the mechanisms underlying dyslexics' perceptual difficulties computationally by applying a specific model, inspired by the Bayesian framework. This model dissociates between the contribution of sensory noise and that of the prior statistics in an auditory perceptual decision task. We show that dyslexics cannot compensate for their perceptual noise by incorporating prior information. By contrast, adequately reading controls' usage of previous information is often close to optimal. We used ERP measurements to assess the neuronal stage of this deficit. We found that unlike their peers, dyslexics' ERP responses are

  4. Association Between Persistent Pain and Memory Decline and Dementia in a Longitudinal Cohort of Elders.

    PubMed

    Whitlock, Elizabeth L; Diaz-Ramirez, L Grisell; Glymour, M Maria; Boscardin, W John; Covinsky, Kenneth E; Smith, Alexander K

    2017-08-01

    Chronic pain is common among the elderly and is associated with cognitive deficits in cross-sectional studies; the population-level association between chronic pain and longitudinal cognition is unknown. To determine the population-level association between persistent pain, which may reflect chronic pain, and subsequent cognitive decline. Cohort study with biennial interviews of 10 065 community-dwelling older adults in the nationally representative Health and Retirement Study who were 62 years or older in 2000 and answered pain and cognition questions in both 1998 and 2000. Data analysis was conducted between June 24 and October 31, 2016. "Persistent pain," defined as a participant reporting that he or she was often troubled with moderate or severe pain in both the 1998 and 2000 interviews. Coprimary outcomes were composite memory score and dementia probability, estimated by combining neuropsychological test results and informant and proxy interviews, which were tracked from 2000 through 2012. Linear mixed-effects models, with random slope and intercept for each participant, were used to estimate the association of persistent pain with slope of the subsequent cognitive trajectory, adjusting for demographic characteristics and comorbidities measures in 2000 and applying sampling weights to represent the 2000 US population. We hypothesized that persistent pain would predict accelerated memory decline and increased probability of dementia. To quantify the impact of persistent pain on functional independence, we combined our primary results with information on the association between memory and ability to manage medications and finances independently. Of the 10 065 eligible HRS sample members, 60% were female, and median baseline age was 73 years (interquartile range, 67-78 years). At baseline, persistent pain affected 10.9% of participants and was associated with worse depressive symptoms and more limitations in activities of daily living. After covariate

  5. Coordinated Plasticity between Barrel Cortical Glutamatergic and GABAergic Neurons during Associative Memory

    PubMed Central

    Yan, Fenxia; Gao, Zilong; Chen, Pin; Huang, Li; Wang, Dangui; Chen, Na; Wu, Ruixiang; Feng, Jing; Cui, Shan; Lu, Wei

    2016-01-01

    Neural plasticity is associated with memory formation. The coordinated refinement and interaction between cortical glutamatergic and GABAergic neurons remain elusive in associative memory, which we examine in a mouse model of associative learning. In the mice that show odorant-induced whisker motion after pairing whisker and odor stimulations, the barrel cortical glutamatergic and GABAergic neurons are recruited to encode the newly learnt odor signal alongside the innate whisker signal. These glutamatergic neurons are functionally upregulated, and GABAergic neurons are refined in a homeostatic manner. The mutual innervations between these glutamatergic and GABAergic neurons are upregulated. The analyses by high throughput sequencing show that certain microRNAs related to regulating synapses and neurons are involved in this cross-modal reflex. Thus, the coactivation of the sensory cortices through epigenetic processes recruits their glutamatergic and GABAergic neurons to be the associative memory cells as well as drive their coordinated refinements toward the optimal state for the storage of the associated signals. PMID:28070425

  6. Depression and memory impairment: a meta-analysis of the association, its pattern, and specificity.

    PubMed

    Burt, D B; Zembar, M J; Niederehe, G

    1995-03-01

    The existing evidence paints an unclear picture of whether an association exists between depression and memory impairment. The purpose of this investigation was to determine whether depression is associated with memory impairment, whether moderator variables determine the extent of this association, and whether any obtained association is unique to depression. Meta-analytic techniques were used to synthesize data from 99 studies on recall and 48 studies on recognition in clinically depressed and nondepressed samples. Associations between memory impairment and other psychiatric disorders (e.g., schizophrenia, dementia) were also examined. A significant, stable association between depression and memory impairment was revealed. Further analyses indicated, however, that it is likely that depression is linked to particular aspects of memory, the linkage is found in particular subsets of depressed individuals, and memory impairment is not unique to depression.

  7. Rapid Associative Learning and Stable Long-Term Memory in the Squid Euprymna scolopes.

    PubMed

    Zepeda, Emily A; Veline, Robert J; Crook, Robyn J

    2017-06-01

    Learning and memory in cephalopod molluscs have received intensive study because of cephalopods' complex behavioral repertoire and relatively accessible nervous systems. While most of this research has been conducted using octopus and cuttlefish species, there has been relatively little work on squid. Euprymna scolopes Berry, 1913, a sepiolid squid, is a promising model for further exploration of cephalopod cognition. These small squid have been studied in detail for their symbiotic relationship with bioluminescent bacteria, and their short generation time and successful captive breeding through multiple generations make them appealing models for neurobiological research. However, little is known about their behavior or cognitive ability. Using the well-established "prawn-in-the-tube" assay of learning and memory, we show that within a single 10-min trial E. scolopes learns to inhibit its predatory behavior, and after three trials it can retain this memory for at least 12 d. Rapid learning and very long-term retention were apparent under two different training schedules. To our knowledge, this study is the first demonstration of learning and memory in this species as well as the first demonstration of associative learning in any squid.

  8. Validation of a rodent model of episodic memory

    PubMed Central

    Zhou, Wenyi

    2011-01-01

    Episodic memory consists of representations of specific episodes that happened in the past. Modeling episodic memory in animals requires careful examination of alternative explanations of performance. Putative evidence of episodic-like memory may be based on encoding failure or expectations derived from well-learned semantic rules. In Experiment 1, rats were tested in a radial maze with study and test phases separated by a retention interval. The replenishment of chocolate (at its study-phase location) depended on two factors: time of day (morning vs. afternoon) and the presence or absence of chocolate pellets at the start of the test phase. Because replenishment could not be decoded until the test phase, rats were required to encode the study episode. Success in this task rules out encoding failure. In Experiment 2, two identical mazes in different rooms were used. Chocolate replenishment was trained in one room, and then they were asked to report about a recent event in a different room, where they had no expectation that the memory assessment would occur. Rats successfully answered the unexpected question, ruling out use of expectations derived from well-learned semantic rules. Our behavioral methods for modeling episodic memory may have broad application for assessments of genetic, neuroanatomical, neurochemical, and neurophysiological bases of both episodic memory and memory disorders such as those that occur in Alzheimer’s disease. PMID:21165663

  9. Abnormal Fear Memory as a Model for Posttraumatic Stress Disorder.

    PubMed

    Desmedt, Aline; Marighetto, Aline; Piazza, Pier-Vincenzo

    2015-09-01

    For over a century, clinicians have consistently described the paradoxical co-existence in posttraumatic stress disorder (PTSD) of sensory intrusive hypermnesia and declarative amnesia for the same traumatic event. Although this amnesia is considered as a critical etiological factor of the development and/or persistence of PTSD, most current animal models in basic neuroscience have focused exclusively on the hypermnesia, i.e., the persistence of a strong fear memory, neglecting the qualitative alteration of fear memory. The latest is characterized by an underrepresentation of the trauma in the context-based declarative memory system in favor of its overrepresentation in a cue-based sensory/emotional memory system. Combining psychological and neurobiological data as well as theoretical hypotheses, this review supports the idea that contextual amnesia is at the core of PTSD and its persistence and that altered hippocampal-amygdalar interaction may contribute to such pathologic memory. In a first attempt to unveil the neurobiological alterations underlying PTSD-related hypermnesia/amnesia, we describe a recent animal model mimicking in mice some critical aspects of such abnormal fear memory. Finally, this line of argument emphasizes the pressing need for a systematic comparison between normal/adaptive versus abnormal/maladaptive fear memory to identify biomarkers of PTSD while distinguishing them from general stress-related, potentially adaptive, neurobiological alterations. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Piromelatine ameliorates memory deficits associated with chronic mild stress-induced anhedonia in rats.

    PubMed

    Fu, Wan; Xie, Heng; Laudon, Moshe; Zhou, Shouhong; Tian, Shaowen; You, Yong

    2016-06-01

    Previous studies have demonstrated that piromelatine (a melatonin and serotonin 5-HT1A and 5-HT1D agonist) exerts an antidepressant activity in rodent models of acute stress and improves cognitive impairments in a rat model of Alzheimer's disease (AD). However, the role of piromelatine in chronic stress-induced memory dysfunction remains unclear. The aim of this study was to determine whether piromelatine ameliorates chronic mild stress (CMS)-induced memory deficits and explore the underlying mechanisms. Rats were exposed randomly to chronic mild stressors for 7 weeks to induce anhedonia (reflected by a significant decrease in sucrose intake), which was used to select rats vulnerable (CMS-anhedonic, CMSA) or resistant (CMS-resistant, CMSR) to stress. Piromelatine (50 mg/kg) was administered daily during the last 2 weeks of CMS. The tail suspension and forced swimming tests were adopted to further characterize vulnerable and resilient rats. The Y-maze and novel object recognition (NOR) tests were used to evaluate memory performance. Brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), phosphorylated CREB (pCREB), and cytogenesis were measured in the hippocampus. We found that only CMSA rats displayed significant increases in immobility time in the tail suspension and forced swimming tests; memory deficits in the Y-maze and NOR tests; significant decreases in hippocampal BDNF, CREB, and pCREB expression; and cytogenesis. All these anhedonia-associated effects were reversed by piromelatine. Piromelatine ameliorates memory deficits associated with CMS-induced anhedonia in rats and this effect may be mediated by restoring hippocampal BDNF, CREB, and cytogenesis deficits.

  11. Social Models Enhance Apes’ Memory for Novel Events

    PubMed Central

    Howard, Lauren H.; Wagner, Katherine E.; Woodward, Amanda L.; Ross, Stephen R.; Hopper, Lydia M.

    2017-01-01

    Nonhuman primates are more likely to learn from the actions of a social model than a non-social “ghost display”, however the mechanism underlying this effect is still unknown. One possibility is that live models are more engaging, drawing increased attention to social stimuli. However, recent research with humans has suggested that live models fundamentally alter memory, not low-level attention. In the current study, we developed a novel eye-tracking paradigm to disentangle the influence of social context on attention and memory in apes. Tested in two conditions, zoo-housed apes (2 gorillas, 5 chimpanzees) were familiarized to videos of a human hand (social condition) and mechanical claw (non-social condition) constructing a three-block tower. During the memory test, subjects viewed side-by-side pictures of the previously-constructed block tower and a novel block tower. In accordance with looking-time paradigms, increased looking time to the novel block tower was used to measure event memory. Apes evidenced memory for the event featuring a social model, though not for the non-social condition. This effect was not dependent on attention differences to the videos. These findings provide the first evidence that, like humans, social stimuli increase nonhuman primates’ event memory, which may aid in information transmission via social learning. PMID:28106098

  12. Traumatic stress is linked to a deficit in associative episodic memory.

    PubMed

    Guez, Jonathan; Naveh-Benjamin, Moshe; Yankovsky, Yan; Cohen, Jonathan; Shiber, Asher; Shalev, Hadar

    2011-06-01

    Individuals with posttraumatic stress disorder (PTSD) are haunted by persistent memories of the trauma, but ironically are impaired in memories of daily life. The current set of 4 experiments compared new learning and memory of emotionally neutral content in 2 groups of patients and aged- and education-matched controls: 20 patients diagnosed with chronic posttraumatic stress disorder (C-PTSD) and 20 patients diagnosed with acute stress disorder (ASD). In all experiments, participants studied a list of stimuli pairs (words or pictures) and were then tested for their memory of the items, or for the association between items in each pair. Results indicated that both types of patients showed associative memory impairment compared to a control group, although their item memory performance was relatively intact. Potential mechanisms underlying such associative memory deficits in posttraumatic patients are discussed.

  13. Recurrent Network models of sequence generation and memory

    PubMed Central

    Rajan, Kanaka; Harvey, Christopher D; Tank, David W

    2016-01-01

    SUMMARY Sequential activation of neurons is a common feature of network activity during a variety of behaviors, including working memory and decision making. Previous network models for sequences and memory emphasized specialized architectures in which a principled mechanism is pre-wired into their connectivity. Here, we demonstrate that starting from random connectivity and modifying a small fraction of connections, a largely disordered recurrent network can produce sequences and implement working memory efficiently. We use this process, called Partial In-Network training (PINning), to model and match cellular-resolution imaging data from the posterior parietal cortex during a virtual memory-guided two-alternative forced choice task [Harvey, Coen and Tank, 2012]. Analysis of the connectivity reveals that sequences propagate by the cooperation between recurrent synaptic interactions and external inputs, rather than through feedforward or asymmetric connections. Together our results suggest that neural sequences may emerge through learning from largely unstructured network architectures. PMID:26971945

  14. Computational modelling of memory retention from synapse to behaviour

    NASA Astrophysics Data System (ADS)

    van Rossum, Mark C. W.; Shippi, Maria

    2013-03-01

    One of our most intriguing mental abilities is the capacity to store information and recall it from memory. Computational neuroscience has been influential in developing models and concepts of learning and memory. In this tutorial review we focus on the interplay between learning and forgetting. We discuss recent advances in the computational description of the learning and forgetting processes on synaptic, neuronal, and systems levels, as well as recent data that open up new challenges for statistical physicists.

  15. Modeling Students' Memory for Application in Adaptive Educational Systems

    ERIC Educational Resources Information Center

    Pelánek, Radek

    2015-01-01

    Human memory has been thoroughly studied and modeled in psychology, but mainly in laboratory setting under simplified conditions. For application in practical adaptive educational systems we need simple and robust models which can cope with aspects like varied prior knowledge or multiple-choice questions. We discuss and evaluate several models of…

  16. Modeling Working Memory Tasks on the Item Level

    ERIC Educational Resources Information Center

    Luo, Dasen; Chen, Guopeng; Zen, Fanlin; Murray, Bronwyn

    2010-01-01

    Item responses to Digit Span and Letter-Number Sequencing were analyzed to develop a better-refined model of the two working memory tasks using the finite mixture (FM) modeling method. Models with ordinal latent traits were found to better account for the independent sources of the variability in the tasks than those with continuous traits, and…

  17. Manipulability impairs association-memory: revisiting effects of incidental motor processing on verbal paired-associates.

    PubMed

    Madan, Christopher R

    2014-06-01

    Imageability is known to enhance association-memory for verbal paired-associates. High-imageability words can be further subdivided by manipulability, the ease by which the named object can be functionally interacted with. Prior studies suggest that motor processing enhances item-memory, but impairs association-memory. However, these studies used action verbs and concrete nouns as the high- and low-manipulability words, respectively, confounding manipulability with word class. Recent findings demonstrated that nouns can serve as both high- and low-manipulability words (e.g., CAMERA and TABLE, respectively), allowing us to avoid this confound. Here participants studied pairs of words that consisted of all possible pairings of high- and low-manipulability words and were tested with immediate cued recall. Recall was worse for pairs that contained high-manipulability words. In free recall, participants recalled more high- than low-manipulability words. Our results provide further evidence that manipulability influences memory, likely occurring through automatic motor imagery. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Modeling visual working memory with the MemToolbox.

    PubMed

    Suchow, Jordan W; Brady, Timothy F; Fougnie, Daryl; Alvarez, George A

    2013-08-20

    The MemToolbox is a collection of MATLAB functions for modeling visual working memory. In support of its goal to provide a full suite of data analysis tools, the toolbox includes implementations of popular models of visual working memory, real and simulated data sets, Bayesian and maximum likelihood estimation procedures for fitting models to data, visualizations of data and fit, validation routines, model comparison metrics, and experiment scripts. The MemToolbox is released under the permissive BSD license and is available at http://memtoolbox.org.

  19. EPS Mid-Career Award 2011. Are there multiple memory systems? Tests of models of implicit and explicit memory.

    PubMed

    Shanks, David R; Berry, Christopher J

    2012-01-01

    This article reviews recent work aimed at developing a new framework, based on signal detection theory, for understanding the relationship between explicit (e.g., recognition) and implicit (e.g., priming) memory. Within this framework, different assumptions about sources of memorial evidence can be framed. Application to experimental results provides robust evidence for a single-system model in preference to multiple-systems models. This evidence comes from several sources including studies of the effects of amnesia and ageing on explicit and implicit memory. The framework allows a range of concepts in current memory research, such as familiarity, recollection, fluency, and source memory, to be linked to implicit memory. More generally, this work emphasizes the value of modern computational modelling techniques in the study of learning and memory.

  20. Declarative memory performance is associated with the number of sleep spindles in elderly women.

    PubMed

    Seeck-Hirschner, Mareen; Baier, Paul Christian; Weinhold, Sara Lena; Dittmar, Manuela; Heiermann, Steffanie; Aldenhoff, Josef B; Göder, Robert

    2012-09-01

    Recent evidence suggests that the sleep-dependent consolidation of declarative memory relies on the nonrapid eye movement rather than the rapid eye movement phase of sleep. In addition, it is known that aging is accompanied by changes in sleep and memory processes. Hence, the purpose of this study was to investigate the overnight consolidation of declarative memory in healthy elderly women. Sleep laboratory of University. Nineteen healthy elderly women (age range: 61-74 years). We used laboratory-based measures of sleep. To test declarative memory, the Rey-Osterrieth Complex Figure Test was performed. Declarative memory performance in elderly women was associated with Stage 2 sleep spindle density. Women characterized by high memory performance exhibited significantly higher numbers of sleep spindles and higher spindle density compared with women with generally low memory performance. The data strongly support theories suggesting a link between sleep spindle activity and declarative memory consolidation.

  1. Encoding strategy for maximum noise tolerance bidirectional associative memory.

    PubMed

    Shen, Dan; Cruz, Jose B

    2005-03-01

    In this paper, the basic bidirectional associative memory (BAM) is extended by choosing weights in the correlation matrix, for a given set of training pairs, which result in a maximum noise tolerance set for BAM. We prove that for a given set of training pairs, the maximum noise tolerance set is the largest, in the sense that this optimized BAM will recall the correct training pair if any input pattern is within the maximum noise tolerance set and at least one pattern outside the maximum noise tolerance set by one Hamming distance will not converge to the correct training pair. This maximum tolerance set is the union of the maximum basins of attraction. A standard genetic algorithm (GA) is used to calculate the weights to maximize the objective function which generates a maximum tolerance set for BAM. Computer simulations are presented to illustrate the error correction and fault tolerance properties of the optimized BAM.

  2. Rhythmic coordination of hippocampal neurons during associative memory processing.

    PubMed

    Rangel, Lara M; Rueckemann, Jon W; Riviere, Pamela D; Keefe, Katherine R; Porter, Blake S; Heimbuch, Ian S; Budlong, Carl H; Eichenbaum, Howard

    2016-01-11

    Hippocampal oscillations are dynamic, with unique oscillatory frequencies present during different behavioral states. To examine the extent to which these oscillations reflect neuron engagement in distinct local circuit processes that are important for memory, we recorded single cell and local field potential activity from the CA1 region of the hippocampus as rats performed a context-guided odor-reward association task. We found that theta (4-12 Hz), beta (15-35 Hz), low gamma (35-55 Hz), and high gamma (65-90 Hz) frequencies exhibited dynamic amplitude profiles as rats sampled odor cues. Interneurons and principal cells exhibited unique engagement in each of the four rhythmic circuits in a manner that related to successful performance of the task. Moreover, principal cells coherent to each rhythm differentially represented task dimensions. These results demonstrate that distinct processing states arise from the engagement of rhythmically identifiable circuits, which have unique roles in organizing task-relevant processing in the hippocampus.

  3. Chaotic neural network for learnable associative memory recall

    NASA Astrophysics Data System (ADS)

    Hsu, Charles C.; Szu, Harold H.

    2003-04-01

    We show that the Fuzzy Membership Function (FMF) is learnable with underlying chaotic neural networks for the open set probability. A sigmoid N-shaped function is used to generate chaotic signals. We postulate that such a chaotic set of innumerable realization forms a FMF exemplified by fuzzy feature maps of eyes, nose, etc., for the invariant face classification. The CNN with FMF plays an important role for fast pattern recognition capability in examples of both habituation and novelty detections. In order to reduce the computation complexity, the nearest-neighborhood weight connection is proposed. In addition, a novel timing-sequence weight-learning algorithm is introduced to increase the capacity and recall of the associative memory. For simplicity, a piece-wise-linear (PWL) N-shaped function was designed and implemented and fabricated in a CMOS chip.

  4. Altered Intrinsic Hippocmapus Declarative Memory Network and Its Association with Impulsivity in Abstinent Heroin Dependent Subjects

    PubMed Central

    Zhai, Tian-Ye; Shao, Yong-Cong; Xie, Chun-Ming; Ye, En-Mao; Zou, Feng; Fu, Li-Ping; Li, Wen-Jun; Chen, Gang; Chen, Guang-Yu; Zhang, Zheng-Guo; Li, Shi-Jiang; Yang, Zheng

    2014-01-01

    Converging evidence suggests that addiction can be considered a disease of aberrant learning and memory with impulsive decision-making. In the past decades, numerous studies have demonstrated that drug addiction is involved in multiple memory systems such as classical conditioned drug memory, instrumental learning memory and the habitual learning memory. However, most of these studies have focused on the contributions of non-declarative memory, and declarative memory has largely been neglected in the research of addiction. Based on a recent finding that hippocampus, as a core functioning region of declarative memory, was proved biased the decision-making process based on past experiences by spreading associated reward values throughout memory. Our present study focused on the hippocampus. By utilizing seed-based network analysis on the resting-state functional MRI datasets with the seed hippocampus we tested how the intrinsic hippocampal memory network altered towards drug addiction, and examined how the functional connectivity strength within the altered hippocampal network correlated with behavioral index ‘impulsivity’. Our results demonstrated that HD group showed enhanced coherence between hippocampus which represents declarative memory system and non-declarative rewardguided learning memory system, and also showed attenuated intrinsic functional link between hippocampus and top-down control system, compared to the CN group. This alteration was furthered found to have behavioral significance over the behavioral index ‘impulsivity’ measured with Barratt Impulsiveness Scale (BIS). These results provide insights into the mechanism of declarative memory underlying the impulsive behavior in drug addiction. PMID:25008351

  5. Comparing single- and dual-process models of memory development.

    PubMed

    Hayes, Brett K; Dunn, John C; Joubert, Amy; Taylor, Robert

    2016-09-22

    This experiment examined single-process and dual-process accounts of the development of visual recognition memory. The participants, 6-7-year-olds, 9-10-year-olds and adults, were presented with a list of pictures which they encoded under shallow or deep conditions. They then made recognition and confidence judgments about a list containing old and new items. We replicated the main trends reported by Ghetti and Angelini () in that recognition hit rates increased from 6 to 9 years of age, with larger age changes following deep than shallow encoding. Formal versions of the dual-process high threshold signal detection model and several single-process models (equal variance signal detection, unequal variance signal detection, mixture signal detection) were fit to the developmental data. The unequal variance and mixture signal detection models gave a better account of the data than either of the other models. A state-trace analysis found evidence for only one underlying memory process across the age range tested. These results suggest that single-process memory models based on memory strength are a viable alternative to dual-process models for explaining memory development. © 2016 John Wiley & Sons Ltd.

  6. Everyday memory: towards a translationally effective method of modelling the encoding, forgetting and enhancement of memory.

    PubMed

    Nonaka, Mio; Fitzpatrick, Richard; Lapira, Jennifer; Wheeler, Damian; Spooner, Patrick A; Corcoles-Parada, Marta; Muñoz-López, Mónica; Tully, Tim; Peters, Marco; Morris, Richard G M

    2017-08-01

    The testing of cognitive enhancers could benefit from the development of novel behavioural tasks that display better translational relevance for daily memory and permit the examination of potential targets in a within-subjects manner with less variability. We here outline an optimized spatial 'everyday memory' task. We calibrate it systematically by interrogating certain well-established determinants of memory and consider its potential for revealing novel features of encoding-related gene activation. Rats were trained in an event arena in which food was hidden in sandwells in a different location everyday. They found the food during an initial memory-encoding trial and were then required to remember the location in six alternative choice or probe trials at various time-points later. Training continued daily over a period of 4 months, realizing a stable high level of performance and characterized by delay-dependent forgetting over 24 h. Spaced but not massed access to multiple rewards enhanced the persistence of memory, as did post-encoding administration of the PDE4 inhibitor Rolipram. Quantitative PCR and then genome-wide analysis of gene expression led to a new observation - stronger gene-activation in hippocampus and retrosplenial cortex following spaced than massed training. In a subsidiary study, a separate group of animals replicated aspects of this training profile, going on to show enhanced memory when training was subject to post-encoding environmental novelty. Distinctive features of this protocol include its potential validity as a model of memory encoding used routinely by human subjects everyday, and the possibility of multiple within-subject comparisons to speed up assays of novel compounds. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. New generation of content addressable memories for associative processing

    NASA Astrophysics Data System (ADS)

    Lewis, H. G., Jr.; Giambalov, Paul

    2000-05-01

    Content addressable memories (CAMS) store both key and association data. A key is presented to the CAN when it is searched and all of the addresses are scanned in parallel to find the address referenced by the key. When a match occurs, the corresponding association is returned. With the explosion of telecommunications packet switching protocols, large data base servers, routers and search engines a new generation of dense sub-micron high throughput CAMS has been developed. The introduction of this paper presents a brief history and tutorial on CAMS, their many uses and advantages, and describes the architecture and functionality of several of MUSIC Semiconductors CAM devices. In subsequent sections of the paper we address using Associative Processing to accommodate the continued increase in sensor resolution, number of spectral bands, required coverage, the desire to implement real-time target cueing, and the data flow and image processing required for optimum performance of reconnaissance and surveillance Unmanned Aerial Vehicles (UAVs). To be competitive the system designer must provide the most computational power, per watt, per dollar, per cubic inch, within the boundaries of cost effective UAV environmental control systems. To address these problems we demonstrate leveraging DARPA and DoD funded Commercial Off-the-Shelf technology to integrate CAM based Associative Processing into a real-time heterogenous multiprocessing system for UAVs and other platforms with limited weight, volume and power budgets.

  8. Age-related differences in associative memory: the role of sensory decline.

    PubMed

    Naveh-Benjamin, Moshe; Kilb, Angela

    2014-09-01

    Numerous studies show age-related decline in episodic memory. One of the explanations for this decline points to older adults' deficit in associative memory, reflecting the difficulties they have in binding features of episodes into cohesive entities and retrieving these bindings. Here, we evaluate the degree to which this deficit may be mediated by sensory loss associated with increased age. In 2 experiments, young adults studied word pairs that were degraded at encoding either visually (Experiment 1) or auditorily (Experiment 2). We then tested their memory for both the component words and the associations with recognition tests. For both experiments, young adults under nondegraded conditions showed an advantage in associative over item memory, relative to a group of older adults. In contrast, under perceptually degraded conditions younger adults performed similarly to the older adults who were tested under nondegraded conditions. More specifically, under perceptual degradation, young adults' associative memory declined and their component memory improved somewhat, resulting in an associative deficit, similar to that shown by older adults. This evidence is consistent with a sensory acuity decline in old age being one mediator in the associative deficit of older adults. These results broaden our understanding of age-related memory changes and how sensory and cognitive processes interact to shape these changes. The theoretical implications of these results are discussed with respect to mechanisms underlying age-related changes in episodic memory and resource tradeoffs in the encoding of component and associative memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model

    ERIC Educational Resources Information Center

    Cabeza, Roberto; Mazuz, Yonatan S.; Stokes, Jared; Kragel, James E.; Woldorff, Marty G.; Ciaramelli, Elisa; Olson, Ingrid R.; Moscovitch, Morris

    2011-01-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval…

  10. Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model

    ERIC Educational Resources Information Center

    Cabeza, Roberto; Mazuz, Yonatan S.; Stokes, Jared; Kragel, James E.; Woldorff, Marty G.; Ciaramelli, Elisa; Olson, Ingrid R.; Moscovitch, Morris

    2011-01-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval…

  11. Localization and characterization of an essential associative memory trace in the mammalian brain.

    PubMed

    Poulos, Andrew M; Thompson, Richard F

    2015-09-24

    We argue here that we have succeeded in localizing an essential memory trace for a basic form of associative learning and memory - classical conditioning of discrete responses learned with an aversive stimulus - to the anterior interpositus nucleus of the cerebellum. We first identified the entire essential circuit, using eyelid conditioning as the model system, and used reversible inactivation, during training, of critical structures and activation of pathways to localize definitively the essential memory trace. This discovery and the associated studies have: 1) shown that the essential cerebellar circuit applies equally to all mammals studied, including humans; 2) shown that this cerebellar circuit holds for the learning of any discrete behavioral response elicited by an aversive US, not just eyelid closure; 3) identified the essential circuit and process for reinforcement for this form of learning; 4) shown that this form of learning and its essential cerebellar circuitry is phylogenetically very old; 5) solved the long-standing puzzle of where memory traces are formed in the brain when the CS is electrical stimulation of the cerebral cortex in conditioning; 6) shown that this cerebellar circuitry forms the essential neural substrate for the behavioral phenomenon of "blocking", and hence, 7) provides the first clear neural instantiation of the Rescorla-Wagner learning algorithm; 8) shown that the fundamental neural process underlying this form of learning is a strengthening of preexisting pathways, and 9) shown that the basic mechanism underlying this strengthening is the formation of new excitatory synapses. This article is part of a Special Issue entitled SI: Brain and Memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Dietary advanced glycation end products are associated with decline in memory in young elderly.

    PubMed

    West, Rebecca K; Moshier, Erin; Lubitz, Irit; Schmeidler, James; Godbold, James; Cai, Weijing; Uribarri, Jaime; Vlassara, Helen; Silverman, Jeremy M; Beeri, Michal Schnaider

    2014-09-01

    We recently reported that serum methylglyoxal (sMG) is associated with a faster rate of decline in a global measure of cognition in the very elderly. We here provide for the first time evidence in which high levels of dietary AGE (dAGE) are associated with faster rate of decline in memory in 49 initially non-demented young elderly (p=0.012 in mixed regression models adjusting for sociodemographic and cardiovascular factors). Since modifying the levels of AGEs in the diet may be relatively easy, these preliminary results suggest a simple strategy to diminish cognitive compromise in the elderly and warrant further investigation.

  13. Comparing soil moisture memory in satellite observations and models

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan; Loew, Alexander

    2013-04-01

    A major obstacle to a correct parametrization of soil processes in large scale global land surface models is the lack of long term soil moisture observations for large parts of the globe. Currently, a compilation of soil moisture data derived from a range of satellites is released by the ESA Climate Change Initiative (ECV_SM). Comprising the period from 1978 until 2010, it provides the opportunity to compute climatological relevant statistics on a quasi-global scale and to compare these to the output of climate models. Our study is focused on the investigation of soil moisture memory in satellite observations and models. As a proxy for memory we compute the autocorrelation length (ACL) of the available satellite data and the uppermost soil layer of the models. Additional to the ECV_SM data, AMSR-E soil moisture is used as observational estimate. Simulated soil moisture fields are taken from ERA-Interim reanalysis and generated with the land surface model JSBACH, which was driven with quasi-observational meteorological forcing data. The satellite data show ACLs between one week and one month for the greater part of the land surface while the models simulate a longer memory of up to two months. Some pattern are similar in models and observations, e.g. a longer memory in the Sahel Zone and the Arabian Peninsula, but the models are not able to reproduce regions with a very short ACL of just a few days. If the long term seasonality is subtracted from the data the memory is strongly shortened, indicating the importance of seasonal variations for the memory in most regions. Furthermore, we analyze the change of soil moisture memory in the different soil layers of the models to investigate to which extent the surface soil moisture includes information about the whole soil column. A first analysis reveals that the ACL is increasing for deeper layers. However, its increase is stronger in the soil moisture anomaly than in its absolute values and the first even exceeds the

  14. Selective, retrieval-independent disruption of methamphetamine-associated memory by actin depolymerization.

    PubMed

    Young, Erica J; Aceti, Massimiliano; Griggs, Erica M; Fuchs, Rita A; Zigmond, Zachary; Rumbaugh, Gavin; Miller, Courtney A

    2014-01-15

    Memories associated with drugs of abuse, such as methamphetamine (METH), increase relapse vulnerability to substance use disorder. There is a growing consensus that memory is supported by structural and functional plasticity driven by F-actin polymerization in postsynaptic dendritic spines at excitatory synapses. However, the mechanisms responsible for the long-term maintenance of memories, after consolidation has occurred, are largely unknown. Conditioned place preference (n = 112) and context-induced reinstatement of self-administration (n = 19) were used to assess the role of F-actin polymerization and myosin II, a molecular motor that drives memory-promoting dendritic spine actin polymerization, in the maintenance of METH-associated memories and related structural plasticity. Memories formed through association with METH but not associations with foot shock or food reward were disrupted by a highly-specific actin cycling inhibitor when infused into the amygdala during the postconsolidation maintenance phase. This selective effect of depolymerization on METH-associated memory was immediate, persistent, and did not depend upon retrieval or strength of the association. Inhibition of non-muscle myosin II also resulted in a disruption of METH-associated memory. Thus, drug-associated memories seem to be actively maintained by a unique form of cycling F-actin driven by myosin II. This finding provides a potential therapeutic approach for the selective treatment of unwanted memories associated with psychiatric disorders that is both selective and does not rely on retrieval of the memory. The results further suggest that memory maintenance depends upon the preservation of polymerized actin. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Glucocorticoid involvement in memory formation in a rat model for traumatic memory.

    PubMed

    Cordero, M Isabel; Kruyt, Nyika D; Merino, J Joaquin; Sandi, Carmen

    2002-02-01

    Contextual fear conditioning under training conditions involving high stressor intensities has been proposed as an animal model for traumatic memories. The strength of memory for this task has been related to the intensity of the conditioning stressor and post-training corticosterone values. However, administration of a glucocorticoid receptor (GR) antagonist only attenuated memory for this task in rats conditioned at a moderate shock intensity (0.4 mA), but failed to influence conditioning in rats trained at a high shock intensity (1 mA). Here, we further questioned whether interfering with glucocorticoid action at the time of training might be effective in influencing contextual fear conditioning in rats trained under different shock intensities. Rats were subcutaneously injected with the glucocorticoid synthesis inhibitor metyrapone (50, 100 mg/kg) 90 min before being trained in the contextual fear conditioning task, at either 0.4 or 1 mA shock intensities. The results showed that metyrapone, in a dose-dependent manner: (i) attenuated long-term expression of contextual fear conditioning, both in 0.4- and 1 mA-trained rats; and (ii) efficiently prevented increased plasma corticosterone concentration. In addition to further supporting a facilitating role of glucocorticoids in memory consolidation, these findings suggest a critical involvement of these hormones in the formation of traumatic memories.

  16. The Effects of Aging and IQ on Item and Associative Memory

    PubMed Central

    Ratcliff, Roger; Thapar, Anjali; McKoon, Gail

    2011-01-01

    The effects of aging and IQ on performance were examined in four memory tasks: item recognition, associative recognition, cued recall, and free recall. For item and associative recognition, accuracy and the response time distributions for correct and error responses were explained by Ratcliff’s (1978) diffusion model, at the level of individual participants. The values of the components of processing identified by the model for the recognition tasks, as well as accuracy for cued and free recall, were compared across levels of IQ ranging from 85 to 140 and age (college-age, 60-74 year olds, and 75-90 year olds). IQ had large effects on the quality of the evidence from memory on which decisions were based in the recognition tasks and accuracy in the recall tasks, except for the oldest participants for whom some of the measures were near floor values. Drift rates in the recognition tasks, accuracy in the recall tasks, and IQ all correlated strongly with each other. However, there was a small decline in drift rates for item recognition and a large decline for associative recognition and accuracy in cued recall (about 70 percent). In contrast, there were large age effects on boundary separation and nondecision time (which correlated across tasks), but little effect of IQ. The implications of these results for single- and dual- process models of item recognition are discussed and it is concluded that models that deal with both RTs and accuracy are subject to many more constraints than models that deal with only one of these measures. Overall, the results of the study show a complicated but interpretable pattern of interactions that present important targets for response time and memory models. PMID:21707207

  17. MNESIS: towards the integration of current multisystem models of memory

    PubMed Central

    Eustache, Francis; Desgranges, Béatrice

    2008-01-01

    After a brief description of the “diseases of memory” which have made the greatest contribution to theoretical developments in the past years, we turn our attention to the most important concepts to have arisen from the dissociations brought to light in different neuropsychological syndromes. This is followed by a critical review of the tasks currently used to assess each memory system. We then describe the monohierarchical model proposed by E. Tulving (1995), together with other recent concepts, notably Baddeley’s model of working memory with its latest component, the episodic buffer. Lastly, we attempt to reconcile these models with several other theoretical propositions, which we have linked together in a macromodel - the Memory NEo-Structural Inter-Systemic model (MNESIS). PMID:18311523

  18. Effects of homeostatic constraints on associative memory storage and synaptic connectivity of cortical circuits

    PubMed Central

    Chapeton, Julio; Gala, Rohan; Stepanyants, Armen

    2015-01-01

    The impact of learning and long-term memory storage on synaptic connectivity is not completely understood. In this study, we examine the effects of associative learning on synaptic connectivity in adult cortical circuits by hypothesizing that these circuits function in a steady-state, in which the memory capacity of a circuit is maximal and learning must be accompanied by forgetting. Steady-state circuits should be characterized by unique connectivity features. To uncover such features we developed a biologically constrained, exactly solvable model of associative memory storage. The model is applicable to networks of multiple excitatory and inhibitory neuron classes and can account for homeostatic constraints on the number and the overall weight of functional connections received by each neuron. The results show that in spite of a large number of neuron classes, functional connections between potentially connected cells are realized with less than 50% probability if the presynaptic cell is excitatory and generally a much greater probability if it is inhibitory. We also find that constraining the overall weight of presynaptic connections leads to Gaussian connection weight distributions that are truncated at zero. In contrast, constraining the total number of functional presynaptic connections leads to non-Gaussian distributions, in which weak connections are absent. These theoretical predictions are compared with a large dataset of published experimental studies reporting amplitudes of unitary postsynaptic potentials and probabilities of connections between various classes of excitatory and inhibitory neurons in the cerebellum, neocortex, and hippocampus. PMID:26150784

  19. Emotional trait and memory associates of sleep timing and quality.

    PubMed

    Pace-Schott, Edward F; Rubin, Zoe S; Tracy, Lauren E; Spencer, Rebecca M C; Orr, Scott P; Verga, Patrick W

    2015-10-30

    Poor ability to remember the extinction of conditioned fear, elevated trait anxiety, and delayed or disrupted nocturnal sleep are reported in anxiety disorders. The current study examines the interrelationship of these factors in healthy young-adult males. Skin-conductance response was conditioned to two differently colored lamps. One color but not the other was then extinguished. After varying delays, both colors were presented to determine extinction recall and generalization. Questionnaires measured sleep quality, morningness-eveningness, neuroticism and trait anxiety. A subset produced a mean 7.0 nights of actigraphy and sleep diaries. Median split of mean sleep midpoint defined early- and late-"sleep timers". Extinction was more rapidly learned in the morning than evening only in early timers who also better generalized extinction recall. Extinction recall was greater with higher sleep efficiency. Sleep efficiency and morningness were negatively associated with neuroticism and anxiety. However, neuroticism and anxiety did not predict extinction learning, recall or generalization. Therefore, neuroticism/anxiety and deficient fear extinction, although both associated with poor quality and late timing of sleep, are not directly associated with each other. Elevated trait anxiety, in addition to predisposing directly to anxiety disorders, may thus also indirectly promote such disorders by impairing sleep and, consequently, extinction memory. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Emotional trait and memory associates of sleep timing and quality

    PubMed Central

    Pace-Schott, Edward F.; Rubin, Zoe S.; Tracy, Lauren E.; Spencer, Rebecca M.C.; Orr, Scott P.; Verga, Patrick W.

    2015-01-01

    Poor ability to remember the extinction of conditioned fear, elevated trait anxiety, and delayed or disrupted nocturnal sleep are reported in anxiety disorders. The current study examines the interrelationship of these factors in healthy young-adult males. Skin- conductance response was conditioned to two differently colored lamps. One color but not the other was then extinguished. After varying delays, both colors were presented to determine extinction recall and generalization. Questionnaires measured sleep quality, morningness - eveningness, neuroticism and trait anxiety. A subset produced a mean 7.0 nights of actigraphy and sleep diaries. Median split of mean sleep midpoint defined early-and late-”sleep timers”. Extinction was more rapidly learned in the morning than evening only in early-timers, who also better generalized extinction recall. Extinction recall was greater with higher sleep efficiency. Sleep efficiency and morningness were negatively associated with neuroticism and anxiety. However, neuroticism and anxiety did not predict extinction learning, recall or generalization. Therefore, neuroticism/anxiety and deficient fear extinction, although both associated with poor quality and late timing of sleep, are not directly associated with each other. Elevated trait anxiety, in addition to predisposing directly to anxiety disorders, may thus also indirectly promote such disorders by impairing sleep and, consequently, extinction memory. PMID:26257092

  1. Neural associative memories for the integration of language, vision and action in an autonomous agent.

    PubMed

    Markert, H; Kaufmann, U; Kara Kayikci, Z; Palm, G

    2009-03-01

    Language understanding is a long-standing problem in computer science. However, the human brain is capable of processing complex languages with seemingly no difficulties. This paper shows a model for language understanding using biologically plausible neural networks composed of associative memories. The model is able to deal with ambiguities on the single word and grammatical level. The language system is embedded into a robot in order to demonstrate the correct semantical understanding of the input sentences by letting the robot perform corresponding actions. For that purpose, a simple neural action planning system has been combined with neural networks for visual object recognition and visual attention control mechanisms.

  2. A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.

    PubMed

    Fiebig, Florian; Lansner, Anders

    2017-01-04

    A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying

  3. A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation

    PubMed Central

    Fiebig, Florian

    2017-01-01

    A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. SIGNIFICANCE STATEMENT Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and

  4. Familiarity influences on direct and indirect associative memory for objects in scenes.

    PubMed

    Ngo, Chi T; Lloyd, Marianne E

    2016-11-21

    Remembering arbitrary associations, such as unrelated word pairs or object-background pairs, appears to depend on recollection. However, for cases in which the components of an association share pre-existing semantic relations, can familiarity support associative recognition? In two experiments with congruent object-background pairings, we found that participants were successful at direct and indirect associative recognition in both 1000 ms time restriction (speeded) and unlimited response time (non-speeded) test conditions. Because dual-process theory postulates that familiarity is less impacted by speeded responses, relative to recollection, these findings suggest that congruent object-background associations may not necessitate recollection when an arbitrary link is not constructed at encoding. Experiment 3 compared direct associative memory for congruent and incongruent object-background pairs in speeded and non-speeded test conditions. We found that participants in the non-speeded condition performed comparably with congruent and incongruent pairs, whereas those in the speeded condition performed significantly worse on the incongruent pairs than on the congruent pairs. Together, these findings suggest a differential role of familiarity and recollection depending on the types of associations. Implications for dual-process recognition memory models and levels of unitization framework are discussed.

  5. Effect of Selective Inhibition of Reactivated Nicotine-Associated Memories With Propranolol on Nicotine Craving.

    PubMed

    Xue, Yan-Xue; Deng, Jia-Hui; Chen, Ya-Yun; Zhang, Li-Bo; Wu, Ping; Huang, Geng-Di; Luo, Yi-Xiao; Bao, Yan-Ping; Wang, Yu-Mei; Shaham, Yavin; Shi, Jie; Lu, Lin

    2017-03-01

    A relapse into nicotine addiction during abstinence often occurs after the reactivation of nicotine reward memories, either by acute exposure to nicotine (a smoking episode) or by smoking-associated conditioned stimuli (CS). Preclinical studies suggest that drug reward memories can undergo memory reconsolidation after being reactivated, during which they can be weakened or erased by pharmacological or behavioral manipulations. However, translational clinical studies using CS-induced memory retrieval-reconsolidation procedures to decrease drug craving reported inconsistent results. To develop and test an unconditioned stimulus (UCS)-induced retrieval-reconsolidation procedure to decrease nicotine craving among people who smoke. A translational rat study and human study in an academic outpatient medical center among 96 male smokers (aged 18- 45 years) to determine the association of propranolol administration within the time window of memory reconsolidation (after retrieval of the nicotine-associated memories by nicotine UCS exposure) with relapse to nicotine-conditioned place preference (CPP) and operant nicotine seeking in rats, and measures of preference to nicotine-associated CS and nicotine craving among people who smoke. The study rats were injected noncontingently with the UCS (nicotine 0.15 mg/kg, subcutaneous) in their home cage, and the human study participants administered a dose of propranolol (40 mg, per os; Zhongnuo Pharma). Nicotine CPP and operant nicotine seeking in rats, and preference and craving ratings for newly learned and preexisting real-life nicotine-associated CS among people who smoke. Sixty-nine male smokers completed the experiment and were included for statistical analysis: 24 in the group that received placebo plus 1 hour plus UCS, 23 who received propranolol plus 1 hour plus UCS, and 22 who received UCS plus 6 hours plus propranolol. In rat relapse models, propranolol injections administered immediately after nicotine UCS

  6. Methamphetamine-Associated Memory is Regulated by a Writer and an Eraser of Permissive Histone Methylation

    PubMed Central

    Griggs, Erica M.; Mikaelsson, Mikael A.; Takács, Irma F.; Young, Erica J.; Rumbaugh, Gavin; Miller, Courtney A.

    2013-01-01

    Background Memories associated with drugs of abuse, such as methamphetamine (METH), increase relapse vulnerability to substance use disorder by triggering craving. The nucleus accumbens (NAc) is essential to these drug-associated memories, but underlying mechanisms are poorly understood. Posttranslational chromatin modifications, such as histone methylation, modulate gene transcription, thus we investigated the role of the associated epigenetic modifiers in METH-associated memory. Methods Conditioned place preference was used to assess the epigenetic landscape in the NAc supporting METH-associated memory (n=79). The impact of histone methylation (H3K4me2/3) on the formation and expression of METH-associated memory was determined by focal, intra NAc knockdown (KD) of a writer, the methyltransferase MLL1 (n=26), and an eraser, the histone demethylase KDM5C (n=38), of H3K4me2/3. Results A survey of chromatin modifications in the NAc of animals forming a METH-associated memory revealed the global induction of several modifications associated with active transcription. This correlated with a pattern of gene activation, as revealed by microarray analysis, including upregulation of Oxtr and Fos, whose promoters also had increased H3K4me3. KD of Mll1 reduced H3K4me3, Fos and Oxtr levels and disrupted METH-associated memory. KD of Kdm5c resulted in hypermethylation of H3K4 and prevented the expression of METH-associated memory. Conclusions The development and expression of METH-associated memory are supported by regulation of H3K4me2/3 levels by MLL1 and KDM5C, respectively, in the NAc. These data indicate that permissive histone methylation, and the associated epigenetic writers and erasers, represent potential targets for the treatment of substance abuse relapse, a psychiatric condition perpetuated by unwanted associative memories. PMID:24183790

  7. "Schema Abstraction" in a Multiple-Trace Memory Model.

    ERIC Educational Resources Information Center

    Psychological Review, 1986

    1986-01-01

    A simulation model of episodic memory, MINERVA Z, is applied to the learning of concepts, as represented by the schema-abstraction task. The model successfully predicts basic findings from the scheme-abstraction literature, including some that have been cited as evidence against exemplary theories of concepts. (Author/LMO)

  8. False Memories Are Not Surprising: The Subjective Experience of an Associative Memory Illusion

    ERIC Educational Resources Information Center

    Karpicke, Jeffrey D.; McCabe, David P.; Roediger, Henry L., III

    2008-01-01

    Four experiments examined subjective experience during retrieval in the DRM false memory paradigm [Deese, J. (1959). "On the prediction of occurrence of particular verbal intrusions in immediate recall." "Journal of Experimental Psychology," 58, 17-22; Roediger, H. L., & McDermott, K. B. (1995). "Creating false memories: Remembering words not…

  9. False Memories Are Not Surprising: The Subjective Experience of an Associative Memory Illusion

    ERIC Educational Resources Information Center

    Karpicke, Jeffrey D.; McCabe, David P.; Roediger, Henry L., III

    2008-01-01

    Four experiments examined subjective experience during retrieval in the DRM false memory paradigm [Deese, J. (1959). "On the prediction of occurrence of particular verbal intrusions in immediate recall." "Journal of Experimental Psychology," 58, 17-22; Roediger, H. L., & McDermott, K. B. (1995). "Creating false memories: Remembering words not…

  10. Preisach modeling of piezoceramic and shape memory alloy hysteresis

    NASA Astrophysics Data System (ADS)

    Hughes, Declan C.; Wen, John T.

    1996-05-01

    Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit significant hysteresis, especially when driven with large input signals. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys, we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.

  11. Preisach modeling of piezoceramic and shape memory alloy hysteresis

    NASA Astrophysics Data System (ADS)

    Hughes, Declan; Wen, John T.

    1997-06-01

    Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit hysteresis, and the larger the input signal the larger the effect. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys (SMAs), we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.

  12. Prevalence of Impaired Memory in Hospitalized Adults and Associations with In-Hospital Sleep Loss

    PubMed Central

    Calev, Hila; Spampinato, Lisa M; Press, Valerie G; Meltzer, David O; Arora, Vineet M

    2015-01-01

    Background Effective inpatient teaching requires intact patient memory, but studies suggest hospitalized adults may have memory deficits. Sleep loss among inpatients could contribute to memory impairment. Objective To assess memory in older hospitalized adults, and to test the association between sleep quantity, sleep quality and memory, in order to identify a possible contributor to memory deficits in these patients. Design Prospective cohort study Setting General medicine and hematology/oncology inpatient wards Patients 59 hospitalized adults at least 50 years of age with no diagnosed sleep disorder. Measurements Immediate memory and memory after a 24-hour delay were assessed using a word recall and word recognition task from the University of Southern California Repeatable Episodic Memory Test (USC-REMT). A vignette-based memory task was piloted as an alternative test more closely resembling discharge instructions. Sleep duration and efficiency overnight in the hospital were measured using actigraphy. Results Mean immediate recall was 3.8 words out of 15 (SD=2.1). Forty-nine percent of subjects had poor memory, defined as immediate recall score of 3 or lower. Median immediate recognition was 11 words out of 15 (IQR=9, 13). Median delayed recall score was 1 word and median delayed recognition was 10 words (IQR= 8–12). In-hospital sleep duration and efficiency were not significantly associated with memory. The medical vignette score was correlated with immediate recall (r=0.49, p<0.01) Conclusions About half of inpatients studied had poor memory while in the hospital, signaling that hospitalization might not be an ideal teachable moment. In-hospital sleep was not associated with memory scores. PMID:25872763

  13. Integration of Perceptual and Mnemonic Dysfunction: Sensory Auras Are Associated with Left Hemispheric Memory Impairment.

    PubMed

    Weinand, Martin E.; Labiner, David M.; Ahern, Geoffrey L.

    2001-10-01

    Memory function during the intracarotid amobarbital test was studied to test the hypothesis that left hemisphere memory impairment is associated with sensory auras. In a series of 37 patients undergoing preoperative evaluation for epilepsy surgery, the quantitative memory scores during amobarbital inactivation of right and left hemisphere were analyzed for correlation with habitual epileptic auras classified as either (a) experiential, forced emotion, or whole-body dysphoria or (b) sensory hallucinations and/or illusions or localized dysesthesias. The left hemispheric memory score impairment was significantly worse in association with auras classified as sensory hallucinations and/or illusions or localized dysesthesias compared with auras classified as experiential, forced emotion, or whole-body dysphoria (P < 0.05). This finding may assist in predicting left-sided hemispheric memory dysfunction in patients with seizures beginning as auras involving sensory material. The results suggest an integration of perceptual and mnemonic dysfunction in which sensory auras are associated with left hemispheric memory impairment.

  14. Induction of Associative Olfactory Memory by Targeted Activation of Single Olfactory Neurons in Drosophila Larvae

    PubMed Central

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-01-01

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by ChR2-mediated optical activation of a specific class of olfactory neurons. We show that targeted activation of the olfactory receptor and the octopaminergic neurons is indeed sufficient for the formation of associative olfactory memory in the larval brain. We also show that targeted stimulation of only a single type of olfactory receptor neurons is sufficient to induce olfactory memory that is indistinguishable from natural memory induced by the activation of multiple olfactory receptor neurons. PMID:24762789

  15. Colored noise and memory effects on formal spiking neuron models.

    PubMed

    da Silva, L A; Vilela, R D

    2015-06-01

    Simplified neuronal models capture the essence of the electrical activity of a generic neuron, besides being more interesting from the computational point of view when compared to higher-dimensional models such as the Hodgkin-Huxley one. In this work, we propose a generalized resonate-and-fire model described by a generalized Langevin equation that takes into account memory effects and colored noise. We perform a comprehensive numerical analysis to study the dynamics and the point process statistics of the proposed model, highlighting interesting new features such as (i) nonmonotonic behavior (emergence of peak structures, enhanced by the choice of colored noise characteristic time scale) of the coefficient of variation (CV) as a function of memory characteristic time scale, (ii) colored noise-induced shift in the CV, and (iii) emergence and suppression of multimodality in the interspike interval (ISI) distribution due to memory-induced subthreshold oscillations. Moreover, in the noise-induced spike regime, we study how memory and colored noise affect the coherence resonance (CR) phenomenon. We found that for sufficiently long memory, not only is CR suppressed but also the minimum of the CV-versus-noise intensity curve that characterizes the presence of CR may be replaced by a maximum. The aforementioned features allow to interpret the interplay between memory and colored noise as an effective control mechanism to neuronal variability. Since both variability and nontrivial temporal patterns in the ISI distribution are ubiquitous in biological cells, we hope the present model can be useful in modeling real aspects of neurons.

  16. Colored noise and memory effects on formal spiking neuron models

    NASA Astrophysics Data System (ADS)

    da Silva, L. A.; Vilela, R. D.

    2015-06-01

    Simplified neuronal models capture the essence of the electrical activity of a generic neuron, besides being more interesting from the computational point of view when compared to higher-dimensional models such as the Hodgkin-Huxley one. In this work, we propose a generalized resonate-and-fire model described by a generalized Langevin equation that takes into account memory effects and colored noise. We perform a comprehensive numerical analysis to study the dynamics and the point process statistics of the proposed model, highlighting interesting new features such as (i) nonmonotonic behavior (emergence of peak structures, enhanced by the choice of colored noise characteristic time scale) of the coefficient of variation (CV) as a function of memory characteristic time scale, (ii) colored noise-induced shift in the CV, and (iii) emergence and suppression of multimodality in the interspike interval (ISI) distribution due to memory-induced subthreshold oscillations. Moreover, in the noise-induced spike regime, we study how memory and colored noise affect the coherence resonance (CR) phenomenon. We found that for sufficiently long memory, not only is CR suppressed but also the minimum of the CV-versus-noise intensity curve that characterizes the presence of CR may be replaced by a maximum. The aforementioned features allow to interpret the interplay between memory and colored noise as an effective control mechanism to neuronal variability. Since both variability and nontrivial temporal patterns in the ISI distribution are ubiquitous in biological cells, we hope the present model can be useful in modeling real aspects of neurons.

  17. Hippocampus Is Required for Paired Associate Memory with Neither Delay Nor Trial Uniqueness

    ERIC Educational Resources Information Center

    Yoon, Jinah; Seo, Yeran; Kim, Jangjin; Lee, Inah

    2012-01-01

    Cued retrieval of memory is typically examined with delay when testing hippocampal functions, as in delayed matching-to-sample tasks. Equally emphasized in the literature, on the other hand, is the hippocampal involvement in making arbitrary associations. Paired associate memory tasks are widely used for examining this function. However, the two…

  18. The Relation between Navigation Strategy and Associative Memory: An Individual Differences Approach

    ERIC Educational Resources Information Center

    Ngo, Chi T.; Weisberg, Steven M.; Newcombe, Nora S.; Olson, Ingrid R.

    2016-01-01

    Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent…

  19. Hippocampus Is Required for Paired Associate Memory with Neither Delay Nor Trial Uniqueness

    ERIC Educational Resources Information Center

    Yoon, Jinah; Seo, Yeran; Kim, Jangjin; Lee, Inah

    2012-01-01

    Cued retrieval of memory is typically examined with delay when testing hippocampal functions, as in delayed matching-to-sample tasks. Equally emphasized in the literature, on the other hand, is the hippocampal involvement in making arbitrary associations. Paired associate memory tasks are widely used for examining this function. However, the two…

  20. The Relation between Navigation Strategy and Associative Memory: An Individual Differences Approach

    ERIC Educational Resources Information Center

    Ngo, Chi T.; Weisberg, Steven M.; Newcombe, Nora S.; Olson, Ingrid R.

    2016-01-01

    Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent…

  1. Aging selectively impairs recollection in recognition memory for pictures: Evidence from modeling and ROC curves

    PubMed Central

    Howard, Marc W.; Bessette-Symons, Brandy; Zhang, Yaofei; Hoyer, William J.

    2006-01-01

    Younger and older adults were tested on recognition memory for pictures. The Yonelinas high threshold (YHT) model, a formal implementation of two-process theory, fit the response distribution data of both younger and older adults significantly better than a normal unequal variance signal detection model. Consistent with this finding, non-linear zROC curves were obtained for both groups. Estimates of recollection from the YHT model were significantly higher for younger than older adults. This deficit was not a consequence of a general decline in memory; older adults showed comparable overall accuracy and in fact a non-significant increase in their familiarity scores. Implications of these results for theories of recognition memory and the mnemonic deficit associated with aging are discussed. PMID:16594795

  2. A new constant memory recursion for hidden Markov models.

    PubMed

    Bartolucci, Francesco; Pandolfi, Silvia

    2014-02-01

    We develop the recursion for hidden Markov (HM) models proposed by Bartolucci and Besag (2002), and we show how it may be used to implement an estimation algorithm for these models that requires an amount of memory not depending on the length of the observed series of data. This recursion allows us to obtain the conditional distribution of the latent state at every occasion, given the previous state and the observed data. With respect to the estimation algorithm based on the well-known Baum-Welch recursions, which requires an amount of memory that increases with the sample size, the proposed algorithm also has the advantage of not requiring dummy renormalizations to avoid numerical problems. Moreover, it directly allows us to perform global decoding of the latent sequence of states, without the need of a Viterbi method and with a consistent reduction of the memory requirement with respect to the latter. The proposed approach is compared, in terms of computing time and memory requirement, with the algorithm based on the Baum-Welch recursions and with the so-called linear memory algorithm of Churbanov and Winters-Hilt. The comparison is also based on a series of simulations involving an HM model for continuous time-series data.

  3. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment.

    PubMed

    Pulvermüller, Friedemann; Garagnani, Max

    2014-08-01

    Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure

  4. The Association between Physical Activity During the Day and Long-Term Memory Stability

    PubMed Central

    Pontifex, Matthew B.; Gwizdala, Kathryn L.; Parks, Andrew C.; Pfeiffer, Karin A.; Fenn, Kimberly M.

    2016-01-01

    Despite positive associations between chronic physical activity and memory; we have little understanding of how best to incorporate physical activity during the day to facilitate the consolidation of information into memory, nor even how time spent physically active during the day relates to memory processes. The purpose of this investigation was to examine the relation between physical activity during the day and long-term memory. Ninety-two young adults learned a list of paired-associate items and were tested on the items after a 12-hour interval during which heart rate was recorded continuously. Although the percentage of time spent active during the day was unrelated to memory, two critical physical activity periods were identified as relating to the maintenance of long-term memory. Engaging in physical activity during the period 1 to 2-hours following the encoding of information was observed to be detrimental to the maintenance of information in long-term memory. In contrast, physical activity during the period 1-hour prior to memory retrieval was associated with superior memory performance, likely due to enhanced retrieval processing. These findings provide initial evidence to suggest that long-term memory may be enhanced by more carefully attending to the relative timing of physical activity incorporated during the day. PMID:27909312

  5. DNA Methylation Mediates the Discriminatory Power of Associative Long-Term Memory in Honeybees

    PubMed Central

    Biergans, Stephanie D.; Jones, Julia C.; Treiber, Nadine; Galizia, C. Giovanni; Szyszka, Paul

    2012-01-01

    Memory is created by several interlinked processes in the brain, some of which require long-term gene regulation. Epigenetic mechanisms are likely candidates for regulating memory-related genes. Among these, DNA methylation is known to be a long lasting genomic mark and may be involved in the establishment of long-term memory. Here we demonstrate that DNA methyltransferases, which induce and maintain DNA methylation, are involved in a particular aspect of associative long-term memory formation in honeybees, but are not required for short-term memory formation. While long-term memory strength itself was not affected by blocking DNA methyltransferases, odor specificity of the memory (memory discriminatory power) was. Conversely, perceptual discriminatory power was normal. These results suggest that different genetic pathways are involved in mediating the strength and discriminatory power of associative odor memories and provide, to our knowledge, the first indication that DNA methyltransferases are involved in stimulus-specific associative long-term memory formation. PMID:22724000

  6. DNA methylation mediates the discriminatory power of associative long-term memory in honeybees.

    PubMed

    Biergans, Stephanie D; Jones, Julia C; Treiber, Nadine; Galizia, C Giovanni; Szyszka, Paul

    2012-01-01

    Memory is created by several interlinked processes in the brain, some of which require long-term gene regulation. Epigenetic mechanisms are likely candidates for regulating memory-related genes. Among these, DNA methylation is known to be a long lasting genomic mark and may be involved in the establishment of long-term memory. Here we demonstrate that DNA methyltransferases, which induce and maintain DNA methylation, are involved in a particular aspect of associative long-term memory formation in honeybees, but are not required for short-term memory formation. While long-term memory strength itself was not affected by blocking DNA methyltransferases, odor specificity of the memory (memory discriminatory power) was. Conversely, perceptual discriminatory power was normal. These results suggest that different genetic pathways are involved in mediating the strength and discriminatory power of associative odor memories and provide, to our knowledge, the first indication that DNA methyltransferases are involved in stimulus-specific associative long-term memory formation.

  7. Massively parallel computation of lattice associative memory classifiers on multicore processors

    NASA Astrophysics Data System (ADS)

    Ritter, Gerhard X.; Schmalz, Mark S.; Hayden, Eric T.

    2011-09-01

    Over the past quarter century, concepts and theory derived from neural networks (NNs) have featured prominently in the literature of pattern recognition. Implementationally, classical NNs based on the linear inner product can present performance challenges due to the use of multiplication operations. In contrast, NNs having nonlinear kernels based on Lattice Associative Memories (LAM) theory tend to concentrate primarily on addition and maximum/minimum operations. More generally, the emergence of LAM-based NNs, with their superior information storage capacity, fast convergence and training due to relatively lower computational cost, as well as noise-tolerant classification has extended the capabilities of neural networks far beyond the limited applications potential of classical NNs. This paper explores theory and algorithmic approaches for the efficient computation of LAM-based neural networks, in particular lattice neural nets and dendritic lattice associative memories. Of particular interest are massively parallel architectures such as multicore CPUs and graphics processing units (GPUs). Originally developed for video gaming applications, GPUs hold the promise of high computational throughput without compromising numerical accuracy. Unfortunately, currently-available GPU architectures tend to have idiosyncratic memory hierarchies that can produce unacceptably high data movement latencies for relatively simple operations, unless careful design of theory and algorithms is employed. Advantageously, some GPUs (e.g., the Nvidia Fermi GPU) are optimized for efficient streaming computation (e.g., concurrent multiply and add operations). As a result, the linear or nonlinear inner product structures of NNs are inherently suited to multicore GPU computational capabilities. In this paper, the authors' recent research in lattice associative memories and their implementation on multicores is overviewed, with results that show utility for a wide variety of pattern

  8. Dehydroevodiamine·HCl enhances cognitive function in memory-impaired rat models

    PubMed Central

    Shin, Ki Young

    2017-01-01

    Progressive memory impairment such as that associated with depression, stroke, and Alzheimer's disease (AD) can interfere with daily life. In particular, AD, which is a progressive neurodegenerative disorder, prominently features a memory and learning impairment that is related to changes in acetylcholine and abnormal β-amyloid (Aβ) deposition in the brain. In the present study, we investigated the effects of dehydroevodiamine·HCl (DHED) on cognitive improvement and the related mechanism in memory-impaired rat models, namely, a scopolamine-induced amnesia model and a Aβ1-42-infused model. The cognitive effects of DHED were measured using a water maze test and a passive avoidance test in the memory-impaired rat models. The results demonstrate that DHED (10 mg/kg, p.o.) and Donepezil (1 mg/kg, p.o.) ameliorated the spatial memory impairment in the scopolamine-induced amnestic rats. Moreover, DHED significantly improved learning and memory in the Aβ1-42-infused rat model. Furthermore, the mechanism of these behavioral effects of DHED was investigated using a cell viability assay, reactive oxygen species (ROS) measurement, and intracellular calcium measurement in primary cortical neurons. DHED reduced neurotoxicity and the production of Aβ-induced ROS in primary cortical neurons. In addition, similar to the effect of MK801, DHED decreased intracellular calcium levels in primary cortical neurons. Our results suggest that DHED has strong protective effects against cognitive impairments through its antioxidant activity and inhibition of neurotoxicity and intracellular calcium. Thus, DHED may be an important therapeutic agent for memory-impaired symptoms. PMID:28066141

  9. The sensory timecourses associated with conscious visual item memory and source memory.

    PubMed

    Thakral, Preston P; Slotnick, Scott D

    2015-09-01

    Previous event-related potential (ERP) findings have suggested that during visual item and source memory, nonconscious and conscious sensory (occipital-temporal) activity onsets may be restricted to early (0-800 ms) and late (800-1600 ms) temporal epochs, respectively. In an ERP experiment, we tested this hypothesis by separately assessing whether the onset of conscious sensory activity was restricted to the late epoch during source (location) memory and item (shape) memory. We found that conscious sensory activity had a late (>800 ms) onset during source memory and an early (<200 ms) onset during item memory. In a follow-up fMRI experiment, conscious sensory activity was localized to BA17, BA18, and BA19. Of primary importance, the distinct source memory and item memory ERP onsets contradict the hypothesis that there is a fixed temporal boundary separating nonconscious and conscious processing during all forms of visual conscious retrieval. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Are Changes in Self-Rated Health Associated With Memory Decline in Older Adults?

    PubMed

    Bendayan, Rebecca; Piccinin, Andrea M; Hofer, Scott M; Muniz, Graciela

    2016-07-01

    The association between patterns of change in self-rated health (SRH) and memory trajectories in older adults was examined using a systematic approach. Data from the Health and Retirement Study ( n = 6,016) and the English Longitudinal Study of Ageing ( n = 734) were analyzed. Individuals were grouped into five categories according to their pattern of change in SRH over 8 years: stable excellent/very good/good, stable fair/poor, improvement, decline, and fluctuating pattern without a trend. Memory was measured using immediate and delayed recall tests. Kruskal-Wallis, chi-squares tests, and linear mixed models were used to examine the association. Different rates of decline in memory can be identified in the different patterns of change in SRH. Those who had a stable excellent/very good/good pattern had the slowest rate of decline. Our findings suggest that SRH status and patterns of change could be used as a marker of cognitive decline in prevention screening programs.

  11. Factors Associated with Word Memory Test Performance in Persons with Medically Documented Traumatic Brain Injury.

    PubMed

    Sherer, Mark; Davis, Lynne C; Sander, Angelle M; Nick, Todd G; Luo, Chunqiao; Pastorek, Nicholas; Hanks, Robin

    2015-01-01

    (1) To examine the rate of poor performance validity in a large, multicenter, prospectively accrued cohort of community dwelling persons with medically documented traumatic brain injury (TBI), (2) to identify factors associated with Word Memory Test (WMT) performance in persons with TBI. This was a prospective cohort, observational study of 491 persons with medically documented TBI. Participants were administered a battery of cognitive tests, questionnaires on emotional distress and post-concussive symptoms, and a performance validity test (WMT). Additional data were collected by interview and review of medical records. One hundred and seventeen participants showed poor performance validity using the standard cutoff. Variable cluster analysis was conducted as a data reduction strategy. Findings revealed that the 10 cognitive tests and questionnaires could be summarized as 4 indices of emotional distress, speed of cognitive processing, verbal memory, and verbal fluency. Regression models revealed that verbal memory, emotional distress, age, and injury severity (time to follow commands) made unique contribution to prediction of poor performance validity. Poor performance validity was common in a research sample of persons with medically documented TBI who were not evaluated in conjunction with litigation, compensation claims, or current report of symptoms. Poor performance validity was associated with poor performance on cognitive tests, greater emotional distress, lower injury severity, and greater age. Many participants expected to have residual deficits based on initial injury severity showed poor performance validity.

  12. Major Concerns Associated with Recovered Memories of Childhood Abuse.

    ERIC Educational Resources Information Center

    Spray, Kristina J.

    When accusations of child abuse result from false memories, all parties involved suffer. This paper examines some of the issues surrounding recovered memories of childhood abuse. The mechanisms that the mind may employ to deal with traumatic events, such as disassociation and repression, must be further explored through experimental research to…

  13. Lexical Association and False Memory for Words in Two Cultures

    ERIC Educational Resources Information Center

    Lee, Yuh-Shiow; Chiang, Wen-Chi; Hung, Hsu-Ching

    2008-01-01

    This study examined the relationship between language experience and false memory produced by the DRM paradigm. The word lists used in Stadler, et al. (Memory & Cognition, 27, 494-500, 1999) were first translated into Chinese. False recall and false recognition for critical non-presented targets were then tested on a group of Chinese users.…

  14. Lexical Association and False Memory for Words in Two Cultures

    ERIC Educational Resources Information Center

    Lee, Yuh-Shiow; Chiang, Wen-Chi; Hung, Hsu-Ching

    2008-01-01

    This study examined the relationship between language experience and false memory produced by the DRM paradigm. The word lists used in Stadler, et al. (Memory & Cognition, 27, 494-500, 1999) were first translated into Chinese. False recall and false recognition for critical non-presented targets were then tested on a group of Chinese users.…

  15. Variations in the stimulus salience of cocaine reward influences drug-associated contextual memory.

    PubMed

    Liddie, Shervin; Itzhak, Yossef

    2016-03-01

    Drugs of abuse act as reinforcers because they influence learning and memory processes resulting in long-term memory of drug reward. We have previously shown that mice conditioned by fixed daily dose of cocaine (Fix-C) or daily escalating doses of cocaine (Esc-C) resulted in short- and long-term persistence of drug memory, respectively, suggesting different mechanisms in acquisition of cocaine memory. The present study was undertaken to investigate the differential contribution of N-methyl-D-aspartate receptor (NMDAR) subunits in the formation of Fix-C and Esc-C memory in C57BL/6J mice. Training by Esc-C resulted in marked elevation in hippocampal expression of Grin2b mRNA and NR2B protein levels compared with training by Fix-C. The NR2B-containing NMDAR antagonist ifenprodil had similar attenuating effects on acquisition and reconsolidation of Fix-C and Esc-C memory. However, the NMDAR antagonist MK-801 had differential effects: (1) higher doses of MK-801 were required for post-retrieval disruption of reconsolidation of Esc-C memory than Fix-C memory; and (2) pre-retrieval MK-801 inhibited extinction of Fix-C memory but it had no effect on Esc-C memory. In addition, blockade of NMDAR downstream signaling pathways also showed differential regulation of Fix-C and Esc-C memory. Inhibition of neuronal nitric oxide synthase attenuated acquisition and disrupted reconsolidation of Fix-C but not Esc-C memory. In contrast, the mitogen-activating extracellular kinase inhibitor SL327 attenuated reconsolidation of Esc-C but not Fix-C memory. These results suggest that NMDAR downstream signaling molecules associated with consolidation and reconsolidation of cocaine-associated memory may vary upon changes in the salience of cocaine reward during conditioning.

  16. Word frequency influences on the list length effect and associative memory in young and older adults.

    PubMed

    Badham, Stephen P; Whitney, Cora; Sanghera, Sumeet; Maylor, Elizabeth A

    2017-07-01

    Many studies show that age deficits in memory are smaller for information supported by pre-experimental experience. Many studies also find dissociations in memory tasks between words that occur with high and low frequencies in language, but the literature is mixed regarding the extent of word frequency effects in normal ageing. We examined whether age deficits in episodic memory could be influenced by manipulations of word frequency. In Experiment 1, young and older adults studied short and long lists of high- and low-frequency words for free recall. The list length effect (the drop in proportion recalled for longer lists) was larger in young compared to older adults and for high- compared to low-frequency words. In Experiment 2, young and older adults completed item and associative recognition memory tests with high- and low-frequency words. Age deficits were greater for associative memory than for item memory, demonstrating an age-related associative deficit. High-frequency words led to better associative memory performance whilst low-frequency words resulted in better item memory performance. In neither experiment was there any evidence for age deficits to be smaller for high- relative to low-frequency words, suggesting that word frequency effects on memory operate independently from effects due to cognitive ageing.

  17. Distinct neuronal interactions in anterior inferotemporal areas of macaque monkeys during retrieval of object association memory.

    PubMed

    Hirabayashi, Toshiyuki; Tamura, Keita; Takeuchi, Daigo; Takeda, Masaki; Koyano, Kenji W; Miyashita, Yasushi

    2014-07-09

    In macaque monkeys, the anterior inferotemporal cortex, a region crucial for object memory processing, is composed of two adjacent, hierarchically distinct areas, TE and 36, for which different functional roles and neuronal responses in object memory tasks have been characterized. However, it remains unknown how the neuronal interactions differ between these areas during memory retrieval. Here, we conducted simultaneous recordings from multiple single-units in each of these areas while monkeys performed an object association memory task and examined the inter-area differences in neuronal interactions during the delay period. Although memory neurons showing sustained activity for the presented cue stimulus, cue-holding (CH) neurons, interacted with each other in both areas, only those neurons in area 36 interacted with another type of memory neurons coding for the to-be-recalled paired associate (pair-recall neurons) during memory retrieval. Furthermore, pairs of CH neurons in area TE showed functional coupling in response to each individual object during memory retention, whereas the same class of neuron pairs in area 36 exhibited a comparable strength of coupling in response to both associated objects. These results suggest predominant neuronal interactions in area 36 during the mnemonic processing, which may underlie the pivotal role of this brain area in both storage and retrieval of object association memory. Copyright © 2014 the authors 0270-6474/14/349377-12$15.00/0.

  18. Functional cross-hemispheric shift between object-place paired associate memory and spatial memory in the human hippocampus.

    PubMed

    Lee, Choong-Hee; Ryu, Jungwon; Lee, Sang-Hun; Kim, Hakjin; Lee, Inah

    2016-08-01

    The hippocampus plays critical roles in both object-based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object-based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object-place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object-cueing period) to searching for its paired-associate place (object-cued place recognition period). Furthermore, the efficient retrieval of object-place paired associate memory (object-cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  19. Functional cross‐hemispheric shift between object‐place paired associate memory and spatial memory in the human hippocampus

    PubMed Central

    Lee, Choong‐Hee; Ryu, Jungwon; Lee, Sang‐Hun; Kim, Hakjin

    2016-01-01

    ABSTRACT The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27009679

  20. Transitions between Short-Term and Long-Term Memory in Learning Meaningful Unrelated Paired Associates Using Computer Based Drills.

    ERIC Educational Resources Information Center

    Goldenberg, Tzvika Y.; Turnure, James E.

    1989-01-01

    Discussion of short-term and long-term memory in learning paired associates focuses on two microcomputer-based instructional design experiments with eleventh and twelfth graders that were modeled after traditional drill and practice routines. Research questions are presented, treatment conditions are explained, and additional research is…

  1. Metamnemonic Control Over the Discriminability of Memory Evidence: A Signal Detection Analysis of Warning Effects in the Associative List Paradigm

    ERIC Educational Resources Information Center

    Starns, Jeffrey J.; Lane, Sean M.; Alonzo, Jill D.; Roussel, Cristine C.

    2007-01-01

    According to signal detection theory (SDT), retrieval warnings may decrease false memory in the associative list paradigm either by inducing a conservative criterion shift or by decreasing the amount of evidence that critical theme words were studied. Fitting a SDT model to 12 existing datasets revealed suggestive evidence that warnings impact…

  2. Transitions between Short-Term and Long-Term Memory in Learning Meaningful Unrelated Paired Associates Using Computer Based Drills.

    ERIC Educational Resources Information Center

    Goldenberg, Tzvika Y.; Turnure, James E.

    1989-01-01

    Discussion of short-term and long-term memory in learning paired associates focuses on two microcomputer-based instructional design experiments with eleventh and twelfth graders that were modeled after traditional drill and practice routines. Research questions are presented, treatment conditions are explained, and additional research is…

  3. Subtle alterations in memory systems and normal visual attention in the GAERS model of absence epilepsy.

    PubMed

    Marques-Carneiro, J E; Faure, J-B; Barbelivien, A; Nehlig, A; Cassel, J-C

    2016-03-01

    Even if considered benign, absence epilepsy may alter memory and attention, sometimes subtly. Very little is known on behavior and cognitive functions in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model of absence epilepsy. We focused on different memory systems and sustained visual attention, using Non Epileptic Controls (NECs) and Wistars as controls. A battery of cognitive/behavioral tests was used. The functionality of reference, working, and procedural memory was assessed in the Morris water maze (MWM), 8-arm radial maze, T-maze and/or double-H maze. Sustained visual attention was evaluated in the 5-choice serial reaction time task. In the MWM, GAERS showed delayed learning and less efficient working memory. In the 8-arm radial maze and T-maze tests, working memory performance was normal in GAERS, although most GAERS preferred an egocentric strategy (based on proprioceptive/kinesthetic information) to solve the task, but could efficiently shift to an allocentric strategy (based on spatial cues) after protocol alteration. Procedural memory and visual attention were mostly unimpaired. Absence epilepsy has been associated with some learning problems in children. In GAERS, the differences in water maze performance (slower learning of the reference memory task and weak impairment of working memory) and in radial arm maze strategies suggest that cognitive alterations may be subtle, task-specific, and that normal performance can be a matter of strategy adaptation. Altogether, these results strengthen the "face validity" of the GAERS model: in humans with absence epilepsy, cognitive alterations are not easily detectable, which is compatible with subtle deficits. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Effects of levetiracetam, an antiepileptic drug, on memory impairments associated with aging and Alzheimer's disease in mice.

    PubMed

    Devi, Latha; Ohno, Masuo

    2013-05-01

    Emerging evidence suggests that elevated hippocampal activation may be important for disrupting cognitive functions in aged subjects as well as patients with Alzheimer's disease (AD). Therefore, reducing deleterious overactivity of the hippocampus may have therapeutic benefits. This study was designed to compare the effects of levetiracetam, an antiepileptic drug, on memory deficits associated with normal aging and AD in mouse models. Pretraining administration of levetiracetam ameliorated memory impairments of aged C57BL/6 mice (17-20months of age) in the contextual fear conditioning paradigm. Acute levetiracetam immediately after training was also efficacious in rescuing contextual memory decline in aged mice, whereas administration at a later posttraining interval (3h) had no effect. These results suggest that suppressing overexcitation with acute levetiracetam around the time of acquisition or early consolidation may be sufficient to reverse memory decline associated with aging. In contrast, pretraining administration of levetiracetam was not able to rescue memory deficits in 5XFAD transgenic mice harboring amyloid plaque pathologies at moderate (6-8months old) or massive (12-15months old) levels, differentiating between normal aging- and AD-related memory impairments in the responsiveness to acute levetiracetam treatment.

  5. Central Nervous Insulin Signaling in Sleep-Associated Memory Formation and Neuroendocrine Regulation

    PubMed Central

    Feld, Gordon B; Wilhem, Ines; Benedict, Christian; Rüdel, Benjamin; Klameth, Corinna; Born, Jan; Hallschmid, Manfred

    2016-01-01

    The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters and memory consolidation in 16 men and 16 women (aged 18–30 years), who learned a declarative word-pair task and a procedural finger sequence tapping task in the evening before intranasal insulin (160 IU) or placebo administration and 8 h of nocturnal sleep. On the subsequent evening, they learned interfering word-pairs and a new finger sequence before retrieving the original memories. Insulin increased growth hormone concentrations in the first night-half and EEG delta power during the second 90 min of non-rapid-eye-movement sleep. Insulin treatment impaired the acquisition of new contents in both the declarative and procedural memory systems on the next day, whereas retrieval of original memories was unchanged. Results indicate that sleep-associated memory consolidation is not a primary mediator of insulin's acute memory-improving effect, but that the peptide acts on mechanisms that diminish the subsequent encoding of novel information. Thus, by inhibiting processes of active forgetting during sleep, central nervous insulin might reduce the interfering influence of encoding new information. PMID:26448203

  6. Central Nervous Insulin Signaling in Sleep-Associated Memory Formation and Neuroendocrine Regulation.

    PubMed

    Feld, Gordon B; Wilhem, Ines; Benedict, Christian; Rüdel, Benjamin; Klameth, Corinna; Born, Jan; Hallschmid, Manfred

    2016-05-01

    The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters and memory consolidation in 16 men and 16 women (aged 18-30 years), who learned a declarative word-pair task and a procedural finger sequence tapping task in the evening before intranasal insulin (160 IU) or placebo administration and 8 h of nocturnal sleep. On the subsequent evening, they learned interfering word-pairs and a