Sample records for assumed functional form

  1. Automated generation of influence functions for planar crack problems

    NASA Technical Reports Server (NTRS)

    Sire, Robert A.; Harris, David O.; Eason, Ernest D.

    1989-01-01

    A numerical procedure for the generation of influence functions for Mode I planar problems is described. The resulting influence functions are in a form for convenient evaluation of stress-intensity factors for complex stress distributions. Crack surface displacements are obtained by a least-squares solution of the Williams eigenfunction expansion for displacements in a cracked body. Discrete values of the influence function, evaluated using the crack surface displacements, are curve fit using an assumed functional form. The assumed functional form includes appropriate limit-behavior terms for very deep and very shallow cracks. Continuous representation of the influence function provides a convenient means for evaluating stress-intensity factors for arbitrary stress distributions by numerical integration. The procedure is demonstrated for an edge-cracked strip and a radially cracked disk. Comparisons with available published results demonstrate the accuracy of the procedure.

  2. Effects of spatial grouping on the functional response of predators

    USGS Publications Warehouse

    Cosner, C.; DeAngelis, D.L.; Ault, J.S.; Olson, D.B.

    1999-01-01

    A unified mechanistic approach is given for the derivation of various forms of functional response in predator-prey models. The derivation is based on the principle-of-mass action but with the crucial refinement that the nature of the spatial distribution of predators and/or opportunities for predation are taken into account in an implicit way. If the predators are assumed to have a homogeneous spatial distribution, then the derived functional response is prey-dependent. If the predators are assumed to form a dense colony or school in a single (possibly moving) location, or if the region where predators can encounter prey is assumed to be of limited size, then the functional response depends on both predator and prey densities in a manner that reflects feeding interference between predators. Depending on the specific assumptions, the resulting functional response may be of Beddington-DeAngelis type, of Hassell-Varley type, or ratio-dependent.

  3. An Empirical Assessment of the Form of Utility Functions

    ERIC Educational Resources Information Center

    Kirby, Kris N.

    2011-01-01

    Utility functions, which relate subjective value to physical attributes of experience, are fundamental to most decision theories. Seven experiments were conducted to test predictions of the most widely assumed mathematical forms of utility (power, log, and negative exponential), and a function proposed by Rachlin (1992). For pairs of gambles for…

  4. Regularity Results for a Class of Functionals with Non-Standard Growth

    NASA Astrophysics Data System (ADS)

    Acerbi, Emilio; Mingione, Giuseppe

    We consider the integral functional under non-standard growth assumptions that we call p(x) type: namely, we assume that a relevant model case being the functional Under sharp assumptions on the continuous function p(x)>1 we prove regularity of minimizers. Energies exhibiting this growth appear in several models from mathematical physics.

  5. Modeling of turbulent supersonic H2-air combustion with an improved joint beta PDF

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.; Hassan, H. A.

    1991-01-01

    Attempts at modeling recent experiments of Cheng et al. indicated that discrepancies between theory and experiment can be a result of the form of assumed probability density function (PDF) and/or the turbulence model employed. Improvements in both the form of the assumed PDF and the turbulence model are presented. The results are again used to compare with measurements. Initial comparisons are encouraging.

  6. Bayesian shrinkage approach for a joint model of longitudinal and survival outcomes assuming different association structures.

    PubMed

    Andrinopoulou, Eleni-Rosalina; Rizopoulos, Dimitris

    2016-11-20

    The joint modeling of longitudinal and survival data has recently received much attention. Several extensions of the standard joint model that consists of one longitudinal and one survival outcome have been proposed including the use of different association structures between the longitudinal and the survival outcomes. However, in general, relatively little attention has been given to the selection of the most appropriate functional form to link the two outcomes. In common practice, it is assumed that the underlying value of the longitudinal outcome is associated with the survival outcome. However, it could be that different characteristics of the patients' longitudinal profiles influence the hazard. For example, not only the current value but also the slope or the area under the curve of the longitudinal outcome. The choice of which functional form to use is an important decision that needs to be investigated because it could influence the results. In this paper, we use a Bayesian shrinkage approach in order to determine the most appropriate functional forms. We propose a joint model that includes different association structures of different biomarkers and assume informative priors for the regression coefficients that correspond to the terms of the longitudinal process. Specifically, we assume Bayesian lasso, Bayesian ridge, Bayesian elastic net, and horseshoe. These methods are applied to a dataset consisting of patients with a chronic liver disease, where it is important to investigate which characteristics of the biomarkers have an influence on survival. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Teaching Evaluation Tools as Robust Ethical Codes

    ERIC Educational Resources Information Center

    Talanker, Sergei

    2018-01-01

    I argue that teaching evaluation tools (TETs) may function as ethical codes (ECs), and answer certain demands that ECs cannot sufficiently fulfill. In order to be viable, an EC related to the teaching profession must assume a different form, and such a form is already present in several of the contemporary TETs. The TET matrix form allows for…

  8. Systems Defense Games: Colonel Blotto, Command and Control

    DTIC Science & Technology

    1978-03-30

    problems.* 2. SYST ~~EAS ? FRAI.217- E AX,, 2Z1E C4AE:7T :~C~ At. n-person game in coalitional form is described by a chara•ý•,r- i.s•;. fzr..’icn v...be described es (1) €,: - I-7 S b P l. .’[:, j ,- , S I Consider the 3-person game with a characteristic function as follows* Shapley (1959). e *The... game . Specifically, assume that t& e same outcome function f(-,’) de- scribes thesituationatall n targets (battlefields), and further assume that f Is

  9. Modeling creep behavior of fiber composites

    NASA Technical Reports Server (NTRS)

    Chen, J. L.; Sun, C. T.

    1988-01-01

    A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.

  10. Interatomic potentials for Cd, Zn, and Hg from absorption spectra

    NASA Astrophysics Data System (ADS)

    Su, Ching-Hua; Liao, Pok-Kai; Huang, Yu; Liou, Shian-Shyang; Brebrick, R. F.

    1984-07-01

    The absorption coefficient has been measured over a 65 nm range in the red wing of the 213.8 nm line for Zn vapor at 1000 °C. It has also been measured in the blue wing and over a 60 nm range in the red wing of the 228.7 nm line for Cd vapor at five temperatures between 642 and 955 °C and over a 75 nm range in the red wing of the 253.7 nm line for Hg vapor at five temperatures between 460 and 860 °C. These data are analyzed in terms of the statistical theory of broadening. Oscillator strengths of 1.42±0.01 and 1.61±0.06 are obtained for, respectively, the Cd line and the Zn line. Pair potentials for both the ground and lowest excited state are also obtained in all three cases. For Cd this is done assuming no functional form and then assuming Lennard-Jones potentials. Both methods agree and give a ground state minimum of -47.5 meV at 0.482 nm separation and an excited state minimum of -1.06 eV at 0.410 nm. A functional form is required for the less extensive Zn data and the Lennard-Jones form leads to a range of possibilities including ground and excited state minima of -56 meV at 0.400 nm and -1.30 eV at 0.330 nm, respectively, which are in fair agreement with the theoretical calculations. For Hg the experiments indicate a single excited state and a ground state with a minimum of -55 meV. Assuming no functional form for the pair potentials, taking the excited state as doubly degenerate, and assuming the transition probability from the ground to excited state is one-sixth of the free atom value gives points along the ground and excited state potentials that join smoothly with other experimental results and agree well with the calculation of Baylis for the ground state.

  11. Parameterization of subgrid-scale stress by the velocity gradient tensor

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.; Novikov, E. A.

    1993-01-01

    The objective of this work is to construct and evaluate subgrid-scale models that depend on both the strain rate and the vorticity. This will be accomplished by first assuming that the subgrid-scale stress is a function of the strain and rotation rate tensors. Extensions of the Caley-Hamilton theorem can then be used to write the assumed functional dependence explicitly in the form of a tensor polynomial involving products of the strain and rotation rates. Finally, use of this explicit expression as a subgrid-scale model will be evaluated using direct numerical simulation data for homogeneous, isotropic turbulence.

  12. Distribution of Steps with Finite-Range Interactions: Analytic Approximations and Numerical Results

    NASA Astrophysics Data System (ADS)

    GonzáLez, Diego Luis; Jaramillo, Diego Felipe; TéLlez, Gabriel; Einstein, T. L.

    2013-03-01

    While most Monte Carlo simulations assume only nearest-neighbor steps interact elastically, most analytic frameworks (especially the generalized Wigner distribution) posit that each step elastically repels all others. In addition to the elastic repulsions, we allow for possible surface-state-mediated interactions. We investigate analytically and numerically how next-nearest neighbor (NNN) interactions and, more generally, interactions out to q'th nearest neighbor alter the form of the terrace-width distribution and of pair correlation functions (i.e. the sum over n'th neighbor distribution functions, which we investigated recently.[2] For physically plausible interactions, we find modest changes when NNN interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  13. Models of subjective response to in-flight motion data

    NASA Technical Reports Server (NTRS)

    Rudrapatna, A. N.; Jacobson, I. D.

    1973-01-01

    Mathematical relationships between subjective comfort and environmental variables in an air transportation system are investigated. As a first step in model building, only the motion variables are incorporated and sensitivities are obtained using stepwise multiple regression analysis. The data for these models have been collected from commercial passenger flights. Two models are considered. In the first, subjective comfort is assumed to depend on rms values of the six-degrees-of-freedom accelerations. The second assumes a Rustenburg type human response function in obtaining frequency weighted rms accelerations, which are used in a linear model. The form of the human response function is examined and the results yield a human response weighting function for different degrees of freedom.

  14. Well behaved anisotropic compact star models in general relativity

    NASA Astrophysics Data System (ADS)

    Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.

    2016-11-01

    Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).

  15. New analytical solutions for chemical evolution models: characterizing the population of star-forming and passive galaxies

    NASA Astrophysics Data System (ADS)

    Spitoni, E.; Vincenzo, F.; Matteucci, F.

    2017-03-01

    Context. Analytical models of chemical evolution, including inflow and outflow of gas, are important tools for studying how the metal content in galaxies evolves as a function of time. Aims: We present new analytical solutions for the evolution of the gas mass, total mass, and metallicity of a galactic system when a decaying exponential infall rate of gas and galactic winds are assumed. We apply our model to characterize a sample of local star-forming and passive galaxies from the Sloan Digital Sky Survey data, with the aim of reproducing their observed mass-metallicity relation. Methods: We derived how the two populations of star-forming and passive galaxies differ in their particular distribution of ages, formation timescales, infall masses, and mass loading factors. Results: We find that the local passive galaxies are, on average, older and assembled on shorter typical timescales than the local star-forming galaxies; on the other hand, the star-forming galaxies with higher masses generally show older ages and longer typical formation timescales compared than star-forming galaxies with lower masses. The local star-forming galaxies experience stronger galactic winds than the passive galaxy population. Exploring the effect of assuming different initial mass functions in our model, we show that to reproduce the observed mass-metallicity relation, stronger winds are requested if the initial mass function is top-heavy. Finally, our analytical models predict the assumed sample of local galaxies to lie on a tight surface in the 3D space defined by stellar metallicity, star formation rate, and stellar mass, in agreement with the well-known fundamental relation from adopting gas-phase metallicity. Conclusions: By using a new analytical model of chemical evolution, we characterize an ensemble of SDSS galaxies in terms of their infall timescales, infall masses, and mass loading factors. Local passive galaxies are, on average, older and assembled on shorter typical timescales than the local star-forming galaxies. Moreover, the local star-forming galaxies show stronger galactic winds than the passive galaxy population. Finally, we find that the fundamental relation between metallicity, mass, and star formation rate for these local galaxies is still valid when adopting the average galaxy stellar metallicity.

  16. Design Optimization of Space Launch Vehicles Using a Genetic Algorithm

    DTIC Science & Technology

    2007-06-01

    function until no improvement in the objective function could be made. The search space is modeled in a geometric form such as a polyhedron . The simplex... database . AeroDesign assumes that there are no boundary layers and that no separation occurs. AeroDesign can analyze either a cone or ogive shape

  17. Numerical solutions of the complete Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.

    1993-01-01

    The objective of this study is to compare the use of assumed pdf (probability density function) approaches for modeling supersonic turbulent reacting flowfields with the more elaborate approach where the pdf evolution equation is solved. Assumed pdf approaches for averaging the chemical source terms require modest increases in CPU time typically of the order of 20 percent above treating the source terms as 'laminar.' However, it is difficult to assume a form for these pdf's a priori that correctly mimics the behavior of the actual pdf governing the flow. Solving the evolution equation for the pdf is a theoretically sound approach, but because of the large dimensionality of this function, its solution requires a Monte Carlo method which is computationally expensive and slow to coverage. Preliminary results show both pdf approaches to yield similar solutions for the mean flow variables.

  18. Space form of motionsickness

    NASA Technical Reports Server (NTRS)

    Komendantov, G. L.; Kopanev, V. I.

    1975-01-01

    Spacesickness under weightlessness conditions is explained mainly by disruption of the activity of the functional system perceiving space and participating in carrying out the balancing function, consisting, in particular, of the vestibular, proprioceptive, interoceptive, visual and cutaneomechanical analyzers. It can be assumed that, under specific conditions, Coriolis acceleration also is a cause of spacesickness. Adaptation is possible by formation of a new functional system which is adequate to the new mechanical conditions of weightlessness. Selection, training, creation of optimum conditions in the spacecraft cabin, medicinal, and technical improvement of spacecraft play an important role in prophylaxis of the space form of seasickness.

  19. "Once-Upon-A-Time" Reconsidered: The Developmental Dialectic between Function and Form. Technical Report No. 36.

    ERIC Educational Resources Information Center

    Dyson, Anne Haas

    A case study traces the evolution of "once-upon-a-time" in a child's classroom story writing, drawing upon data collected in a three-year study of writing development in an urban magnet school. The subject, Mitzi, is observed from kindergarten through second grade. The study assumes that stories are cultural discourse forms that serve…

  20. Balance of baryon number in the quark coalescence model

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Rafelski, J.

    2006-02-01

    The charge and baryon balance functions are studied in the coalescence hadronization mechanism of quark-gluon plasma. Assuming that in the plasma phase the qqbar pairs form uncorrelated clusters whose decay is also uncorrelated, one can understand the observed small width of the charge balance function in the Gaussian approximation. The coalescence model predicts even smaller width of the baryon-antibaryon balance function: σBBbar /σ+ - =√{ 2 / 3 }.

  1. Optimal control problems with mixed control-phase variable equality and inequality constraints

    NASA Technical Reports Server (NTRS)

    Makowski, K.; Neustad, L. W.

    1974-01-01

    In this paper, necessary conditions are obtained for optimal control problems containing equality constraints defined in terms of functions of the control and phase variables. The control system is assumed to be characterized by an ordinary differential equation, and more conventional constraints, including phase inequality constraints, are also assumed to be present. Because the first-mentioned equality constraint must be satisfied for all t (the independent variable of the differential equation) belonging to an arbitrary (prescribed) measurable set, this problem gives rise to infinite-dimensional equality constraints. To obtain the necessary conditions, which are in the form of a maximum principle, an implicit-function-type theorem in Banach spaces is derived.

  2. Adding Design Elements to Improve Time Series Designs: No Child Left behind as an Example of Causal Pattern-Matching

    ERIC Educational Resources Information Center

    Wong, Manyee; Cook, Thomas D.; Steiner, Peter M.

    2015-01-01

    Some form of a short interrupted time series (ITS) is often used to evaluate state and national programs. An ITS design with a single treatment group assumes that the pretest functional form can be validly estimated and extrapolated into the postintervention period where it provides a valid counterfactual. This assumption is problematic. Ambiguous…

  3. EXACT DISTRIBUTIONS OF INTRACLASS CORRELATION AND CRONBACH'S ALPHA WITH GAUSSIAN DATA AND GENERAL COVARIANCE.

    PubMed

    Kistner, Emily O; Muller, Keith E

    2004-09-01

    Intraclass correlation and Cronbach's alpha are widely used to describe reliability of tests and measurements. Even with Gaussian data, exact distributions are known only for compound symmetric covariance (equal variances and equal correlations). Recently, large sample Gaussian approximations were derived for the distribution functions. New exact results allow calculating the exact distribution function and other properties of intraclass correlation and Cronbach's alpha, for Gaussian data with any covariance pattern, not just compound symmetry. Probabilities are computed in terms of the distribution function of a weighted sum of independent chi-square random variables. New F approximations for the distribution functions of intraclass correlation and Cronbach's alpha are much simpler and faster to compute than the exact forms. Assuming the covariance matrix is known, the approximations typically provide sufficient accuracy, even with as few as ten observations. Either the exact or approximate distributions may be used to create confidence intervals around an estimate of reliability. Monte Carlo simulations led to a number of conclusions. Correctly assuming that the covariance matrix is compound symmetric leads to accurate confidence intervals, as was expected from previously known results. However, assuming and estimating a general covariance matrix produces somewhat optimistically narrow confidence intervals with 10 observations. Increasing sample size to 100 gives essentially unbiased coverage. Incorrectly assuming compound symmetry leads to pessimistically large confidence intervals, with pessimism increasing with sample size. In contrast, incorrectly assuming general covariance introduces only a modest optimistic bias in small samples. Hence the new methods seem preferable for creating confidence intervals, except when compound symmetry definitely holds.

  4. Bayes classification of terrain cover using normalized polarimetric data

    NASA Technical Reports Server (NTRS)

    Yueh, H. A.; Swartz, A. A.; Kong, J. A.; Shin, R. T.; Novak, L. M.

    1988-01-01

    The normalized polarimetric classifier (NPC) which uses only the relative magnitudes and phases of the polarimetric data is proposed for discrimination of terrain elements. The probability density functions (PDFs) of polarimetric data are assumed to have a complex Gaussian distribution, and the marginal PDF of the normalized polarimetric data is derived by adopting the Euclidean norm as the normalization function. The general form of the distance measure for the NPC is also obtained. It is demonstrated that for polarimetric data with an arbitrary PDF, the distance measure of NPC will be independent of the normalization function selected even when the classifier is mistrained. A complex Gaussian distribution is assumed for the polarimetric data consisting of grass and tree regions. The probability of error for the NPC is compared with those of several other single-feature classifiers. The classification error of NPCs is shown to be independent of the normalization function.

  5. Aquifer response to stream-stage and recharge variations. I. Analytical step-response functions

    USGS Publications Warehouse

    Moench, A.F.; Barlow, P.M.

    2000-01-01

    Laplace transform step-response functions are presented for various homogeneous confined and leaky aquifer types and for anisotropic, homogeneous unconfined aquifers interacting with perennial streams. Flow is one-dimensional, perpendicular to the stream in the confined and leaky aquifers, and two-dimensional in a plane perpendicular to the stream in the water-table aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width and may or may not be bounded at the stream by a semipervious streambank. The solutions are presented in a unified manner so that mathematical relations among the various aquifer configurations are clearly demonstrated. The Laplace transform solutions are inverted numerically to obtain the real-time step-response functions for use in the convolution (or superposition) integral. To maintain linearity in the case of unconfined aquifers, fluctuations in the elevation of the water table are assumed to be small relative to the saturated thickness, and vertical flow into or out of the zone above the water table is assumed to occur instantaneously. Effects of hysteresis in the moisture distribution above the water table are therefore neglected. Graphical comparisons of the new solutions are made with known closed-form solutions.Laplace transform step-response functions are presented for various homogeneous confined and leaky aquifer types and for anisotropic, homogeneous unconfined aquifers interacting with perennial streams. Flow is one-dimensional, perpendicular to the stream in the confined and leaky aquifers, and two-dimensional in a plane perpendicular to the stream in the water-table aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width and may or may not be bounded at the stream by a semipervious streambank. The solutions are presented in a unified manner so that mathematical relations among the various aquifer configurations are clearly demonstrated. The Laplace transform solutions are inverted numerically to obtain the real-time step-response functions for use in the convolution (or superposition) integral. To maintain linearity in the case of unconfined aquifers, fluctuations in the elevation of the water table are assumed to be small relative to the saturated thickness, and vertical flow into or out of the zone above the water table is assumed to occur instantaneously. Effects of hysteresis in the moisture distribution above the water table are therefore neglected. Graphical comparisons of the new solutions are made with known closed-form solutions.

  6. A new water retention and hydraulic conductivity model accounting for contact angle

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, Efstathios; Durner, Wolfgang

    2013-04-01

    The description of soil water transport in the unsaturated zone requires the knowledge of the soil hydraulic properties, i.e. the water retention and the hydraulic conductivity function. A great amount of parameterizations for this can be found in the literature, the majority of which represent the complex pore space of soils as a bundle of cylindrical capillary tubes of various sizes. The assumption of zero contact angles between water and surface of the grains is also made. However, these assumptions limit the predictive capabilities of these models, leading often to enormous errors in the prediction of water dynamics in soils. We present a pore scale analysis for equilibrium liquid configurations (retention) in angular pores taking the effect of contact angle into account. Furthermore, we propose an alternative derivation of the hydraulic conductivity function, again as a function of the contact angle, assuming flow perpendicular to pore cross sections. Finally, we upscale our model from the pore to the sample scale by assuming a gamma statistical distribution of the pore sizes. Closed form expressions are derived for both sample water retention and conductivity functions. The new model was tested against experimental data from multistep inflow/outflow (MSI/MSO) experiments for a sandy material. They were conducted using ethanol and water as the wetting liquid. Ethanol was assumed to form a zero contact angle with the soil grains. The proposed model described both imbibition and drainage of water and ethanol very well. Lastly, the consideration of the contact angle allowed the description of the observed hysteresis.

  7. M-Estimation for Discrete Data. Asymptotic Distribution Theory and Implications.

    DTIC Science & Technology

    1985-10-01

    outlying data points, can be specified in a direct way since the influence function of an IM-estimator is proportional to its score function; see HamDel...consistently estimates - when the model is correct. Suppose now that ac RI. The influence function at F of an M-estimator for 3 has the form 2(x,S) = d/ P ("e... influence function at F . This is assuming, of course, that the estimator is asymototically normal at Fe. The truncation point c(f) determines the bounds

  8. M-Estimation for Discrete Data: Asymptotic Distribution Theory and Implications.

    DTIC Science & Technology

    1985-11-01

    the influence function of an M-estimator is proportional to its score function; see Hampel (1974) or Huber (1981) for details. Surprisingly, M...consistently estimates 0 when the model is correct. Suppose now that OcR The influence function at F of an M-estimator for e has the form a(x,e...variance and the bound on the influence function at F This is assuming, of course, that the estimator is asymptotically normal at Fe. 6’ The truncation

  9. We "Are" Musical

    ERIC Educational Resources Information Center

    Welch, Graham F.

    2005-01-01

    The challenge for music education is to nurture and develop each individual's basic musicality. Assuming normal neurological functioning and development, we are all musical. Our musical development begins pre-birth, with musical behaviours in one form or another being evident across the lifespan. Nevertheless, early enculturation can both foster…

  10. Simulation of electromagnetic ion cyclotron triggered emissions in the Earth's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Shoji, Masafumi; Omura, Yoshiharu

    2011-05-01

    In a recent observation by the Cluster spacecraft, emissions triggered by electromagnetic ion cyclotron (EMIC) waves were discovered in the inner magnetosphere. We perform hybrid simulations to reproduce the EMIC triggered emissions. We develop a self-consistent one-dimensional hybrid code with a cylindrical geometry of the background magnetic field. We assume a parabolic magnetic field to model the dipole magnetic field in the equatorial region of the inner magnetosphere. Triggering EMIC waves are driven by a left-handed polarized external current assumed at the magnetic equator in the simulation model. Cold proton, helium, and oxygen ions, which form branches of the dispersion relation of the EMIC waves, are uniformly distributed in the simulation space. Energetic protons with a loss cone distribution function are also assumed as resonant particles. We reproduce rising tone emissions in the simulation space, finding a good agreement with the nonlinear wave growth theory. In the energetic proton velocity distribution we find formation of a proton hole, which is assumed in the nonlinear wave growth theory. A substantial amount of the energetic protons are scattered into the loss cone, while some of the resonant protons are accelerated to higher pitch angles, forming a pancake velocity distribution.

  11. Visibility of Displayed Information

    DTIC Science & Technology

    1978-07-01

    assume that the reader is familiar with the concept of the modulation transfer function and has a basic knowledge of Fourier analysis. For exposi ...initial condition m1 (v) = ab + c - mT(G) + k(v)m2(v). Substituting this form into Eq. (E-3) allows the identification of the undetermined constants. 2

  12. Cultures-of-Use and Morphologies of Communicative Action

    ERIC Educational Resources Information Center

    Thorne, Steven L.

    2016-01-01

    In this article I revisit the cultures-of-use conceptual framework--that technologies, as forms and processes comprising human culture, mediate and assume variable meanings, values, and conventionalized functions for different communities (Thorne, 2003). I trace the antecedent arc of investigation and serendipitous encounters that led to the 2003…

  13. Pseudo and conditional score approach to joint analysis of current count and current status data.

    PubMed

    Wen, Chi-Chung; Chen, Yi-Hau

    2018-04-17

    We develop a joint analysis approach for recurrent and nonrecurrent event processes subject to case I interval censorship, which are also known in literature as current count and current status data, respectively. We use a shared frailty to link the recurrent and nonrecurrent event processes, while leaving the distribution of the frailty fully unspecified. Conditional on the frailty, the recurrent event is assumed to follow a nonhomogeneous Poisson process, and the mean function of the recurrent event and the survival function of the nonrecurrent event are assumed to follow some general form of semiparametric transformation models. Estimation of the models is based on the pseudo-likelihood and the conditional score techniques. The resulting estimators for the regression parameters and the unspecified baseline functions are shown to be consistent with rates of square and cubic roots of the sample size, respectively. Asymptotic normality with closed-form asymptotic variance is derived for the estimator of the regression parameters. We apply the proposed method to a fracture-osteoporosis survey data to identify risk factors jointly for fracture and osteoporosis in elders, while accounting for association between the two events within a subject. © 2018, The International Biometric Society.

  14. Nonparametric Transfer Function Models

    PubMed Central

    Liu, Jun M.; Chen, Rong; Yao, Qiwei

    2009-01-01

    In this paper a class of nonparametric transfer function models is proposed to model nonlinear relationships between ‘input’ and ‘output’ time series. The transfer function is smooth with unknown functional forms, and the noise is assumed to be a stationary autoregressive-moving average (ARMA) process. The nonparametric transfer function is estimated jointly with the ARMA parameters. By modeling the correlation in the noise, the transfer function can be estimated more efficiently. The parsimonious ARMA structure improves the estimation efficiency in finite samples. The asymptotic properties of the estimators are investigated. The finite-sample properties are illustrated through simulations and one empirical example. PMID:20628584

  15. The Arches Cluster Out to its Tidal Radius: Dynamical Mass Segregation and the Effect of the Extinction Law on the - Lar Mass Function

    NASA Astrophysics Data System (ADS)

    Habibi, Maryam; Stolte, Andrea; Brandner, Wolfgang; Hussman, Benjamin

    2013-07-01

    The Galactic Center is the most active site of star formation in the Milky Way Galaxy, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic Center through the Galactic disk, knowledge of extinction is crucial to study this region. The Arches cluster is a young, massive starburst cluster near the Galactic Center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaro/Cisco J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper-mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, we show that the difference can reach up to 30% for individually derived stellar masses and ∆AKs˜1 magnitude in acquired Ks-band extinction, while the present mass function slope changes by ˜0.17 dex. The present-day mass function slope derived assuming the Nishiyama et al. (2009) extinction law increases from a flat slope of α-Nishi = 1.50 ± 0.35 in the core (r<0.2 pc) to α-Nishi = 2.21±0.27 in the intermediate annulus (0.2

  16. A General Linear Method for Equating with Small Samples

    ERIC Educational Resources Information Center

    Albano, Anthony D.

    2015-01-01

    Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…

  17. Situational Meanings and Functions of Korean Speech Styles

    ERIC Educational Resources Information Center

    Yoon, Sangseok

    2010-01-01

    This study aims to provide a perspective which allows honorifics to be seen beyond the frame of politeness and/or formality in social structures. Korean school grammar explains honorifics as linguistic forms that reflect relative social positional difference (e.g., K-H. Lee, 2010), and has assumed that social structure and language use have a…

  18. On hierarchical solutions to the BBGKY hierarchy

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1988-01-01

    It is thought that the gravitational clustering of galaxies in the universe may approach a scale-invariant, hierarchical form in the small separation, large-clustering regime. Past attempts to solve the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy in this regime have assumed a certain separable hierarchical form for the higher order correlation functions of galaxies in phase space. It is shown here that such separable solutions to the BBGKY equations must satisfy the condition that the clustered component of the solution has cluster-cluster correlations equal to galaxy-galaxy correlations to all orders. The solutions also admit the presence of an arbitrary unclustered component, which plays no dyamical role in the large-clustering regime. These results are a particular property of the specific separable model assumed for the correlation functions in phase space, not an intrinsic property of spatially hierarchical solutions to the BBGKY hierarchy. The observed distribution of galaxies does not satisfy the required conditions. The disagreement between theory and observation may be traced, at least in part, to initial conditions which, if Gaussian, already have cluster correlations greater than galaxy correlations.

  19. Sinusoidal input describing function for hysteresis followed by elementary backlash

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.

    1976-01-01

    The author proposes a new sinusoidal input describing function which accounts for the serial combination of hysteresis followed by elementary backlash in a single nonlinear element. The output of the hysteresis element drives the elementary backlash element. Various analytical forms of the describing function are given, depending on the a/A ratio, where a is the half width of the hysteresis band or backlash gap, and A is the amplitude of the assumed input sinusoid, and on the value of the parameter representing the fraction of a attributed to the backlash characteristic. The negative inverse describing function is plotted on a gain-phase plot, and it is seen that a relatively small amount of backlash leads to domination of the backlash character in the describing function. The extent of the region of the gain-phase plane covered by the describing function is such as to guarantee some form of limit cycle behavior in most closed-loop systems.

  20. Deep Impurity States in Gallium Arsenide.

    DTIC Science & Technology

    1981-10-01

    that the wave functions of the so-called slal- is a result of a delicate cancellation process in low impurities can be thought of as a product of an...approximation we can still form- along these lines has been performed for a transi- ally write the impurity wave function as a product tion from the two...be formally written as a known Lucovsky formula. 20 Had we assumed, as product of two terms, one representing the nodal did Lucovsky, that the

  1. Distinctive Features of Spatial Perspective-Taking in the Elderly

    ERIC Educational Resources Information Center

    Watanabe, Masayuki

    2011-01-01

    This study aimed to ascertain the characteristics of spatial perspective-taking ability--assumed to be a form of imaginary body movement in three-dimensional space--in the elderly. A new task was devised to evaluate the development of this function: 20 children, 20 university students, and 20 elderly people (each group comprising 10 men and 10…

  2. A water-vapor radiometer error model. [for ionosphere in geodetic microwave techniques

    NASA Technical Reports Server (NTRS)

    Beckman, B.

    1985-01-01

    The water-vapor radiometer (WVR) is used to calibrate unpredictable delays in the wet component of the troposphere in geodetic microwave techniques such as very-long-baseline interferometry (VLBI) and Global Positioning System (GPS) tracking. Based on experience with Jet Propulsion Laboratory (JPL) instruments, the current level of accuracy in wet-troposphere calibration limits the accuracy of local vertical measurements to 5-10 cm. The goal for the near future is 1-3 cm. Although the WVR is currently the best calibration method, many instruments are prone to systematic error. In this paper, a treatment of WVR data is proposed and evaluated. This treatment reduces the effect of WVR systematic errors by estimating parameters that specify an assumed functional form for the error. The assumed form of the treatment is evaluated by comparing the results of two similar WVR's operating near each other. Finally, the observability of the error parameters is estimated by covariance analysis.

  3. Orbiter aborts from boost: Presimulation report

    NASA Technical Reports Server (NTRS)

    Backman, H. D.; Brechka, K. G.

    1972-01-01

    A description of a hybrid simulation of the 040C orbiter aborting from boost to specified landing site is provided. The simulation starts when the abort is initiated and continues until a terminal energy state (associated with the selected landing site) is reached. At abort it is assumed that all SRM's are jettisoned with the external tank remaining with the orbiter. The simulation described has six degrees of freedom with the vehicle simulated as a rigid body. A conventional form of autopilot is provided to control engine gimbaling during powered flight. An ideal form of an autopilot is provided to test conventional autopilot function and provide pseudo RCS function during coasting flight. The simulation is proposed to provide means for studies of abort guidance function and to gain information concerning ability to control the abort trajectory.

  4. Development of Fast Deterministic Physically Accurate Solvers for Kinetic Collision Integral for Applications of Near Space Flight and Control Devices

    DTIC Science & Technology

    2015-08-31

    following functions were used: where are the Legendre polynomials of degree . It is assumed that the coefficient standing with has the form...enforce relaxation rates of high order moments, higher order polynomial basis functions are used. The use of high order polynomials results in strong...enforced while only polynomials up to second degree were used in the representation of the collision frequency. It can be seen that the new model

  5. An improved exceedance theory for combined random stresses

    NASA Technical Reports Server (NTRS)

    Lester, H. C.

    1974-01-01

    An extension is presented of Rice's classic solution for the exceedances of a constant level by a single random process to its counterpart for an n-dimensional vector process. An interaction boundary, analogous to the constant level considered by Rice for the one-dimensional case, is assumed in the form of a hypersurface. The theory for the numbers of boundary exceedances is developed by using a joint statistical approach which fully accounts for all cross-correlation effects. An exact expression is derived for the n-dimensional exceedance density function, which is valid for an arbitrary interaction boundary. For application to biaxial states of combined random stress, the general theory is reduced to the two-dimensional case. An elliptical stress interaction boundary is assumed and the exact expression for the density function is presented. The equations are expressed in a format which facilitates calculating the exceedances by numerically evaluating a line integral. The behavior of the density function for the two-dimensional case is briefly discussed.

  6. Estimation of correlation functions by stochastic approximation.

    NASA Technical Reports Server (NTRS)

    Habibi, A.; Wintz, P. A.

    1972-01-01

    Consideration of the autocorrelation function of a zero-mean stationary random process. The techniques are applicable to processes with nonzero mean provided the mean is estimated first and subtracted. Two recursive techniques are proposed, both of which are based on the method of stochastic approximation and assume a functional form for the correlation function that depends on a number of parameters that are recursively estimated from successive records. One technique uses a standard point estimator of the correlation function to provide estimates of the parameters that minimize the mean-square error between the point estimates and the parametric function. The other technique provides estimates of the parameters that maximize a likelihood function relating the parameters of the function to the random process. Examples are presented.

  7. Stability and Bifurcation of a Fishery Model with Crowley-Martin Functional Response

    NASA Astrophysics Data System (ADS)

    Maiti, Atasi Patra; Dubey, B.

    To understand the dynamics of a fishery system, a nonlinear mathematical model is proposed and analyzed. In an aquatic environment, we considered two populations: one is prey and another is predator. Here both the fish populations grow logistically and interaction between them is of Crowley-Martin type functional response. It is assumed that both the populations are harvested and the harvesting effort is assumed to be dynamical variable and tax is considered as a control variable. The existence of equilibrium points and their local stability are examined. The existence of Hopf-bifurcation, stability and direction of Hopf-bifurcation are also analyzed with the help of Center Manifold theorem and normal form theory. The global stability behavior of the positive equilibrium point is also discussed. In order to find the value of optimal tax, the optimal harvesting policy is used. To verify our analytical findings, an extensive numerical simulation is carried out for this model system.

  8. A Control Model: Interpretation of Fitts' Law

    NASA Technical Reports Server (NTRS)

    Connelly, E. M.

    1984-01-01

    The analytical results for several models are given: a first order model where it is assumed that the hand velocity can be directly controlled, and a second order model where it is assumed that the hand acceleration can be directly controlled. Two different types of control-laws are investigated. One is linear function of the hand error and error rate; the other is the time-optimal control law. Results show that the first and second order models with the linear control-law produce a movement time (MT) function with the exact form of the Fitts' Law. The control-law interpretation implies that the effect of target width on MT must be a result of the vertical motion which elevates the hand from the starting point and drops it on the target at the target edge. The time optimal control law did not produce a movement-time formula simular to Fitt's Law.

  9. Phylogenetic versus functional signals in the evolution of form-function relationships in terrestrial vision.

    PubMed

    Motani, Ryosuke; Schmitz, Lars

    2011-08-01

    Phylogeny is deeply pertinent to evolutionary studies. Traits that perform a body function are expected to be strongly influenced by physical "requirements" of the function. We investigated if such traits exhibit phylogenetic signals, and, if so, how phylogenetic noises bias quantification of form-function relationships. A form-function system that is strongly influenced by physics, namely the relationship between eye morphology and visual optics in amniotes, was used. We quantified the correlation between form (i.e., eye morphology) and function (i.e., ocular optics) while varying the level of phylogenetic bias removal through adjusting Pagel's λ. Ocular soft-tissue dimensions exhibited the highest correlation with ocular optics when 1% of phylogenetic bias expected from Brownian motion was removed (i.e., λ= 0.01); the value for hard-tissue data were 8%. A small degree of phylogenetic bias therefore exists in morphology despite of the stringent functional constraints. We also devised a phylogenetically informed discriminant analysis and recorded the effects of phylogenetic bias on this method using the same data. Use of proper λ values during phylogenetic bias removal improved misidentification rates in resulting classifications when prior probabilities were assumed to be equal. Even a small degree of phylogenetic bias affected the classification resulting from phylogenetically informed discriminant analysis. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  10. Receptor theory and biological constraints on value.

    PubMed

    Berns, Gregory S; Capra, C Monica; Noussair, Charles

    2007-05-01

    Modern economic theories of value derive from expected utility theory. Behavioral evidence points strongly toward departures from linear value weighting, which has given rise to alternative formulations that include prospect theory and rank-dependent utility theory. Many of the nonlinear forms for value assumed by these theories can be derived from the assumption that value is signaled by neurotransmitters in the brain, which obey simple laws of molecular movement. From the laws of mass action and receptor occupancy, we show how behaviorally observed forms of nonlinear value functions can arise.

  11. Differential Forms: A New Tool in Economics

    NASA Astrophysics Data System (ADS)

    Mimkes, Jürgen

    Econophysics is the transfer of methods from natural to socio-economic sciences. This concept has first been applied to finance1, but it is now also used in various applications of economics and social sciences [2,3]. The present paper focuses on problems in macro economics and growth. 1. Neoclassical theory [4, 5] neglects the “ex post” property of income and growth. Income Y(K, L) is assumed to be a function of capital and labor. But functions cannot model the “ex post” character of income. 2. Neoclassical theory is based on a Cobb Douglas function [6] with variable elasticity α, which may be fitted to economic data. But an undefined elasticity α leads to a descriptive rather than a predictive economic theory. The present paper introduces a new tool - differential forms and path dependent integrals - to macro economics. This is a solution to the problems above: 1. The integral of not exact differential forms is path dependent and can only be calculated “ex post” like income and economic growth. 2. Not exact differential forms can be made exact by an integrating factor, this leads to a new, well defined, unique production function F and a predictive economic theory.

  12. Divergence of macrophage phagocytic and antimicrobial programs in leprosy.

    PubMed

    Montoya, Dennis; Cruz, Daniel; Teles, Rosane M B; Lee, Delphine J; Ochoa, Maria Teresa; Krutzik, Stephan R; Chun, Rene; Schenk, Mirjam; Zhang, Xiaoran; Ferguson, Benjamin G; Burdick, Anne E; Sarno, Euzenir N; Rea, Thomas H; Hewison, Martin; Adams, John S; Cheng, Genhong; Modlin, Robert L

    2009-10-22

    Effective innate immunity against many microbial pathogens requires macrophage programs that upregulate phagocytosis and direct antimicrobial pathways, two functions generally assumed to be coordinately regulated. We investigated the regulation of these key functions in human blood-derived macrophages. Interleukin-10 (IL-10) induced the phagocytic pathway, including the C-type lectin CD209 and scavenger receptors, resulting in phagocytosis of mycobacteria and oxidized low-density lipoprotein. IL-15 induced the vitamin D-dependent antimicrobial pathway and CD209, yet the cells were less phagocytic. The differential regulation of macrophage functional programs was confirmed by analysis of leprosy lesions: the macrophage phagocytosis pathway was prominent in the clinically progressive, multibacillary form of the disease, whereas the vitamin D-dependent antimicrobial pathway predominated in the self-limited form and in patients undergoing reversal reactions from the multibacillary to the self-limited form. These data indicate that macrophage programs for phagocytosis and antimicrobial responses are distinct and differentially regulated in innate immunity to bacterial infections.

  13. An exactly solvable model of polymerization

    NASA Astrophysics Data System (ADS)

    Lushnikov, A. A.

    2017-08-01

    This paper considers the evolution of a polydisperse polymerizing system comprising g1,g2 … - mers carrying ϕ1,ϕ2 … functional groups reacting with one another and binding the g-mers together. In addition, the g-mers are assumed to be added at random by one at a time with a known rate depending on their mass g and functionality ϕ . Assuming that the rate of binding of two g-mers is proportional to the product of the numbers of nonreacted functional groups the kinetic equation for the distribution of clusters (g-mers) over their mass and functionalities is formulated and then solved by applying the generating function method. In contrast to existing approaches this kinetic equation operates with the efficiencies proportional to the product of the numbers of active functional groups in the clusters rather than to the product of their masses. The evolution process is shown to reveal a phase transition: the emergence of a giant linked cluster (the gel) whose mass is comparable to the total mass of the whole polymerizing system. The time dependence of the moments of the distribution of linked components over their masses and functionalities is investigated. The polymerization process terminates by forming a residual spectrum of sol particles in addition to the gel.

  14. Interacting steps with finite-range interactions: Analytical approximation and numerical results

    NASA Astrophysics Data System (ADS)

    Jaramillo, Diego Felipe; Téllez, Gabriel; González, Diego Luis; Einstein, T. L.

    2013-05-01

    We calculate an analytical expression for the terrace-width distribution P(s) for an interacting step system with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with several numerical simulations and experimental results. We explore the effect of the range of interactions q on the functional form of the terrace-width distribution and pair correlation functions. For physically plausible interactions, we find modest changes when next-nearest neighbor interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  15. Stability of Electrons in the Virtual Cathode Region of an IEC

    NASA Astrophysics Data System (ADS)

    Kim, Hyng-Jin; Miley, George; Momota, Hiromu

    2003-04-01

    In the Inertial Electrostatic Confinement (IEC) device, electrons are confined inside a virtual anode that in turn confines ions. Prior stability studies [1, 2] have considered systems in which one species is electrostatically confined by the other, and either or both species are out of local thermal equilibrium. In the present research, electron stability in the virtual cathode region of an ion injected IEC is being studied. The ion density in an IEC is non-uniform due to the radial electrostatic potential, and increases toward the center region. The potential near the virtual cathode is assumed to have a parabolic shape and is determined assuming that the net space charge density is constant in that region. The corresponding ion distribution function is assumed to have the form f = C [sigma] (H W) /L^0.5 and the electron response is taken to be diabatic. Then using a variational principle after linearizing the hydrodynamic equations, stability properties of the electron layer are determined. Results will be presented as a function of injected ion/electron current ratios. 1. L. Chacon and D. C. Barnes, Phys. Plasma 7, 4774 (2000). 2. D. C. Barnes, L. Chacon, and J. M. Finn, Phys. Plasmas 9, 4448 (2002).

  16. An Evaluation of the Single-Group Growth Model as an Alternative to Common-Item Equating. Research Report. ETS RR-16-01

    ERIC Educational Resources Information Center

    Wei, Youhua; Morgan, Rick

    2016-01-01

    As an alternative to common-item equating when common items do not function as expected, the single-group growth model (SGGM) scaling uses common examinees or repeaters to link test scores on different forms. The SGGM scaling assumes that, for repeaters taking adjacent administrations, the conditional distribution of scale scores in later…

  17. Effective nucleon mass and the nuclear caloric curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, D. V.; Souliotis, G. A.; Galanopoulos, S.

    2009-03-15

    Assuming a schematic form of the nucleon effective mass as a function of nuclear excitation energy and mass, we provide a simple explanation for understanding the experimentally observed mass dependence of the nuclear caloric curve. It is observed that the excitation energy at which the caloric curve enters into a plateau region could be sensitive to the nuclear mass evolution of the effective nucleon mass.

  18. Search for function coefficient distribution in traditional Chinese medicine network

    NASA Astrophysics Data System (ADS)

    He, Yue; Zhang, Peipei; Sun, Anzheng; Su, Beibei; He, Da-Ren

    2004-03-01

    We suggest a model for a simulation on development of traditional Chinese medicine system. Suppose there are a certain number of Chinese medicines. Each of them is given randomly a "function coefficient", which has a value between 0 and 1. The larger it is the stronger is its function for solving one healthy problem and serving as an "emperor" in a prescription formulation. The smaller it is the stronger is its function for harmonizing and/or accessorizing a prescription formulation. In every step of time a new medicine is discovered. With a probability, P(m), which is determined according to our statistical investigation results, it can produce a new prescription formulation with other m-1 medicines. We assume that the probability for choosing the function coefficients of these m medicines follow a distribution function, which is everywhere smooth. A program has been set up to perform a search for this function form so that the simulation results show a best agreement to our statistical data. We believe the result function form will be helpful for an understanding on real development of traditional Chinese medicine system.

  19. Physically-based model of soil hydraulic properties accounting for variable contact angle and its effect on hysteresis

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, Efstathios; Durner, Wolfgang

    2013-09-01

    The description of soil water movement in the unsaturated zone requires the knowledge of the soil hydraulic properties, i.e. the water retention and the hydraulic conductivity function. A great amount of parameterizations for this can be found in the literature, the majority of which represent the complex pore space of soils as a bundle of cylindrical capillary tubes of various sizes. The assumption of zero contact angles between water and surface of the grains is also made. However, these assumptions limit the predictive capabilities of these models, leading often to errors in the prediction of water dynamics in soils. We present a pore-scale analysis for equilibrium liquid configuration in angular pores taking pore-scale hysteresis and the effect of contact angle into account. Furthermore, we propose a derivation of the hydraulic conductivity function, again as a function of the contact angle. An additional parameter was added to the conductivity function in order take into account effects which are not included in the analysis. Finally, we upscale our model from the pore to the sample scale by assuming a gamma statistical distribution of the pore sizes. Closed-form expressions are derived for both water retention and conductivity functions. The new model was tested against experimental data from multistep inflow/outflow (MSI/MSO) experiments for a sandy material. They were conducted using ethanol and water as the wetting liquid. Ethanol was assumed to form a zero contact angle with the soil grains. By keeping constant the parameters fitted from the ethanol MSO experiment we could predict the ethanol MSI dynamics based on our theory. Furthermore, by keeping constant the pore size distribution parameters from the ethanol experiments we could also predict very well the water dynamics for the MSO experiment. Lastly, we could predict the imbibition dynamics for the water MSI experiment by introducing a finite value of the contact angle. Most importantly, the predictions for both ethanol and water MSI/MSO dynamics were made by assuming a unique pore-size distribution.

  20. Dynamical Transition of Collective Motions in Dry Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhuo; Huang, Juan; Tyagi, Madhusudan

    Water is widely assumed to be essential for protein dynamics and function. In particular, the well-documented “dynamical” transition at ~ 200 K , at which the protein changes from a rigid, nonfunctional form to a flexible, functional state, as detected in hydrogenated protein by incoherent neutron scattering, requires hydration. We report on coherent neutron scattering experiments on perdeuterated proteins and reveal that a transition occurs in dry proteins at the same temperature resulting primarily from the collective heavy-atom motions. Furthermore, the dynamical transition discovered is intrinsic to the energy landscape of dry proteins.

  1. Dynamical Transition of Collective Motions in Dry Proteins

    DOE PAGES

    Liu, Zhuo; Huang, Juan; Tyagi, Madhusudan; ...

    2017-07-25

    Water is widely assumed to be essential for protein dynamics and function. In particular, the well-documented “dynamical” transition at ~ 200 K , at which the protein changes from a rigid, nonfunctional form to a flexible, functional state, as detected in hydrogenated protein by incoherent neutron scattering, requires hydration. We report on coherent neutron scattering experiments on perdeuterated proteins and reveal that a transition occurs in dry proteins at the same temperature resulting primarily from the collective heavy-atom motions. Furthermore, the dynamical transition discovered is intrinsic to the energy landscape of dry proteins.

  2. Probability distribution functions for intermittent scrape-off layer plasma fluctuations

    NASA Astrophysics Data System (ADS)

    Theodorsen, A.; Garcia, O. E.

    2018-03-01

    A stochastic model for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas has been constructed based on a super-position of uncorrelated pulses arriving according to a Poisson process. In the most common applications of the model, the pulse amplitudes are assumed exponentially distributed, supported by conditional averaging of large-amplitude fluctuations in experimental measurement data. This basic assumption has two potential limitations. First, statistical analysis of measurement data using conditional averaging only reveals the tail of the amplitude distribution to be exponentially distributed. Second, exponentially distributed amplitudes leads to a positive definite signal which cannot capture fluctuations in for example electric potential and radial velocity. Assuming pulse amplitudes which are not positive definite often make finding a closed form for the probability density function (PDF) difficult, even if the characteristic function remains relatively simple. Thus estimating model parameters requires an approach based on the characteristic function, not the PDF. In this contribution, the effect of changing the amplitude distribution on the moments, PDF and characteristic function of the process is investigated and a parameter estimation method using the empirical characteristic function is presented and tested on synthetically generated data. This proves valuable for describing intermittent fluctuations of all plasma parameters in the boundary region of magnetized plasmas.

  3. Understanding the relationship between duration of untreated psychosis and outcomes: A statistical perspective.

    PubMed

    Hannigan, Ailish; Bargary, Norma; Kinsella, Anthony; Clarke, Mary

    2017-06-14

    Although the relationships between duration of untreated psychosis (DUP) and outcomes are often assumed to be linear, few studies have explored the functional form of these relationships. The aim of this study is to demonstrate the potential of recent advances in curve fitting approaches (splines) to explore the form of the relationship between DUP and global assessment of functioning (GAF). Curve fitting approaches were used in models to predict change in GAF at long-term follow-up using DUP for a sample of 83 individuals with schizophrenia. The form of the relationship between DUP and GAF was non-linear. Accounting for non-linearity increased the percentage of variance in GAF explained by the model, resulting in better prediction and understanding of the relationship. The relationship between DUP and outcomes may be complex and model fit may be improved by accounting for the form of the relationship. This should be routinely assessed and new statistical approaches for non-linear relationships exploited, if appropriate. © 2017 John Wiley & Sons Australia, Ltd.

  4. Discriminating Majorana neutrino textures in light of the baryon asymmetry

    NASA Astrophysics Data System (ADS)

    Borah, Manikanta; Borah, Debasish; Das, Mrinal Kumar

    2015-06-01

    We study all possible texture zeros in the Majorana neutrino mass matrix which are allowed from neutrino oscillation as well as cosmology data when the charged lepton mass matrix is assumed to take the diagonal form. In the case of one-zero texture, we write down the Majorana phases which are assumed to be equal and the lightest neutrino mass as a function of the Dirac C P phase. In the case of two-zero texture, we numerically evaluate all the three C P phases and lightest neutrino mass by solving four real constraint equations. We then constrain texture zero mass matrices from the requirement of producing correct baryon asymmetry through the mechanism of leptogenesis by assuming the Dirac neutrino mass matrix to be diagonal. Adopting a type I seesaw framework, we consider the C P -violating out of equilibrium decay of the lightest right-handed neutrino as the source of lepton asymmetry. Apart from discriminating between the texture zero mass matrices and light neutrino mass hierarchy, we also constrain the Dirac and Majorana C P phases so that the observed baryon asymmetry can be produced. In two-zero texture, we further constrain the diagonal form of the Dirac neutrino mass matrix from the requirement of producing correct baryon asymmetry.

  5. Finite Element Analysis and Understanding the Biomechanics and Evolution of Living and Fossil Organisms

    NASA Astrophysics Data System (ADS)

    Rayfield, Emily J.

    2007-05-01

    Finite element analysis (FEA) is a technique that reconstructs stress, strain, and deformation in a digital structure. Although commonplace in engineering and orthopedic science for more than 30 years, only recently has it begun to be adopted in the zoological and paleontological sciences to address questions of organismal morphology, function, and evolution. Current research tends to focus on either deductive studies that assume a close relationship between form and function or inductive studies that aim to test this relationship, although explicit hypothesis-testing bridges these two standpoints. Validation studies have shown congruence between in vivo or in vitro strain and FE-inferred strain. Future validation work on a broad range of taxa will assist in phylogenetically bracketing our extinct animal FE-models to increase confidence in our input parameters, although currently, FEA has much potential in addressing questions of form-function relationships, providing appropriate questions are asked of the existing data.

  6. Socially Coherent Negotiation for Cooperative Multiagent Systems

    DTIC Science & Technology

    2008-07-16

    of altruism by substituting the preferences of others for one’s own. • It is assumed that each member will...approximation) — it is not a species of bounded rationality. (c) It naturally extends to the multi-agent case, thereby providing a natural frame- work...are mass functions, permits a natural way to aggregate the preference orderings of the individuals to form a group preference ordering. As is well

  7. Computer Program for Calculation of a Gas Temperature Profile by Infrared Emission: Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1977-01-01

    A computer program to calculate the temperature profile of a flame or hot gas was presented in detail. Emphasis was on profiles found in jet engine or rocket engine exhaust streams containing H2O or CO2 radiating gases. The temperature profile was assumed axisymmetric with an assumed functional form controlled by two variable parameters. The parameters were calculated using measurements of gas radiation at two wavelengths in the infrared. The program also gave some information on the pressure profile. A method of selection of wavelengths was given that is likely to lead to an accurate determination of the parameters. The program is written in FORTRAN IV language and runs in less than 60 seconds on a Univac 1100 computer.

  8. Stochastic analysis of three-dimensional flow in a bounded domain

    USGS Publications Warehouse

    Naff, R.L.; Vecchia, A.V.

    1986-01-01

    A commonly accepted first-order approximation of the equation for steady state flow in a fully saturated spatially random medium has the form of Poisson's equation. This form allows for the advantageous use of Green's functions to solve for the random output (hydraulic heads) in terms of a convolution over the random input (the logarithm of hydraulic conductivity). A solution for steady state three- dimensional flow in an aquifer bounded above and below is presented; consideration of these boundaries is made possible by use of Green's functions to solve Poisson's equation. Within the bounded domain the medium hydraulic conductivity is assumed to be a second-order stationary random process as represented by a simple three-dimensional covariance function. Upper and lower boundaries are taken to be no-flow boundaries; the mean flow vector lies entirely in the horizontal dimensions. The resulting hydraulic head covariance function exhibits nonstationary effects resulting from the imposition of boundary conditions. Comparisons are made with existing infinite domain solutions.

  9. [Functional development of chemosensory systems in the ontogeny of fish].

    PubMed

    Kasumian, A O

    2011-01-01

    Regularities of the functional development of chemosensory systems in the ontogeny of fish has been studied, i.e., the olfactory system, the taste system, and the common chemical sense. The olfactory system begins to function and provides response of juveniles to chemical signals before the taste system. Embryos that have hatched from coating but that do not yet feed exhibit nonspecialized motor responses to olfactory stimuli already. Immediately after the transition to exogenous nutrition, olfactory sensitivity to signals which elicit defensive and feeding behavioral responses begins to form and the ability to differentiate between similar odors develops. The reception of a limited number of taste stimuli occurs in the larvae during the transition to exogenous nutrition. With age, the spectrum of effective taste substances expands and the time spent on the definition of palatability by juvenile fishes reduces. Functional development of individual components of the taste system arises heterochronously, i.e., the outer (extraoral) form of taste reception arises earlier and more rapidly, and the buccal (intraoral) form of taste reception arises slower. No information is available about the functional development of the common chemical sense in the ontogeny of fish. It is assumed that the function of the chemosensory system arises in fish in early larval instar.

  10. Cost characteristics of hospitals.

    PubMed

    Smet, Mike

    2002-09-01

    Modern hospitals are complex multi-product organisations. The analysis of a hospital's production and/or cost structure should therefore use the appropriate techniques. Flexible functional forms based on the neo-classical theory of the firm seem to be most suitable. Using neo-classical cost functions implicitly assumes minimisation of (variable) costs given that input prices and outputs are exogenous. Local and global properties of flexible functional forms and short-run versus long-run equilibrium are further issues that require thorough investigation. In order to put the results based on econometric estimations of cost functions in the right perspective, it is important to keep these considerations in mind when using flexible functional forms. The more recent studies seem to agree that hospitals generally do not operate in their long-run equilibrium (they tend to over-invest in capital (capacity and equipment)) and that it is therefore appropriate to estimate a short-run variable cost function. However, few studies explicitly take into account the implicit assumptions and restrictions embedded in the models they use. An alternative method to explain differences in costs uses management accounting techniques to identify the cost drivers of overhead costs. Related issues such as cost-shifting and cost-adjusting behaviour of hospitals and the influence of market structure on competition, prices and costs are also discussed shortly.

  11. The effects of the initial mass function on the chemical evolution of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    De Masi, Carlo; Matteucci, F.; Vincenzo, F.

    2018-03-01

    We describe the use of our chemical evolution model to reproduce the abundance patterns observed in a catalogue of elliptical galaxies from the Sloan Digital Sky Survey Data Release 4. The model assumes ellipticals form by fast gas accretion, and suffer a strong burst of star formation followed by a galactic wind, which quenches star formation. Models with fixed initial mass function (IMF) failed in simultaneously reproducing the observed trends with the galactic mass. So, we tested a varying IMF; contrary to the diffused claim that the IMF should become bottom heavier in more massive galaxies, we find a better agreement with data by assuming an inverse trend, where the IMF goes from being bottom heavy in less massive galaxies to top heavy in more massive ones. This naturally produces a downsizing in star formation, favouring massive stars in largest galaxies. Finally, we tested the use of the integrated Galactic IMF, obtained by averaging the canonical IMF over the mass distribution function of the clusters where star formation is assumed to take place. We combined two prescriptions, valid for different SFR regimes, to obtain the Integrated Initial Mass Function values along the whole evolution of the galaxies in our models. Predicted abundance trends reproduce the observed slopes, but they have an offset relative to the data. We conclude that bottom-heavier IMFs do not reproduce the properties of the most massive ellipticals, at variance with previous suggestions. On the other hand, an IMF varying with galactic mass from bottom heavier to top heavier should be preferred.

  12. A dual-loop model of the human controller in single-axis tracking tasks

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1977-01-01

    A dual loop model of the human controller in single axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure which involves feeding back that portion of the controlled element output rate which is due to control activity. The sensory inputs to the human controller are assumed to be system error and control force. The former is assumed to be sensed via visual, aural, or tactile displays while the latter is assumed to be sensed in kinesthetic fashion. A nonlinear form of the model is briefly discussed. This model is then linearized and parameterized. A set of general adaptive characteristics for the parameterized model is hypothesized. These characteristics describe the manner in which the parameters in the linearized model will vary with such things as display quality. It is demonstrated that the parameterized model can produce controller describing functions which closely approximate those measured in laboratory tracking tasks for a wide variety of controlled elements.

  13. Relicts and models of the RNA world

    NASA Astrophysics Data System (ADS)

    Lehto, Kirsi; Karetnikov, Alexey

    2005-01-01

    It is widely believed that the current DNA-RNA-protein-based life forms have evolved from preceding RNA-protein-based life forms, and these again, from mere RNA replicons. By rationale, it can be assumed that the early RNA replicons were fully heterotrophic in terms of obtaining all their building blocks from their environment. In the absence of protein catalysts, their essential life functions had to be mediated by simple functional structures and mechanisms, such as RNA secondary structures, RNA-RNA interactions and RNA-mediated catalysis, and possibly by catalytic minerals or clays. The central role of RNA catalysts in early life forms is supported by the fact that several catalytic RNAs still perform central biological functions in current life forms, and at least some of these may be derived as molecular relicts from the early RNA-based life. The RNA-catalysed metabolic reactions and molecular fossils are more conserved in the eukaryotic life forms than in the prokaryotes, suggesting that the linear eukaryote genomes may more closely resemble the structure and function of the early RNA replicons, than what do the circular prokaryote genomes. Present-day RNA viruses and viroids utilize ultimately simple life strategies, which may be similar to those used by the early RNA replicons. Thus, molecular and functional properties of viruses and viroids may be considered as examples or models of the structures and replication mechanisms, which might have been used for the replication of the early biopolymers.

  14. Acta Aeronautica et Astronautica Sinica (Selected Articles),

    DTIC Science & Technology

    1986-05-09

    Let us assume the third vibration mode. Then, the matrix form of the coupled linear equations is obtained as follows: 30 L. -i .- *’ v j h 1. - Y I - u5...F When higher vibration modes are considered, the same m~ethod can be used. From eqn. (31,we have the transfer functions: A c,37 + Cse+ C,s+ C, $+ C’s... vibration modes of the gyro at point 1 with respect to x. Then, transfer function, .WO (s) is s)=W, 1( I )W, 1 ( s ) 2( 1 )W,( S T- ( I s ) l, 3 7+1,s+1 1 ls

  15. Bivariate sub-Gaussian model for stock index returns

    NASA Astrophysics Data System (ADS)

    Jabłońska-Sabuka, Matylda; Teuerle, Marek; Wyłomańska, Agnieszka

    2017-11-01

    Financial time series are commonly modeled with methods assuming data normality. However, the real distribution can be nontrivial, also not having an explicitly formulated probability density function. In this work we introduce novel parameter estimation and high-powered distribution testing methods which do not rely on closed form densities, but use the characteristic functions for comparison. The approach applied to a pair of stock index returns demonstrates that such a bivariate vector can be a sample coming from a bivariate sub-Gaussian distribution. The methods presented here can be applied to any nontrivially distributed financial data, among others.

  16. How Small the Number of Test Items Can Be for the Basis of Estimating the Operating Characteristics of the Discrete Responses to Unknown Test Items.

    ERIC Educational Resources Information Center

    Samejima, Fumiko; Changas, Paul S.

    The methods and approaches for estimating the operating characteristics of the discrete item responses without assuming any mathematical form have been developed and expanded. It has been made possible that, even if the test information function of a given test is not constant for the interval of ability of interest, it is used as the Old Test.…

  17. Effects of Adaptive Antenna Arrays on Broadband Signals.

    DTIC Science & Technology

    1980-06-01

    dimensional array geometry. The signal impinging on the antenna array elements is assumed to have originated from a point source in the far field , or...tg9 (4) The assumptions used to identify the far field region of an array also lead to an approximation for ti(6) . It is ti (0 ) x i sin(e) (5) c...implementing the open form transfer function and coefficients of Eqs (16) 53 .. ... ... .. . . .. . . .. ... .. . ..... . .... . . .. through (21). For a

  18. Recurrence relations in one-dimensional Ising models.

    PubMed

    da Conceição, C M Silva; Maia, R N P

    2017-09-01

    The exact finite-size partition function for the nonhomogeneous one-dimensional (1D) Ising model is found through an approach using algebra operators. Specifically, in this paper we show that the partition function can be computed through a trace from a linear second-order recurrence relation with nonconstant coefficients in matrix form. A relation between the finite-size partition function and the generalized Lucas polynomials is found for the simple homogeneous model, thus establishing a recursive formula for the partition function. This is an important property and it might indicate the possible existence of recurrence relations in higher-dimensional Ising models. Moreover, assuming quenched disorder for the interactions within the model, the quenched averaged magnetic susceptibility displays a nontrivial behavior due to changes in the ferromagnetic concentration probability.

  19. Nonstandard Analysis and Jump Conditions for Converging Shock Waves

    NASA Technical Reports Server (NTRS)

    Baty, Roy S.; Farassat, Fereidoun; Tucker, Don H.

    2008-01-01

    Nonstandard analysis is an area of modern mathematics which studies abstract number systems containing both infinitesimal and infinite numbers. This article applies nonstandard analysis to derive jump conditions for one-dimensional, converging shock waves in a compressible, inviscid, perfect gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. Predistributions of the Heaviside function and the Dirac delta measure are introduced to model the flow parameters across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the flow parameters.

  20. TRANSAT-- method for detecting the conserved helices of functional RNA structures, including transient, pseudo-knotted and alternative structures.

    PubMed

    Wiebe, Nicholas J P; Meyer, Irmtraud M

    2010-06-24

    The prediction of functional RNA structures has attracted increased interest, as it allows us to study the potential functional roles of many genes. RNA structure prediction methods, however, assume that there is a unique functional RNA structure and also do not predict functional features required for in vivo folding. In order to understand how functional RNA structures form in vivo, we require sophisticated experiments or reliable prediction methods. So far, there exist only a few, experimentally validated transient RNA structures. On the computational side, there exist several computer programs which aim to predict the co-transcriptional folding pathway in vivo, but these make a range of simplifying assumptions and do not capture all features known to influence RNA folding in vivo. We want to investigate if evolutionarily related RNA genes fold in a similar way in vivo. To this end, we have developed a new computational method, Transat, which detects conserved helices of high statistical significance. We introduce the method, present a comprehensive performance evaluation and show that Transat is able to predict the structural features of known reference structures including pseudo-knotted ones as well as those of known alternative structural configurations. Transat can also identify unstructured sub-sequences bound by other molecules and provides evidence for new helices which may define folding pathways, supporting the notion that homologous RNA sequence not only assume a similar reference RNA structure, but also fold similarly. Finally, we show that the structural features predicted by Transat differ from those assuming thermodynamic equilibrium. Unlike the existing methods for predicting folding pathways, our method works in a comparative way. This has the disadvantage of not being able to predict features as function of time, but has the considerable advantage of highlighting conserved features and of not requiring a detailed knowledge of the cellular environment.

  1. A possible Harappan astronomical observatory at Dholavira

    NASA Astrophysics Data System (ADS)

    Vahia, Mayank; Menon, Srikumar M.

    2013-11-01

    Astronomy arises very early in a civilisation and evolves as the civilisation advances. It is therefore reasonable to assume that a vibrant knowledge of astronomy would have been a feature of a civilisation the size of the Harappan Civilisation. We suggest that structures dedicated to astronomy existed in every major Harappan city. One such city was Dholavira, an important trading port that was located on an island in what is now the Rann of Kutch during the peak of the Harappan Civilisation. We have analysed an unusual structure at Dholavira that includes two circular rooms. Upon assuming strategically-placed holes in their ceilings we examine the internal movement of sunlight within these rooms and suggest that the larger structure of which they formed a part could have functioned as an astronomical observatory.

  2. 25 CFR 170.610 - What IRR Program functions may a tribe assume under ISDEAA?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What IRR Program functions may a tribe assume under... Agreements Under Isdeaa § 170.610 What IRR Program functions may a tribe assume under ISDEAA? A tribe may...) Tribes may use IRR Program project funds contained in their contracts or annual funding agreements for...

  3. 25 CFR 170.610 - What IRR Program functions may a tribe assume under ISDEAA?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What IRR Program functions may a tribe assume under... Agreements Under Isdeaa § 170.610 What IRR Program functions may a tribe assume under ISDEAA? A tribe may...) Tribes may use IRR Program project funds contained in their contracts or annual funding agreements for...

  4. Analysis of delamination related fracture processes in composites

    NASA Technical Reports Server (NTRS)

    Armanios, Erian A.

    1992-01-01

    An anisotropic thin walled closed section beam theory was developed based on an asymptotical analysis of the shell energy functional. The displacement field is not assumed a priori and emerges as a result of the analysis. In addition to the classical out-of-plane torsional warping, two new contributions are identified namely, axial strain and bending warping. A comparison of the derived governing equations confirms the theory developed by Reissner and Tsai. Also, explicit closed form expressions for the beam stiffness coefficients, the stress and displacement fields are provided. The predictions of the present theory were validated by comparison with finite element simulation, other closed form analyses and test data.

  5. Outage Probability of MRC for κ-μ Shadowed Fading Channels under Co-Channel Interference.

    PubMed

    Chen, Changfang; Shu, Minglei; Wang, Yinglong; Yang, Ming; Zhang, Chongqing

    2016-01-01

    In this paper, exact closed-form expressions are derived for the outage probability (OP) of the maximal ratio combining (MRC) scheme in the κ-μ shadowed fading channels, in which both the independent and correlated shadowing components are considered. The scenario assumes the received desired signals are corrupted by the independent Rayleigh-faded co-channel interference (CCI) and background white Gaussian noise. To this end, first, the probability density function (PDF) of the κ-μ shadowed fading distribution is obtained in the form of a power series. Then the incomplete generalized moment-generating function (IG-MGF) of the received signal-to-interference-plus-noise ratio (SINR) is derived in the closed form. By using the IG-MGF results, closed-form expressions for the OP of MRC scheme are obtained over the κ-μ shadowed fading channels. Simulation results are included to validate the correctness of the analytical derivations. These new statistical results can be applied to the modeling and analysis of several wireless communication systems, such as body centric communications.

  6. Outage Probability of MRC for κ-μ Shadowed Fading Channels under Co-Channel Interference

    PubMed Central

    Chen, Changfang; Shu, Minglei; Wang, Yinglong; Yang, Ming; Zhang, Chongqing

    2016-01-01

    In this paper, exact closed-form expressions are derived for the outage probability (OP) of the maximal ratio combining (MRC) scheme in the κ-μ shadowed fading channels, in which both the independent and correlated shadowing components are considered. The scenario assumes the received desired signals are corrupted by the independent Rayleigh-faded co-channel interference (CCI) and background white Gaussian noise. To this end, first, the probability density function (PDF) of the κ-μ shadowed fading distribution is obtained in the form of a power series. Then the incomplete generalized moment-generating function (IG-MGF) of the received signal-to-interference-plus-noise ratio (SINR) is derived in the closed form. By using the IG-MGF results, closed-form expressions for the OP of MRC scheme are obtained over the κ-μ shadowed fading channels. Simulation results are included to validate the correctness of the analytical derivations. These new statistical results can be applied to the modeling and analysis of several wireless communication systems, such as body centric communications. PMID:27851817

  7. Acuity of a Cryptochrome and Vision-Based Magnetoreception System in Birds

    PubMed Central

    Solov'yov, Ilia A.; Mouritsen, Henrik; Schulten, Klaus

    2010-01-01

    Abstract The magnetic compass of birds is embedded in the visual system and it has been hypothesized that the primary sensory mechanism is based on a radical pair reaction. Previous models of magnetoreception have assumed that the radical pair-forming molecules are rigidly fixed in space, and this assumption has been a major objection to the suggested hypothesis. In this article, we investigate theoretically how much disorder is permitted for the radical pair-forming, protein-based magnetic compass in the eye to remain functional. Our study shows that only one rotational degree of freedom of the radical pair-forming protein needs to be partially constrained, while the other two rotational degrees of freedom do not impact the magnetoreceptive properties of the protein. The result implies that any membrane-associated protein is sufficiently restricted in its motion to function as a radical pair-based magnetoreceptor. We relate our theoretical findings to the cryptochromes, currently considered the likeliest candidate to furnish radical pair-based magnetoreception. PMID:20655831

  8. Decision making generalized by a cumulative probability weighting function

    NASA Astrophysics Data System (ADS)

    dos Santos, Lindomar Soares; Destefano, Natália; Martinez, Alexandre Souto

    2018-01-01

    Typical examples of intertemporal decision making involve situations in which individuals must choose between a smaller reward, but more immediate, and a larger one, delivered later. Analogously, probabilistic decision making involves choices between options whose consequences differ in relation to their probability of receiving. In Economics, the expected utility theory (EUT) and the discounted utility theory (DUT) are traditionally accepted normative models for describing, respectively, probabilistic and intertemporal decision making. A large number of experiments confirmed that the linearity assumed by the EUT does not explain some observed behaviors, as nonlinear preference, risk-seeking and loss aversion. That observation led to the development of new theoretical models, called non-expected utility theories (NEUT), which include a nonlinear transformation of the probability scale. An essential feature of the so-called preference function of these theories is that the probabilities are transformed by decision weights by means of a (cumulative) probability weighting function, w(p) . We obtain in this article a generalized function for the probabilistic discount process. This function has as particular cases mathematical forms already consecrated in the literature, including discount models that consider effects of psychophysical perception. We also propose a new generalized function for the functional form of w. The limiting cases of this function encompass some parametric forms already proposed in the literature. Far beyond a mere generalization, our function allows the interpretation of probabilistic decision making theories based on the assumption that individuals behave similarly in the face of probabilities and delays and is supported by phenomenological models.

  9. The importance of functional form in optimal control solutions of problems in population dynamics

    USGS Publications Warehouse

    Runge, M.C.; Johnson, F.A.

    2002-01-01

    Optimal control theory is finding increased application in both theoretical and applied ecology, and it is a central element of adaptive resource management. One of the steps in an adaptive management process is to develop alternative models of system dynamics, models that are all reasonable in light of available data, but that differ substantially in their implications for optimal control of the resource. We explored how the form of the recruitment and survival functions in a general population model for ducks affected the patterns in the optimal harvest strategy, using a combination of analytical, numerical, and simulation techniques. We compared three relationships between recruitment and population density (linear, exponential, and hyperbolic) and three relationships between survival during the nonharvest season and population density (constant, logistic, and one related to the compensatory harvest mortality hypothesis). We found that the form of the component functions had a dramatic influence on the optimal harvest strategy and the ultimate equilibrium state of the system. For instance, while it is commonly assumed that a compensatory hypothesis leads to higher optimal harvest rates than an additive hypothesis, we found this to depend on the form of the recruitment function, in part because of differences in the optimal steady-state population density. This work has strong direct consequences for those developing alternative models to describe harvested systems, but it is relevant to a larger class of problems applying optimal control at the population level. Often, different functional forms will not be statistically distinguishable in the range of the data. Nevertheless, differences between the functions outside the range of the data can have an important impact on the optimal harvest strategy. Thus, development of alternative models by identifying a single functional form, then choosing different parameter combinations from extremes on the likelihood profile may end up producing alternatives that do not differ as importantly as if different functional forms had been used. We recommend that biological knowledge be used to bracket a range of possible functional forms, and robustness of conclusions be checked over this range.

  10. How General is General Strain Theory? Assessing Determinacy and Indeterminacy across Life Domains

    ERIC Educational Resources Information Center

    De Coster, Stacy; Kort-Butler, Lisa

    2006-01-01

    This article explores how assumptions of determinacy and indeterminacy apply to general strain theory. Theories assuming determinacy assert that motivational conditions determine specific forms of deviant adaptations, whereas those assuming indeterminacy propose that a given social circumstance can predispose a person toward many forms of…

  11. A nonlinear theory for spinning anisotropic beams using restrained warping functions

    NASA Technical Reports Server (NTRS)

    Ie, C. A.; Kosmatka, J. B.

    1993-01-01

    A geometrically nonlinear theory is developed for spinning anisotropic beams having arbitrary cross sections. An assumed displacement field is developed using the standard 3D kinematics relations to describe the global beam behavior supplemented with an additional field that represents the local deformation within the cross section and warping out of the cross section plane. It is assumed that the magnitude of this additional field is directly proportional to the local stress resultants. In order to take into account the effects of boundary conditions, a restraining function is introduced. This function plays the role of reducing the amount of free warping deformation throughout the field due to the restraint of the cross section(s) at the end(s) of the beam, e.g., in the case of a cantilever beam. Using a developed ordering scheme, the nonlinear strains are calculated to the third order. The FEM is developed using the weak form variational formulation. Preliminary interesting numerical results have been obtained that indicate the role of the restraining function in the case of a cantilever beam with circular cross section. These results are for the cases of a tip displacement (static) and free vibration studies for both isotropic and anisotropic materials with varied fiber orientations.

  12. Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation.

    PubMed

    García-Rodríguez, J; Martínez-Reina, J

    2017-02-01

    Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions' orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young's modulus [Formula: see text] GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young's modulus in the preferential direction of 9-16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Shih-Jung

    Dynamic strength of the High Flux Isotope Reactor (HFIR) vessel to resist hypothetical accidents is analyzed by using the method of fracture mechanics. Vessel critical stresses are estimated by applying dynamic pressure pulses of a range of magnitudes and pulse-durations. The pulses versus time functions are assumed to be step functions. The probability of vessel fracture is then calculated by assuming a distribution of possible surface cracks of different crack depths. The probability distribution function for the crack depths is based on the form that is recommended by the Marshall report. The toughness of the vessel steel used in themore » analysis is based on the projected and embrittled value after 10 effective full power years from 1986. From the study made by Cheverton, Merkle and Nanstad, the weakest point on the vessel for fracture evaluation is known to be located within the region surrounding the tangential beam tube HB3. The increase in the probability of fracture is obtained as an extension of the result from that report for the regular operating condition to include conditions of higher dynamic pressures due to accident loadings. The increase in the probability of vessel fracture is plotted for a range of hoop stresses to indicate the vessel strength against hypothetical accident conditions.« less

  14. A User’s Guide to BISAM (BIvariate SAMple): The Bivariate Data Modeling Program.

    DTIC Science & Technology

    1983-08-01

    method for the null case specified and is then used to form the bivariate density-quantile function as described in section 4. If D(U) in stage...employed assigns average ranks for tied observations. Other methods for assigning ranks to tied observations are often employed but are not attempted...34 €.. . . . .. . .. . . . ,.. . ,•. . . ... *.., .. , - . . . . - - . . .. - -. .. observations will weaken the results obtained since underlying continuous distributions are assumed. One should avoid such situations if possible. Two methods

  15. Exact solutions of kinetic equations in an autocatalytic growth model.

    PubMed

    Jędrak, Jakub

    2013-02-01

    Kinetic equations are introduced for the transition-metal nanocluster nucleation and growth mechanism, as proposed by Watzky and Finke [J. Am. Chem. Soc. 119, 10382 (1997)]. Equations of this type take the form of Smoluchowski coagulation equations supplemented with the terms responsible for the chemical reactions. In the absence of coagulation, we find complete analytical solutions of the model equations for the autocatalytic rate constant both proportional to the cluster mass, and the mass-independent one. In the former case, ξ(k)=s(k)(ξ(1))[proportionality]ξ(1)(k)/k was obtained, while in the latter, the functional form of s(k)(ξ(1)) is more complicated. In both cases, ξ(1)(t)=h(μ)(M(μ)(t)) is a function of the moments of the mass distribution. Both functions, s(k)(ξ(1)) and h(μ)(M(μ)), depend on the assumed mechanism of autocatalytic growth and monomer production, and not on other chemical reactions present in a system.

  16. Models of protocellular structures, functions and evolution

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; New, Michael H.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The central step in the origin of life was the emergence of organized structures from organic molecules available on the early earth. These predecessors to modern cells, called 'proto-cells,' were simple, membrane bounded structures able to maintain themselves, grow, divide, and evolve. Since there is no fossil record of these earliest of life forms, it is a scientific challenge to discover plausible mechanisms for how these entities formed and functioned. To meet this challenge, it is essential to create laboratory models of protocells that capture the main attributes associated with living systems, while remaining consistent with known, or inferred, protobiological conditions. This report provides an overview of a project which has focused on protocellular metabolism and the coupling of metabolism to energy transduction. We have assumed that the emergence of systems endowed with genomes and capable of Darwinian evolution was preceded by a pre-genomic phase, in which protocells functioned and evolved using mostly proteins, without self-replicating nucleic acids such as RNA.

  17. Identification of a new EF-hand superfamily member from Trypanosoma brucei

    NASA Technical Reports Server (NTRS)

    Wong, S.; Kretsinger, R. H.; Campbell, D. A.

    1992-01-01

    We identified several open reading frames between the regions encoding calmodulin and ubiquitin-EP52/1 in the genome of Trypanosoma brucei. One of these, EFH5, encodes a protein 192 amino acids long. The EFH5 transcript is present in poly(A)+ mRNA and is present at similar levels in the mammalian bloodstream form and the insect procyclic form. EFH5 contains four EF-hand homolog domains, two of which are inferred to bind Ca2+ ions. We expressed EFH5 as a fusion protein in Escherichia coli and demonstrated calcium-binding activity of the fusion protein using the 45Ca-overlay technique. The function of EFH5 remains unknown; however, as the fourth EF-hand homolog identified in trypanosomes, it attests to the broad range of functions assumed by calcium functioning as a second messenger. EFH5, which is most closely related to LAV1-2 from Physarum, represents a distinct subfamily among the EF-hand-containing proteins.

  18. Global existence of strong solutions to the three- dimensional incompressible Navier-Stokes equations with special boundary conditions

    NASA Astrophysics Data System (ADS)

    Riley, Douglas A.

    We study the three-dimensional incompressible Navier- Stokes equations in a domain of the form W'×(0,e) . First, we assume W' is a C3 bounded domain and impose no-slip boundary conditions on 6W'×(0,e ) , and periodic conditions on W'×0,e . Physically, this models fluid flow through a pipe with cross-section W' where the inlet and outlet conditions are assumed periodic. Secondly, we assume W'=(0,l4) ×(0,l5) and impose periodic boundary conditions. This problem is of interest mathematically, and has been more widely considered than the pipe flow problem. For both sets of boundary conditions, we show that a strong solution exists for all time with conditions on the initial data and forcing. We start by recalling that if the forcing function and initial condition do not depend on x3, then a global strong solution exists which also does not depend on x3. Here (x1,x2,x3) ∈W≡W'×( 0,e) . With this observation as motivation, and using an additive decomposition introduced by Raugel and Sell, we split the initial data and forcing into a portion independent of x3 and a remainder. In our first result, we impose a smallness condition on the remainder and assume the forcing function is square- integrable in time as a function into L2(W) . With these assumptions, we prove a global existence theorem that does not require a smallness condition on e or on the portion of the initial condition and forcing independent of x3. However, these quantities do affect the allowable size of the remainder. For our second result, we assume the forcing is only bounded in time as a function into L2(W) . In this case, we need a smallness condition on the initial data, the forcing, and e to obtain global existence. The interesting observation is that the allowable sizes for the initial data and forcing grow as e-->0 . Thus, we obtain a `thin-domain' result as originally obtained by Raugel and Sell. In fact, our results allow the portion of the initial data and forcing independent of x3 to grow at a faster rate as e-->0 than previously obtained.

  19. Rigorous proof for the nonlocal correlation function in the transverse Ising model with ring frustration.

    PubMed

    Dong, Jian-Jun; Zheng, Zhen-Yu; Li, Peng

    2018-01-01

    An unusual correlation function was conjectured by Campostrini et al. [Phys. Rev. E 91, 042123 (2015)PLEEE81539-375510.1103/PhysRevE.91.042123] for the ground state of a transverse Ising chain with geometrical frustration. Later, we provided a rigorous proof for it and demonstrated its nonlocal nature based on an evaluation of a Toeplitz determinant in the thermodynamic limit [J. Stat. Mech. (2016) 11310210.1088/1742-5468/2016/11/113102]. In this paper, we further prove that all the low excited energy states forming the gapless kink phase share the same asymptotic correlation function with the ground state. As a consequence, the thermal correlation function almost remains constant at low temperatures if one assumes a canonical ensemble.

  20. A flexible model for the mean and variance functions, with application to medical cost data.

    PubMed

    Chen, Jinsong; Liu, Lei; Zhang, Daowen; Shih, Ya-Chen T

    2013-10-30

    Medical cost data are often skewed to the right and heteroscedastic, having a nonlinear relation with covariates. To tackle these issues, we consider an extension to generalized linear models by assuming nonlinear associations of covariates in the mean function and allowing the variance to be an unknown but smooth function of the mean. We make no further assumption on the distributional form. The unknown functions are described by penalized splines, and the estimation is carried out using nonparametric quasi-likelihood. Simulation studies show the flexibility and advantages of our approach. We apply the model to the annual medical costs of heart failure patients in the clinical data repository at the University of Virginia Hospital System. Copyright © 2013 John Wiley & Sons, Ltd.

  1. A free boundary approach to the Rosensweig instability of ferrofluids

    NASA Astrophysics Data System (ADS)

    Parini, Enea; Stylianou, Athanasios

    2018-04-01

    We establish the existence of saddle points for a free boundary problem describing the two-dimensional free surface of a ferrofluid undergoing normal field instability. The starting point is the ferrohydrostatic equations for the magnetic potentials in the ferrofluid and air, and the function describing their interface. These constitute the strong form for the Euler-Lagrange equations of a convex-concave functional, which we extend to include interfaces that are not necessarily graphs of functions. Saddle points are then found by iterating the direct method of the calculus of variations and applying classical results of convex analysis. For the existence part, we assume a general nonlinear magnetization law; for a linear law, we also show, via convex duality, that the saddle point is a constrained minimizer of the relevant energy functional.

  2. Estimating the intensity of a cyclic Poisson process in the presence of additive and multiplicative linear trend

    NASA Astrophysics Data System (ADS)

    Wayan Mangku, I.

    2017-10-01

    In this paper we survey some results on estimation of the intensity function of a cyclic Poisson process in the presence of additive and multiplicative linear trend. We do not assume any parametric form for the cyclic component of the intensity function, except that it is periodic. Moreover, we consider the case when there is only a single realization of the Poisson process is observed in a bounded interval. The considered estimators are weakly and strongly consistent when the size of the observation interval indefinitely expands. Asymptotic approximations to the bias and variance of those estimators are presented.

  3. Quantifying wall turbulence via a symmetry approach: A Lie group theory

    NASA Astrophysics Data System (ADS)

    She, Zhen-Su; Chen, Xi; Hussain, Fazle

    2017-11-01

    We present a symmetry-based approach which yields analytic expressions for the mean velocity and kinetic energy profiles from a Lie-group analysis. After verifying the dilation-group invariance of the Reynolds averaged Navier-Stokes equation in the presence of a wall, we select a stress and energy length function as similarity variables which are assumed to have a simple dilation-invariant form. Three kinds of (local) invariant forms of the length functions are postulated, a combination of which yields a multi-layer formula giving its distribution in the entire flow region normal to the wall. The mean velocity profile is then predicted using the mean momentum equation, which yields, in particular, analytic expressions for the (universal) wall function and separate wake functions for pipe and channel - which are validated by data from direct numerical simulations (DNS). Future applications to a variety of wall flows such as flows around flat plate or airfoil, in a Rayleigh-Benard cell or Taylor-Couette system, etc., are discussed, for which the dilation group invariance is valid in the wall-normal direction.

  4. Roy-Steiner equations for pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Ditsche, C.; Hoferichter, M.; Kubis, B.; Meißner, U.-G.

    2012-06-01

    Starting from hyperbolic dispersion relations, we derive a closed system of Roy-Steiner equations for pion-nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work out analytically all kernel functions and unitarity relations required for the lowest partial waves. In order to suppress the dependence on the high energy regime we also consider once- and twice-subtracted versions of the equations, where we identify the subtraction constants with subthreshold parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these equations. As a first step towards the solution of the full system we cast the equations for the π π to overline N N partial waves into the form of a Muskhelishvili-Omnès problem with finite matching point, which we solve numerically in the single-channel approximation. We investigate in detail the role of individual contributions to our solutions and discuss some consequences for the spectral functions of the nucleon electromagnetic form factors.

  5. Hydrodynamics with strength: scaling-invariant solutions for elastic-plastic cavity expansion models

    NASA Astrophysics Data System (ADS)

    Albright, Jason; Ramsey, Scott; Baty, Roy

    2017-11-01

    Spherical cavity expansion (SCE) models are used to describe idealized detonation and high-velocity impact in a variety of materials. The common theme in SCE models is the presence of a pressure-driven cavity or void within a domain comprised of plastic and elastic response sub-regions. In past work, the yield criterion characterizing material strength in the plastic sub-region is usually taken for granted and assumed to take a known functional form restrictive to certain classes of materials, e.g. ductile metals or brittle geologic materials. Our objective is to systematically determine a general functional form for the yield criterion under the additional requirement that the SCE admits a similarity solution. Solutions determined under this additional requirement have immediate implications toward development of new compressible flow algorithm verification test problems. However, more importantly, these results also provide novel insight into modeling the yield criteria from the perspective of hydrodynamic scaling.

  6. A cosmological Slavnov-Taylor identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Hael; Holman, R.; Vardanyan, Tereza, E-mail: hcollins@andrew.cmu.edu, E-mail: rh4a@andrew.cmu.edu, E-mail: tvardany@andrew.cmu.edu

    We develop a method for treating the consistency relations of inflation that includes the full time-evolution of the state. This approach relies only on the symmetries of the inflationary setting, in particular a residual conformal symmetry in the spatial part of the metric, along with general properties which hold for any quantum field theory. As a result, the consistency relations that emerge, which are essentially the Slavnov-Taylor identities associated with this residual conformal symmetry, apply very generally: they are true of the full Green's functions, hold largely independently of the particular inflationary model, and can be used for arbitrary states.more » We illustrate these techniques by showing the form assumed by the standard consistency relation between the two and three-point functions for the primordial scalar fluctuations when they are in a Bunch-Davies state. But because we have included the full evolution of the state, this approach works for a general initial state as well and does not need to have assumed that inflation began in the Bunch-Davies state. We explain how the Slavnov-Taylor identity is modified for these more general states.« less

  7. Identification of the Thermal Conductivity Coefficient for Quasi-Stationary Two-Dimensional Heat Conduction Equations

    NASA Astrophysics Data System (ADS)

    Matsevityi, Yu. M.; Alekhina, S. V.; Borukhov, V. T.; Zayats, G. M.; Kostikov, A. O.

    2017-11-01

    The problem of identifying the time-dependent thermal conductivity coefficient in the initial-boundary-value problem for the quasi-stationary two-dimensional heat conduction equation in a bounded cylinder is considered. It is assumed that the temperature field in the cylinder is independent of the angular coordinate. To solve the given problem, which is related to a class of inverse problems, a mathematical approach based on the method of conjugate gradients in a functional form is being developed.

  8. Spectral and textural processing of ERTS imagery. [Kansas

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Bosley, R. J.

    1974-01-01

    A procedure is developed to simultaneously extract textural features from all bands of ERTS multispectral scanner imagery for automatic analysis. Multi-images lead to excessively large grey tone N-tuple co-occurrence matrices; therefore, neighboring grey N-tuple differences are measured and an ellipsoidally symmetric functional form is assumed for the co-occurrence distribution of multiimage greytone N-tuple differences. On the basis of past data the ellipsoidally symmetric approximation is shown to be reasonable. Initial evaluation of the procedure is encouraging.

  9. Propagation of sound waves through a linear shear layer: A closed form solution

    NASA Technical Reports Server (NTRS)

    Scott, J. N.

    1978-01-01

    Closed form solutions are presented for sound propagation from a line source in or near a shear layer. The analysis was exact for all frequencies and was developed assuming a linear velocity profile in the shear layer. This assumption allowed the solution to be expressed in terms of parabolic cyclinder functions. The solution is presented for a line monopole source first embedded in the uniform flow and then in the shear layer. Solutions are also discussed for certain types of dipole and quadrupole sources. Asymptotic expansions of the exact solutions for small and large values of Strouhal number gave expressions which correspond to solutions previously obtained for these limiting cases.

  10. A power-law coupled three-form dark energy model

    NASA Astrophysics Data System (ADS)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He

    2018-02-01

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω _{m0} and the present three-form field κ X0 gives stringent constraints on the coupling constant, - 0.017< λ <0.047 (2σ confidence level), by which we present the model's applicable parameter range.

  11. Effects of inspections in small world social networks with different contagion rules

    NASA Astrophysics Data System (ADS)

    Muñoz, Francisco; Nuño, Juan Carlos; Primicerio, Mario

    2015-08-01

    We study the way the structure of social links determines the effects of random inspections on a population formed by two types of individuals, e.g. tax-payers and tax-evaders (free riders). It is assumed that inspections occur in a larger scale than the population relaxation time and, therefore, a unique initial inspection is performed on a population that is completely formed by tax-evaders. Besides, the inspected tax-evaders become tax-payers forever. The social network is modeled as a Watts-Strogatz Small World whose topology can be tuned in terms of a parameter p ∈ [ 0 , 1 ] from regular (p = 0) to random (p = 1). Two local contagion rules are considered: (i) a continuous one that takes the proportion of neighbors to determine the next status of an individual (node) and (ii) a discontinuous (threshold rule) that assumes a minimum number of neighbors to modify the current state. In the former case, irrespective of the inspection intensity ν, the equilibrium population is always formed by tax-payers. In the mean field approach, we obtain the characteristic time of convergence as a function of ν and p. For the threshold contagion rule, we show that the response of the population to the intensity of inspections ν is a function of the structure of the social network p and the willingness of the individuals to change their state, r. It is shown that sharp transitions occur at critical values of ν that depends on p and r. We discuss these results within the context of tax evasion and fraud where the strategies of inspection could be of major relevance.

  12. Free Vibration Study of Anti-Symmetric Angle-Ply Laminated Plates under Clamped Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Viswanathan, K. K.; Karthik, K.; Sanyasiraju, Y. V. S. S.; Aziz, Z. A.

    2016-11-01

    Two type of numerical approach namely, Radial Basis Function and Spline approximation, used to analyse the free vibration of anti-symmetric angle-ply laminated plates under clamped boundary conditions. The equations of motion are derived using YNS theory under first order shear deformation. By assuming the solution in separable form, coupled differential equations obtained in term of mid-plane displacement and rotational functions. The coupled differential is then approximated using Spline function and radial basis function to obtain the generalize eigenvalue problem and parametric studies are made to investigate the effect of aspect ratio, length-to-thickness ratio, number of layers, fibre orientation and material properties with respect to the frequency parameter. Some results are compared with the existing literature and other new results are given in tables and graphs.

  13. Density functional theory of freezing of a system of highly elongated ellipsoidal oligomer solutions

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shikha; Mishra, Pankaj

    2017-05-01

    We have used the density functional theory of freezing to study the liquid crystalline phase behavior of a system of highly elongated ellipsoidal conjugated oligomers dispersed in three different solvents namely chloroform, toluene and their equimolar mixture. The molecules are assumed to interact via solvent-implicit coarse-grained Gay-Berne potential. Pair correlation functions needed as input in the density functional theory have been calculated using the Percus-Yevick (PY) integral equation theory. Considering the isotropic and nematic phases, we have calculated the isotropic-nematic phase transition parameters and presented the temperature-density and pressure-temperature phase diagrams. Different solvent conditions are found not only to affect the transition parameters but also determine the capability of oligomers to form nematic phase in various thermodynamic conditions. In principle, our results are verifiable through computer simulations.

  14. Improving stochastic estimates with inference methods: calculating matrix diagonals.

    PubMed

    Selig, Marco; Oppermann, Niels; Ensslin, Torsten A

    2012-02-01

    Estimating the diagonal entries of a matrix, that is not directly accessible but only available as a linear operator in the form of a computer routine, is a common necessity in many computational applications, especially in image reconstruction and statistical inference. Here, methods of statistical inference are used to improve the accuracy or the computational costs of matrix probing methods to estimate matrix diagonals. In particular, the generalized Wiener filter methodology, as developed within information field theory, is shown to significantly improve estimates based on only a few sampling probes, in cases in which some form of continuity of the solution can be assumed. The strength, length scale, and precise functional form of the exploited autocorrelation function of the matrix diagonal is determined from the probes themselves. The developed algorithm is successfully applied to mock and real world problems. These performance tests show that, in situations where a matrix diagonal has to be calculated from only a small number of computationally expensive probes, a speedup by a factor of 2 to 10 is possible with the proposed method. © 2012 American Physical Society

  15. Heterodyne efficiency of a coherent free-space optical communication model through atmospheric turbulence.

    PubMed

    Ren, Yongxiong; Dang, Anhong; Liu, Ling; Guo, Hong

    2012-10-20

    The heterodyne efficiency of a coherent free-space optical (FSO) communication model under the effects of atmospheric turbulence and misalignment is studied in this paper. To be more general, both the transmitted beam and local oscillator beam are assumed to be partially coherent based on the Gaussian Schell model (GSM). By using the derived analytical form of the cross-spectral function of a GSM beam propagating through atmospheric turbulence, a closed-form expression of heterodyne efficiency is derived, assuming that the propagation directions for the transmitted and local oscillator beams are slightly different. Then the impacts of atmospheric turbulence, configuration of the two beams (namely, beam radius and spatial coherence width), detector radius, and misalignment angle over heterodyne efficiency are examined. Numerical results suggest that the beam radius of the two overlapping beams can be optimized to achieve a maximum heterodyne efficiency according to the turbulence conditions and the detector radius. It is also found that atmospheric turbulence conditions will significantly degrade the efficiency of heterodyne detection, and compared to fully coherent beams, partially coherent beams are less sensitive to the changes in turbulence conditions and more robust against misalignment at the receiver.

  16. Human factors workplace considerations

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1988-01-01

    Computer workstations assume many different forms and play different functions today. In order for them to assume the effective interface role which they should play they must be properly designed to take into account the ubiguitous human factor. In addition, the entire workplace in which they are used should be properly configured so as to enhance the operational features of the individual workstation where possible. A number of general human factors workplace considerations are presented. This ongoing series of notes covers such topics as achieving comfort and good screen visibility, hardware issues (e.g., mouse maintenance), screen symbology features (e.g., labels, cursors, prompts), and various miscellaneous subjects. These notes are presented here in order to: (1) illustrate how one's workstation can be used to support telescience activities of many other people working within an organization, and (2) provide a single complete set of considerations for future reference.

  17. Computational procedure of optimal inventory model involving controllable backorder rate and variable lead time with defective units

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Chuan; Wu, Jong-Wuu; Tsou, Hsin-Hui; Lei, Chia-Ling

    2012-10-01

    This article considers that the number of defective units in an arrival order is a binominal random variable. We derive a modified mixture inventory model with backorders and lost sales, in which the order quantity and lead time are decision variables. In our studies, we also assume that the backorder rate is dependent on the length of lead time through the amount of shortages and let the backorder rate be a control variable. In addition, we assume that the lead time demand follows a mixture of normal distributions, and then relax the assumption about the form of the mixture of distribution functions of the lead time demand and apply the minimax distribution free procedure to solve the problem. Furthermore, we develop an algorithm procedure to obtain the optimal ordering strategy for each case. Finally, three numerical examples are also given to illustrate the results.

  18. Metastable phase equilibria in co-deposited Ni(1-x)Zr(x) thin films

    NASA Astrophysics Data System (ADS)

    Rubin, J. B.; Schwarz, R. B.

    We determine the glass forming range (GFR) of co-deposited Ni(1-x)Zr(x) (0 less than x less than 1) thin films by measuring their electrical resistance during in situ constant-heating-rate anneals. The measured GFR is continuous for 0.10 less than x less than 0.87. We calculate the GFR of Ni-Zr melts as a function of composition and cooling rate using homogeneous nucleation theory and a published CALPHAD-type thermodynamic modeling of the equilibrium phase diagram. Assuming that the main competition to the retention of the amorphous structure during the cooling of the liquid comes from the partitionless crystallization of the terminal solid solutions, we calculate that for dT/dt = 10(exp 12) K/s, the GFR extends to x = 0.05 and x = 0.96. Better agreement with the measured values is obtained assuming a lower effective cooling rate during the condensation of the films.

  19. Nonlinear equations of dynamics for spinning paraboloidal antennas

    NASA Technical Reports Server (NTRS)

    Utku, S.; Shoemaker, W. L.; Salama, M.

    1983-01-01

    The nonlinear strain-displacement and velocity-displacement relations of spinning imperfect rotational paraboloidal thin shell antennas are derived for nonaxisymmetrical deformations. Using these relations with the admissible trial functions in the principle functional of dynamics, the nonlinear equations of stress inducing motion are expressed in the form of a set of quasi-linear ordinary differential equations of the undetermined functions by means of the Rayleigh-Ritz procedure. These equations include all nonlinear terms up to and including the third degree. Explicit expressions are given for the coefficient matrices appearing in these equations. Both translational and rotational off-sets of the axis of revolution (and also the apex point of the paraboloid) with respect to the spin axis are considered. Although the material of the antenna is assumed linearly elastic, it can be anisotropic.

  20. FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. II. THE EFFECT OF DUST HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Andrea; Evans, Neal J.; Martel, Hugo

    2010-02-20

    We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 M{sub sun} and 671 M{sub sun}, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In themore » isothermal simulation, we do not form any objects with masses above 1 M{sub sun}. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects ({approx}20 M{sub sun}) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.« less

  1. Characterizing nonconstant instrumental variance in emerging miniaturized analytical techniques.

    PubMed

    Noblitt, Scott D; Berg, Kathleen E; Cate, David M; Henry, Charles S

    2016-04-07

    Measurement variance is a crucial aspect of quantitative chemical analysis. Variance directly affects important analytical figures of merit, including detection limit, quantitation limit, and confidence intervals. Most reported analyses for emerging analytical techniques implicitly assume constant variance (homoskedasticity) by using unweighted regression calibrations. Despite the assumption of constant variance, it is known that most instruments exhibit heteroskedasticity, where variance changes with signal intensity. Ignoring nonconstant variance results in suboptimal calibrations, invalid uncertainty estimates, and incorrect detection limits. Three techniques where homoskedasticity is often assumed were covered in this work to evaluate if heteroskedasticity had a significant quantitative impact-naked-eye, distance-based detection using paper-based analytical devices (PADs), cathodic stripping voltammetry (CSV) with disposable carbon-ink electrode devices, and microchip electrophoresis (MCE) with conductivity detection. Despite these techniques representing a wide range of chemistries and precision, heteroskedastic behavior was confirmed for each. The general variance forms were analyzed, and recommendations for accounting for nonconstant variance discussed. Monte Carlo simulations of instrument responses were performed to quantify the benefits of weighted regression, and the sensitivity to uncertainty in the variance function was tested. Results show that heteroskedasticity should be considered during development of new techniques; even moderate uncertainty (30%) in the variance function still results in weighted regression outperforming unweighted regressions. We recommend utilizing the power model of variance because it is easy to apply, requires little additional experimentation, and produces higher-precision results and more reliable uncertainty estimates than assuming homoskedasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Modeling the effects of AADT on predicting multiple-vehicle crashes at urban and suburban signalized intersections.

    PubMed

    Chen, Chen; Xie, Yuanchang

    2016-06-01

    Annual Average Daily Traffic (AADT) is often considered as a main covariate for predicting crash frequencies at urban and suburban intersections. A linear functional form is typically assumed for the Safety Performance Function (SPF) to describe the relationship between the natural logarithm of expected crash frequency and covariates derived from AADTs. Such a linearity assumption has been questioned by many researchers. This study applies Generalized Additive Models (GAMs) and Piecewise Linear Negative Binomial (PLNB) regression models to fit intersection crash data. Various covariates derived from minor-and major-approach AADTs are considered. Three different dependent variables are modeled, which are total multiple-vehicle crashes, rear-end crashes, and angle crashes. The modeling results suggest that a nonlinear functional form may be more appropriate. Also, the results show that it is important to take into consideration the joint safety effects of multiple covariates. Additionally, it is found that the ratio of minor to major-approach AADT has a varying impact on intersection safety and deserves further investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Approximate Bayesian computation in large-scale structure: constraining the galaxy-halo connection

    NASA Astrophysics Data System (ADS)

    Hahn, ChangHoon; Vakili, Mohammadjavad; Walsh, Kilian; Hearin, Andrew P.; Hogg, David W.; Campbell, Duncan

    2017-08-01

    Standard approaches to Bayesian parameter inference in large-scale structure assume a Gaussian functional form (chi-squared form) for the likelihood. This assumption, in detail, cannot be correct. Likelihood free inferences such as approximate Bayesian computation (ABC) relax these restrictions and make inference possible without making any assumptions on the likelihood. Instead ABC relies on a forward generative model of the data and a metric for measuring the distance between the model and data. In this work, we demonstrate that ABC is feasible for LSS parameter inference by using it to constrain parameters of the halo occupation distribution (HOD) model for populating dark matter haloes with galaxies. Using specific implementation of ABC supplemented with population Monte Carlo importance sampling, a generative forward model using HOD and a distance metric based on galaxy number density, two-point correlation function and galaxy group multiplicity function, we constrain the HOD parameters of mock observation generated from selected 'true' HOD parameters. The parameter constraints we obtain from ABC are consistent with the 'true' HOD parameters, demonstrating that ABC can be reliably used for parameter inference in LSS. Furthermore, we compare our ABC constraints to constraints we obtain using a pseudo-likelihood function of Gaussian form with MCMC and find consistent HOD parameter constraints. Ultimately, our results suggest that ABC can and should be applied in parameter inference for LSS analyses.

  4. Closed-form eigensolutions of nonviscously, nonproportionally damped systems based on continuous damping sensitivity

    NASA Astrophysics Data System (ADS)

    Lázaro, Mario

    2018-01-01

    In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.

  5. Foetal hepatic progenitor cells assume a cholangiocytic cell phenotype during two-dimensional pre-culture.

    PubMed

    Anzai, Kazuya; Chikada, Hiromi; Tsuruya, Kota; Ida, Kinuyo; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tesuya; Kamiya, Akihide

    2016-06-23

    Liver consists of parenchymal hepatocytes and other cells. Liver progenitor cell (LPC) is the origin of both hepatocytes and cholangiocytic cells. The analyses of mechanism regulating differentiation of LPCs into these functional cells are important for liver regenerative therapy using progenitor cells. LPCs in adult livers were found to form cysts with cholangiocytic characteristics in 3D culture. In contrast, foetal LPCs cannot form these cholangiocytic cysts in the same culture. Thus, the transition of foetal LPCs into cholangiocytic progenitor cells might occur during liver development. Primary CD45(-)Ter119(-)Dlk1(+) LPCs derived from murine foetal livers formed ALBUMIN (ALB)(+)CYTOKERATIN (CK)19(-) non-cholangiocytic cysts within 3D culture. In contrast, when foetal LPCs were pre-cultured on gelatine-coated dishes, they formed ALB(-)CK19(+) cholangiocytic cysts. When hepatocyte growth factor or oncostatin M, which are inducers of hepatocytic differentiation, was added to pre-culture, LPCs did not form cholangiocytic cysts. These results suggest that the pre-culture on gelatine-coated dishes changed the characteristics of foetal LPCs into cholangiocytic cells. Furthermore, neonatal liver progenitor cells were able to form cholangiocytic cysts in 3D culture without pre-culture. It is therefore possible that the pre-culture of mid-foetal LPCs in vitro functioned as a substitute for the late-foetal maturation step in vivo.

  6. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE PAGES

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.; ...

    2017-04-12

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  7. Higher dimensional curved domain walls on Kähler surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id; Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id; Radjabaycolle, Flinn C.

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  8. "Washing-out" ionic liquids from polyethylene glycol to form aqueous biphasic systems.

    PubMed

    Tomé, Luciana I N; Pereira, Jorge F B; Rogers, Robin D; Freire, Mara G; Gomes, José R B; Coutinho, João A P

    2014-02-14

    The molecular-level mechanisms behind the formation of aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and polymers are hitherto not completely understood. For the first time, it is herein shown that polymer-IL-based ABS are a result of a "washing-out" phenomenon, and not of a salting-out effect of the IL over the polymer as assumed in the past few years. Novel evidence is herein provided by experimental results combined with molecular dynamics (MD) simulations and density functional theory (DFT) calculations.

  9. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  10. Control of the Polarity of the Interplanetary Magnetic Field on the Dawn-Dusk Symmetry of the Magnetopause

    NASA Astrophysics Data System (ADS)

    Shue, J.; Jhuang, B.; Song, P.; Safrankova, J.; Nemecek, Z.; Russell, C. T.; Chen, S.

    2008-12-01

    The solar wind dynamic pressure is reduced when the solar wind flows around the magnetosphere due to the diversion of the flows. The magnetopause is the boundary where the reduced dynamic pressure is balanced with the magnetic pressure of the compressed magnetosphere by the solar wind. The size and shape of the magnetopause have long been considered among the most important parameters in Solar Terrestrial physics. Previous models of the size and shape of the magnetopause often assumed the axis- symmetry of the magnetopause with respect to the Sun-Earth line. With a large number of magnetopause crossings by ISEE-1 and -2, AMPTE/IRM, Hawkeye, Geotail, Interball-1, and Magion-4, we are able to consider the asymmetry of the magnetopuase. In the Shue et al. [1997] model, the magnetopause was modeled by two parameters, r0 and alpha, representing the subsolar standoff distance and the flaring level of the magnetopause, respectively. Parameter alpha was assumed to be independent of phi in the Shue et al. [1997] model, where phi is the angle between the Z axis and the mapping of the radial vector of the magnetopause on the YZ plane. In the present study we allow alpha to be a function of phi. We separate crossings with different phis and fit them in each bin to the new functional form proposed by Shue et al. [1997]. We find that the magnetopause is symmetric in the dawn-dusk direction for northward IMF. However, its size on the dawnside becomes larger when the IMF is southward. The function of alpha in terms of phi can be combined with the 2-D Shue et al. [1997] model into a 3-D magnetopause model. (Shue, J.-H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer, A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497, 1997.)

  11. Strong Clustering of Lyman Break Galaxies around Luminous Quasars at Z ˜ 4

    NASA Astrophysics Data System (ADS)

    García-Vergara, Cristina; Hennawi, Joseph F.; Barrientos, L. Felipe; Rix, Hans-Walter

    2017-10-01

    In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z ˜ 4 are the most strongly clustered population known, and should thus reside in massive dark matter halos surrounded by large overdensities of galaxies, implying a strong QSO-galaxy cross-correlation function. We observed six z ˜ 4 QSO fields with VLT/FORS, exploiting a novel set of narrow-band filters custom designed to select Lyman Break Galaxies (LBGs) in a thin redshift slice of {{Δ }}z˜ 0.3, mitigating the projection effects that have limited the sensitivity of previous searches for galaxies around z≳ 4 QSOs. We find that LBGs are strongly clustered around QSOs, and present the first measurement of the QSO-LBG cross-correlation function at z ˜ 4, on scales of 0.1≲ R≲ 9 {h}-1 {Mpc} (comoving). Assuming a power-law form for the cross-correlation function ξ ={(r/{r}0{QG})}γ , we measure {r}0{QG}={8.83}-1.51+1.39 {h}-1 {Mpc} for a fixed slope of γ =2.0. This result is in agreement with the expected cross-correlation length deduced from measurements of the QSO and LBG auto-correlation function, and assuming a deterministic bias model. We also measure a strong auto-correlation of LBGs in our QSO fields, finding {r}0{GG}={21.59}-1.69+1.72 {h}-1 {Mpc} for a fixed slope of γ =1.5, which is ˜4 times larger than the LBG auto-correlation length in blank fields, providing further evidence that QSOs reside in overdensities of LBGs. Our results qualitatively support a picture where luminous QSOs inhabit exceptionally massive ({M}{halo}> {10}12 {M}⊙ ) dark matter halos at z ˜ 4.

  12. A Mathematical Model for the Control of Infectious Diseases: Effects of TV and Radio Advertisements

    NASA Astrophysics Data System (ADS)

    Misra, A. K.; Rai, Rajanish Kumar

    The broadcast of awareness programs through TV and radio advertisements (ads) makes people aware and brings behavioral changes among the individuals regarding the risk of infection and its control mechanisms. In this paper, we propose and analyze a nonlinear mathematical model for the control of infectious diseases due to impact of TV and radio advertisements. It is assumed that susceptible individuals are vulnerable to infection as well as information through TV and radio ads and they contract infection via direct contact with infected individuals. In the model formulation, it is also assumed that the growth rates in cumulative number of TV and radio ads are proportional to the number of infected individuals with decreasing function of aware individuals. Further, it is assumed that awareness among susceptible individuals induces behavioral changes and they form separate aware classes, which are fully protected from infection as they use precautionary measures for their protection during the infection period. The feasibility of equilibria and their stability properties are discussed. It is shown that the augmentation in dissemination rate of awareness among susceptible individuals due to TV and radio ads may cause stability switches through Hopf-bifurcation. The analytical findings are supported through numerical simulations.

  13. Extending existing structural identifiability analysis methods to mixed-effects models.

    PubMed

    Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D

    2018-01-01

    The concept of structural identifiability for state-space models is expanded to cover mixed-effects state-space models. Two methods applicable for the analytical study of the structural identifiability of mixed-effects models are presented. The two methods are based on previously established techniques for non-mixed-effects models; namely the Taylor series expansion and the input-output form approach. By generating an exhaustive summary, and by assuming an infinite number of subjects, functions of random variables can be derived which in turn determine the distribution of the system's observation function(s). By considering the uniqueness of the analytical statistical moments of the derived functions of the random variables, the structural identifiability of the corresponding mixed-effects model can be determined. The two methods are applied to a set of examples of mixed-effects models to illustrate how they work in practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. M-dwarf exoplanet surface density distribution. A log-normal fit from 0.07 to 400 AU

    NASA Astrophysics Data System (ADS)

    Meyer, Michael R.; Amara, Adam; Reggiani, Maddalena; Quanz, Sascha P.

    2018-04-01

    Aims: We fit a log-normal function to the M-dwarf orbital surface density distribution of gas giant planets, over the mass range 1-10 times that of Jupiter, from 0.07 to 400 AU. Methods: We used a Markov chain Monte Carlo approach to explore the likelihoods of various parameter values consistent with point estimates of the data given our assumed functional form. Results: This fit is consistent with radial velocity, microlensing, and direct-imaging observations, is well-motivated from theoretical and phenomenological points of view, and predicts results of future surveys. We present probability distributions for each parameter and a maximum likelihood estimate solution. Conclusions: We suggest that this function makes more physical sense than other widely used functions, and we explore the implications of our results on the design of future exoplanet surveys.

  15. The structure and evolution of plankton communities

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.

    New understanding of the circulation of ancient oceans is not yet matched by progress in our understanding of their pelagic ecology, though it was the planktonic ecosystems that generated our offshore oil and gas reserves. Can we assume that present-day models of ecosystem function are also valid for ancient seas? This question is addressed by a study of over 4000 plankton samples to derive a comprehensive, global description of zooplankton community structure in modern oceans: this shows that copepods form only 50% of the biomass of all plankton, ranging from 70% in polar to 35% in tropical seas. Comparable figures are derived from 14 other taxonomic categories of zooplankton. For trophic groupings, the data indicate globally: geletinous predators - 14%; gelatinous herbivores - 4%; raptorial predators - 33%; macrofiltering herbivores - 20%; macrofiltering omnivores - 25%; and detritivores - 3%. A simple, idealized model for the modern pelagic ecosystem is derived from these percentages which indicates that metazooplankton are not the most important consumers of pico- and nano-plankton production which itself probably constitutes 90% of primary production in warm oceans. This model is then compared with candidate life-forms available in Palaeozoic and Mesozoic oceans to determine to what extent it is also valid for ancient ecosystems: it is concluded that it is probably unnecessary to postulate models fundamentally differing from it in order to accommodate the life-forms, both protozoic and metazoic, known to have populated ancient seas. Remarkably few life-forms have existed which cannot be paralleled in the modern ocean, which contains remarkably few life-forms which cannot be paralleled in the Palaeozoic ocean. As a first assumption, then, it is reasonable to assume that energy pathways were similar in ancient oceans to those we study today.

  16. Evolution of the snake body form reveals homoplasy in amniote Hox gene function.

    PubMed

    Head, Jason J; Polly, P David

    2015-04-02

    Hox genes regulate regionalization of the axial skeleton in vertebrates, and changes in their expression have been proposed to be a fundamental mechanism driving the evolution of new body forms. The origin of the snake-like body form, with its deregionalized pre-cloacal axial skeleton, has been explained as either homogenization of Hox gene expression domains, or retention of standard vertebrate Hox domains with alteration of downstream expression that suppresses development of distinct regions. Both models assume a highly regionalized ancestor, but the extent of deregionalization of the primaxial domain (vertebrae, dorsal ribs) of the skeleton in snake-like body forms has never been analysed. Here we combine geometric morphometrics and maximum-likelihood analysis to show that the pre-cloacal primaxial domain of elongate, limb-reduced lizards and snakes is not deregionalized compared with limbed taxa, and that the phylogenetic structure of primaxial morphology in reptiles does not support a loss of regionalization in the evolution of snakes. We demonstrate that morphometric regional boundaries correspond to mapped gene expression domains in snakes, suggesting that their primaxial domain is patterned by a normally functional Hox code. Comparison of primaxial osteology in fossil and modern amniotes with Hox gene distributions within Amniota indicates that a functional, sequentially expressed Hox code patterned a subtle morphological gradient along the anterior-posterior axis in stem members of amniote clades and extant lizards, including snakes. The highly regionalized skeletons of extant archosaurs and mammals result from independent evolution in the Hox code and do not represent ancestral conditions for clades with snake-like body forms. The developmental origin of snakes is best explained by decoupling of the primaxial and abaxial domains and by increases in somite number, not by changes in the function of primaxial Hox genes.

  17. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives.

    PubMed

    Cammi, R

    2009-10-28

    We present a general formulation of the coupled-cluster (CC) theory for a molecular solute described within the framework of the polarizable continuum model (PCM). The PCM-CC theory is derived in its complete form, called PTDE scheme, in which the correlated electronic density is used to have a self-consistent reaction field, and in an approximate form, called PTE scheme, in which the PCM-CC equations are solved assuming the fixed Hartree-Fock solvent reaction field. Explicit forms for the PCM-CC-PTDE equations are derived at the single and double (CCSD) excitation level of the cluster operator. At the same level, explicit equations for the analytical first derivatives of the PCM basic energy functional are presented, and analytical second derivatives are also discussed. The corresponding PCM-CCSD-PTE equations are given as a special case of the full theory.

  18. Invariant polygons in systems with grazing-sliding.

    PubMed

    Szalai, R; Osinga, H M

    2008-06-01

    The paper investigates generic three-dimensional nonsmooth systems with a periodic orbit near grazing-sliding. We assume that the periodic orbit is unstable with complex multipliers so that two dominant frequencies are present in the system. Because grazing-sliding induces a dimension loss and the instability drives every trajectory into sliding, the system has an attractor that consists of forward sliding orbits. We analyze this attractor in a suitably chosen Poincare section using a three-parameter generalized map that can be viewed as a normal form. We show that in this normal form the attractor must be contained in a finite number of lines that intersect in the vertices of a polygon. However the attractor is typically larger than the associated polygon. We classify the number of lines involved in forming the attractor as a function of the parameters. Furthermore, for fixed values of parameters we investigate the one-dimensional dynamics on the attractor.

  19. Nonlinear multidimensional cosmological models with form fields: Stabilization of extra dimensions and the cosmological constant problem

    NASA Astrophysics Data System (ADS)

    Günther, U.; Moniz, P.; Zhuk, A.

    2003-08-01

    We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields in the action functional. In our scenario it is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized. In particular, stabilization is possible for any sign of the internal space curvature, the bulk cosmological constant, and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density. Finally, we discuss the restrictions on the parameters of the considered nonlinear models and how they follow from the connection between the D-dimensional and the four-dimensional fundamental mass scales.

  20. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara, E-mail: petri@saao.ac.za

    2014-12-20

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-lawmore » distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems.« less

  1. A theory of biological relativity: no privileged level of causation.

    PubMed

    Noble, Denis

    2012-02-06

    Must higher level biological processes always be derivable from lower level data and mechanisms, as assumed by the idea that an organism is completely defined by its genome? Or are higher level properties necessarily also causes of lower level behaviour, involving actions and interactions both ways? This article uses modelling of the heart, and its experimental basis, to show that downward causation is necessary and that this form of causation can be represented as the influences of initial and boundary conditions on the solutions of the differential equations used to represent the lower level processes. These insights are then generalized. A priori, there is no privileged level of causation. The relations between this form of 'biological relativity' and forms of relativity in physics are discussed. Biological relativity can be seen as an extension of the relativity principle by avoiding the assumption that there is a privileged scale at which biological functions are determined.

  2. A theory of biological relativity: no privileged level of causation

    PubMed Central

    Noble, Denis

    2012-01-01

    Must higher level biological processes always be derivable from lower level data and mechanisms, as assumed by the idea that an organism is completely defined by its genome? Or are higher level properties necessarily also causes of lower level behaviour, involving actions and interactions both ways? This article uses modelling of the heart, and its experimental basis, to show that downward causation is necessary and that this form of causation can be represented as the influences of initial and boundary conditions on the solutions of the differential equations used to represent the lower level processes. These insights are then generalized. A priori, there is no privileged level of causation. The relations between this form of ‘biological relativity’ and forms of relativity in physics are discussed. Biological relativity can be seen as an extension of the relativity principle by avoiding the assumption that there is a privileged scale at which biological functions are determined. PMID:23386960

  3. Critical Casimir force scaling functions of the two-dimensional Ising model at finite aspect ratios

    NASA Astrophysics Data System (ADS)

    Hobrecht, Hendrik; Hucht, Alfred

    2017-02-01

    We present a systematic method to calculate the universal scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representation of the corresponding partition function Z on an L× M square lattice, wrapped around a torus with aspect ratio ρ =L/M . By assuming periodic boundary conditions and translational invariance in at least one direction, we systematically reduce the problem to a 2× 2 transfer matrix representation. For the torus we first reproduce the results by Kaufman and then give a detailed calculation of the scaling functions. Afterwards we present the calculation for the cylinder with open boundary conditions. All scaling functions are given in form of combinations of infinite products and integrals. Our results reproduce the known scaling functions in the limit of thin films ρ \\to 0 . Additionally, for the cylinder at criticality our results confirm the predictions from conformal field theory.

  4. Solving differential equations with unknown constitutive relations as recurrent neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagge, Tobias J.; Stinis, Panagiotis; Yeung, Enoch H.

    We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and use a recurrent neural network to “learn” the reaction rate from this data. This is achieved by including discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow’s recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learningmore » literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differ in purpose, and require modified training strategies.« less

  5. Non-minimally coupled scalar field in Kantowski-Sachs model and symmetry analysis

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Lakshmanan, Muthusamy; Chakraborty, Subenoy

    2018-06-01

    The paper deals with a non-minimally coupled scalar field in the background of homogeneous but anisotropic Kantowski-Sachs space-time model. The form of the coupling function of the scalar field with gravity and the potential function of the scalar field are not assumed phenomenologically, rather they are evaluated by imposing Noether symmetry to the Lagrangian of the present physical system. The physical system gets considerable mathematical simplification by a suitable transformation of the augmented variables (a , b , ϕ) →(u , v , w) and by the use of the conserved quantities due to the geometrical symmetry. Finally, cosmological solutions are evaluated and analyzed from the point of view of the present evolution of the Universe.

  6. Transverse particle acceleration and diffusion in a planetary magnetic field

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1994-01-01

    A general model of particle acceleration by plasma waves coupled with adiabatic radial diffusion in a planetary magnetic field is developed. The model assumes that a spectrum of lower hybird waves is present to resonantly accelerate ions transverse to the magnetic field. The steady state Green's function for the combined radial diffusion and wave acceleration equation is found in terms of a series expansion. The results provide a rigorous demonstration of how a quasi-Maxwellian distribution function is formed in the absence of particle collisons and elucidate the nature of turbulent heating of magnetospheric plasmas. The solution is applied to the magnetosphere of Neptune for which a number of examples are given illustrating how the spectrum of pickup N(+) ions from Triton evolves.

  7. Short gamma-ray bursts at the dawn of the gravitational wave era

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Salafia, O. S.; Pescalli, A.; Ghisellini, G.; Salvaterra, R.; Chassande-Mottin, E.; Colpi, M.; Nappo, F.; D'Avanzo, P.; Melandri, A.; Bernardini, M. G.; Branchesi, M.; Campana, S.; Ciolfi, R.; Covino, S.; Götz, D.; Vergani, S. D.; Zennaro, M.; Tagliaferri, G.

    2016-10-01

    We derive the luminosity function φ(L) and redshift distribution Ψ(z) of short gamma-ray bursts (SGRBs) using all the available observer-frame constraints (I.e. peak flux, fluence, peak energy and duration distributions) of the large population of Fermi SGRBs and the rest-frame properties of a complete sample of SGRBs detected by Swift. We show that a steep φ(L) ∝ L- α with α ≥ 2.0 is excluded if the full set of constraints is considered. We implement a Markov chain Monte Carlo method to derive the φ(L) and Ψ(z) functions assuming intrinsic Ep-Liso and Ep-Eiso correlations to hold or, alternatively, that the distributions of intrinsic peak energy, luminosity, and duration are independent. To make our results independent from assumptions on the progenitor (NS-NS binary mergers or other channels) and from uncertainties on the star formation history, we assume a parametric form for the redshift distribution of the population of SGRBs. We find that a relatively flat luminosity function with slope ~0.5 below a characteristic break luminosity ~3 × 1052 erg s-1 and a redshift distribution of SGRBs peaking at z ~ 1.5-2 satisfy all our constraints. These results also hold if no Ep-Liso and Ep-Eiso correlations are assumed and they do not depend on the choice of the minimum luminosity of the SGRB population. We estimate, within ~200 Mpc (I.e. the design aLIGO range for the detection of gravitational waves produced by NS-NS merger events), that there should be 0.007-0.03 SGRBs yr-1 detectable as γ-ray events. Assuming current estimates of NS-NS merger rates and that all NS-NS mergers lead to a SGRB event, we derive a conservative estimate of the average opening angle of SGRBs ⟨ θjet ⟩ ~ 3°-6°. The luminosity function implies a prompt emission average luminosity ⟨L⟩ ~ 1.5 × 1052 erg s-1, higher by nearly two orders of magnitude than previous findings in the literature, which greatly enhances the chance of observing SGRB "orphan" afterglows. Effort should go in the direction of finding and identifying such orphan afterglows as counterparts of GW events.

  8. The Arches cluster out to its tidal radius: dynamical mass segregation and the effect of the extinction law on the stellar mass function

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Stolte, A.; Brandner, W.; Hußmann, B.; Motohara, K.

    2013-08-01

    The Galactic center is the most active site of star formation in the Milky Way, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic center through the Galactic disk, knowledge of extinction is crucial when studying this region. The Arches cluster is a young, massive starburst cluster near the Galactic center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/CISCO J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, we show that the difference can reach up to 30% for individually derived stellar masses and ΔAKs ~ 1 magnitude in acquired Ks-band extinction, while the present-day mass function slope changes by ~ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law increases from a flat slope of αNishi = -1.50 ± 0.35 in the core (r < 0.2 pc) to αNishi = -2.21 ± 0.27 in the intermediate annulus (0.2 < r < 0.4 pc), where the Salpeter slope is -2.3. The mass function steepens to αNishi = -3.21 ± 0.30 in the outer annulus (0.4 < r < 1.5 pc), indicating that the outer cluster region is depleted of high-mass stars. This picture is consistent with mass segregation owing to the dynamical evolution of the cluster. Based on observations collected at the ESO/VLT under Program ID 081.D-0572(B) (PI: Brandner) and ID 71.C-0344(A) (PI: Eisenhauer, retrieved from the ESO archive). Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.Full Table 5 is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A26

  9. Silsesquioxane-derived ceramic fibres

    NASA Technical Reports Server (NTRS)

    Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.

    1991-01-01

    Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.

  10. General algebraic method applied to control analysis of complex engine types

    NASA Technical Reports Server (NTRS)

    Boksenbom, Aaron S; Hood, Richard

    1950-01-01

    A general algebraic method of attack on the problem of controlling gas-turbine engines having any number of independent variables was utilized employing operational functions to describe the assumed linear characteristics for the engine, the control, and the other units in the system. Matrices were used to describe the various units of the system, to form a combined system showing all effects, and to form a single condensed matrix showing the principal effects. This method directly led to the conditions on the control system for noninteraction so that any setting disturbance would affect only its corresponding controlled variable. The response-action characteristics were expressed in terms of the control system and the engine characteristics. The ideal control-system characteristics were explicitly determined in terms of any desired response action.

  11. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    NASA Technical Reports Server (NTRS)

    Baty, Roy S.; Farassat, Fereidoun; Hargreaves, John

    2007-01-01

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  12. The two main theories on dental bruxism.

    PubMed

    Behr, Michael; Hahnel, Sebastian; Faltermeier, Andreas; Bürgers, Ralf; Kolbeck, Carola; Handel, Gerhard; Proff, Peter

    2012-03-20

    Bruxism is characterized by non-functional contact of mandibular and maxillary teeth resulting in clenching or grating of teeth. Theories on factors causing bruxism are a matter of controversy in current literature. The dental profession has predominantly viewed peripheral local morphological disorders, such as malocclusion, as the cause of clenching and gnashing. This etiological model is based on the theory that occlusal maladjustment results in reduced masticatory muscle tone. In the absence of occlusal equilibration, motor neuron activity of masticatory muscles is triggered by periodontal receptors. The second theory assumes that central disturbances in the area of the basal ganglia are the main cause of bruxism. An imbalance in the circuit processing of the basal ganglia is supposed to be responsible for muscle hyperactivity during nocturnal dyskinesia such as bruxism. Some authors assume that bruxism constitutes sleep-related parafunctional activity (parasomnia). A recent model, which may explain the potential imbalance of the basal ganglia, is neuroplasticity. Neural plasticity is based on the ability of synapses to change the way they work. Activation of neural plasticity can change the relationship between inhibitory and excitatory neurons. It seems obvious that bruxism is not a symptom specific to just one disease. Many forms (and causes) of bruxism may exist simultaneously, as, for example, peripheral or central forms. Copyright © 2011 Elsevier GmbH. All rights reserved.

  13. The Role of Law-of-the-Wall and Roughness Scale in the Surface Stress Model for LES of the Rough-wall Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Paes, Paulo; Chamecki, Marcelo

    2017-11-01

    Large-eddy simulation (LES) of the high Reynolds number rough-wall boundary layer requires both a subfilter-scale model for the unresolved inertial term and a ``surface stress model'' (SSM) for space-time local surface momentum flux. Standard SSMs assume proportionality between the local surface shear stress vector and the local resolved-scale velocity vector at the first grid level. Because the proportionality coefficient incorporates a surface roughness scale z0 within a functional form taken from law-of-the-wall (LOTW), it is commonly stated that LOTW is ``assumed,'' and therefore ``forced'' on the LES. We show that this is not the case; the LOTW form is the ``drag law'' used to relate friction velocity to mean resolved velocity at the first grid level consistent with z0 as the height where mean velocity vanishes. Whereas standard SSMs do not force LOTW on the prediction, we show that parameterized roughness does not match ``true'' z0 when LOTW is not predicted, or does not exist. By extrapolating mean velocity, we show a serious mismatch between true z0 and parameterized z0 in the presence of a spurious ``overshoot'' in normalized mean velocity gradient. We shall discuss the source of the problem and its potential resolution.

  14. Closed system of coupling effects in generalized thermo-elastoplasticity

    NASA Astrophysics Data System (ADS)

    Śloderbach, Z.

    2016-05-01

    In this paper, the field equations of the generalized coupled thermoplasticity theory are derived using the postulates of classical thermodynamics of irreversible processses. Using the Legendre transformations two new thermodynamics potentials P and S depending upon internal thermodynamic forces Π are introduced. The most general form for all the thermodynamics potentials are assumed instead of the usually used additive form. Due to this assumption, it is possible to describe all the effects of thermomechanical couples and also the elastic-plastic coupling effects observed in such materials as rocks, soils, concretes and in some metalic materials. In this paper not only the usual postulate of existence of a dissipation qupotential (the Gyarmati postulate) is used to derive the velocity equation. The plastic flow constitutive equations have the character of non-associated flow laws even when the Gyarmati postulate is assumed. In general formulation, the plastic strain rate tensor is normal to the surface of the generalized function of plastic flow defined in the the space of internal thermodynamic forces Π but is not normal to the yield surface. However, in general formulation and after the use the Gyarmati postulate, the direction of the sum of the plastic strain rate tensor and the coupled elastic strain rate tensor is normal to the yield surface.

  15. Risk analysis in cohort studies with heterogeneous strata. A global chi2-test for dose-response relationship, generalizing the Mantel-Haenszel procedure.

    PubMed

    Ahlborn, W; Tuz, H J; Uberla, K

    1990-03-01

    In cohort studies the Mantel-Haenszel estimator ORMH is computed from sample data and is used as a point estimator of relative risk. Test-based confidence intervals are estimated with the help of the asymptotic chi-squared distributed MH-statistic chi 2MHS. The Mantel-extension-chi-squared is used as a test statistic for a dose-response relationship. Both test statistics--the Mantel-Haenszel-chi as well as the Mantel-extension-chi--assume homogeneity of risk across strata, which is rarely present. Also an extended nonparametric statistic, proposed by Terpstra, which is based on the Mann-Whitney-statistics assumes homogeneity of risk across strata. We have earlier defined four risk measures RRkj (k = 1,2,...,4) in the population and considered their estimates and the corresponding asymptotic distributions. In order to overcome the homogeneity assumption we use the delta-method to get "test-based" confidence intervals. Because the four risk measures RRkj are presented as functions of four weights gik we give, consequently, the asymptotic variances of these risk estimators also as functions of the weights gik in a closed form. Approximations to these variances are given. For testing a dose-response relationship we propose a new class of chi 2(1)-distributed global measures Gk and the corresponding global chi 2-test. In contrast to the Mantel-extension-chi homogeneity of risk across strata must not be assumed. These global test statistics are of the Wald type for composite hypotheses.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Using Multicriteria Analysis in Issues Concerning Adaptation of Historic Facilities for the Needs of Public Utility Buildings with a Function of a Theatre

    NASA Astrophysics Data System (ADS)

    Obracaj, Piotr; Fabianowski, Dariusz

    2017-10-01

    Implementations concerning adaptation of historic facilities for public utility objects are associated with the necessity of solving many complex, often conflicting expectations of future users. This mainly concerns the function that includes construction, technology and aesthetic issues. The list of issues is completed with proper protection of historic values, different in each case. The procedure leading to obtaining the expected solution is a multicriteria procedure, usually difficult to accurately define and requiring designer’s large experience. An innovative approach has been used for the analysis, namely - the modified EA FAHP (Extent Analysis Fuzzy Analytic Hierarchy Process) Chang’s method of a multicriteria analysis for the assessment of complex functional and spatial issues. Selection of optimal spatial form of an adapted historic building intended for the multi-functional public utility facility was analysed. The assumed functional flexibility was determined in the scope of: education, conference, and chamber spectacles, such as drama, concerts, in different stage-audience layouts.

  17. Emerging from the Cradle

    ERIC Educational Resources Information Center

    Bull, Glen; Garofalo, Joe; Bell, Randy

    2004-01-01

    New technologies often assume the form of prior traditions during their infancy. For example, filmed plays known as photoplays were initially produced prior to the development of modern cinema conventions. Similarly, printed books at first assumed many of the characteristics of hand-lettered manuscripts.

  18. A Model for Hydraulic Properties Based on Angular Pores with Lognormal Size Distribution

    NASA Astrophysics Data System (ADS)

    Durner, W.; Diamantopoulos, E.

    2014-12-01

    Soil water retention and unsaturated hydraulic conductivity curves are mandatory for modeling water flow in soils. It is a common approach to measure few points of the water retention curve and to calculate the hydraulic conductivity curve by assuming that the soil can be represented as a bundle of capillary tubes. Both curves are then used to predict water flow at larger spatial scales. However, the predictive power of these curves is often very limited. This can be very easily illustrated if we measure the soil hydraulic properties (SHPs) for a drainage experiment and then use these properties to predict the water flow in the case of imbibition. Further complications arise from the incomplete wetting of water at the solid matrix which results in finite values of the contact angles between the solid-water-air interfaces. To address these problems we present a physically-based model for hysteretic SHPs. This model is based on bundles of angular pores. Hysteresis for individual pores is caused by (i) different snap-off pressures during filling and emptying of single angular pores and (ii) by different advancing and receding contact angles for fluids that are not perfectly wettable. We derive a model of hydraulic conductivity as a function of contact angle by assuming flow perpendicular to pore cross sections and present closed-form expressions for both the sample scale water retention and hydraulic conductivity function by assuming a log-normal statistical distribution of pore size. We tested the new model against drainage and imbibition experiments for various sandy materials which were conducted with various liquids of differing wettability. The model described both imbibition and drainage experiments very well by assuming a unique pore size distribution of the sample and a zero contact angle for the perfectly wetting liquid. Eventually, we see the possibility to relate the particle size distribution with a model which describes the SHPs.

  19. Optimum Design of Millimeter-Wave Impatt Diode Oscillators.

    DTIC Science & Technology

    1983-10-01

    assumed to be a quasi-sinusoid of the form v(t) a Vej"t (2.1) where V = V(t) and w = w(t) are real slowly varying functions of time . Slowly varying can be...are used: i dVF = 1 HF (3.12) RF dt 4 and 6 = w- i. (3.13) Therefore, the RF voltage and phase at different times can be calculated: VRF(t + dt ) = VF...15 2.2.2 The Circuit Model 18 2.2.3 Thermal Resistance 21 2.2.4 Thermal- Time Constant 23 2.3 Usefulness and Limitations of the Oscillator Model 26

  20. Axiomatic foundations for cost-effectiveness analysis.

    PubMed

    Canning, David

    2013-12-01

    We show that individual utilities can be measured in units of healthy life years. Social preferences over these life metric utilities are assumed to satisfy the Pareto principle, anonymity, and invariance to a change in origin. These axioms generate a utilitarian social welfare function implying the use of cost-effectiveness analysis in ordering health projects, based on maximizing the healthy years equivalents gained from a fixed health budget. For projects outside the health sector, our cost-effectiveness axioms imply a form of cost-benefit analysis where both costs and benefits are measured in equivalent healthy life years. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Bond-orientational order in liquid Si

    NASA Technical Reports Server (NTRS)

    Wang, Z. Q.; Stroud, D.

    1991-01-01

    Bond-orientational order in liquid Si via Monte Carlo simulation in conjuncation with empirical two- and three-body potentials of the form proposed by Stillinger and Weber are studied. Bond-orientational order (BOO) is described in terms of combinations of spherical harmonic functions. Liquid Si is found to have pronounced short-range BOO corresponding to l = 3, as expected for a structure with local tetrahedral order. No long-range BOO is found either in the equilibrium or the supercooled liquid. When the three-body potential is artificially removed, the tetrahedral bond-orientation order disappears and the liquid assumes a close-packed structure.

  2. A system analysis of the 13.3 GHz scatterometer. [antenna patterns and signal transmission

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1977-01-01

    The performance of the 13.3 GHz airborne scatterometer system which is used as a microwave remote sensor to detect moisture content of soil is analyzed with respect to its antenna pattern, the signal flow in the receiver data channels, and the errors in the signal outputs. The operational principle and the sensitivity of the system, as well as data handling are also described. The dielectric property of the terrain surface, as far as the scatterometer is concerned, is contained in the assumed forms of the functional dependence of the backscattering coefficient of the incident angle.

  3. Atomistic modeling of shock-induced void collapse in copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davila, L P; Erhart, P; Bringa, E M

    2005-03-09

    Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.

  4. A theory for modeling ground-water flow in heterogeneous media

    USGS Publications Warehouse

    Cooley, Richard L.

    2004-01-01

    Construction of a ground-water model for a field area is not a straightforward process. Data are virtually never complete or detailed enough to allow substitution into the model equations and direct computation of the results of interest. Formal model calibration through optimization, statistical, and geostatistical methods is being applied to an increasing extent to deal with this problem and provide for quantitative evaluation and uncertainty analysis of the model. However, these approaches are hampered by two pervasive problems: 1) nonlinearity of the solution of the model equations with respect to some of the model (or hydrogeologic) input variables (termed in this report system characteristics) and 2) detailed and generally unknown spatial variability (heterogeneity) of some of the system characteristics such as log hydraulic conductivity, specific storage, recharge and discharge, and boundary conditions. A theory is developed in this report to address these problems. The theory allows construction and analysis of a ground-water model of flow (and, by extension, transport) in heterogeneous media using a small number of lumped or smoothed system characteristics (termed parameters). The theory fully addresses both nonlinearity and heterogeneity in such a way that the parameters are not assumed to be effective values. The ground-water flow system is assumed to be adequately characterized by a set of spatially and temporally distributed discrete values, ?, of the system characteristics. This set contains both small-scale variability that cannot be described in a model and large-scale variability that can. The spatial and temporal variability in ? are accounted for by imagining ? to be generated by a stochastic process wherein ? is normally distributed, although normality is not essential. Because ? has too large a dimension to be estimated using the data normally available, for modeling purposes ? is replaced by a smoothed or lumped approximation y?. (where y is a spatial and temporal interpolation matrix). Set y?. has the same form as the expected value of ?, y 'line' ? , where 'line' ? is the set of drift parameters of the stochastic process; ?. is a best-fit vector to ?. A model function f(?), such as a computed hydraulic head or flux, is assumed to accurately represent an actual field quantity, but the same function written using y?., f(y?.), contains error from lumping or smoothing of ? using y?.. Thus, the replacement of ? by y?. yields nonzero mean model errors of the form E(f(?)-f(y?.)) throughout the model and covariances between model errors at points throughout the model. These nonzero means and covariances are evaluated through third and fifth-order accuracy, respectively, using Taylor series expansions. They can have a significant effect on construction and interpretation of a model that is calibrated by estimating ?.. Vector ?.. is estimated as 'hat' ? using weighted nonlinear least squares techniques to fit a set of model functions f(y'hat' ?) to a. corresponding set of observations of f(?), Y. These observations are assumed to be corrupted by zero-mean, normally distributed observation errors, although, as for ?, normality is not essential. An analytical approximation of the nonlinear least squares solution is obtained using Taylor series expansions and perturbation techniques that assume model and observation errors to be small. This solution is used to evaluate biases and other results to second-order accuracy in the errors. The correct weight matrix to use in the analysis is shown to be the inverse of the second-moment matrix E(Y-f(y?.))(Y-f(y?.))', but the weight matrix is assumed to be arbitrary in most developments. The best diagonal approximation is the inverse of the matrix of diagonal elements of E(Y-f(y?.))(Y-f(y?.))', and a method of estimating this diagonal matrix when it is unknown is developed using a special objective function to compute 'hat' ?. When considered to be an estimate of f

  5. Odd nitrogen production by meteoroids

    NASA Technical Reports Server (NTRS)

    Park, C.; Menees, G. P.

    1978-01-01

    The process by which odd nitrogen species (atomic nitrogen and nitric oxide) are formed during atmospheric entry of meteoroids is analyzed theoretically. An ablating meteoroid is assumed to be a point source of mass with a continuum regime evolving in its wake. The amounts of odd nitrogen species, produced by high-temperature reactions of air in the continuum wake, are calculated by numerical integration of chemical rate equations. Flow properties are assumed to be uniform across the wake, and 29 reactions involving five neutral species and five singly ionized species are considered, as well as vibrational and electron temperature nonequilibrium phenomena. The results, when they are summed over the observed mass, velocity, and entry-angle distribution of meteoroids, provide odd-nitrogen-species annual global production rates as functions of altitude. The peak production of nitric oxide is found to occur at an altitude of about 85 km; atomic nitrogen production peaks at about 95 km. The total annual rate for nitric oxide is 40 million kg; for atomic nitrogen it is 170 million kg.

  6. Self-consistent one dimension in space and three dimension in velocity kinetic trajectory simulation model of magnetized plasma-wall transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalise, Roshan, E-mail: plasma.roshan@gmail.com; Khanal, Raju

    2015-11-15

    We have developed a self-consistent 1d3v (one dimension in space and three dimension in velocity) Kinetic Trajectory Simulation (KTS) model, which can be used for modeling various situations of interest and yields results of high accuracy. Exact ion trajectories are followed, to calculate along them the ion distribution function, assuming an arbitrary injection ion distribution. The electrons, on the other hand, are assumed to have a cut-off Maxwellian velocity distribution at injection and their density distribution is obtained analytically. Starting from an initial guess, the potential profile is iterated towards the final time-independent self-consistent state. We have used it tomore » study plasma sheath region formed in presence of an oblique magnetic field. Our results agree well with previous works from other models, and hence, we expect our 1d3v KTS model to provide a basis for the studying of all types of magnetized plasmas, yielding more accurate results.« less

  7. Aspects of silicon bulk lifetimes

    NASA Technical Reports Server (NTRS)

    Landsberg, P. T.

    1985-01-01

    The best lifetimes attained for bulk crytalline silicon as a function of doping concentrations are analyzed. It is assumed that the dopants which set the Fermi level do not contribute to the recombination traffic which is due to the unknown defect. This defect is assumed to have two charge states: neutral and negative, the neutral defect concentration is frozen-in at some temperature T sub f. The higher doping concentrations should include the band-band Auger effect by using a generalization of the Shockley-Read-Hall (SRH) mechanism. The generalization of the SRH mechanism is discussed. This formulation gives a straightforward procedure for incorporating both band-band and band-trap Auger effects in the SRH procedure. Two related questions arise in this context: (1) it may sometimes be useful to write the steady-state occupation probability of the traps implied by SRH procedure in a form which approximates to the Fermi-Dirac distribution; and (2) the effect on the SRH mechanism of spreading N sub t levels at one energy uniformly over a range of energies is discussed.

  8. Modeling of in-use stability for tablets and powders in bottles.

    PubMed

    Waterman, Kenneth C; Chen, Lili; Waterman, Philip; MacDonald, Bruce C; Monahan, Andrew P; Scrivens, Garry

    2016-10-01

    A model is presented for determining the time when an active pharmaceutical ingredient in tablets/powders will remain within its specification limits during an in-use period; that is, when a heat-induction sealed bottle is opened for fixed time periods and where tablets are removed at fixed time points. This model combines the Accelerated Stability Assessment Program to determine the impact on degradation rates of relative humidity (RH) with calculations of the RH as a function of time for the dosage forms under in-use conditions. These calculations, in a conservative approach, assume that the air inside bottles with broached heat-induction seals completely exchanges with the external environment during periods when the bottle remains open. The solid dosages are assumed to sorb water at estimable rates during these openings. When bottles are capped, the moisture vapor transmission rate can be estimated to determine the changing RH inside the bottles between opening events. The impact of silica gel desiccants can also be included in the modeling.

  9. An investigation of using an RQP based method to calculate parameter sensitivity derivatives

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1989-01-01

    Estimation of the sensitivity of problem functions with respect to problem variables forms the basis for many of our modern day algorithms for engineering optimization. The most common application of problem sensitivities has been in the calculation of objective function and constraint partial derivatives for determining search directions and optimality conditions. A second form of sensitivity analysis, parameter sensitivity, has also become an important topic in recent years. By parameter sensitivity, researchers refer to the estimation of changes in the modeling functions and current design point due to small changes in the fixed parameters of the formulation. Methods for calculating these derivatives have been proposed by several authors (Armacost and Fiacco 1974, Sobieski et al 1981, Schmit and Chang 1984, and Vanderplaats and Yoshida 1985). Two drawbacks to estimating parameter sensitivities by current methods have been: (1) the need for second order information about the Lagrangian at the current point, and (2) the estimates assume no change in the active set of constraints. The first of these two problems is addressed here and a new algorithm is proposed that does not require explicit calculation of second order information.

  10. A General Method for Solving Systems of Non-Linear Equations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, Philip R.; Deiss, Ron (Technical Monitor)

    1995-01-01

    The method of steepest descent is modified so that accelerated convergence is achieved near a root. It is assumed that the function of interest can be approximated near a root by a quadratic form. An eigenvector of the quadratic form is found by evaluating the function and its gradient at an arbitrary point and another suitably selected point. The terminal point of the eigenvector is chosen to lie on the line segment joining the two points. The terminal point found lies on an axis of the quadratic form. The selection of a suitable step size at this point leads directly to the root in the direction of steepest descent in a single step. Newton's root finding method not infrequently diverges if the starting point is far from the root. However, the current method in these regions merely reverts to the method of steepest descent with an adaptive step size. The current method's performance should match that of the Levenberg-Marquardt root finding method since they both share the ability to converge from a starting point far from the root and both exhibit quadratic convergence near a root. The Levenberg-Marquardt method requires storage for coefficients of linear equations. The current method which does not require the solution of linear equations requires more time for additional function and gradient evaluations. The classic trade off of time for space separates the two methods.

  11. Uncertainty Analysis via Failure Domain Characterization: Unrestricted Requirement Functions

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. The methods developed herein, which are based on nonlinear constrained optimization, are applicable to requirement functions whose functional dependency on the uncertainty is arbitrary and whose explicit form may even be unknown. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the assumed uncertainty model (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  12. Identical linkage and cooperativity of oxygen and carbon monoxide binding to Octopus dofleini hemocyanin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connelly, P.R.; Gill, S.J.; Miller, K.I.

    1989-02-21

    Employment of high-precision thin-layer methods has enabled detailed functional characterization of oxygen and carbon monoxide binding for (1) the fully assembled form with 70 binding sites and (2) the isolated chains with 7 binding sites of octopus dofleini hemocyanin. The striking difference in the cooperativities of the two ligands for the assembled decamer is revealed through an examination of the binding capacities and the partition coefficient, determined as functions of the activities of both ligands. A global analysis of the data sets supported by a two-state allosteric model assuming an allosteric unit of 7. Higher level allosteric interactions were notmore » indicated. This contrasts to results obtained for arthropod hemocyanins. Oxygen and carbon monoxide experiments performed on the isolated subunit chain confirmed the presence of functional heterogeneity reported previously. The analysis shows two types of binding sites in the ratio of 4:3.« less

  13. Rough-to-smooth transition of an equilibrium neutral constant stress layer

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Fichtl, G. H.

    1975-01-01

    Purpose of research on rough-to-smooth transition of an equilibrium neutral constant stress layer is to develop a model for low-level atmospheric flow over terrains of abruptly changing roughness, such as those occurring near the windward end of a landing strip, and to use the model to derive functions which define the extent of the region affected by the roughness change and allow adequate prediction of wind and shear stress profiles at all points within the region. A model consisting of two bounding logarithmic layers and an intermediate velocity defect layer is assumed, and dimensionless velocity and stress distribution functions which meet all boundary and matching conditions are hypothesized. The functions are used in an asymptotic form of the equation of motion to derive a relation which governs the growth of the internal boundary layer. The growth relation is used to predict variation of surface shear stress.

  14. Tikekar superdense stars in electric fields

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  15. Element free Galerkin formulation of composite beam with longitudinal slip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad; Badli, Mohd Iqbal

    2015-05-15

    Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after beenmore » verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.« less

  16. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity.

    PubMed

    Xu, Xiang; Zhao, Jingyue; Xu, Zhen; Peng, Baozhen; Huang, Qiuhua; Arnold, Eddy; Ding, Jianping

    2004-08-06

    Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate, and regulation of the enzymatic activity of IDHs is crucial for their biological functions. Bacterial IDHs are reversibly regulated by phosphorylation of a strictly conserved serine residue at the active site. Eukaryotic NADP-dependent IDHs (NADP-IDHs) have been shown to have diverse important biological functions; however, their regulatory mechanism remains unclear. Structural studies of human cytosolic NADP-IDH (HcIDH) in complex with NADP and in complex with NADP, isocitrate, and Ca2+ reveal three biologically relevant conformational states of the enzyme that differ substantially in the structure of the active site and in the overall structure. A structural segment at the active site that forms a conserved alpha-helix in all known NADP-IDH structures assumes a loop conformation in the open, inactive form of HcIDH; a partially unraveled alpha-helix in the semi-open, intermediate form; and an alpha-helix in the closed, active form. The side chain of Asp279 of this segment occupies the isocitrate-binding site and forms hydrogen bonds with Ser94 (the equivalent of the phosphorylation site in bacterial IDHs) in the inactive form and chelates the metal ion in the active form. The structural data led us to propose a novel self-regulatory mechanism for HcIDH that mimics the phosphorylation mechanism used by the bacterial homologs, consistent with biochemical and biological data. This mechanism might be applicable to other eukaryotic NADP-IDHs. The results also provide insights into the recognition and specificity of substrate and cofactor by eukaryotic NADP-IDHs.

  17. Optimization Of Mean-Semivariance-Skewness Portfolio Selection Model In Fuzzy Random Environment

    NASA Astrophysics Data System (ADS)

    Chatterjee, Amitava; Bhattacharyya, Rupak; Mukherjee, Supratim; Kar, Samarjit

    2010-10-01

    The purpose of the paper is to construct a mean-semivariance-skewness portfolio selection model in fuzzy random environment. The objective is to maximize the skewness with predefined maximum risk tolerance and minimum expected return. Here the security returns in the objectives and constraints are assumed to be fuzzy random variables in nature and then the vagueness of the fuzzy random variables in the objectives and constraints are transformed into fuzzy variables which are similar to trapezoidal numbers. The newly formed fuzzy model is then converted into a deterministic optimization model. The feasibility and effectiveness of the proposed method is verified by numerical example extracted from Bombay Stock Exchange (BSE). The exact parameters of fuzzy membership function and probability density function are obtained through fuzzy random simulating the past dates.

  18. correlcalc: Two-point correlation function from redshift surveys

    NASA Astrophysics Data System (ADS)

    Rohin, Yeluripati

    2017-11-01

    correlcalc calculates two-point correlation function (2pCF) of galaxies/quasars using redshift surveys. It can be used for any assumed geometry or Cosmology model. Using BallTree algorithms to reduce the computational effort for large datasets, it is a parallelised code suitable for running on clusters as well as personal computers. It takes redshift (z), Right Ascension (RA) and Declination (DEC) data of galaxies and random catalogs as inputs in form of ascii or fits files. If random catalog is not provided, it generates one of desired size based on the input redshift distribution and mangle polygon file (in .ply format) describing the survey geometry. It also calculates different realisations of (3D) anisotropic 2pCF. Optionally it makes healpix maps of the survey providing visualization.

  19. Hunting Faint Dwarf Galaxies in the Field Using Integrated Light Surveys

    NASA Astrophysics Data System (ADS)

    Danieli, Shany; van Dokkum, Pieter; Conroy, Charlie

    2018-03-01

    We discuss the approach of searching the lowest mass dwarf galaxies, ≲ {10}6 {M}ȯ , in the general field, using integrated light surveys. By exploring the limiting surface brightness-spatial resolution (μ eff,lim‑θ) parameter space, we suggest that faint field dwarfs in the Local Volume, between 3 and 10 Mpc, are expected to be detected very effectively and in large numbers using integrated light photometric surveys, complementary to the classical star counts method. We use a sample of dwarf galaxies in the Local Group to construct relations between their photometric and structural parameters, M *–μ eff,V and M *–R eff. We use these relations, along with assumed functional forms for the halo mass function and the stellar mass–halo mass (SMHM) relation, to calculate the lowest detectable stellar masses in the Local Volume and the expected number of galaxies as a function of the limiting surface brightness and spatial resolution. The number of detected galaxies depends mostly on the limiting surface brightness for distances >3 Mpc, while spatial resolution starts to play a role for galaxies at distances >8 Mpc. Surveys with μ eff,lim ∼ 30 mag arcsec‑2 should be able to detect galaxies with stellar masses down to ∼104 M ⊙ in the Local Volume. Depending on the form of the SMHM relation, the expected number of dwarf galaxies with distances between 3 and 10 Mpc is 0.04–0.35 per square degree, assuming a limiting surface brightness of ∼29–30 mag arcsec‑2 and a spatial resolution <4″. We plan to search for a population of low-mass dwarf galaxies in the field by performing a blank wide field photometric survey with the Dragonfly Telephoto Array, an imaging system optimized for the detection of extended ultra low surface brightness structures.

  20. Transient response of an active nonlinear sandwich piezolaminated plate

    NASA Astrophysics Data System (ADS)

    Oveisi, Atta; Nestorović, Tamara

    2017-04-01

    In this paper, the dynamic modelling and active vibration control of a piezolaminated plate with geometrical nonlinearities are investigated using a semi-analytical approach. For active vibration control purposes, the core orthotropic elastic layer is assumed to be perfectly bonded with two piezo-layers on its top and bottom surfaces which act as sensor and actuator, respectively. In the modelling procedure, the piezo-layers are assumed to be connected via a proportional derivative (PD) feedback control law. Hamilton's principle is employed to acquire the strong form of the dynamic equation in terms of additional higher order strain expressions by means of von Karman strain-displacement correlation. The obtained nonlinear partial differential equation (NPDE) is converted to a system of nonlinear ordinary differential equations (NODEs) by engaging Galerkin method and using the orthogonality of shape functions for the simply supported boundary conditions. Then, the resulting system of NODEs is solved numerically by employing the built-in Mathematica function, "NDSolve". Next, the vibration attenuation performance is evaluated and sensitivity of the closed-loop system is investigated for several control parameters and the external disturbance parameters. The proposed solution in open loop configuration is validated by finite element (FE) package ABAQUS both in the spatial domain and for the time-/frequency-dependent response.

  1. Indirect Functional Assessment of Stereotypy in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Wilke, Arthur E.; Tarbox, Jonathan; Dixon, Dennis R.; Kenzer, Amy L.; Bishop, Michele R.; Kakavand, Heleya

    2012-01-01

    Autism spectrum disorders (ASD) are characterized by the presence of repetitive behavior and stereotyped patterns of interest and activities. It is common for clinicians to assume that repetitive behaviors are maintained by automatic reinforcement but, as with any challenging behavior, the function of stereotypy should not be assumed based on its…

  2. The Angular Three-Point Correlation Function in the Quasi-linear Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchalter, Ari; Kamionkowski, Marc; Jaffe, Andrew H.

    2000-02-10

    We calculate the normalized angular three-point correlation function (3PCF), q, as well as the normalized angular skewness, s{sub 3}, assuming the small-angle approximation, for a biased mass distribution in flat and open cold dark matter (CDM) models with Gaussian initial conditions. The leading-order perturbative results incorporate the explicit dependence on the cosmological parameters, the shape of the CDM transfer function, the linear evolution of the power spectrum, the form of the assumed redshift distribution function, and linear and nonlinear biasing, which may be evolving. Results are presented for different redshift distributions, including that appropriate for the APM Galaxy Survey, asmore » well as for a survey with a mean redshift of z{approx_equal}1 (such as the VLA FIRST Survey). Qualitatively, many of the results found for s{sub 3} and q are similar to those obtained in a related treatment of the spatial skewness and 3PCF, such as a leading-order correction to the standard result for s{sub 3} in the case of nonlinear bias (as defined for unsmoothed density fields), and the sensitivity of the configuration dependence of q to both cosmological and biasing models. We show that since angular correlation functions (CFs) are sensitive to clustering over a range of redshifts, the various evolutionary dependences included in our predictions imply that measurements of q in a deep survey might better discriminate between models with different histories, such as evolving versus nonevolving bias, that can have similar spatial CFs at low redshift. Our calculations employ a derived equation, valid for open, closed, and flat models, to obtain the angular bispectrum from the spatial bispectrum in the small-angle approximation. (c) (c) 2000. The American Astronomical Society.« less

  3. Nankai Stress History and Implications for an Overpressured Decollement

    NASA Astrophysics Data System (ADS)

    Moran, K.; O'Regan, M.

    2005-12-01

    The Nankai Trough, formed from the subduction of the Shikoku Basin beneath the island arc of southwestern Japan, is a relatively young accretionary complex converging at a rate of ~4 cm/yr [Shipboard Scientific Party, 2001a]. The region was studied during the Deep Sea Drilling Project and on three Ocean Drilling Program (ODP) Legs-131, 190 and 196. Three sites visited during these Legs form a single cross-margin transect (dubbed the Muroto Transect) that traverses the leading edge of the Nankai accretionary prism, from seaward of the deformation front at Site 1173, to close to the deformation front (Site 1174), and landward to the first frontal thrust (Site 808). The decollement, which forms the major boundary between the converging plates, occurs within the Lower Shikoku Basin stratigraphic unit. The ODP sites were drilled and cored to depths below the decollement (Sites 808 and 1174) and the proto-decollement (Site 1173). Here we present consolidation test results [Moran et al., 1993] that are consistent with porosity-depth functions from core and log measurements for the Lower Shikoku Basin sediments, assuming that the decollement is an overpressured seal. At 1173, where a true decollement has not yet formed, moderate fluid overpressures occur that can be fully attributed to high turbiditic sedimentation rates. Forward modeling of this site into the deformation front over a period of ~300 ky shows that the present 1173 porosity-depth function matches the porosity-depth function at 1174. These results suggest that the young decollement on the Muroto Transect at the deformation front and landward is highly overpressured and forms a seal to sediments below that can be classically modeled as a one-dimensional consolidation system.

  4. Halo correlations in nonlinear cosmic density fields

    NASA Astrophysics Data System (ADS)

    Bernardeau, F.; Schaeffer, R.

    1999-09-01

    The question we address in this paper is the determination of the correlation properties of the dark matter halos appearing in cosmic density fields once they underwent a strongly nonlinear evolution induced by gravitational dynamics. A series of previous works have given indications that kind of non-Gaussian features are induced by nonlinear evolution in term of the high-order correlation functions. Assuming such patterns for the matter field, i.e. that the high-order correlation functions behave as products of two-body correlation functions, we derive the correlation properties of the halos, that are assumed to represent the correlation properties of galaxies or clusters. The hierarchical pattern originally induced by gravity is shown to be conserved for the halos. The strength of their correlations at any order varies, however, but is found to depend only on their internal properties, namely on the parameter x~ m/r(3-gamma ) where m is the mass of the halo, r its size and gamma is the power law index of the two-body correlation function. This internal parameter is seen to be close to the depth of the internal potential well of virialized objects. We were able to derive the explicit form of the generating function of the moments of the halo counts probability distribution function. In particular we show explicitly that, generically, S_P(x)-> P(P-2) in the rare halo limit. Various illustrations of our general results are presented. As a function of the properties of the underlying matter field, we construct the count probabilities for halos and in particular discuss the halo void probability. We evaluate the dependence of the halo mass function on the environment: within clusters, hierarchical clustering implies the higher masses are favored. These properties solely arise from what is a natural bias (ie, naturally induced by gravity) between the observed objects and the unseen matter field, and how it manifests itself depending on which selection effects are imposed.

  5. Electron acoustic nonlinear structures in planetary magnetospheres

    NASA Astrophysics Data System (ADS)

    Shah, K. H.; Qureshi, M. N. S.; Masood, W.; Shah, H. A.

    2018-04-01

    In this paper, we have studied linear and nonlinear propagation of electron acoustic waves (EAWs) comprising cold and hot populations in which the ions form the neutralizing background. The hot electrons have been assumed to follow the generalized ( r , q ) distribution which has the advantage that it mimics most of the distribution functions observed in space plasmas. Interestingly, it has been found that unlike Maxwellian and kappa distributions, the electron acoustic waves admit not only rarefactive structures but also allow the formation of compressive solitary structures for generalized ( r , q ) distribution. It has been found that the flatness parameter r , tail parameter q , and the nonlinear propagation velocity u affect the propagation characteristics of nonlinear EAWs. Using the plasmas parameters, typically found in Saturn's magnetosphere and the Earth's auroral region, where two populations of electrons and electron acoustic solitary waves (EASWs) have been observed, we have given an estimate of the scale lengths over which these nonlinear waves are expected to form and how the size of these structures would vary with the change in the shape of the distribution function and with the change of the plasma parameters.

  6. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    PubMed Central

    Chevalier, Michael W.; El-Samad, Hana

    2014-01-01

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled. PMID:25481130

  7. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    NASA Astrophysics Data System (ADS)

    Chevalier, Michael W.; El-Samad, Hana

    2014-12-01

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.

  8. Triton promotes domain formation in lipid raft mixtures.

    PubMed

    Heerklotz, H

    2002-11-01

    Biological membranes are supposed to contain functional domains (lipid rafts) made up in particular of sphingomyelin and cholesterol, glycolipids, and certain proteins. It is often assumed that the application of the detergent Triton at 4 degrees C allows the isolation of these rafts as a detergent-resistant membrane fraction. The current study aims to clarify whether and how Triton changes the domain properties. To this end, temperature-dependent transitions in vesicles of an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, egg sphingomyelin, and cholesterol were monitored at different Triton concentrations by differential scanning calorimetry and pressure perturbation calorimetry. Transitions initiated by the addition of Triton to the lipid mixture were studied by isothermal titration calorimetry, and the structure was investigated by (31)P-NMR. The results are discussed in terms of liquid-disordered (ld) and -ordered (lo) bilayer and micellar (mic) phases, and the typical sequence encountered with increasing Triton content or decreasing temperature is ld, ld + lo, ld + lo + mic, and lo + mic. That means that addition of Triton may create ordered domains in a homogeneous fluid membrane, which are, in turn, Triton resistant upon subsequent membrane solubilization. Hence, detergent-resistant membranes should not be assumed to resemble biological rafts in size, structure, composition, or even existence. Functional rafts may not be steady phenomena; they might form, grow, cluster or break up, shrink, and vanish according to functional requirements, regulated by rather subtle changes in the activity of membrane disordering or ordering compounds.

  9. Triton promotes domain formation in lipid raft mixtures.

    PubMed Central

    Heerklotz, H

    2002-01-01

    Biological membranes are supposed to contain functional domains (lipid rafts) made up in particular of sphingomyelin and cholesterol, glycolipids, and certain proteins. It is often assumed that the application of the detergent Triton at 4 degrees C allows the isolation of these rafts as a detergent-resistant membrane fraction. The current study aims to clarify whether and how Triton changes the domain properties. To this end, temperature-dependent transitions in vesicles of an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, egg sphingomyelin, and cholesterol were monitored at different Triton concentrations by differential scanning calorimetry and pressure perturbation calorimetry. Transitions initiated by the addition of Triton to the lipid mixture were studied by isothermal titration calorimetry, and the structure was investigated by (31)P-NMR. The results are discussed in terms of liquid-disordered (ld) and -ordered (lo) bilayer and micellar (mic) phases, and the typical sequence encountered with increasing Triton content or decreasing temperature is ld, ld + lo, ld + lo + mic, and lo + mic. That means that addition of Triton may create ordered domains in a homogeneous fluid membrane, which are, in turn, Triton resistant upon subsequent membrane solubilization. Hence, detergent-resistant membranes should not be assumed to resemble biological rafts in size, structure, composition, or even existence. Functional rafts may not be steady phenomena; they might form, grow, cluster or break up, shrink, and vanish according to functional requirements, regulated by rather subtle changes in the activity of membrane disordering or ordering compounds. PMID:12414701

  10. Selectivity in subunit composition of Ena/VASP tetramers

    PubMed Central

    Riquelme, Daisy N.; Meyer, Aaron S.; Barzik, Melanie; Keating, Amy; Gertler, Frank B.

    2015-01-01

    The members of the actin regulatory family of Ena/VASP proteins form stable tetramers. The vertebrate members of the Ena/VASP family, VASP, Mena and EVL, have many overlapping properties and expression patterns, but functional and regulatory differences between paralogues have been observed. The formation of mixed oligomers may serve a regulatory role to refine Ena/VASP activity. While it has been assumed that family members can form mixed oligomers, this possibility has not been investigated systematically. Using cells expressing controlled combinations of VASP, Mena and EVL, we evaluated the composition of Ena/VASP oligomers and found that VASP forms oligomers without apparent bias with itself, Mena or EVL. However, Mena and EVL showed only weak hetero-oligomerization, suggesting specificity in the association of Ena/VASP family members. Co-expression of VASP increased the ability of Mena and EVL to form mixed oligomers. Additionally, we found that the tetramerization domain (TD) at the C-termini of Ena/VASP proteins conferred the observed selectivity. Finally, we demonstrate that replacement of the TD with a synthetic tetramerizing coiled coil sequence supports homo-oligomerization and normal VASP subcellular localization. PMID:26221026

  11. A hybrid Reynolds averaged/PDF closure model for supersonic turbulent combustion

    NASA Technical Reports Server (NTRS)

    Frankel, Steven H.; Hassan, H. A.; Drummond, J. Philip

    1990-01-01

    A hybrid Reynolds averaged/assumed pdf approach has been developed and applied to the study of turbulent combustion in a supersonic mixing layer. This approach is used to address the 'laminar-like' treatment of the thermochemical terms that appear in the conservation equations. Calculations were carried out for two experiments involving H2-air supersonic turbulent mixing. Two different forms of the pdf were implemented. In general, the results show modest improvement from previous calculations. Moreover, the results appear to be somewhat independent of the form of the assumed pdf.

  12. Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington

    USGS Publications Warehouse

    Curran, Janet H.; Wohl, Ellen E.

    2003-01-01

    Total flow resistance, measured as Darcy-Weisbach f, in 20 step-pool channels with large woody debris (LWD) in Washington, ranged from 5 to 380 during summer low flows. Step risers in the study streams consist of either (1) large and relatively immobile woody debris, bedrock, or roots that form fixed, or “forced,” steps, or (2) smaller and relatively mobile wood or clasts, or a mixture of both, arranged across the channel by the stream. Flow resistance in step-pool channels may be partitioned into grain, form, and spill resistance. Grain resistance is calculated as a function of particle size, and form resistance is calculated as large woody debris drag. Combined, grain and form resistance account for less than 10% of the total flow resistance. We initially assumed that the substantial remaining portion is spill resistance attributable to steps. However, measured step characteristics could not explain between-reach variations in flow resistance. This suggests that other factors may be significant; the coefficient of variation of the hydraulic radius explained 43% of the variation in friction factors between streams, for example. Large woody debris generates form resistance on step treads and spill resistance at step risers. Because the form resistance of step-pool channels is relatively minor compared to spill resistance and because wood in steps accentuates spill resistance by increasing step height, we suggest that wood in step risers influences channel hydraulics more than wood elsewhere in the channel. Hence, the distribution and function, not just abundance, of large woody debris is critical in steep, step-pool channels.

  13. A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior

    DOE PAGES

    Ye, Xin; Garikapati, Venu M.; You, Daehyun; ...

    2017-11-08

    Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less

  14. A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Xin; Garikapati, Venu M.; You, Daehyun

    Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less

  15. Approximate analytic solutions to coupled nonlinear Dirac equations

    DOE PAGES

    Khare, Avinash; Cooper, Fred; Saxena, Avadh

    2017-01-30

    Here, we consider the coupled nonlinear Dirac equations (NLDEs) in 1+11+1 dimensions with scalar–scalar self-interactions g 1 2/2(more » $$\\bar{ψ}$$ψ) 2 + g 2 2/2($$\\bar{Φ}$$Φ) 2 + g 2 3($$\\bar{ψ}$$ψ)($$\\bar{Φ}$$Φ) as well as vector–vector interactions g 1 2/2($$\\bar{ψ}$$γμψ)($$\\bar{ψ}$$γμψ) + g 2 2/2($$\\bar{Φ}$$γμΦ)($$\\bar{Φ}$$γμΦ) + g 2 3($$\\bar{ψ}$$γμψ)($$\\bar{Φ}$$γμΦ). Writing the two components of the assumed rest frame solution of the coupled NLDE equations in the form ψ=e –iω1tR 1cosθ,R 1sinθΦ=e –iω2tR 2cosη,R 2sinη, and assuming that θ(x),η(x) have the same functional form they had when g3 = 0, which is an approximation consistent with the conservation laws, we then find approximate analytic solutions for Ri(x) which are valid for small values of g 3 2/g 2 2 and g 3 2/g 1 2. In the nonrelativistic limit we show that both of these coupled models go over to the same coupled nonlinear Schrödinger equation for which we obtain two exact pulse solutions vanishing at x → ±∞.« less

  16. Approximate analytic solutions to coupled nonlinear Dirac equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Avinash; Cooper, Fred; Saxena, Avadh

    Here, we consider the coupled nonlinear Dirac equations (NLDEs) in 1+11+1 dimensions with scalar–scalar self-interactions g 1 2/2(more » $$\\bar{ψ}$$ψ) 2 + g 2 2/2($$\\bar{Φ}$$Φ) 2 + g 2 3($$\\bar{ψ}$$ψ)($$\\bar{Φ}$$Φ) as well as vector–vector interactions g 1 2/2($$\\bar{ψ}$$γμψ)($$\\bar{ψ}$$γμψ) + g 2 2/2($$\\bar{Φ}$$γμΦ)($$\\bar{Φ}$$γμΦ) + g 2 3($$\\bar{ψ}$$γμψ)($$\\bar{Φ}$$γμΦ). Writing the two components of the assumed rest frame solution of the coupled NLDE equations in the form ψ=e –iω1tR 1cosθ,R 1sinθΦ=e –iω2tR 2cosη,R 2sinη, and assuming that θ(x),η(x) have the same functional form they had when g3 = 0, which is an approximation consistent with the conservation laws, we then find approximate analytic solutions for Ri(x) which are valid for small values of g 3 2/g 2 2 and g 3 2/g 1 2. In the nonrelativistic limit we show that both of these coupled models go over to the same coupled nonlinear Schrödinger equation for which we obtain two exact pulse solutions vanishing at x → ±∞.« less

  17. Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour.

    PubMed

    Mathy, Nathalie; Hébert, Agnès; Mervelet, Peggy; Bénard, Lionel; Dorléans, Audrey; Li de la Sierra-Gallay, Inés; Noirot, Philippe; Putzer, Harald; Condon, Ciarán

    2010-01-01

    Ribonucleases J1 and J2 are recently discovered enzymes with dual 5'-to-3' exoribonucleolytic/endoribonucleolytic activity that plays a key role in the maturation and degradation of Bacillus subtilis RNAs. RNase J1 is essential, while its paralogue RNase J2 is not. Up to now, it had generally been assumed that the two enzymes functioned independently. Here we present evidence that RNases J1 and J2 form a complex that is likely to be the predominant form of these enzymes in wild-type cells. While both RNase J1 and the RNase J1/J2 complex have robust 5'-to-3' exoribonuclease activity in vitro, RNase J2 has at least two orders of magnitude weaker exonuclease activity, providing a possible explanation for why RNase J1 is essential. The association of the two proteins also has an effect on the endoribonucleolytic properties of RNases J1 and J2. While the individual enzymes have similar endonucleolytic cleavage activities and specificities, as a complex they behave synergistically to alter cleavage site preference and to increase cleavage efficiency at specific sites. These observations dramatically change our perception of how these ribonucleases function and provide an interesting example of enzyme subfunctionalization after gene duplication.

  18. Multiple scattering by infinitely long cylindrical glass inclusions in a saturated Biot porous medium of glass beads.

    PubMed

    Trabelsi, W; Franklin, H; Tinel, A

    2016-05-01

    The resonance spectrum of sets of two to five infinitely long parallel cylindrical glass inclusions in a fluid saturated porous matrix of unconsolidated glass beads is investigated. The ratio of bead diameters to inclusion diameters is 1/5. The far field form functions and the related phase derivatives are calculated by using an exact multiple scattering formalism and by assuming that the porous medium obeys Biot's model. In order to validate this hypothesis, comparisons between theory and experiments are done in the special case of a fast incident wave on a set of two and three inclusions.

  19. A note on conservative transport in anisotropic, heterogeneous porous media in the presence of small-amplitude transients

    USGS Publications Warehouse

    Naff, R.L.

    1998-01-01

    The late-time macrodispersion coefficients are obtained for the case of flow in the presence of a small-scale deterministic transient in a three-dimensional anisotropic, heterogeneous medium. The transient is assumed to affect only the velocity component transverse to the mean flow direction and to take the form of a periodic function. For the case of a highly stratified medium, these late-time macrodispersion coefficients behave largely as the standard coefficients used in the transport equation. Only in the event that the medium is isotropic is it probable that significant deviations from the standard coefficients would occur.

  20. Riemann surfaces of complex classical trajectories and tunnelling splitting in one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Harada, Hiromitsu; Mouchet, Amaury; Shudo, Akira

    2017-10-01

    The topology of complex classical paths is investigated to discuss quantum tunnelling splittings in one-dimensional systems. Here the Hamiltonian is assumed to be given as polynomial functions, so the fundamental group for the Riemann surface provides complete information on the topology of complex paths, which allows us to enumerate all the possible candidates contributing to the semiclassical sum formula for tunnelling splittings. This naturally leads to action relations among classically disjoined regions, revealing entirely non-local nature in the quantization condition. The importance of the proper treatment of Stokes phenomena is also discussed in Hamiltonians in the normal form.

  1. Energy in elastic fiber embedded in elastic matrix containing incident SH wave

    NASA Technical Reports Server (NTRS)

    Williams, James H., Jr.; Nagem, Raymond J.

    1989-01-01

    A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.

  2. A renewal jump-diffusion process with threshold dividend strategy

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wu, Rong; Song, Min

    2009-06-01

    In this paper, we consider a jump-diffusion risk process with the threshold dividend strategy. Both the distributions of the inter-arrival times and the claims are assumed to be in the class of phase-type distributions. The expected discounted dividend function and the Laplace transform of the ruin time are discussed. Motivated by Asmussen [S. Asmussen, Stationary distributions for fluid flow models with or without Brownian noise, Stochastic Models 11 (1) (1995) 21-49], instead of studying the original process, we study the constructed fluid flow process and their closed-form formulas are obtained in terms of matrix expression. Finally, numerical results are provided to illustrate the computation.

  3. Neyman-Pearson biometric score fusion as an extension of the sum rule

    NASA Astrophysics Data System (ADS)

    Hube, Jens Peter

    2007-04-01

    We define the biometric performance invariance under strictly monotonic functions on match scores as normalization symmetry. We use this symmetry to clarify the essential difference between the standard score-level fusion approaches of sum rule and Neyman-Pearson. We then express Neyman-Pearson fusion assuming match scores defined using false acceptance rates on a logarithmic scale. We show that by stating Neyman-Pearson in this form, it reduces to sum rule fusion for ROC curves with logarithmic slope. We also introduce a one parameter model of biometric performance and use it to express Neyman-Pearson fusion as a weighted sum rule.

  4. Development of an artificial urethral valve using SMA actuators

    NASA Astrophysics Data System (ADS)

    Chonan, S.; Jiang, Z. W.; Tani, J.; Orikasa, S.; Tanahashi, Y.; Takagi, T.; Tanaka, M.; Tanikawa, J.

    1997-08-01

    The development of an artificial urethral valve for the treatment of urinary incontinence which occurs frequently in the aged is described. The prototype urethral valve is assembled in hand-drum form with four thin shape memory alloy (SMA) (nickel - titanium alloy) plates of 0.3 mm thickness. The shape memory effect in two directions is used to replace the urinary canal sphincter muscles and to control the canal opening and closing functions. The characteristic of the SMA is to assume the shape of a circular arc at normal temperatures and a flat shape at higher temperatures. Experiments have been conducted using a canine bladder and urinary canal.

  5. On twisting type [N] ⊗ [N] Ricci flat complex spacetimes with two homothetic symmetries

    NASA Astrophysics Data System (ADS)

    Chudecki, Adam; Przanowski, Maciej

    2018-04-01

    In this article, H H spaces of type [N] ⊗ [N] with twisting congruence of null geodesics defined by the 4-fold undotted and dotted Penrose spinors are investigated. It is assumed that these spaces admit two homothetic symmetries. The general form of the homothetic vector fields is found. New coordinates are introduced, which enable us to reduce the H H system of partial differential equations to one ordinary differential equation (ODE) on one holomorphic function. In a special case, this is a second-order ODE and its general solution is explicitly given. In the generic case, one gets rather involved fifth-order ODE.

  6. Coupling Finite Element and Meshless Local Petrov-Galerkin Methods for Two-Dimensional Potential Problems

    NASA Technical Reports Server (NTRS)

    Chen, T.; Raju, I. S.

    2002-01-01

    A coupled finite element (FE) method and meshless local Petrov-Galerkin (MLPG) method for analyzing two-dimensional potential problems is presented in this paper. The analysis domain is subdivided into two regions, a finite element (FE) region and a meshless (MM) region. A single weighted residual form is written for the entire domain. Independent trial and test functions are assumed in the FE and MM regions. A transition region is created between the two regions. The transition region blends the trial and test functions of the FE and MM regions. The trial function blending is achieved using a technique similar to the 'Coons patch' method that is widely used in computer-aided geometric design. The test function blending is achieved by using either FE or MM test functions on the nodes in the transition element. The technique was evaluated by applying the coupled method to two potential problems governed by the Poisson equation. The coupled method passed all the patch test problems and gave accurate solutions for the problems studied.

  7. Linguistic Diversity in the Pacific: On the Sources of Diversity. Working Papers in Linguistics, Vol. 7, No. 3.

    ERIC Educational Resources Information Center

    Grace, George W.

    The Pacific area is generally acknowledged to manifest great linguistic diversity. Such diversity is generally assumed to be dysfunctional, an obstacle to efficient functioning of society. Such diversity must, however, have its functions at least in the circumstances in which it arose. It is also generally assumed that such diversity is the result…

  8. The mammillary bodies and memory: more than a hippocampal relay

    PubMed Central

    Vann, Seralynne D.; Nelson, Andrew J.D.

    2015-01-01

    Although the mammillary bodies were one of the first neural structures to be implicated in memory, it has long been assumed that their main function was to act primarily as a hippocampal relay, passing information on to the anterior thalamic nuclei and from there to the cingulate cortex. This view not only afforded the mammillary bodies no independent role in memory, it also neglected the potential significance of other, nonhippocampal, inputs to the mammillary bodies. Recent advances have transformed the picture, revealing that projections from the tegmental nuclei of Gudden, and not the hippocampal formation, are critical for sustaining mammillary body function. By uncovering a role for the mammillary bodies that is independent of its subicular inputs, this work signals the need to consider a wider network of structures that form the neural bases of episodic memory. PMID:26072239

  9. Truncation of the Binary Distribution Function in Globular Cluster Formation

    NASA Astrophysics Data System (ADS)

    Vesperini, E.; Chernoff, David F.

    1996-02-01

    We investigate a population of primordial binaries during the initial stage of evolution of a star cluster. For our calculations we assume that equal-mass stars form rapidly in a tidally truncated gas cloud, that ˜10% of the stars are in binaries, and that the resulting star cluster undergoes an epoch of violent relaxation. We study the collisional interaction of the binaries and single stars, in particular, the ionization of the binaries and the energy exchange between binaries and single stars. We find that for large N systems (N > 1000), even the most violent beginning leaves the binary distribution function largely intact. Hence, the binding energy originally tied up in the cloud's protostellar pairs is preserved during the relaxation process, and the binaries are available to interact at later times within the virialized cluster.

  10. Endpoint Model of Exclusive Processes

    NASA Astrophysics Data System (ADS)

    Dagaonkar, Sumeet; Jain, Pankaj; Ralston, John P.

    2018-07-01

    The endpoint model explains the scaling laws observed in exclusive hadronic reactions at large momentum transfer in all experimentally important regimes. The model, originally conceived by Feynman and others, assumes a single valence quark carries most of the hadron momentum. The quark wave function is directly related to the momentum transfer dependence of the reaction. After extracting the momentum dependence of the quark wave function from one process, it explains all the others. Endpoint quark-counting rules relate the number of quarks in a hadron to the power-law. A universal linear endpoint behavior explains the proton electromagnetic form factors F1 and F2, proton-proton scattering at fixed-angle, the t-dependence of proton-proton scattering at large s>> t, and Compton scattering at fixed t. The model appears to be the only comprehensive mechanism consistent with all experimental information.

  11. Electromagnetic reflection from multi-layered snow models

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.; Jiracek, G. R.

    1975-01-01

    The remote sensing of snow-pack characteristics with surface installations or an airborne system could have important applications in water-resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayered snow models is analyzed in this paper. Normally incident plane waves at frequencies ranging from 1 MHz to 10 GHz are assumed, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice layers. Layers are defined by thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the variations of reflection coefficient as a function of frequency.

  12. Rehabilitation in multiple sclerosis.

    PubMed

    Kubsik-Gidlewska, Anna M; Klimkiewicz, Paulina; Klimkiewicz, Robert; Janczewska, Katarzyna; Woldańska-Okońska, Marta

    2017-07-01

    The aim of the study is to present a strategy of rehabilitation in multiple sclerosis on the basis of the latest developments in the field of physiotherapy. The publications on the problem discuss a wide range of methods of physiotherapy that can be used in order to reduce the degree of disability and alleviate the symptoms associated with the disease. The complexity of the disease, the difficulty in determining the appropriate treatment and a wide range of symptoms require a comprehensive approach to the patient, which would include both pharmacology and neurorehabilitation. Rehabilitation, which includes psychotherapy and symptomatic therapy, is regarded nowadays as the best form of treatment for multiple sclerosis. An indepth diagnostic assessment of functional status and prognosis should be carried out before the start of the rehabilitation process. The prognosis should take into account the mental state, the neurological status and the awareness of the patient. The kinesiotherapy program in multiple sclerosis is based on a gradation of physiotherapy which assumes a gradual transition from basic movements to more complex ones till global functions are obtained. The most appropriate form of treatment is functional rehabilitation combined with physical procedures. Recent reports indicate the need for aerobic training to be included in the rehabilitation program. The introduction of physical activities, regardless of the severity of the disease, will reduce the negative effects of akinesia, and thus increase the functional capabilities of all body systems.

  13. Continuous time anomalous diffusion in a composite medium.

    PubMed

    Stickler, B A; Schachinger, E

    2011-08-01

    The one-dimensional continuous time anomalous diffusion in composite media consisting of a finite number of layers in immediate contact is investigated. The diffusion process itself is described with the help of two probability density functions (PDFs), one of which is an arbitrary jump-length PDF, and the other is a long-tailed waiting-time PDF characterized by the waiting-time index β∈(0,1). The former is assumed to be a function of the space coordinate x and the time coordinate t while the latter is a function of x and the time interval. For such an environment a very general form of the diffusion equation is derived which describes the continuous time anomalous diffusion in a composite medium. This result is then specialized to two particular forms of the jump-length PDF, namely the continuous time Lévy flight PDF and the continuous time truncated Lévy flight PDF. In both cases the PDFs are characterized by the Lévy index α∈(0,2) which is regarded to be a function of x and t. It is possible to demonstrate that for particular choices of the indices α and β other equations for anomalous diffusion, well known from the literature, follow immediately. This demonstrates the very general applicability of the derivation and of the resulting fractional differential equation discussed here.

  14. Geometrical evidence for dark matter: X-ray constraints on the mass of the elliptical galaxy NGC 720

    NASA Astrophysics Data System (ADS)

    Buote, David A.; Canizares, Claude R.

    1994-05-01

    We describe (1) a new test for dark matter and alternate theories of gravitation based on the relative geometries of the X-ray and optical surface brightness distributions and an assumed form for the potential, of the optical light, (2) a technique to measure the shapes of the total gravitating matter and dark matter of an ellipsoidal system which is insensitive to the precise value of the temperature of the gas and to modest temperature gradients, and (3) a new method to determine the ratio of dark mass to stellar mass that is dependent on the functional forms for the visible star, gas and dark matter distributions, but independent of the distance to the galaxy or the gas temperature. We apply these techniques to X-ray data from the ROSAT Position Sensitive Proportional Counter (PSPC) of the optically flattened elliptical galaxy NGC 720; the optical isophotes have ellipticity epsilon approximately 0.40 extending out to approximately 120 sec. The X-ray isophotes are significantly elongated, epsilon = 0.20-0.30 for semimajor axis a approximately 100 sec. The major axes of the optical and X-ray isophotes are misaligned by approximately 30 deg +/- 15 deg. Spectral analysis of the X-ray data reveals no evidence of temperature gradients or anisotropies and demonstrates that a single-temperature plasma (T approximately 0.6 keV) having subsolar heavy element abundances and a two-temperature model having solar abundances describe the spectrum equally well. Considering only the relative geometries of the X-ray and optical surface brightness distributions and an assumed functional form for the potential of the optical light, we conclude that matter distributed like the optical light cannot produce the observed ellipticities of the X-ray isophotes, independent of the gas pressure, the gas temperature, and the value of the stellar mass; this comparison assumes a state of quasi-hydrostatic equilibrium so that the three-dimensional surfaces of the gas emissivity trace the three-dimensional isopotential surfaces -- we discuss the viability of this assumption for NGC 720. Milgrom's Modification of Newtonian Dynamics (MOND) cannot dispel this manifestation of dark matter. Hence, geometrical considerations require, without mention of pressure or temperature, the presence of an extended, massive dark matter halo in NGC 720. Employing essentially the technique of Buote & Canizares (1992; Buote 1992) we use the shape of the X-ray surface brightness to constrain the shape of the total gravitating matter. The total matter is modeled as either an oblate or prolate spheriod of constant shape and orientation having either a Ferrers (rho approximately r-n) or Hernquist density. Assuming the X-ray gas is in hydrostatic equilibrium, we construct a model X-ray gas distribution for various temperature profiles. We determine the ellipticity of the total gravitating matter to be epsilon approximately 0.50-0.70. Using the single-temperature model we estimate a total mass approximately (0.41-1.4) x 1012 h80 solar mass interior to the ellipsoid of semimajor axis 43.6 h80 kpc. Ferrers densities as steep as r-3 do not fit the data, but the r-2 and Hernquist models yield excellent fits. We estimate the mass distributions of the stars and the gas and fit the dark matter directly. For a given gas equation of state and functional forms for the visible stars, gas, and dark matter, these models yield a distance-independent and temperature-independent measurement of the ratio of dark mass to stellar mass MDM/Mstars. We estimate a minimum MDM/Mstars greater than or equal to 4 which corresponds to a total mass slightly greater than that derived from the single-temperature models for distance D = 20h80 Mpc.

  15. Geometrical evidence for dark matter: X-ray constraints on the mass of the elliptical galaxy NGC 720

    NASA Technical Reports Server (NTRS)

    Buote, David A.; Canizares, Claude R.

    1994-01-01

    We describe (1) a new test for dark matter and alternate theories of gravitation based on the relative geometries of the X-ray and optical surface brightness distributions and an assumed form for the potential, of the optical light, (2) a technique to measure the shapes of the total gravitating matter and dark matter of an ellipsoidal system which is insensitive to the precise value of the temperature of the gas and to modest temperature gradients, and (3) a new method to determine the ratio of dark mass to stellar mass that is dependent on the functional forms for the visible star, gas and dark matter distributions, but independent of the distance to the galaxy or the gas temperature. We apply these techniques to X-ray data from the ROSAT Position Sensitive Proportional Counter (PSPC) of the optically flattened elliptical galaxy NGC 720; the optical isophotes have ellipticity epsilon approximately 0.40 extending out to approximately 120 sec. The X-ray isophotes are significantly elongated, epsilon = 0.20-0.30 for semimajor axis a approximately 100 sec. The major axes of the optical and X-ray isophotes are misaligned by approximately 30 deg +/- 15 deg. Spectral analysis of the X-ray data reveals no evidence of temperature gradients or anisotropies and demonstrates that a single-temperature plasma (T approximately 0.6 keV) having subsolar heavy element abundances and a two-temperature model having solar abundances describe the spectrum equally well. Considering only the relative geometries of the X-ray and optical surface brightness distributions and an assumed functional form for the potential of the optical light, we conclude that matter distributed like the optical light cannot produce the observed ellipticities of the X-ray isophotes, independent of the gas pressure, the gas temperature, and the value of the stellar mass; this comparison assumes a state of quasi-hydrostatic equilibrium so that the three-dimensional surfaces of the gas emissivity trace the three-dimensional isopotential surfaces -- we discuss the viability of this assumption for NGC 720. Milgrom's Modification of Newtonian Dynamics (MOND) cannot dispel this manifestation of dark matter. Hence, geometrical considerations require, without mention of pressure or temperature, the presence of an extended, massive dark matter halo in NGC 720. Employing essentially the technique of Buote & Canizares (1992; Buote 1992) we use the shape of the X-ray surface brightness to constrain the shape of the total gravitating matter. The total matter is modeled as either an oblate or prolate spheriod of constant shape and orientation having either a Ferrers (rho approximately r(exp -n)) or Hernquist density. Assuming the X-ray gas is in hydrostatic equilibrium, we construct a model X-ray gas distribution for various temperature profiles. We determine the ellipticity of the total gravitating matter to be epsilon approximately 0.50-0.70. Using the single-temperature model we estimate a total mass approximately (0.41-1.4) x 10(exp 12) h(sub 80) solar mass interior to the ellipsoid of semimajor axis 43.6 h(sub 80) kpc. Ferrers densities as steep as r(exp -3) do not fit the data, but the r(exp -2) and Hernquist models yield excellent fits. We estimate the mass distributions of the stars and the gas and fit the dark matter directly. For a given gas equation of state and functional forms for the visible stars, gas, and dark matter, these models yield a distance-independent and temperature-independent measurement of the ratio of dark mass to stellar mass M(sub DM)/M(sub stars). We estimate a minimum M(sub DM)/M(sub stars) greater than or equal to 4 which corresponds to a total mass slightly greater than that derived from the single-temperature models for distance D = 20h(sub 80) Mpc.

  16. Membrane-Based Functions in the Origin of Cellular Life

    NASA Technical Reports Server (NTRS)

    Chipot, Christophe; New, Michael H.; Schweighofer, Karl; Pohorille, Andrew; Wilson, Michael A.

    1999-01-01

    Our objective is to help explain how the earliest ancestors of contemporary cells (protocells) performed their essential functions employing only the molecules available in the protobiological milieu. Our hypothesis is that vesicles, built of amphiphilic, membrane-forming materials, emerged early in protobiological evolution and served as precursors to protocells. We further assume that the cellular functions associated with contemporary membranes, such as capturing and, transducing of energy, signaling, or sequestering organic molecules and ions, evolved in these membrane environments. An alternative hypothesis is that these functions evolved in different environments and were incorporated into membrane-bound structures at some later stage of evolution. We focus on the application of the fundamental principles of physics and chemistry to determine how they apply to the formation of a primitive, functional cell. Rather than attempting to develop specific models for cellular functions and to identify the origin of the molecules which perform these functions, our goal is to define the structural and energetic conditions that any successful model must fulfill, therefore providing physico-chemical boundaries for these models. We do this by carrying out large-scale, molecular level computer simulations on systems of interest.

  17. Semianalytical Solution for the Deformation of an Elastic Layer under an Axisymmetrically Distributed Power-Form Load: Application to Fluid-Jet-Induced Indentation of Biological Soft Tissues.

    PubMed

    Lu, Minhua; Huang, Shuai; Yang, Xianglong; Yang, Lei; Mao, Rui

    2017-01-01

    Fluid-jet-based indentation is used as a noncontact excitation technique by systems measuring the mechanical properties of soft tissues. However, the application of these devices has been hindered by the lack of theoretical solutions. This study developed a mathematical model for testing the indentation induced by a fluid jet and determined a semianalytical solution. The soft tissue was modeled as an elastic layer bonded to a rigid base. The pressure of the fluid jet impinging on the soft tissue was assumed to have a power-form function. The semianalytical solution was verified in detail using finite-element modeling, with excellent agreement being achieved. The effects of several parameters on the solution behaviors are reported, and a method for applying the solution to determine the mechanical properties of soft tissues is suggested.

  18. Static spherical wormhole models in f (R, T) gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Ilyas, M.; Zaeem-ul-Haq Bhatti, M.

    2017-06-01

    This paper explores the possibility of the existence of wormhole geometries coupled with relativistic matter configurations by taking a particular model of f(R,T) gravity (where T is the trace of energy-momentum tensor). For this purpose, we take the static form of spherically symmetric spacetime and after assuming a specific form of matter and combinations of shape function, the validity of energy conditions is checked. We have discussed our results through graphical representation and studied the equilibrium background of wormhole models by taking an anisotropic fluid. The extra curvature quantities coming from f(R,T) gravity could be interpreted as a gravitational entity supporting these non-standard astrophysical wormhole models. We have shown that in the context of anisotropic fluid and R+α R^2+λ T gravity, wormhole models could possibly exist in few zones in the space of parameters without the need for exotic matter.

  19. Beamforming synthesis of binaural responses from computer simulations of acoustic spaces.

    PubMed

    Poletti, Mark A; Svensson, U Peter

    2008-07-01

    Auditorium designs can be evaluated prior to construction by numerical modeling of the design. High-accuracy numerical modeling produces the sound pressure on a rectangular grid, and subjective assessment of the design requires auralization of the sampled sound field at a desired listener position. This paper investigates the production of binaural outputs from the sound pressure at a selected number of grid points by using a least squares beam forming approach. Low-frequency axisymmetric emulations are derived by assuming a solid sphere model of the head, and a spherical array of 640 microphones is used to emulate ten measured head-related transfer function (HRTF) data sets from the CIPIC database for half the audio bandwidth. The spherical array can produce high-accuracy band-limited emulation of any human subject's measured HRTFs for a fixed listener position by using individual sets of beam forming impulse responses.

  20. Rewiring the connectome: Evidence and effects.

    PubMed

    Bennett, Sophie H; Kirby, Alastair J; Finnerty, Gerald T

    2018-05-01

    Neuronal connections form the physical basis for communication in the brain. Recently, there has been much interest in mapping the "connectome" to understand how brain structure gives rise to brain function, and ultimately, to behaviour. These attempts to map the connectome have largely assumed that connections are stable once formed. Recent studies, however, indicate that connections in mammalian brains may undergo rewiring during learning and experience-dependent plasticity. This suggests that the connectome is more dynamic than previously thought. To what extent can neural circuitry be rewired in the healthy adult brain? The connectome has been subdivided into multiple levels of scale, from synapses and microcircuits through to long-range tracts. Here, we examine the evidence for rewiring at each level. We then consider the role played by rewiring during learning. We conclude that harnessing rewiring offers new avenues to treat brain diseases. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Symbolism in prehistoric man.

    PubMed

    Facchini, F

    2000-12-01

    The aptitude for symbolization, characteristic of man, is revealed not only in artistic representations and funerary practices. It is exhibited by every manifestation of human activity or representation of natural phenomena that assumes or refers to a meaning. We can recognize functional symbolism (tool-making, habitative or food technology), social symbolism, (language and social communication) and spiritual symbolism (funerary practices and artistic expressions). On the basis of these concepts, research into symbolism in prehistoric man allows us to recognize forms of symbolism already in the manifestations of the most ancient humans, starting with Homo habilis (or rudolfensis). Toolmaking, social organization and organization of the territory are oriented toward survival and the life of the family group. They attest to symbolic behaviors and constitute symbolic systems by means of which man expresses himself, lives and transmits his symbolic world. The diverse forms of symbolism are discussed with reference to the different phases of prehistoric humanity.

  2. Determination of Nerve Fiber Diameter Distribution From Compound Action Potential: A Continuous Approach.

    PubMed

    Un, M Kerem; Kaghazchi, Hamed

    2018-01-01

    When a signal is initiated in the nerve, it is transmitted along each nerve fiber via an action potential (called single fiber action potential (SFAP)) which travels with a velocity that is related with the diameter of the fiber. The additive superposition of SFAPs constitutes the compound action potential (CAP) of the nerve. The fiber diameter distribution (FDD) in the nerve can be computed from the CAP data by solving an inverse problem. This is usually achieved by dividing the fibers into a finite number of diameter groups and solve a corresponding linear system to optimize FDD. However, number of fibers in a nerve can be measured sometimes in thousands and it is possible to assume a continuous distribution for the fiber diameters which leads to a gradient optimization problem. In this paper, we have evaluated this continuous approach to the solution of the inverse problem. We have utilized an analytical function for SFAP and an assumed a polynomial form for FDD. The inverse problem involves the optimization of polynomial coefficients to obtain the best estimate for the FDD. We have observed that an eighth order polynomial for FDD can capture both unimodal and bimodal fiber distributions present in vivo, even in case of noisy CAP data. The assumed FDD distribution regularizes the ill-conditioned inverse problem and produces good results.

  3. 76 FR 53681 - Information Collection Being Reviewed by the Federal Communications Commission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    ... this form to local franchising authorities or the Commission, in situations where the FCC has assumed.... Cable operators submit FCC Form 1240 to their respective local franchising authorities (``LFAs'') to...

  4. Comparison of Four Mixed Layer Mesoscale Parameterizations and the Equation for an Arbitrary Tracer

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.

    2011-01-01

    In this paper we discuss two issues, the inter-comparison of four mixed layer mesoscale parameterizations and the search for the eddy induced velocity for an arbitrary tracer. It must be stressed that our analysis is limited to mixed layer mesoscales since we do not treat sub-mesoscales and small turbulent mixing. As for the first item, since three of the four parameterizations are expressed in terms of a stream function and a residual flux of the RMT formalism (residual mean theory), while the fourth is expressed in terms of vertical and horizontal fluxes, we needed a formalism to connect the two formulations. The standard RMT representation developed for the deep ocean cannot be extended to the mixed layer since its stream function does not vanish at the ocean's surface. We develop a new RMT representation that satisfies the surface boundary condition. As for the general form of the eddy induced velocity for an arbitrary tracer, thus far, it has been assumed that there is only the one that originates from the curl of the stream function. This is because it was assumed that the tracer residual flux is purely diffusive. On the other hand, we show that in the case of an arbitrary tracer, the residual flux has also a skew component that gives rise to an additional bolus velocity. Therefore, instead of only one bolus velocity, there are now two, one coming from the curl of the stream function and other from the skew part of the residual flux. In the buoyancy case, only one bolus velocity contributes to the mean buoyancy equation since the residual flux is indeed only diffusive.

  5. A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea

    NASA Astrophysics Data System (ADS)

    Bourke, M. C.; Balme, M.; Zimbelman, J.

    2004-03-01

    Contrasting wind, sediment and frost precipitation regimes contribute to different dune scale and form on Mars. Isolated barchans in the NPSS are smaller but assume a classic barchan form. Intra-crater barchans are larger and more variable in form.

  6. Approximate Global Convergence and Quasi-Reversibility for a Coefficient Inverse Problem with Backscattering Data

    DTIC Science & Technology

    2011-04-01

    L1u. Assume that geodesic lines, generated by the eikonal equation corresponding to the function c (x) are regular, i.e. any two points in R3 can be...source x0 is located far from Ω, then similarly with (107) ∆l (x, x0) ≈ 0 in Ω. The function l (x, x0) satisfies the eikonal equation [38] |∇xl (x, x0...called “inverse kinematic problem” which aims to recover the function c (x) from the eikonal equation assuming that the function l (x, x0) is known for

  7. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  8. Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects

    NASA Astrophysics Data System (ADS)

    Margueron, Jérôme; Hoffmann Casali, Rudiney; Gulminelli, Francesca

    2018-02-01

    Metamodeling for the nucleonic equation of state (EOS), inspired from a Taylor expansion around the saturation density of symmetric nuclear matter, is proposed and parameterized in terms of the empirical parameters. The present knowledge of nuclear empirical parameters is first reviewed in order to estimate their average values and associated uncertainties, and thus defining the parameter space of the metamodeling. They are divided into isoscalar and isovector types, and ordered according to their power in the density expansion. The goodness of the metamodeling is analyzed against the predictions of the original models. In addition, since no correlation among the empirical parameters is assumed a priori, all arbitrary density dependences can be explored, which might not be accessible in existing functionals. Spurious correlations due to the assumed functional form are also removed. This meta-EOS allows direct relations between the uncertainties on the empirical parameters and the density dependence of the nuclear equation of state and its derivatives, and the mapping between the two can be done with standard Bayesian techniques. A sensitivity analysis shows that the more influential empirical parameters are the isovector parameters Lsym and Ksym, and that laboratory constraints at supersaturation densities are essential to reduce the present uncertainties. The present metamodeling for the EOS for nuclear matter is proposed for further applications in neutron stars and supernova matter.

  9. Real-Time Parameter Estimation Method Applied to a MIMO Process and its Comparison with an Offline Identification Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplanoglu, Erkan; Safak, Koray K.; Varol, H. Selcuk

    2009-01-12

    An experiment based method is proposed for parameter estimation of a class of linear multivariable systems. The method was applied to a pressure-level control process. Experimental time domain input/output data was utilized in a gray-box modeling approach. Prior knowledge of the form of the system transfer function matrix elements is assumed to be known. Continuous-time system transfer function matrix parameters were estimated in real-time by the least-squares method. Simulation results of experimentally determined system transfer function matrix compare very well with the experimental results. For comparison and as an alternative to the proposed real-time estimation method, we also implemented anmore » offline identification method using artificial neural networks and obtained fairly good results. The proposed methods can be implemented conveniently on a desktop PC equipped with a data acquisition board for parameter estimation of moderately complex linear multivariable systems.« less

  10. Bayesian inference on risk differences: an application to multivariate meta-analysis of adverse events in clinical trials.

    PubMed

    Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng

    2013-05-01

    Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.

  11. On Fluctuations of Eigenvalues of Random Band Matrices

    NASA Astrophysics Data System (ADS)

    Shcherbina, M.

    2015-10-01

    We consider the fluctuations of linear eigenvalue statistics of random band matrices whose entries have the form with i.i.d. possessing the th moment, where the function u has a finite support , so that M has only nonzero diagonals. The parameter b (called the bandwidth) is assumed to grow with n in a way such that . Without any additional assumptions on the growth of b we prove CLT for linear eigenvalue statistics for a rather wide class of test functions. Thus we improve and generalize the results of the previous papers (Jana et al., arXiv:1412.2445; Li et al. Random Matrices 2:04, 2013), where CLT was proven under the assumption . Moreover, we develop a method which allows to prove automatically the CLT for linear eigenvalue statistics of the smooth test functions for almost all classical models of random matrix theory: deformed Wigner and sample covariance matrices, sparse matrices, diluted random matrices, matrices with heavy tales etc.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoynov, Y.

    Functionally graded materials (FGM) are extensively used in modern industry. They are composite materials with continuously varying properties in one or more special dimensions, according to the specific purpose. In view of the wide range of applications of FGM, stress analysis is important for their structural integrity and reliable service life. In this study we will consider functionally graded magneto-electro-elastic materials with one or more cracks subjected to SH waves. We assume that the material properties vary in one and the same way, described by an inhomogeneity function. The boundary value problem is reduced to a system of integro-differential equationsmore » based on the existence of fundamental solutions. Different inhomogeneity classes are used to obtain a wave equation with constant coefficients. Radon transform is applied to derive the fundamental solution in a closed form. Program code in FORTRAN 77 is developed and validated using available examples from literature. Simulations show the dependence of stress field concentration near the crack tips on the frequency of the applied time-harmonic load for different types of material inhomogeneity.« less

  13. Characterization of urinary metabolites from four synthetic bradykinin potentiating peptides (BPPs) in mice.

    PubMed

    Silva, Carlos A; Ianzer, Danielle A; Portaro, Fernanda C V; Konno, Katsuhiro; Faria, Marcella; Fernandes, Beatriz L; Camargo, Antonio C M

    2008-09-01

    BPPs have been identified in the venom of the Bothrops jararaca snake, or deduced from precursor proteins expressed either in the venom gland or in the brain of the snake. Their potentiating activity on bradykinin (Bk) is assumed to occur through a somatic angiotensin-converting enzyme (sACE) inhibitory mechanism. We have demonstrated that synthetic BPPs show remarkable functional differences, despite their high amino acid sequence similarities. Recently, we demonstrated that BPP-10c, after i.p. administration, was found in its intact form and in the form of a unique metabolite (des-Pro(10) BPP-10c) in mouse urine. Given this finding, we selected a number of BPPs with different structure-activities - BPP-5a (

  14. On the thermodynamic framework of generalized coupled thermoelastic-viscoplastic-damage modeling

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Saleeb, A. F.

    1991-01-01

    A complete potential based framework using internal state variables is put forth for the derivation of reversible and irreversible constitutive equations. In this framework, the existence of the total (integrated) form of either the (Helmholtz) free energy or the (Gibbs) complementary free energy are assumed a priori. Two options for describing the flow and evolutionary equations are described, wherein option one (the fully coupled form) is shown to be over restrictive while the second option (the decoupled form) provides significant flexibility. As a consequence of the decoupled form, a new operator, i.e., the Compliance operator, is defined which provides a link between the assumed Gibb's and complementary dissipation potential and ensures a number of desirable numerical features, for example the symmetry of the resulting consistent tangent stiffness matrix. An important conclusion reached, is that although many theories in the literature do not conform to the general potential framework outlined, it is still possible in some cases, by slight modifications of the used forms, to restore the complete potential structure.

  15. Elastic strain field due to an inclusion of a polyhedral shape with a non-uniform lattice misfit

    NASA Astrophysics Data System (ADS)

    Nenashev, A. V.; Dvurechenskii, A. V.

    2017-03-01

    An analytical solution in a closed form is obtained for the three-dimensional elastic strain distribution in an unlimited medium containing an inclusion with a coordinate-dependent lattice mismatch (an eigenstrain). Quantum dots consisting of a solid solution with a spatially varying composition are examples of such inclusions. It is assumed that both the inclusion and the surrounding medium (the matrix) are elastically isotropic and have the same Young's modulus and Poisson ratio. The inclusion shape is supposed to be an arbitrary polyhedron, and the coordinate dependence of the lattice misfit, with respect to the matrix, is assumed to be a polynomial of any degree. It is shown that, both inside and outside the inclusion, the strain tensor is expressed as a sum of contributions of all faces, edges, and vertices of the inclusion. Each of these contributions, as a function of the observation point's coordinates, is a product of some polynomial and a simple analytical function, which is the solid angle subtended by the face from the observation point (for a contribution of a face), or the potential of the uniformly charged edge (for a contribution of an edge), or the distance from the vertex to the observation point (for a contribution of a vertex). The method of constructing the relevant polynomial functions is suggested. We also found out that similar expressions describe an electrostatic or gravitational potential, as well as its first and second derivatives, of a polyhedral body with a charge/mass density that depends on coordinates polynomially.

  16. On the impact of neutron star binaries' natal-kick distribution on the Galactic r-process enrichment

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Côté, Benoit

    2017-11-01

    We study the impact of the neutron star binaries' (NSBs) natal-kick distribution on the galactic r-process enrichment. We model the growth of a Milky Way type halo based on N-body simulation results and its star formation history based on multi-epoch abundance matching techniques. We consider that the NSBs that merge well beyond the galaxy's effective radius (>2 × Reff) do not contribute to the galactic r-process enrichment. Assuming a power-law delay-time distribution (DTD) function (∝t-1) with tmin = 30 Myr for binaries' coalescence time-scales and an exponential profile for their natal-kick distribution with an average value of 180 km s-1, we show that up to ˜ 40 per cent of all formed NSBs do not contribute to the r-process enrichment by z = 0, either because they merge far from the galaxy at a given redshift (up to ˜ 25 per cent) or have not yet merged by today (˜ 15 per cent). Our result is largely insensitive to the details of the DTD function. Assuming a constant coalescence time-scale of 100 Myr well approximates the adopted DTD although with 30 per cent of the NSBs ending up not contributing to the r-process enrichment. Our results, although rather dependent on the adopted natal-kick distribution, represent the first step towards estimating the impact of natal kicks and DTD functions on the r-process enrichment of galaxies that would need to be incorporated in the hydrodynamical simulations.

  17. Decorrelation scales for Arctic Ocean hydrography - Part I: Amerasian Basin

    NASA Astrophysics Data System (ADS)

    Sumata, Hiroshi; Kauker, Frank; Karcher, Michael; Rabe, Benjamin; Timmermans, Mary-Louise; Behrendt, Axel; Gerdes, Rüdiger; Schauer, Ursula; Shimada, Koji; Cho, Kyoung-Ho; Kikuchi, Takashi

    2018-03-01

    Any use of observational data for data assimilation requires adequate information of their representativeness in space and time. This is particularly important for sparse, non-synoptic data, which comprise the bulk of oceanic in situ observations in the Arctic. To quantify spatial and temporal scales of temperature and salinity variations, we estimate the autocorrelation function and associated decorrelation scales for the Amerasian Basin of the Arctic Ocean. For this purpose, we compile historical measurements from 1980 to 2015. Assuming spatial and temporal homogeneity of the decorrelation scale in the basin interior (abyssal plain area), we calculate autocorrelations as a function of spatial distance and temporal lag. The examination of the functional form of autocorrelation in each depth range reveals that the autocorrelation is well described by a Gaussian function in space and time. We derive decorrelation scales of 150-200 km in space and 100-300 days in time. These scales are directly applicable to quantify the representation error, which is essential for use of ocean in situ measurements in data assimilation. We also describe how the estimated autocorrelation function and decorrelation scale should be applied for cost function calculation in a data assimilation system.

  18. Design and optimal control of multi-spacecraft interferometric imaging systems

    NASA Astrophysics Data System (ADS)

    Chakravorty, Suman

    The objective of the proposed NASA Origins mission, Planet Imager, is the high-resolution imaging of exo-solar planets and similar high resolution astronomical imaging applications. The imaging is to be accomplished through the design of multi-spacecraft interferometric imaging systems (MSIIS). In this dissertation, we study the design of MSIIS. Assuming that the ultimate goal of imaging is the correct classification of the formed images, we formulate the design problem as minimization of some resource utilization of the system subject to the constraint that the probability of misclassification of any given image is below a pre-specified level. We model the process of image formation in an MSIIS and show that the Modulation Transfer function of and the noise corrupting the synthesized optical instrument are dependent on the trajectories of the constituent spacecraft. Assuming that the final goal of imaging is the correct classification of the formed image based on a given feature (a real valued function of the image variable), and a threshold on the feature, we find conditions on the noise corrupting the measurements such that the probability of misclassification is below some pre-specified level. These conditions translate into constraints on the trajectories of the constituent spacecraft. Thus, the design problem reduces to minimizing some resource utilization of the system, while satisfying the constraints placed on the system by the imaging requirements. We study the problem of designing minimum time maneuvers for MSIIS. We transform the time minimization problem into a "painting problem". The painting problem involves painting a large disk with smaller paintbrushes (coverage disks). We show that spirals form the dominant set for the solution to the painting problem. We frame the time minimization in the subspace of spirals and obtain a bilinear program, the double pantograph problem, in the design parameters of the spiral, the spiraling rate and the angular rate. We show that the solution of this problem is given by the solution to two associated linear programs. We illustrate our results through a simulation where the banded appearance of a fictitious exo-solar planet at a distance of 8 parsecs is detected.

  19. A survey of functional programming language principles

    NASA Technical Reports Server (NTRS)

    Holloway, C. M.

    1986-01-01

    Research in the area of functional programming languages has intensified in the 8 years since John Backus' Turing Award Lecture on the topic was published. The purpose of this paper is to present a survey of the ideas of functional programming languages. The paper assumes the reader is comfortable with mathematics and has knowledge of the basic principles of traditional programming languages, but does not assume any prior knowledge of the ideas of functional languages. A simple functional language is defined and used to illustrate the basic ideas. Topics discussed include the reasons for developing functional languages, methods of expressing concurrency, the algebra of functional programming languages, program transformation techniques, and implementations of functional languages. Existing functional languages are also mentioned. The paper concludes with the author's opinions as to the future of functional languages. An annotated bibliography on the subject is also included.

  20. An entomoparasitic adult form in Bursaphelenchus doui (Nematoda: Tylenchomorpha) associated with Acalolepta fraudatrix.

    PubMed

    Kanzaki, Natsumi; Maehara, Noritoshi; Aikawa, Takuya; Nakamura, Katsunori

    2013-10-01

    The nematode family Aphelenchoididae (Rhabditida: Tylenchomorpha) includes species with various feeding habitats. Bursaphelenchus, a member of the family, has for a long time been considered as a home for plant parasitic or mycophagous species (or both). However, recent intensive biological studies on the family revealed that the genus contains several insect parasitic species. Dauer juveniles of Bursaphelenchus doui were isolated from Acalolepta fraudatrix during a field study of longhorn beetle-Bursaphelenchus nematode associations. Two different insect-associated forms, an "entomoparasitic adult form" and a regular dauer juvenile, were isolated from a single individual beetle in a subsequent laboratory investigation of the B. doui-A. fraudatrix relationship. Thus these 2 distinct, insect-associated forms were confirmed to occur simultaneously. The entomoparasitic form is morphologically similar to that of Bursaphelenchus luxuriosae, with a dome-shaped head and vacuole-like spots assumed to be an internal structure of sensory organ, a stylet, a metacorpus (median bulb), and a moderately-developed and seemingly fully functional reproductive system. It is distinguishable from B. luxuriosae based on male spicule morphology and female tail morphology. A degenerate ingestive-digestive system distinguishes the entomoparasitic form from the propagative form and, unlike dauer juveniles, it has a moderately-developed reproductive system. The presence of this characteristic parasitic adult form is known only in these 2 Bursaphelenchus species. However, these 2 species did not form a clear monophyletic clade within the Bursaphelenchus xylophilus group and, thus, this characteristic parasitic form may occur independently in each species.

  1. Generalized linear mixed models with varying coefficients for longitudinal data.

    PubMed

    Zhang, Daowen

    2004-03-01

    The routinely assumed parametric functional form in the linear predictor of a generalized linear mixed model for longitudinal data may be too restrictive to represent true underlying covariate effects. We relax this assumption by representing these covariate effects by smooth but otherwise arbitrary functions of time, with random effects used to model the correlation induced by among-subject and within-subject variation. Due to the usually intractable integration involved in evaluating the quasi-likelihood function, the double penalized quasi-likelihood (DPQL) approach of Lin and Zhang (1999, Journal of the Royal Statistical Society, Series B61, 381-400) is used to estimate the varying coefficients and the variance components simultaneously by representing a nonparametric function by a linear combination of fixed effects and random effects. A scaled chi-squared test based on the mixed model representation of the proposed model is developed to test whether an underlying varying coefficient is a polynomial of certain degree. We evaluate the performance of the procedures through simulation studies and illustrate their application with Indonesian children infectious disease data.

  2. Entanglement properties of boundary state and thermalization

    NASA Astrophysics Data System (ADS)

    Guo, Wu-zhong

    2018-06-01

    We discuss the regularized boundary state {e}^{-{τ}_0H}\\Big|{.B>}_a on two aspects in both 2D CFT and higher dimensional free field theory. One is its entanglement and correlation properties, which exhibit exponential decay in 2D CFT, the parameter 1 /τ 0 works as a mass scale. The other concerns with its time evolution, i.e., {e}^{-itH}{e}^{-{τ}_0H}\\Big|{.B>}_a . We investigate the Kubo-Martin-Schwinger (KMS) condition on correlation function of local operators to detect the thermal properties. Interestingly we find the correlation functions in the initial state {e}^{-{τ}_0H}\\Big|{.B>}_a also partially satisfy the KMS condition. In the limit t → ∞, the correlators will exactly satisfy the KMS condition. We generally analyse quantum quench by a pure state and obtain some constraints on the possible form of 2-point correlation function in the initial state if assuming they satisfies KMS condition in the final state. As a byproduct we find in an large τ 0 limit the thermal property of 2-point function in {e}^{-{τ}_0H}\\Big|{.B>}_a also appears.

  3. An invasive foundation species enhances multifunctionality in a coastal ecosystem.

    PubMed

    Ramus, Aaron P; Silliman, Brian R; Thomsen, Mads S; Long, Zachary T

    2017-08-08

    While invasive species often threaten biodiversity and human well-being, their potential to enhance functioning by offsetting the loss of native habitat has rarely been considered. We manipulated the abundance of the nonnative, habitat-forming seaweed Gracilaria vermiculophylla in large plots (25 m 2 ) on southeastern US intertidal landscapes to assess impacts on multiple ecosystem functions underlying coastal ecosystem services. We document that in the absence of native habitat formers, this invasion has an overall positive, density-dependent impact across a diverse set of ecosystem processes (e.g., abundance and richness of nursery taxa, flow attenuation). Manipulation of invader abundance revealed both thresholds and saturations in the provisioning of ecosystem functions. Taken together, these findings call into question the focus of traditional invasion research and management that assumes negative effects of nonnatives, and emphasize the need to consider context-dependence and integrative measurements when assessing the impact of an invader, including density dependence, multifunctionality, and the status of native habitat formers. This work supports discussion of the idea that where native foundation species have been lost, invasive habitat formers may be considered as sources of valuable ecosystem functions.

  4. [Cognitive advantages of the third age: a neural network model of brain aging].

    PubMed

    Karpenko, M P; Kachalova, L M; Budilova, E V; Terekhin, A T

    2009-01-01

    We consider a neural network model of age-related cognitive changes in aging brain based on Hopfield network with a sigmoid function of neuron activation. Age is included in the activation function as a parameter in the form of exponential rate denominator, which makes it possible to take into account the weakening of interneuronal links really observed in the aging brain. Analysis of properties of the Lyapunov function associated with the network shows that, with increasing parameter of age, its relief becomes smoother and the number of local minima (network attractors) decreases. As a result, the network gets less frequently stuck in the nearest local minima of the Lyapunov function and reaches a global minimum corresponding to the most effective solution of the cognitive task. It is reasonable to assume that similar changes really occur in the aging brain. Phenomenologically, these changes can be manifested as emergence in aged people of a cognitive quality such as wisdom i.e. ability to find optimal decisions in difficult controversial situations, to distract from secondary aspects and to see the problem as a whole.

  5. The analysis of thin walled composite laminated helicopter rotor with hierarchical warping functions and finite element method

    NASA Astrophysics Data System (ADS)

    Zhu, Dechao; Deng, Zhongmin; Wang, Xingwei

    2001-08-01

    In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free bending as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method is introduced to form a numerical algorithm. Both static and natural vibration problems of sample box beams are analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor.

  6. Determination of optimum processing temperature for transformation of glyceryl monostearate.

    PubMed

    Yajima, Toshio; Itai, Shigeru; Takeuchi, Hirofumi; Kawashima, Yoshiaki

    2002-11-01

    The purpose of this study was to clarify the mechanism of transformation from alpha-form to beta-form via beta'-form of glyceryl monostearate (GM) and to determine the optimum conditions of heat-treatment for physically stabilizing GM in a pharmaceutical formulation. Thermal analysis repeated twice using a differential scanning calorimeter (DSC) were performed on mixtures of two crystal forms. In the first run (enthalpy of melting: DeltaH1), two endothermic peaks of alpha-form and beta-form were observed. However, in the second run (enthalpy of melting: DeltaH2), only the endothermic peak of the alpha-form was observed. From a strong correlation observed between the beta-form content in the mixture of alpha-form and beta-form and the enthalpy change, (DeltaH1-DeltaH2)/DeltaH2, beta-form content was expressed as a function of the enthalpy change. Using this relation, the stable beta-form content during the heat-treatment could be determined, and the maximum beta-form content was obtained when the heat-treatment was carried out at 50 degrees C. An inflection point existed in the time course of transformation of alpha-form to beta-form. It was assumed that almost all of alpha-form transformed to beta'-form at this point, and that subsequently only transformation from beta'-form to beta-form occurred. Based on this aspect, the transformation rate equations were derived as consecutive reaction. Experimental data coincided well with the theoretical curve. In conclusion, GM was transformed in the consecutive reaction, and 50 degrees C was the optimum heat-treatment temperature for transforming GM from the alpha-form to the stable beta-form.

  7. Analyzing the Stability of Price Response Functions: Measuring the Influence of Different Parameters in a Monte Carlo Comparison

    NASA Astrophysics Data System (ADS)

    Brusch, Michael; Baier, Daniel

    The usage and the estimation of price response function is very important for strategic marketing decisions. Typically price response functions with an empirical basis are used. However, such price response functions are subject to a lot of disturbing influence factors, e.g., the assumed profit maximum price and the assumed corresponding quantity of sales. In such cases, the question how stable the found price response function is was not answered sufficiently up to now. In this paper, the question will be pursued how much (and what kind of) errors in market research are pardonable for a stable price response function. For the comparisons, a factorial design with synthetically generated and disturbed data is used.

  8. The evolutionary ecology of decorating behaviour

    PubMed Central

    Ruxton, Graeme D.; Stevens, Martin

    2015-01-01

    Many animals decorate themselves through the accumulation of environmental material on their exterior. Decoration has been studied across a range of different taxa, but there are substantial limits to current understanding. Decoration in non-humans appears to function predominantly in defence against predators and parasites, although an adaptive function is often assumed rather than comprehensively demonstrated. It seems predominantly an aquatic phenomenon—presumably because buoyancy helps reduce energetic costs associated with carrying the decorative material. In terrestrial examples, decorating is relatively common in the larval stages of insects. Insects are small and thus able to generate the power to carry a greater mass of material relative to their own body weight. In adult forms, the need to be lightweight for flight probably rules out decoration. We emphasize that both benefits and costs to decoration are rarely quantified, and that costs should include those associated with collecting as well as carrying the material. PMID:26041868

  9. Vitamin D and Its Relevance in the Etiopathogenesis of Oral Cavity Diseases.

    PubMed

    Ślebioda, Zuzannna; Szponar, Elżbieta; Dorocka-Bobkowska, Barbara

    2016-10-01

    Vitamin D belongs to a group of fat-soluble secosteroids which assume many roles in the human organism. In humans the most important forms are vitamin D3 and vitamin D2. Their primary function is the regulation of the calcium and phosphorus balance, which promote the growth of healthy bony tissue. Studies over the past few years have revealed a much wider role of vitamin D involving the aging processes, carcinogenesis, the carbohydrate balance as well as the effects on the course of various infections. In this paper we discuss the basic functions of vitamin D in the human body and the mechanisms of its activity and we summarize recent reports on the impact of vitamin D on the oral cavity with a special emphasis on autoimmunologic diseases, including: recurrent aphthous stomatitis, Behçet syndrome and Sjögren syndrome.

  10. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution

    NASA Astrophysics Data System (ADS)

    Neagu, Dragos; Oh, Tae-Sik; Miller, David N.; Ménard, Hervé; Bukhari, Syed M.; Gamble, Stephen R.; Gorte, Raymond J.; Vohs, John M.; Irvine, John T. S.

    2015-09-01

    Metal particles supported on oxide surfaces are used as catalysts for a wide variety of processes in the chemical and energy conversion industries. For catalytic applications, metal particles are generally formed on an oxide support by physical or chemical deposition, or less commonly by exsolution from it. Although fundamentally different, both methods might be assumed to produce morphologically and functionally similar particles. Here we show that unlike nickel particles deposited on perovskite oxides, exsolved analogues are socketed into the parent perovskite, leading to enhanced stability and a significant decrease in the propensity for hydrocarbon coking, indicative of a stronger metal-oxide interface. In addition, we reveal key surface effects and defect interactions critical for future design of exsolution-based perovskite materials for catalytic and other functionalities. This study provides a new dimension for tailoring particle-substrate interactions in the context of increasing interest for emergent interfacial phenomena.

  11. Peelle's pertinent puzzle using the Monte Carlo technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawano, Toshihiko; Talou, Patrick; Burr, Thomas

    2009-01-01

    We try to understand the long-standing problem of the Peelle's Pertinent Puzzle (PPP) using the Monte Carlo technique. We allow the probability density functions to be any kind of form to assume the impact of distribution, and obtain the least-squares solution directly from numerical simulations. We found that the standard least squares method gives the correct answer if a weighting function is properly provided. Results from numerical simulations show that the correct answer of PPP is 1.1 {+-} 0.25 if the common error is multiplicative. The thought-provoking answer of 0.88 is also correct, if the common error is additive, andmore » if the error is proportional to the measured values. The least squares method correctly gives us the most probable case, where the additive component has a negative value. Finally, the standard method fails for PPP due to a distorted (non Gaussian) joint distribution.« less

  12. Analytical Phase Equilibrium Function for Mixtures Obeying Raoult's and Henry's Laws

    NASA Astrophysics Data System (ADS)

    Hayes, Robert

    When a mixture of two substances exists in both the liquid and gas phase at equilibrium, Raoults and Henry's laws (ideal solution and ideal dilute solution approximations) can be used to estimate the gas and liquid mole fractions at the extremes of either very little solute or solvent. By assuming that a cubic polynomial can reasonably approximate the intermediate values to these extremes as a function of mole fraction, the cubic polynomial is solved and presented. A closed form equation approximating the pressure dependence on mole fraction of the constituents is thereby obtained. As a first approximation, this is a very simple and potentially useful means to estimate gas and liquid mole fractions of equilibrium mixtures. Mixtures with an azeotrope require additional attention if this type of approach is to be utilized. This work supported in part by federal Grant NRC-HQ-84-14-G-0059.

  13. Multilayered models for electromagnetic reflection amplitudes

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.

    1976-01-01

    The remote sensing of snowpack characteristics with surface installations or with an airborne system could have important applications in water resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayer snow models is analyzed. Normally incident plane waves are assumed at frequencies ranging from 10 to the 6th power to 10 to the 10th power Hz, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice sheets. Layers are defined by a thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients, versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the reflection coefficient variations as a function of frequency.

  14. On the X-ray spectrum of the volume emissivity arising from Abell clusters

    NASA Technical Reports Server (NTRS)

    Stottlemyer, A. R.; Boldt, E. A.

    1984-01-01

    HEAO 1 A-2 X-ray spectra (2-15 keV) for an optically selected sample of Abell clusters of galaxies with z less than 0.1 have been analyzed to determine the energy dependence of the cosmological X-ray volume emissivity arising from such clusters. This spectrum is well fitted by an isothermal-bremsstrahlung model with kT = 7.4 + or - 1.5 KeV. This result is a test of the isothermal-volume-emissivity spectrum to be inferred from the conjecture that all contributing clusters may be characterized by kT = 7 keV, as assumed by McKee et al. (1980) in estimating the underlying luminosity function for the same sample. Although satisfied at the statistical level indicated, the analysis of a low-luminosity subsample suggests that this assumption of identical isothermal spectra would lead to a systematic error for a more statistically precise determination of the luminosity function's form.

  15. Linear entropy and collapse–revival phenomenon for a general formalism N-type four-level atom interacting with a single-mode field

    NASA Astrophysics Data System (ADS)

    Eied, A. A.

    2018-05-01

    In this paper, the linear entropy and collapse-revival phenomenon through the relation (< {\\hat{a}}+{\\hat{a}} > -{\\bar{n}}) in a system of N-configuration four-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom-field coupling functional are investigated. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent states and the atom initially in its most upper excited state. The dynamical behavior of the linear entropy and the time evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are analyzed. In particular, the effects of the mean photon number, detuning, Kerr-like medium and the intensity-dependent coupling functional on the entropy and the evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are examined.

  16. Photo nuclear energy loss term for muon-nucleus interactions based on xi scaling model of QCD

    NASA Technical Reports Server (NTRS)

    Roychoudhury, R.

    1985-01-01

    Extensive air showers (EMC) experiments discovered a significant deviation of the ratio of structure functions of iron and deuteron from unity. It was established that the quark parton distribution in nuclei are different from the corresponding distribution in the nucleus. It was examined whether these results have an effect on the calculation of photo nucleus energy loss term for muon-nucleus nuclear interaction. Though the EMC and SLAC data were restricted to rather large q sq region it is expected that the derivation would persist even in the low q sq domain. For the ratio of iron and deuteron structure function a rather naive least square fit of the form R(x) = a + bx was taken and it is assumed that the formula is valid for the whole q sq region the absence of any knowledge of R(x) for small q sq.

  17. An Analytic Form for the Interresponse Time Analysis of Shull, Gaynor, and Grimes with Applications and Extensions

    ERIC Educational Resources Information Center

    Kessel, Robert; Lucke, Robert L.

    2008-01-01

    Shull, Gaynor and Grimes advanced a model for interresponse time distribution using probabilistic cycling between a higher-rate and a lower-rate response process. Both response processes are assumed to be random in time with a constant rate. The cycling between the two processes is assumed to have a constant transition probability that is…

  18. Coupled thermal stresses analysis in the composite elastic-plastic cylinder

    NASA Astrophysics Data System (ADS)

    Murashkin, E. V.; Dats, E. P.

    2018-04-01

    The present study is devoted to the set of boundary value problems in the frameworks of coupled thermoelastoplasticity under axial symmetry conditions for a composite circular cylinder. Throughout the paper the conventional Prandtl–Reuss elastic–plastic model generalised on the thermal effects is used. The yield stress is assumed by linear function of the temperature. The plastic potential is chosen in the form of Tresca yield criterion and the associated plastic flow rule is derived. The adding process of a heated cylinder to another is simulated. The coupled thermal stresses are calculated during processes of cooling and material unloading. The elastic-plastic borders positions are calculated and plastic flow domains are localized. Numerical results are graphically analysed.

  19. Theoretical predictions of latitude dependencies in the solar wind

    NASA Technical Reports Server (NTRS)

    Winge, C. R., Jr.; Coleman, P. J., Jr.

    1974-01-01

    Results are presented which were obtained with the Winge-Coleman model for theoretical predictions of latitudinal dependencies in the solar wind. A first-order expansion is described which allows analysis of first-order latitudinal variations in the coronal boundary conditions and results in a second-order partial differential equation for the perturbation stream function. Latitudinal dependencies are analytically separated out in the form of Legendre polynomials and their derivative, and are reduced to the solution of radial differential equations. This analysis is shown to supply an estimate of how large the coronal variation in latitude must be to produce an 11 km/sec/deg gradient in the radial velocity of the solar wind, assuming steady-state processes.

  20. Polarization-transfer measurement to a large-virtuality bound proton in the deuteron

    NASA Astrophysics Data System (ADS)

    Yaron, I.; Izraeli, D.; Achenbach, P.; Arenhövel, H.; Beričič, J.; Böhm, R.; Bosnar, D.; Cohen, E. O.; Debenjak, L.; Distler, M. O.; Esser, A.; Friščić, I.; Gilman, R.; Korover, I.; Lichtenstadt, J.; Merkel, H.; Middleton, D. G.; Mihovilovič, M.; Müller, U.; Piasetzky, E.; Pochodzalla, J.; Ron, G.; Schlimme, B. S.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Strauch, S.; Thiel, M.; Tyukin, A.; Weber, A.; A1 Collaboration

    2017-06-01

    We report the measurement of the ratio of polarization-transfer components, Px /Pz, in the 2H (e → ,e‧ p →) n reaction at low and high missing momenta, in search of differences between free and bound protons. The observed deviation of Px /Pz from that of a free proton, which is similar to that observed in 4He, indicates that the effect in nuclei is a function of the virtuality of the knock-out proton and the missing momentum direction, but not the average nuclear density. There is a general agreement between the data and calculations, which assume free proton form factors, however, the measurements are consistently about 10% higher.

  1. Analysis of the dynamic response of a supersonic inlet to flow-field perturbations upstream of the normal shock

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Willoh, R. G.

    1975-01-01

    A linearized mathematical analysis is presented for determining the response of normal shock position and subsonic duct pressures to flow-field perturbations upstream of the normal shock in mixed-compression supersonic inlets. The inlet duct cross-sectional area variation is approximated by constant-area sections; this approximation results in one-dimensional wave equations. A movable normal shock separates the supersonic and subsonic flow regions, and a choked exit is assumed for the inlet exit condition. The analysis leads to a closed-form matrix solution for the shock position and pressure transfer functions. Analytical frequency response results are compared with experimental data and a method of characteristics solution.

  2. What do you mean by a periodical? Forms and functions

    PubMed Central

    Corsi, Pietro

    2016-01-01

    The word ‘periodical’ immediately calls to mind huge stacks of bound volumes neatly arranged on library shelves. Yet, in historical terms, it would be hard to claim that ‘periodical’ is a word endowed with a definite and univocal connotation. Even the criterion of ‘periodicity’ leaves a lot out of account. Forms historically assumed by periodicals often envisaged regular schedules of appearance, but this was often more of a wish than a reality. Thus, great care needs to be taken in accepting at face value the dating of issues and volumes. Scientific periodicals, whether purely professional or purely commercial (and the many forms in between), existed in given historical circumstances and had to compete with different and alternative forms of publication which were also issued in instalments (especially dictionaries and encyclopaedias). They were not the only or even the preferred vehicle for a scientist to communicate or engage in debate. The role of the reading public, in science as well as in many other matters, was never one of a passive receiver: during the long nineteenth century, in several countries, readers claimed the right to intervene in scientific debates, and favoured publications that appeared to accommodate their demands.

  3. Low-end mass function of the Quintuplet cluster

    NASA Astrophysics Data System (ADS)

    Shin, Jihye; Kim, Sungsoo S.

    2016-08-01

    The Quintuplet and Arches clusters, which were formed in the harsh environment of the Galactic Centre (GC) a few million years ago, have been excellent targets for studying the effects of a star-forming environment on the initial mass function (IMF). In order to estimate the shape of the low-end IMF of the Arches cluster, Shin & Kim devised a novel photometric method that utilizes pixel intensity histograms (PIHs) of the observed images. Here, we apply the PIH method to the Quintuplet cluster and estimate the shape of its low-end IMF below the magnitude of completeness limit as set by conventional photometry. We found that the low-end IMF of the Quintuplet is consistent with that found for the Arches cluster-Kroupa MF, with a significant number of low-mass stars below 1 M⊙. We conclude that the most likely IMFs of the Quintuplet and the Arches clusters are not too different from the IMFs found in the Galactic disc. We also find that the observed PIHs and stellar number density profiles of both clusters are best reproduced when the clusters are assumed to be at three-dimensional distances of approximately 100 pc from the GC.

  4. Covariate Measurement Error Correction Methods in Mediation Analysis with Failure Time Data

    PubMed Central

    Zhao, Shanshan

    2014-01-01

    Summary Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This paper focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error and error associated with temporal variation. The underlying model with the ‘true’ mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling design. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. PMID:25139469

  5. Covariate measurement error correction methods in mediation analysis with failure time data.

    PubMed

    Zhao, Shanshan; Prentice, Ross L

    2014-12-01

    Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This article focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error, and error associated with temporal variation. The underlying model with the "true" mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling designs. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. © 2014, The International Biometric Society.

  6. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism.

    PubMed

    Fernández, Peter J; Holowka, Nicholas B; Demes, Brigitte; Jungers, William L

    2016-07-28

    During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as "dorsal doming" are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2-5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism.

  7. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevalier, Michael W., E-mail: Michael.Chevalier@ucsf.edu; El-Samad, Hana, E-mail: Hana.El-Samad@ucsf.edu

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation timesmore » of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.« less

  8. Stochastic transfer of polarized radiation in finite cloudy atmospheric media with reflective boundaries

    NASA Astrophysics Data System (ADS)

    Sallah, M.

    2014-03-01

    The problem of monoenergetic radiative transfer in a finite planar stochastic atmospheric medium with polarized (vector) Rayleigh scattering is proposed. The solution is presented for an arbitrary absorption and scattering cross sections. The extinction function of the medium is assumed to be a continuous random function of position, with fluctuations about the mean taken as Gaussian distributed. The joint probability distribution function of these Gaussian random variables is used to calculate the ensemble-averaged quantities, such as reflectivity and transmissivity, for an arbitrary correlation function. A modified Gaussian probability distribution function is also used to average the solution in order to exclude the probable negative values of the optical variable. Pomraning-Eddington approximation is used, at first, to obtain the deterministic analytical solution for both the total intensity and the difference function used to describe the polarized radiation. The problem is treated with specular reflecting boundaries and angular-dependent externally incident flux upon the medium from one side and with no flux from the other side. For the sake of comparison, two different forms of the weight function, which introduced to force the boundary conditions to be fulfilled, are used. Numerical results of the average reflectivity and average transmissivity are obtained for both Gaussian and modified Gaussian probability density functions at the different degrees of polarization.

  9. Computing many-body wave functions with guaranteed precision: the first-order Møller-Plesset wave function for the ground state of helium atom.

    PubMed

    Bischoff, Florian A; Harrison, Robert J; Valeev, Edward F

    2012-09-14

    We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.

  10. Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release

    PubMed Central

    Gupta, Varun K.; Pech, Ulrike; Fulterer, Andreas; Ender, Anatoli; Mauermann, Stephan F.; Andlauer, Till F. M.; Beuschel, Christine; Thriene, Kerstin; Quentin, Christine; Schwärzel, Martin; Mielke, Thorsten; Madeo, Frank; Dengjel, Joern; Fiala, André; Sigrist, Stephan J.

    2016-01-01

    Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse. PMID:27684064

  11. Controls on the extent of sediment cover in bedrock-alluvial channels

    NASA Astrophysics Data System (ADS)

    Hodge, Rebecca; Johnson, Joel; Tranmer, Andy; Yager, Elowyn

    2017-04-01

    The amount and location of sediment cover in a bedrock-alluvial channel is a key factor that controls the morphological evolution of the channel, sediment transport pathways and channel roughness. The amount of sediment cover is often predicted as a function of relative sediment supply (sediment supply over transport capacity). However, several different forms of this relationship have been produced using a range of different approaches, and there is not yet agreement as to the controlling factors that need to be included. Part of this lack of agreement is because of the need for a more processed-based understanding of the way in which sediment cover is formed and eroded in bedrock-alluvial channels. We start to address this knowledge gap by assessing the factors that control the location of sediment cover in a field setting. We present field data from two channels in the Henry Mountains, USA. The field data includes measurement of channel geometry, slope, sediment cover location, bedrock roughness, grain size and boulder occurrence. Relative sediment supply is estimated by assuming that downstream changes are primarily accounted for by changes in transport capacity, rather than sediment supply. Preliminary results suggest that there is a relationship between local sediment cover extent and relative sediment supply, but that this relationship is altered as a function of local bedrock roughness. We consider the implications of our findings for the form of sediment cover relationships.

  12. Hairy and Slippery Polyoxazoline-Based Copolymers on Model and Cartilage Surfaces.

    PubMed

    Morgese, Giulia; Ramakrishna, Shivaprakash N; Simic, Rok; Zenobi-Wong, Marcy; Benetti, Edmondo M

    2018-02-12

    Comb-like polymers presenting a hydroxybenzaldehyde (HBA)-functionalized poly(glutamic acid) (PGA) backbone and poly(2-methyl-2-oxazoline) (PMOXA) side chains chemisorb on aminolized substrates, including cartilage surfaces, forming layers that reduce protein contamination and provide lubrication. The structure, physicochemical, biopassive, and tribological properties of PGA-PMOXA-HBA films are finely determined by the copolymer architecture, its reactivity toward the surface, i.e. PMOXA side-chain crowding and HBA density, and by the copolymer solution concentration during assembly. Highly reactive species with low PMOXA content form inhomogeneous layers due to the limited possibility of surface rearrangements by strongly anchored copolymers, just partially protecting the functionalized surface from protein contamination and providing a relatively weak lubrication on cartilage. Biopassivity and lubrication can be improved by increasing copolymer concentration during assembly, leading to a progressive saturation of surface defects across the films. In a different way, less reactive copolymers presenting high PMOXA side-chain densities form uniform, biopassive, and lubricious films, both on model aminolized silicon oxide surfaces, as well as on cartilage substrates. When assembled at low concentrations these copolymers adopt a "lying down" conformation, i.e. adhering via their backbones onto the substrates, while at high concentrations they undergo a conformational transition, assuming a more densely packed, "standing up" structure, where they stretch perpendicularly from the substrate. This specific arrangement reduces protein contamination and improves lubrication both on model as well as on cartilage surfaces.

  13. An Overdetermined System for Improved Autocorrelation Based Spectral Moment Estimator Performance

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1996-01-01

    Autocorrelation based spectral moment estimators are typically derived using the Fourier transform relationship between the power spectrum and the autocorrelation function along with using either an assumed form of the autocorrelation function, e.g., Gaussian, or a generic complex form and applying properties of the characteristic function. Passarelli has used a series expansion of the general complex autocorrelation function and has expressed the coefficients in terms of central moments of the power spectrum. A truncation of this series will produce a closed system of equations which can be solved for the central moments of interest. The autocorrelation function at various lags is estimated from samples of the random process under observation. These estimates themselves are random variables and exhibit a bias and variance that is a function of the number of samples used in the estimates and the operational signal-to-noise ratio. This contributes to a degradation in performance of the moment estimators. This dissertation investigates the use autocorrelation function estimates at higher order lags to reduce the bias and standard deviation in spectral moment estimates. In particular, Passarelli's series expansion is cast in terms of an overdetermined system to form a framework under which the application of additional autocorrelation function estimates at higher order lags can be defined and assessed. The solution of the overdetermined system is the least squares solution. Furthermore, an overdetermined system can be solved for any moment or moments of interest and is not tied to a particular form of the power spectrum or corresponding autocorrelation function. As an application of this approach, autocorrelation based variance estimators are defined by a truncation of Passarelli's series expansion and applied to simulated Doppler weather radar returns which are characterized by a Gaussian shaped power spectrum. The performance of the variance estimators determined from a closed system is shown to improve through the application of additional autocorrelation lags in an overdetermined system. This improvement is greater in the narrowband spectrum region where the information is spread over more lags of the autocorrelation function. The number of lags needed in the overdetermined system is a function of the spectral width, the number of terms in the series expansion, the number of samples used in estimating the autocorrelation function, and the signal-to-noise ratio. The overdetermined system provides a robustness to the chosen variance estimator by expanding the region of spectral widths and signal-to-noise ratios over which the estimator can perform as compared to the closed system.

  14. Inter-species activity correlations reveal functional correspondences between monkey and human brain areas

    PubMed Central

    Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G.; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A.; Vanduffel, Wim

    2012-01-01

    Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. In cases where functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assess similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by means of temporal correlation. Using natural vision data, we reveal regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This novel framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models. PMID:22306809

  15. 77 FR 75121 - Notice of Funding Availability: Multi-Family Housing Preservation and Revitalization...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    .... Owner-provided capital contributions in the form of a cash infusion. A cash infusion cannot be a loan... one pre-application form. If a consolidation is proposed, all projects to be consolidated will be listed on one pre-application form. To be a complex transaction, at the MPR closing, the Agency assumes...

  16. Enhancing Creativity by Using NLN (Neurological-Linguistic Programming) and Guided Imagery

    ERIC Educational Resources Information Center

    Rosemarin, Shoshana

    2016-01-01

    The significance of the role of creativity as an essential component of giftedness has long been assumed by most of the experts in the field. The most fertile creations will often be those formed of elements drawn from domains which are far apart. It is assumed that creativity is a personality variable, and not an ability, and thus it is believed…

  17. Using Expected Value to Introduce the Laplace Transform

    ERIC Educational Resources Information Center

    Lutzer, Carl V.

    2015-01-01

    We propose an introduction to the Laplace transform in which Riemann sums are used to approximate the expected net change in a function, assuming that it quantifies a process that can terminate at random. We assume only a basic understanding of probability.

  18. Quadratic function between arterial partial oxygen pressure and mortality risk in sepsis patients: an interaction with simplified acute physiology score.

    PubMed

    Zhang, Zhongheng; Ji, Xuqing

    2016-10-13

    Oxygen therapy is widely used in emergency and critical care settings, while there is little evidence on its real therapeutic effect. The study aimed to explore the impact of arterial oxygen partial pressure (PaO 2 ) on clinical outcomes in patients with sepsis. A large clinical database was employed for the study. Subjects meeting the diagnostic criteria of sepsis were eligible for the study. All measurements of PaO 2 were extracted. The primary endpoint was death from any causes during hospital stay. Survey data analysis was performed by using individual ICU admission as the primary sampling unit. Quadratic function was assumed for PaO 2 and its interaction with other covariates were explored. A total of 199,125 PaO 2 samples were identified for 11,002 ICU admissions. Each ICU stay comprised 18 PaO 2 samples in average. The fitted multivariable model supported our hypothesis that the effect of PaO 2 on mortality risk was in quadratic form. There was significant interaction between PaO 2 and SAPS-I (p = 0.007). Furthermore, the main effect of PaO 2 on SOFA score was nonlinear. The study shows that the effect of PaO 2 on mortality risk is in quadratic function form, and there is significant interaction between PaO 2 and severity of illness.

  19. Functional diversity of resilin in Arthropoda

    PubMed Central

    Appel, Esther; Gorb, Stanislav N

    2016-01-01

    Summary Resilin is an elastomeric protein typically occurring in exoskeletons of arthropods. It is composed of randomly orientated coiled polypeptide chains that are covalently cross-linked together at regular intervals by the two unusual amino acids dityrosine and trityrosine forming a stable network with a high degree of flexibility and mobility. As a result of its molecular prerequisites, resilin features exceptional rubber-like properties including a relatively low stiffness, a rather pronounced long-range deformability and a nearly perfect elastic recovery. Within the exoskeleton structures, resilin commonly forms composites together with other proteins and/or chitin fibres. In the last decades, numerous exoskeleton structures with large proportions of resilin and various resilin functions have been described. Today, resilin is known to be responsible for the generation of deformability and flexibility in membrane and joint systems, the storage of elastic energy in jumping and catapulting systems, the enhancement of adaptability to uneven surfaces in attachment and prey catching systems, the reduction of fatigue and damage in reproductive, folding and feeding systems and the sealing of wounds in a traumatic reproductive system. In addition, resilin is present in many compound eye lenses and is suggested to be a very suitable material for optical elements because of its transparency and amorphousness. The evolution of this remarkable functional diversity can be assumed to have only been possible because resilin exhibits a unique combination of different outstanding properties. PMID:27826498

  20. An estimation of distribution method for infrared target detection based on Copulas

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Zhang, Yiqun

    2015-10-01

    Track-before-detect (TBD) based target detection involves a hypothesis test of merit functions which measure each track as a possible target track. Its accuracy depends on the precision of the distribution of merit functions, which determines the threshold for a test. Generally, merit functions are regarded Gaussian, and on this basis the distribution is estimated, which is true for most methods such as the multiple hypothesis tracking (MHT). However, merit functions for some other methods such as the dynamic programming algorithm (DPA) are non-Guassian and cross-correlated. Since existing methods cannot reasonably measure the correlation, the exact distribution can hardly be estimated. If merit functions are assumed Guassian and independent, the error between an actual distribution and its approximation may occasionally over 30 percent, and is divergent by propagation. Hence, in this paper, we propose a novel estimation of distribution method based on Copulas, by which the distribution can be estimated precisely, where the error is less than 1 percent without propagation. Moreover, the estimation merely depends on the form of merit functions and the structure of a tracking algorithm, and is invariant to measurements. Thus, the distribution can be estimated in advance, greatly reducing the demand for real-time calculation of distribution functions.

  1. Computing aerodynamic sound using advanced statistical turbulence theories

    NASA Technical Reports Server (NTRS)

    Hecht, A. M.; Teske, M. E.; Bilanin, A. J.

    1981-01-01

    It is noted that the calculation of turbulence-generated aerodynamic sound requires knowledge of the spatial and temporal variation of Q sub ij (xi sub k, tau), the two-point, two-time turbulent velocity correlations. A technique is presented to obtain an approximate form of these correlations based on closure of the Reynolds stress equations by modeling of higher order terms. The governing equations for Q sub ij are first developed for a general flow. The case of homogeneous, stationary turbulence in a unidirectional constant shear mean flow is then assumed. The required closure form for Q sub ij is selected which is capable of qualitatively reproducing experimentally observed behavior. This form contains separation time dependent scale factors as parameters and depends explicitly on spatial separation. The approximate forms of Q sub ij are used in the differential equations and integral moments are taken over the spatial domain. The velocity correlations are used in the Lighthill theory of aerodynamic sound by assuming normal joint probability.

  2. Extension of the KLI approximation toward the exact optimized effective potential.

    PubMed

    Iafrate, G J; Krieger, J B

    2013-03-07

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be determined by iteration with the natural zeroth order correction given by the KLI exchange-correlation potential. Explicit analytic results are provided to illustrate the first order iterative correction beyond the KLI approximation. The derived correction term to the KLI potential explicitly involves spatially weighted products of occupied orbital densities in any assumed orbital-dependent exchange-correlation energy functional; as well, the correction term is obtained with no adjustable parameters. Moreover, if the equation for the exact optimized effective potential is further iterated, one can obtain the OEP as accurately as desired.

  3. Extension of the KLI approximation toward the exact optimized effective potential

    NASA Astrophysics Data System (ADS)

    Iafrate, G. J.; Krieger, J. B.

    2013-03-01

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be determined by iteration with the natural zeroth order correction given by the KLI exchange-correlation potential. Explicit analytic results are provided to illustrate the first order iterative correction beyond the KLI approximation. The derived correction term to the KLI potential explicitly involves spatially weighted products of occupied orbital densities in any assumed orbital-dependent exchange-correlation energy functional; as well, the correction term is obtained with no adjustable parameters. Moreover, if the equation for the exact optimized effective potential is further iterated, one can obtain the OEP as accurately as desired.

  4. Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, Erkan; Bras, Rafael L.

    2005-06-01

    Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion-dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases, resulting in hollow erosion dominated by landsliding. Interestingly, our simulations underscore the importance of vegetation disturbances by geomorphic events and wildfires on the landscape structure. Simulated landscapes resemble real-world catchments in the OCR when such disturbances are considered.

  5. Numerical stability of an explicit finite difference scheme for the solution of transient conduction in composite media

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1981-01-01

    A theoretical evaluation of the stability of an explicit finite difference solution of the transient temperature field in a composite medium is presented. The grid points of the field are assumed uniformly spaced, and media interfaces are either vertical or horizontal and pass through grid points. In addition, perfect contact between different media (infinite interfacial conductance) is assumed. A finite difference form of the conduction equation is not valid at media interfaces; therefore, heat balance forms are derived. These equations were subjected to stability analysis, and a computer graphics code was developed that permitted determination of a maximum time step for a given grid spacing.

  6. Laser-induced periodic surface structures formation: investigation of the effect of nonlinear absorption of laser energy in different materials

    NASA Astrophysics Data System (ADS)

    Levy, Yoann; Bulgakova, Nadezhda M.; Mocek, Tomáš

    2017-05-01

    To get insight into laser-induced periodic surface structures (LIPSS) formation, the relaxation of a modulation in the temperature profile is investigated numerically on surfaces of two different kinds of materials (metals and dielectrics; gold and fused silica as examples) upon irradiation by ultrashort laser pulses. The temperature modulation is assumed to originate from the interference between the incoming laser pulse and the surface electromagnetic wave, which is considered as the main mechanism of LIPSS formation. For comparative studies of laser energy dissipation, a simplified 2D approach is used. It is based on the two-temperature model (TTM) and considers the mechanisms of nonlinear absorption of laser light (multiphoton ionization in fused silica; temperature-dependent thermophysical and optical properties in gold) and relaxation (electron trapping to excitonic states in fused silica). The TTM is coupled with the Drude model, considering the evolution of optical properties as a function of free-carrier density and/or temperature. The development and decay of the lattice temperature modulation, which can govern the LIPSS formation, is followed during electron-lattice thermalization time and beyond. It is shown that strong temperature gradients can form along the surfaces of both kinds of materials under study within the fluence range typical for LIPSS formation. Considerable changes in optical properties of these materials are found as a function of time, including metals, for which a constant reflectivity is usually assumed. Effects of nonlinear absorption on the surface temperature dynamics are reported.

  7. Heat transfer in damaged material

    NASA Astrophysics Data System (ADS)

    Kruis, J.

    2013-10-01

    Fully coupled thermo-mechanical analysis of civil engineering problems is studied. The mechanical analysis is based on damage mechanics which is useful for modeling of behaviour of quasi-brittle materials, especially in tension. The damage is assumed to be isotropic. The heat transfer is assumed in the form of heat conduction governed by the Fourier law and heat radiation governed by the Stefan-Boltzmann law. Fully coupled thermo-mechanical problem is formulated.

  8. Aeroservoelastic Modeling of Body Freedom Flutter for Control System Design

    NASA Technical Reports Server (NTRS)

    Ouellette, Jeffrey

    2017-01-01

    One of the most severe forms of coupling between aeroelasticity and flight dynamics is an instability called freedom flutter. The existing tools often assume relatively weak coupling, and are therefore unable to accurately model body freedom flutter. Because the existing tools were developed from traditional flutter analysis models, inconsistencies in the final models are not compatible with control system design tools. To resolve these issues, a number of small, but significant changes have been made to the existing approaches. A frequency domain transformation is used with the unsteady aerodynamics to ensure a more physically consistent stability axis rational function approximation of the unsteady aerodynamic model. The aerodynamic model is augmented with additional terms to account for limitations of the baseline unsteady aerodynamic model and to account for the gravity forces. An assumed modes method is used for the structural model to ensure a consistent definition of the aircraft states across the flight envelope. The X-56A stiff wing flight-test data were used to validate the current modeling approach. The flight-test data does not show body-freedom flutter, but does show coupling between the flight dynamics and the aeroelastic dynamics and the effects of the fuel weight.

  9. Pressure sensor using liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  10. Changing views of Cajal's neuron: the case of the dendritic spine.

    PubMed

    Segal, Menahem

    2002-01-01

    Ever since dendritic spines were first described in detail by Santiago Ramón y Cajal, they were assumed to underlie the physical substrate of long term memory in the brain. Recent time-lapse imaging of dendritic spines in live tissue, using confocal microscopy, have revealed an amazingly plastic structure, which undergoes continuous changes in shape and size, not intuitively related to its assumed role in long term memory. Functionally, the spine is shown to be an independent cellular compartment, able to regulate calcium concentration independently of its parent dendrite. The shape of the spine is instrumental in regulating the link between the synapse and the parent dendrite such that longer spines have less impact on the dendrite than shorter ones. The spine can be formed, change its shape and disappear in response to afferent stimulation, in a dynamic fashion, indicating that spine morphology is an important vehicle for structuring synaptic interactions. While this role is crucial in the developing nervous system, large variations in spine densities in the adult brain indicate that tuning of synaptic impact may be a role of spines throughout the life of a neuron.

  11. The sexual selection paradigm: have we overlooked other mechanisms in the evolution of male ornaments?

    PubMed

    Candolin, Ulrika; Tukiainen, Iina

    2015-10-07

    Extravagant male ornaments expressed during reproduction are almost invariably assumed to be sexually selected and evolve through competition for mating opportunities. Yet in species where male reproductive success depends on the defence of offspring, male ornaments could also evolve through social competition for offspring survival. However, in contrast to female ornaments, this possibility has received little attention in males. We show that a male ornament that is traditionally assumed to be sexually selected--the red nuptial coloration of the three-spined stickleback--is under stronger selection for offspring survival than for mating success. Males express most coloration during parenting, when they no longer attract females, and the colour correlates with nest retention and hatching success but not with attractiveness to females. This contradicts earlier assumptions and suggests that social selection for offspring survival rather than for sexual selection for mating success is the main mechanism maintaining the ornament in the population. These results suggest that we should consider other forms of social selection beyond sexual selection when seeking to explain the function and evolution of male ornaments. An incorrect assignment of selection pressures could hamper our understanding of evolution. © 2015 The Author(s).

  12. What the cognitive neurosciences mean to me.

    PubMed

    Pereira, Alfredo

    2007-01-01

    Cognitive Neuroscience is an interdisciplinary area of research that combines measurement of brain activity (mostly by means of neuroimaging) with a simultaneous performance of cognitive tasks by human subjects. These investigations have been successful in the task of connecting the sciences of the brain (Neurosciences) and the sciences of the mind (Cognitive Sciences). Advances on this kind of research provide a map of localization of cognitive functions in the human brain. Do these results help us to understand how mind relates to the brain? In my view, the results obtained by the Cognitive Neurosciences lead to new investigations in the domain of Molecular Neurobiology, aimed at discovering biophysical mechanisms that generate the activity measured by neuroimaging instruments. In this context, I argue that the understanding of how ionic/molecular processes support cognition and consciousness cannot be made by means of the standard reductionist explanations. Knowledge of ionic/molecular mechanisms can contribute to our understanding of the human mind as long as we assume an alternative form of explanation, based on psycho-physical similarities, together with an ontological view of mentality and spirituality as embedded in physical nature (and not outside nature, as frequently assumed in western culture).

  13. What The Cognitive Neurosciences Mean To Me

    PubMed Central

    Pereira, Alfredo

    2007-01-01

    Cognitive Neuroscience is an interdisciplinary area of research that combines measurement of brain activity (mostly by means of neuroimaging) with a simultaneous performance of cognitive tasks by human subjects. These investigations have been successful in the task of connecting the sciences of the brain (Neurosciences) and the sciences of the mind (Cognitive Sciences). Advances on this kind of research provide a map of localization of cognitive functions in the human brain. Do these results help us to understand how mind relates to the brain? In my view, the results obtained by the Cognitive Neurosciences lead to new investigations in the domain of Molecular Neurobiology, aimed at discovering biophysical mechanisms that generate the activity measured by neuroimaging instruments. In this context, I argue that the understanding of how ionic/molecular processes support cognition and consciousness cannot be made by means of the standard reductionist explanations. Knowledge of ionic/molecular mechanisms can contribute to our understanding of the human mind as long as we assume an alternative form of explanation, based on psycho-physical similarities, together with an ontological view of mentality and spirituality as embedded in physical nature (and not outside nature, as frequently assumed in western culture). PMID:22058629

  14. Spike-Threshold Variability Originated from Separatrix-Crossing in Neuronal Dynamics

    PubMed Central

    Wang, Longfei; Wang, Hengtong; Yu, Lianchun; Chen, Yong

    2016-01-01

    The threshold voltage for action potential generation is a key regulator of neuronal signal processing, yet the mechanism of its dynamic variation is still not well described. In this paper, we propose that threshold phenomena can be classified as parameter thresholds and state thresholds. Voltage thresholds which belong to the state threshold are determined by the ‘general separatrix’ in state space. We demonstrate that the separatrix generally exists in the state space of neuron models. The general form of separatrix was assumed as the function of both states and stimuli and the previously assumed threshold evolving equation versus time is naturally deduced from the separatrix. In terms of neuronal dynamics, the threshold voltage variation, which is affected by different stimuli, is determined by crossing the separatrix at different points in state space. We suggest that the separatrix-crossing mechanism in state space is the intrinsic dynamic mechanism for threshold voltages and post-stimulus threshold phenomena. These proposals are also systematically verified in example models, three of which have analytic separatrices and one is the classic Hodgkin-Huxley model. The separatrix-crossing framework provides an overview of the neuronal threshold and will facilitate understanding of the nature of threshold variability. PMID:27546614

  15. Spike-Threshold Variability Originated from Separatrix-Crossing in Neuronal Dynamics.

    PubMed

    Wang, Longfei; Wang, Hengtong; Yu, Lianchun; Chen, Yong

    2016-08-22

    The threshold voltage for action potential generation is a key regulator of neuronal signal processing, yet the mechanism of its dynamic variation is still not well described. In this paper, we propose that threshold phenomena can be classified as parameter thresholds and state thresholds. Voltage thresholds which belong to the state threshold are determined by the 'general separatrix' in state space. We demonstrate that the separatrix generally exists in the state space of neuron models. The general form of separatrix was assumed as the function of both states and stimuli and the previously assumed threshold evolving equation versus time is naturally deduced from the separatrix. In terms of neuronal dynamics, the threshold voltage variation, which is affected by different stimuli, is determined by crossing the separatrix at different points in state space. We suggest that the separatrix-crossing mechanism in state space is the intrinsic dynamic mechanism for threshold voltages and post-stimulus threshold phenomena. These proposals are also systematically verified in example models, three of which have analytic separatrices and one is the classic Hodgkin-Huxley model. The separatrix-crossing framework provides an overview of the neuronal threshold and will facilitate understanding of the nature of threshold variability.

  16. Cryptococcus neoformans of Unusual Morphology

    PubMed Central

    Cruickshank, J. G.; Cavill, R.; Jelbert, M.

    1973-01-01

    A case of primary cryptococcosis of the lungs was caused by an isolate of Cryptococcus neoformans that assumes a giant form in tissue but which has a normal appearance on artificial culture. Electron microscopy revealed gross enlargement of the capsule and plasma membranes in the tissue form. Images PMID:4121033

  17. A Negative Partition Relation

    PubMed Central

    Hajnal, A.

    1971-01-01

    If the continuum hypothesis is assumed, there is a graph G whose vertices form an ordered set of type ω12; G does not contain triangles or complete even graphs of form [[unk]0,[unk]0], and there is no independent subset of vertices of type ω12. PMID:16591893

  18. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    PubMed

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  19. Exact solutions for postbuckling of a graded porous beam

    NASA Astrophysics Data System (ADS)

    Ma, L. S.; Ou, Z. Y.

    2018-06-01

    An exact, closed-form solution for the postbuckling responses of graded porous beams subjected to axially loading is obtained. It was assumed that the properties of the graded porous materials vary continuously through thickness of the beams, the equations governing the axial and transverse deformations are derived based on the classical beam theory and the physical neutral surface concept. The two equations are reduced to a single nonlinear fourth-order integral-differential equation governing the transverse deformations. The nonlinear equation is directly solved without any use of approximation and a closed-form solution for postbuckled deformation is obtained as a function of the applied load. The exact solutions explicitly describe the nonlinear equilibrium paths of the buckled beam and thus are able to provide insight into deformation problems. Based on the exact solutions obtained herein, the effects of various factors such as porosity distribution pattern, porosity coefficient and boundary conditions on postbuckling behavior of graded porous beams have been investigated.

  20. An analysis of FtsZ assembly using small angle X-ray scattering and electron microscopy.

    PubMed

    Kuchibhatla, Anuradha; Abdul Rasheed, A S; Narayanan, Janaky; Bellare, Jayesh; Panda, Dulal

    2009-04-09

    Small angle X-ray scattering (SAXS) was used for the first time to study the self-assembly of the bacterial cell division protein, FtsZ, with three different additives: calcium chloride, monosodium glutamate and DEAE-dextran hydrochloride in solution. The SAXS data were analyzed assuming a model form factor and also by a model-independent analysis using the pair distance distribution function. Transmission electron microscopy (TEM) was used for direct observation of the FtsZ filaments. By sectioning and negative staining with glow discharged grids, very high bundling as well as low bundling polymers were observed under different assembly conditions. FtsZ polymers formed different structures in the presence of different additives and these additives were found to increase the bundling of FtsZ protofilaments by different mechanisms. The combined use of SAXS and TEM provided us a significant insight of the assembly of FtsZ and microstructures of the assembled FtsZ polymers.

  1. A simple closed-form solution for assessing concentration uncertainty

    NASA Astrophysics Data System (ADS)

    de Barros, F. P. J.; Fiori, Aldo; Bellin, Alberto

    2011-12-01

    We propose closed-form approximate solutions for the moments of a nonreactive tracer that can be used in applications, such as risk analysis. This is in line with the tenet that analytical solutions provide useful information, with minimum cost, during initial site characterization efforts and can serve as a preliminary screening tool when used with prior knowledge. We show that with the help of a few assumptions, the first-order solutions of the concentration moments proposed by Fiori and Dagan (2000) can be further simplified to assume a form similar to well-known deterministic solutions, therefore facilitating their use in applications. A highly anisotropic formation is assumed, and we neglect the transverse components of the two-particle correlation trajectory. The proposed solution compares well with the work of Fiori and Dagan while presenting the same simplicity of use of existing solutions for homogeneous porous media.

  2. Discrete optimal control approach to a four-dimensional guidance problem near terminal areas

    NASA Technical Reports Server (NTRS)

    Nagarajan, N.

    1974-01-01

    Description of a computer-oriented technique to generate the necessary control inputs to guide an aircraft in a given time from a given initial state to a prescribed final state subject to the constraints on airspeed, acceleration, and pitch and bank angles of the aircraft. A discrete-time mathematical model requiring five state variables and three control variables is obtained, assuming steady wind and zero sideslip. The guidance problem is posed as a discrete nonlinear optimal control problem with a cost functional of Bolza form. A solution technique for the control problem is investigated, and numerical examples are presented. It is believed that this approach should prove to be useful in automated air traffic control schemes near large terminal areas.

  3. A robust H∞-tracking design for uncertain Takagi-Sugeno fuzzy systems with unknown premise variables using descriptor redundancy approach

    NASA Astrophysics Data System (ADS)

    Hassan Asemani, Mohammad; Johari Majd, Vahid

    2015-12-01

    This paper addresses a robust H∞ fuzzy observer-based tracking design problem for uncertain Takagi-Sugeno fuzzy systems with external disturbances. To have a practical observer-based controller, the premise variables of the system are assumed to be not measurable in general, which leads to a more complex design process. The tracker is synthesised based on a fuzzy Lyapunov function approach and non-parallel distributed compensation (non-PDC) scheme. Using the descriptor redundancy approach, the robust stability conditions are derived in the form of strict linear matrix inequalities (LMIs) even in the presence of uncertainties in the system, input, and output matrices simultaneously. Numerical simulations are provided to show the effectiveness of the proposed method.

  4. Optimal Control Inventory Stochastic With Production Deteriorating

    NASA Astrophysics Data System (ADS)

    Affandi, Pardi

    2018-01-01

    In this paper, we are using optimal control approach to determine the optimal rate in production. Most of the inventory production models deal with a single item. First build the mathematical models inventory stochastic, in this model we also assume that the items are in the same store. The mathematical model of the problem inventory can be deterministic and stochastic models. In this research will be discussed how to model the stochastic as well as how to solve the inventory model using optimal control techniques. The main tool in the study problems for the necessary optimality conditions in the form of the Pontryagin maximum principle involves the Hamilton function. So we can have the optimal production rate in a production inventory system where items are subject deterioration.

  5. Analysis of flame spread over multicomponent combustibles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtani, H.; Sato, J.

    1985-01-01

    A theoretical model of volatile component diffusion in the condensed phase is carried out in order to form a basis for predicting the flame spread rate in thermally thick multicomponent combustibles in a non-fluid condensed phase. The fuels could be, e.g., crude oil, heavy oil, or light oil. Mass transfer occurs only by diffusion so the gas phase volatile concentration at the surface is estimated from the condensed phase volatile concentration and the surface temperature, which increases close to the leading flame edge. The flame spread rate is assumed steady. The velocity of the flame spread is shown to bemore » a function of the initial condensed phase temperature and the temperature at the leading flame edge.« less

  6. Continued X-ray Monitoring of Magnetar Candidate SWIFT J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Scholz, P.; Livingstone, M. A.; Kaspi, V. M.

    2011-08-01

    We report on Swift/XRT and RXTE/PCA observations of the new 8.4-s Galactic magnetar candidate SWIFT J1822.3-1606, also referred to as SGR J1822.3-1606 (ATELs #3488, #3489, #3490, #3493, #3495, #3496, #3501, #3503, #3543). The persistent X-ray flux from the source continues to fade in ongoing XRT monitoring observations. For data in the MJD range 55757 to 55781, the best-fit power-law index, alpha, for the decay of the absorbed 1-10 keV flux is -0.47 ± 0.02, assuming a decay of functional form F(t) = F0 + F0*(t-T)^alpha, where T is the epoch of the Swift/BAT trigger (ATEL #3488).

  7. Thermodynamic constraints on fluctuation phenomena

    NASA Astrophysics Data System (ADS)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  8. Thermodynamic constraints on fluctuation phenomena.

    PubMed

    Maroney, O J E

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  9. Inverse dynamics of adaptive structures used as space cranes

    NASA Technical Reports Server (NTRS)

    Das, S. K.; Utku, S.; Wada, B. K.

    1990-01-01

    As a precursor to the real-time control of fast moving adaptive structures used as space cranes, a formulation is given for the flexibility induced motion relative to the nominal motion (i.e., the motion that assumes no flexibility) and for obtaining the open loop time varying driving forces. An algorithm is proposed for the computation of the relative motion and driving forces. The governing equations are given in matrix form with explicit functional dependencies. A simulator is developed to implement the algorithm on a digital computer. In the formulations, the distributed mass of the crane is lumped by two schemes, vz., 'trapezoidal' lumping and 'Simpson's rule' lumping. The effects of the mass lumping schemes are shown by simulator runs.

  10. Barrier-free subsurface incorporation of 3 d metal atoms into Bi(111) films

    DOE PAGES

    Klein, C.; Vollmers, N. J.; Gerstmann, U.; ...

    2015-05-27

    By combining scanning tunneling microscopy with density functional theory it is shown that the Bi(111) surface provides a well-defined incorporation site in the first bilayer that traps highly coordinating atoms such as transition metals (TMs) or noble metals. All deposited atoms assume exactly the same specific sevenfold coordinated subsurface interstitial site while the surface topography remains nearly unchanged. Notably, 3 d TMs show a barrier-free incorporation. The observed surface modification by barrier-free subsorption helps to suppress aggregation in clusters. Thus, it allows a tuning of the electronic properties not only for the pure Bi(111) surface, but may also be observedmore » for topological insulators formed by substrate-stabilized Bi bilayers.« less

  11. Vibrational Relaxation and Dynamical Transitions in Atactic Polystyrene

    NASA Astrophysics Data System (ADS)

    Zhao, Hanqing; Park, Yung; Painter, Paul

    2009-03-01

    Infrared bands and Raman lines recorded in the frequency domain have a counterpart in the time domain in the form of time-correlation functions, which are sensitive to molecular dynamics on the picosecond time scale. This is explored by calculating time correlation functions and their variation with temperature for the conformationally insensitive modes observed near 1601 cm-1 and 1583 cm-1 in the infrared spectrum of atactic polystyrene. The correlation functions were modeled by assuming that there is a fast relaxation process characterized by a single relaxation time that is inhomogeneously broadened by a slower process, also characterized by a single relaxation time. The fundamental mode, near 1583 cm-1, is inhomogeneously broadened, but the relaxation time calculated for this mode is sensitive to temperature as a result of anharmonic coupling to a combination mode. A change in the modulation of the 1583 cm-1 band becomes apparent about 10--20 degrees below the thermally measured Tg. Relaxation times at first increase then decrease and becomes negligible at temperatures near 180 degrees. These results are consistent with theories of the glass transition.

  12. Differentiability of correlations in realistic quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabrera, Alejandro; Faria, Edson de; Pujals, Enrique

    2015-09-15

    We prove a version of Bell’s theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumedmore » to be twice differentiable at the origin, then we arrive at a version of Bell’s theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.« less

  13. Theoretical analysis of the overtone-induced isomerization of methyl isocyanide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.A.; Chandler, D.W.

    1986-10-15

    A master-equation formalism is applied to the problem of overtone-induced isomerization of CH/sub 3/NC to CH/sub 3/CN. The results are compared to the experiments of Reddy and Berry, who measured the yield of isomerization as a function of pressure after excitation to the fourth and fifth overtones of the CH stretching mode. The master-equation model predicts the yield and the curvature in the yield/sup -1/ vs pressure plots observed in the experiments. For the lower overtone (50) the results are consistent with a simple strong-collider model. However, even under strong-collider conditions the yield is very sensitive to the parameters inmore » the master equation. For the upper overtone (60) the data do not fit a strong collider model and multistep deactivation dominates. We are able to determine from the data the average energy transferred in a collision by assuming a particular form for the energy-transfer function. In addition, the effect of changing the shape of the energy-transfer function is investigated.« less

  14. The Dynamics of Oblate Drop Between Heterogeneous Plates Under Alternating Electric Field. Non-uniform Field

    NASA Astrophysics Data System (ADS)

    Kashina, M. A.; Alabuzhev, A. A.

    2018-02-01

    The dynamics of the incompressible fluid drop under the non-uniform electric field are considered. The drop is bounded axially by two parallel solid planes and the case of heterogeneous plates is investigated. The external electric field acts as an external force that causes motion of the contact line. We assume that the electric current is alternative current and the AC filed amplitude is a spatially non-uniform function. In equilibrium, the drop has the form of a circular cylinder. The equilibrium contact angle is 0.5 π. In order to describe this contact line motion the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, which frequency is proportional to twice the frequency of the electric field. The Hocking parameter depends on the polar angle, i.e. the coefficient of the interaction between the plate and the fluid (the contact line) is a function of the plane coordinates. This function is expanded in a series of the Laplace operator eigenfunctions.

  15. [Molecular organization of glutamate-sensitive chemoexcitable membranes of nerve cells. Function of glutamate-binding proteins of the central nervous system when incorporated into liposomes].

    PubMed

    Besedin, V I; Kuznetsov, A S; Dambinova, S A

    1985-03-01

    The functioning of the glutamate-binding protein of rat brain cortex synaptic membranes was studied by its incorporation into liposomes. The optimal conditions for the receptor protein incorporation were established and the kinetics of 22Na+ and 86Rb+ incorporation into the liposomes in the presence of L-glutamate were analyzed. Modelling of the CNS glutamate receptor functions was found to be dependent on the lipid composition and amount of the incorporated membrane protein. The selective transport of 22Na+ into the liposomes was stimulated in the presence of 10(-4) M glutamate. Addition of monoclonal antibodies against glutamate-binding proteins blocked the incorporation of Na+ into the liposomes. The experimental results are suggestive of the nativity of the liposome-incorporated membrane protein, which is capable of binding glutamate and regulating selective transport of Na+. It was assumed that the glutamate receptor macromolecule represents an integral complex made up of several low molecular weight subunits of glucoprotein nature that form a selective ionic channel.

  16. High-beta analytic equilibria in circular, elliptical, and D-shaped large aspect ratio axisymmetric configurations with poloidal and toroidal flows

    NASA Astrophysics Data System (ADS)

    López, O. E.; Guazzotto, L.

    2017-03-01

    The Grad-Shafranov-Bernoulli system of equations is a single fluid magnetohydrodynamical description of axisymmetric equilibria with mass flows. Using a variational perturbative approach [E. Hameiri, Phys. Plasmas 20, 024504 (2013)], analytic approximations for high-beta equilibria in circular, elliptical, and D-shaped cross sections in the high aspect ratio approximation are found, which include finite toroidal and poloidal flows. Assuming a polynomial dependence of the free functions on the poloidal flux, the equilibrium problem is reduced to an inhomogeneous Helmholtz partial differential equation (PDE) subject to homogeneous Dirichlet conditions. An application of the Green's function method leads to a closed form for the circular solution and to a series solution in terms of Mathieu functions for the elliptical case, which is valid for arbitrary elongations. To extend the elliptical solution to a D-shaped domain, a boundary perturbation in terms of the triangularity is used. A comparison with the code FLOW [L. Guazzotto et al., Phys. Plasmas 11(2), 604-614 (2004)] is presented for relevant scenarios.

  17. Characterizability of metabolic pathway systems from time series data.

    PubMed

    Voit, Eberhard O

    2013-12-01

    Over the past decade, the biomathematical community has devoted substantial effort to the complicated challenge of estimating parameter values for biological systems models. An even more difficult issue is the characterization of functional forms for the processes that govern these systems. Most parameter estimation approaches tacitly assume that these forms are known or can be assumed with some validity. However, this assumption is not always true. The recently proposed method of Dynamic Flux Estimation (DFE) addresses this problem in a genuinely novel fashion for metabolic pathway systems. Specifically, DFE allows the characterization of fluxes within such systems through an analysis of metabolic time series data. Its main drawback is the fact that DFE can only directly be applied if the pathway system contains as many metabolites as unknown fluxes. This situation is unfortunately rare. To overcome this roadblock, earlier work in this field had proposed strategies for augmenting the set of unknown fluxes with independent kinetic information, which however is not always available. Employing Moore-Penrose pseudo-inverse methods of linear algebra, the present article discusses an approach for characterizing fluxes from metabolic time series data that is applicable even if the pathway system is underdetermined and contains more fluxes than metabolites. Intriguingly, this approach is independent of a specific modeling framework and unaffected by noise in the experimental time series data. The results reveal whether any fluxes may be characterized and, if so, which subset is characterizable. They also help with the identification of fluxes that, if they could be determined independently, would allow the application of DFE. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Characterizability of Metabolic Pathway Systems from Time Series Data

    PubMed Central

    Voit, Eberhard O.

    2013-01-01

    Over the past decade, the biomathematical community has devoted substantial effort to the complicated challenge of estimating parameter values for biological systems models. An even more difficult issue is the characterization of functional forms for the processes that govern these systems. Most parameter estimation approaches tacitly assume that these forms are known or can be assumed with some validity. However, this assumption is not always true. The recently proposed method of Dynamic Flux Estimation (DFE) addresses this problem in a genuinely novel fashion for metabolic pathway systems. Specifically, DFE allows the characterization of fluxes within such systems through an analysis of metabolic time series data. Its main drawback is the fact that DFE can only directly be applied if the pathway system contains as many metabolites as unknown fluxes. This situation is unfortunately rare. To overcome this roadblock, earlier work in this field had proposed strategies for augmenting the set of unknown fluxes with independent kinetic information, which however is not always available. Employing Moore-Penrose pseudo-inverse methods of linear algebra, the present article discusses an approach for characterizing fluxes from metabolic time series data that is applicable even if the pathway system is underdetermined and contains more fluxes than metabolites. Intriguingly, this approach is independent of a specific modeling framework and unaffected by noise in the experimental time series data. The results reveal whether any fluxes may be characterized and, if so, which subset is characterizable. They also help with the identification of fluxes that, if they could be determined independently, would allow the application of DFE. PMID:23391489

  19. High-resolution light microscopy of nanoforms

    NASA Astrophysics Data System (ADS)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold

    2007-09-01

    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  20. Maximum Entropy Principle for Transportation

    NASA Astrophysics Data System (ADS)

    Bilich, F.; DaSilva, R.

    2008-11-01

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  1. Ultra-faint ultraviolet galaxies at z ∼ 2 behind the lensing cluster A1689: The luminosity function, dust extinction, and star formation rate density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alavi, Anahita; Siana, Brian; Freeman, William R.

    We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z ∼ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z ≥ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100× fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in themore » range –19.5 < M {sub 1500} < –13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be α = –1.74 ± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = –13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B – V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub ☉}) compared to their brighter counterparts (Z {sub ☉}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z ∼ 2 is 4.31{sub −0.60}{sup +0.68}×10{sup 26} erg s{sup –1} Hz{sup –1} Mpc{sup –3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z ∼ 2 (assuming a constant dust extinction correction of 4.2 over all luminosities and a Kroupa initial mass function) of 0.148{sub −0.020}{sup +0.023} M {sub ☉} yr{sup –1} Mpc{sup –3}, significantly higher than previous determinations because of the additional population of fainter galaxies and the larger dust correction factors.« less

  2. Effect of Assumed Damage and Location on the Delamination Onset Predictions for Skin-Stiffener Debonding

    NASA Technical Reports Server (NTRS)

    Paris, Isabelle L.; Krueger, Ronald; OBrien, T. Kevin

    2004-01-01

    The difference in delamination onset predictions based on the type and location of the assumed initial damage are compared in a specimen consisting of a tapered flange laminate bonded to a skin laminate. From previous experimental work, the damage was identified to consist of a matrix crack in the top skin layer followed by a delamination between the top and second skin layer (+45 deg./-45 deg. interface). Two-dimensional finite elements analyses were performed for three different assumed flaws and the results show a considerable reduction in critical load if an initial delamination is assumed to be present, both under tension and bending loads. For a crack length corresponding to the peak in the strain energy release rate, the delamination onset load for an assumed initial flaw in the bondline is slightly higher than the critical load for delamination onset from an assumed skin matrix crack, both under tension and bending loads. As a result, assuming an initial flaw in the bondline is simpler while providing a critical load relatively close to the real case. For the configuration studied, a small delamination might form at a lower tension load than the critical load calculated for a 12.7 mm (0.5") delamination, but it would grow in a stable manner. For the bending case, assuming an initial flaw of 12.7 mm (0.5") is conservative, the crack would grow unstably.

  3. Effects of irrigation on seed production and vegetative characteristics of four moist-soil plants on impounded wetlands in California

    USGS Publications Warehouse

    Mushet, D.M.; Euliss, N.H.; Harris, S.W.

    1992-01-01

    We examined the effects of irrigation on 4 moist-soil plants commonly managed for waterfowl in the Sacramento Valley, California. Irrigation resulted in taller and heavier swamp timothy (Heleochloa schoenoides), pricklegrass (Crypsis niliaca), and sprangletop (Leptochloa fasicularis). Barnyardgrass (Echinochloa crusgalli) grew taller in irrigated wetlands, but no significant difference in weight was detected. Only sprangletop yielded larger seed masses in response to irrigation. Without irrigation, swamp timothy and pricklegrass assumed a typical prostrate growth form, but with irrigation, they assumed a vertical growth form. Irrigation did not significantly affect plant density. Because of rising water costs, wetland managers should consider wildlife management objectives and plant responses before implementing irrigation practices.

  4. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism

    PubMed Central

    Fernández, Peter J.; Holowka, Nicholas B.; Demes, Brigitte; Jungers, William L.

    2016-01-01

    During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as “dorsal doming” are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2–5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism. PMID:27464580

  5. Autoregulation of transcription of the hupA gene in Escherichia coli: evidence for steric hindrance of the functional promoter domains induced by HU.

    PubMed

    Kohno, K; Yasuzawa, K; Hirose, M; Kano, Y; Goshima, N; Tanaka, H; Imamoto, F

    1994-06-01

    The molecular mechanism of autoregulation of expression of the hupA gene in Escherichia coli was examined. The promoter of the gene contains a palindromic sequence with the potential to form a cruciform DNA structure in which the -35 sequence lies at the base of the stem and the -10 sequence forms a single-stranded loop. An artificial promoter lacking the palindrome, which was constructed by replacing a 10 nucleotide repeat for the predicted cruciform arm by a sequence in the opposite orientation, was not subject to HU-repression. DNA relaxation induced by deleting HU proteins and/or inhibiting DNA gyrase in cells results in increased expression from the hupA promoter. We propose that initiation of transcription of the hupA gene is negatively regulated by steric hindrance of the functional promoter domains for formation of the cruciform configuration, which is facilitated at least in part by negative supercoiling of the hupA promoter DNA region. The promoter region of the hupB gene also contains a palindromic sequence that can assume a cruciform configuration. Negative regulation of this gene by HU proteins may occur by a mechanism similar to that operating for the hupA gene.

  6. Trade-off between reservoir yield and evaporation losses as a function of lake morphology in semi-arid Brazil.

    PubMed

    Campos, José N B; Lima, Iran E; Studart, Ticiana M C; Nascimento, Luiz S V

    2016-05-31

    This study investigates the relationships between yield and evaporation as a function of lake morphology in semi-arid Brazil. First, a new methodology was proposed to classify the morphology of 40 reservoirs in the Ceará State, with storage capacities ranging from approximately 5 to 4500 hm3. Then, Monte Carlo simulations were conducted to study the effect of reservoir morphology (including real and simplified conical forms) on the water storage process at different reliability levels. The reservoirs were categorized as convex (60.0%), slightly convex (27.5%) or linear (12.5%). When the conical approximation was used instead of the real lake form, a trade-off occurred between reservoir yield and evaporation losses, with different trends for the convex, slightly convex and linear reservoirs. Using the conical approximation, the water yield prediction errors reached approximately 5% of the mean annual inflow, which is negligible for large reservoirs. However, for smaller reservoirs, this error became important. Therefore, this paper presents a new procedure for correcting the yield-evaporation relationships that were obtained by assuming a conical approximation rather than the real reservoir morphology. The combination of this correction with the Regulation Triangle Diagram is useful for rapidly and objectively predicting reservoir yield and evaporation losses in semi-arid environments.

  7. In-vivo detectability index: development and validation of an automated methodology

    NASA Astrophysics Data System (ADS)

    Smith, Taylor Brunton; Solomon, Justin; Samei, Ehsan

    2017-03-01

    The purpose of this study was to develop and validate a method to estimate patient-specific detectability indices directly from patients' CT images (i.e., "in vivo"). The method works by automatically extracting noise (NPS) and resolution (MTF) properties from each patient's CT series based on previously validated techniques. Patient images are thresholded into skin-air interfaces to form edge-spread functions, which are further binned, differentiated, and Fourier transformed to form the MTF. The NPS is likewise estimated from uniform areas of the image. These are combined with assumed task functions (reference function: 10 mm disk lesion with contrast of -15 HU) to compute detectability indices for a non-prewhitening matched filter model observer predicting observer performance. The results were compared to those from a previous human detection study on 105 subtle, hypo-attenuating liver lesions, using a two-alternative-forcedchoice (2AFC) method, over 6 dose levels using 16 readers. The in vivo detectability indices estimated for all patient images were compared to binary 2AFC outcomes with a generalized linear mixed-effects statistical model (Probit link function, linear terms only, no interactions, random term for readers). The model showed that the in vivo detectability indices were strongly predictive of 2AFC outcomes (P < 0.05). A linear comparison between the human detection accuracy and model-predicted detection accuracy (for like conditions) resulted in Pearson and Spearman correlations coefficients of 0.86 and 0.87, respectively. These data provide evidence that the in vivo detectability index could potentially be used to automatically estimate and track image quality in a clinical operation.

  8. The Physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle.

    PubMed

    Rawat, Anamika; Brejšková, Lucie; Hála, Michal; Cvrčková, Fatima; Žárský, Viktor

    2017-10-01

    The exocyst, an evolutionarily conserved secretory vesicle-tethering complex, spatially controls exocytosis and membrane turnover in fungi, metazoans and plants. The exocyst subunit EXO70 exists in multiple paralogs in land plants, forming three conserved clades with assumed distinct roles. Here we report functional analysis of the first moss exocyst subunit to be studied, Physcomitrella patens PpEXO70.3d (Pp1s97_91V6), from the, as yet, poorly characterized EXO70.3 clade. Following phylogenetic analysis to confirm the presence of three ancestral land plant EXO70 clades outside angiosperms, we prepared and phenotypically characterized loss-of-function Ppexo70.3d mutants and localized PpEXO70.3d in vivo using green fluorescent protein-tagged protein expression. Disruption of PpEXO70.3d caused pleiotropic cell elongation and differentiation defects in protonemata, altered response towards exogenous auxin, increased endogenous IAA concentrations, along with defects in bud and gametophore development. During mid-archegonia development, an abnormal egg cell is formed and subsequently collapses, resulting in mutant sterility. Mutants exhibited altered cell wall and cuticle deposition, as well as compromised cytokinesis, consistent with the protein localization to the cell plate. Despite some functional redundancy allowing survival of moss lacking PpEXO70.3d, this subunit has an essential role in the moss life cycle, indicating sub-functionalization within the moss EXO70 family. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data

    NASA Astrophysics Data System (ADS)

    Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita

    2018-06-01

    We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.

  10. High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data

    NASA Astrophysics Data System (ADS)

    Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita

    2018-04-01

    We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.

  11. The protein folds as platonic forms: new support for the pre-Darwinian conception of evolution by natural law.

    PubMed

    Denton, Michael J; Marshall, Craig J; Legge, Michael

    2002-12-07

    Before the Darwinian revolution many biologists considered organic forms to be determined by natural law like atoms or crystals and therefore necessary, intrinsic and immutable features of the world order, which will occur throughout the cosmos wherever there is life. The search for the natural determinants of organic form-the celebrated "Laws of Form"-was seen as one of the major tasks of biology. After Darwin, this Platonic conception of form was abandoned and natural selection, not natural law, was increasingly seen to be the main, if not the exclusive, determinant of organic form. However, in the case of one class of very important organic forms-the basic protein folds-advances in protein chemistry since the early 1970s have revealed that they represent a finite set of natural forms, determined by a number of generative constructional rules, like those which govern the formation of atoms or crystals, in which functional adaptations are clearly secondary modifications of primary "givens of physics." The folds are evidently determined by natural law, not natural selection, and are "lawful forms" in the Platonic and pre-Darwinian sense of the word, which are bound to occur everywhere in the universe where the same 20 amino acids are used for their construction. We argue that this is a major discovery which has many important implications regarding the origin of proteins, the origin of life and the fundamental nature of organic form. We speculate that it is unlikely that the folds will prove to be the only case in nature where a set of complex organic forms is determined by natural law, and suggest that natural law may have played a far greater role in the origin and evolution of life than is currently assumed.

  12. Do older t'ai chi practitioners have better attention and memory function?

    PubMed

    Man, David W K; Tsang, William W N; Hui-Chan, Christina W Y

    2010-12-01

    Cognitive declines are common in older people and can be a major health issue in an aging world. One type of body-mind exercises, t'ai chi, can be a possible means to help maintaining older adults' cognitive abilities, in addition to beneficial effects of physical exercises. The purpose of this study was to investigate whether t'ai chi practitioners had better attention and memory functions than older people with or without regular exercises. A cross-sectional study examining the relationship between t'ai chi practice and age-, gender- and education-similar older peoples' attention and memory functions. Forty-two (42) community-dwelling elderly subjects, aged 60 or older, recruited from t'ai chi clubs in Hong Kong formed the t'ai chi group. Another 49 elderly having regular exercise habits were recruited from community centers for inclusion in the exercise group. A nonexercise group (normal healthy control) consisting of 44 subjects were also recruited by random selection and through contacting local elderly centers. They were also screened by the Modified Barthel Index, Chinese Mini-mental Status Examination, Geriatric Depression Scale, and evaluated by attention tests (Color Trail Form A-1 and 2) and memory tests (including Rivermead Behavioral Memory Test and The Hong Kong List Learning Test). The main finding was that the three groups differed in attention and memory functions, and the t'ai chi group had demonstrated better performance than the other two groups in most subtests. As a causal relationship cannot be assumed in the present cross-sectional study, future research is required to examine how t'ai chi can improve cognitive function using a randomized control trial as well as determining whether t'ai chi practice can lead to better health status among elderly people.

  13. Variation in habitat suitability does not always relate to variation in species' plant functional traits

    PubMed Central

    Thuiller, Wilfried; Albert, Cécile H.; Dubuis, Anne; Randin, Christophe; Guisan, Antoine

    2010-01-01

    Habitat suitability models, which relate species occurrences to environmental variables, are assumed to predict suitable conditions for a given species. If these models are reliable, they should relate to change in plant growth and function. In this paper, we ask the question whether habitat suitability models are able to predict variation in plant functional traits, often assumed to be a good surrogate for a species' overall health and vigour. Using a thorough sampling design, we show a tight link between variation in plant functional traits and habitat suitability for some species, but not for others. Our contrasting results pave the way towards a better understanding of how species cope with varying habitat conditions and demonstrate that habitat suitability models can provide meaningful descriptions of the functional niche in some cases, but not in others. PMID:19793738

  14. On The Sfr-M* Main Sequence Archetypal Star-Formation History And Analytical Models

    NASA Astrophysics Data System (ADS)

    Ciesla, Laure; Elbaz, David; Fensch, Jeremy

    2017-06-01

    From the evolution of the main sequence we can build the star formation history (SFH) of MS galaxies, assuming that they follow this relation all their life. We show that this SFH is not only a function of cosmic time but also involve the seed mass of the galaxy. We discuss the implications of this MS SFH on the stellar mass growth, and the entry in the passive region of the UVJ diagram, while the galaxy is still forming stars. We test the ability of different analytical SFH forms found in the literature to probe the SFR of all type of galaxies. Using a sample of GOODS-South galaxies, we show that these SFHs artificially enhance or create a gradient of age, parallel to the MS. A simple model of a MS galaxy, such as those expected from compaction or variation in gas accretion, undergoing some fluctuations provide does not predict such a gradient, that we show is due to SFH assumptions. We propose an improved analytical form, taking into account a flexibility in the recent SFH that we calibrate as a diagnostic to identify rapidly quenched galaxies from large photometric survey.

  15. Structure of rigid polymers confined to nanoparticles: Molecular dynamics simulations insight

    DOE PAGES

    Maskey, Sabina; Lane, J. Matthew D.; Perahia, Dvora; ...

    2016-02-04

    Nanoparticles (NPs) grafted with organic layers form hybrids able to retain their unique properties through integration into the mesoscopic scale. The organic layer structure and response often determine the functionality of the hybrids on the mesoscopic length scale. Using molecular dynamics (MD) simulations, we probe the conformation of luminescent rigid polymers, dialkyl poly(p-phenylene ethynylene)s (PPE), end-grafted onto a silica nanoparticle in different solvents as the molecular weights and polymer coverages are varied. We find that, in contrast to NP-grafted flexible polymers, the chains are fully extended independent of the solvent. In toluene and decane, which are good solvents, the graftedmore » PPEs chains assume a similar conformation to that observed in dilute solutions. In water, which is a poor solvent for the PPEs, the polymer chains form one large cluster but remain extended. The radial distribution of the chains around the core of the nanoparticle is homogeneous in good solvents, whereas in poor solvents clusters are formed independent of molecular weights and coverages. As a result, the clustering is distinctively different from the response of grafted flexible and semiflexible polymers.« less

  16. Experimental studies illuminate the cultural transmission of percussive technologies in Homo and Pan

    PubMed Central

    Whiten, Andrew

    2015-01-01

    The complexity of Stone Age tool-making is assumed to have relied upon cultural transmission, but direct evidence is lacking. This paper reviews evidence bearing on this question provided through five related empirical perspectives. Controlled experimental studies offer special power in identifying and dissecting social learning into its diverse component forms, such as imitation and emulation. The first approach focuses on experimental studies that have discriminated social learning processes in nut-cracking by chimpanzees. Second come experiments that have identified and dissected the processes of cultural transmission involved in a variety of other force-based forms of chimpanzee tool use. A third perspective is provided by field studies that have revealed a range of forms of forceful, targeted tool use by chimpanzees, that set percussion in its broader cognitive context. Fourth are experimental studies of the development of flint knapping to make functional sharp flakes by bonobos, implicating and defining the social learning and innovation involved. Finally, new and substantial experiments compare what different social learning processes, from observational learning to teaching, afford good quality human flake and biface manufacture. Together these complementary approaches begin to delineate the social learning processes necessary to percussive technologies within the Pan–Homo clade. PMID:26483537

  17. Modeling the Lac repressor-operator assembly: The influence of DNA looping on Lac repressor conformation

    PubMed Central

    Swigon, David; Coleman, Bernard D.; Olson, Wilma K.

    2006-01-01

    Repression of transcription of the Escherichia coli Lac operon by the Lac repressor (LacR) is accompanied by the simultaneous binding of LacR to two operators and the formation of a DNA loop. A recently developed theory of sequence-dependent DNA elasticity enables one to relate the fine structure of the LacR–DNA complex to a wide range of heretofore-unconnected experimental observations. Here, that theory is used to calculate the configuration and free energy of the DNA loop as a function of its length and base-pair sequence, its linking number, and the end conditions imposed by the LacR tetramer. The tetramer can assume two types of conformations. Whereas a rigid V-shaped structure is observed in the crystal, EM images show extended forms in which two dimer subunits are flexibly joined. Upon comparing our computed loop configurations with published experimental observations of permanganate sensitivities, DNase I cutting patterns, and loop stabilities, we conclude that linear DNA segments of short-to-medium chain length (50–180 bp) give rise to loops with the extended form of LacR and that loops formed within negatively supercoiled plasmids induce the V-shaped structure. PMID:16785444

  18. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package.

    PubMed

    Womack, James C; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-28

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  19. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package

    NASA Astrophysics Data System (ADS)

    Womack, James C.; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-01

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  20. Teacher Leader Model Standards and the Functions Assumed by National Board Certified Teachers

    ERIC Educational Resources Information Center

    Swan Dagen, Allison; Morewood, Aimee; Smith, Megan L.

    2017-01-01

    The Teacher Leader Model Standards (TLMS) were created to stimulate discussion around the leadership responsibilities teachers assume in schools. This study used the TLMS to gauge the self-reported leadership responsibilities of National Board Certified Teachers (NBCTs). The NBCTs reported engaging in all domains of the TLMS, most frequently with…

  1. 48 CFR 945.603-70 - Plant clearance function.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Plant clearance function... Plant clearance function. If the plant clearance function has not been formally delegated to another Federal agency, the contracting officer shall assume all responsibilities of the plant clearance officer...

  2. 48 CFR 945.603-70 - Plant clearance function.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Plant clearance function... Plant clearance function. If the plant clearance function has not been formally delegated to another Federal agency, the contracting officer shall assume all responsibilities of the plant clearance officer...

  3. Math modeling for helicopter simulation of low speed, low altitude and steeply descending flight

    NASA Technical Reports Server (NTRS)

    Sheridan, P. F.; Robinson, C.; Shaw, J.; White, F.

    1982-01-01

    A math model was formulated to represent some of the aerodynamic effects of low speed, low altitude, and steeply descending flight. The formulation is intended to be consistent with the single rotor real time simulation model at NASA Ames Research Center. The effect of low speed, low altitude flight on main rotor downwash was obtained by assuming a uniform plus first harmonic inflow model and then by using wind tunnel data in the form of hub loads to solve for the inflow coefficients. The result was a set of tables for steady and first harmonic inflow coefficients as functions of ground proximity, angle of attack, and airspeed. The aerodynamics associated with steep descending flight in the vortex ring state were modeled by replacing the steady induced downwash derived from momentum theory with an experimentally derived value and by including a thrust fluctuations effect due to vortex shedding. Tables of the induced downwash and the magnitude of the thrust fluctuations were created as functions of angle of attack and airspeed.

  4. Differences in biological traits composition of benthic assemblages between unimpacted habitats.

    PubMed

    Bolam, S G; Garcia, C; Eggleton, J; Kenny, A J; Buhl-Mortensen, L; Gonzalez-Mirelis, G; van Kooten, T; Dinesen, G; Hansen, J; Hiddink, J G; Sciberras, M; Smith, C; Papadopoulou, N; Gumus, A; Van Hoey, G; Eigaard, O R; Bastardie, F; Rijnsdorp, A D

    2017-05-01

    There is an implicit requirement under contemporary policy drivers to understand the characteristics of benthic communities under anthropogenically-unimpacted scenarios. We used a trait-based approach on a large dataset from across the European shelf to determine how functional characteristics of unimpacted benthic assemblages vary between different sedimentary habitats. Assemblages in deep, muddy environments unaffected by anthropogenic disturbance show increased proportions of downward conveyors and surface deposit-feeders, while burrowing, diffusive mixing, scavenging and predation traits assume greater numerical proportions in shallower habitats. Deep, coarser sediments are numerically more dominated by sessile, upward conveyors and suspension feeders. In contrast, unimpacted assemblages of coarse sediments in shallower regions are proportionally dominated by the diffusive mixers, burrowers, scavengers and predators. Finally, assemblages of gravelly sediments exhibit a relatively greater numerical dominance of non-bioturbators and asexual reproducers. These findings may be used to form the basis of ranking habitats along a functional sensitivity gradient. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Modelling the spreading rate of controlled communicable epidemics through an entropy-based thermodynamic model

    NASA Astrophysics Data System (ADS)

    Wang, WenBin; Wu, ZiNiu; Wang, ChunFeng; Hu, RuiFeng

    2013-11-01

    A model based on a thermodynamic approach is proposed for predicting the dynamics of communicable epidemics assumed to be governed by controlling efforts of multiple scales so that an entropy is associated with the system. All the epidemic details are factored into a single and time-dependent coefficient, the functional form of this coefficient is found through four constraints, including notably the existence of an inflexion point and a maximum. The model is solved to give a log-normal distribution for the spread rate, for which a Shannon entropy can be defined. The only parameter, that characterizes the width of the distribution function, is uniquely determined through maximizing the rate of entropy production. This entropy-based thermodynamic (EBT) model predicts the number of hospitalized cases with a reasonable accuracy for SARS in the year 2003. This EBT model can be of use for potential epidemics such as avian influenza and H7N9 in China.

  6. Coagulation algorithms with size binning

    NASA Technical Reports Server (NTRS)

    Statton, David M.; Gans, Jason; Williams, Eric

    1994-01-01

    The Smoluchowski equation describes the time evolution of an aerosol particle size distribution due to aggregation or coagulation. Any algorithm for computerized solution of this equation requires a scheme for describing the continuum of aerosol particle sizes as a discrete set. One standard form of the Smoluchowski equation accomplishes this by restricting the particle sizes to integer multiples of a basic unit particle size (the monomer size). This can be inefficient when particle concentrations over a large range of particle sizes must be calculated. Two algorithms employing a geometric size binning convention are examined: the first assumes that the aerosol particle concentration as a function of size can be considered constant within each size bin; the second approximates the concentration as a linear function of particle size within each size bin. The output of each algorithm is compared to an analytical solution in a special case of the Smoluchowski equation for which an exact solution is known . The range of parameters more appropriate for each algorithm is examined.

  7. Valuing and selling a practice.

    PubMed

    Sullivan, Walter

    2012-11-01

    Surgeons, as they contemplate retirement, wrongly believe that their practices do not have financial value. In fact, a well-organized efficiently functioning office with an emphasis on excellent service in combination with a constant stream of patients make it financially ideal for the new surgeon. Being able to assume such a practice can be a very smart financial decision. The practice's worth can be determined by a careful analysis of the practice financials and an evaluation of the functioning of the office and employees. Purchasing such a practice can be, economically, a very smart move by a new surgeon. Payments are made over time at a rate that allows the surgeon to make a good living, leaving him with real equity once the payments are complete. The departing surgeon, who had spent years building this successful practice, gets some of this value back in the form of an income stream to supplement his retirement. This process should be considered in virtually every case. Do not just "close the door."

  8. Popular Education: Adult Education for Social Change. ERIC Digest No. 185.

    ERIC Educational Resources Information Center

    Kerka, Sandra

    Popular education is a form of adult education that encourages learners to examine their lives critically and take action to change social conditions. Popular education's goal is to develop people's capacity for social change. Although it may assume diverse forms, popular education usually involves a cycle described as action/reflection/action or…

  9. Orthographically Influenced Abstract Phonological Representation: Evidence from Non-Rhotic Speakers

    ERIC Educational Resources Information Center

    Taft, Marcus

    2006-01-01

    It is typically assumed that when orthography is translated silently into phonology (i.e., when reading silently), the phonological representation is equivalent to the spoken form or, at least, the surface phonemic form. The research presented here demonstrates that the phonological representation is likely to be more abstract than this, and is…

  10. path integral approach to closed form pricing formulas in the Heston framework.

    NASA Astrophysics Data System (ADS)

    Lemmens, Damiaan; Wouters, Michiel; Tempere, Jacques; Foulon, Sven

    2008-03-01

    We present a path integral approach for finding closed form formulas for option prices in the framework of the Heston model. The first model for determining option prices was the Black-Scholes model, which assumed that the logreturn followed a Wiener process with a given drift and constant volatility. To provide a realistic description of the market, the Black-Scholes results must be extended to include stochastic volatility. This is achieved by the Heston model, which assumes that the volatility follows a mean reverting square root process. Current applications of the Heston model are hampered by the unavailability of fast numerical methods, due to a lack of closed-form formulae. Therefore the search for closed form solutions is an essential step before the qualitatively better stochastic volatility models will be used in practice. To attain this goal we outline a simplified path integral approach yielding straightforward results for vanilla Heston options with correlation. Extensions to barrier options and other path-dependent option are discussed, and the new derivation is compared to existing results obtained from alternative path-integral approaches (Dragulescu, Kleinert).

  11. Application of functional analysis to perturbation theory of differential equations. [nonlinear perturbation of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Bogdan, V. M.; Bond, V. B.

    1980-01-01

    The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.

  12. Measurement of the diffractive structure function in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Hartmann, H.; Heinloth, H.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarębska, E.; Suszycki, L.; Zając, J.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Gutjahr, B.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Monteiro, T.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M. C. K.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, J. I.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; Del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.

    1995-12-01

    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in ep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of x ℙ, the momentum fraction lost by the proton, of β, the momentum fraction of the struck quark with respect to x ℙ, and of Q 2 in the range 6.3·10-4< x ℙ <10-2, 0.1<β<0.8 and 8< Q 2<100 GeV2. The dependence is consistent with the form x ℙ where a=1.30±0.08(stat) {-0.14/+0.08} (sys) in all bins of β and Q 2. In the measured Q 2 range, the diffractive structure function approximately scales with Q 2 at fixed β. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.

  13. Ontogenetic trends in gnostic hand function in 3- to 12-yr-old children.

    PubMed

    van Grunsven, W; Njiokiktjien, C; Vranken, M; Vuylsteke-Wauters, M

    2003-06-01

    The intimate relation between the sensory and motor functions of the hands during object manipulation and exploratory touch, the well-known improvement in object handling and constructive performance in ontogenesis and the emergent laterality thereof, assume changes in morphognostic capabilities in children. In this study we tried to corroborate the hypothesis of Mesker that mature and lateralized finger-thumb opposition is preceded by a stage of two-sided manual form agnosia in preschool children, followed by acquisition of morphognosis of the fingers and, finally, the thumbs. This study examined the development of gnostic hand function in 290 children from 3 to 11 years of age who drew the outlines of a meaningless wooden object passively felt with each hand without visual control. Analysis showed a clear ontogenetic change across the two age groups of increasing morphognostic function: 48% of the 6-yr.-olds drew correctly what the fingers of both left and right hands had perceived (thumbs, 14%). Of the 11-yr.-olds 91% and 61% performed perfectly with the right and left hands, respectively. The fingers preceded the thumbs in reproduction by most children, and the correct reproduction by the left thumb precedes that of the right thumb. The ontogenesis of bimanual sensorimotor functioning is discussed in the light of cortical and callosal development.

  14. Disposal of radioactive iodine in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.; Defield, J. G.

    1978-01-01

    The possibility of space disposal of iodine waste from nuclear power reactors is investigated. The space transportation system utilized relies upon the space shuttle, a liquid hydrogen/liquid oxygen orbit transfer vehicle, and a solid propellant final stage. The iodine is assumed to be in the form of either an iodide or an iodate, and calculations assume that the final destination is either solar orbit or solar system escape. It is concluded that space disposal of iodine is feasible.

  15. Stochastic and deterministic model of microbial heat inactivation.

    PubMed

    Corradini, Maria G; Normand, Mark D; Peleg, Micha

    2010-03-01

    Microbial inactivation is described by a model based on the changing survival probabilities of individual cells or spores. It is presented in a stochastic and discrete form for small groups, and as a continuous deterministic model for larger populations. If the underlying mortality probability function remains constant throughout the treatment, the model generates first-order ("log-linear") inactivation kinetics. Otherwise, it produces survival patterns that include Weibullian ("power-law") with upward or downward concavity, tailing with a residual survival level, complete elimination, flat "shoulder" with linear or curvilinear continuation, and sigmoid curves. In both forms, the same algorithm or model equation applies to isothermal and dynamic heat treatments alike. Constructing the model does not require assuming a kinetic order or knowledge of the inactivation mechanism. The general features of its underlying mortality probability function can be deduced from the experimental survival curve's shape. Once identified, the function's coefficients, the survival parameters, can be estimated directly from the experimental survival ratios by regression. The model is testable in principle but matching the estimated mortality or inactivation probabilities with those of the actual cells or spores can be a technical challenge. The model is not intended to replace current models to calculate sterility. Its main value, apart from connecting the various inactivation patterns to underlying probabilities at the cellular level, might be in simulating the irregular survival patterns of small groups of cells and spores. In principle, it can also be used for nonthermal methods of microbial inactivation and their combination with heat.

  16. Clustering of galaxies with f(R) gravity

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Faizal, Mir; Hameeda, Mir; Pourhassan, Behnam; Salzano, Vincenzo; Upadhyay, Sudhaker

    2018-02-01

    Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newton's potential given by f(R) gravity. We compute the corrected N-particle partition function analytically. The corrected partition function leads to more exact equations of state of the system. By assuming that the system follows quasi-equilibrium, we derive the exact distribution function that exhibits the f(R) correction. Moreover, we evaluate the critical temperature and discuss the stability of the system. We observe the effects of correction of f(R) gravity on the power-law behaviour of particle-particle correlation function also. In order to check the feasibility of an f(R) gravity approach to the clustering of galaxies, we compare our results with an observational galaxy cluster catalogue.

  17. System and method for constructing filters for detecting signals whose frequency content varies with time

    DOEpatents

    Qian, S.; Dunham, M.E.

    1996-11-12

    A system and method are disclosed for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos(2{pi}{phi}(t)) and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {phi}{prime}(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series. The joint time-frequency transformation represents the analyzed signal energy at time t and frequency f, P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function {phi}{prime}(t) which best fits the multivalued function f(t). Integrating {phi}{prime}(t) along t yields {phi}{prime}(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template. 7 figs.

  18. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    PubMed Central

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-01-01

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. ProDiMo protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The Drift cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models. PMID:25370190

  19. Disk evolution, element abundances and cloud properties of young gas giant planets.

    PubMed

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-04-14

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  20. Probabilistic Decision Making with Spikes: From ISI Distributions to Behaviour via Information Gain.

    PubMed

    Caballero, Javier A; Lepora, Nathan F; Gurney, Kevin N

    2015-01-01

    Computational theories of decision making in the brain usually assume that sensory 'evidence' is accumulated supporting a number of hypotheses, and that the first accumulator to reach threshold triggers a decision in favour of its associated hypothesis. However, the evidence is often assumed to occur as a continuous process whose origins are somewhat abstract, with no direct link to the neural signals - action potentials or 'spikes' - that must ultimately form the substrate for decision making in the brain. Here we introduce a new variant of the well-known multi-hypothesis sequential probability ratio test (MSPRT) for decision making whose evidence observations consist of the basic unit of neural signalling - the inter-spike interval (ISI) - and which is based on a new form of the likelihood function. We dub this mechanism s-MSPRT and show its precise form for a range of realistic ISI distributions with positive support. In this way we show that, at the level of spikes, the refractory period may actually facilitate shorter decision times, and that the mechanism is robust against poor choice of the hypothesized data distribution. We show that s-MSPRT performance is related to the Kullback-Leibler divergence (KLD) or information gain between ISI distributions, through which we are able to link neural signalling to psychophysical observation at the behavioural level. Thus, we find the mean information needed for a decision is constant, thereby offering an account of Hick's law (relating decision time to the number of choices). Further, the mean decision time of s-MSPRT shows a power law dependence on the KLD offering an account of Piéron's law (relating reaction time to stimulus intensity). These results show the foundations for a research programme in which spike train analysis can be made the basis for predictions about behavior in multi-alternative choice tasks.

  1. Probabilistic Decision Making with Spikes: From ISI Distributions to Behaviour via Information Gain

    PubMed Central

    Caballero, Javier A.; Lepora, Nathan F.; Gurney, Kevin N.

    2015-01-01

    Computational theories of decision making in the brain usually assume that sensory 'evidence' is accumulated supporting a number of hypotheses, and that the first accumulator to reach threshold triggers a decision in favour of its associated hypothesis. However, the evidence is often assumed to occur as a continuous process whose origins are somewhat abstract, with no direct link to the neural signals - action potentials or 'spikes' - that must ultimately form the substrate for decision making in the brain. Here we introduce a new variant of the well-known multi-hypothesis sequential probability ratio test (MSPRT) for decision making whose evidence observations consist of the basic unit of neural signalling - the inter-spike interval (ISI) - and which is based on a new form of the likelihood function. We dub this mechanism s-MSPRT and show its precise form for a range of realistic ISI distributions with positive support. In this way we show that, at the level of spikes, the refractory period may actually facilitate shorter decision times, and that the mechanism is robust against poor choice of the hypothesized data distribution. We show that s-MSPRT performance is related to the Kullback-Leibler divergence (KLD) or information gain between ISI distributions, through which we are able to link neural signalling to psychophysical observation at the behavioural level. Thus, we find the mean information needed for a decision is constant, thereby offering an account of Hick's law (relating decision time to the number of choices). Further, the mean decision time of s-MSPRT shows a power law dependence on the KLD offering an account of Piéron's law (relating reaction time to stimulus intensity). These results show the foundations for a research programme in which spike train analysis can be made the basis for predictions about behavior in multi-alternative choice tasks. PMID:25923907

  2. Data-Driven Benchmarking of Building Energy Efficiency Utilizing Statistical Frontier Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavousian, A; Rajagopal, R

    2014-01-01

    Frontier methods quantify the energy efficiency of buildings by forming an efficient frontier (best-practice technology) and by comparing all buildings against that frontier. Because energy consumption fluctuates over time, the efficiency scores are stochastic random variables. Existing applications of frontier methods in energy efficiency either treat efficiency scores as deterministic values or estimate their uncertainty by resampling from one set of measurements. Availability of smart meter data (repeated measurements of energy consumption of buildings) enables using actual data to estimate the uncertainty in efficiency scores. Additionally, existing applications assume a linear form for an efficient frontier; i.e.,they assume that themore » best-practice technology scales up and down proportionally with building characteristics. However, previous research shows that buildings are nonlinear systems. This paper proposes a statistical method called stochastic energy efficiency frontier (SEEF) to estimate a bias-corrected efficiency score and its confidence intervals from measured data. The paper proposes an algorithm to specify the functional form of the frontier, identify the probability distribution of the efficiency score of each building using measured data, and rank buildings based on their energy efficiency. To illustrate the power of SEEF, this paper presents the results from applying SEEF on a smart meter data set of 307 residential buildings in the United States. SEEF efficiency scores are used to rank individual buildings based on energy efficiency, to compare subpopulations of buildings, and to identify irregular behavior of buildings across different time-of-use periods. SEEF is an improvement to the energy-intensity method (comparing kWh/sq.ft.): whereas SEEF identifies efficient buildings across the entire spectrum of building sizes, the energy-intensity method showed bias toward smaller buildings. The results of this research are expected to assist researchers and practitioners compare and rank (i.e.,benchmark) buildings more robustly and over a wider range of building types and sizes. Eventually, doing so is expected to result in improved resource allocation in energy-efficiency programs.« less

  3. Natural frequencies, modeshapes and modal interactions for strings vibrating against an obstacle: Relevance to Sitar and Veena

    NASA Astrophysics Data System (ADS)

    Mandal, A. K.; Wahi, P.

    2015-03-01

    We study the vibration characteristics of a string with a smooth unilateral obstacle placed at one of the ends similar to the strings in musical instruments like sitar and veena. In particular, we explore the correlation between the string vibrations and some unique sound characteristics of these instruments like less inharmonicity in the frequencies, a large number of overtones and the presence of both frequency and amplitude modulations. At the obstacle, we have a moving boundary due to the wrapping of the string and an appropriate scaling of the spatial variable leads to a fixed boundary at the cost of introducing nonlinearity in the governing equation. Reduced order system of equations has been obtained by assuming a functional form for the string displacement which satisfies all the boundary conditions and gives the free length of the string in terms of the modal coordinates. To study the natural frequencies and mode-shapes, the nonlinear governing equation is linearized about the static configuration. The natural frequencies have been found to be harmonic and they depend on the shape of the obstacle through the effective free length of the string. Expressions have been obtained for the time-varying mode-shapes as well as the variation of the nodal points. Modal interactions due to coupling have been studied which show the appearance of higher overtones as well as amplitude modulations in our theoretical model akin to the experimental observations. All the obtained results have been verified with an alternate formulation based on the assumed mode method with polynomial shape functions.

  4. Large deformation analysis of axisymmetric inhomogeneities including coupled elastic and plastic anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannon, R.M.

    1996-12-31

    A mathematical framework is developed for the study of materials containing axisymmetric inclusions or flaws such as ellipsoidal voids, penny-shaped cracks, or fibers of circular cross-section. The general case of nonuniform statistical distributions of such heterogeneities is attacked by first considering a spatially uniform distribution of flaws that are all oriented in the same direction. Assuming an isotropic substrate, the macroscopic material properties of this simpler microstructure naturally should be transversely isotropic. An orthogonal basis for the linear subspace consisting of all double-symmetric transversely-isotropic fourth-order tensors associated with a given material vector is applied to deduce the explicit functional dependencemore » of the material properties of these aligned materials on the shared symmetry axis. The aligned and uniform microstructure seems geometrically simple enough that the macroscopic transversely isotropic properties could be derived in closed form. Since the resulting properties are transversely isotropic, the analyst must therefore be able to identify the appropriate coefficients of the transverse basis. Once these functions are identified, a principle of superposition of strain rates ay be applied to define an expectation integral for the composite properties of a material containing arbitrary anisotropic distributions of axisymmetric inhomogeneities. A proposal for coupling plastic anisotropy to the elastic anisotropy is presented in which the composite yield surface is interpreted as a distortion of the isotropic substrate yield surface; the distortion directions are coupled to the elastic anisotropy directions. Finally, some commonly assumed properties (such as major symmetry) of the Cauchy tangent stiffness tensor are shown to be inappropriate for large distortions of anisotropic materials.« less

  5. Building functional groups of marine benthic macroinvertebrates on the basis of general community assembly mechanisms

    NASA Astrophysics Data System (ADS)

    Alexandridis, Nikolaos; Bacher, Cédric; Desroy, Nicolas; Jean, Fred

    2017-03-01

    The accurate reproduction of the spatial and temporal dynamics of marine benthic biodiversity requires the development of mechanistic models, based on the processes that shape macroinvertebrate communities. The modelled entities should, accordingly, be able to adequately represent the many functional roles that are performed by benthic organisms. With this goal in mind, we applied the emergent group hypothesis (EGH), which assumes functional equivalence within and functional divergence between groups of species. The first step of the grouping involved the selection of 14 biological traits that describe the role of benthic macroinvertebrates in 7 important community assembly mechanisms. A matrix of trait values for the 240 species that occurred in the Rance estuary (Brittany, France) in 1995 formed the basis for a hierarchical classification that generated 20 functional groups, each with its own trait values. The functional groups were first evaluated based on their ability to represent observed patterns of biodiversity. The two main assumptions of the EGH were then tested, by assessing the preservation of niche attributes among the groups and the neutrality of functional differences within them. The generally positive results give us confidence in the ability of the grouping to recreate functional diversity in the Rance estuary. A first look at the emergent groups provides insights into the potential role of community assembly mechanisms in shaping biodiversity patterns. Our next steps include the derivation of general rules of interaction and their incorporation, along with the functional groups, into mechanistic models of benthic biodiversity.

  6. Decisionmaking in practice: The dynamics of muddling through.

    PubMed

    Flach, John M; Feufel, Markus A; Reynolds, Peter L; Parker, Sarah Henrickson; Kellogg, Kathryn M

    2017-09-01

    An alternative to conventional models that treat decisions as open-loop independent choices is presented. The alterative model is based on observations of work situations such as healthcare, where decisionmaking is more typically a closed-loop, dynamic, problem-solving process. The article suggests five important distinctions between the processes assumed by conventional models and the reality of decisionmaking in practice. It is suggested that the logic of abduction in the form of an adaptive, muddling through process is more consistent with the realities of practice in domains such as healthcare. The practical implication is that the design goal should not be to improve consistency with normative models of rationality, but to tune the representations guiding the muddling process to increase functional perspicacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Jealousy in dogs.

    PubMed

    Harris, Christine R; Prouvost, Caroline

    2014-01-01

    It is commonly assumed that jealousy is unique to humans, partially because of the complex cognitions often involved in this emotion. However, from a functional perspective, one might expect that an emotion that evolved to protect social bonds from interlopers might exist in other social species, particularly one as cognitively sophisticated as the dog. The current experiment adapted a paradigm from human infant studies to examine jealousy in domestic dogs. We found that dogs exhibited significantly more jealous behaviors (e.g., snapping, getting between the owner and object, pushing/touching the object/owner) when their owners displayed affectionate behaviors towards what appeared to be another dog as compared to nonsocial objects. These results lend support to the hypothesis that jealousy has some "primordial" form that exists in human infants and in at least one other social species besides humans.

  8. Analytical formulation of impulsive collision avoidance dynamics

    NASA Astrophysics Data System (ADS)

    Bombardelli, Claudio

    2014-02-01

    The paper deals with the problem of impulsive collision avoidance between two colliding objects in three dimensions and assuming elliptical Keplerian orbits. Closed-form analytical expressions are provided that accurately predict the relative dynamics of the two bodies in the encounter b-plane following an impulsive delta-V manoeuvre performed by one object at a given orbit location prior to the impact and with a generic three-dimensional orientation. After verifying the accuracy of the analytical expressions for different orbital eccentricities and encounter geometries the manoeuvre direction that maximises the miss distance is obtained numerically as a function of the arc length separation between the manoeuvre point and the predicted collision point. The provided formulas can be used for high-accuracy instantaneous estimation of the outcome of a generic impulsive collision avoidance manoeuvre and its optimisation.

  9. A description of discrete internal representation schemes for visual pattern discrimination.

    PubMed

    Foster, D H

    1980-01-01

    A general description of a class of schemes for pattern vision is outlined in which the visual system is assumed to form a discrete internal representation of the stimulus. These representations are discrete in that they are considered to comprise finite combinations of "components" which are selected from a fixed and finite repertoire, and which designate certain simple pattern properties or features. In the proposed description it is supposed that the construction of an internal representation is a probabilistic process. A relationship is then formulated associating the probability density functions governing this construction and performance in visually discriminating patterns when differences in pattern shape are small. Some questions related to the application of this relationship to the experimental investigation of discrete internal representations are briefly discussed.

  10. The Three Sources of Gas in the Comae of Comets

    NASA Technical Reports Server (NTRS)

    Huebner, W. F.

    1995-01-01

    Surface water ice on a comet nucleus is the major source of coma gas. Dust, entrained by coma gas, fragments and vaporizes, forming a second, distributed source of coma gas constituents. Ice species more volatile than water ice below the surface of the nucleus are a third source of coma gas. Vapors from these ices, produced by heat penetrating into the nucleus, diffuse through pores outward into the coma. The second and third sources provide minor, but sometimes easily detectible, gaseous species in the coma. We present mixing ratios of observed minor coma constituents relative to water vapor as a function of heliocentric and cometocentric distances and compare these ratios with model predictions, assuming the sources of the minor species are either coma dust or volatile ices in the nucleus.

  11. Photocounting distributions for exponentially decaying sources.

    PubMed

    Teich, M C; Card, H C

    1979-05-01

    Exact photocounting distributions are obtained for a pulse of light whose intensity is exponentially decaying in time, when the underlying photon statistics are Poisson. It is assumed that the starting time for the sampling interval (which is of arbitrary duration) is uniformly distributed. The probability of registering n counts in the fixed time T is given in terms of the incomplete gamma function for n >/= 1 and in terms of the exponential integral for n = 0. Simple closed-form expressions are obtained for the count mean and variance. The results are expected to be of interest in certain studies involving spontaneous emission, radiation damage in solids, and nuclear counting. They will also be useful in neurobiology and psychophysics, since habituation and sensitization processes may sometimes be characterized by the same stochastic model.

  12. Spatiotemporal reconstruction of list-mode PET data.

    PubMed

    Nichols, Thomas E; Qi, Jinyi; Asma, Evren; Leahy, Richard M

    2002-04-01

    We describe a method for computing a continuous time estimate of tracer density using list-mode positron emission tomography data. The rate function in each voxel is modeled as an inhomogeneous Poisson process whose rate function can be represented using a cubic B-spline basis. The rate functions are estimated by maximizing the likelihood of the arrival times of detected photon pairs over the control vertices of the spline, modified by quadratic spatial and temporal smoothness penalties and a penalty term to enforce nonnegativity. Randoms rate functions are estimated by assuming independence between the spatial and temporal randoms distributions. Similarly, scatter rate functions are estimated by assuming spatiotemporal independence and that the temporal distribution of the scatter is proportional to the temporal distribution of the trues. A quantitative evaluation was performed using simulated data and the method is also demonstrated in a human study using 11C-raclopride.

  13. Cognitive changes after cerebrospinal fluid shunting in young adults with spina bifida and assumed arrested hydrocephalus

    PubMed Central

    Mataro, M.; Poca, M. A.; Sahuquillo, J.; Cuxart, A.; Iborra, J.; de la Calzada, M. D.; Junque, C.

    2000-01-01

    OBJECTIVES—To establish whether surgery can improve the neuropsychological functioning of young adult patients with spina bifida and apparent clinically arrested hydrocephalus showing abnormal intracranial pressure.
METHODS—Twenty three young adults with spina bifida and assumed arrested hydrocephalus (diagnosed as active or compensated by continuous intracranial pressure monitoring) underwent surgery. All patients received neuropsychological examination before surgery and 6 months later. Neuropsychological assessment included tests of verbal and visual memory, visuospatial functions, speed of mental processing, and frontal lobe functions.
RESULTS—Shunt placement in this subgroup of patients improves neuropsychological functioning, especially in verbal and visual memory and attention and cognitive flexibility.
CONCLUSIONS—Young adults with spina bifida and suspected non-functioning shunt or non-shunted ventriculomegaly should be carefully monitored to identify those who could benefit from shunting.

 PMID:10766893

  14. Sensitivity of the Speech Intelligibility Index to the Assumed Dynamic Range

    ERIC Educational Resources Information Center

    Jin, In-Ki; Kates, James M.; Arehart, Kathryn H.

    2017-01-01

    Purpose: This study aims to evaluate the sensitivity of the speech intelligibility index (SII) to the assumed speech dynamic range (DR) in different languages and with different types of stimuli. Method: Intelligibility prediction uses the absolute transfer function (ATF) to map the SII value to the predicted intelligibility for a given stimuli.…

  15. Diploidy and the selective advantage for sexual reproduction in unicellular organisms.

    PubMed

    Kleiman, Maya; Tannenbaum, Emmanuel

    2009-11-01

    This article develops mathematical models describing the evolutionary dynamics of both asexually and sexually reproducing populations of diploid unicellular organisms. The asexual and sexual life cycles are based on the asexual and sexual life cycles in Saccharomyces cerevisiae, Baker's yeast, which normally reproduces by asexual budding, but switches to sexual reproduction when stressed. The mathematical models consider three reproduction pathways: (1) Asexual reproduction, (2) self-fertilization, and (3) sexual reproduction. We also consider two forms of genome organization. In the first case, we assume that the genome consists of two multi-gene chromosomes, whereas in the second case, we consider the opposite extreme and assume that each gene defines a separate chromosome, which we call the multi-chromosome genome. These two cases are considered to explore the role that recombination has on the mutation-selection balance and the selective advantage of the various reproduction strategies. We assume that the purpose of diploidy is to provide redundancy, so that damage to a gene may be repaired using the other, presumably undamaged copy (a process known as homologous recombination repair). As a result, we assume that the fitness of the organism only depends on the number of homologous gene pairs that contain at least one functional copy of a given gene. If the organism has at least one functional copy of every gene in the genome, we assume a fitness of 1. In general, if the organism has l homologous pairs that lack a functional copy of the given gene, then the fitness of the organism is kappa(l). The kappa(l) are assumed to be monotonically decreasing, so that kappa(0) = 1 > kappa(1) > kappa(2) > cdots, three dots, centered > kappa(infinity) = 0. For nearly all of the reproduction strategies we consider, we find, in the limit of large N, that the mean fitness at mutation-selection balance is max{2e(-mu) - 1,0} where N is the number of genes in the haploid set of the genome, epsilon is the probability that a given DNA template strand of a given gene produces a mutated daughter during replication, and mu = Nepsilon. The only exception is the sexual reproduction pathway for the multi-chromosomed genome. Assuming a multiplicative fitness landscape where kappa(l) = alpha(l) for alpha in (0, 1), this strategy is found to have a mean fitness that exceeds the mean fitness of all the other strategies. Furthermore, while other reproduction strategies experience a total loss of viability due to the steady accumulation of deleterious mutations once mu exceeds [Formula: see text] no such transition occurs in the sexual pathway. Indeed, in the limit as alpha --> 1 for the multiplicative landscape, we can show that the mean fitness for the sexual pathway with the multi-chromosomed genome converges to e(-2mu), which is always positive. We explicitly allow for mitotic recombination in this study, which, in contrast to previous studies using different models, does not have any advantage over other asexual reproduction strategies. The results of this article provide a basis for understanding the selective advantage of the specific meiotic pathway that is employed by sexually reproducing organisms. The results of this article also suggest an explanation for why unicellular organisms such as Saccharomyces cerevisiae (Baker's yeast) switch to a sexual mode of reproduction when stressed. While the results of this article are based on modeling mutation-propagation in unicellular organisms, they nevertheless suggest that, in more complex organisms with significantly larger genomes, sex is necessary to prevent the loss of viability of a population due to genetic drift. Finally, and perhaps most importantly, the results of this article demonstrate a selective advantage for sexual reproduction with fewer and much less restrictive assumptions than those of previous studies.

  16. Life cycle costing with a discount rate

    NASA Technical Reports Server (NTRS)

    Posner, E. C.

    1978-01-01

    This article studies life cycle costing for a capability needed for the indefinite future, and specifically investigates the dependence of optimal policies on the discount rate chosen. The two costs considered are reprocurement cost and maintenance and operations (M and O) cost. The procurement price is assumed known, and the M and O costs are assumed to be a known function, in fact, a non-decreasing function, of the time since last reprocurement. The problem is to choose the optimum reprocurement time so as to minimize the quotient of the total cost over a reprocurement period divided by the period. Or one could assume a discount rate and try to minimize the total discounted costs into the indefinite future. It is shown that the optimum policy in the presence of a small discount rate hardly depends on the discount rate at all, and leads to essentially the same policy as in the case in which discounting is not considered.

  17. [The hyperiricosuria as an indicator of derangement of biologic functions of endoecology and adaptation, biologic reactions of excretion, inflammation and arterial tension].

    PubMed

    Titov, V N; Oshchepkova, E V; Dmitriev, V A; Gushchina, O V; Shiriaeva, Iu K; Iashin, A Ia

    2012-04-01

    During millions years in all animals allantoine (oxidized by uricase uric acid) was catabolite of purines and ascorbic acid was an acceptor of active forms of oxygen. The proximal tubules of nephron reabsorbed the trace amounts of uric acid Then during phylogenesis the primates had a mutation of ascorbic acid gen minus. Later on occurred a second spontaneous mutation and uricase gen minus and uric acid became catabolites of purines. In absence of ascorbic acid synthesis ions of urates became a major capturers of active forms of oxygen and all uric acid as before underwent the reabsorption. Later the carriers were formed which began in epithelium of proximal tubules to secrete all uric acid into urine. At every incident of "littering" of intercellular medium with endogenic flogogens (impairment of biologic function of endoecology) under compensatory development of biologic reaction of inflammation the need in inactivation of active forms of oxygen increases. Hence later on in phylogenesis one more stage was formed--post secretory reabsorption of uric acid In the biologic reaction of inflammation epithelium of proximal tubules initiates retentional hyperiricosuria. The general antioxidant activity of human blood plasma in 60% is presented by urates' ions. The excretion of uric acid includes 4 stages: filtration, full reabsorption, secretion and post secretory reabsorption. In phylogenesis these stages formed in sequence. The mild hyperiricosuria is most frequently considered as a non-specific indicator of activation of biologic reaction of inflammation. The productive hyperiricosuria develops more infrequently under surplus of meat food and cytolysis syndrome (intensification of cell loss in vivo). Under concentration of uric acid more than 400 mkmol/l part of urates circulates in intercellular medium in the form of crystals. The microcrystals of uric acid (biologic "litter") initiate the syndrome of systemic inflammatory response as an endogenic flogogen--initiator of inflammation. The uric acid in the form of ion-capturers of active forms of oxygen is involved into in the formation of syndrome of compensatory anti-inflammatory defense. It may be assumed that simultaneously with post-secretory reabsorption of ions of urates in proximal tubules of nephron occurs intensification of philogenetically late post-secretory reabsorption of ions of sodium and activation of of biologic reaction of hydrodynamic and hydraulic pressure in local pool of intravascular medium i.e. arterial tension. The uric acid simultaneously participates in realization of biologic function of endoecology and adaptation, biologic reactions of excretion, inflammation and arterial tension.

  18. Collaborative Efforts of Business and the New York City Public High Schools.

    ERIC Educational Resources Information Center

    Tapper, Donna M.

    1985-01-01

    This document describes collaborative efforts in New York City between public high schools and the business sector. Business involvement with the schools assumes many forms and operates on a number of different levels: (1) forming a special relationship with particular schools or departments, (2) being a resource to provide speakers for classes,…

  19. Mapping Language to the World: The Role of Iconicity in the Sign Language Input

    ERIC Educational Resources Information Center

    Perniss, Pamela; Lu, Jenny C.; Morgan, Gary; Vigliocco, Gabriella

    2018-01-01

    Most research on the mechanisms underlying referential mapping has assumed that learning occurs in ostensive contexts, where label and referent co-occur, and that form and meaning are linked by arbitrary convention alone. In the present study, we focus on "iconicity" in language, that is, resemblance relationships between form and…

  20. Handwriting Instruction for a High-Tech Society: Will Handwriting Be Necessary?

    ERIC Educational Resources Information Center

    Furner, Beatrice A.

    Assuming that some handwriting will be necessary in the computer age, questions remain as to the instructional techniques that facilitate learning in handwriting, whether the cost and time required to teach two forms of writing can be justified, and which form is learned more easily and is better suited for use in a technological age. Effective…

  1. Lyapunov vector function method in the motion stabilisation problem for nonholonomic mobile robot

    NASA Astrophysics Data System (ADS)

    Andreev, Aleksandr; Peregudova, Olga

    2017-07-01

    In this paper we propose a sampled-data control law in the stabilisation problem of nonstationary motion of nonholonomic mobile robot. We assume that the robot moves on a horizontal surface without slipping. The dynamical model of a mobile robot is considered. The robot has one front free wheel and two rear wheels which are controlled by two independent electric motors. We assume that the controls are piecewise constant signals. Controller design relies on the backstepping procedure with the use of Lyapunov vector-function method. Theoretical considerations are verified by numerical simulation.

  2. Kurtosis Approach for Nonlinear Blind Source Separation

    NASA Technical Reports Server (NTRS)

    Duong, Vu A.; Stubbemd, Allen R.

    2005-01-01

    In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation.

  3. A Design for an Orbital Assembly Facility for Complex Missions

    NASA Astrophysics Data System (ADS)

    Feast, S.; Bond, A.

    A design is presented for an Operations Base Station (OBS) in low earth orbit that will function as an integral part of a space transportation system, enabling assembly and maintenance of a Cis-Lunar transportation infrastructure and integration of vehicles for other high energy space missions to be carried out. Construction of the OBS assumes the use of the SKYLON Single-Stage-to-Orbit (SSTO) spaceplane, which imposes design and assembly constraints due to its payload mass limits and payload bay dimensions. It is assumed that the space transport infrastructure and high mission energy vehicles would also make use of SKYLON to deploy standard transport equipment and stages bound by these same constraints. The OBS is therefore a highly modular arrangement, incorporating some of these other vehicle system elements in its layout design. Architecturally, the facilities of the OBS are centred around the Assembly Dock which is in the form of a large cylindrical spaceframe structure with two large doors on either end incorporating a skin of aluminised Mylar to enclose the dock. Longitudinal rails provide internal tether attachments to anchor vehicles and components while manipulators are used for the handling and assembling of vehicle structures. The exterior of the OBS houses the habitation modules for workforce and vehicle crews along with propellant farms and other operational facilities.

  4. Design and evaluation of a failure detection and isolation algorithm for restructurable control systems

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.; Hsu, John Y.

    1986-01-01

    The use of a decentralized approach to failure detection and isolation for use in restructurable control systems is examined. This work has produced: (1) A method for evaluating fundamental limits to FDI performance; (2) Application using flight recorded data; (3) A working control element FDI system with maximal sensitivity to critical control element failures; (4) Extensive testing on realistic simulations; and (5) A detailed design methodology involving parameter optimization (with respect to model uncertainties) and sensitivity analyses. This project has concentrated on detection and isolation of generic control element failures since these failures frequently lead to emergency conditions and since knowledge of remaining control authority is essential for control system redesign. The failures are generic in the sense that no temporal failure signature information was assumed. Thus, various forms of functional failures are treated in a unified fashion. Such a treatment results in a robust FDI system (i.e., one that covers all failure modes) but sacrifices some performance when detailed failure signature information is known, useful, and employed properly. It was assumed throughout that all sensors are validated (i.e., contain only in-spec errors) and that only the first failure of a single control element needs to be detected and isolated. The FDI system which has been developed will handle a class of multiple failures.

  5. A Disproportionate Burden of Care: Gender Differences in Mental Health, Health-Related Quality of Life, and Social Support in Mexican Multiple Sclerosis Caregivers

    PubMed Central

    Perrin, Paul B.; Panyavin, Ivan; Morlett Paredes, Alejandra; Aguayo, Adriana; Macias, Miguel Angel; Rabago, Brenda; Picot, Sandra J. Fulton; Arango-Lasprilla, Juan Carlos

    2015-01-01

    Background. Multiple sclerosis (MS) rates in Latin America are increasing, and caregivers there experience reduced mental and physical health. Based on rigid gender roles in Latin America, women more often assume caregiving duties, yet the differential impact on women of these duties is unknown. Methods. This study examined gender differences in mental health (Patient Health Questionnaire-9, Satisfaction with Life Scale, Rosenberg Self-Esteem Scale, State-Trait Anxiety Inventory, and Zarit Burden Inventory), health-related quality of life (HRQOL; Short Form-36), and social support (Interpersonal Support Evaluation List-12) in 81 (66.7% women) Mexican MS caregivers. Results. As compared to men caregivers, women had lower mental health (p = 0.006), HRQOL (p < 0.001), and social support (p < 0.001). This was partially explained by women caregivers providing care for nearly twice as many hours/week as men (79.28 versus 48.48, p = 0.018) and for nearly three times as many months (66.31 versus 24.30, p = 0.002). Conclusions. Because gender roles in Latin America influence women to assume more substantial caregiving duties, MS caregiver interventions in Latin America—particularly for women caregivers—should address the influence of gender-role conformity on care and psychosocial functioning. PMID:26538818

  6. A Disproportionate Burden of Care: Gender Differences in Mental Health, Health-Related Quality of Life, and Social Support in Mexican Multiple Sclerosis Caregivers.

    PubMed

    Perrin, Paul B; Panyavin, Ivan; Morlett Paredes, Alejandra; Aguayo, Adriana; Macias, Miguel Angel; Rabago, Brenda; Picot, Sandra J Fulton; Arango-Lasprilla, Juan Carlos

    2015-01-01

    Multiple sclerosis (MS) rates in Latin America are increasing, and caregivers there experience reduced mental and physical health. Based on rigid gender roles in Latin America, women more often assume caregiving duties, yet the differential impact on women of these duties is unknown. This study examined gender differences in mental health (Patient Health Questionnaire-9, Satisfaction with Life Scale, Rosenberg Self-Esteem Scale, State-Trait Anxiety Inventory, and Zarit Burden Inventory), health-related quality of life (HRQOL; Short Form-36), and social support (Interpersonal Support Evaluation List-12) in 81 (66.7% women) Mexican MS caregivers. As compared to men caregivers, women had lower mental health (p = 0.006), HRQOL (p < 0.001), and social support (p < 0.001). This was partially explained by women caregivers providing care for nearly twice as many hours/week as men (79.28 versus 48.48, p = 0.018) and for nearly three times as many months (66.31 versus 24.30, p = 0.002). Because gender roles in Latin America influence women to assume more substantial caregiving duties, MS caregiver interventions in Latin America-particularly for women caregivers-should address the influence of gender-role conformity on care and psychosocial functioning.

  7. The Pavlovian analysis of instrumental conditioning.

    PubMed

    Gormezano, I; Tait, R W

    1976-01-01

    An account was given of the development within the Russian literature of a uniprocess formulation of classical and instrumental conditioning, known as the bidirectional conditioning hypothesis. The hypothesis purports to offer a single set of Pavlovian principles to account for both paradigms, based upon a neural model which assumes that bidirectional (forward and backward) connections are formed in both calssical and instrumental conditioning situations. In instrumental conditioning, the bidirectional connections are hypothesized to be simply more complex than those in classical conditioning, and any differences in empirical functions are presumed to lie not in difference in mechanism, but in the strength of the forward and backward connections. Although bidirectional connections are assumed to develop in instrumental conditioning, the experimental investigation of the bidirectional conditioning hypothesis has been essentially restricted to the classical conditioning operations of pairing two CSs (sensory preconditioning training), a US followed by a CS (backward conditioning training) and two USs. However, the paradigm involving the pairing of two USs, because of theoretical and analytical considerations, is the one most commonly employed by Russian investigators. The results of an initial experiment involving the pairing of two USs, and reference to the results of a more extensive investigation, leads us to tentatively question the validity of the bidirectional conditioning account of instrumental conditioning.

  8. An integral wall model for Large Eddy Simulation (iWMLES) and applications to developing boundary layers over smooth and rough plates

    NASA Astrophysics Data System (ADS)

    Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles

    2014-11-01

    A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).

  9. The difference between radio-loud and radio-quiet active galaxies

    NASA Astrophysics Data System (ADS)

    Wilson, A. S.; Colbert, E. J. M.

    1995-01-01

    The recent development of unified theories of active galactic nuclei (AGNs) has indicated that there are two physically distinct classes of these objects--radio-loud and radio-quiet. Despite differences, the (probable) thermal emissions from the AGNs (continua and lines from X-ray to infrared wavelengths) are quite similar to the two classes of object. We argue that this last result suggests that the black hole masses and mass accretion rates in the two classes are not greatly different, and that the difference between the classes is associated with the spin of the black hole. We assume that the normal process of accretion through a disk does not lead to rapidly spinning holes and propose that galaxies (e.g., spirals) which have not suffered a recent major merger event contain nonrotating or only slowly rotating black holes. When two such galaxies merge, the two black holes are known to form a binary and we assume that they eventually coalesce. The ratio of the number of radio-loud to radio-quiet AGNs at a given thermal (e.g., optical) luminosity is determined by the galaxy merger rate. Comparisons between the predicted and observed radio luminosity functions constrain the efficiencies with which jet power is extracted from the spinning hole and radio emission is produced by the jet.

  10. Probabilistic assessment of the dynamic interaction between multiple pedestrians and vertical vibrations of footbridges

    NASA Astrophysics Data System (ADS)

    Tubino, Federica

    2018-03-01

    The effect of human-structure interaction in the vertical direction for footbridges is studied based on a probabilistic approach. The bridge is modeled as a continuous dynamic system, while pedestrians are schematized as moving single-degree-of-freedom systems with random dynamic properties. The non-dimensional form of the equations of motion allows us to obtain results that can be applied in a very wide set of cases. An extensive Monte Carlo simulation campaign is performed, varying the main non-dimensional parameters identified, and the mean values and coefficients of variation of the damping ratio and of the non-dimensional natural frequency of the coupled system are reported. The results obtained can be interpreted from two different points of view. If the characterization of pedestrians' equivalent dynamic parameters is assumed as uncertain, as revealed from a current literature review, then the paper provides a range of possible variations of the coupled system damping ratio and natural frequency as a function of pedestrians' parameters. Assuming that a reliable characterization of pedestrians' dynamic parameters is available (which is not the case at present, but could be in the future), the results presented can be adopted to estimate the damping ratio and natural frequency of the coupled footbridge-pedestrian system for a very wide range of real structures.

  11. Initial study of thermal energy storage in unconfined aquifers. [UCATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haitjema, H.M.; Strack, O.D.L.

    1986-04-01

    Convective heat transport in unconfined aquifers is modeled in a semi-analytic way. The transient groundwater flow is modeled by superposition of analytic functions, whereby changes in the aquifer storage are represented by a network of triangles, each with a linearly varying sink distribution. This analytic formulation incorporates the nonlinearity of the differential equation for unconfined flow and eliminates numerical dispersion in modeling heat convection. The thermal losses through the aquifer base and vadose zone are modeled rather crudely. Only vertical heat conduction is considered in these boundaries, whereby a linearly varying temperature is assumed at all times. The latter assumptionmore » appears reasonable for thin aquifer boundaries. However, assuming such thin aquifer boundaries may lead to an overestimation of the thermal losses when the aquifer base is regarded as infinitely thick in reality. The approach is implemented in the computer program UCATES, which serves as a first step toward the development of a comprehensive screening tool for ATES systems in unconfined aquifers. In its present form, the program is capable of predicting the relative effects of regional flow on the efficiency of ATES systems. However, only after a more realistic heatloss mechanism is incorporated in UCATES will reliable predictions of absolute ATES efficiencies be possible.« less

  12. Estimation of infection prevalence and sensitivity in a stratified two-stage sampling design employing highly specific diagnostic tests when there is no gold standard.

    PubMed

    Miller, Ezer; Huppert, Amit; Novikov, Ilya; Warburg, Alon; Hailu, Asrat; Abbasi, Ibrahim; Freedman, Laurence S

    2015-11-10

    In this work, we describe a two-stage sampling design to estimate the infection prevalence in a population. In the first stage, an imperfect diagnostic test was performed on a random sample of the population. In the second stage, a different imperfect test was performed in a stratified random sample of the first sample. To estimate infection prevalence, we assumed conditional independence between the diagnostic tests and develop method of moments estimators based on expectations of the proportions of people with positive and negative results on both tests that are functions of the tests' sensitivity, specificity, and the infection prevalence. A closed-form solution of the estimating equations was obtained assuming a specificity of 100% for both tests. We applied our method to estimate the infection prevalence of visceral leishmaniasis according to two quantitative polymerase chain reaction tests performed on blood samples taken from 4756 patients in northern Ethiopia. The sensitivities of the tests were also estimated, as well as the standard errors of all estimates, using a parametric bootstrap. We also examined the impact of departures from our assumptions of 100% specificity and conditional independence on the estimated prevalence. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Spatial bandwidth considerations for optical communication through a free space propagation link.

    PubMed

    Tyler, Glenn A

    2011-12-01

    This Letter concentrates on the transverse limitations imposed by a finite aperture optical propagation link that supports free space optical communication. Here it is assumed that a series of states, which are the spatial component of the message, are sent through the communication channel. The spatial bandwidth of the propagation link expressed as bits per transmitted photon is computed as the product of the average link efficiency times the entropy of the link. To facilitate the evaluation, it is assumed that the transmitted states are minimum energy loss orbital angular momentum states expressed in the form of f(nm)(r)exp(imθ), where the radial function is controlled to ensure that, for each quantum number denoted by the values of n and m, the minimum energy loss is obtained. The results illustrate that the bandwidth in units of bits per transmitted photon is very nearly equal to log(2)(N(2)(f)here log(2)(·) denotes the logarithm in base 2 and the Fresnel number, N(f)=(π/4)D(1)D(2)/(λz), where D(1) is the diameter of the transmitting aperture, D(2) is the diameter of the receiving aperture, λ is the wavelength of the light used, and z is the propagation distance. © 2011 Optical Society of America

  14. Stability of hot electron plasma in the ELMO bumpy torus

    NASA Astrophysics Data System (ADS)

    Tsang, K. T.; Cheng, C. Z.

    The stability of a hot electron plasma in the ELMO Bumpy Torus was investigated using two different models. In the first model, where the hot electron distribution function is assumed to be a delta function in the perpendicular velocity, a stability boundary in addition to those discussed by Nelson and by Van Dam and Lee is found. In the second model, where the hot electron distribution function is assumed to be a Maxwellian in the perpendicular velocity, stability boundaries significantly different from those of the first model are found. Coupling of the Nelson-Van Dam-Lee mode to the compressional Alfven mode is now possible. This leads to a higher permissible core plasma beta value for stable operation.

  15. Computing Functions by Approximating the Input

    ERIC Educational Resources Information Center

    Goldberg, Mayer

    2012-01-01

    In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their…

  16. Connected Functional Working Spaces: A Framework for the Teaching and Learning of Functions at Upper Secondary Level

    ERIC Educational Resources Information Center

    Minh, Tran Kiem; Lagrange, Jean-Baptiste

    2016-01-01

    This paper aims at contributing to remedy the narrow treatment of functions at upper secondary level. Assuming that students make sense of functions by working on functional situations in distinctive settings, we propose to consider functional working spaces inspired by geometrical working spaces. We analyse a classroom situation based on a…

  17. The Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. I. The Role of Self-gravity

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Armitage, Philip J.; Li, Rixin; Youdin, Andrew N.

    2016-05-01

    We study the formation of planetesimals in protoplanetary disks from the gravitational collapse of solid over-densities generated via the streaming instability. To carry out these studies, we implement and test a particle-mesh self-gravity module for the Athena code that enables the simulation of aerodynamically coupled systems of gas and collisionless self-gravitating solid particles. Upon employment of our algorithm to planetesimal formation simulations, we find that (when a direct comparison is possible) the Athena simulations yield predicted planetesimal properties that agree well with those found in prior work using different numerical techniques. In particular, the gravitational collapse of streaming-initiated clumps leads to an initial planetesimal mass function that is well-represented by a power law, {dN}/{{dM}}p\\propto {M}p-p, with p≃ 1.6+/- 0.1, which equates to a differential size distribution of {dN}/{{dR}}p\\propto {R}p-q, with q≃ 2.8+/- 0.1. We find no significant trends with resolution from a convergence study of up to 5123 grid zones and {N}{{par}}≈ 1.5× {10}8 particles. Likewise, the power-law slope appears indifferent to changes in the relative strength of self-gravity and tidal shear, and to the time when (for reasons of numerical economy) self-gravity is turned on, though the strength of these claims is limited by small number statistics. For a typically assumed radial distribution of minimum mass solar nebula solids (assumed here to have dimensionless stopping time τ =0.3), our results support the hypothesis that bodies on the scale of large asteroids or Kuiper Belt Objects could have formed as the high-mass tail of a primordial planetesimal population.

  18. Two roles of the context in Pavlovian fear conditioning.

    PubMed

    Urcelay, Gonzalo P; Miller, Ralph R

    2010-04-01

    At both empirical and theoretical levels, multiple functional roles of contextual information upon memory performance have been proposed without a clear dissociation of these roles. Some theories have assumed that contexts are functionally similar to cues, whereas other views emphasize the retrieval facilitating properties of contextual information. In Experiment 1, we observed that one critical parameter, the spacing of trials, could determine whether the context would function as a conditioned stimulus or as a retrieval cue for memories trained in different phases. Experiments 2 and 3 doubly dissociated these functions by selectively disrupting one role but not the other, and vice versa. Overall, these observations identify one determinant of different functions of contextual information and pose a major challenge to theories of learning that assume exclusively one or the other function of the context. Moreover, these data emphasize the importance of parametric variations on behavioral control, which has critical implications for studies designed to understand the role of the hippocampus in processing of contextual attributes.

  19. A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters.

    PubMed

    Engel, Fabian; Farrell, Kaitlin J; McCullough, Ian M; Scordo, Facundo; Denfeld, Blaize A; Dugan, Hilary A; de Eyto, Elvira; Hanson, Paul C; McClure, Ryan P; Nõges, Peeter; Nõges, Tiina; Ryder, Elizabeth; Weathers, Kathleen C; Weyhenmeyer, Gesa A

    2018-03-26

    The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO 2 ) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO 2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO 2 production by mineralization as well as CO 2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of [Formula: see text] to [Formula: see text] Pg C yr -1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO 2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO 2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.

  20. A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters

    NASA Astrophysics Data System (ADS)

    Engel, Fabian; Farrell, Kaitlin J.; McCullough, Ian M.; Scordo, Facundo; Denfeld, Blaize A.; Dugan, Hilary A.; de Eyto, Elvira; Hanson, Paul C.; McClure, Ryan P.; Nõges, Peeter; Nõges, Tiina; Ryder, Elizabeth; Weathers, Kathleen C.; Weyhenmeyer, Gesa A.

    2018-04-01

    The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of {0.70}_{-0.31}^{+0.27} to {1.52}_{-0.90}^{+1.09} Pg C yr-1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.

  1. Maximum entropy principal for transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilich, F.; Da Silva, R.

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utilitymore » concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.« less

  2. System and method for constructing filters for detecting signals whose frequency content varies with time

    DOEpatents

    Qian, Shie; Dunham, Mark E.

    1996-01-01

    A system and method for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos{2.pi..phi.(t)} and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {.phi.'(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series (also known as the Gabor spectrogram). The joint time-frequency transformation represents the analyzed signal energy at time t and frequency .function., P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function .phi.'(t) which best fits the multivalued function f(t), a trajectory of the joint time-frequency domain representation of x(t). Integrating .phi.'(t) along t yields .phi.(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template.

  3. Ten-Year Review of Rating Scales, VII: Scales Assessing Functional Impairment

    ERIC Educational Resources Information Center

    Winters, Nancy C.; Collett, Brent R.; Myers, Kathleen M.

    2005-01-01

    Objective: This is the seventh in a series of 10-year reviews of rating scales. Here the authors present scales measuring functional impairment, a sequela of mental illness. The measurement of functional impairment has assumed importance with the recognition that symptom resolution does not necessarily correlate with functional improvement.…

  4. What's Next: Recruitment of a Grounded Predictive Body Model for Planning a Robot's Actions.

    PubMed

    Schilling, Malte; Cruse, Holk

    2012-01-01

    Even comparatively simple, reactive systems are able to control complex motor tasks, such as hexapod walking on unpredictable substrate. The capability of such a controller can be improved by introducing internal models of the body and of parts of the environment. Such internal models can be applied as inverse models, as forward models or to solve the problem of sensor fusion. Usually, separate models are used for these functions. Furthermore, separate models are used to solve different tasks. Here we concentrate on internal models of the body as the brain considers its own body the most important part of the world. The model proposed is formed by a recurrent neural network with the property of pattern completion. The model shows a hierarchical structure but nonetheless comprises a holistic system. One and the same model can be used as a forward model, as an inverse model, for sensor fusion, and, with a simple expansion, as a model to internally simulate (new) behaviors to be used for prediction. The model embraces the geometrical constraints of a complex body with many redundant degrees of freedom, and allows finding geometrically possible solutions. To control behavior such as walking, climbing, or reaching, this body model is complemented by a number of simple reactive procedures together forming a procedural memory. In this article, we illustrate the functioning of this network. To this end we present examples for solutions of the forward function and the inverse function, and explain how the complete network might be used for predictive purposes. The model is assumed to be "innate," so learning the parameters of the model is not (yet) considered.

  5. The density structure and star formation rate of non-isothermal polytropic turbulence

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Banerjee, Supratik

    2015-04-01

    The interstellar medium of galaxies is governed by supersonic turbulence, which likely controls the star formation rate (SFR) and the initial mass function (IMF). Interstellar turbulence is non-universal, with a wide range of Mach numbers, magnetic fields strengths and driving mechanisms. Although some of these parameters were explored, most previous works assumed that the gas is isothermal. However, we know that cold molecular clouds form out of the warm atomic medium, with the gas passing through chemical and thermodynamic phases that are not isothermal. Here we determine the role of temperature variations by modelling non-isothermal turbulence with a polytropic equation of state (EOS), where pressure and temperature are functions of gas density, P˜ ρ ^Γ, T ˜ ρΓ - 1. We use grid resolutions of 20483 cells and compare polytropic exponents Γ = 0.7 (soft EOS), Γ = 1 (isothermal EOS) and Γ = 5/3 (stiff EOS). We find a complex network of non-isothermal filaments with more small-scale fragmentation occurring for Γ < 1, while Γ > 1 smoothes out density contrasts. The density probability distribution function (PDF) is significantly affected by temperature variations, with a power-law tail developing at low densities for Γ > 1. In contrast, the PDF becomes closer to a lognormal distribution for Γ ≲ 1. We derive and test a new density variance-Mach number relation that takes Γ into account. This new relation is relevant for theoretical models of the SFR and IMF, because it determines the dense gas mass fraction of a cloud, from which stars form. We derive the SFR as a function of Γ and find that it decreases by a factor of ˜5 from Γ = 0.7 to 5/3.

  6. Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast.

    PubMed

    Contamine, V; Picard, M

    2000-06-01

    Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho(+) mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho(0) petites) and/or lead to truncated forms (rho(-)) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho(+) genome depends on a centromere-like structure dispensable for the maintenance of rho(-) mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.

  7. On the probability distribution function of the mass surface density of molecular clouds. I

    NASA Astrophysics Data System (ADS)

    Fischera, Jörg

    2014-05-01

    The probability distribution function (PDF) of the mass surface density is an essential characteristic of the structure of molecular clouds or the interstellar medium in general. Observations of the PDF of molecular clouds indicate a composition of a broad distribution around the maximum and a decreasing tail at high mass surface densities. The first component is attributed to the random distribution of gas which is modeled using a log-normal function while the second component is attributed to condensed structures modeled using a simple power-law. The aim of this paper is to provide an analytical model of the PDF of condensed structures which can be used by observers to extract information about the condensations. The condensed structures are considered to be either spheres or cylinders with a truncated radial density profile at cloud radius rcl. The assumed profile is of the form ρ(r) = ρc/ (1 + (r/r0)2)n/ 2 for arbitrary power n where ρc and r0 are the central density and the inner radius, respectively. An implicit function is obtained which either truncates (sphere) or has a pole (cylinder) at maximal mass surface density. The PDF of spherical condensations and the asymptotic PDF of cylinders in the limit of infinite overdensity ρc/ρ(rcl) flattens for steeper density profiles and has a power law asymptote at low and high mass surface densities and a well defined maximum. The power index of the asymptote Σ- γ of the logarithmic PDF (ΣP(Σ)) in the limit of high mass surface densities is given by γ = (n + 1)/(n - 1) - 1 (spheres) or by γ = n/ (n - 1) - 1 (cylinders in the limit of infinite overdensity). Appendices are available in electronic form at http://www.aanda.org

  8. Amorphous calcium carbonate particles form coral skeletons

    NASA Astrophysics Data System (ADS)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  9. Amorphous calcium carbonate particles form coral skeletons.

    PubMed

    Mass, Tali; Giuffre, Anthony J; Sun, Chang-Yu; Stifler, Cayla A; Frazier, Matthew J; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V; Marcus, Matthew A; Gilbert, Pupa U P A

    2017-09-12

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed "vital effects," that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO 3 ). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO 2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  10. Amorphous calcium carbonate particles form coral skeletons

    PubMed Central

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.

    2017-01-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya. PMID:28847944

  11. Silicateins--a novel paradigm in bioinorganic chemistry: enzymatic synthesis of inorganic polymeric silica.

    PubMed

    Müller, Werner E G; Schröder, Heinz C; Burghard, Zaklina; Pisignano, Dario; Wang, Xiaohong

    2013-05-03

    The inorganic matrix of the siliceous skeletal elements of sponges, that is, spicules, is formed of amorphous biosilica. Until a decade ago, it remained unclear how the hard biosilica monoliths of the spicules are formed in sponges that live in a silica-poor (<50 μM) aquatic environment. The following two discoveries caused a paradigm shift and allowed an elucidation of the processes underlying spicule formation; first the discovery that in the spicules only one major protein, silicatein, exists and second, that this protein displays a bio-catalytical, enzymatic function. These findings caused a paradigm shift, since silicatein is the first enzyme that catalyzes the formation of an inorganic polymer from an inorganic monomeric substrate. In the present review the successive steps, following the synthesis of the silicatein product, biosilica, and resulting in the formation of the hard monolithic spicules is given. The new insight is assumed to open new horizons in the field of biotechnology and also in biomedicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Meniscus Stability in Rotating Systems

    NASA Astrophysics Data System (ADS)

    Reichel, Yvonne; Dreyer, Michael

    2013-11-01

    In this study, the stability of free surfaces of fluid between two rotating coaxial, circular disks is examined. Radially mounted baffles are used to form menisci of equal size. To the center of the upper disk, a tube is connected in which a separate meniscus is formed. Assuming solid-body rotation and ignoring dynamic effects, it is observed that the free surfaces between the disks fail to remain stable once the rotation speed exceeds a critical value. In other words, Rayleigh-Taylor instability ensues when the capillary forces fail to balance centrifugal forces. Dimensionless critical rotation speeds are studied by means of the Surface Evolver via SE-FIT for varied number of baffles, the normalized distance between the disks, and the normalized central tube radius. Drop tower tests are performed to confirm some of the numerical results. The computation also reveals that there are different modes of instability as a function of the relevant parameters. This study was funded by the space agency of the German Aerospace Center with resources of the Federal Ministry of Economics and Technology on the basis of a resolution of the German Bundestag under grant number 50 RL 1320.

  13. Sonar Imaging of Elastic Fluid-Filled Cylindrical Shells.

    NASA Astrophysics Data System (ADS)

    Dodd, Stirling Scott

    1995-01-01

    Previously a method of describing spherical acoustic waves in cylindrical coordinates was applied to the problem of point source scattering by an elastic infinite fluid -filled cylindrical shell (S. Dodd and C. Loeffler, J. Acoust. Soc. Am. 97, 3284(A) (1995)). This method is applied to numerically model monostatic oblique incidence scattering from a truncated cylinder by a narrow-beam high-frequency imaging sonar. The narrow beam solution results from integrating the point source solution over the spatial extent of a line source and line receiver. The cylinder truncation is treated by the method of images, and assumes that the reflection coefficient at the truncation is unity. The scattering form functions, calculated using this method, are applied as filters to a narrow bandwidth, high ka pulse to find the time domain scattering response. The time domain pulses are further processed and displayed in the form of a sonar image. These images compare favorably to experimentally obtained images (G. Kaduchak and C. Loeffler, J. Acoust. Soc. Am. 97, 3289(A) (1995)). The impact of the s_{ rm o} and a_{rm o} Lamb waves is vividly apparent in the images.

  14. Second-order (2 +1 ) -dimensional anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bazow, Dennis; Heinz, Ulrich; Strickland, Michael

    2014-11-01

    We present a complete formulation of second-order (2 +1 ) -dimensional anisotropic hydrodynamics. The resulting framework generalizes leading-order anisotropic hydrodynamics by allowing for deviations of the one-particle distribution function from the spheroidal form assumed at leading order. We derive complete second-order equations of motion for the additional terms in the macroscopic currents generated by these deviations from their kinetic definition using a Grad-Israel-Stewart 14-moment ansatz. The result is a set of coupled partial differential equations for the momentum-space anisotropy parameter, effective temperature, the transverse components of the fluid four-velocity, and the viscous tensor components generated by deviations of the distribution from spheroidal form. We then perform a quantitative test of our approach by applying it to the case of one-dimensional boost-invariant expansion in the relaxation time approximation (RTA) in which case it is possible to numerically solve the Boltzmann equation exactly. We demonstrate that the second-order anisotropic hydrodynamics approach provides an excellent approximation to the exact (0+1)-dimensional RTA solution for both small and large values of the shear viscosity.

  15. The Exponential Function--Part VIII

    ERIC Educational Resources Information Center

    Bartlett, Albert A.

    1978-01-01

    Presents part eight of a continuing series on the exponential function in which, given the current population of the Earth and assuming a constant growth rate of 1.9 percent backward looks at world population are made. (SL)

  16. Three-state combinatorial switch models as applied to the binding of oxygen by human hemoglobin.

    PubMed

    Straume, M; Johnson, M L

    1988-02-23

    We have generated a series of all 6561 unique, discrete three-state combinatorial switch models to describe the partitioning of the cooperative oxygen-binding free change among the 10 variously ligated forms of human hemoglobin tetramers. These models were inspired by the experimental observation of Smith and Ackers that the cooperative free energy of the intersubunit contact regions of the 10 possible ligated forms of human hemoglobin tetramers can be represented by a particular distribution of three distinct energy levels [Smith, F. R., & Ackers, G. K. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5347-5351]. A statistical thermodynamic formulation accounting for both dimer-tetramer equilibria and ligand binding properties of hemoglobin solutions as a function of oxygen and protein concentrations was utilized to exhaustively test these thermodynamic models. In this series of models each of the 10 ligated forms of the hemoglobin tetramer can exist in one, and only one, of three possible energy levels; i.e., each ligated form was assumed to be associated with a discrete energy state. This series of models includes all possible ways that the 10 ligation states of hemoglobin can be distributed into three distinct cooperative energy levels. The mathematical models, as presented here, do not permit equilibria between energy states to exist for any of the 10 unique ligated forms of hemoglobin tetramers. These models were analyzed by nonlinear least-squares estimation of the free energy parameters characteristic of this statistical thermodynamic development.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Development of a Generic Hull Stiffener Modelling Capability for Trident Modeller

    DTIC Science & Technology

    2013-09-01

    Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 This page intentionally left blank. i Abstract …….. This...if a RefCurve referenced an IGES file containing more than one curve, it was assumed that the curves already formed an ordered, connected path; the

  18. Motivation, emotion regulation, and the latent structure of psychopathology: An integrative and convergent historical perspective.

    PubMed

    Beauchaine, Theodore P; Zisner, Aimee

    2017-09-01

    Motivational models of psychopathology have long been advanced by psychophysiologists, and have provided key insights into neurobiological mechanisms of a wide range of psychiatric disorders. These accounts emphasize individual differences in activity and reactivity of bottom-up, subcortical neural systems of approach and avoidance in affecting behavior. Largely independent literatures emphasize the roles of top-down, cortical deficits in emotion regulation and executive function in conferring vulnerability to psychopathology. To date however, few models effectively integrate functions performed by bottom-up emotion generation system with those performed by top-down emotion regulation systems in accounting for alternative expressions of psychopathology. In this article, we present such a model, and describe how it accommodates the well replicated bifactor structure of psychopathology. We describe how excessive approach motivation maps directly into externalizing liability, how excessive passive avoidance motivation maps directly into internalizing liability, and how emotion dysregulation and executive function map onto general liability. This approach is consistent with the Research Domain Criteria initiative, which assumes that a limited number of brain systems interact to confer vulnerability to many if not most forms of psychopathology. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A Weyl-Dirac cosmological model with DM and DE

    NASA Astrophysics Data System (ADS)

    Israelit, Mark

    2011-03-01

    In the Weyl-Dirac (W-D) framework a spatially closed cosmological model is considered. It is assumed that the space-time of the universe has a chaotic Weylian microstructure but is described on a large scale by Riemannian geometry. Locally fields of the Weyl connection vector act as creators of massive bosons having spin 1. It is suggested that these bosons, called weylons, provide most of the dark matter in the universe. At the beginning the universe is a spherically symmetric geometric entity without matter. Primary matter is created by Dirac’s gauge function very close to the beginning. In the early epoch, when the temperature of the universe achieves its maximum, chaotically oriented Weyl vector fields being localized in micro-cells create weylons. In the dust dominated period Dirac’s gauge function is giving rise to dark energy, the latter causing the cosmic acceleration at present. This oscillatory universe has an initial radius identical to the Plank length = 1.616 exp (-33) cm, at present the cosmic scale factor is 3.21 exp (28) cm, while its maximum value is 8.54 exp (28) cm. All forms of matter are created by geometrically based functions of the W-D theory.

  20. The analytical representation of viscoelastic material properties using optimization techniques

    NASA Technical Reports Server (NTRS)

    Hill, S. A.

    1993-01-01

    This report presents a technique to model viscoelastic material properties with a function of the form of the Prony series. Generally, the method employed to determine the function constants requires assuming values for the exponential constants of the function and then resolving the remaining constants through linear least-squares techniques. The technique presented here allows all the constants to be analytically determined through optimization techniques. This technique is employed in a computer program named PRONY and makes use of commercially available optimization tool developed by VMA Engineering, Inc. The PRONY program was utilized to compare the technique against previously determined models for solid rocket motor TP-H1148 propellant and V747-75 Viton fluoroelastomer. In both cases, the optimization technique generated functions that modeled the test data with at least an order of magnitude better correlation. This technique has demonstrated the capability to use small or large data sets and to use data sets that have uniformly or nonuniformly spaced data pairs. The reduction of experimental data to accurate mathematical models is a vital part of most scientific and engineering research. This technique of regression through optimization can be applied to other mathematical models that are difficult to fit to experimental data through traditional regression techniques.

  1. A Data-Driven Approach to Reverse Engineering Customer Engagement Models: Towards Functional Constructs

    PubMed Central

    de Vries, Natalie Jane; Carlson, Jamie; Moscato, Pablo

    2014-01-01

    Online consumer behavior in general and online customer engagement with brands in particular, has become a major focus of research activity fuelled by the exponential increase of interactive functions of the internet and social media platforms and applications. Current research in this area is mostly hypothesis-driven and much debate about the concept of Customer Engagement and its related constructs remains existent in the literature. In this paper, we aim to propose a novel methodology for reverse engineering a consumer behavior model for online customer engagement, based on a computational and data-driven perspective. This methodology could be generalized and prove useful for future research in the fields of consumer behaviors using questionnaire data or studies investigating other types of human behaviors. The method we propose contains five main stages; symbolic regression analysis, graph building, community detection, evaluation of results and finally, investigation of directed cycles and common feedback loops. The ‘communities’ of questionnaire items that emerge from our community detection method form possible ‘functional constructs’ inferred from data rather than assumed from literature and theory. Our results show consistent partitioning of questionnaire items into such ‘functional constructs’ suggesting the method proposed here could be adopted as a new data-driven way of human behavior modeling. PMID:25036766

  2. Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes

    DOE PAGES

    McCormack, M. Luke; Dickie, Ian A.; Eissenstat, David M.; ...

    2015-03-10

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain due to challenges in consistent measurement and interpretation of fine-root systems. We define fine roots as all roots less than or equal to 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. We demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, finemore » roots are separated into either individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine root pool. Furthermore, using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally a ca. 30% reduction from previous estimates assuming a single fine-root pool. In the future we hope to develop tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi in fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand belowground processes in the terrestrial biosphere.« less

  3. A realistic analysis of the phonon growth characteristics in a degenerate semiconductor using a simplified model of Fermi-Dirac distribution

    NASA Astrophysics Data System (ADS)

    Basu, A.; Das, B.; Middya, T. R.; Bhattacharya, D. P.

    2017-01-01

    The phonon growth characteristic in a degenerate semiconductor has been calculated under the condition of low temperature. If the lattice temperature is high, the energy of the intravalley acoustic phonon is negligibly small compared to the average thermal energy of the electrons. Hence one can traditionally assume the electron-phonon collisions to be elastic and approximate the Bose-Einstein (B.E.) distribution for the phonons by the simple equipartition law. However, in the present analysis at the low lattice temperatures, the interaction of the non equilibrium electrons with the acoustic phonons becomes inelastic and the simple equipartition law for the phonon distribution is not valid. Hence the analysis is made taking into account the inelastic collisions and the complete form of the B.E. distribution. The high-field distribution function of the carriers given by Fermi-Dirac (F.D.) function at the field dependent carrier temperature, has been approximated by a well tested model that apparently overcomes the intrinsic problem of correct evaluation of the integrals involving the product and powers of the Fermi function. Hence the results thus obtained are more reliable compared to the rough estimation that one may obtain from using the exact F.D. function, but taking recourse to some over simplified approximations.

  4. Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data

    PubMed Central

    Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao

    2012-01-01

    Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions. PMID:23645976

  5. A data-driven approach to reverse engineering customer engagement models: towards functional constructs.

    PubMed

    de Vries, Natalie Jane; Carlson, Jamie; Moscato, Pablo

    2014-01-01

    Online consumer behavior in general and online customer engagement with brands in particular, has become a major focus of research activity fuelled by the exponential increase of interactive functions of the internet and social media platforms and applications. Current research in this area is mostly hypothesis-driven and much debate about the concept of Customer Engagement and its related constructs remains existent in the literature. In this paper, we aim to propose a novel methodology for reverse engineering a consumer behavior model for online customer engagement, based on a computational and data-driven perspective. This methodology could be generalized and prove useful for future research in the fields of consumer behaviors using questionnaire data or studies investigating other types of human behaviors. The method we propose contains five main stages; symbolic regression analysis, graph building, community detection, evaluation of results and finally, investigation of directed cycles and common feedback loops. The 'communities' of questionnaire items that emerge from our community detection method form possible 'functional constructs' inferred from data rather than assumed from literature and theory. Our results show consistent partitioning of questionnaire items into such 'functional constructs' suggesting the method proposed here could be adopted as a new data-driven way of human behavior modeling.

  6. Female urinary incontinence and sexuality

    PubMed Central

    Mota, Renato Lains

    2017-01-01

    ABSTRACT Urinary incontinence is a common problem among women and it is estimated that between 15 and 55% of them complain of lower urinary symptoms. The most prevalent form of urinary incontinence is associated with stress, followed by mixed urinary incontinence and urge urinary incontinence. It is a symptom with several effects on quality of life of women mainly in their social, familiar and sexual domains. Female reproductive and urinary systems share anatomical structures, which promotes that urinary problems interfere with sexual function in females. This article is a review of both the concepts of female urinary incontinence and its impact on global and sexual quality of life. Nowadays, it is assumed that urinary incontinence, especially urge urinary incontinence, promotes anxiety and several self-esteem damages in women. The odour and the fear of incontinence during sexual intercourse affect female sexual function and this is related with the unpredictability and the chronicity of incontinence, namely urge urinary incontinence. Female urinary incontinence management involves conservative (pelvic floor muscle training), surgical and pharmacological treatment. Both conservative and surgical treatments have been studied about its benefit in urinary incontinence and also the impact among female sexual function. Unfortunately, there are sparse articles that evaluate the benefits of female sexual function with drug management of incontinence. PMID:28124522

  7. Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data.

    PubMed

    Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao

    2013-01-01

    Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions.

  8. Restructuring of the dinucleotide-binding fold in an NADP(H) sensor protein

    PubMed Central

    Zheng, Xiaofeng; Dai, Xueyu; Zhao, Yanmei; Chen, Qiang; Lu, Fei; Yao, Deqiang; Yu, Quan; Liu, Xinping; Zhang, Chuanmao; Gu, Xiaocheng; Luo, Ming

    2007-01-01

    NAD(P) has long been known as an essential energy-carrying molecule in cells. Recent data, however, indicate that NAD(P) also plays critical signaling roles in regulating cellular functions. The crystal structure of a human protein, HSCARG, with functions previously unknown, has been determined to 2.4-Å resolution. The structure reveals that HSCARG can form an asymmetrical dimer with one subunit occupied by one NADP molecule and the other empty. Restructuring of its NAD(P)-binding Rossmann fold upon NADP binding changes an extended loop to an α-helix to restore the integrity of the Rossmann fold. The previously unobserved restructuring suggests that HSCARG may assume a resting state when the level of NADP(H) is normal within the cell. When the NADP(H) level passes a threshold, an extensive restructuring of HSCARG would result in the activation of its regulatory functions. Immunofluorescent imaging shows that HSCARG redistributes from being associated with intermediate filaments in the resting state to being dispersed in the nucleus and the cytoplasm. The structural change of HSCARG upon NADP(H) binding could be a new regulatory mechanism that responds only to a significant change of NADP(H) levels. One of the functions regulated by HSCARG may be argininosuccinate synthetase that is involved in NO synthesis. PMID:17496144

  9. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time.

    PubMed

    Zhang, Zhi-Yu; Romano, D; Ivison, R J; Papadopoulos, Padelis P; Matteucci, F

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum 1 . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time 2 . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies 2,3 , especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths 4,5 . The 13 C/ 18 O isotope abundance ratio in the cold molecular gas-which can be probed via the rotational transitions of the 13 CO and C 18 O isotopologues-is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13 CO and C 18 O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13 CO/C 18 O ratio for all our targets-alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way 6 -implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the 'main sequence' of star-forming galaxies 7 , although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  10. :Theoretical investigation of the effect of the ailerons on the wing of an airplane

    NASA Technical Reports Server (NTRS)

    Wieselsberger, C

    1929-01-01

    The present work investigates, on the basis of Prandtl's wing theory, the form of the lift distribution when the ailerons are deflected in opposite directions. An ideal fluid and a wing with a rectangular form are assumed. The moments must not cause any rotation of the wing or any deviation from the rectilinear motion.

  11. Vocational Training in Europe: Towards a Modular Form? Discussion Paper. CEDEFOP Panorama. First Edition.

    ERIC Educational Resources Information Center

    Sellin, Burkart

    Discussion of whether and to what extent initial vocational training and adult education in European Community (EC) member countries can assume a modular form hinges on the issue of the module as an organizational principle. In such a context, modules are viewed not as closed teaching and learning units but rather as integral parts of a more…

  12. Sociocultural Perspectives on Teacher Language Awareness in Form-Focused EFL Classroom Instruction

    ERIC Educational Resources Information Center

    Luk, Jasmine C. M.; Wong, Ruth M. H.

    2010-01-01

    A teacher's language awareness (TLA) is generally believed to have a significant impact on grammar or form-focused (FonF) instruction. TLA has traditionally been assumed to be a cognitive construct. A more recent view on TLA argues for its sociocultural significance in second language learning. This paper builds on this recent view and attempts to…

  13. Metasomatic tourmalinite formation along basement-cover decollements, Orobic Alps, Italy

    USGS Publications Warehouse

    Slack, J.F.; Passchier, C.W.; Zhang, J.S.

    1996-01-01

    Cryptocrystalline tourmalinites that occur discontinuously for ???30 km along basement-cover de??collements of the Orohic Alps (Italy) formed by the metasomatism of aluminous cataclasites derived from Permian conglomerates and/or feldspathic sandstones. Using Al as an immobile element monitor, calculations show that the majority of tourmalinites in the region formed through the addition of moderate to significant amounts of B, Mg, Na, Sr, and Be, and the loss of moderate to significant Mn, Ca, K, P, Rb, Ba, and Cr; minor Si, Ti, V, light REE, and Eu also were lost. Data tor relatively immobile Al, Zr, Th, Sc, Nb, and heavy REE indicate that, on average, these tourmalinites formed through ???12% net mass loss assuming an original conglomerate protolith, or through ???7% net mass loss assuming a sandstone protolith. The B and other introduced constituents in the tourmalinites were deposited by hydrothermal fluids focused along and near basement-cover de??collements. These fluids, believed to be associated with late Hercynian felsic magmatism, probably are related to fluids that formed the tourmaline-rich U-Mo-Zn deposits at the nearby Novazza mine and the U-Zn deposits at the nearby Val Vedello mine.

  14. Growth and development of browsed seedlings

    Treesearch

    Thomas R. Crow; Frederick T. Metzger

    1992-01-01

    For long it was assumed that deer browsing on the terminal shoot of sugar maple was detrimental to height growth, stem form, and vigor. Does browsing permanently damage sugar maple in northern hardwood stands?

  15. Redox Conditions on Small Bodies

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    2004-01-01

    The Eucrite Parent Body (4 Vesta). The eucrites are basalts that contain approx. 18 wt% FeO and contain trace metal. The eucrites are very depleted in siderophile elements, so it appears that the source regions of these basalts once equilibrated with Fe-Ni metal. Therefore, it is of interest to ask what fo2 is required to precipitate metal from a liquid of eucrite composition. Or in other words, what f02 did eucrites form under? This fo2 has been determined experimentally by and was found to be IW-1. Therefore, eucrites formed at about IW-1. In addition, it is interesting to note that assuming X(sub feo) = alpha(sub FeO) allows calculation of eucrite fo2 (assuming equilibrium with Fe metal). This calculation yields the same result as the experiments to within approx. 0.25 log units, reinforcing this result.

  16. Describing the geographic spread of dengue disease by traveling waves.

    PubMed

    Maidana, Norberto Aníbal; Yang, Hyun Mo

    2008-09-01

    Dengue is a human disease transmitted by the mosquito Aedes aegypti. For this reason geographical regions infested by this mosquito species are under the risk of dengue outbreaks. In this work, we propose a mathematical model to study the spatial dissemination of dengue using a system of partial differential reaction-diffusion equations. With respect to the human and mosquito populations, we take into account their respective subclasses of infected and uninfected individuals. The dynamics of the mosquito population considers only two subpopulations: the winged form (mature female mosquitoes), and an aquatic population (comprising eggs, larvae and pupae). We disregard the long-distance movement by transportation facilities, for which reason the diffusion is considered restricted only to the winged form. The human population is considered homogeneously distributed in space, in order to describe localized dengue dissemination during a short period of epidemics. The cross-infection is modeled by the law of mass action. A threshold value as a function of the model's parameters is obtained, which determines the rate of dengue dissemination and the risk of dengue outbreaks. Assuming that an area was previously colonized by the mosquitoes, the rate of disease dissemination is determined as a function of the model's parameters. This rate of dissemination of dengue disease is determined by applying the traveling wave solutions to the corresponding system of partial differential equations.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kittell, David Erik; Yarrington, Cole Davis

    Here, a physically-based form of the Mie–Grüneisen equation of state (EOS) is derived for calculating 1d planar shock temperatures, as well as hot spot temperature distributions from heterogeneous impact simulations. This form utilises a multi-term Einstein oscillator model for specific heat, and is completely algebraic in terms of temperature, volume, an integrating factor, and the cold curve energy. Moreover, any empirical relation for the reference pressure and energy may be substituted into the equations via the use of a generalised reference function. The complete EOS is then applied to calculations of the Hugoniot temperature and simulation of hydrodynamic pore collapsemore » using data for the secondary explosive, hexanitrostilbene (HNS). From these results, it is shown that the choice of EOS is even more significant for determining hot spot temperature distributions than planar shock states. The complete EOS is also compared to an alternative derivation assuming that specific heat is a function of temperature alone, i.e. cv(T). Temperature discrepancies on the order of 100–600 K were observed corresponding to the shock pressures required to initiate HNS (near 10 GPa). Overall, the results of this work will improve confidence in temperature predictions. By adopting this EOS, future work may be able to assign physical meaning to other thermally sensitive constitutive model parameters necessary to predict the shock initiation and detonation of heterogeneous explosives.« less

  18. Channeling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol.

    PubMed

    Fritz, Markus; Lokstein, Heiko; Hackenberg, Dieter; Welti, Ruth; Roth, Mary; Zähringer, Ulrich; Fulda, Martin; Hellmeyer, Wiebke; Ott, Claudia; Wolter, Frank P; Heinz, Ernst

    2007-02-16

    Plastidial glycolipids contain diacylglycerol (DAG) moieties, which are either synthesized in the plastids (prokaryotic lipids) or originate in the extraplastidial compartment (eukaryotic lipids) necessitating their transfer into plastids. In contrast, the only phospholipid in plastids, phosphatidylglycerol (PG), contains exclusively prokaryotic DAG backbones. PG contributes in several ways to the functions of chloroplasts, but it is not known to what extent its prokaryotic nature is required to fulfill these tasks. As a first step toward answering this question, we produced transgenic tobacco plants that contain eukaryotic PG in thylakoids. This was achieved by targeting a bacterial DAG kinase into chloroplasts in which the heterologous enzyme was also incorporated into the envelope fraction. From lipid analysis we conclude that the DAG kinase phosphorylated eukaryotic DAG forming phosphatidic acid, which was converted into PG. This resulted in PG with 2-3 times more eukaryotic than prokaryotic DAG backbones. In the newly formed PG the unique Delta3-trans-double bond, normally confined to 3-trans-hexadecenoic acid, was also found in sn-2-bound cis-unsaturated C18 fatty acids. In addition, a lipidomics technique allowed the characterization of phosphatidic acid, which is assumed to be derived from eukaryotic DAG precursors in the chloroplasts of the transgenic plants. The differences in lipid composition had only minor effects on measured functions of the photosynthetic apparatus, whereas the most obvious phenotype was a significant reduction in growth.

  19. Ocean data assimilation using optimal interpolation with a quasi-geostrophic model

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.; Miller, Robert N.

    1991-01-01

    A quasi-geostrophic (QG) stream function is analyzed by optimal interpolation (OI) over a 59-day period in a 150-km-square domain off northern California. Hydrographic observations acquired over five surveys were assimilated into a QG open boundary ocean model. Assimilation experiments were conducted separately for individual surveys to investigate the sensitivity of the OI analyses to parameters defining the decorrelation scale of an assumed error covariance function. The analyses were intercompared through dynamical hindcasts between surveys. The best hindcast was obtained using the smooth analyses produced with assumed error decorrelation scales identical to those of the observed stream function. The rms difference between the hindcast stream function and the final analysis was only 23 percent of the observation standard deviation. The two sets of OI analyses were temporally smoother than the fields from statistical objective analysis and in good agreement with the only independent data available for comparison.

  20. A general model for the absorption of ultrasound by biological tissues and experimental verification.

    PubMed

    Jongen, H A; Thijssen, J M; van den Aarssen, M; Verhoef, W A

    1986-02-01

    In this paper, a closed-form expression is derived for the absorption of ultrasound by biological tissues. In this expression, the viscothermal and viscoelastic theories of relaxation processes are combined. Three relaxation time distribution functions are introduced, and it is assumed that each of these distributions can be described by an identical and simple hyperbolic function. Several simplifying assumptions had to be made to enable the experimental verification of the derived closed-form expression of the absorption coefficient. The simplified expression leaves two degrees of freedom and it was fitted to the experimental data obtained from homogenized beef liver. The model produced a considerably better fit to the data than other, more pragmatic models for the absorption coefficient as a function of frequency that could be found in the literature. Scattering in beef liver was estimated indirectly from the difference between attenuation in in vitro liver tissue as compared to absorption in a homogenate. The frequency dependence of the scattering coefficient could be described by a power law with a power of the order of 2. A comparable figure was found in direct backscattering measurements, performed at our laboratory with the same liver samples [Van den Aarssen et al., J. Acoust. Soc. Am. (to be published)]. A model for scattering recently proposed by Sehgal and Greenleaf [Ultrason. Imag. 6, 60-80 (1984)] was fitted to the scattering data as well. This latter model enabled the estimation of a maximum scatterer distance, which appeared to be of the order of 25 micron.

  1. Uncovering Neuronal Networks Defined by Consistent Between-Neuron Spike Timing from Neuronal Spike Recordings

    PubMed Central

    2018-01-01

    Abstract It is widely assumed that distributed neuronal networks are fundamental to the functioning of the brain. Consistent spike timing between neurons is thought to be one of the key principles for the formation of these networks. This can involve synchronous spiking or spiking with time delays, forming spike sequences when the order of spiking is consistent. Finding networks defined by their sequence of time-shifted spikes, denoted here as spike timing networks, is a tremendous challenge. As neurons can participate in multiple spike sequences at multiple between-spike time delays, the possible complexity of networks is prohibitively large. We present a novel approach that is capable of (1) extracting spike timing networks regardless of their sequence complexity, and (2) that describes their spiking sequences with high temporal precision. We achieve this by decomposing frequency-transformed neuronal spiking into separate networks, characterizing each network’s spike sequence by a time delay per neuron, forming a spike sequence timeline. These networks provide a detailed template for an investigation of the experimental relevance of their spike sequences. Using simulated spike timing networks, we show network extraction is robust to spiking noise, spike timing jitter, and partial occurrences of the involved spike sequences. Using rat multineuron recordings, we demonstrate the approach is capable of revealing real spike timing networks with sub-millisecond temporal precision. By uncovering spike timing networks, the prevalence, structure, and function of complex spike sequences can be investigated in greater detail, allowing us to gain a better understanding of their role in neuronal functioning. PMID:29789811

  2. Influence of impurities on the high temperature conductivity of SrTiO3

    NASA Astrophysics Data System (ADS)

    Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.

    2018-01-01

    In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.

  3. Evidence for a mass-dependent AGN Eddington ratio distribution via the flat relationship between SFR and AGN luminosity

    NASA Astrophysics Data System (ADS)

    Bernhard, E.; Mullaney, J. R.; Aird, J.; Hickox, R. C.; Jones, M. L.; Stanley, F.; Grimmett, L. P.; Daddi, E.

    2018-05-01

    The lack of a strong correlation between AGN X-ray luminosity (LX; a proxy for AGN power) and the star formation rate (SFR) of their host galaxies has recently been attributed to stochastic AGN variability. Studies using population synthesis models have incorporated this by assuming a broad, universal (i.e. does not depend on the host galaxy properties) probability distribution for AGN specific X-ray luminosities (i.e. the ratio of LX to host stellar mass; a common proxy for Eddington ratio). However, recent studies have demonstrated that this universal Eddington ratio distribution fails to reproduce the observed X-ray luminosity functions beyond z ˜ 1.2. Furthermore, empirical studies have recently shown that the Eddington ratio distribution may instead depend upon host galaxy properties, such as SFR and/or stellar mass. To investigate this further, we develop a population synthesis model in which the Eddington ratio distribution is different for star-forming and quiescent host galaxies. We show that, although this model is able to reproduce the observed X-ray luminosity functions out to z ˜ 2, it fails to simultaneously reproduce the observed flat relationship between SFR and X-ray luminosity. We can solve this, however, by incorporating a mass dependency in the AGN Eddington ratio distribution for star-forming host galaxies. Overall, our models indicate that a relative suppression of low Eddington ratios (λEdd ≲ 0.1) in lower mass galaxies (M* ≲ 1010 - 11 M⊙) is required to reproduce both the observed X-ray luminosity functions and the observed flat SFR/X-ray relationship.

  4. Executive Function Predicts Artificial Language Learning in Children and Adults

    ERIC Educational Resources Information Center

    Kapa, Leah Lynn

    2013-01-01

    Prior research has established an executive function advantage among bilinguals as compared to monolingual peers. These non-linguistic cognitive advantages are largely assumed to result from the experience of managing two linguistic systems. However, the possibility remains that the relationship between bilingualism and executive function is…

  5. Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform.

    PubMed

    Ruffet, M L; Lebrun, M; Droux, M; Douce, R

    1995-01-15

    The intracellular compartmentation of serine acetyltransferase, a key enzyme in the L-cysteine biosynthesis pathway, has been investigated in pea (Pisum sativum) leaves, by isolation of organelles and fractionation of protoplasts. Enzyme activity was mainly located in mitochondria (approximately 76% of total cellular activity). Significant activity was also identified in both the cytosol (14% of total activity) and chloroplasts (10% of total activity). Three enzyme forms were separated by anion-exchange chromatography, and each form was found to be specific for a given intracellular compartment. To obtain cDNA encoding the isoforms, functional complementation experiments were performed using an Arabidopsis thaliana expression library and an Escherichia coli mutant devoid of serine acetyltransferase activity. This strategy allowed isolation of three distinct cDNAs encoding serine acetyltransferase isoforms, as confirmed by enzyme activity measurements, genomic hybridizations, and nucleotide sequencing. The cDNA and related gene for one of the three isoforms have been characterized. The predicted amino acid sequence shows that it encodes a polypeptide of M(r) 34,330 exhibiting 41% amino acid identity with the E. coli serine acetyltransferase. Since none of the general features of transit peptides could be observed in the N-terminal region of this isoform, we assume that it is a cytosolic form.

  6. A novel fungal fruiting structure formed by Aspergillus niger and Aspergillus carbonarius in grape berries.

    PubMed

    Pisani, Cristina; Nguyen, Trang Thoaivan; Gubler, Walter Douglas

    2015-09-01

    Sour rot, is a pre-harvest disease that affects many grape varieties. Sour rot symptoms include initial berry cracking and breakdown of berry tissue. This is a disease complex with many filamentous fungi and bacteria involved, but is usually initiated by Aspergillus niger or Aspergillus carbonarius. Usually, by the time one sees the rot there are many other organisms involved and it is difficult to attribute the disease to one species. In this study two species of Aspergillus were shown to produce a previously unknown fruiting structure in infected berries. The nodulous morphology, bearing conidia, suggests them to be an 'everted polymorphic stroma'. This structure forms freely inside the berry pulp and assumes multiple shapes and sizes, sometimes sclerotium-like in form. It is composed of a mass of vegetative hyphae with or without tissue of the host containing spores or fruiting bodies bearing spores. Artificially inoculated berries placed in soil in winter showed the possible overwintering function of the fruiting body. Inoculated berry clusters on standing vines produced fruiting structures within 21 d post inoculation when wounds were made at veraison or after (July-September). Histological studies confirmed that the fruiting structure was indeed fungal tissue. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. Stress field forming of sector array transducers for vibro-acoustography.

    PubMed

    Silva, Glauber T; Chen, Shigao; Frery, Alejandro C; Greenleaf, James F; Fatemi, Mostafa

    2005-11-01

    This paper presents a study of the stress field forming of sector array transducers for vibro-acoustography applications. The system point-spread function (PSF) is given in terms of the dynamic radiation stress exerted on a point target by a dual ultrasound beam with slightly different frequencies. The radiation stress is calculated by assuming that the resulting ultrasound beam is a plane wave. The stress is proportional to the product of the velocity potential of each incident ultrasound beam. The beamforming and stress field forming of sector array transducers are analyzed through linear acoustics. An expression for the velocity potential produced by sector array transducers is derived. The vibro-acoustography PSF is evaluated numerically. A comparison between the PSF of a sector array and a confocal transducers is presented. The compared characteristics of the PSF are sidelobe levels, transverse, and in-depth spatial resolution. Indeed, one motivation to study sector transducers is the fact the depth-of-field of these transducers should be smaller than that of same size confocal transducers. An experimental setup was used to validate the theoretical PSF of sector array transducers. Results show that the measured PSF is in good agreement with the theoretical predications. Vibro-acoustography images of a breast-phantom by both transducers are presented and discussed.

  8. Numerical Simulation of Self-gravitational Instability of Isothermal Gaseous Slab Under High External Pressure

    NASA Astrophysics Data System (ADS)

    Miyaji, S.; Umekawa, M.; Matsumoto, R.; Yoshida, T.

    1996-05-01

    Gaseous slab is formed with shock waves from super novae, collision of interstellar clouds, etc. When the mass in the Jeans scale is more than Jeans mass, the slab fragments into many clumps by gravitational instability. But in high external pressure environment, even the slab which is stable against Jeans mode can fragment(Elmegreen and Elmegreen 1978).This phenomenon results from incompressible mode instability(Lubow and Pringle 1993). These works are by linear analysis. We study numerically this isothermal gaseous slab which is formed by high external pressure and whose thickness is much smaller than its scale height. We assume self-gravitational fluid, and use two dimensional flux split method. Our model size is taken about the scale of linear maximum growth rate wave length and its five times length, which is an example of much longer than the maximum growth rate wave length. When the incompressible mode instability takes place, it becomes clumps. Each mass of the clumps is less than the Jeans mass. Then the clumps approach each other by gravitational interaction to form bigger clumps. In the presentation we will show results of numerical simulation and discuss about the interaction of fragments on star formation or initial mass function.

  9. Theory of the dependence of population levels on environmental history for semelparous species with short reproductive seasons.

    PubMed

    Coleman, B D; Hsieh, Y H

    1979-10-01

    A population that is strongly self-regulating through density-dependent effects is expected to be such that, if many generations have elapsed since its establishment, its present size should not be sensitive to its initial size but should instead be determined by the history of the variables that describe the influence of the environment on fecundity, mortality, and dispersal. Here we discuss the dependence of abundance on environmental history for a semelparous population in which reproduction is synchronous. It is assumed that at each instant t: (i) the rate of loss of members of age a by mortality and dispersal is given by a function rho of t, a, and the present number x = x(a,t) of such members; and (ii) the number x(0,t) of members born in the population is given by a function F of t and the number of x(a(f),t) at a specified age a(f) of fecundity. It is further assumed that the functions rho and F have the forms rho(x,a,t) = pi(1)(a,t)x + pi(2)(a,t)x(2) and F(x(a(f),t),t) = nu(t)x(a(f),t). For such a population, a change in the environment is significant only if it results in a change in nu(t) pi(1)(a,t), or pi(2)(a,t), and, hence, the history of the environment up to time t is described by giving nu(tau), pi(1)(a,tau), and pi(2)(a,tau) for each tau

  10. Starburst clusters in the Galactic center

    NASA Astrophysics Data System (ADS)

    Habibi, Maryam

    2014-09-01

    The central region of the Galaxy is the most active site of star formation in the Milky Way, where massive stars have formed very recently and are still forming today. The rich population of massive stars in the Galactic center provide a unique opportunity to study massive stars in their birth environment and probe their initial mass function, which is the spectrum of stellar masses at their birth. The Arches cluster is the youngest among the three massive clusters in the Galactic center, providing a collection of high-mass stars and a very dense core which makes this cluster an excellent site to address questions about massive star formation, the stellar mass function and the dynamical evolution of massive clusters in the Galactic center. In this thesis, I perform an observational study of the Arches cluster using K_{s}-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/Cisco J-band data to gain a full understanding of the cluster mass distribution out to its tidal radius for the first time. Since the light from the Galactic center reaches us through the Galactic disc, the extinction correction is crucial when studying this region. I use a Bayesian method to construct a realistic extinction map of the cluster. It is shown in this study that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, I show that the difference can reach up to 30% for individually derived stellar masses and Δ A_{Ks}˜ 1 magnitude in acquired K_{s}-band extinction, while the present-day mass function slope changes by ˜ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law, which suggests a steeper wavelength dependence for the infrared extinction law, reveals an overpopulation of massive stars in the core (r<0.2 pc) with a flat slope of α_{Nishi}=-1.50 ±0.35 in comparison to the Salpeter slope of α=-2.3. The slope of the mass function increases to α_{Nishi}=-2.21 ±0.27 in the intermediate annulus (0.2

  11. Amplitude and phase fluctuations of Van der Pol oscillator under external random forcing

    NASA Astrophysics Data System (ADS)

    Singh, Aman K.; Yadava, R. D. S.

    2018-05-01

    The paper presents an analytical study of noise in Van der Pol oscillator output subjected to an external force noise assumed to be characterized by delta function (white noise). The external fluctuations are assumed to be small in comparison to the average response of the noise free system. The autocorrelation function and power spectrum are calculated under the condition of weak nonlinearity. The latter ensures limit cycle oscillations. The total spectral power density is dominated by the contributions from the phase fluctuations. The amplitude fluctuations are at least two orders of magnitude smaller. The analysis is shown to be useful to interpretation microcantilever based biosensing data.

  12. Kurtosis Approach Nonlinear Blind Source Separation

    NASA Technical Reports Server (NTRS)

    Duong, Vu A.; Stubbemd, Allen R.

    2005-01-01

    In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation Keywords: Independent Component Analysis, Kurtosis, Higher order statistics.

  13. On the basis property of the system of eigenfunctions and associated functions of a one-dimensional Dirac operator

    NASA Astrophysics Data System (ADS)

    Savchuk, A. M.

    2018-04-01

    We study a one-dimensional Dirac system on a finite interval. The potential (a 2× 2 matrix) is assumed to be complex- valued and integrable. The boundary conditions are assumed to be regular in the sense of Birkhoff. It is known that such an operator has a discrete spectrum and the system \\{\\mathbf{y}_n\\}_1^∞ of its eigenfunctions and associated functions is a Riesz basis (possibly with brackets) in L_2\\oplus L_2. Our results concern the basis property of this system in the spaces L_μ\\oplus L_μ for μ\

  14. Jealousy in Dogs

    PubMed Central

    Harris, Christine R.; Prouvost, Caroline

    2014-01-01

    It is commonly assumed that jealousy is unique to humans, partially because of the complex cognitions often involved in this emotion. However, from a functional perspective, one might expect that an emotion that evolved to protect social bonds from interlopers might exist in other social species, particularly one as cognitively sophisticated as the dog. The current experiment adapted a paradigm from human infant studies to examine jealousy in domestic dogs. We found that dogs exhibited significantly more jealous behaviors (e.g., snapping, getting between the owner and object, pushing/touching the object/owner) when their owners displayed affectionate behaviors towards what appeared to be another dog as compared to nonsocial objects. These results lend support to the hypothesis that jealousy has some “primordial” form that exists in human infants and in at least one other social species besides humans. PMID:25054800

  15. Compressive and rarefactive double layers in non-uniform plasma with q-nonextensive distributed electrons

    NASA Astrophysics Data System (ADS)

    Shan, S. Ali; Saleem, H.

    2018-05-01

    Electrostatic solitary waves and double layers (DLs) formed by the coupled ion acoustic (IA) and drift waves have been investigated in non-uniform plasma using q-nonextensive distribution function for the electrons and assuming ions to be cold Ti< Te. It is found that both compressive and rarefactive nonlinear structures (solitary waves and DLs) are possible in such a system. The steeper gradients are supportive for compressive solitary (and double layers) and destructive for rarefactive ones. The q-nonextensivity parameter q and the magnitudes of gradient scale lengths of density and temperature have significant effects on the amplitude of the double layers (and double layers) as well as on the speed of these structures. This theoretical model is general which has been applied here to the F-region ionosphere for illustration.

  16. Manual for a workstation-based generic flight simulation program (LaRCsim), version 1.4

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce

    1995-01-01

    LaRCsim is a set of ANSI C routines that implement a full set of equations of motion for a rigid-body aircraft in atmospheric and low-earth orbital flight, suitable for pilot-in-the-loop simulations on a workstation-class computer. All six rigid-body degrees of freedom are modeled. The modules provided include calculations of the typical aircraft rigid-body simulation variables, earth geodesy, gravity and atmospheric models, and support several data recording options. Features/limitations of the current version include English units of measure, a 1962 atmosphere model in cubic spline function lookup form, ranging from sea level to 75,000 feet, rotating oblate spheroidal earth model, with aircraft C.G. coordinates in both geocentric and geodetic axes. Angular integrations are done using quaternion state variables Vehicle X-Z symmetry is assumed.

  17. Fluctuations and intermittent poloidal transport in a simple toroidal plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goud, T. S.; Ganesh, R.; Saxena, Y. C.

    In a simple magnetized toroidal plasma, fluctuation induced poloidal flux is found to be significant in magnitude. The probability distribution function of the fluctuation induced poloidal flux is observed to be strongly non-Gaussian in nature; however, in some cases, the distribution shows good agreement with the analytical form [Carreras et al., Phys. Plasmas 3, 2664 (1996)], assuming a coupling between the near Gaussian density and poloidal velocity fluctuations. The observed non-Gaussian nature of the fluctuation induced poloidal flux and other plasma parameters such as density and fluctuating poloidal velocity in this device is due to intermittent and bursty nature ofmore » poloidal transport. In the simple magnetized torus used here, such an intermittent fluctuation induced poloidal flux is found to play a crucial role in generating the poloidal flow.« less

  18. Bubble nucleation and inflationary perturbations

    NASA Astrophysics Data System (ADS)

    Firouzjahi, Hassan; Jazayeri, Sadra; Karami, Asieh; Rostami, Tahereh

    2017-12-01

    In this work we study the imprints of bubble nucleation on primordial inflationary perturbations. We assume that the bubble is formed via the tunneling of a spectator field from the false vacuum of its potential to its true vacuum. We consider the configuration in which the observable CMB sphere is initially outside of the bubble. As the bubble expands, more and more regions of the exterior false vacuum, including our CMB sphere, fall into the interior of the bubble. The modes which leave the horizon during inflation at the time when the bubble wall collides with the observable CMB sphere are affected the most. The bubble wall induces non-trivial anisotropic and scale dependent corrections in the two point function of the curvature perturbation. The corrections in the curvature perturbation and the diagonal and off-diagonal elements of CMB power spectrum are estimated.

  19. Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid

    NASA Astrophysics Data System (ADS)

    Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.

    2012-11-01

    We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.

  20. On the asymptotic stability of nonlinear mechanical switched systems

    NASA Astrophysics Data System (ADS)

    Platonov, A. V.

    2018-05-01

    Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.

  1. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    NASA Astrophysics Data System (ADS)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  2. The Influence of High Pressure Thermal Behavior on Friction-induced material transfer During Dry Machining of Titanium

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, H. A.; El Mansori, M.

    2011-05-01

    In this paper we study failure of coated carbide tools due to thermal loading. The study emphasizes the role assumed by the thermo-physical properties of the tool material in enhancing or preventing mass attrition of the cutting elements within the tool. It is shown that within a comprehensive view of the nature of conduction in the tool zone, thermal conduction is not solely affected by temperature. Rather it is a function of the so called thermodynamic forces. These are the stress, the strain, strain rate, rate of temperature rise, and the temperature gradient. Although that within such consideration description of thermal conduction is non-linear, it is beneficial to employ such a form because it facilitates a full mechanistic understanding of thermal activation of tool wear.

  3. Probability of lensing magnification by cosmologically distributed galaxies

    NASA Technical Reports Server (NTRS)

    Pei, Yichuan C.

    1993-01-01

    We present the analytical formulae for computing the magnification probability caused by cosmologically distributed galaxies. The galaxies are assumed to be singular, truncated-isothermal spheres without both evolution and clustering in redshift. We find that, for a fixed total mass, extended galaxies produce a broader shape in the magnification probability distribution and hence are less efficient as gravitational lenses than compact galaxies. The high-magnification tail caused by large galaxies is well approximated by an A exp -3 form, while the tail by small galaxies is slightly shallower. The mean magnification as a function of redshift is, however, found to be independent of the size of the lensing galaxies. In terms of the flux conservation, our formulae for the isothermal galaxy model predict a mean magnification to within a few percent with the Dyer-Roeder model of a clumpy universe.

  4. Quadrant photodetector sensitivity.

    PubMed

    Manojlović, Lazo M

    2011-07-10

    A quantitative theoretical analysis of the quadrant photodetector (QPD) sensitivity in position measurement is presented. The Gaussian light spot irradiance distribution on the QPD surface was assumed to meet most of the real-life applications of this sensor. As the result of the mathematical treatment of the problem, we obtained, in a closed form, the sensitivity function versus the ratio of the light spot 1/e radius and the QPD radius. The obtained result is valid for the full range of the ratios. To check the influence of the finite light spot radius on the interaxis cross talk and linearity, we also performed a mathematical analysis to quantitatively measure these types of errors. An optimal range of the ratio of light spot radius and QPD radius has been found to simultaneously achieve low interaxis cross talk and high linearity of the sensor. © 2011 Optical Society of America

  5. Irregular Competition: The Impacts of Water Competition within the Tigris and Euphrates Rivers on Irregular Conflict

    DTIC Science & Technology

    2017-06-09

    ii REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 9-06-2017 2. REPORT TYPE...state entities, and according to Samuel Huntington, “is a form of warfare by which the strategically weaker side assumes the tactical offensive in

  6. Preliminary Analysis of a Breadth-First Parsing Algorithm: Theoretical and Experimental Results.

    DTIC Science & Technology

    1981-06-01

    present discussion we will assume that phrases have one or two daughters, or more formally, that the grammar is in Chomsky Normal Form [1].) This... grammar point of view, these pairs contrast Chomsky Normal Form [1] with Categorial Grammars [2], and from a representational point of view, these pairs...chart(i, k) * chart(k, j) bottom-up ( Chomsky Normal Form) (9) chart(k, j) = chart(i, ) top-down (Categorial Grammars )chart(i, k) Earley’s Algorithm [8

  7. [The progressive reduction of functioning in the course of mucopolysaccharidosis type IIIA - longitudinal study of two siblings].

    PubMed

    Michalska, Agata; Nawrocka, Małgorzata; Znój, Dorota

    2013-01-01

    This paper presents a description of changes in the functioning of two siblings diagnosed with mucopolysaccharidosis type III A. Both are under specialist care exercised by the Rehabilitation, Care and Education Centre in the city Kielce, including care of a oligophrenopedagogue, a psychologist, a speech therapist and a physiotherapist. Evaluation of changes in functioning of two siblings diagnosed with mucopolysaccharidosis type IIIA. The longitudinal study covered two children with MPS type IIIA. During the 29 months of observation, there were six measurements on the basis of PPAC Gunzburg Inventory in the Polish adaptation by Tadeusz Witkowski. The results are shown in the form of PPAC diagrams and profiles of functioning. Despite the differences in the presence and severity of somatic and neurocognitive symptoms, functioning both of the boy and the girl does not differ from functioning described in the literature. Therapeutic interventions have produced short-term improvements in its area of self-service, communication and activities. Despite the similar trend of changes in functioning, there is an inter-individual variability in the quality of patterns and dynamics of progress. The progressive decrease in the level of functioning in patients with MPS IIIA does not preclude the acquisition of new skills. They are not permanent, however. There is a need for functional assessment in order to learn more about the specificity of the disease and to assume an individualised therapeutic approach aimed at improving the quality of life of patients with MPS IIIA and, indirectly, the quality of life of their families.

  8. Vegetation modulated landscape evolution: Effects of vegetation on landscape processes, drainage density and topography

    NASA Astrophysics Data System (ADS)

    Bras, R. L.; Istanbulluoglu, E.

    2004-12-01

    Topography acts as a template for numerous landscape processes that includes hydrologic, ecologic and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on known geomorphic relations, thresholds for channel initiation and landform evolution, using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants, and is killed by geomorphic disturbances (runoff erosion and landsliding), and wildfires. Analytical results suggest that, in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion dominated landscape, under none or loose vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the CHILD model. Numerical experiments reveal the importance of vegetation disturbances on the landscape structure. Simulated landscapes resemble real-world catchments in the OCR when vegetation disturbances are considered.

  9. THE SPACE DENSITY EVOLUTION OF WET AND DRY MERGERS IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Richard C. Y.; Abraham, Roberto G.; Bridge, Carrie R., E-mail: chou@astro.utoronto.ca, E-mail: abraham@astro.utoronto.ca, E-mail: bridge@astro.caltech.edu

    2011-03-15

    We analyze 1298 merging galaxies with redshifts up to z = 0.7 from the Canada-France-Hawaii Telescope Legacy Survey, taken from the catalog presented in the work of Bridge et al. By analyzing the internal colors of these systems, we show that the so-called wet and dry mergers evolve in different senses, and quantify the space densities of these systems. The local space density of wet mergers is essentially identical to the local space density of dry mergers. The evolution in the total merger rate is modest out to z {approx} 0.7, although the wet and dry populations have different evolutionarymore » trends. At higher redshifts, dry mergers make a smaller contribution to the total merging galaxy population, but this is offset by a roughly equivalent increase in the contribution from wet mergers. By comparing the mass density function of early-type galaxies to the corresponding mass density function for merging systems, we show that not all the major mergers with the highest masses (M{sub stellar}>10{sup 11} M{sub sun}) will end up with the most massive early-type galaxies, unless the merging timescale is dramatically longer than that usually assumed. On the other hand, the usually assumed merging timescale of {approx}0.5-1 Gyr is quite consistent with the data if we suppose that only less massive early-type galaxies form via mergers. Since low-intermediate-mass ellipticals are 10-100 times more common than their most massive counterparts, the hierarchical explanation for the origin of early-type galaxies may be correct for the vast majority of early types, even if incorrect for the most massive ones.« less

  10. Apical Cyst Theory: a Missing Link.

    PubMed

    Huang, George T-J

    2010-10-05

    The mechanism of the formation of apical cyst has been elusive. Several theories have long been proposed and discussed speculating how an apical cyst is developed and formed in the jaw bone resulting from endododontic infection. Two popular theories are the nutritional deficiency theory and the abscess theory. The nutritional deficiency theory assumes that the over proliferated epithelial cells will form a ball mass such that the cells in the center of the mass will be deprived of nutrition. The abscess theory postulates that when an abscess cavity is formed in connective tissue, epithelial cells proliferate and line the preexisting cavity because of their inherent tendency to cover exposed connective tissue surfaces. Based on the nature of epithelial cells and the epithelium, nutritional theory is a fairy tale, while abscess theory at best just indicates that abscess may be one of the factors that allows the stratified epithelium to form but not to explain a mechanism that makes the cyst to form. Apical cyst formation is the result of proliferation of resting epithelial cells, due to inflammation, to a sufficient number such that they are able to form a polarized and stratified epithelial lining against dead tissues or foreign materials. These stratified epithelial lining expands along the dead tissue or foreign materials and eventually wrap around them as a spherical sac, i.e. a cyst. The space in the sac is considered the external environment separating the internal (tissue) environment - the natural function of epithelium. This theory may be tested by introducing a biodegradable device able to slowly release epithelial cell mitogens in an in vivo environment implanted with epithelial cells next to a foreign object. This will allow the cells to continuously proliferate which may form a cystic sac wrapping around the foreign object.

  11. Apical Cyst Theory: a Missing Link

    PubMed Central

    Huang, George T.-J.

    2012-01-01

    Introduction The mechanism of the formation of apical cyst has been elusive. Several theories have long been proposed and discussed speculating how an apical cyst is developed and formed in the jaw bone resulting from endododontic infection. Two popular theories are the nutritional deficiency theory and the abscess theory. The nutritional deficiency theory assumes that the over proliferated epithelial cells will form a ball mass such that the cells in the center of the mass will be deprived of nutrition. The abscess theory postulates that when an abscess cavity is formed in connective tissue, epithelial cells proliferate and line the preexisting cavity because of their inherent tendency to cover exposed connective tissue surfaces. Based on the nature of epithelial cells and the epithelium, nutritional theory is a fairy tale, while abscess theory at best just indicates that abscess may be one of the factors that allows the stratified epithelium to form but not to explain a mechanism that makes the cyst to form. The hypothesis Apical cyst formation is the result of proliferation of resting epithelial cells, due to inflammation, to a sufficient number such that they are able to form a polarized and stratified epithelial lining against dead tissues or foreign materials. These stratified epithelial lining expands along the dead tissue or foreign materials and eventually wrap around them as a spherical sac, i.e. a cyst. The space in the sac is considered the external environment separating the internal (tissue) environment – the natural function of epithelium. Evaluation of the hypothesis This theory may be tested by introducing a biodegradable device able to slowly release epithelial cell mitogens in an in vivo environment implanted with epithelial cells next to a foreign object. This will allow the cells to continuously proliferate which may form a cystic sac wrapping around the foreign object. PMID:25346864

  12. J.-L. Lions' problem concerning maximal regularity of equations governed by non-autonomous forms

    NASA Astrophysics Data System (ADS)

    Fackler, Stephan

    2017-05-01

    An old problem due to J.-L. Lions going back to the 1960s asks whether the abstract Cauchy problem associated to non-autonomous forms has maximal regularity if the time dependence is merely assumed to be continuous or even measurable. We give a negative answer to this question and discuss the minimal regularity needed for positive results.

  13. Polarization observables and T-noninvariance in the weak charged current induced electron proton scattering

    NASA Astrophysics Data System (ADS)

    Fatima, A.; Sajjad Athar, M.; Singh, S. K.

    2018-06-01

    In this work, we have studied the total scattering cross section (σ, differential scattering cross section ( dσ/d Q2) as well as the longitudinal ( P_L(Ee,Q2)), perpendicular ( PP(Ee,Q2)), and transverse ( PT(Ee,Q2)) components of the polarization of the final hadron ( n, Λ and Σ0) produced in the electron proton scattering induced by the weak charged current. We have not assumed T-invariance which allows the transverse component of the hadron polarization perpendicular to the production plane to be non-zero. The numerical results are presented for all the above observables and their dependence on the axial vector form factor and the weak electric form factor are discussed. The present study enables the determination of the axial vector nucleon-hyperon transition form factors at high Q2 in the strangeness sector which can provide a test of the symmetries of the weak hadronic currents like T-invariance and SU(3) symmetry while assuming the hypothesis of conserved vector current and partial conservation of axial vector current.

  14. The Modelling of Axially Translating Flexible Beams

    NASA Astrophysics Data System (ADS)

    Theodore, R. J.; Arakeri, J. H.; Ghosal, A.

    1996-04-01

    The axially translating flexible beam with a prismatic joint can be modelled by using the Euler-Bernoulli beam equation together with the convective terms. In general, the method of separation of variables cannot be applied to solve this partial differential equation. In this paper, a non-dimensional form of the Euler Bernoulli beam equation is presented, obtained by using the concept of group velocity, and also the conditions under which separation of variables and assumed modes method can be used. The use of clamped-mass boundary conditions leads to a time-dependent frequency equation for the translating flexible beam. A novel method is presented for solving this time dependent frequency equation by using a differential form of the frequency equation. The assume mode/Lagrangian formulation of dynamics is employed to derive closed form equations of motion. It is shown by using Lyapunov's first method that the dynamic responses of flexural modal variables become unstable during retraction of the flexible beam, which the dynamic response during extension of the beam is stable. Numerical simulation results are presented for the uniform axial motion induced transverse vibration for a typical flexible beam.

  15. General scaling relations for locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Slonaker, James; Motley, D. Carrington; Zhang, Qiong; Townsend, Stephen; Senatore, Carmine; Iagnemma, Karl; Kamrin, Ken

    2017-05-01

    Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate dynamic behaviors of different locomotors in the same granular media. The scaling can be derived by assuming intrusion forces arise from resistive force theory or equivalently by assuming the granular material behaves as a continuum obeying a frictional yield criterion. The scalings are experimentally confirmed using pairs of wheels of various shapes and sizes under many driving conditions in a common sand bed. We discuss why the two models provide such a robust set of scaling laws even though they neglect a number of the complexities of granular rheology. Motivated by potential extraplanetary applications, the dimensionless form also implies a way to predict wheel performance in one ambient gravity based on tests in a different ambient gravity. We confirm this using DEM simulations, which show that scaling relations are satisfied over an array of driving modes even when gravity differs between scaled tests.

  16. An experimental distributed microprocessor implementation with a shared memory communications and control medium

    NASA Technical Reports Server (NTRS)

    Mejzak, R. S.

    1980-01-01

    The distributed processing concept is defined in terms of control primitives, variables, and structures and their use in performing a decomposed discrete Fourier transform (DET) application function. The design assumes interprocessor communications to be anonymous. In this scheme, all processors can access an entire common database by employing control primitives. Access to selected areas within the common database is random, enforced by a hardware lock, and determined by task and subtask pointers. This enables the number of processors to be varied in the configuration without any modifications to the control structure. Decompositional elements of the DFT application function in terms of tasks and subtasks are also described. The experimental hardware configuration consists of IMSAI 8080 chassis which are independent, 8 bit microcomputer units. These chassis are linked together to form a multiple processing system by means of a shared memory facility. This facility consists of hardware which provides a bus structure to enable up to six microcomputers to be interconnected. It provides polling and arbitration logic so that only one processor has access to shared memory at any one time.

  17. Analytical model and figures of merit for filtered Microwave Photonic Links.

    PubMed

    Gasulla, Ivana; Capmany, José

    2011-09-26

    The concept of filtered Microwave Photonic Links is proposed in order to provide the most general and versatile description of complex analog photonic systems. We develop a field propagation model where a global optical filter, characterized by its optical transfer function, embraces all the intermediate optical components in a linear link. We assume a non-monochromatic light source characterized by an arbitrary spectral distribution which has a finite linewidth spectrum and consider both intensity modulation and phase modulation with balanced and single detection. Expressions leading to the computation of the main figures of merit concerning the link gain, noise and intermodulation distortion are provided which, to our knowledge, are not available in the literature. The usefulness of this derivation resides in the capability to directly provide performance criteria results for complex links just by substituting in the overall closed-form formulas the numerical or measured optical transfer function characterizing the link. This theory is presented thus as a potential tool for a wide range of relevant microwave photonic application cases which is extendable to multiport radio over fiber systems. © 2011 Optical Society of America

  18. Model of a fluxtube with a twisted magnetic field in the stratified solar atmosphere

    NASA Astrophysics Data System (ADS)

    Sen, S.; Mangalam, A.

    2018-01-01

    We build a single vertical straight magnetic fluxtube spanning the solar photosphere and the transition region which does not expand with height. We assume that the fluxtube containing twisted magnetic fields is in magnetohydrostatic equilibrium within a realistic stratified atmosphere subject to solar gravity. Incorporating specific forms of current density and gas pressure in the Grad-Shafranov equation, we solve the magnetic flux function, and find it to be separable with a Coulomb wave function in radial direction while the vertical part of the solution decreases exponentially. We employ improved fluxtube boundary conditions and take a realistic ambient external pressure for the photosphere to transition region, to derive a family of solutions for reasonable values of the fluxtube radius and magnetic field strength at the base of the axis that are the free parameters in our model. We find that our model estimates are consistent with the magnetic field strength and the radii of Magnetic bright points (MBPs) as estimated from observations. We also derive thermodynamic quantities inside the fluxtube.

  19. Intrinsically photosensitive retinal ganglion cells.

    PubMed

    Do, Michael Tri Hoang; Yau, King-Wai

    2010-10-01

    Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors.

  20. Development of constitutive models for cyclic plasticity and creep behavior of super alloys at high temperature

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.

    1983-01-01

    An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.

  1. On the localisation of four-dimensional brane-world black holes: II. The general case

    NASA Astrophysics Data System (ADS)

    Kanti, P.; Pappas, N.; Pappas, T.

    2016-01-01

    We perform a comprehensive analysis of a number of scalar field theories in an attempt to find analytically five-dimensional, localised-on-the-brane, black-hole solutions. Extending a previous analysis, we assume a generalised Vaidya ansatz for the five-dimensional metric tensor that allows for a time-dependent, non-trivial profile of the mass function in terms of the bulk coordinate and a deviation from the over-restricting Schwarzschild-type solution on the brane. In order to support such a solution, we study a variety of theories including single or multiple scalar fields, with canonical or non-canonical kinetic terms, minimally or non-minimally coupled to gravity. We demonstrate that for such a metric ansatz and for a carefully chosen energy-momentum tensor which is non-isotropic in five dimensions, solutions that have the form of a Schwarzschild-(anti)de Sitter or Reissner-Nordstrom type of solution do emerge. However, the resulting profile of the mass function along the bulk coordinate, when allowed, is not the correct one for eliminating bulk singularities.

  2. Some Insights of Spectral Optimization in Ocean Color Inversion

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping; Franz, Bryan; Shang, Shaoling; Dong, Qiang; Arnone, Robert

    2011-01-01

    In the past decades various algorithms have been developed for the retrieval of water constituents from the measurement of ocean color radiometry, and one of the approaches is spectral optimization. This approach defines an error target (or error function) between the input remote sensing reflectance and the output remote sensing reflectance, with the latter modeled with a few variables that represent the optically active properties (such as the absorption coefficient of phytoplankton and the backscattering coefficient of particles). The values of the variables when the error reach a minimum (optimization is achieved) are considered the properties that form the input remote sensing reflectance; or in other words, the equations are solved numerically. The applications of this approach implicitly assume that the error is a monotonic function of the various variables. Here, with data from numerical simulation and field measurements, we show the shape of the error surface, in a way to justify the possibility of finding a solution of the various variables. In addition, because the spectral properties could be modeled differently, impacts of such differences on the error surface as well as on the retrievals are also presented.

  3. 46 CFR 45.145 - Hatchway covers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... must be at least 4.25 times the maximum stress in the structure calculated with the following assumed...) of this section and the thickness of mild steel plating forming the tops of covers must be at least 1...

  4. 46 CFR 45.145 - Hatchway covers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... must be at least 4.25 times the maximum stress in the structure calculated with the following assumed...) of this section and the thickness of mild steel plating forming the tops of covers must be at least 1...

  5. 46 CFR 45.145 - Hatchway covers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must be at least 4.25 times the maximum stress in the structure calculated with the following assumed...) of this section and the thickness of mild steel plating forming the tops of covers must be at least 1...

  6. 46 CFR 45.145 - Hatchway covers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... must be at least 4.25 times the maximum stress in the structure calculated with the following assumed...) of this section and the thickness of mild steel plating forming the tops of covers must be at least 1...

  7. 46 CFR 45.145 - Hatchway covers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... must be at least 4.25 times the maximum stress in the structure calculated with the following assumed...) of this section and the thickness of mild steel plating forming the tops of covers must be at least 1...

  8. Characterization of rarefaction waves in van der Waals fluids

    NASA Astrophysics Data System (ADS)

    Yuen, Albert; Barnard, John J.

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015), 10.1103/PhysRevE.92.033019] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.

  9. Transport across nanogaps using self-consistent boundary conditions

    NASA Astrophysics Data System (ADS)

    Biswas, D.; Kumar, R.

    2012-06-01

    Charge particle transport across nanogaps is studied theoretically within the Schrodinger-Poisson mean field framework. The determination of self-consistent boundary conditions across the gap forms the central theme in order to allow for realistic interface potentials (such as metal-vacuum) which are smooth at the boundary and do not abruptly assume a constant value at the interface. It is shown that a semiclassical expansion of the transmitted wavefunction leads to approximate but self consistent boundary conditions without assuming any specific form of the potential beyond the gap. Neglecting the exchange and correlation potentials, the quantum Child-Langmuir law is investigated. It is shown that at zero injection energy, the quantum limiting current density (Jc) is found to obey the local scaling law Jc ~ Vgα/D5-2α with the gap separation D and voltage Vg. The exponent α > 1.1 with α → 3/2 in the classical regime of small de Broglie wavelengths.

  10. A Higher-Order Bending Theory for Laminated Composite and Sandwich Beams

    NASA Technical Reports Server (NTRS)

    Cook, Geoffrey M.

    1997-01-01

    A higher-order bending theory is derived for laminated composite and sandwich beams. This is accomplished by assuming a special form for the axial and transverse displacement expansions. An independent expansion is also assumed for the transverse normal stress. Appropriate shear correction factors based on energy considerations are used to adjust the shear stiffness. A set of transverse normal correction factors is introduced, leading to significant improvements in the transverse normal strain and stress for laminated composite and sandwich beams. A closed-form solution to the cylindrical elasticity solutions for a wide range of beam aspect ratios and commonly used material systems. Accurate shear stresses for a wide range of laminates, including the challenging unsymmetric composite and sandwich laminates, are obtained using an original corrected integration scheme. For application of the theory to a wider range of problems, guidelines for finite element approximations are presented.

  11. Abductive Equivalential Translation and its application to Natural Language Database Interfacing

    NASA Astrophysics Data System (ADS)

    Rayner, Manny

    1994-05-01

    The thesis describes a logical formalization of natural-language database interfacing. We assume the existence of a ``natural language engine'' capable of mediating between surface linguistic string and their representations as ``literal'' logical forms: the focus of interest will be the question of relating ``literal'' logical forms to representations in terms of primitives meaningful to the underlying database engine. We begin by describing the nature of the problem, and show how a variety of interface functionalities can be considered as instances of a type of formal inference task which we call ``Abductive Equivalential Translation'' (AET); functionalities which can be reduced to this form include answering questions, responding to commands, reasoning about the completeness of answers, answering meta-questions of type ``Do you know...'', and generating assertions and questions. In each case, a ``linguistic domain theory'' (LDT) Γ and an input formula F are given, and the goal is to construct a formula with certain properties which is equivalent to F, given Γ and a set of permitted assumptions. If the LDT is of a certain specified type, whose formulas are either conditional equivalences or Horn-clauses, we show that the AET problem can be reduced to a goal-directed inference method. We present an abstract description of this method, and sketch its realization in Prolog. The relationship between AET and several problems previously discussed in the literature is discussed. In particular, we show how AET can provide a simple and elegant solution to the so-called ``Doctor on Board'' problem, and in effect allows a ``relativization'' of the Closed World Assumption. The ideas in the thesis have all been implemented concretely within the SRI CLARE project, using a real projects and payments database. The LDT for the example database is described in detail, and examples of the types of functionality that can be achieved within the example domain are presented.

  12. From novice to expert: agroecological competences of children orphaned by AIDS compared to non-orphans in Benin.

    PubMed

    Fagbemissi, Rose C; Price, Lisa L

    2011-01-10

    AIDS has created new vulnerabilities for rural African households due to prime-age adult mortality and is assumed to lead to impairment of the intergenerational transfer of farming knowledge. There has been scant research to date, however, on the impacts of parental death on farming knowledge of children made orphans by AIDS. The question we investigate is if there is a difference in agricultural expertise between AIDS affected and non-affected adults and children. The research was carried out in rural Benin with 77 informants randomly selected according to their AIDS status: 13 affected and 13 non-affected adults; 13 paternal, 13 maternal and 13 double orphans; and 12 non-orphan children. Informants descriptions from pile sorting exercises of maize and cowpea pests were categorized and then aggregated into descriptions based form (morphology) and function (utility) and used to determine whether the moving from novice to expert is impaired by children orphaned by AIDS. Differences and similarities in responses were determined using the Fischer exact test and the Cochran-Mantzel-Haenszel test. No significant differences were found between AIDS affected and non-affected adults. Results of the study do reveal differences in the use of form and function descriptors among the children. There is a statistically significant difference in the use of form descriptors between one-parent orphans and non-orphans and in descriptors of specific damages to maize. One-parent paternal orphans were exactly like non-affected adults in their 50/50 balanced expertise in the use of both form and function descriptors. One-parent orphans also had the highest number of descriptors used by children overall and these descriptors are spread across the various aspects of the knowledge domain relative to non-orphans. Rather than a knowledge loss for one-parent orphans, particularly paternal orphans, we believe we are witnessing acceleration into adult knowledge frames. This expertise of one-parent orphans may be a result of a combination of factors deserving further investigation including enhanced hands-on work experience with the food crops in the field and the expertise available from the surviving parent coupled with the value of the food resource to the household.

  13. What Does a Day Care Director Really Do?

    ERIC Educational Resources Information Center

    Morgan, Gwen G.

    This paper describes the work of day care directors in terms of four functions. The first function is that of assuming legal responsibility and accountability. This function includes accepting punishment in case of wrongdoing; representing the organization to the government and the public; and meeting state licensure standards and other standards.…

  14. 41 CFR Appendix A to Subpart A of... - 3-Key Points and Principles

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... functions (decisionmaking or operations) cannot be delegated to, or assumed by, non-Federal individuals or... may perform advisory functions only, unless authorized to perform “operational” duties by the Congress... Act, even if they may engage in some advisory activities? A. No, so long as the operational functions...

  15. 41 CFR Appendix A to Subpart A of... - 3-Key Points and Principles

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... functions (decisionmaking or operations) cannot be delegated to, or assumed by, non-Federal individuals or... may perform advisory functions only, unless authorized to perform “operational” duties by the Congress... Act, even if they may engage in some advisory activities? A. No, so long as the operational functions...

  16. 41 CFR Appendix A to Subpart A of... - 3-Key Points and Principles

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... functions (decisionmaking or operations) cannot be delegated to, or assumed by, non-Federal individuals or... may perform advisory functions only, unless authorized to perform “operational” duties by the Congress... Act, even if they may engage in some advisory activities? A. No, so long as the operational functions...

  17. 41 CFR Appendix A to Subpart A of... - 3-Key Points and Principles

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... functions (decisionmaking or operations) cannot be delegated to, or assumed by, non-Federal individuals or... may perform advisory functions only, unless authorized to perform “operational” duties by the Congress... Act, even if they may engage in some advisory activities? A. No, so long as the operational functions...

  18. A hybrid-perturbation-Galerkin technique which combines multiple expansions

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method for the solution of a variety of differential equations type problems is found to give better results when multiple perturbation expansions are employed. The method assumes that there is parameter in the problem formulation and that a perturbation method can be sued to construct one or more expansions in this perturbation coefficient functions multiplied by computed amplitudes. In step one, regular and/or singular perturbation methods are used to determine the perturbation coefficient functions. The results of step one are in the form of one or more expansions each expressed as a sum of perturbation coefficient functions multiplied by a priori known gauge functions. In step two the classical Bubnov-Galerkin method uses the perturbation coefficient functions computed in step one to determine a set of amplitudes which replace and improve upon the gauge functions. The hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Galerkin methods as applied separately, while combining some of their better features. The proposed method is applied, with two perturbation expansions in each case, to a variety of model ordinary differential equations problems including: a family of linear two-boundary-value problems, a nonlinear two-point boundary-value problem, a quantum mechanical eigenvalue problem and a nonlinear free oscillation problem. The results obtained from the hybrid methods are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.

  19. Amorphous calcium carbonate particles form coral skeletons

    DOE PAGES

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang -Yu; ...

    2017-08-28

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO 3).more » We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO 2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya.« less

  20. Amorphous calcium carbonate particles form coral skeletons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang -Yu

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO 3).more » We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO 2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya.« less

Top