NASA Astrophysics Data System (ADS)
Ibrahim, Adyda; Saaban, Azizan; Zaibidi, Nerda Zura
2017-11-01
This paper considers an n-firm oligopoly market where each firm produces a single homogenous product under a constant unit cost. Nonlinearity is introduced into the model of this oligopoly market by assuming the market has an isoelastic demand function. Furthermore, instead of the usual assumption of perfectly rational firms, they are assumed to be boundedly rational in adjusting their outputs at each period. The equilibrium of this n discrete dimensional system is obtained and its local stability is calculated.
Modeling Ignition of HMX with the Gibbs Formulation
NASA Astrophysics Data System (ADS)
Lee, Kibaek; Stewart, D. Scott
2017-06-01
We present a HMX model with the Gibbs formulation in which stress tensor and temperature are assumed to be in local equilibrium, but phase/chemical changes are not assumed to be in equilibrium. We assume multi-components for HMX including beta- and delta-phase, liquid, and gas phase of HMX and its gas products. Isotropic small strain solid model, modified Fried Howard liquid EOS, and ideal gas EOS are used for its relevant component. Phase/chemical changes are characterized as reactions and are in individual reaction rate. Maxwell-Stefan model is used for diffusion. Excited gas products in the local domain lead unreacted HMX solid to the ignition event. Density of the mixture, stress, strain, displacement, mass fractions, and temperature are considered in 1D domain with time histories. Office of Naval Research and Air Force Office of Scientific Research.
Analytic, High-beta Solutions of the Helical Grad-Shafranov Equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.R. Smith; A.H. Reiman
We present analytic, high-beta ({beta} {approx} O(1)), helical equilibrium solutions for a class of helical axis configurations having large helical aspect ratio, with the helix assumed to be tightly wound. The solutions develop a narrow boundary layer of strongly compressed flux, similar to that previously found in high beta tokamak equilibrium solutions. The boundary layer is associated with a strong localized current which prevents the equilibrium from having zero net current.
Local Equilibrium and Retardation Revisited.
Hansen, Scott K; Vesselinov, Velimir V
2018-01-01
In modeling solute transport with mobile-immobile mass transfer (MIMT), it is common to use an advection-dispersion equation (ADE) with a retardation factor, or retarded ADE. This is commonly referred to as making the local equilibrium assumption (LEA). Assuming local equilibrium, Eulerian textbook treatments derive the retarded ADE, ostensibly exactly. However, other authors have presented rigorous mathematical derivations of the dispersive effect of MIMT, applicable even in the case of arbitrarily fast mass transfer. We resolve the apparent contradiction between these seemingly exact derivations by adopting a Lagrangian point of view. We show that local equilibrium constrains the expected time immobile, whereas the retarded ADE actually embeds a stronger, nonphysical, constraint: that all particles spend the same amount of every time increment immobile. Eulerian derivations of the retarded ADE thus silently commit the gambler's fallacy, leading them to ignore dispersion due to mass transfer that is correctly modeled by other approaches. We then present a particle tracking simulation illustrating how poor an approximation the retarded ADE may be, even when mobile and immobile plumes are continually near local equilibrium. We note that classic "LEA" (actually, retarded ADE validity) criteria test for insignificance of MIMT-driven dispersion relative to hydrodynamic dispersion, rather than for local equilibrium. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Peter H.; Kim, Sunjung; Choe, G. S., E-mail: yoonp@umd.edu
2015-10-20
In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for themore » Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.« less
Failure of Local Thermal Equilibrium in Quantum Friction
NASA Astrophysics Data System (ADS)
Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.
2016-09-01
Recent progress in manipulating atomic and condensed matter systems has instigated a surge of interest in nonequilibrium physics, including many-body dynamics of trapped ultracold atoms and ions, near-field radiative heat transfer, and quantum friction. Under most circumstances the complexity of such nonequilibrium systems requires a number of approximations to make theoretical descriptions tractable. In particular, it is often assumed that spatially separated components of a system thermalize with their immediate surroundings, although the global state of the system is out of equilibrium. This powerful assumption reduces the complexity of nonequilibrium systems to the local application of well-founded equilibrium concepts. While this technique appears to be consistent for the description of some phenomena, we show that it fails for quantum friction by underestimating by approximately 80% the magnitude of the drag force. Our results show that the correlations among the components of driven, but steady-state, quantum systems invalidate the assumption of local thermal equilibrium, calling for a critical reexamination of this approach for describing the physics of nonequilibrium systems.
NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit, E-mail: thomas.golding@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se
The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamicmore » equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.« less
Optimal control of predator-prey mathematical model with infection and harvesting on prey
NASA Astrophysics Data System (ADS)
Diva Amalia, R. U.; Fatmawati; Windarto; Khusnul Arif, Didik
2018-03-01
This paper presents a predator-prey mathematical model with infection and harvesting on prey. The infection and harvesting only occur on the prey population and it assumed that the prey infection would not infect predator population. We analysed the mathematical model of predator-prey with infection and harvesting in prey. Optimal control, which is a prevention of the prey infection, also applied in the model and denoted as U. The purpose of the control is to increase the susceptible prey. The analytical result showed that the model has five equilibriums, namely the extinction equilibrium (E 0), the infection free and predator extinction equilibrium (E 1), the infection free equilibrium (E 2), the predator extinction equilibrium (E 3), and the coexistence equilibrium (E 4). The extinction equilibrium (E 0) is not stable. The infection free and predator extinction equilibrium (E 1), the infection free equilibrium (E 2), also the predator extinction equilibrium (E 3), are locally asymptotically stable with some certain conditions. The coexistence equilibrium (E 4) tends to be locally asymptotically stable. Afterwards, by using the Maximum Pontryagin Principle, we obtained the existence of optimal control U. From numerical simulation, we can conclude that the control could increase the population of susceptible prey and decrease the infected prey.
Failure of local thermal equilibrium in quantum friction
Intravaia, Francesco; Behunin, Ryan; Henkel, Carsten; ...
2016-09-01
Recent progress in manipulating atomic and condensed matter systems has instigated a surge of interest in nonequilibrium physics, including many-body dynamics of trapped ultracold atoms and ions, near-field radiative heat transfer, and quantum friction. Under most circumstances the complexity of such nonequilibrium systems requires a number of approximations to make theoretical descriptions tractable. In particular, it is often assumed that spatially separated components of a system thermalize with their immediate surroundings, although the global state of the system is out of equilibrium. This powerful assumption reduces the complexity of nonequilibrium systems to the local application of well-founded equilibrium concepts. Whilemore » this technique appears to be consistent for the description of some phenomena, we show that it fails for quantum friction by underestimating by approximately 80% the magnitude of the drag force. Here, our results show that the correlations among the components of driven, but steady-state, quantum systems invalidate the assumption of local thermal equilibrium, calling for a critical reexamination of this approach for describing the physics of nonequilibrium systems.« less
Dougoud, Michaël; Rohr, Rudolf P.
2018-01-01
The consensus that complexity begets stability in ecosystems was challenged in the seventies, a result recently extended to ecologically-inspired networks. The approaches assume the existence of a feasible equilibrium, i.e. with positive abundances. However, this key assumption has not been tested. We provide analytical results complemented by simulations which show that equilibrium feasibility vanishes in species rich systems. This result leaves us in the uncomfortable situation in which the existence of a feasible equilibrium assumed in local stability criteria is far from granted. We extend our analyses by changing interaction structure and intensity, and find that feasibility and stability is warranted irrespective of species richness with weak interactions. Interestingly, we find that the dynamical behaviour of ecologically inspired architectures is very different and richer than that of unstructured systems. Our results suggest that a general understanding of ecosystem dynamics requires focusing on the interplay between interaction strength and network architecture. PMID:29420532
Transfer Kinetics at the Aqueous/Non-Aqueous Phase Liquid Interface. A Statistical Mechanic Approach
NASA Astrophysics Data System (ADS)
Doss, S. K.; Ezzedine, S.; Ezzedine, S.; Ziagos, J. P.; Hoffman, F.; Gelinas, R. J.
2001-05-01
Many modeling efforts in the literature use a first-order, linear-driving-force model to represent the chemical dissolution process at the non-aqueous/aqueous phase liquid (NAPL/APL) interface. In other words, NAPL to APL phase flux is assumed to be equal to the difference between the solubility limit and the "bulk aqueous solution" concentrations times a mass transfer coefficient. Under such assumptions, a few questions are raised: where, in relation to a region of pure NAPL, does the "bulk aqueous solution" regime begin and how does it behave? The answers are assumed to be associated with an arbitrary, predetermined boundary layer, which separates the NAPL from the surrounding solution. The mass transfer rate is considered to be, primarily, limited by diffusion of the component through the boundary layer. In fact, compositional models of interphase mass transfer usually assume that a local equilibrium is reached between phases. Representing mass flux as a rate-limiting process is equivalent to assuming diffusion through a stationary boundary layer with an instantaneous local equilibrium and linear concentration profile. Some environmental researchers have enjoyed success explaining their data using chemical engineering-based correlations. Correlations are strongly dependent on the experimental conditions employed. A universally applicable theory for NAPL dissolution in natural systems does not exist. These correlations are usually expressed in terms of the modified Sherwood number as a function of Reynolds, Peclet, and Schmidt numbers. The Sherwood number may be interpreted as the ratio between the grain size and the thickness of the Nernst stagnant film. In the present study, we show that transfer kinetics at the NAPL/APL interface under equilibrium conditions disagree with approaches based on the Nernst stagnant film concept. It is unclear whether local equilibrium assumptions used in current models are suitable for all situations.A statistical mechanic framework has been chosen to study the transfer kinetic processes at the microscale level. The rationale for our approach is based on both the activation energy of transfer of an ion and its velocity across the NAPL/APL interface. There are four major energies controlling the interfacial NAPL dissolution kinetics: (de)solvation energy, interfacial tension energy, electrostatic energy, and thermal fluctuation energy. Transfer of an ion across the NAPL/APL interface is accelerated by the viscous forces which can be described using the averaged Langevin master equation. The resulting energies and viscous forces were combined using the Boltzmann probability distribution. Asymptotic time limits of the resulting kinetics lead to instantaneous local equilibrium conditions that contradict the Nernst equilibrium equation. The NAPL/APL interface is not an ideal one: it does not conserve energy and heat. In our case the interface is treated as a thin film or slush zone that alters the thermodynamic variables. Such added zone, between the two phases, is itself a phase, and, therefore, the equilibrium does not occur between two phases but rather three. All these findings led us to develop a new non-linearly coupled flow and transport system of equations which is able to account for specific chemical dissolution processes and precludes the need for empirical mass-transfer parameters. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium
NASA Technical Reports Server (NTRS)
Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)
2002-01-01
We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.
Local approximation of a metapopulation's equilibrium.
Barbour, A D; McVinish, R; Pollett, P K
2018-04-18
We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset [Formula: see text] of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at z being occupied is shown to be close to [Formula: see text], the equilibrium occupation probability in Levins's model, at any point [Formula: see text] not too close to the boundary, if the local colonization pressure and extinction rates appropriate to z are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously.
NASA Astrophysics Data System (ADS)
Zhi-Yuan, Gao; Xiao-Wei, Xue; Jiang-Jiang, Li; Xun, Wang; Yan-Hui, Xing; Bi-Feng, Cui; De-Shu, Zou
2016-06-01
Frank’s theory describes that a screw dislocation will produce a pit on the surface, and has been evidenced in many material systems including GaN. However, the size of the pit calculated from the theory deviates significantly from experimental result. Through a careful observation of the variations of surface pits and local surface morphology with growing temperature and V/III ratio for c-plane GaN, we believe that Frank’s model is valid only in a small local surface area where thermodynamic equilibrium state can be assumed to stay the same. If the kinetic process is too vigorous or too slow to reach a balance, the local equilibrium range will be too small for the center and edge of the screw dislocation spiral to be kept in the same equilibrium state. When the curvature at the center of the dislocation core reaches the critical value 1/r 0, at the edge of the spiral, the accelerating rate of the curvature may not fall to zero, so the pit cannot reach a stationary shape and will keep enlarging under the control of minimization of surface energy to result in a large-sized surface pit. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204009 and 61204011) and the Beijing Municipal Natural Science Foundation, China (Grant No. 4142005).
Analysis of non-equilibrium phenomena in inductively coupled plasma generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu; Lani, A.
This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) Amore » Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.« less
Analysis of non-equilibrium phenomena in inductively coupled plasma generators
NASA Astrophysics Data System (ADS)
Zhang, W.; Lani, A.; Panesi, M.
2016-07-01
This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.
Stability and Bifurcation of a Fishery Model with Crowley-Martin Functional Response
NASA Astrophysics Data System (ADS)
Maiti, Atasi Patra; Dubey, B.
To understand the dynamics of a fishery system, a nonlinear mathematical model is proposed and analyzed. In an aquatic environment, we considered two populations: one is prey and another is predator. Here both the fish populations grow logistically and interaction between them is of Crowley-Martin type functional response. It is assumed that both the populations are harvested and the harvesting effort is assumed to be dynamical variable and tax is considered as a control variable. The existence of equilibrium points and their local stability are examined. The existence of Hopf-bifurcation, stability and direction of Hopf-bifurcation are also analyzed with the help of Center Manifold theorem and normal form theory. The global stability behavior of the positive equilibrium point is also discussed. In order to find the value of optimal tax, the optimal harvesting policy is used. To verify our analytical findings, an extensive numerical simulation is carried out for this model system.
NASA Technical Reports Server (NTRS)
Spalding, D. B.; Launder, B. E.; Morse, A. P.; Maples, G.
1974-01-01
A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow.
NASA Astrophysics Data System (ADS)
Li, L.; Liu, Y. Q.; Huang, X.; Luan, Q.; Zhong, F. C.
2017-02-01
A toroidal resistive magneto-hydrodynamic plasma response model, involving large magnetic islands, is proposed and numerically investigated, based on local flattening of the equilibrium pressure profile near a rational surface. It is assumed that such islands can be generated near the edge of the tokamak plasma, due to the penetration of the resonant magnetic perturbations, used for the purpose of controlling the edge localized mode. Within this model, it is found that the local flattening of the equilibrium pressure helps to mitigate the toroidal curvature induced screening effect [Glasser et al., Phys. Fluids 7, 875 (1975)]—the so called Glasser-Greene-Johnson screening, when the local toroidal flow near the mode rational surface is very slow (for example, as a result of mode locking associated with the field penetration). The saturation level of the plasma response amplitude is computed, as the plasma rotation frequency approaches zero. The local modification of the plasma resistivity inside the magnetic island is found to also affect the saturation level of the plasma response at vanishing flow.
Measuring the Thermodynamics of the Alloy/Scale Interface
NASA Technical Reports Server (NTRS)
Copland, Evan
2004-01-01
A method is proposed for the direct measurement of the thermodynamic properties of the alloy and oxide compound at the alloy/scale interface observed during steady-state oxidation. The thermodynamic properties of the alloy/scale interface define the driving force for solid-state transport in the alloy and oxide compound. Accurate knowledge of thermodynamic properties of the interface will advance our understanding of oxidation behavior. The method is based on the concept of local equilibrium and assumes that an alloy+scale equilibrium very closely approximates the alloy/scale interface observed during steady-state oxidation. The thermodynamics activities of this alloy+scale equilibrium are measured directly by Knudsen effusion-cell mass spectrometer (KEMS) using the vapor pressure technique. The theory and some practical considerations of this method are discussed in terms of beta-NiAl oxidation.
Aerothermodynamic environment of a Titan aerocapture vehicle
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Chow, H.
1982-01-01
The extent of convective and radiative heating for a Titan aerocapture vehicle is investigated. The flow in the shock layer is assumed to be axisymmetric, steady, viscous, and compressible. It is further assumed that the gas is in chemical and local thermodynamic equilibrium and tangent slab approximation is used for the radiative transport. The effect of the slip boundary conditions on the body surface and at the shock wave are included in the analysis of high-altitude entry conditions. The implicit finite difference techniques is used to solve the viscous shock-layer equations for a 45 degree sphere cone at zero angle of attack. Different compositions for the Titan atmosphere are assumed, and results are obtained for the entry conditions specified by the Jet Propulsion Laboratory.
On One Possible Generalization of the Regression Theorem
NASA Astrophysics Data System (ADS)
Bogolubov, N. N.; Soldatov, A. V.
2018-03-01
A general approach to derivation of formally exact closed time-local or time-nonlocal evolution equations for non-equilibrium multi-time correlations functions made of observables of an open quantum system interacting simultaneously with external time-dependent classical fields and dissipative environment is discussed. The approach allows for the subsequent treatment of these equations within a perturbative scheme assuming that the system-environment interaction is weak.
NASA Astrophysics Data System (ADS)
Rabhi, R.; Amami, B.; Dhahri, H.; Mhimid, A.
2017-11-01
This paper deals with heat transfer and fluid flow in a porous micro duct under local thermal non equilibrium conditions subjected to an external oriented magnetic field. The considered sample is a micro duct filled with porous media assumed to be homogenous, isotropic and saturated. The slip velocity and the temperature jump were uniformly imposed to the wall. In modeling the flow, the Brinkmann-Forchheimer extended Darcy model was incorporated into the momentum equations. In the energy equation, the local thermal non equilibrium between the two phases was adopted. A modified axisymmetric lattice Boltzmann method was used to solve the obtained governing equation system. Attention was focused on the influence of the emerging parameters such as Knudsen number, Kn, Hartmann number, Ha, Eckert number, Ec, Biot number, Bi and the magnetic field inclination γ on flow and heat transfer throughout this paper.
Reactive Gas transport in soil: Kinetics versus Local Equilibrium Approach
NASA Astrophysics Data System (ADS)
Geistlinger, Helmut; Jia, Ruijan
2010-05-01
Gas transport through the unsaturated soil zone was studied using an analytical solution of the gas transport model that is mathematically equivalent to the Two-Region model. The gas transport model includes diffusive and convective gas fluxes, interphase mass transfer between the gas and water phase, and biodegradation. The influence of non-equilibrium phenomena, spatially variable initial conditions, and transient boundary conditions are studied. The objective of this paper is to compare the kinetic approach for interphase mass transfer with the standard local equilibrium approach and to find conditions and time-scales under which the local equilibrium approach is justified. The time-scale of investigation was limited to the day-scale, because this is the relevant scale for understanding gas emission from the soil zone with transient water saturation. For the first time a generalized mass transfer coefficient is proposed that justifies the often used steady-state Thin-Film mass transfer coefficient for small and medium water-saturated aggregates of about 10 mm. The main conclusion from this study is that non-equilibrium mass transfer depends strongly on the temporal and small-scale spatial distribution of water within the unsaturated soil zone. For regions with low water saturation and small water-saturated aggregates (radius about 1 mm) the local equilibrium approach can be used as a first approximation for diffusive gas transport. For higher water saturation and medium radii of water-saturated aggregates (radius about 10 mm) and for convective gas transport, the non-equilibrium effect becomes more and more important if the hydraulic residence time and the Damköhler number decrease. Relative errors can range up to 100% and more. While for medium radii the local equilibrium approach describes the main features both of the spatial concentration profile and the time-dependence of the emission rate, it fails completely for larger aggregates (radius about 100 mm). From the comparative study of relevant scenarios with and without biodegradation it can be concluded that, under realistic field conditions, biodegradation within the immobile water phase is often mass-transfer limited and the local equilibrium approach assuming instantaneous mass transfer becomes rather questionable. References Geistlinger, H., Ruiyan Jia, D. Eisermann, and C.-F. Stange (2008): Spatial and temporal variability of dissolved nitrous oxide in near-surface groundwater and bubble-mediated mass transfer to the unsaturated zone, J. Plant Nutrition and Soil Science, in press. Geistlinger, H. (2009) Vapor transport in soil: concepts and mathematical description. In: Eds.: S. Saponari, E. Sezenna, and L. Bonoma, Vapor emission to outdoor air and enclosed spaces for human health risk assessment: Site characterization, monitoring, and modeling. Nova Science Publisher. Milano. Accepted for publication.
Enhancing Water Evaporation with Floating Synthetic Leaves
NASA Astrophysics Data System (ADS)
Boreyko, Jonathan; Vieitez, Joshua; Berrier, Austin; Roseveare, Matthew; Shi, Weiwei
2017-11-01
When a wetted nanoporous medium is exposed to a subsaturated ambient environment, the water menisci assume a concave curvature to achieve a negative pressure. This negative water pressure is required to balance the mismatch in water activity across the water-air interface to achieve local equilibrium. Here, we show that the diffusive evaporation rate of water can be greatly modulated by floating a nanoporous synthetic leaf at the water's free interface. For high ambient humidities, adding the leaf serves to enhance the evaporation rate, presumably by virtue of the menisci enhancing the effective liquid-vapor surface area. For low humidities, the menisci cannot achieve a local equilibrium and retreat partway into the leaf, which increases the local humidity directly above the menisci. In light of these two effects, we find the surprising result that leaves exposed to an ambient humidity of 90 percent can evaporate water at the same rate as leaves exposed to only 50 percent humidity. These findings have implications for using synthetic trees to enhance steam generation or water harvesting. This work was supported by the National Science Foundation (CBET-1653631).
NASA Astrophysics Data System (ADS)
Agarwal, Shilpi; Rana, Puneet
2016-04-01
In this paper, we examine a layer of Oldroyd-B nanofluid for linear and nonlinear regimes under local thermal non-equilibrium conditions for the classical Rayleigh-Bénard problem. The free-free boundary condition has been implemented with the flux for nanoparticle concentration being zero at edges. The Oberbeck-Boussinesq approximation holds good and for the rotational effect Coriolis term is included in the momentum equation. A two-temperature model explains the effect of local thermal non-equilibrium among the particle and fluid phases. The criteria for onset of stationary convection has been derived as a function of the non-dimensionalized parameters involved including the Taylor number. The assumed boundary conditions negate the possibility of overstability due to the absence of opposing forces responsible for it. The thermal Nusselt number has been obtained utilizing a weak nonlinear theory in terms of various pertinent parameters in the steady and transient mode, and has been depicted graphically. The main findings signify that the rotation has a stabilizing effect on the system. The stress relaxation parameter λ_1 inhibits whereas the strain retardation parameter λ_2 exhibits heat transfer utilizing Al2O3 nanofluids.
To predict the niche, model colonization and extinction
Yackulic, Charles B.; Nichols, James D.; Reid, Janice; Der, Ricky
2015-01-01
Ecologists frequently try to predict the future geographic distributions of species. Most studies assume that the current distribution of a species reflects its environmental requirements (i.e., the species' niche). However, the current distributions of many species are unlikely to be at equilibrium with the current distribution of environmental conditions, both because of ongoing invasions and because the distribution of suitable environmental conditions is always changing. This mismatch between the equilibrium assumptions inherent in many analyses and the disequilibrium conditions in the real world leads to inaccurate predictions of species' geographic distributions and suggests the need for theory and analytical tools that avoid equilibrium assumptions. Here, we develop a general theory of environmental associations during periods of transient dynamics. We show that time-invariant relationships between environmental conditions and rates of local colonization and extinction can produce substantial temporal variation in occupancy–environment relationships. We then estimate occupancy–environment relationships during three avian invasions. Changes in occupancy–environment relationships over time differ among species but are predicted by dynamic occupancy models. Since estimates of the occupancy–environment relationships themselves are frequently poor predictors of future occupancy patterns, research should increasingly focus on characterizing how rates of local colonization and extinction vary with environmental conditions.
Plasma shaping effects on tokamak scrape-off layer turbulence
NASA Astrophysics Data System (ADS)
Riva, Fabio; Lanti, Emmanuel; Jolliet, Sébastien; Ricci, Paolo
2017-03-01
The impact of plasma shaping on tokamak scrape-off layer (SOL) turbulence is investigated. The drift-reduced Braginskii equations are written for arbitrary magnetic geometries, and an analytical equilibrium model is used to introduce the dependence of turbulence equations on tokamak inverse aspect ratio (ε ), Shafranov’s shift (Δ), elongation (κ), and triangularity (δ). A linear study of plasma shaping effects on the growth rate of resistive ballooning modes (RBMs) and resistive drift waves (RDWs) reveals that RBMs are strongly stabilized by elongation and negative triangularity, while RDWs are only slightly stabilized in non-circular magnetic geometries. Assuming that the linear instabilities saturate due to nonlinear local flattening of the plasma gradient, the equilibrium gradient pressure length {L}p=-{p}e/{{\
A collisional-radiative model of iron vapour in a thermal arc plasma
NASA Astrophysics Data System (ADS)
Baeva, M.; Uhrlandt, D.; Murphy, A. B.
2017-06-01
A collisional-radiative model for the ground state and fifty effective excited levels of atomic iron, and one level for singly-ionized iron, is set up for technological plasmas. Attention is focused on the population of excited states of atomic iron as a result of excitation, de-excitation, ionization, recombination and spontaneous emission. Effective rate coefficients for ionization and recombination, required in non-equilibrium plasma transport models, are also obtained. The collisional-radiative model is applied to a thermal arc plasma. Input parameters for the collisional-radiative model are provided by a magnetohydrodynamic simulation of a gas-metal welding arc, in which local thermodynamic equilibrium is assumed and the treatment of the transport of metal vapour is based on combined diffusion coefficients. The results clearly identify the conditions in the arc, under which the atomic state distribution satisfies the Boltzmann distribution, with an excitation temperature equal to the plasma temperature. These conditions are met in the central part of the arc, even though a local temperature minimum occurs here. This provides assurance that diagnostic methods based on local thermodynamic equilibrium, in particular those of optical emission spectroscopy, are reliable here. In contrast, deviations from the equilibrium atomic-state distribution are obtained in the near-electrode and arc fringe regions. As a consequence, the temperatures determined from the ratio of line intensities and number densities obtained from the emission coefficient in these regions are questionable. In this situation, the collisional-radiative model can be used as a diagnostic tool to assist in the interpretation of spectroscopic measurements.
Local thermodynamic equilibrium in rapidly heated high energy density plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aslanyan, V.; Tallents, G. J.
Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates.more » The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.« less
Environmental Noise Could Promote Stochastic Local Stability of Behavioral Diversity Evolution
NASA Astrophysics Data System (ADS)
Zheng, Xiu-Deng; Li, Cong; Lessard, Sabin; Tao, Yi
2018-05-01
In this Letter, we investigate stochastic stability in a two-phenotype evolutionary game model for an infinite, well-mixed population undergoing discrete, nonoverlapping generations. We assume that the fitness of a phenotype is an exponential function of its expected payoff following random pairwise interactions whose outcomes randomly fluctuate with time. We show that the stochastic local stability of a constant interior equilibrium can be promoted by the random environmental noise even if the system may display a complicated nonlinear dynamics. This result provides a new perspective for a better understanding of how environmental fluctuations may contribute to the evolution of behavioral diversity.
Lattice distortions and local compressibility around trivalent rare-earth impurities in fluorites
NASA Astrophysics Data System (ADS)
Tovar, M.; Ramos, C. A.; Fainstein, C.
1983-10-01
We have calculated the lattice distortions around trivalent rare-earth dilute impurities, occupying substitutionally metal sites in fluorites. Explicit results are given for the equilibrium positions of the nearest fluorine ligands, R, the induced electric dipole moments, and the local hydrostatic strains for MF2 (M=Cd, Ca, Sr, Pb, and Ba). These results are used to study the impurity-ligand distance dependence of the fourth-order cubic-crystal-field parameter, b4, for Gd3+ and the isoelectronic ion Eu2+. Comparison is made with the change of b4 with hydrostatic stress using the calculated local compressibility of the lattice. A consistent description of the experimental data is obtained assuming b4~R-m with m~10.
Particle orbits in two-dimensional equilibrium models for the magnetotail
NASA Technical Reports Server (NTRS)
Karimabadi, H.; Pritchett, P. L.; Coroniti, F. V.
1990-01-01
Assuming that there exist an equilibrium state for the magnetotail, particle orbits are investigated in two-dimensional kinetic equilibrium models for the magnetotail. Particle orbits in the equilibrium field are compared with those calculated earlier with one-dimensional models, where the main component of the magnetic field (Bx) was approximated as either a hyperbolic tangent or a linear function of z with the normal field (Bz) assumed to be a constant. It was found that the particle orbits calculated with the two types of models are significantly different, mainly due to the neglect of the variation of Bx with x in the one-dimensional fields.
Entropy in self-similar shock profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margolin, Len G.; Reisner, Jon Michael; Jordan, Pedro M.
In this paper, we study the structure of a gaseous shock, and in particular the distribution of entropy within, in both a thermodynamics and a statistical mechanics context. The problem of shock structure has a long and distinguished history that we review. We employ the Navier–Stokes equations to construct a self–similar version of Becker’s solution for a shock assuming a particular (physically plausible) Prandtl number; that solution reproduces the well–known result of Morduchow & Libby that features a maximum of the equilibrium entropy inside the shock profile. We then construct an entropy profile, based on gas kinetic theory, that ismore » smooth and monotonically increasing. The extension of equilibrium thermodynamics to irreversible processes is based in part on the assumption of local thermodynamic equilibrium. We show that this assumption is not valid except for the weakest shocks. Finally, we conclude by hypothesizing a thermodynamic nonequilibrium entropy and demonstrating that it closely estimates the gas kinetic nonequilibrium entropy within a shock.« less
Entropy in self-similar shock profiles
Margolin, Len G.; Reisner, Jon Michael; Jordan, Pedro M.
2017-07-16
In this paper, we study the structure of a gaseous shock, and in particular the distribution of entropy within, in both a thermodynamics and a statistical mechanics context. The problem of shock structure has a long and distinguished history that we review. We employ the Navier–Stokes equations to construct a self–similar version of Becker’s solution for a shock assuming a particular (physically plausible) Prandtl number; that solution reproduces the well–known result of Morduchow & Libby that features a maximum of the equilibrium entropy inside the shock profile. We then construct an entropy profile, based on gas kinetic theory, that ismore » smooth and monotonically increasing. The extension of equilibrium thermodynamics to irreversible processes is based in part on the assumption of local thermodynamic equilibrium. We show that this assumption is not valid except for the weakest shocks. Finally, we conclude by hypothesizing a thermodynamic nonequilibrium entropy and demonstrating that it closely estimates the gas kinetic nonequilibrium entropy within a shock.« less
Go big or go home: impact of screening coverage on syphilis infection dynamics.
Tuite, Ashleigh; Fisman, David
2016-02-01
Syphilis outbreaks in urban men who have sex with men (MSM) are an ongoing public health challenge in many high-income countries, despite intensification of efforts to screen and treat at-risk individuals. We sought to understand how population-level coverage of asymptomatic screening impacts the ability to control syphilis transmission. We developed a risk-structured deterministic compartmental mathematical model of syphilis transmission in a population of sexually active MSM. We assumed a baseline level of treatment of syphilis cases due to seeking medical care in all scenarios. We evaluated the impact of sustained annual population-wide screening coverage ranging from 0% to 90% on syphilis incidence over the short term (20 years) and at endemic equilibrium. The relationship between screening coverage and equilibrium syphilis incidence displayed an inverted U-shape relationship, with peak equilibrium incidence occurring with 20-30% annual screening coverage. Annual screening of 62% of the population was required for local elimination (incidence <1 case per 100 000 population). Results were qualitatively similar in the face of differing programmatic, behavioural and natural history assumptions, although the screening thresholds for local elimination differed. With 6-monthly or 3-monthly screening, the population coverage required to achieve local elimination was reduced to 39% or 23%, respectively. Although screening has the potential to control syphilis outbreaks, suboptimal coverage may paradoxically lead to a higher equilibrium infection incidence than that observed in the absence of intervention. Suboptimal screening programme design should be considered as a possible contributor to unsuccessful syphilis control programmes in the context of the current epidemic. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
On the Departure from Isothermality of Pluto's Volatile Ice due to Local Insolation and Topography
NASA Astrophysics Data System (ADS)
Trafton, Laurence M.; Stansberry, John A.
2015-11-01
Pluto’s atmosphere is known to be supported by the vapor pressure of ices that are volatile at low temperature, primarily N2 and secondarily CH4 and CO. The atmospheric bulk is regulated by the globally average temperature of the ice, which is determined by a radiative balance between the diurnally average insolation absorbed globally by the volatile ice and the global volatile ice thermal radiation. This bulk is sufficient that Pluto’s atmosphere is close to hydrostatic equilibrium, though this may not remain so as Pluto continues to move towards aphelion. With the weight of the atmosphere currently distributed evenly around the body, the ice temperature is expected to be globally isothermal in absence of topographic variations, due to the transport of latent heat from regions of high insolation to low insolation through sublimation and condensation. Images returned from the New Horizons spacecraft show topographical features, including mountain ranges that extend above 3.5 km, with albedo variations that suggest a topographical dimension or dependence of the volatile ice deposits. In general, the conditions often applied to a volatile atmosphere of hydrostatic equilibrium and vapor-solid phase equilibrium are approximations that may not always both be appropriate. This is particularly the case in the presence of topography when the atmospheric lapse rate differs from the wet adiabat. We present our results of an investigation of the effect of variable insolation and topography on Pluto’s local ice temperature assuming an atmosphere close to hydrostatic equilibrium.
Stability and Optimal Harvesting of Modified Leslie-Gower Predator-Prey Model
NASA Astrophysics Data System (ADS)
Toaha, S.; Azis, M. I.
2018-03-01
This paper studies a modified of dynamics of Leslie-Gower predator-prey population model. The model is stated as a system of first order differential equations. The model consists of one predator and one prey. The Holling type II as a predation function is considered in this model. The predator and prey populations are assumed to be beneficial and then the two populations are harvested with constant efforts. Existence and stability of the interior equilibrium point are analysed. Linearization method is used to get the linearized model and the eigenvalue is used to justify the stability of the interior equilibrium point. From the analyses, we show that under a certain condition the interior equilibrium point exists and is locally asymptotically stable. For the model with constant efforts of harvesting, cost function, revenue function, and profit function are considered. The stable interior equilibrium point is then related to the maximum profit problem as well as net present value of revenues problem. We show that there exists a certain value of the efforts that maximizes the profit function and net present value of revenues while the interior equilibrium point remains stable. This means that the populations can live in coexistence for a long time and also maximize the benefit even though the populations are harvested with constant efforts.
NASA Astrophysics Data System (ADS)
Roncoroni, Alan; Medo, Matus
2016-12-01
Models of spatial firm competition assume that customers are distributed in space and transportation costs are associated with their purchases of products from a small number of firms that are also placed at definite locations. It has been long known that the competition equilibrium is not guaranteed to exist if the most straightforward linear transportation costs are assumed. We show by simulations and also analytically that if periodic boundary conditions in a plane are assumed, the equilibrium exists for a pair of firms at any distance. When a larger number of firms is considered, we find that their total equilibrium profit is inversely proportional to the square root of the number of firms. We end with a numerical investigation of the system's behavior for a general transportation cost exponent.
Wunder, Michael B.; Jehl, Joseph R.; Stricker, Craig A.
2012-01-01
1. Because stable isotope distributions in organic material vary systematically across energy gradients that exist in ecosystems, community and population structures, and in individual physiological systems, isotope values in animal tissues have helped address a broad range of questions in animal ecology. It follows that every tissue sample provides an isotopic profile that can be used to study dietary or movement histories of individual animals. Interpretations of these profiles depend on the assumption that metabolic pools are isotopically well mixed and in equilibrium with dietary resources prior to tissue synthesis, and they extend to the population level by assuming isotope profiles are identically distributed for animals using the same proximal dietary resource. As these assumptions are never fully met, studying structure in the variance of tissue isotope values from wild populations is informative. 2. We studied variation in δ13C, δ15N, δ2H and δ18O data for feathers from a population of eared grebes (Podiceps nigricollis) that migrate to Great Salt Lake each fall to moult feathers. During this time, they cannot fly and feed almost exclusively on superabundant brine shrimp (Artemia franciscana). The ecological simplicity of this situation minimized the usual spatial and trophic complexities often present in natural studies of feather isotope values. 3. Ranges and variances of isotope values for the feathers were larger than those from previously published studies that report feather isotopic variance, but they were bimodally distributed in all isotope dimensions. Isotope values for proximal dietary resources and local surface water show that some of the feathers we assumed to have been grown locally must have been grown before birds reached isotopic equilibrium with local diet or immediately prior to arrival at Great Salt Lake. 4. Our study provides novel insights about resource use strategies in eared grebes during migration. More generally, it demonstrates the utility of studying variance structures and questioning assumptions implicit in the interpretation of stable isotope data from wild animals.
Analysis of the M-shell spectra emitted by a short-pulse laser-created tantalum plasma
Busquet; Jiang; Coinsertion Markte CY; Kieffer; Klapisch; Bar-Shalom; Bauche-Arnoult; Bachelier
2000-01-01
The spectrum of tantalum emitted by a subpicosecond laser-created plasma, was recorded in the regions of the 3d-5f, 3d-4f, and 3d-4p transitions. The main difference with a nanosecond laser-created plasma spectrum is a broad understructure appearing under the 3d-5f transitions. An interpretation of this feature as a density effect is proposed. The supertransition array model is used for interpreting the spectrum, assuming local thermodynamic equilibrium (LTE) at some effective temperature. An interpretation of the 3d-4f spectrum using the more detailed unresolved transition array formalism, which does not assume LTE, is also proposed. Fitted contributions of the different ionic species differ slightly from the LTE-predicted values.
NASA Technical Reports Server (NTRS)
Hasan, S. S.; Kalkofen, W.
1994-01-01
We examine the equilibrium structure of vertical intense magnetic flux tubes on the Sun. Assuming cylindrical geometry, we solve the magnetohydrostatic equations in the thin flux-tube approximation, allowing for energy transport by radiation and convection. The radiative transfer equation is solved in the six-stream approximation, assuming gray opacity and local thermodynamic equilibrium. This constitutes a significant improvement over a previous study, in which the transfer was solved using the multidimensional generalization of the Eddington approximation. Convection in the flux tube is treated using mixing-length theory, with an additional parameter alpha, characterizing the suppression of convective energy transport in the tube by the strong magnetic field. The equations are solved using the method of partial linearization. We present results for tubes with different values of the magnetic field strength and radius at a fixed depth in the atmosphere. In general, we find that, at equal geometric heights, the temperature on the tube axis, compared to the ambient medium, is higher in the photosphere and lower in the convection zone, with the difference becoming larger for thicker tubes. At equal optical depths the tubes are generally hotter than their surroundings. The results are comparatively insensitive to alpha but depend upon whether radiative and convective energy transport operate simultaneously or in separate layers. A comparison of our results with semiempirical models shows that the temperature and intensity contrast are in broad agreement. However, the field strengths of the flux-tube models are somewhat lower than the values inferred from observations.
Steepest entropy ascent quantum thermodynamic model of electron and phonon transport
NASA Astrophysics Data System (ADS)
Li, Guanchen; von Spakovsky, Michael R.; Hin, Celine
2018-01-01
An advanced nonequilibrium thermodynamic model for electron and phonon transport is formulated based on the steepest-entropy-ascent quantum thermodynamics framework. This framework, based on the principle of steepest entropy ascent (or the equivalent maximum entropy production principle), inherently satisfies the laws of thermodynamics and mechanics and is applicable at all temporal and spatial scales even in the far-from-equilibrium realm. Specifically, the model is proven to recover the Boltzmann transport equations in the near-equilibrium limit and the two-temperature model of electron-phonon coupling when no dispersion is assumed. The heat and mass transport at a temperature discontinuity across a homogeneous interface where the dispersion and coupling of electron and phonon transport are both considered are then modeled. Local nonequilibrium system evolution and nonquasiequilibrium interactions are predicted and the results discussed.
Interfacial thermal transport with strong system-bath coupling: A phonon delocalization effect
NASA Astrophysics Data System (ADS)
He, Dahai; Thingna, Juzar; Cao, Jianshu
2018-05-01
We study the effect of system-bath coupling strength on quantum thermal transport through the interface of two weakly coupled anharmonic molecular chains by using a quantum self-consistent phonon approach. The approach inherently assumes that the two segments (anharmonic molecular chains) are approximately in local thermal equilibrium with respect to the baths that they are connected to and transforms the strongly anharmonic system into an effective harmonic one with a temperature-dependent transmission. Despite the approximations, the approach is ideal for our setup, wherein the weak interfacial coupling guarantees an approximate local thermal equilibrium of each segment and short chain length (less than the phonon mean-free path) ensues from the effective harmonic approximation. Remarkably, the heat current shows a resonant to bi-resonant transition due to the variations in the interfacial coupling and temperature, which is attributed to the delocalization of phonon modes. Delocalization occurs only in the strong system-bath coupling regime and we utilize it to model a thermal rectifier whose ratio can be nonmonotonically tuned not only with the intrinsic system parameters but also with the external temperature.
The Structure of the Local Hot Bubble
NASA Technical Reports Server (NTRS)
Liu, W.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; McCammon, Dan;
2016-01-01
Diffuse X-rays from the Local Galaxy (DXL) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background and study the properties of the Local Hot Bubble (LHB). Based on the results from the DXL mission, we quantified and removed the contribution of SWCX to the diffuse X-ray background measured by the ROSAT All Sky Survey. The cleaned maps were used to investigate the physical properties of the LHB. Assuming thermal ionization equilibrium, we measured a highly uniform temperature distributed around kT = 0.097 keV +/- 0.013 keV (FWHM) +/- 0.006 keV(systematic). We also generated a thermal emission measure map and used it to characterize the three-dimensional (3D) structure of the LHB, which we found to be in good agreement with the structure of the local cavity measured from dust and gas.
On Local Ionization Equilibrium and Disk Winds in QSOs
NASA Astrophysics Data System (ADS)
Pereyra, Nicolas A.
2014-11-01
We present theoretical C IV λλ1548,1550 absorption line profiles for QSOs calculated assuming the accretion disk wind (ADW) scenario. The results suggest that the multiple absorption troughs seen in many QSOs may be due to the discontinuities in the ion balance of the wind (caused by X-rays), rather than discontinuities in the density/velocity structure. The profiles are calculated from a 2.5-dimensional time-dependent hydrodynamic simulation of a line-driven disk wind for a typical QSO black hole mass, a typical QSO luminosity, and for a standard Shakura-Sunyaev disk. We include the effects of ionizing X-rays originating from within the inner disk radius by assuming that the wind is shielded from the X-rays from a certain viewing angle up to 90° ("edge on"). In the shielded region, we assume constant ionization equilibrium, and thus constant line-force parameters. In the non-shielded region, we assume that both the line-force and the C IV populations are nonexistent. The model can account for P-Cygni absorption troughs (produced at edge on viewing angles), multiple absorption troughs (produced at viewing angles close to the angle that separates the shielded region and the non-shielded region), and for detached absorption troughs (produced at an angle in between the first two absorption line types); that is, the model can account for the general types of broad absorption lines seen in QSOs as a viewing angle effect. The steady nature of ADWs, in turn, may account for the steady nature of the absorption structure observed in multiple-trough broad absorption line QSOs. The model parameters are M bh = 109 M ⊙ and L disk = 1047 erg s-1.
Quantum thermalization through entanglement in an isolated many-body system.
Kaufman, Adam M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Preiss, Philipp M; Greiner, Markus
2016-08-19
Statistical mechanics relies on the maximization of entropy in a system at thermal equilibrium. However, an isolated quantum many-body system initialized in a pure state remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We experimentally studied the emergence of statistical mechanics in a quantum state and observed the fundamental role of quantum entanglement in facilitating this emergence. Microscopy of an evolving quantum system indicates that the full quantum state remains pure, whereas thermalization occurs on a local scale. We directly measured entanglement entropy, which assumes the role of the thermal entropy in thermalization. The entanglement creates local entropy that validates the use of statistical physics for local observables. Our measurements are consistent with the eigenstate thermalization hypothesis. Copyright © 2016, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grove, John W.
We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.
Some comments on thermodynamic consistency for equilibrium mixture equations of state
Grove, John W.
2018-03-28
We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.
Complexity analysis of dual-channel game model with different managers' business objectives
NASA Astrophysics Data System (ADS)
Li, Ting; Ma, Junhai
2015-01-01
This paper considers dual-channel game model with bounded rationality, using the theory of bifurcations of dynamical system. The business objectives of retailers are assumed to be different, which is closer to reality than previous studies. We study the local stable region of Nash equilibrium point and find that business objectives can expand the stable region and play an important role in price strategy. One interesting finding is that a fiercer competition tends to stabilize the Nash equilibrium. Simulation shows the complex behavior of two dimensional dynamic system, we find period doubling bifurcation and chaos phenomenon. We measure performances of the model in different period by using the index of average profit. The results show that unstable behavior in economic system is often an unfavorable outcome. So this paper discusses the application of adaptive adjustment mechanism when the model exhibits chaotic behavior and then allows the retailers to eliminate the negative effects.
A Hierarchy of Heuristic-Based Models of Crowd Dynamics
NASA Astrophysics Data System (ADS)
Degond, P.; Appert-Rolland, C.; Moussaïd, M.; Pettré, J.; Theraulaz, G.
2013-09-01
We derive a hierarchy of kinetic and macroscopic models from a noisy variant of the heuristic behavioral Individual-Based Model of Ngai et al. (Disaster Med. Public Health Prep. 3:191-195,
Decoupling of mass flux and turbulent wind fluctuations in drifting snow
NASA Astrophysics Data System (ADS)
Paterna, E.; Crivelli, P.; Lehning, M.
2016-05-01
The wind-driven redistribution of snow has a significant impact on the climate and mass balance of polar and mountainous regions. Locally, it shapes the snow surface, producing dunes and sastrugi. Sediment transport has been mainly represented as a function of the wind strength, and the two processes assumed to be stationary and in equilibrium. The wind flow in the atmospheric boundary layer is unsteady and turbulent, and drifting snow may never reach equilibrium. Our question is therefore: what role do turbulent eddies play in initiating and maintaining drifting snow? To investigate the interaction between drifting snow and turbulence experimentally, we conducted several wind tunnel measurements of drifting snow over naturally deposited snow covers. We observed a coupling between snow transport and turbulent flow only in a weak saltation regime. In stronger regimes it self-organizes developing its own length scales and efficiently decoupling from the wind forcing.
A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munafò, A., E-mail: munafo@illinois.edu; Alfuhaid, S. A., E-mail: alfuhai2@illinois.edu; Panesi, M., E-mail: mpanesi@illinois.edu
2015-10-07
The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled systemmore » of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.« less
Bond-orientational order in liquid Si
NASA Technical Reports Server (NTRS)
Wang, Z. Q.; Stroud, D.
1991-01-01
Bond-orientational order in liquid Si via Monte Carlo simulation in conjuncation with empirical two- and three-body potentials of the form proposed by Stillinger and Weber are studied. Bond-orientational order (BOO) is described in terms of combinations of spherical harmonic functions. Liquid Si is found to have pronounced short-range BOO corresponding to l = 3, as expected for a structure with local tetrahedral order. No long-range BOO is found either in the equilibrium or the supercooled liquid. When the three-body potential is artificially removed, the tetrahedral bond-orientation order disappears and the liquid assumes a close-packed structure.
Theoretical study of gas hydrate decomposition kinetics--model development.
Windmeier, Christoph; Oellrich, Lothar R
2013-10-10
In order to provide an estimate of the order of magnitude of intrinsic gas hydrate dissolution and dissociation kinetics, the "Consecutive Desorption and Melting Model" (CDM) is developed by applying only theoretical considerations. The process of gas hydrate decomposition is assumed to comprise two consecutive and repetitive quasi chemical reaction steps. These are desorption of the guest molecule followed by local solid body melting. The individual kinetic steps are modeled according to the "Statistical Rate Theory of Interfacial Transport" and the Wilson-Frenkel approach. All missing required model parameters are directly linked to geometric considerations and a thermodynamic gas hydrate equilibrium model.
NASA Astrophysics Data System (ADS)
Koskinen, Johan; Lomi, Alessandro
2013-05-01
We study the evolution of the network of foreign direct investment (FDI) in the international electricity industry during the period 1994-2003. We assume that the ties in the network of investment relations between countries are created and deleted in continuous time, according to a conditional Gibbs distribution. This assumption allows us to take simultaneously into account the aggregate predictions of the well-established gravity model of international trade as well as local dependencies between network ties connecting the countries in our sample. According to the modified version of the gravity model that we specify, the probability of observing an investment tie between two countries depends on the mass of the economies involved, their physical distance, and the tendency of the network to self-organize into local configurations of network ties. While the limiting distribution of the data generating process is an exponential random graph model, we do not assume the system to be in equilibrium. We find evidence of the effects of the standard gravity model of international trade on evolution of the global FDI network. However, we also provide evidence of significant dyadic and extra-dyadic dependencies between investment ties that are typically ignored in available research. We show that local dependencies between national electricity industries are sufficient for explaining global properties of the network of foreign direct investments. We also show, however, that network dependencies vary significantly over time giving rise to a time-heterogeneous localized process of network evolution.
NASA Astrophysics Data System (ADS)
Tirone, Massimiliano
2018-03-01
In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.
Non-local thermodynamic equilibrium 1.5D modeling of red giant stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Mitchell E.; Short, C. Ian, E-mail: myoung@ap.smu.ca
Spectra for two-dimensional (2D) stars in the 1.5D approximation are created from synthetic spectra of one-dimensional (1D) non-local thermodynamic equilibrium (NLTE) spherical model atmospheres produced by the PHOENIX code. The 1.5D stars have the spatially averaged Rayleigh-Jeans flux of a K3-4 III star while varying the temperature difference between the two 1D component models (ΔT {sub 1.5D}) and the relative surface area covered. Synthetic observable quantities from the 1.5D stars are fitted with quantities from NLTE and local thermodynamic equilibrium (LTE) 1D models to assess the errors in inferred T {sub eff} values from assuming horizontal homogeneity and LTE. Fivemore » different quantities are fit to determine the T {sub eff} of the 1.5D stars: UBVRI photometric colors, absolute surface flux spectral energy distributions (SEDs), relative SEDs, continuum normalized spectra, and TiO band profiles. In all cases except the TiO band profiles, the inferred T {sub eff} value increases with increasing ΔT {sub 1.5D}. In all cases, the inferred T {sub eff} value from fitting 1D LTE quantities is higher than from fitting 1D NLTE quantities and is approximately constant as a function of ΔT {sub 1.5D} within each case. The difference between LTE and NLTE for the TiO bands is caused indirectly by the NLTE temperature structure of the upper atmosphere, as the bands are computed in LTE. We conclude that the difference between T {sub eff} values derived from NLTE and LTE modeling is relatively insensitive to the degree of the horizontal inhomogeneity of the star being modeled and largely depends on the observable quantity being fit.« less
Global Properties of Fully Convective Accretion Disks from Local Simulations
NASA Astrophysics Data System (ADS)
Bodo, G.; Cattaneo, F.; Mignone, A.; Ponzo, F.; Rossi, P.
2015-08-01
We present an approach to deriving global properties of accretion disks from the knowledge of local solutions derived from numerical simulations based on the shearing box approximation. The approach consists of a two-step procedure. First, a local solution valid for all values of the disk height is constructed by piecing together an interior solution obtained numerically with an analytical exterior radiative solution. The matching is obtained by assuming hydrostatic balance and radiative equilibrium. Although in principle the procedure can be carried out in general, it simplifies considerably when the interior solution is fully convective. In these cases, the construction is analogous to the derivation of the Hayashi tracks for protostars. The second step consists of piecing together the local solutions at different radii to obtain a global solution. Here we use the symmetry of the solutions with respect to the defining dimensionless numbers—in a way similar to the use of homology relations in stellar structure theory—to obtain the scaling properties of the various disk quantities with radius.
THE STRUCTURE OF THE LOCAL HOT BUBBLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W.; Galeazzi, M.; Uprety, Y.
Diffuse X-rays from the Local Galaxy ( DXL ) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background and study the properties of the Local Hot Bubble (LHB). Based on the results from the DXL mission, we quantified and removed the contribution of SWCX to the diffuse X-ray background measured by the ROSAT All Sky Survey. The “cleaned” maps were used to investigate the physical properties of the LHB. Assuming thermal ionization equilibrium, we measured a highly uniform temperature distributed around kT = 0.097 keV ± 0.013 keV (FWHM) ± 0.006more » keV (systematic). We also generated a thermal emission measure map and used it to characterize the three-dimensional (3D) structure of the LHB, which we found to be in good agreement with the structure of the local cavity measured from dust and gas.« less
Steady-state heat transport: Ballistic-to-diffusive with Fourier's law
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maassen, Jesse, E-mail: jmaassen@purdue.edu; Lundstrom, Mark
2015-01-21
It is generally understood that Fourier's law does not describe ballistic phonon transport, which is important when the length of a material is similar to the phonon mean-free-path. Using an approach adapted from electron transport, we demonstrate that Fourier's law and the heat equation do capture ballistic effects, including temperature jumps at ideal contacts, and are thus applicable on all length scales. Local thermal equilibrium is not assumed, because allowing the phonon distribution to be out-of-equilibrium is important for ballistic and quasi-ballistic transport. The key to including the non-equilibrium nature of the phonon population is to apply the proper boundarymore » conditions to the heat equation. Simple analytical solutions are derived, showing that (i) the magnitude of the temperature jumps is simply related to the material properties and (ii) the observation of reduced apparent thermal conductivity physically stems from a reduction in the temperature gradient and not from a reduction in actual thermal conductivity. We demonstrate how our approach, equivalent to Fourier's law, easily reproduces results of the Boltzmann transport equation, in all transport regimes, even when using a full phonon dispersion and mean-free-path distribution.« less
Wave propagation in a quasi-chemical equilibrium plasma
NASA Technical Reports Server (NTRS)
Fang, T.-M.; Baum, H. R.
1975-01-01
Wave propagation in a quasi-chemical equilibrium plasma is studied. The plasma is infinite and without external fields. The chemical reactions are assumed to result from the ionization and recombination processes. When the gas is near equilibrium, the dominant role describing the evolution of a reacting plasma is played by the global conservation equations. These equations are first derived and then used to study the small amplitude wave motion for a near-equilibrium situation. Nontrivial damping effects have been obtained by including the conduction current terms.
Graffelman, Jan; Weir, Bruce S
2018-02-01
Standard statistical tests for equality of allele frequencies in males and females and tests for Hardy-Weinberg equilibrium are tightly linked by their assumptions. Tests for equality of allele frequencies assume Hardy-Weinberg equilibrium, whereas the usual chi-square or exact test for Hardy-Weinberg equilibrium assume equality of allele frequencies in the sexes. In this paper, we propose ways to break this interdependence in assumptions of the two tests by proposing an omnibus exact test that can test both hypotheses jointly, as well as a likelihood ratio approach that permits these phenomena to be tested both jointly and separately. The tests are illustrated with data from the 1000 Genomes project. © 2017 The Authors Genetic Epidemiology Published by Wiley Periodicals, Inc.
Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium
NASA Astrophysics Data System (ADS)
Chen, Chiping; Wei, Haofei
2010-11-01
Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.
Wall ablation of heated compound-materials into non-equilibrium discharge plasmas
NASA Astrophysics Data System (ADS)
Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing
2017-02-01
The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results show a non-equilibrium region near the plasma-wall interaction region and this indicates the need for the consideration of the influence of the possible departure from LTE in the plasma bulk on the determination of ablation rate.
Galactic evolution of copper in the light of NLTE computations
NASA Astrophysics Data System (ADS)
Andrievsky, S.; Bonifacio, P.; Caffau, E.; Korotin, S.; Spite, M.; Spite, F.; Sbordone, L.; Zhukova, A. V.
2018-01-01
We have developed a model atom for Cu with which we perform statistical equilibrium computations that allow us to compute the line formation of Cu I lines in stellar atmospheres without assuming local thermodynamic equilibrium (LTE). We validate this model atom by reproducing the observed line profiles of the Sun, Procyon and 11 metal-poor stars. Our sample of stars includes both dwarfs and giants. Over a wide range of stellar parameters, we obtain excellent agreement among different Cu I lines. The 11 metal-poor stars have iron abundances in the range - 4.2 ≤ [Fe/H] ≤ -1.4, the weighted mean of the [Cu/Fe] ratios is -0.22 dex, with a scatter of -0.15 dex. This is very different from the results from LTE analysis (the difference between NLTE and LTE abundances reaches 1 dex) and in spite of the small size of our sample, it prompts for a revision of the Galactic evolution of Cu.
NASA Astrophysics Data System (ADS)
Liu, Zhiyuan; Meng, Qiang
2014-05-01
This paper focuses on modelling the network flow equilibrium problem on a multimodal transport network with bus-based park-and-ride (P&R) system and congestion pricing charges. The multimodal network has three travel modes: auto mode, transit mode and P&R mode. A continuously distributed value-of-time is assumed to convert toll charges and transit fares to time unit, and the users' route choice behaviour is assumed to follow the probit-based stochastic user equilibrium principle with elastic demand. These two assumptions have caused randomness to the users' generalised travel times on the multimodal network. A comprehensive network framework is first defined for the flow equilibrium problem with consideration of interactions between auto flows and transit (bus) flows. Then, a fixed-point model with unique solution is proposed for the equilibrium flows, which can be solved by a convergent cost averaging method. Finally, the proposed methodology is tested by a network example.
Equilibrium and stability of a satellite influenced by gravitational and aerodynamic torques
NASA Technical Reports Server (NTRS)
Galaboff, Z. J.
1981-01-01
A circular orbit and constant atmospheric density was assumed. A computer program which determines equilibrium attitudes and the associated eigenvalues of these attitudes is presented. Demonstration of the use of this program was made using the former Skylab satellite as an example.
NASA Astrophysics Data System (ADS)
Århammar, C.; Moyses Araujo, C.; Rao, K. V.; Norgren, Susanne; Johansson, Börje; Ahuja, Rajeev
2010-10-01
In this work, a first-principles study of the energetic and magnetic properties of V-doped MgO is presented, where both the bulk and (001) surface were investigated. It is found that V assumes a high-spin state with a local moment of about 3μB . In the bulk, the interaction between these local moments is very short ranged and the antiferromagnetic (AFM) ordering is energetically more favorable. The formation of V-VMg-V defect clusters is found to weaken the antiferromagnetic coupling in bulk MgO, degenerating the AFM and ferromagnetic state. However, these clusters are high in energy and will not form at equilibrium conditions. By employing the GGA+U approach, with U=5eV , the V3d states on the (001) surface are shifted below the Fermi level, and a reasonable surface geometry was achieved. A calculation with the hybrid HSE03 functional, contradicts the GGA+U results, indicating that the V-MgO surface should be metallic at this concentration. From the energetics it is concluded that, at the modeled concentration, VxOy phases will limit the solubility of V in MgO at equilibrium conditions, which is in agreement with previous experimental findings. In order to achieve higher concentrations of V, an off-equilibrium synthesis method is needed. Finally, we find that the formation energy of V at the surface is considerably higher than in the bulk and V is thus expected to diffuse from the surface into the bulk of MgO.
An approximate solution for interlaminar stresses in laminated composites: Applied mechanics program
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Herakovich, Carl T.
1992-01-01
An approximate solution for interlaminar stresses in finite width, laminated composites subjected to uniform extensional, and bending loads is presented. The solution is based upon the principle of minimum complementary energy and an assumed, statically admissible stress state, derived by considering local material mismatch effects and global equilibrium requirements. The stresses in each layer are approximated by polynomial functions of the thickness coordinate, multiplied by combinations of exponential functions of the in-plane coordinate, expressed in terms of fourteen unknown decay parameters. Imposing the stationary condition of the laminate complementary energy with respect to the unknown variables yields a system of fourteen non-linear algebraic equations for the parameters. Newton's method is implemented to solve this system. Once the parameters are known, the stresses can be easily determined at any point in the laminate. Results are presented for through-thickness and interlaminar stress distributions for angle-ply, cross-ply (symmetric and unsymmetric laminates), and quasi-isotropic laminates subjected to uniform extension and bending. It is shown that the solution compares well with existing finite element solutions and represents an improved approximate solution for interlaminar stresses, primarily at interfaces where global equilibrium is satisfied by the in-plane stresses, but large local mismatch in properties requires the presence of interlaminar stresses.
NASA Astrophysics Data System (ADS)
Shogin, Dmitry; Amund Amundsen, Per
2016-10-01
We test the physical relevance of the full and the truncated versions of the Israel-Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.
Studying non-equilibrium many-body dynamics using one-dimensional Bose gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langen, Tim; Gring, Michael; Kuhnert, Maximilian
2014-12-04
Non-equilibrium dynamics of isolated quantum many-body systems play an important role in many areas of physics. However, a general answer to the question of how these systems relax is still lacking. We experimentally study the dynamics of ultracold one-dimensional (1D) Bose gases. This reveals the existence of a quasi-steady prethermalized state which differs significantly from the thermal equilibrium of the system. Our results demonstrate that the dynamics of non-equilibrium quantum many-body systems is a far richer process than has been assumed in the past.
Stock markets as Minority Games: cognitive heterogeneity and equilibrium emergence
NASA Astrophysics Data System (ADS)
Brandouy, O.
2005-04-01
Standard finance theory generally assumes homogeneous agents relatively to their preferences, heuristics and investment strategies. We propose to study, in an agent-based simulation, the emergence of equilibrium under various heterogeneous conditions. Market interaction is stylized with the Minority Game representation. It is shown that inductive rational equilibrium emerges even though agents do not share the same representations of the value. This may lead to consider again the roots of EMH and REH.
Stability of Electrons in the Virtual Cathode Region of an IEC
NASA Astrophysics Data System (ADS)
Kim, Hyng-Jin; Miley, George; Momota, Hiromu
2003-04-01
In the Inertial Electrostatic Confinement (IEC) device, electrons are confined inside a virtual anode that in turn confines ions. Prior stability studies [1, 2] have considered systems in which one species is electrostatically confined by the other, and either or both species are out of local thermal equilibrium. In the present research, electron stability in the virtual cathode region of an ion injected IEC is being studied. The ion density in an IEC is non-uniform due to the radial electrostatic potential, and increases toward the center region. The potential near the virtual cathode is assumed to have a parabolic shape and is determined assuming that the net space charge density is constant in that region. The corresponding ion distribution function is assumed to have the form f = C [sigma] (H W) /L^0.5 and the electron response is taken to be diabatic. Then using a variational principle after linearizing the hydrodynamic equations, stability properties of the electron layer are determined. Results will be presented as a function of injected ion/electron current ratios. 1. L. Chacon and D. C. Barnes, Phys. Plasma 7, 4774 (2000). 2. D. C. Barnes, L. Chacon, and J. M. Finn, Phys. Plasmas 9, 4448 (2002).
GLOBAL PROPERTIES OF FULLY CONVECTIVE ACCRETION DISKS FROM LOCAL SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodo, G.; Ponzo, F.; Rossi, P.
2015-08-01
We present an approach to deriving global properties of accretion disks from the knowledge of local solutions derived from numerical simulations based on the shearing box approximation. The approach consists of a two-step procedure. First, a local solution valid for all values of the disk height is constructed by piecing together an interior solution obtained numerically with an analytical exterior radiative solution. The matching is obtained by assuming hydrostatic balance and radiative equilibrium. Although in principle the procedure can be carried out in general, it simplifies considerably when the interior solution is fully convective. In these cases, the construction ismore » analogous to the derivation of the Hayashi tracks for protostars. The second step consists of piecing together the local solutions at different radii to obtain a global solution. Here we use the symmetry of the solutions with respect to the defining dimensionless numbers—in a way similar to the use of homology relations in stellar structure theory—to obtain the scaling properties of the various disk quantities with radius.« less
Glavatskiy, K S
2015-10-28
Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.
Clean Floquet Time Crystals: Models and Realizations in Cold Atoms
NASA Astrophysics Data System (ADS)
Huang, Biao; Wu, Ying-Hai; Liu, W. Vincent
2018-03-01
Time crystals, a phase showing spontaneous breaking of time-translation symmetry, has been an intriguing subject for systems far away from equilibrium. Recent experiments found such a phase in both the presence and the absence of localization, while in theories localization by disorder is usually assumed a priori. In this work, we point out that time crystals can generally exist in systems without disorder. A series of clean quasi-one-dimensional models under Floquet driving are proposed to demonstrate this unexpected result in principle. Robust time crystalline orders are found in the strongly interacting regime along with the emergent integrals of motion in the dynamical system, which can be characterized by level statistics and the out-of-time-ordered correlators. We propose two cold atom experimental schemes to realize the clean Floquet time crystals, one by making use of dipolar gases and another by synthetic dimensions.
Mott Time Crystal: Models and Realizations in Cold Atoms
NASA Astrophysics Data System (ADS)
Huang, Biao; Wu, Ying-Hai; Liu, W. Vincent
2017-04-01
Time crystals, a phase showing spontaneously breaking of time-translation symmetry, has been an intriguing subject for systems far away from equilibrium. Recent experiments found such a phase both in the presence and absence of localization, while in theories localization is usually assumed a priori. In this work, we point out that time crystals can generally exist in systems without disorder and is not in a pre-thermal state. A series of driven interacting ladder models are proposed to demonstrate this unexpected result in principle. Robust time crystalline orders are found in the Mott regime due to the emergent integrals of motion in the dynamical system, which can be characterized by the out-of-time-order correlators (OTOC). We propose two cold atom experimental schemes to realize the Mott time crystals, one by making use of dipolar gases and another by synthetic dimensions. U.S. ARO (W911NF-11-1-0230), AFOSR (FA9550-16-1-0006).
The structure of evaporating and combusting sprays: Measurements and predictions
NASA Technical Reports Server (NTRS)
Shuen, J. S.; Solomon, A. S. P.; Faeth, F. M.
1983-01-01
The structure of particle-laden jets and nonevaporating and evaporating sprays was measured in order to evaluate models of these processes. Three models are being evaluated: (1) a locally homogeneous flow model, where slip between the phases is neglected and the flow is assumed to be in local thermodynamic equilibrium; (2) a deterministic separated flow model, where slip and finite interphase transport rates are considered but effects of particle/drop dispersion by turbulence and effects of turbulence on interphase transport rates are ignored; and (3) a stochastic separated flow model, where effects of interphase slip, turbulent dispersion and turbulent fluctuations are considered using random sampling for turbulence properties in conjunction with random-walk computations for particle motion. All three models use a k-e-g turbulence model. All testing and data reduction are completed for the particle laden jets. Mean and fluctuating velocities of the continuous phase and mean mixture fraction were measured in the evaporating sprays.
Possible Explanation for Cancer in Rats due to Cell Phone Radio Frequency Radiation
NASA Astrophysics Data System (ADS)
Feldman, Bernard J.
Very recently, the National Toxicology Program reported a correlation between exposure to whole body 900 MHz radio frequency radiation and cancer in the brains and hearts of Sprague Dawley male rats. Assuming that the National Toxicology Program is statistically significant, I propose the following explanation for these results. The neurons around the brain and heart form closed electrical circuits and, following Faraday's Law, 900 MHz radio frequency radiation induces 900 MHz electrical currents in these neural circuits. In turn, these 900 MHz currents in the neural circuits generate sufficient localized heat in the neural cells to shift the equilibrium concentration of carcinogenic radicals to higher levels and thus, to higher incidences of cancer.
Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems
Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul; ...
2017-08-28
Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less
Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul
Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less
Effects of static equilibrium and higher-order nonlinearities on rotor blade stability in hover
NASA Technical Reports Server (NTRS)
Crespodasilva, Marcelo R. M.; Hodges, Dewey H.
1988-01-01
The equilibrium and stability of the coupled elastic lead/lag, flap, and torsion motion of a cantilever rotor blade in hover are addressed, and the influence of several higher-order terms in the equations of motion of the blade is determined for a range of values of collective pitch. The blade is assumed to be untwisted and to have uniform properties along its span. In addition, chordwise offsets between its elastic, tension, mass, and aerodynamic centers are assumed to be negligible for simplicity. The aerodynamic forces acting on the blade are modeled using a quasi-steady, strip-theory approximation.
Relativistic distribution function for particles with spin at local thermodynamical equilibrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becattini, F., E-mail: becattini@fi.infn.it; INFN Sezione di Firenze, Florence; Universität Frankfurt, Frankfurt am Main
2013-11-15
We present an extension of relativistic single-particle distribution function for weakly interacting particles at local thermodynamical equilibrium including spin degrees of freedom, for massive spin 1/2 particles. We infer, on the basis of the global equilibrium case, that at local thermodynamical equilibrium particles acquire a net polarization proportional to the vorticity of the inverse temperature four-vector field. The obtained formula for polarization also implies that a steady gradient of temperature entails a polarization orthogonal to particle momentum. The single-particle distribution function in momentum space extends the so-called Cooper–Frye formula to particles with spin 1/2 and allows us to predict theirmore » polarization in relativistic heavy ion collisions at the freeze-out. -- Highlights: •Single-particle distribution function in local thermodynamical equilibrium with spin. •Polarization of spin 1/2 particles in a fluid at local thermodynamical equilibrium. •Prediction of a new effect: a steady gradient of temperature induces a polarization. •Application to the calculation of polarization in relativistic heavy ion collisions.« less
Local Nash equilibrium in social networks.
Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong
2014-08-29
Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.
Local Nash Equilibrium in Social Networks
Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong
2014-01-01
Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures. PMID:25169150
Local Nash Equilibrium in Social Networks
NASA Astrophysics Data System (ADS)
Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong
2014-08-01
Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glavatskiy, K. S.
Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can bemore » derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.« less
Transport of polar and non-polar volatile compounds in polystyrene foam and oriented strand board
NASA Astrophysics Data System (ADS)
Yuan, Huali; Little, John C.; Hodgson, Alfred T.
Transport of hexanal and styrene in polystyrene foam (PSF) and oriented strand board (OSB) was characterized. A microbalance was used to measure sorption/desorption kinetics and equilibrium data. While styrene transport in PSF can be described by Fickian diffusion with a symmetrical and reversible sorption/desorption process, hexanal transport in both PSF and OSB exhibited significant hysteresis, with desorption being much slower than sorption. A porous media diffusion model that assumes instantaneous local equilibrium governed by a nonlinear Freundlich isotherm was found to explain the hysteresis in hexanal transport. A new nonlinear sorption and porous diffusion emissions model was, therefore, developed and partially validated using independent chamber data. The results were also compared to the more conventional linear Fickian-diffusion emissions model. While the linear emissions model predicts styrene emissions from PSF with reasonable accuracy, it substantially underestimates the rate of hexanal emissions from OSB. Although further research and more rigorous validation is needed, the new nonlinear emissions model holds promise for predicting emissions of polar VOCs such as hexanal from porous building materials.
Phase-field simulations of velocity selection in rapidly solidified binary alloys
NASA Astrophysics Data System (ADS)
Fan, Jun; Greenwood, Michael; Haataja, Mikko; Provatas, Nikolas
2006-09-01
Time-dependent simulations of two-dimensional isothermal Ni-Cu dendrites are simulated using a phase-field model solved with a finite-difference adaptive mesh refinement technique. Dendrite tip velocity selection is examined and found to exhibit a transition between two markedly different regimes as undercooling is increased. At low undercooling, the dendrite tip growth rate is consistent with the kinetics of the classical Stefan problem, where the interface is assume to be in local equilibrium. At high undercooling, the growth velocity selected approaches a linear dependence on melt undercooling, consistent with the continuous growth kinetics of Aziz and with a one-dimensional steady-state phase-field asymptotic analysis of Ahmad [Phys. Rev. E 58, 3436 (1998)]. Our simulations are also consistent with other previously observed behaviors of dendritic growth as undercooling is increased. These include the transition of dendritic morphology to absolute stability and nonequilibrium solute partitioning. Our results show that phase-field models of solidification, which inherently contain a nonzero interface width, can be used to study the dynamics of complex solidification phenomena involving both equilibrium and nonequilibrium interface growth kinetics.
Modeling cesium ion exchange on fixed-bed columns of crystalline silicotitanate granules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latheef, I.M.; Huckman, M.E.; Anthony, R.G.
2000-05-01
A mathematical model is presented to simulate Cs exchange in fixed-bed columns of a novel crystalline silicotitanate (CST) material, UOP IONSIV IE-911. A local equilibrium is assumed between the macropores and the solid crystals for the particle material balance. Axial dispersed flow and film mass-transfer resistance are incorporated into the column model. Cs equilibrium isotherms and diffusion coefficients were measured experimentally, and dispersion and film mass-transfer coefficients were estimated from correlations. Cs exchange column experiments were conducted in 5--5.7 M Na solutions and simulated using the proposed model. Best-fit diffusion coefficients from column simulations were compared with previously reported batchmore » values of Gu et al. and Huckman. Cs diffusion coefficients for the column were between 2.5 and 5.0 x 10{sup {minus}11} m{sup 2}/s for 5--5.7 M Na solutions. The effect of the isotherm shape on the Cs diffusion coefficient was investigated. The proposed model provides good fits to experimental data and may be utilized in designing commercial-scale units.« less
The numerical analysis of the rotational theory for the formation of lunar globules
NASA Technical Reports Server (NTRS)
Ross, J.; Bastin, J.; Stewart, K.
1982-01-01
The morphology of lunar globules is studied through the application of a numerical analysis of their rotation in space during cooling. It is assumed that molten rock is shot from the surface of the moon, solidifies in space above the moon and then falls back to the surface. The rotational theory studied makes the following assumptions: the volume of the molten rock does not change during cooling; the angular momentum is conserved; there are no internal motions because of the high viscosity of the molten rock, i.e., in equilibrium the globule is rotating as a rigid body; finally, the kinetic reaction of the globule to the forces is fast relative to the rate of cooling, i.e., the globule reaches equilibrium at constant energy. These assumptions are subjected to numerical analysis yielding good agreement between the actual globule shapes and the numerical results, but leaving some doubt as to the validity of the rotational theory due to the failure to establish the existence of true local minima and an incomplete understanding of the thermokentics.
A Mathematical Model of Anthrax Transmission in Animal Populations.
Saad-Roy, C M; van den Driessche, P; Yakubu, Abdul-Aziz
2017-02-01
A general mathematical model of anthrax (caused by Bacillus anthracis) transmission is formulated that includes live animals, infected carcasses and spores in the environment. The basic reproduction number [Formula: see text] is calculated, and existence of a unique endemic equilibrium is established for [Formula: see text] above the threshold value 1. Using data from the literature, elasticity indices for [Formula: see text] and type reproduction numbers are computed to quantify anthrax control measures. Including only herbivorous animals, anthrax is eradicated if [Formula: see text]. For these animals, oscillatory solutions arising from Hopf bifurcations are numerically shown to exist for certain parameter values with [Formula: see text] and to have periodicity as observed from anthrax data. Including carnivores and assuming no disease-related death, anthrax again goes extinct below the threshold. Local stability of the endemic equilibrium is established above the threshold; thus, periodic solutions are not possible for these populations. It is shown numerically that oscillations in spore growth may drive oscillations in animal populations; however, the total number of infected animals remains about the same as with constant spore growth.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Jackisch, Conrad
2016-04-01
Water storage in the unsaturated zone is controlled by capillary forces which increase nonlinearly with decreasing pore size, because water acts as a wetting fluid in soil. The standard approach to represent capillary and gravity controlled soil water dynamics is the Darcy-Richards equation in combination with suitable soil water characteristics. This continuum model essentially assumes capillarity controlled diffusive fluxes to dominate soil water dynamics under local thermodynamic equilibrium conditions. Today we know that the assumptions of local equilibrium conditions e.g. and a mainly diffusive flow are often not appropriate, particularly during rainfall events in structured soils. Rapid or preferential flow imply a strong local disequilibrium and imperfect mixing between a fast fraction of soil water, traveling in interconnected coarse pores or non-capillary macropores, and the slower diffusive flow in finer fractions of the pore space. Although various concepts have been proposed to overcome the inability of the Darcy - Richards concept to cope with not-well mixed preferential flow, we still lack an approach that is commonly accepted. Notwithstanding the listed short comings, one should not mistake the limitations of the Richards equation with non-importance of capillary forces in soil. Without capillarity infiltrating rainfall would drain into groundwater bodies, leaving an empty soil as the local equilibrium state - there would be no soil water dynamics at all, probably even no terrestrial vegetation without capillary forces. Better alternatives for the Darcy-Richards approach are thus highly desirable, as long they preserve the grain of "truth" about capillarity as first order control. Here we propose such an alternative approach to simulate soil moisture dynamics in a stochastic and yet physical way. Soil water is represented by particles of constant mass, which travel according to the Itô form of the Fokker Planck equation. The model concept builds on established soil physics by estimating the drift velocity and the diffusion term based on the soil water characteristics. A naive random walk, which assumes all water particles to move at the same drift velocity and diffusivity, overestimated depletion of soil moisture gradients compared to a Richards' solver within three distinctly different soils. This is because soil water and hence the corresponding water particles in smaller pores size fractions, are, due to the non-linear decrease of soil hydraulic conductivity with decreasing soil moisture, much less mobile. After accounting for this subscale variability of particle mobility, the particle model and a Richards' solver performed highly similar during simulated wetting and drying circles in three distinctly different soils. Alternatively, we tested a computational less approach, assuming only the 10 or 20% of the fastest particles as mobile, while treating the remaining particles located in smaller pores sizes as immobile. For instance in a sandy soil a mobile fraction of 20% revealed almost identical results as the full mobility model and performed even closer to the Richards solver. In this context we also compared the cases of perfect mixing and no mixing between mobile and immobile water particles between different time steps. The second option was clearly superior with respect to match simulations with the Richards' solver. The particle model is hence a suitable tool to "unmask" a) inherent implications of the Darcy-Richards concept on the fraction of soil water that actually contributes to soil water dynamics and b) the inherent very limited degrees of freedom for mixing between mobile and immobile water fractions. A main asset of the particle based approach is that the assumption of local equilibrium equation during infiltration may be easily released. We tested this idea in a straight forward manner, by treating infiltrating event water particles as second particle type which travel initially, mainly gravity driven, in the largest pore fraction at maximum drift, and yet experience a slow diffusive mixing with the pre-event water particles within a characteristic mixing time. Simulations with the particle model in the non-equilibrium mode were a) rather sensitive to the coefficient describing mixing of event water particles and b) clearly outperformed the Richards model with respect to match observed soil dynamics in a real world benchmark. The proposed non-linear random walk of water particles is, hence, an easy to implement alternative for simulating soil moisture dynamics in the unsaturated, which preserves the influence of capillarity and makes use of established soil physics. The approach is particularly promising to deal with preferential flow and transport of solutes and to explore transit time distributions.
NASA Astrophysics Data System (ADS)
Buonomo, B.; Ercole, D.; Manca, O.; Nardini, S.
2017-01-01
A numerical investigation on Latent Heat Thermal Energy Storage System (LHTESS) based on a phase change material (PCM) is accomplished. The PCM is a pure paraffin wax with a low thermal conductivity. An aluminum metal foam is employed to enhance the PCM thermal behaviors. The geometry is a vertical shell-and-tube LHTESS made with two concentric aluminum tubes. The internal surface of the hollow cylinder is assumed at a constant temperature above the melting temperature of the PCM to simulate the heat transfer from a hot fluid. The external surface is assumed adiabatic. The phase change of the PCM is modelled with the enthalpy porosity theory while the metal foam is considered as a porous media in Darcy-Forchheimer assumption and the Boussinesq approximation is employed. Local thermal non-equilibrium (LTNE) model is assumed. The results are compared in terms of melting time and temperature fields as a function of time for the charging and discharging phases for different porosities and an assigned pore per inch. Results show that the metal foam improves significantly the heat transfer in the LHTESS giving a faster phase change process with respect to pure PCM, reducing the melting time more than one order of magnitude.
NASA Astrophysics Data System (ADS)
Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe
2016-09-01
The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.
Benchmarking gyrokinetic simulations in a toroidal flux-tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.; Parker, S. E.; Wan, W.
2013-09-15
A flux-tube model is implemented in the global turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] in order to facilitate benchmarking with Eulerian codes. The global GEM assumes the magnetic equilibrium to be completely given. The initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, etc.) to be equal to the values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. This implementationmore » shows disagreement with Eulerian codes in linear simulations. An alternative flux-tube model based on a complete local equilibrium solution of the Grad-Shafranov equation [J. Candy, Plasma Phys. Controlled Fusion 51, 105009 (2009)] is then implemented. This results in better agreement between Eulerian codes and the particle-in-cell (PIC) method. The PIC algorithm based on the v{sub ||}-formalism [J. Reynders, Ph.D. dissertation, Princeton University, 1992] and the gyrokinetic ion/fluid electron hybrid model with kinetic electron closure [Y. Chan and S. E. Parker, Phys. Plasmas 18, 055703 (2011)] are also implemented in the flux-tube geometry and compared with the direct method for both the ion temperature gradient driven modes and the kinetic ballooning modes.« less
The Global Evolution of Giant Molecular Clouds. I. Model Formulation and Quasi-Equilibrium Behavior
NASA Astrophysics Data System (ADS)
Krumholz, Mark R.; Matzner, Christopher D.; McKee, Christopher F.
2006-12-01
We present semianalytic dynamical models for giant molecular clouds evolving under the influence of H II regions launched by newborn star clusters. In contrast to previous work, we neither assume that clouds are in virial or energetic equilibrium, nor do we ignore the effects of star formation feedback. The clouds, which we treat as spherical, can expand and contract homologously. Photoionization drives mass ejection; the recoil of cloud material both stirs turbulent motions and leads to an effective confining pressure. The balance between these effects and the decay of turbulent motions through isothermal shocks determines clouds' dynamical and energetic evolution. We find that for realistic values of the rates of turbulent dissipation, photoevaporation, and energy injection by H II regions, the massive clouds where most molecular gas in the Galaxy resides live for a few crossing times, in good agreement with recent observational estimates that large clouds in Local Group galaxies survive roughly 20-30 Myr. During this time clouds remain close to equilibrium, with virial parameters of 1-3 and column densities near 1022 H atoms cm-2, also in agreement with observed cloud properties. Over their lives they convert 5%-10% of their mass into stars, after which point most clouds are destroyed when a large H II region unbinds them. In contrast, small clouds like those found in the solar neighborhood only survive ~1 crossing time before being destroyed.
NASA Astrophysics Data System (ADS)
Coppi, B.
2012-03-01
Field and plasma configurations that can be the distinguishing feature of and surround ``shining'' black holes have been identified. Considering the observation of the Quasi Periodic Oscillations that can be associated with inhomogeneous rotating plasmas, tri-dimensional rotating configurations have been looked for and found under special conditions. One is that these configurations are radially localized, such as narrow plasma ring pairs. Another is that the rotation frequency is nearly constant over the rings. Only axisymmetric local configurations consisting of solitary plasma rings or periodic sequences of rings are found when the gradient of the rotation frequency is (locally) significant. Assuming that the plasma pressure is scalar the problem is reduced to the solution of two coupled non-linear differential equations. One, the ``Master Equation'' [1], relates the magnetic surface function to the plasma rotation frequency that is connected to the gravity field. The other, the Vertical Equilibrium Equation, relates the plasma pressure gradient to both the Lorentz force and to the plasma density profile through the gravitational force.[4pt] [1] B. Coppi, Phys. Plasmas 18, 032901 (2011).
Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.
1988-01-01
An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.
Assessment of Stable Isotope Distribution in Complex Systems
NASA Astrophysics Data System (ADS)
He, Y.; Cao, X.; Wang, J.; Bao, H.
2017-12-01
Biomolecules in living organisms have the potential to approach chemical steady state and even apparent isotope equilibrium because enzymatic reactions are intrinsically reversible. If an apparent local equilibrium can be identified, enzymatic reversibility and its controlling factors may be quantified, which helps to understand complex biochemical processes. Earlier research on isotope fractionation tends to focus on specific process and compare mostly two different chemical species. Using linear regression, "Thermodynamic order", which refers to correlated δ13C and 13β values, has been proposed to be present among many biomolecules by Galimov et al. However, the concept "thermodynamic order" they proposed and the approach they used has been questioned. Here, we propose that the deviation of a complex system from its equilibrium state can be rigorously described as a graph problem as is applied in discrete mathematics. The deviation of isotope distribution from equilibrium state and apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference matrix (|Δα|). Applying the |Δα| matrix analysis to earlier published data of amino acids, we show the existence of apparent local equilibrium among different amino acids in potato and a kind of green alga. The existence of apparent local equilibrium is in turn consistent with the notion that enzymatic reactions can be reversible even in living systems. The result also implies that previous emphasis on external carbon source intake may be misplaced when studying isotope distribution in physiology. In addition to the identification of local equilibrium among biomolecules, the difference matrix approach has the potential to explore chemical or isotope equilibrium state in extraterrestrial bodies, to distinguish living from non-living systems, and to classify living species. This approach will benefit from large numbers of systematic data and advanced pattern recognition techniques.
Theoretical Combustion Performance of Several High-Energy Fuels for Ramjet Engines
NASA Technical Reports Server (NTRS)
Tower, Leonard K; Breitwieser, Roland; Gammon, Benson E
1958-01-01
An analytical evaluation of the air and fuel specific-impulse characteristics of magnesium, magnesium octene-1 slurries, aluminum, aluminum octene-1 slurries, boron, boron octene-1 slurries, carbon, hydrogen, alpha-methylnaphthalene, diborane, pentaborane, and octene-1 is presented. While chemical equilibrium was assumed in the combustion process, the expansion was assumed to occur at fixed composition.
Nonequilibrium quantum dynamics and transport: from integrability to many-body localization
NASA Astrophysics Data System (ADS)
Vasseur, Romain; Moore, Joel E.
2016-06-01
We review the non-equilibrium dynamics of many-body quantum systems after a quantum quench with spatial inhomogeneities, either in the Hamiltonian or in the initial state. We focus on integrable and many-body localized systems that fail to self-thermalize in isolation and for which the standard hydrodynamical picture breaks down. The emphasis is on universal dynamics, non-equilibrium steady states and new dynamical phases of matter, and on phase transitions far from thermal equilibrium. We describe how the infinite number of conservation laws of integrable and many-body localized systems lead to complex non-equilibrium states beyond the traditional dogma of statistical mechanics.
NASA Astrophysics Data System (ADS)
Reiman, A.; Ferraro, N. M.; Turnbull, A.; Park, J. K.; Cerfon, A.; Evans, T. E.; Lanctot, M. J.; Lazarus, E. A.; Liu, Y.; McFadden, G.; Monticello, D.; Suzuki, Y.
2015-06-01
In comparing equilibrium solutions for a DIII-D shot that is amenable to analysis by both stellarator and tokamak three-dimensional (3D) equilibrium codes, a significant disagreement has been seen between solutions of the VMEC stellarator equilibrium code and solutions of tokamak perturbative 3D equilibrium codes. The source of that disagreement has been investigated, and that investigation has led to new insights into the domain of validity of the different equilibrium calculations, and to a finding that the manner in which localized screening currents at low order rational surfaces are handled can affect global properties of the equilibrium solution. The perturbative treatment has been found to break down at surprisingly small perturbation amplitudes due to overlap of the calculated perturbed flux surfaces, and that treatment is not valid in the pedestal region of the DIII-D shot studied. The perturbative treatment is valid, however, further into the interior of the plasma, and flux surface overlap does not account for the disagreement investigated here. Calculated equilibrium solutions for simple model cases and comparison of the 3D equilibrium solutions with those of other codes indicate that the disagreement arises from a difference in handling of localized currents at low order rational surfaces, with such currents being absent in VMEC and present in the perturbative codes. The significant differences in the global equilibrium solutions associated with the presence or absence of very localized screening currents at rational surfaces suggests that it may be possible to extract information about localized currents from appropriate measurements of global equilibrium plasma properties. That would require improved diagnostic capability on the high field side of the tokamak plasma, a region difficult to access with diagnostics.
NASA Technical Reports Server (NTRS)
Fontenla, J. M.; Avrett, E. H.; Loeser, R.
1990-01-01
The energy balance in the lower transition region is analyzed by constructing theoretical models which satisfy the energy balance constraint. The energy balance is achieved by balancing the radiative losses and the energy flowing downward from the corona. This energy flow is mainly in two forms: conductive heat flow and hydrogen ionization energy flow due to ambipolar diffusion. Hydrostatic equilibrium is assumed, and, in a first calculation, local mechanical heating and Joule heating are ignored. In a second model, some mechanical heating compatible with chromospheric energy-balance calculations is introduced. The models are computed for a partial non-LTE approach in which radiation departs strongly from LTE but particles depart from Maxwellian distributions only to first order. The results, which apply to cases where the magnetic field is either absent, or uniform and vertical, are compared with the observed Lyman lines and continuum from the average quiet sun. The approximate agreement suggests that this type of model can roughly explain the observed intensities in a physically meaningful way, assuming only a few free parameters specified as chromospheric boundary conditions.
Rational approach for assumed stress finite elements
NASA Technical Reports Server (NTRS)
Pian, T. H. H.; Sumihara, K.
1984-01-01
A new method for the formulation of hybrid elements by the Hellinger-Reissner principle is established by expanding the essential terms of the assumed stresses as complete polynomials in the natural coordinates of the element. The equilibrium conditions are imposed in a variational sense through the internal displacements which are also expanded in the natural co-ordinates. The resulting element possesses all the ideal qualities, i.e. it is invariant, it is less sensitive to geometric distortion, it contains a minimum number of stress parameters and it provides accurate stress calculations. For the formulation of a 4-node plane stress element, a small perturbation method is used to determine the equilibrium constraint equations. The element has been proved to be always rank sufficient.
On exchange rate misalignments in the Eurozone's peripheral countries
NASA Astrophysics Data System (ADS)
Grochová, Ladislava; Plecitá, Klára
2013-10-01
In this paper we model equilibrium exchange rates for the Eurozone's countries on the basis of the Behavioural Equilibrium Exchange Rate approach, which assumes, that equilibrium exchange rates are in the long run affected by economic fundamentals. To assess the degree of exchange rate misalignment for the Eurozone's peripheral countries - Portugal, Ireland, Greece and Spain - the gap between the actual and the modelled equilibrium exchange rate value is calculated. Our results show that Spain, Portugal and Ireland had their real exchange rates in equilibrium when they joined the Eurozone; however their real exchange rates have been persistently overvalued since the beginning of the 2000s. Greece, on the other hand, has experienced diminishing undervaluation at the beginning of its membership in the Eurozone and since 2009 has exhibited an overvalued real exchange rate.
NASA Technical Reports Server (NTRS)
Paquette, John A.; Nuth, Joseph A., III
2011-01-01
Classical nucleation theory has been used in models of dust nucleation in circumstellar outflows around oxygen-rich asymptotic giant branch stars. One objection to the application of classical nucleation theory (CNT) to astrophysical systems of this sort is that an equilibrium distribution of clusters (assumed by CNT) is unlikely to exist in such conditions due to a low collision rate of condensable species. A model of silicate grain nucleation and growth was modified to evaluate the effect of a nucleation flux orders of magnitUde below the equilibrium value. The results show that a lack of chemical equilibrium has only a small effect on the ultimate grain distribution.
NASA Technical Reports Server (NTRS)
Meirovitch, L.
1973-01-01
This paper is concerned with the stability of a hybrid dynamical system in the neighborhood of a nontrivial equilibrium, where the system consists of one rigid part and n elastic members. The body moves in a central-force field with its mass center describing a circular orbit. The nontrivial equilibrium is defined by steady rotation of the system at an angular velocity equal to the orbital velocity, with the elastic members being in deformed state. A Liapunov stability analysis is performed by assuming small perturbations about the nontrivial equilibrium, where the latter is generally defined by nonlinear differential equations. The theory is applied to a gravity-gradient stabilized satellite with flexible appendages.
1/ f noise from the laws of thermodynamics for finite-size fluctuations.
Chamberlin, Ralph V; Nasir, Derek M
2014-07-01
Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs' paradox that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals and to show non-Gaussian fluctuations characteristic of nanoscale systems.
An improved algorithm for the modeling of vapor flow in heat pipes
NASA Technical Reports Server (NTRS)
Tower, Leonard K.; Hainley, Donald C.
1989-01-01
A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.
An improved algorithm for the modeling of vapor flow in heat pipes
NASA Astrophysics Data System (ADS)
Tower, Leonard K.; Hainley, Donald C.
1989-12-01
A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.
Social Learning in the Ultimatum Game
Zhang, Boyu
2013-01-01
In the ultimatum game, two players divide a sum of money. The proposer suggests how to split and the responder can accept or reject. If the suggestion is rejected, both players get nothing. The rational solution is that the responder accepts even the smallest offer but humans prefer fair share. In this paper, we study the ultimatum game by a learning-mutation process based on quantal response equilibrium, where players are assumed boundedly rational and make mistakes when estimating the payoffs of strategies. Social learning is never stabilized at the fair outcome or the rational outcome, but leads to oscillations from offering 40 percent to 50 percent. To be precise, there is a clear tendency to increase the mean offer if it is lower than 40 percent, but will decrease when it reaches the fair offer. If mutations occur rarely, fair behavior is favored in the limit of local mutation. If mutation rate is sufficiently high, fairness can evolve for both local mutation and global mutation. PMID:24023950
Efficient implicit LES method for the simulation of turbulent cavitating flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Schmidt, Steffen J.; Hickel, Stefan
2016-07-01
We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike previous approaches, emphasis is placed on operating on a small stencil (at most four cells). The truncation error of the discretization is designed to function as a physically consistent subgrid-scale model for turbulence. We formulate a sensor functional that detects shock waves or pseudo-phase boundaries within the homogeneous mixture model for localizing numerical dissipation. In smooth regions of the flowmore » field, a formally non-dissipative central discretization scheme is used in combination with a regularization term to model the effect of unresolved subgrid scales. The new method is validated by computing standard single- and two-phase test-cases. Comparison of results for a turbulent cavitating mixing layer obtained with the new method demonstrates its suitability for the target applications.« less
Actively Shaken In-Situ Passive Sampler Platform for Methylmercury and Organics
2016-02-01
Figure 3.2- PRC dissipation and compound uptake kinetics generally assumed for the Performance Reference Compound (PRC) approach...dissipation and compound uptake kinetics generally assumed for the performance reference compound (PRC) approach. C(t) and C(ss) refer to target...under-equilibrated passive sampler measurements that need to be corrected for equilibrium, typically by extrapolation of the loss kinetics of
Turner, Leigh
2003-09-01
Many bioethicists assume that morality is in a state of wide reflective equilibrium. According to this model of moral deliberation, public policymaking can build upon a core common morality that is pretheoretical and provides a basis for practical reasoning. Proponents of the common morality approach to moral deliberation make three assumptions that deserve to be viewed with skepticism. First, they commonly assume that there is a universal, transhistorical common morality that can serve as a normative baseline for judging various actions and practices. Second, advocates of the common morality approach assume that the common morality is in a state of relatively stable, ordered, wide reflective equilibrium. Third, casuists, principlists, and other proponents of common morality approaches assume that the common morality can serve as a basis for the specification of particular policies and practical recommendations. These three claims fail to recognize the plural moral traditions that are found in multicultural, multiethnic, multifaith societies such as the United States and Canada. A more realistic recognition of multiple moral traditions in pluralist societies would be considerable more skeptical about the contributions that common morality approaches in bioethics can make to resolving contentious moral issues.
NASA Astrophysics Data System (ADS)
Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D.; Bastow, Trevor P.; Rayner, John L.; Davis, Greg B.
2017-01-01
Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141 days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time.
Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D; Bastow, Trevor P; Rayner, John L; Davis, Greg B
2017-01-01
Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time. Copyright © 2016. Published by Elsevier B.V.
Inference of directional selection and mutation parameters assuming equilibrium.
Vogl, Claus; Bergman, Juraj
2015-12-01
In a classical study, Wright (1931) proposed a model for the evolution of a biallelic locus under the influence of mutation, directional selection and drift. He derived the equilibrium distribution of the allelic proportion conditional on the scaled mutation rate, the mutation bias and the scaled strength of directional selection. The equilibrium distribution can be used for inference of these parameters with genome-wide datasets of "site frequency spectra" (SFS). Assuming that the scaled mutation rate is low, Wright's model can be approximated by a boundary-mutation model, where mutations are introduced into the population exclusively from sites fixed for the preferred or unpreferred allelic states. With the boundary-mutation model, inference can be partitioned: (i) the shape of the SFS distribution within the polymorphic region is determined by random drift and directional selection, but not by the mutation parameters, such that inference of the selection parameter relies exclusively on the polymorphic sites in the SFS; (ii) the mutation parameters can be inferred from the amount of polymorphic and monomorphic preferred and unpreferred alleles, conditional on the selection parameter. Herein, we derive maximum likelihood estimators for the mutation and selection parameters in equilibrium and apply the method to simulated SFS data as well as empirical data from a Madagascar population of Drosophila simulans. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Haixin
This dissertation consists of two parts. The first part studies the sample selection and spatial models of housing price index using transaction data on detached single-family houses of two California metropolitan areas from 1990 through 2008. House prices are often spatially correlated due to shared amenities, or when the properties are viewed as close substitutes in a housing submarket. There have been many studies that address spatial correlation in the context of housing markets. However, none has used spatial models to construct housing price indexes at zip code level for the entire time period analyzed in this dissertation to the best of my knowledge. In this paper, I study a first-order autoregressive spatial model with four different weighing matrix schemes. Four sets of housing price indexes are constructed accordingly. Gatzlaff and Haurin (1997, 1998) study the sample selection problem in housing index by using Heckman's two-step method. This method, however, is generally inefficient and can cause multicollinearity problem. Also, it requires data on unsold houses in order to carry out the first-step probit regression. Maximum likelihood (ML) method can be used to estimate a truncated incidental model which allows one to correct for sample selection based on transaction data only. However, convergence problem is very prevalent in practice. In this paper I adopt Lewbel's (2007) sample selection correction method which does not require one to model or estimate the selection model, except for some very general assumptions. I then extend this method to correct for spatial correlation. In the second part, I analyze the U.S. gasoline market with a disequilibrium model that allows lagged-latent variables, endogenous prices, and panel data with fixed effects. Most existing studies (see the survey of Espey, 1998, Energy Economics) of the gasoline market assume equilibrium. In practice, however, prices do not always adjust fast enough to clear the market. Equilibrium assumptions greatly simplify statistical inference, but are very restrictive and can produce conflicting estimates. For example, econometric models of markets that assume equilibrium often produce more elastic demand price elasticity than their disequilibrium counterparts (Holt and Johnson, 1989, Review of Economics and Statistics, Oczkowski, 1998, Economics Letters). The few studies that allow disequilibrium, however, have been limited to macroeconomic time-series data without lagged-latent variables. While time series data allows one to investigate national trends, it cannot be used to identify and analyze regional differences and the role of local markets. Exclusion of the lagged-latent variables is also undesirable because such variables capture adjustment costs and inter-temporal spillovers. Simulation methods offer tractable solutions to dynamic and panel data disequilibrium models (Lee, 1997, Journal of Econometrics), but assume normally distributed errors. This paper compares estimates of price/income elasticity and excess supply/demand across time periods, regions, and model specifications, using both equilibrium and disequilibrium methods. In the equilibrium model, I compare the within group estimator with Anderson and Hsiao's first-difference 2SLS estimator. In the disequilibrium model, I extend Amemiya's 2SLS by using Newey's efficient estimator with optimal instruments.
The Metallicity Evolution of Low Mass Galaxies: New Contraints at Intermediate Redshift
NASA Technical Reports Server (NTRS)
Henry, Alaina; Martin, Crystal L.; Finlator, Kristian; Dressler, Alan
2013-01-01
We present abundance measurements from 26 emission-line-selected galaxies at z approx. 0.6-0.7. By reaching stellar masses as low as 10(exp 8) M stellar mass, these observations provide the first measurement of the intermediate-redshift mass-metallicity (MZ) relation below 10(exp 9)M stellar mass. For the portion of our sample above M is greater than 10(exp 9)M (8/26 galaxies), we find good agreement with previous measurements of the intermediate-redshift MZ relation. Compared to the local relation, we measure an evolution that corresponds to a 0.12 dex decrease in oxygen abundances at intermediate redshifts. This result confirms the trend that metallicity evolution becomes more significant toward lower stellar masses, in keeping with a downsizing scenario where low-mass galaxies evolve onto the local MZ relation at later cosmic times. We show that these galaxies follow the local fundamental metallicity relation, where objects with higher specific (mass-normalized) star formation rates (SFRs) have lower metallicities. Furthermore, we show that the galaxies in our sample lie on an extrapolation of the SFR-M* relation (the star-forming main sequence). Leveraging the MZ relation and star-forming main sequence (and combining our data with higher-mass measurements from the literature), we test models that assume an equilibrium between mass inflow, outflow, and star formation.We find that outflows are required to describe the data. By comparing different outflow prescriptions, we show that momentum, driven winds can describe the MZ relation; however, this model underpredicts the amount of star formation in low-mass galaxies. This disagreement may indicate that preventive feedback from gas heating has been overestimated, or it may signify a more fundamental deviation from the equilibrium assumption.
Ensemble theory for slightly deformable granular matter.
Tejada, Ignacio G
2014-09-01
Given a granular system of slightly deformable particles, it is possible to obtain different static and jammed packings subjected to the same macroscopic constraints. These microstates can be compared in a mathematical space defined by the components of the force-moment tensor (i.e. the product of the equivalent stress by the volume of the Voronoi cell). In order to explain the statistical distributions observed there, an athermal ensemble theory can be used. This work proposes a formalism (based on developments of the original theory of Edwards and collaborators) that considers both the internal and the external constraints of the problem. The former give the density of states of the points of this space, and the latter give their statistical weight. The internal constraints are those caused by the intrinsic features of the system (e.g. size distribution, friction, cohesion). They, together with the force-balance condition, determine which the possible local states of equilibrium of a particle are. Under the principle of equal a priori probabilities, and when no other constraints are imposed, it can be assumed that particles are equally likely to be found in any one of these local states of equilibrium. Then a flat sampling over all these local states turns into a non-uniform distribution in the force-moment space that can be represented with density of states functions. Although these functions can be measured, some of their features are explored in this paper. The external constraints are those macroscopic quantities that define the ensemble and are fixed by the protocol. The force-moment, the volume, the elastic potential energy and the stress are some examples of quantities that can be expressed as functions of the force-moment. The associated ensembles are included in the formalism presented here.
NASA Technical Reports Server (NTRS)
Grose, W. L.; Nealy, J. E.
1975-01-01
The present investigation is an analysis of the radiation from the chemical nonequilibrium region in the shock layer about a vehicle during Venus entry. The radiation and the flow were assumed to be uncoupled. An inviscid, nonequilibrium flowfield was calculated and an effective electronic temperature was determined for the predominant radiating species. Species concentrations and electronic temperature were then input into a radiation transport code to calculate heating rates. The present results confirm earlier investigations which indicate that the radiation should be calculated using electronic temperatures for the radiating species. These temperatures are not related in a simple way to the local translational temperature. For the described mission, the nonequilibrium radiative heating rate is approximately twice the corresponding equilibrium value at peak heating.
Kinetic mechanism for modeling of electrochemical reactions.
Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil
2012-04-01
We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.
Equilibrium Reconstruction on the Large Helical Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuel A. Lazerson, D. Gates, D. Monticello, H. Neilson, N. Pomphrey, A. Reiman S. Sakakibara, and Y. Suzuki
Equilibrium reconstruction is commonly applied to axisymmetric toroidal devices. Recent advances in computational power and equilibrium codes have allowed for reconstructions of three-dimensional fields in stellarators and heliotrons. We present the first reconstructions of finite beta discharges in the Large Helical Device (LHD). The plasma boundary and magnetic axis are constrained by the pressure profile from Thomson scattering. This results in a calculation of plasma beta without a-priori assumptions of the equipartition of energy between species. Saddle loop arrays place additional constraints on the equilibrium. These reconstruction utilize STELLOPT, which calls VMEC. The VMEC equilibrium code assumes good nested fluxmore » surfaces. Reconstructed magnetic fields are fed into the PIES code which relaxes this constraint allowing for the examination of the effect of islands and stochastic regions on the magnetic measurements.« less
Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity
NASA Astrophysics Data System (ADS)
Kim, Y.; Sartelet, K.; Couvidat, F.
2014-12-01
Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.
NASA Astrophysics Data System (ADS)
Dzifčáková, E.; Dudík, J.; Mackovjak, Š.
2016-05-01
Context. Coronal heating is currently thought to proceed via the mechanism of nanoflares, small-scale and possibly recurring heating events that release magnetic energy. Aims: We investigate the effects of a periodic high-energy electron beam on the synthetic spectra of coronal Fe ions. Methods: Initially, the coronal plasma is assumed to be Maxwellian with a temperature of 1 MK. The high-energy beam, described by a κ-distribution, is then switched on every period P for the duration of P/ 2. The periods are on the order of several tens of seconds, similar to exposure times or cadences of space-borne spectrometers. Ionization, recombination, and excitation rates for the respective distributions are used to calculate the resulting non-equilibrium ionization state of Fe and the instantaneous and period-averaged synthetic spectra. Results: Under the presence of the periodic electron beam, the plasma is out of ionization equilibrium at all times. The resulting spectra averaged over one period are almost always multithermal if interpreted in terms of ionization equilibrium for either a Maxwellian or a κ-distribution. Exceptions occur, however; the EM-loci curves appear to have a nearly isothermal crossing-point for some values of κs. The instantaneous spectra show fast changes in intensities of some lines, especially those formed outside of the peak of the respective EM(T) distributions if the ionization equilibrium is assumed. Movies 1-5 are available in electronic form at http://www.aanda.org
A note on two-dimensional asymptotic magnetotail equilibria
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes; Moore, Brian D.
1994-01-01
In order to understand, on the fluid level, the structure, the time evolution, and the stability of current sheets, such as the magnetotail plasma sheet in Earth's magnetosphere, one has to consider magnetic field configurations that are in magnetohydrodynamic (MHD) force equilibrium. Any reasonable MHD current sheet model has to be two-dimensional, at least in an asymptotic sense (B(sub z)/B (sub x)) = epsilon much less than 1. The necessary two-dimensionality is described by a rather arbitrary function f(x). We utilize the free function f(x) to construct two-dimensional magnetotail equilibria are 'equivalent' to current sheets in empirical three-dimensional models. We obtain a class of asymptotic magnetotail equilibria ordered with respect to the magnetic disturbance index Kp. For low Kp values the two-dimensional MHD equilibria reflect some of the realistic, observation-based, aspects of three-dimensional models. For high Kp values the three-dimensional models do not fit the asymptotic MHD equlibria, which is indicative of their inconsistency with the assumed pressure function. This, in turn, implies that high magnetic activity levels of the real magnetosphere might be ruled by thermodynamic conditions different from local thermodynamic equilibrium.
NASA Astrophysics Data System (ADS)
Dzierżȩga, Krzysztof; Piȩta, Tomasz; Zawadzki, Witold; Stambulchik, Evgeny; Gavrilović-Božović, Marijana; Jovićević, Sonja; Pokrzywka, Bartłomiej
2018-02-01
We present results of experimental and theoretical studies of the Stark broadening of the Li I 460 nm spectral line with forbidden components and of the isolated 497 nm line. Plasma was induced by Nd:YAG laser radiation at 1064 nm with pulse duration ˜4.5 ns. Laser-induced plasma was generated in front of the alumina pellet, with some content of Li2CO3, placed in a vacuum chamber filled with argon under reduced pressure. Plasma diagnostics was performed using the laser Thomson scattering technique, free from assumptions about the plasma equilibrium state and its composition and so independently of plasma emission spectra. Spatially resolved spectra with Li lines were obtained from the measured, laterally integrated ones applying the inverse Abel transform. The Stark profiles were calculated by computer simulation method assuming a plasma in the local thermodynamic equilibrium. Calculations were performed for experimentally-inferred electron densities and temperatures, from 1.422 × 1023 to 3.55 × 1022 m-3 and from 1.96 eV to 1.04 eV, respectively. Our studies show very good agreement between experimental Stark profiles and those computer simulated.
NASA Astrophysics Data System (ADS)
Das, Papari; Karmakar, Pralay Kumar
2018-01-01
A nonextensive nonthermal magnetized viscoelastic astrofluid, compositionally containing nonthermal electrons and ions together with massive polarized dust micro-spherical grains of variable electric charge, is allowed to endure weakly nonlinear perturbation around its equilibrium. The nonextensivity originating from the large-scale non-local effects is included via the Tsallis thermo-statistical distribution laws describing the lighter species. Assuming the equilibrium as a homogeneous hydrostatic one, the dust polarization effects are incorporated via the conventional homogeneous polarization force law. The perturbed fluid model evolves as a unique conjugate pair of coupled extended Korteweg-de Vries (e-KdV) equations. A constructed numerical tapestry shows the collective excitations of a new pair of distinct classes of nonlinear mode structures in new parametric space. The first family indicates periodic electrostatic compressive eigenmodes in the form of soliton-chains. Likewise, the second one reveals gravitational rarefactive solitary patterns. Their microphysical multi-parametric dependencies of the eigen-patterns are illustratively analyzed and bolstered. The paper ends up with some promising implications and applications in the astro-cosmo-plasmic context of wave-induced accretive triggering processes responsible for gravitationally bounded (gravito-condensed) astro-structure formation, such as stellesimals, planetsimals, etc.
Interpretation of Na-K-Mg relations in geothermal waters
Fournier, R.O.
1990-01-01
When using a Na-K-???Mg triangular diagram as an aid in the interpretation of a geothermal water, the estimated temperature of last water-rock equilibration may change by as much as 50??C, depending on which of the many Na/K geothermometers one assumes is correct. A particular geothermometer may work well in one place and not in another because of differences in the mineralogy of the phases that are in contact with the reservoir fluid. The position of the full equilibrium line that is used for geothermometry and for assessing degrees of departure from equilibrium also changes as the assumed K/???Mg geothermometer equation changes. The degree of ambiguity can be evaluated by utilizing the results of all the recently published Na/K geothermometers on a single Na-K-???Mg triangular plot.
NASA Astrophysics Data System (ADS)
Yadav, B. K.; Tomar, J.; Harter, T.
2014-12-01
We investigate nitrate movement from non-point sources in deep, heterogeneous vadose zones, using multi-dimensional variably saturated flow and transport simulations. We hypothesize that porous media heterogeneity causes saturation variability that leads to preferential flow systems such that a significant portion of the vadose zone does not significantly contribute to flow. We solve Richards' equation and the advection-dispersion equation to simulate soil moisture and nitrate transport regimes in plot-scale experiments conducted in the San Joaquin Valley, California. We compare equilibrium against non-equilibrium (dual-porosity) approaches. In the equilibrium approach we consider each soil layer to have unique hydraulic properties as a whole, while in the dual-porosity approach we assume that large fractions of the porous flow domain are immobile. However we consider exchange of water and solute between mobile and immobile zone using the appropriate mass transfer terms. The results indicate that flow and transport in a nearly 16 m deep stratified vadose zone comprised of eight layers of unconsolidated alluvium experiences highly non-uniform, localized preferential flow and transport patterns leading to accelerated nitrate transfer. The equilibrium approach largely under-predicted the leaching of nitrate to groundwater while the dual-porosity approach showed higher rates of nitrate leaching, consistent with field observations. The dual-porosity approach slightly over-predicted nitrogen storage in the vadose zone, which may be the result of limited matrix flow or denitrification not accounted for in the model. Results of this study may be helpful to better predict fertilizer and pesticide retention times in deep vadose zone, prior to recharge into the groundwater flow system. Keywords: Nitrate, Preferential flow, Heterogeneous vadose zone, Dual-porosity approach
NASA Technical Reports Server (NTRS)
Hawley, Suzanne L.; Fisher, George H.
1993-01-01
Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.
Stability analysis of the Euler discretization for SIR epidemic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryanto, Agus
2014-06-19
In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaosmore » phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart.« less
Model of a multiverse providing the dark energy of our universe
NASA Astrophysics Data System (ADS)
Rebhan, E.
2017-09-01
It is shown that the dark energy presently observed in our universe can be regarded as the energy of a scalar field driving an inflation-like expansion of a multiverse with ours being a subuniverse among other parallel universes. A simple model of this multiverse is elaborated: Assuming closed space geometry, the origin of the multiverse can be explained by quantum tunneling from nothing; subuniverses are supposed to emerge from local fluctuations of separate inflation fields. The standard concept of tunneling from nothing is extended to the effect that in addition to an inflationary scalar field, matter is also generated, and that the tunneling leads to an (unstable) equilibrium state. The cosmological principle is assumed to pertain from the origin of the multiverse until the first subuniverses emerge. With increasing age of the multiverse, its spatial curvature decays exponentially so fast that, due to sharing the same space, the flatness problem of our universe resolves by itself. The dark energy density imprinted by the multiverse on our universe is time-dependent, but such that the ratio w = ϱ/(c2p) of its mass density and pressure (times c2) is time-independent and assumes a value - 1 + 𝜖 with arbitrary 𝜖 > 0. 𝜖 can be chosen so small, that the dark energy model of this paper can be fitted to the current observational data as well as the cosmological constant model.
A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas
2016-02-29
development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State... thermodynamic variable. This choice allows one to hide the non-linearity of the gas (total) thermal conductivity κ and can partially alle- 2 viate numerical
14 CFR 25.331 - Symmetric maneuvering conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Maneuvering balanced conditions. Assuming the airplane to be in equilibrium with zero pitching acceleration..., based on a rational pitching control motion vs. time profile, must be established in which the design...
Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.
Cobbs, Gary
2012-08-16
Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of initial target concentration. Model 1 was found to be slightly more robust than model 2 giving better estimates of initial target concentration when estimation of parameters was done for qPCR curves with very different initial target concentration. Both models may be used to estimate the initial absolute concentration of target sequence when a standard curve is not available. It is argued that the kinetic approach to modeling and interpreting quantitative PCR data has the potential to give more precise estimates of the true initial target concentrations than other methods currently used for analysis of qPCR data. The two models presented here give a unified model of the qPCR process in that they explain the shape of the qPCR curve for a wide variety of initial target concentrations.
Hydrologic controls on the development of equilibrium soil depths
NASA Astrophysics Data System (ADS)
Nicotina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.
2010-12-01
The object of the present work was the study of the coevolution of runoff production and geomorphological processes and its effects on the formation of equilibrium soil depth by focusing on their mutual feedbacks. The primary goal of this work is to describe spatial patterns of soil depth resulting, under the hypothesis of dynamic equilibrium, from long-term interactions between hydrologic forcings and soil production, erosion and sediment transport processes. These processes dominate the formation of actual soil depth patterns that represent the boundary condition for water redistribution, thus this paper also proposes and attempt to set the premises for decoding their individual role and mutual interactions in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Moreover the setup of a coupled hydrologic-geomorphologic approach represents a first step into the study of such interactions and in particular of the effects of soil moisture in determining soil production functions. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography from high resolution digital terrain models (DTM). Geomorphological processes are described by means of well-studied geomorphic transport laws. Soil depth is assumed, in the exponential soil production function, as a proxy for all the mechanisms that induce mechanical disruption of bedrock and it’s conversion into soil. This formulation, although empirical, has been widely used in the literature and is currently accepted. The modeling approach is applied to the semi-arid Dry Creek Experimental Watershed, located near Boise, Idaho, USA. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origin is discussed.
NASA Astrophysics Data System (ADS)
Monticello, D. A.; Reiman, A. H.; Watanabe, K. Y.; Nakajima, N.; Okamoto, M.
1997-11-01
The existence of bootstrap currents in both tokamaks and stellarators was confirmed, experimentally, more than ten years ago. Such currents can have significant effects on the equilibrium and stability of these MHD devices. In addition, stellarators, with the notable exception of W7-X, are predicted to have such large bootstrap currents that reliable equilibrium calculations require the self-consistent evaluation of bootstrap currents. Modeling of discharges which contain islands requires an algorithm that does not assume good surfaces. Only one of the two 3-D equilibrium codes that exist, PIES( Reiman, A. H., Greenside, H. S., Compt. Phys. Commun. 43), (1986)., can easily be modified to handle bootstrap current. Here we report on the coupling of the PIES 3-D equilibrium code and NIFS bootstrap code(Watanabe, K., et al., Nuclear Fusion 35) (1995), 335.
Navier-Stokes simulation of real gas flows in nozzles
NASA Technical Reports Server (NTRS)
Nagaraj, N.; Lombard, C. K.
1987-01-01
Air flow in a hypersonic nozzle causes real gas effects due to reaction among the species constituting air. Such reactions may be in chemical equilibrium or in chemical nonequilibrium. Here using the CSCM upwind scheme for the compressible Navier-Stokes equations, the real gas flowfield in an arcjet nozzle is computed for both the equilibrium case and the nonequilibrium case. A hypersonic nozzle flow arising from a pebble bed heated plenum is also computed for the equilibrium situation. Between the equilibrium cases, the chemistry is treated by two different schemes and comments are made as to computational complexity. For the nonequilibrium case, a full set of seventeen reactions and full implicit coupling of five species with gasdynamics is employed to compute the flowfield. For all cases considered here the gas is assumed to be a calorically imperfect mixture of ideal gases in thermal equilibrium.
NASA Astrophysics Data System (ADS)
Fan, Zhengfeng; Liu, Jie
2016-10-01
We present an ion-electron non-equilibrium model, in which the hot-spot ion temperature is higher than its electron temperature so that the hot-spot nuclear reactions are enhanced while energy leaks are considerably reduced. Theoretical analysis shows that the ignition region would be significantly enlarged in the hot-spot rhoR-T space as compared with the commonly used equilibrium model. Simulations show that shocks could be utilized to create and maintain non-equilibrium conditions within the hot spot, and the hot-spot rhoR requirement is remarkably reduced for achieving self-heating. In NIF high-foot implosions, it is observed that the x-ray enhancement factors are less than unity, which is not self-consistent and is caused by assuming Te =Ti. And from this non-consistency, we could infer that ion-electron non-equilibrium exists in the high-foot implosions and the ion temperature could be 9% larger than the equilibrium temperature.
Thermodynamic equilibrium with acceleration and the Unruh effect
NASA Astrophysics Data System (ADS)
Becattini, F.
2018-04-01
We address the problem of thermodynamic equilibrium with constant acceleration along the velocity field lines in a quantum relativistic statistical mechanics framework. We show that for a free scalar quantum field, after vacuum subtraction, all mean values vanish when the local temperature T is as low as the Unruh temperature TU=A /2 π where A is the magnitude of the acceleration four-vector. We argue that the Unruh temperature is an absolute lower bound for the temperature of any accelerated fluid at global thermodynamic equilibrium. We discuss the conditions of this bound to be applicable in a local thermodynamic equilibrium situation.
Geometrically thin, hot accretion disks - Topology of the thermal equilibrium curves
NASA Technical Reports Server (NTRS)
Kusunose, Masaaki; Mineshige, Shin
1992-01-01
All the possible thermal equilibrium states of geometrically thin alpha-disks around stellar-mass black holes are presented. A (vertically) one-zone disk model is employed and it is assumed that a main energy source is viscous heating of protons and that cooling is due to bremsstrahlung and Compton scattering. There exist various branches of the thermal equilibrium solution, depending on whether disks are effectively optically thick or thin, radiation pressure-dominated or gas pressure-dominated, composed of one-temperature plasmas or of two-temperature plasmas, and with high concentration of e(+)e(-) pairs or without pairs. The thermal equilibrium curves at high temperatures (greater than or approximately equal to 10 exp 8 K) are substantially modified by the presence of e(+)e(-) pairs. The thermal stability of these branches are examined.
Perturbation analysis for patch occupancy dynamics
Martin, Julien; Nichols, James D.; McIntyre, Carol L.; Ferraz, Goncalo; Hines, James E.
2009-01-01
Perturbation analysis is a powerful tool to study population and community dynamics. This article describes expressions for sensitivity metrics reflecting changes in equilibrium occupancy resulting from small changes in the vital rates of patch occupancy dynamics (i.e., probabilities of local patch colonization and extinction). We illustrate our approach with a case study of occupancy dynamics of Golden Eagle (Aquila chrysaetos) nesting territories. Examination of the hypothesis of system equilibrium suggests that the system satisfies equilibrium conditions. Estimates of vital rates obtained using patch occupancy models are used to estimate equilibrium patch occupancy of eagles. We then compute estimates of sensitivity metrics and discuss their implications for eagle population ecology and management. Finally, we discuss the intuition underlying our sensitivity metrics and then provide examples of ecological questions that can be addressed using perturbation analyses. For instance, the sensitivity metrics lead to predictions about the relative importance of local colonization and local extinction probabilities in influencing equilibrium occupancy for rare and common species.
NASA Astrophysics Data System (ADS)
Peng, Zhenyang; Tian, Fuqiang; Wu, Jingwei; Huang, Jiesheng; Hu, Hongchang; Darnault, Christophe J. G.
2016-09-01
A one-dimensional numerical model of heat and water transport in freezing soils is developed by assuming that ice-water interfaces are not necessarily in equilibrium. The Clapeyron equation, which is derived from a static ice-water interface using the thermal equilibrium theory, cannot be readily applied to a dynamic system, such as freezing soils. Therefore, we handled the redistribution of liquid water with the Richard's equation. In this application, the sink term is replaced by the freezing rate of pore water, which is proportional to the extent of supercooling and available water content for freezing by a coefficient, β. Three short-term laboratory column simulations show reasonable agreement with observations, with standard error of simulation on water content ranging between 0.007 and 0.011 cm3 cm-3, showing improved accuracy over other models that assume equilibrium ice-water interfaces. Simulation results suggest that when the freezing front is fixed at a specific depth, deviation of the ice-water interface from equilibrium, at this location, will increase with time. However, this deviation tends to weaken when the freezing front slowly penetrates to a greater depth, accompanied with thinner soils of significant deviation. The coefficient, β, plays an important role in the simulation of heat and water transport. A smaller β results in a larger deviation in the ice-water interface from equilibrium, and backward estimation of the freezing front. It also leads to an underestimation of water content in soils that were previously frozen by a rapid freezing rate, and an overestimation of water content in the rest of the soils.
Basic and Applied Studies of the RAM Accelerator as a Hypervelocity Projectile Launcher
1993-12-10
The quasi-steady, one-dimensional "blackbox" model of thermally choked ram accelerator performance 18 that has been widely used by the authors and...the thermal choke point is assumed to be in equilibrium, the conditions can be determined by an equilibrium chemistry combustion routine. This model ...to operation, the details of the flow field must be examined. I The simplest model of the thermally choked ram accelerator flow field treats the flow
Mathematical Model for the Mineralization of Bone
NASA Technical Reports Server (NTRS)
Martin, Bruce
1994-01-01
A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. ne model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.
Zhang, Le; Luo, Feng; Xu, Ruina; ...
2014-12-31
The heat transfer and fluid transport of supercritical CO 2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity ofmore » volumetric heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less
Relativistic Fluid Dynamics Far From Local Equilibrium
NASA Astrophysics Data System (ADS)
Romatschke, Paul
2018-01-01
Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gokirmak, Ali; Silva, Helena
This project focused on thermoelectric transport in semiconductor micro and nanostructures where moderate and typical operating voltages and currents lead to extreme thermal gradients and current densities. Models that describe behavior of semiconducting materials typically assume an equilibrium condition or slight deviations from it. In these cases the generation-recombination processes are assumed to have reached a local equilibrium for a given temperature. Hence, free carrier concentrations and their mobilities, band-gap, thermal conductivity, thermoelectric properties, mobility of atoms and mechanical properties of the material, can be described as a function of temperature. In the case of PN junctions under electrical bias,more » carrier concentrations can change up to ~ 1020 cm-3 and a drift-diffusion approximation is typically used to obtain the carrier concentrations while assuming that the material properties do not change. In non-equilibrium conditions, the assumption that the material properties remain the same may not be valid. While the increased conduction-band electron concentration may not have a drastic effect on the material, large hole concentration is expected to soften the material as ‘a hole’ comes into existence as a broken bond in the lattice. As the hole density approaches 1022 cm-3, the number of bonds holding the lattice together is significantly reduced, making it easier to break additional bonds, reduce band-gap and inhibit phonon transport. As these holes move away from where they were generated, local properties are expected to deviate significantly from the equilibrium case. Hence, temperature alone is not sufficient to describe the behavior of the material. The behavior of the solid material close to a molten region (liquid-solid interfaces) is also expected to deviate from the equilibrium case as a function of hole injection rate, which can be drastically increased or decreased in the presence of an electric field. In the past years we have investigated the possible thermoelectric explanation of asymmetric melting of self-heated Si micro-structures using equilibrium materials’ properties that exist in the literature. We have analyzed the contribution of the electrons and the holes and identified the generation-transport-recombination of minority carriers (GTR) as the reason for an extreme change in the thermal profile in presence of strong generation and electric field. A more complete analysis required construction of models that capture the individual generation and recombination processes to understand the thermal profile as well as the possibility of electronic softening and non-equilibrium melting of the structure below melting temperature. The possibility of melting a material at a lower temperature breaks the correlation between the atomic mobility and the kinetic energy in the system for a given temperature and may allow alternative growth processes. This may also be the mechanism behind ‘amorphization-without-melting in layered structures heated with laser pulses’ that has been reported earlier. The conventional models for semiconductors are constructed for low temperature operation and their projections to higher temperatures do not yield reasonable carrier concentrations. Using these models, the free hole concentrations are calculated to be on the order of 1019 cm-3 at melting, which also do not correlate well with the latent heat of fusion. The melt is expected to correspond to broken bond concentrations on the order of the atomic density (~5x1022 cm-3 for Silicon). Hence, using conventional models the thermoelectric contribution expected from the GTR process is estimated to be much smaller than it likely is. Our work focused on improving the computational models and electrical characterization of materials and devices to better understand thermoelectric trabsport under extremen thermal gradients and current densities. Specifically, during this project, we have - Expanded our computational models to include self-consistent solution of Poisson charge equation (together with current and heat equations currently solved) for improved accuracy of role of bipolar conduction, - Developed a crystallization model incorporating experimentally determined nucleation rates and growth velocities to enable simulation of grain growth, growth-from-melt, filament formation and retention, - Performed high-temperature characterization of relevant materials (including metal contacts, interfacial and insulation layers); electrical and thermal conductivities, Seebeck coefficient, carrier mobility and concentration, - Performed High-speed device-level characterization of metastable amorphous and crystalline phases, crystallization and amorphization dynamics, melting and crystalline growth-from-melt, - Observed and characterized formation of microplasmas in electrically stressed ZnO nanoforests.« less
A Test of the Fundamental Physics Underlying Exoplanet Climate Models
NASA Astrophysics Data System (ADS)
Beatty, Thomas; Keating, Dylan; Cowan, Nick; Gaudi, Scott; Kataria, Tiffany; Fortney, Jonathan; Stassun, Keivan; Collins, Karen; Deming, Drake; Bell, Taylor; Dang, Lisa; Rogers, Tamara; Colon, Knicole
2018-05-01
A fundamental issue in how we understand exoplanet atmospheres is the assumed physical behavior underlying 3D global circulation models (GCMs). Modeling an entire 3D atmosphere is a Herculean task, and so in exoplanet GCMs we generally assume that there are no clouds, no magnetic effects, and chemical equilibrium (e.g., Kataria et al 2016). These simplifying assumptions are computationally necessary, but at the same time their exclusion allows for a large theoretical lee-way when comparing to data. Thus, though significant discrepancies exist between almost all a priori GCM predictions and their corresponding observations, these are assumed to be due to the lack of clouds, or atmospheric drag, or chemical disequilibrium, in the models (e.g., Wong et al. 2016, Stevenson et al. 2017, Lewis et al. 2017, Zhang et al. 2018). Since these effects compete with one another and have large uncertainties, this makes tests of the fundamental physics in GCMs extremely difficult. To rectify this, we propose to use 88.4 hours of Spitzer time to observe 3.6um and 4.5um phase curves of the transiting giant planet KELT-9b. KELT-9b has an observed dayside temperature of 4600K (Gaudi et al. 2017), which means that there will very likely be no clouds on the day- or nightside, and is hot enough that the atmosphere should be close to local chemical equilibrium. Additionally, we plan to leverage KELT-9b's high temperature to make the first measurement of global wind speed on an exoplanet (Bell & Cowan 2018), giving a constraint on atmospheric drag and magnetic effects. Combined, this means KELT-9b is close to a real-world GCM, without most of the effects present on lower temperature planets. Additionally, since KELT-9b orbits an extremely bright host star these will be the highest signal-to-noise ratio phase curves taken with Spitzer by more than a factor of two. This gives us a unique opportunity to make the first precise and direct investigation into the fundamental physics that are the foundation of all exoplanet GCMs.
Heavy fermion behavior explained by bosons
NASA Technical Reports Server (NTRS)
Kallio, A.; Poykko, S.; Apaja, V.
1995-01-01
Conventional heavy fermion (HF) theories require existence of massive fermions. We show that heavy fermion phenomena can also be simply explained by existence of bosons with moderate mass but temperature dependent concentration below the formation temperature T(sub B), which in turn is close to room temperature. The bosons B(++) are proposed to be in chemical equilibrium with a system of holes h(+): B(++) = h(+) + h(+). This equilibrium is governed by a boson breaking function f(T), which determines the decreasing boson density and the increasing fermion density with increasing temperature. Since HF-compounds are hybridized from minimum two elements, we assume in addition existence of another fermion component h(sub s)(+) with temperature independent density. This spectator component is thought to be the main agent in binding the bosons in analogy with electronic or muonic molecules. Using a linear boson breaking function we can explain temperature dependence of the giant linear specific heat coefficient gamma(T) coming essentially from bosons. The maxima in resistivity, Hall coefficient, and susceptibility are explained by boson localization effects due to the Wigner crystallization. The antiferromagnetic transitions in turn are explained by similar localization of the pairing fermion system when their density n(sub h)(T(sub FL)) becomes lower than n(sub WC), the critical density of Wigner crystallization. The model applies irrespective whether a compound is superconducting or not. The same model explains the occurrence of low temperature antiferromagnetism also in high-T(sub c) superconductors. The double transition in UPt3 is proposed to be due to the transition of the pairing fermion liquid from spin polarized to unpolarized state.
Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.
He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming
2018-02-28
Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.
Intermittent many-body dynamics at equilibrium
NASA Astrophysics Data System (ADS)
Danieli, C.; Campbell, D. K.; Flach, S.
2017-06-01
The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q -breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.
NASA Astrophysics Data System (ADS)
Long, Min; Sun, Wei; Niu, Shu; Zhou, Xin; Ji, Li
2017-08-01
We investigate the physical properties of stellar winds launched in super stellar clusters (SSCs). Chandra observations have detected the presence of diffuse X-ray emission caused by hot gas from such winds in SSCs, and provide the best probe for understanding interactions between the stellar winds and the complex nursery regions. However, the details of the origin of cluster winds, the mass and energy ejection, the formation of diffuse X-ray emission, the fraction of winds contribution to the distribution of diffuse X-ray emission still remain unclear. We developed a multiphysics hydrodynamic model including self-gravity, head conduction and performed 3D simulations with an unprecedented grid resolution due to adaptive mesh refinement (AMR) capability in a case study of NGC 3603, as a supplement to the analysis of the archived 500 ks Chandra observations. The synthetic emission will be computed by assuming the gas in a non-equilibrium ionization (NEI) state indicated by Chandra observation, not coronal ionization equilibrium (CIE) that most works assumed, by using a customized NEI calculation module based on AtomDB. The results will be compared to the Chandra observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru; Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru
In the MHD tokamak plasma theory, the plasma pressure is usually assumed to be isotropic. However, plasma heating by neutral beam injection and RF heating can lead to a strong anisotropy of plasma parameters and rotation of the plasma. The development of MHD equilibrium theory taking into account the plasma inertia and anisotropic pressure began a long time ago, but until now it has not been consistently applied in computational codes for engineering calculations of the plasma equilibrium and evolution in tokamak. This paper contains a detailed derivation of the axisymmetric plasma equilibrium equation in the most general form (withmore » arbitrary rotation and anisotropic pressure) and description of the specialized version of the SPIDER code. The original method of calculation of the equilibrium with an anisotropic pressure and a prescribed rotational transform profile is proposed. Examples of calculations and discussion of the results are also presented.« less
On ionization and luminescence in flames
NASA Technical Reports Server (NTRS)
Sanger, E; Goercke, P; BREDT I
1951-01-01
An explanation based upon reaction kinetics is presented to account for the deviation of measured ionization levels obtained from reflection experiments from the values computed assuming chemical equilibrium. The heat transfer to the unburned fuel is also considered.
The magnetosphere of Neptune - Its response to daily rotation
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes; Ness, Norman F.
1990-01-01
The Neptunian magnetosphere periodically changes every eight hours between a pole-on magnetosphere with only one polar cusp and an earth-type magnetosphere with two polar cusps. In the pole-on configuration, the tail current sheet has an almost circular shape with plasma currents closing entirely within the magnetosphere. Eight hours later the tail current sheet assumes an almost flat shape with plasma currents touching the magnetotail boundary and closing over the tail magnetopause. Magnetic field and tail current sheet configurations have been calculated in a three-dimensional model, but the plasma- and thermodynamic conditions were investigated in a simplified two-dimensional MHD equilibrium magnetosphere. It was found that the free energy in the tail region of the two-dimensional model becomes independent of the dipole tilt angle. It is conjectured that the Neptunian magnetotail might assume quasi-static equilibrium states that make the free energy of the system independent of its daily rotation.
Rejecting the equilibrium-point hypothesis.
Gottlieb, G L
1998-01-01
The lambda version of the equilibrium-point (EP) hypothesis as developed by Feldman and colleagues has been widely used and cited with insufficient critical understanding. This article offers a small antidote to that lack. First, the hypothesis implicitly, unrealistically assumes identical transformations of lambda into muscle tension for antagonist muscles. Without that assumption, its definitions of command variables R, C, and lambda are incompatible and an EP is not defined exclusively by R nor is it unaffected by C. Second, the model assumes unrealistic and unphysiological parameters for the damping properties of the muscles and reflexes. Finally, the theory lacks rules for two of its three command variables. A theory of movement should offer insight into why we make movements the way we do and why we activate muscles in particular patterns. The EP hypothesis offers no unique ideas that are helpful in addressing either of these questions.
An equilibrium method for prediction of transverse shear stresses in a thick laminated plate
NASA Technical Reports Server (NTRS)
Chaudhuri, R. Z.
1986-01-01
First two equations of equilibrium are utilized to compute the transverse shear stress variation through thickness of a thick laminated plate after in-plane stresses have been computed using an assumed quadratic displacement triangular element based on transverse inextensibility and layerwise constant shear angle theory (LCST). Centroid of the triangle is the point of exceptional accuracy for transverse shear stresses. Numerical results indicate close agreement with elasticity theory. An interesting comparison between the present theory and that based on assumed stress hybrid finite element approach suggests that the latter does not satisfy the condition of free normal traction at the edge. Comparison with numerical results obtained by using constant shear angle theory suggests that LCST is close to the elasticity solution while the CST is closer to classical (CLT) solution. It is also demonstrated that the reduced integration gives faster convergence when the present theory is applied to a thin plate.
NASA Astrophysics Data System (ADS)
Chen, Jiliang; Jiang, Fangming
2016-02-01
With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.
Eliminating the Cuspidal Temperature Profile of a Non-equilibrium Chain
NASA Astrophysics Data System (ADS)
Cândido, Michael M.; M. Morgado, Welles A.; Duarte Queirós, Sílvio M.
2017-06-01
In 1967, Z. Rieder, J. L. Lebowitz, and E. Lieb (RLL) introduced a model of heat conduction on a crystal that became a milestone problem of non-equilibrium statistical mechanics. Along with its inability to reproduce Fourier's law—which subsequent generalizations have been trying to amend—the RLL model is also characterized by awkward cusps at the ends of the non-equilibrium chain, an effect that has endured all these years without a satisfactory answer. In this paper, we first show that such trait stems from the insufficiency of pinning interactions between the chain and the substrate. Assuming the possibility of pinning the chain, the analysis of the temperature profile in the space of parameters reveals that for a proper combination of the border and bulk pinning values, the temperature profile may shift twice between the RLL cuspidal behavior and the expected monotonic local temperature evolution along the system, as a function of the pinning. At those inversions, the temperature profile along the chain is characterized by perfect plateaux: at the first threshold, the cumulants of the heat flux reach their maxima and the vanishing of the two-point velocity correlation function for all sites of the chain so that the system behaves similarly to a "phonon box." On the other hand, at the second change of the temperature profile, we still have the vanishing of the two-point correlation function but only for the bulk, which explains the emergence of the temperature plateau and thwarts the reaching of the maximal values of the cumulants of the heat flux.
Prevosto, L; Kelly, H; Mancinelli, B
2013-12-01
This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.
Development of an alkaline/surfactant/polymer compositional reservoir simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuyan, D.
1989-01-01
The mathematical formulation of a generalized three-dimensional compositional reservoir simulator for high-pH chemical flooding processes is presented in this work. The model assumes local thermodynamic equilibrium with respect to both reaction chemistry and phase behavior and calculates equilibrium electrolyte and phase compositions as a function of time and position. The reaction chemistry considers aqueous electrolytic chemistry, precipitation/dissolution of minerals, ion exchange reactions on matrix surface, reaction of acidic components of crude oil with the bases in the aqueous solution and cation exchange reactions with the micelles. The simulator combines this detailed reaction chemistry associated with these processes with the extensivemore » physical and flow property modeling schemes of an existing chemical flood simulator (UTCHEM) to model the multiphase, multidimensional displacement processes. The formulation of the chemical equilibrium model is quite general and is adaptable to simulate a variety of chemical descriptions. In addition to its use in the simulation of high-pH chemical flooding processes, the model will find application in the simulation of other reactive flow problems like the ground water contamination, reinjection of produced water, chemical waste disposal, etc. in one, two or three dimensions and under multiphase flow conditions. In this work, the model is used to simulate several hypothetical cases of high-pH chemical floods, which include cases from a simple alkaline preflush of a micellar/polymer flood to surfactant enhanced alkaline-polymer flooding and the results are analyzed. Finally, a few published alkaline, alkaline-polymer and surfactant-alkaline-polymer corefloods are simulated and compared with the experimental results.« less
NASA Astrophysics Data System (ADS)
Drummond, B.; Mayne, N. J.; Baraffe, I.; Tremblin, P.; Manners, J.; Amundsen, D. S.; Goyal, J.; Acreman, D.
2018-05-01
In this work, we have performed a series of simulations of the atmosphere of GJ 1214b assuming different metallicities using the Met Office Unified Model (UM). The UM is a general circulation model (GCM) that solves the deep, non-hydrostatic equations of motion and uses a flexible and accurate radiative transfer scheme, based on the two-stream and correlated-k approximations, to calculate the heating rates. In this work we consistently couple a well-tested Gibbs energy minimisation scheme to solve for the chemical equilibrium abundances locally in each grid cell for a general set of elemental abundances, further improving the flexibility and accuracy of the model. As the metallicity of the atmosphere is increased we find significant changes in the dynamical and thermal structure, with subsequent implications for the simulated phase curve. The trends that we find are qualitatively consistent with previous works, though with quantitative differences. We investigate in detail the effect of increasing the metallicity by splitting the mechanism into constituents, involving the mean molecular weight, the heat capacity and the opacities. We find the opacity effect to be the dominant mechanism in altering the circulation and thermal structure. This result highlights the importance of accurately computing the opacities and radiative transfer in 3D GCMs.
Partial Model of Insulator/Insulator Contact Charging
NASA Technical Reports Server (NTRS)
Hogue, Michael; Calle, C. I.; Buhler, C. R.; Mucciolo, E. R.
2005-01-01
Two papers present a two-phase equilibrium model that partly explains insulator/ insulator contact charging. In this model, a vapor of ions within a gas is in equilibrium with a submonolayer of ions of the same species that have been adsorbed on the surface of an insulator. The surface is modeled as having localized states, each with a certain energy of adsorption for an ion. In an earlier version of the model described in the first paper, the ions do not interact with each other. Using the grand canonical ensemble, the chemical potentials of both vapor and absorbed phases are derived and equated to determine the vapor pressure. If a charge is assigned to the vapor particles (in particular, if single ionization is assumed), then the surface charge density associated with adsorbed ions can be calculated as a function of pressure. In a later version of the model presented in the second paper, the submodel of the vapor phase is extended to include electrostatic interactions between vapor ions and adsorbed ones as well as the screening effect, at a given distance from the surface, of ions closer to the surface. Theoretical values of this model closely match preliminary experimental data on the discharge of insulators as a function of pressure.
Cost characteristics of hospitals.
Smet, Mike
2002-09-01
Modern hospitals are complex multi-product organisations. The analysis of a hospital's production and/or cost structure should therefore use the appropriate techniques. Flexible functional forms based on the neo-classical theory of the firm seem to be most suitable. Using neo-classical cost functions implicitly assumes minimisation of (variable) costs given that input prices and outputs are exogenous. Local and global properties of flexible functional forms and short-run versus long-run equilibrium are further issues that require thorough investigation. In order to put the results based on econometric estimations of cost functions in the right perspective, it is important to keep these considerations in mind when using flexible functional forms. The more recent studies seem to agree that hospitals generally do not operate in their long-run equilibrium (they tend to over-invest in capital (capacity and equipment)) and that it is therefore appropriate to estimate a short-run variable cost function. However, few studies explicitly take into account the implicit assumptions and restrictions embedded in the models they use. An alternative method to explain differences in costs uses management accounting techniques to identify the cost drivers of overhead costs. Related issues such as cost-shifting and cost-adjusting behaviour of hospitals and the influence of market structure on competition, prices and costs are also discussed shortly.
Re-Entry Aeroheating Analysis of Tile-Repair Augers for the Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Mazaheri, Ali R.; Wood, William A.
2007-01-01
Computational re-entry aerothermodynamic analysis of the Space Shuttle Orbiter s tile overlay repair (TOR) sub-assembly is presented. Entry aeroheating analyses are conducted to characterize the aerothermodynamic environment of the TOR and to provide necessary inputs for future TOR thermal and structural analyses. The TOR sub-assembly consists of a thin plate and several augers and spacers that serve as the TOR fasteners. For the computational analysis, the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is used. A 5-species non-equilibrium chemistry model with a finite rate catalytic recombination model and a radiation equilibrium wall condition are used. It is assumed that wall properties are the same as reaction cured glass (RCG) properties with a surface emissivity of epsilon = 0.89. Surface heat transfer rates for the TOR and tile repair augers (TRA) are computed at a STS-107 trajectory point corresponding to Mach 18 free stream conditions. Computational results show that the average heating bump factor (BF), which is a ratio of local heat transfer rate to a design reference point located at the damage site, for the auger head alone is about 1.9. It is also shown that the average BF for the combined auger and washer heads is about 2.0.
Acoustic positioning and orientation prediction
NASA Technical Reports Server (NTRS)
Barmatz, Martin B. (Inventor); Aveni, Glenn (Inventor); Putterman, Seth (Inventor); Rudnick, Joseph (Inventor)
1990-01-01
A method is described for use with an acoustic positioner, which enables a determination of the equilibrium position and orientation which an object assumes in a zero gravity environment, as well as restoring forces and torques of an object in an acoustic standing wave field. An acoustic standing wave field is established in the chamber, and the object is held at several different positions near the expected equilibrium position. While the object is held at each position, the center resonant frequency of the chamber is determined, by noting which frequency results in the greatest pressure of the acoustic field. The object position which results in the lowest center resonant frequency is the equilibrium position. The orientation of a nonspherical object is similarly determined, by holding the object in a plurality of different orientations at its equilibrium position, and noting the center resonant frequency for each orientation. The orientation which results in the lowest center resonant frequency is the equilibrium orientation. Where the acoustic frequency is constant, but the chamber length is variable, the equilibrium position or orientation is that which results in the greatest chamber length at the center resonant frequency.
Profiles of equilibrium constants for self-association of aromatic molecules
NASA Astrophysics Data System (ADS)
Beshnova, Daria A.; Lantushenko, Anastasia O.; Davies, David B.; Evstigneev, Maxim P.
2009-04-01
Analysis of the noncovalent, noncooperative self-association of identical aromatic molecules assumes that the equilibrium self-association constants are either independent of the number of molecules (the EK-model) or change progressively with increasing aggregation (the AK-model). The dependence of the self-association constant on the number of molecules in the aggregate (i.e., the profile of the equilibrium constant) was empirically derived in the AK-model but, in order to provide some physical understanding of the profile, it is proposed that the sources for attenuation of the equilibrium constant are the loss of translational and rotational degrees of freedom, the ordering of molecules in the aggregates and the electrostatic contribution (for charged units). Expressions are derived for the profiles of the equilibrium constants for both neutral and charged molecules. Although the EK-model has been widely used in the analysis of experimental data, it is shown in this work that the derived equilibrium constant, KEK, depends on the concentration range used and hence, on the experimental method employed. The relationship has also been demonstrated between the equilibrium constant KEK and the real dimerization constant, KD, which shows that the value of KEK is always lower than KD.
General equilibrium characteristics of a dual-lift helicopter system
NASA Technical Reports Server (NTRS)
Cicolani, L. S.; Kanning, G.
1986-01-01
The equilibrium characteristics of a dual-lift helicopter system are examined. The system consists of the cargo attached by cables to the endpoints of a spreader bar which is suspended by cables below two helicopters. Results are given for the orientation angles of the suspension system and its internal forces, and for the helicopter thrust vector requirements under general circumstances, including nonidentical helicopters, any accelerating or static equilibrium reference flight condition, any system heading relative to the flight direction, and any distribution of the load to the two helicopters. Optimum tether angles which minimize the sum of the required thrust magnitudes are also determined. The analysis does not consider the attitude degrees of freedom of the load and helicopters in detail, but assumes that these bodies are stable, and that their aerodynamic forces in equilibrium flight can be determined independently as functions of the reference trajectory. The ranges of these forces for sample helicopters and loads are examined and their effects on the equilibrium characteristics are given parametrically in the results.
Voter models with contrarian agents
NASA Astrophysics Data System (ADS)
Masuda, Naoki
2013-11-01
In the voter and many other opinion formation models, agents are assumed to behave as congregators (also called the conformists); they are attracted to the opinions of others. In this study I investigate linear extensions of the voter model with contrarian agents. An agent is either congregator or contrarian and assumes a binary opinion. I investigate three models that differ in the behavior of the contrarian toward other agents. In model 1, contrarians mimic the opinions of other contrarians and oppose (i.e., try to select the opinion opposite to) those of congregators. In model 2, contrarians mimic the opinions of congregators and oppose those of other contrarians. In model 3, contrarians oppose anybody. In all models, congregators are assumed to like anybody. I show that even a small number of contrarians prohibits the consensus in the entire population to be reached in all three models. I also obtain the equilibrium distributions using the van Kampen small-fluctuation approximation and the Fokker-Planck equation for the case of many contrarians and a single contrarian, respectively. I show that the fluctuation around the symmetric coexistence equilibrium is much larger in model 2 than in models 1 and 3 when contrarians are rare.
NASA Astrophysics Data System (ADS)
Fellner, Klemens; Tang, Bao Quoc
2018-06-01
The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of R_+^N, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.
Liang, Hua; Deng, Liufu; Chmura, Steven; Burnette, Byron; Liadis, Nicole; Darga, Thomas; Beckett, Michael A.; Lingen, Mark W.; Witt, MaryEllyn; Weichselbaum, Ralph R.; Fu, Yang-Xin
2013-01-01
Local failures following radiation therapy are multifactorial and the contributions of the tumor and the host are complex. Current models of tumor equilibrium suggest that a balance exists between cell birth and cell death due to insufficient angiogenesis, immune effects, or intrinsic cellular factors. We investigated whether host immune responses contribute to radiation induced tumor equilibrium in animal models. We report an essential role for immune cells and their cytokines in suppressing tumor cell regrowth in two experimental animal model systems. Depletion of T cells or neutralization of interferon-gamma reversed radiation-induced equilibrium leading to tumor regrowth. We also demonstrate that PD-L1 blockade augments T cell responses leading to rejection of tumors in radiation induced equilibrium. We identify an active interplay between tumor cells and immune cells that occurs in radiation-induced tumor equilibrium and suggest a potential role for disruption of the PD-L1/PD-1 axis in increasing local tumor control. PMID:23630355
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Auslender, Aaron H.
1999-01-01
The decay of anomalous effects on shock waves in weakly ionized gases following plasma generator extinction has been measured in the anticipation that the decay time must correlate well with the relaxation time of the mechanism responsible for the anomalous effects. When the relaxation times cannot be measured directly, they are inferred theoretically, usually assuming that the initial state is nearly in thermal equilibrium. In this paper, it is demonstrated that relaxation from any steady state far from equilibrium, including the state of a weakly ionized gas, can proceed much more slowly than arguments based on relaxation from near equilibrium states might suggest. This result justifies a more careful analysis of the relaxation times in weakly ionized gases and suggests that although the experimental measurements of relaxation times did not lead to an unambiguous conclusion, this approach to understanding the anomalous effects may warrant further investigation.
Non-equilibrium freezing behaviour of aqueous systems.
MacKenzie, A P
1977-03-29
The tendencies to non-equilibrium freezing behaviour commonly noted in representative aqueous systems derive from bulk and surface properties according to the circumstances. Supercooling and supersaturation are limited by heterogeneous nucleation in the presence of solid impurities. Homogeneous nucleation has been observed in aqueous systems freed from interfering solids. Once initiated, crystal growth is ofter slowed and, very frequently, terminated with increasing viscosity. Nor does ice first formed always succeed in assuming its most stable crystalline form. Many of the more significant measurements on a given systeatter permitting the simultaneous representation of thermodynamic and non-equilibrium properties. The diagram incorporated equilibrium melting points, heterogeneous nucleation temperatures, homogeneous nucleation temperatures, glass transition and devitrification temperatures, recrystallization temperatures, and, where appropriate, solute solubilities and eutectic temperatures. Taken together, the findings on modle systems aid the identification of the kinetic and thermodynamic factors responsible for the freezing-thawing survival of living cells.
Congestion schemes and Nash equilibrium in complex networks
NASA Astrophysics Data System (ADS)
Almendral, Juan A.; López, Luis; Cholvi, Vicent; Sanjuán, Miguel A. F.
2005-09-01
Whenever a common resource is scarce, a set of rules are needed to share it in a fairly way. However, most control schemes assume that users will behave in a cooperative way, without taking care of guaranteeing that they will not act in a selfish manner. Then, a fundamental issue is to evaluate the impact of cheating. From the point of view of game theory, a Nash equilibrium implies that nobody can take advantage by unilaterally deviating from this stable state, even in the presence of selfish users. In this paper we prove that any efficient Nash equilibrium strongly depends on the number of users, if the control scheme policy does not record their previous behavior. Since this is a common pattern in real situations, this implies that the system would be always out of equilibrium. Consequently, this result proves that, in practice, oblivious control schemes must be improved to cope with selfish users.
NASA Astrophysics Data System (ADS)
Gibbons, J. A.; Sharp, Z. D.; Atudorei, V.
2017-12-01
The calcite-water triple oxygen isotope fractionation is used to determine isotopic equilibrium and ancient ocean oxygen isotopic values and temperatures. Unlike conventional δ18O analysis where the formation water's isotopic value is assumed, paired δ17O-δ18O measurements allow for the water's isotopic composition to be calculated because there is only one unique solution for equilibrium fractionation using Δ17O-δ18O values (where Δ17O=δ17O-0.528δ18O). To a first approximation, the calcite-water equilibrium fractionation factor, θ (where θ=ln17α/ln18α), varies with temperature by 0.00001/°. The calcite-water equilibrium fractionation line was determined at two temperatures, 30° and 0°, by using modern carbonate samples that formed in ocean water with a δ18O value of 0‰. The θ values for the 30° and 0° samples are 0.52515 and 0.52486, respectively. Oxygen values were measured using complete fluorination in nickel tubes with BrF5 as the reaction reagent. We calibrated all oxygen values to the SMOW-SLAP scale by measuring SMOW, SLAP, San Carlos olivine, NBS-18, NBS-19, and PDB. The triple oxygen isotope calcite-water equilibrium fractionation line was applied to well preserved Early Triassic ammonite shells from the Western United States. Based on paired δ17O-δ18O measurements, the samples did not form in equilibrium with an ice-free ocean with an oxygen isotopic value of -1‰ or the modern ocean value of 0‰. Assuming the calcite is still primary and formed in equilibrium with the ocean water, our data indicate that the δ18O value of the ocean in the early Triassic was 3-5‰ lower than modern. Samples from the Smithian thermal maximum formed in water 10° warmer than samples from after the thermal maximum. Paired δ17O-δ18O measurements of pristine ancient carbonates may provide a better understanding of past ocean conditions during climate change events.
Pen, Ue-Li; Turok, Neil
2016-09-23
We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1 GeV
NASA Technical Reports Server (NTRS)
Ye, Gang; Voigt, Gerd-Hannes
1989-01-01
A model is presented of an axially symmetric pole-on magnetosphere in MHD force balance, in which both plasma thermal pressure gradients and centrifugal force are taken into account. Assuming that planetary rotation leads to differentially rotating magnetotail field lines, the deformation of magnetotail field lines under the influence of both thermal plasma pressure and centrifugal forces was calculated. Analytic solutions to the Grad-Shafranov equation are presented, which include the centrifugal force term. It is shown that the nonrotational magnetosphere with hot thermal plasma leads to a field configuration without a toroidal B(phi) component and without field-aligned Birkeland currents. The other extreme, a rapidly rotating magnetosphere with cold plasma, leads to a configuration in which plasma must be confined within a thin disk in a plane where the radial magnetic field component B(r) vanishes locally.
Carbon X-ray absorption in the local ISM: fingerprints in X-ray Novae spectra
NASA Astrophysics Data System (ADS)
Gatuzz, Efraín; Ness, J.-U.; Gorczyca, T. W.; Hasoglu, M. F.; Kallman, Timothy R.; García, Javier A.
2018-06-01
We present a study of the C K-edge using high-resolution LETGS Chandra spectra of four novae during their super-soft-source (SSS) phase. We identified absorption lines due to C II Kα, C III Kα and C III Kβ resonances. We used these astronomical observations to perform a benchmarking of the atomic data, which involves wavelength shifts of the resonances and photoionization cross-sections. We used improved atomic data to estimate the C II and C III column densities. The absence of physical shifts for the absorption lines, the consistence of the column densities between multiple observations and the high temperature required for the SSS nova atmosphere modeling support our conclusion about an ISM origin of the respective absorption lines. Assuming a collisional ionization equilibrium plasma the maximum temperature derived from the ratio of C II/C III column densities of the absorbers correspond to Tmax < 3.05 × 104 K.
COMPARISON OF MONTE CARLO METHODS FOR NONLINEAR RADIATION TRANSPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. R. MARTIN; F. B. BROWN
2001-03-01
Five Monte Carlo methods for solving the nonlinear thermal radiation transport equations are compared. The methods include the well-known Implicit Monte Carlo method (IMC) developed by Fleck and Cummings, an alternative to IMC developed by Carter and Forest, an ''exact'' method recently developed by Ahrens and Larsen, and two methods recently proposed by Martin and Brown. The five Monte Carlo methods are developed and applied to the radiation transport equation in a medium assuming local thermodynamic equilibrium. Conservation of energy is derived and used to define appropriate material energy update equations for each of the methods. Details of the Montemore » Carlo implementation are presented, both for the random walk simulation and the material energy update. Simulation results for all five methods are obtained for two infinite medium test problems and a 1-D test problem, all of which have analytical solutions. Conclusions regarding the relative merits of the various schemes are presented.« less
Banerjee, R.; Sanyal, M. K.; Bera, M. K.; ...
2015-02-17
We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initialmore » monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.« less
Fibrin Clots Are Equilibrium Polymers That Can Be Remodeled Without Proteolytic Digestion
NASA Astrophysics Data System (ADS)
Chernysh, Irina N.; Nagaswami, Chandrasekaran; Purohit, Prashant K.; Weisel, John W.
2012-11-01
Fibrin polymerization is a necessary part of hemostasis but clots can obstruct blood vessels and cause heart attacks and strokes. The polymerization reactions are specific and controlled, involving strong knob-into-hole interactions to convert soluble fibrinogen into insoluble fibrin. It has long been assumed that clots and thrombi are stable structures until proteolytic digestion. On the contrary, using the technique of fluorescence recovery after photobleaching, we demonstrate here that there is turnover of fibrin in an uncrosslinked clot. A peptide representing the knobs involved in fibrin polymerization can compete for the holes and dissolve a preformed fibrin clot, or increase the fraction of soluble oligomers, with striking rearrangements in clot structure. These results imply that in vivo clots or thrombi are more dynamic structures than previously believed that may be remodeled as a result of local environmental conditions, may account for some embolization, and suggest a target for therapeutic intervention.
A non-LTE model for the Jovian methane infrared emissions at high spectral resolution
NASA Technical Reports Server (NTRS)
Halthore, Rangasayi N.; Allen, J. E., Jr.; Decola, Philip L.
1994-01-01
High resolution spectra of Jupiter in the 3.3 micrometer region have so far failed to reveal either the continuum or the line emissions that can be unambiguously attributed to the nu(sub 3) band of methane (Drossart et al. 1993; Kim et al. 1991). Nu(sub 3) line intensities predicted with the help of two simple non-Local Thermodynamic Equilibrium (LTE) models -- a two-level model and a three-level model, using experimentally determined relaxation coefficients, are shown to be one to three orders of magnitude respectively below the 3-sigma noise level of these observations. Predicted nu(sub 4) emission intensities are consistent with observed values. If the methane mixing ratio below the homopause is assumed as 2 x 10(exp -3), a value of about 300 K is derived as an upper limit to the temperature of the high stratosphere at microbar levels.
Spectroscopic studies of GTA welding plasmas. Temperature calculation and dilution measurement
NASA Astrophysics Data System (ADS)
Lacroix, D.; Boudot, C.; Jeandel, G.
1999-10-01
A spectroscopic study of the GTAW plasma-plume created during the welding of stainless steel and other materials (iron, nickel and chromium) has been carried out. The spectra of these plasmas have been studied for several welding parameters. Temperature calculations are based on the observation of relative intensities and shapes of the emission peaks. We assume that the plasma is in local thermal equilibrium. The temperature is calculated with the Boltzmann plot method from twelve iron emission lines (in the range 368 385 nm): it varies between 9650 and 12 100 K. Dilution experiments have been carried out. We checked the mixing of metals: during welding of two different metallic plates and during welding with an Inconel wire. Dilution is monitored following the intensity of some characteristic emission lines (chromium and nickel). Comparison of spectroscopic results and metallographic ones is made.
NASA Astrophysics Data System (ADS)
Kadanoff, Leo P.
2017-05-01
The science of thermodynamics was put together in the Nineteenth Century to describe large systems in equilibrium. One part of thermodynamics defines entropy for equilibrium systems and demands an ever-increasing entropy for non-equilibrium ones. Since thermodynamics does not define entropy out of equilibrium, pure thermodynamics cannot follow the details of how this increase occurs. However, starting with the work of Ludwig Boltzmann in 1872, and continuing to the present day, various models of non-equilibrium behavior have been put together with the specific aim of generalizing the concept of entropy to non-equilibrium situations. This kind of entropy has been termed kinetic entropy to distinguish it from the thermodynamic variety. Knowledge of kinetic entropy started from Boltzmann's insight about his equation for the time dependence of gaseous systems. In this paper, his result is stated as a definition of kinetic entropy in terms of a local equation for the entropy density. This definition is then applied to Landau's theory of the Fermi liquid thereby giving the kinetic entropy within that theory. The dynamics of many condensed matter systems including Fermi liquids, low temperature superfluids, and ordinary metals lend themselves to the definition of kinetic entropy. In fact, entropy has been defined and used for a wide variety of situations in which a condensed matter system has been allowed to relax for a sufficient period so that the very most rapid fluctuations have been ironed out. One of the broadest applications of non-equilibrium analysis considers quantum degenerate systems using Martin-Schwinger Green's functions (Phys Rev 115:1342-1373, 1959) as generalized Wigner functions, g^<({p},ω ,{R},T) and g^>({p},ω ,{R},T). This paper describes once again how the quantum kinetic equations for these functions give locally defined conservation laws for mass momentum and energy. In local thermodynamic equilibrium, this kinetic theory enables a reasonable definition of the density of kinetic entropy. However, when the system is outside of local equilibrium, this definition fails. It is speculated that quantum entanglement is the source of this failure.
He I lines in B stars - Comparison of non-local thermodynamic equilibrium models with observations
NASA Technical Reports Server (NTRS)
Heasley, J. N.; Timothy, J. G.; Wolff, S. C.
1982-01-01
Profiles of He gamma-gamma 4026, 4387, 4471, 4713, 5876, and 6678 have been obtained in 17 stars of spectral type B0-B5. Parameters of the nonlocal thermodynamic equilibrium models appropriate to each star are determined from the Stromgren index and fits to H-alpha line profiles. These parameters yield generally good fits to the observed He I line profiles, with the best fits being found for the blue He I lines where departures from local thermodynamic equilibrium are relatively small. For the two red lines it is found that, in the early B stars and in stars with log g less than 3.5, both lines are systematically stronger than predicted by the nonlocal thermodynamic equilibrium models.
Emulsification kinetics during quasi-miscible flow in dead-end pores
NASA Astrophysics Data System (ADS)
Broens, M.; Unsal, E.
2018-03-01
Microemulsions have found applications as carriers for the transport of solutes through various porous media. They are commonly pre-prepared in bulk form, and then injected into the medium. The preparation is done by actively mixing the surfactant, water and oil, and then allowing the mixture to stagnate until equilibrium is reached. The resulting microemulsion characteristics of the surfactant/oil/water system are studied at equilibrium conditions, and perfect mixing is assumed. But in applications like subsurface remediation and enhanced oil recovery, microemulsion formation may occur in the pore space. Surfactant solutions are injected into the ground to solubilize and/or mobilize the non-aqueous phase liquids (NAPLs) by in-situ emulsification. Flow dynamics and emulsification kinetics are coupled, which also contributes to in-situ mixing. In this study, we investigated the nature of such coupling for a quasi-miscible fluid system in a conductive channel with dead-end extensions. A microfluidic setup was used, where an aqueous solution of an anionic, internal olefin sulfonate 20-24 (IOS) surfactant was injected into n-decane saturated glass micromodel. The oil phase was coloured using a solvatochromatic dye allowing for direct visualization of the aqueous and oil phases as well as their microemulsions under fluorescent light. Presence of both conductive and stagnant dead-end channels in a single pore system made it possible to isolate different transport mechanisms from each other but also allowed to study the transitions from one to the other. In the conductive channel, the surfactant was carried with flow, and emulsification was controlled by the localized flow dynamics. In the stagnant zones, the driving force of the mass transfer was driven by the chemical concentration gradient. Some of the equilibrium phase behaviour characteristics of the surfactant/oil/water system were recognisable during the quasi-miscible displacement. However, the equilibrium tests alone were not sufficient to predict the emulsification process under dynamic conditions.
On thermalization of electron-positron-photon plasma
NASA Astrophysics Data System (ADS)
Siutsou, I. A.; Aksenov, A. G.; Vereshchagin, G. V.
2015-12-01
Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.
The Metallicity Evolution of Low-mass Galaxies: New Constraints at Intermediate Redshift
NASA Astrophysics Data System (ADS)
Henry, Alaina; Martin, Crystal L.; Finlator, Kristian; Dressler, Alan
2013-06-01
We present abundance measurements from 26 emission-line-selected galaxies at z ~ 0.6-0.7. By reaching stellar masses as low as 108 M ⊙, these observations provide the first measurement of the intermediate-redshift mass-metallicity (MZ) relation below 109 M ⊙. For the portion of our sample above M > 109 M ⊙ (8/26 galaxies), we find good agreement with previous measurements of the intermediate-redshift MZ relation. Compared to the local relation, we measure an evolution that corresponds to a 0.12 dex decrease in oxygen abundances at intermediate redshifts. This result confirms the trend that metallicity evolution becomes more significant toward lower stellar masses, in keeping with a downsizing scenario where low-mass galaxies evolve onto the local MZ relation at later cosmic times. We show that these galaxies follow the local fundamental metallicity relation, where objects with higher specific (mass-normalized) star formation rates (SFRs) have lower metallicities. Furthermore, we show that the galaxies in our sample lie on an extrapolation of the SFR-M * relation (the star-forming main sequence). Leveraging the MZ relation and star-forming main sequence (and combining our data with higher-mass measurements from the literature), we test models that assume an equilibrium between mass inflow, outflow, and star formation. We find that outflows are required to describe the data. By comparing different outflow prescriptions, we show that momentum, driven winds can describe the MZ relation; however, this model underpredicts the amount of star formation in low-mass galaxies. This disagreement may indicate that preventive feedback from gas heating has been overestimated, or it may signify a more fundamental deviation from the equilibrium assumption. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Weber, James Daniel
1999-11-01
This dissertation presents a new algorithm that allows a market participant to maximize its individual welfare in the electricity spot market. The use of such an algorithm in determining market equilibrium points, called Nash equilibria, is also demonstrated. The start of the algorithm is a spot market model that uses the optimal power flow (OPF), with a full representation of the transmission system. The OPF is also extended to model consumer behavior, and a thorough mathematical justification for the inclusion of the consumer model in the OPF is presented. The algorithm utilizes price and dispatch sensitivities, available from the Hessian matrix of the OPF, to help determine an optimal change in an individual's bid. The algorithm is shown to be successful in determining local welfare maxima, and the prospects for scaling the algorithm up to realistically sized systems are very good. Assuming a market in which all participants maximize their individual welfare, economic equilibrium points, called Nash equilibria, are investigated. This is done by iteratively solving the individual welfare maximization algorithm for each participant until a point is reached where all individuals stop modifying their bids. It is shown that these Nash equilibria can be located in this manner. However, it is also demonstrated that equilibria do not always exist, and are not always unique when they do exist. It is also shown that individual welfare is a highly nonconcave function resulting in many local maxima. As a result, a more global optimization technique, using a genetic algorithm (GA), is investigated. The genetic algorithm is successfully demonstrated on several systems. It is also shown that a GA can be developed using special niche methods, which allow a GA to converge to several local optima at once. Finally, the last chapter of this dissertation covers the development of a new computer visualization routine for power system analysis: contouring. The contouring algorithm is demonstrated to be useful in visualizing bus-based and transmission line-based quantities.
Rethinking pattern formation in reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Halatek, J.; Frey, E.
2018-05-01
The present theoretical framework for the analysis of pattern formation in complex systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present a new theoretical approach to characterize dynamical states arbitrarily far from (global) equilibrium. We show that reaction-diffusion systems that are driven by locally mass-conserving interactions can be understood in terms of local equilibria of diffusively coupled compartments. Diffusive coupling generically induces lateral redistribution of the globally conserved quantities, and the variable local amounts of these quantities determine the local equilibria in each compartment. We find that, even far from global equilibrium, the system is well characterized by its moving local equilibria. We apply this framework to in vitro Min protein pattern formation, a paradigmatic model for biological pattern formation. Within our framework we can predict and explain transitions between chemical turbulence and order arbitrarily far from global equilibrium. Our results reveal conceptually new principles of self-organized pattern formation that may well govern diverse dynamical systems.
Kalogerakis, Konstantinos S.; Matsiev, Daniel; Cosby, Philip C.; Dodd, James A.; Falcinelli, Stefano; Hedin, Jonas; Kutepov, Alexander A.; Noll, Stefan; Panka, Peter A.; Romanescu, Constantin; Thiebaud, Jérôme E.
2018-01-01
The question of whether mesospheric OH(υ) rotational population distributions are in equilibrium with the local kinetic temperature has been debated over several decades. Despite several indications for the existence of non-equilibrium effects, the general consensus has been that emissions originating from low rotational levels are thermalized. Sky spectra simultaneously observing several vibrational levels demonstrated reproducible trends in the extracted OH(υ) rotational temperatures as a function of vibrational excitation. Laboratory experiments provided information on rotational energy transfer and direct evidence for fast multi-quantum OH(high-υ) vibrational relaxation by O atoms. We examine the relationship of the new relaxation pathways with the behavior exhibited by OH(υ) rotational population distributions. Rapid OH(high-υ) + O multi-quantum vibrational relaxation connects high and low vibrational levels and enhances the hot tail of the OH(low-υ) rotational distributions. The effective rotational temperatures of mesospheric OH(υ) are found to deviate from local thermodynamic equilibrium for all observed vibrational levels. PMID:29503514
Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay
NASA Astrophysics Data System (ADS)
Novi W, Cascarilla; Lestari, Dwi
2016-02-01
This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.
Monine, Michael I.; Posner, Richard G.; Savage, Paul B.; Faeder, James R.; Hlavacek, William S.
2010-01-01
Abstract We use flow cytometry to characterize equilibrium binding of a fluorophore-labeled trivalent model antigen to bivalent IgE-FcεRI complexes on RBL cells. We find that flow cytometric measurements are consistent with an equilibrium model for ligand-receptor binding in which binding sites are assumed to be equivalent and ligand-induced receptor aggregates are assumed to be acyclic. However, this model predicts extensive receptor aggregation at antigen concentrations that yield strong cellular secretory responses, which is inconsistent with the expectation that large receptor aggregates should inhibit such responses. To investigate possible explanations for this discrepancy, we evaluate four rule-based models for interaction of a trivalent ligand with a bivalent cell-surface receptor that relax simplifying assumptions of the equilibrium model. These models are simulated using a rule-based kinetic Monte Carlo approach to investigate the kinetics of ligand-induced receptor aggregation and to study how the kinetics and equilibria of ligand-receptor interaction are affected by steric constraints on receptor aggregate configurations and by the formation of cyclic receptor aggregates. The results suggest that formation of linear chains of cyclic receptor dimers may be important for generating secretory signals. Steric effects that limit receptor aggregation and transient formation of small receptor aggregates may also be important. PMID:20085718
NASA Astrophysics Data System (ADS)
Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles
2014-11-01
A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).
Espinosa, G; Rodríguez, R; Gil, J M; Suzuki-Vidal, F; Lebedev, S V; Ciardi, A; Rubiano, J G; Martel, P
2017-03-01
Numerical simulations of laboratory astrophysics experiments on plasma flows require plasma microscopic properties that are obtained by means of an atomic kinetic model. This fact implies a careful choice of the most suitable model for the experiment under analysis. Otherwise, the calculations could lead to inaccurate results and inappropriate conclusions. First, a study of the validity of the local thermodynamic equilibrium in the calculation of the average ionization, mean radiative properties, and cooling times of argon plasmas in a range of plasma conditions of interest in laboratory astrophysics experiments on radiative shocks is performed in this work. In the second part, we have made an analysis of the influence of the atomic kinetic model used to calculate plasma microscopic properties of experiments carried out on magpie on radiative bow shocks propagating in argon. The models considered were developed assuming both local and nonlocal thermodynamic equilibrium and, for the latter situation, we have considered in the kinetic model different effects such as external radiation field and plasma mixture. The microscopic properties studied were the average ionization, the charge state distributions, the monochromatic opacities and emissivities, the Planck mean opacity, and the radiative power loss. The microscopic study was made as a postprocess of a radiative-hydrodynamic simulation of the experiment. We have also performed a theoretical analysis of the influence of these atomic kinetic models in the criteria for the onset possibility of thermal instabilities due to radiative cooling in those experiments in which small structures were experimentally observed in the bow shock that could be due to this kind of instability.
NASA Astrophysics Data System (ADS)
Espinosa, G.; Rodríguez, R.; Gil, J. M.; Suzuki-Vidal, F.; Lebedev, S. V.; Ciardi, A.; Rubiano, J. G.; Martel, P.
2017-03-01
Numerical simulations of laboratory astrophysics experiments on plasma flows require plasma microscopic properties that are obtained by means of an atomic kinetic model. This fact implies a careful choice of the most suitable model for the experiment under analysis. Otherwise, the calculations could lead to inaccurate results and inappropriate conclusions. First, a study of the validity of the local thermodynamic equilibrium in the calculation of the average ionization, mean radiative properties, and cooling times of argon plasmas in a range of plasma conditions of interest in laboratory astrophysics experiments on radiative shocks is performed in this work. In the second part, we have made an analysis of the influence of the atomic kinetic model used to calculate plasma microscopic properties of experiments carried out on magpie on radiative bow shocks propagating in argon. The models considered were developed assuming both local and nonlocal thermodynamic equilibrium and, for the latter situation, we have considered in the kinetic model different effects such as external radiation field and plasma mixture. The microscopic properties studied were the average ionization, the charge state distributions, the monochromatic opacities and emissivities, the Planck mean opacity, and the radiative power loss. The microscopic study was made as a postprocess of a radiative-hydrodynamic simulation of the experiment. We have also performed a theoretical analysis of the influence of these atomic kinetic models in the criteria for the onset possibility of thermal instabilities due to radiative cooling in those experiments in which small structures were experimentally observed in the bow shock that could be due to this kind of instability.
Algorithm For Hypersonic Flow In Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.
Methane on Mars: Thermodynamic Equilibrium and Photochemical Calculations
NASA Technical Reports Server (NTRS)
Levine, J. S.; Summers, M. E.; Ewell, M.
2010-01-01
The detection of methane (CH4) in the atmosphere of Mars by Mars Express and Earth-based spectroscopy is very surprising, very puzzling, and very intriguing. On Earth, about 90% of atmospheric ozone is produced by living systems. A major question concerning methane on Mars is its origin - biological or geological. Thermodynamic equilibrium calculations indicated that methane cannot be produced by atmospheric chemical/photochemical reactions. Thermodynamic equilibrium calculations for three gases, methane, ammonia (NH3) and nitrous oxide (N2O) in the Earth s atmosphere are summarized in Table 1. The calculations indicate that these three gases should not exist in the Earth s atmosphere. Yet they do, with methane, ammonia and nitrous oxide enhanced 139, 50 and 12 orders of magnitude above their calculated thermodynamic equilibrium concentration due to the impact of life! Thermodynamic equilibrium calculations have been performed for the same three gases in the atmosphere of Mars based on the assumed composition of the Mars atmosphere shown in Table 2. The calculated thermodynamic equilibrium concentrations of the same three gases in the atmosphere of Mars is shown in Table 3. Clearly, based on thermodynamic equilibrium calculations, methane should not be present in the atmosphere of Mars, but it is in concentrations approaching 30 ppbv from three distinct regions on Mars.
NASA Astrophysics Data System (ADS)
Cai, X.; Zhang, X.; Zhu, T.
2014-12-01
Global food security is constrained by local and regional land and water availability, as well as other agricultural input limitations and inappropriate national and global regulations. In a theoretical context, this study assumes that optimal water and land uses in local food production to maximize food security and social welfare at the global level can be driven by global trade. It follows the context of "virtual resources trade", i.e., utilizing international trade of agricultural commodities to reduce dependency on local resources, and achieves land and water savings in the world. An optimization model based on the partial equilibrium of agriculture is developed for the analysis, including local commodity production and land and water resources constraints, demand by country, and global food market. Through the model, the marginal values (MVs) of social welfare for water and land at the level of so-called food production units (i.e., sub-basins with similar agricultural production conditions) are derived and mapped in the world. In this personation, we will introduce the model structure, explain the meaning of MVs at the local level and their distribution around the world, and discuss the policy implications for global communities to enhance global food security. In particular, we will examine the economic values of water and land under different world targets of food security (e.g., number of malnourished population or children in a future year). In addition, we will also discuss the opportunities on data to improve such global modeling exercises.
NASA Astrophysics Data System (ADS)
Moradi, A.
2015-12-01
To properly model soil thermal performance in unsaturated porous media, for applications such as SBTES systems, knowledge of both soil hydraulic and thermal properties and how they change in space and time is needed. Knowledge obtained from pore scale to macroscopic scale studies can help us to better understand these systems and contribute to the state of knowledge which can then be translated to engineering applications in the field (i.e. implementation of SBTES systems at the field scale). One important thermal property that varies with soil water content, effective thermal conductivity, is oftentimes included in numerical models through the use of empirical relationships and simplified mathematical formulations developed based on experimental data obtained at either small laboratory or field scales. These models assume that there is local thermodynamic equilibrium between the air and water phases for a representative elementary volume. However, this assumption may not always be valid at the pore scale, thus questioning the validity of current modeling approaches. The purpose of this work is to evaluate the validity of the local thermodynamic equilibrium assumption as related to the effective thermal conductivity at pore scale. A numerical model based on the coupled Cahn-Hilliard and heat transfer equation was developed to solve for liquid flow and heat transfer through variably saturated porous media. In this model, the evolution of phases and the interfaces between phases are related to a functional form of the total free energy of the system. A unique solution for the system is obtained by solving the Navier-Stokes equation through free energy minimization. Preliminary results demonstrate that there is a correlation between soil temperature / degree of saturation and equivalent thermal conductivity / heat flux. Results also confirm the correlation between pressure differential magnitude and equilibrium time for multiphase flow to reach steady state conditions. Based on these results, the equivalent time for steady-state heat transfer is much larger than the equivalent time for steady-state multiphase flow for a given pressure differential. Moreover, the wetting phase flow and consequently heat transfer appear to be sensitive to contact angle and porosity of the domain.
Turbulence Modeling Effects on the Prediction of Equilibrium States of Buoyant Shear Flows
NASA Technical Reports Server (NTRS)
Zhao, C. Y.; So, R. M. C.; Gatski, T. B.
2001-01-01
The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate, Epsilon(0) equations were considered. The emphasis of this paper is focused on the effects of the Epsilon(0)-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate (if change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters. Calculations show that the Epsilon(0)-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular Epsilon(0)-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the Epsilon(0)-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence.
Bzdek, Bryan R.; Power, Rory M.; Simpson, Stephen H.; Royall, C. Patrick
2016-01-01
The surface composition and surface tension of aqueous droplets can influence key aerosol characteristics and processes including the critical supersaturation required for activation to form cloud droplets in the atmosphere. Despite its fundamental importance, surface tension measurements on droplets represent a considerable challenge owing to their small volumes. In this work, we utilize holographic optical tweezers to study the damped surface oscillations of a suspended droplet (<10 μm radius) following the controlled coalescence of a pair of droplets and report the first contactless measurements of the surface tension and viscosity of droplets containing only 1–4 pL of material. An advantage of performing the measurement in aerosol is that supersaturated solute states (common in atmospheric aerosol) may be accessed. For pairs of droplets starting at their equilibrium surface composition, surface tensions and viscosities are consistent with bulk equilibrium values, indicating that droplet surfaces respond to changes in surface area on microsecond timescales and suggesting that equilibrium values can be assumed for growing atmospheric droplets. Furthermore, droplet surfaces are shown to be rapidly modified by trace species thereby altering their surface tension. This equilibration of droplet surface tension to the local environmental conditions is illustrated for unknown contaminants in laboratory air and also for droplets exposed to gas passing through a water–ethanol solution. This approach enables precise measurements of surface tension and viscosity over long time periods, properties that currently are poorly constrained. PMID:28758004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzowski, Maciej; Kubiak, Marzena A.; Czechowski, Andrzej
2017-08-10
We simulated the signal due to neutral He atoms, observed by the Interstellar Boundary Explorer ( IBEX ), assuming that charge-exchange collisions between neutral He atoms and He{sup +} ions operate everywhere between the heliopause and a distant source region in the local interstellar cloud, where the neutral and charged components are in thermal equilibrium. We simulated several test cases of the plasma flow within the outer heliosheath (OHS) and investigated the signal generation for plasma flows both in the absence and in the presence of the interstellar magnetic field (ISMF). We found that a signal in the portion ofmore » IBEX data identified as being due to the Warm Breeze (WB) does not arise when a homogeneous plasma flow in front of the heliopause is assumed, but it appears immediately when any reasonable disturbance in its flow due to the presence of the heliosphere is assumed. We obtained a good qualitative agreement between the data selected for comparison and the simulations for a model flow with the velocity vector of the unperturbed gas and the direction and intensity of magnetic field adopted from recent determinations. We conclude that direct-sampling observations of neutral He atoms at 1 au from the Sun are a sensitive tool for investigating the flow of interstellar matter in the OHS, that the WB is indeed the secondary population of interstellar helium, which was hypothesized earlier, and that the WB signal is consistent with the heliosphere distorted from axial symmetry by the ISMF.« less
Loop L5 Assumes Three Distinct Orientations during the ATPase Cycle of the Mitotic Kinesin Eg5
Muretta, Joseph M.; Behnke-Parks, William M.; Major, Jennifer; Petersen, Karl J.; Goulet, Adeline; Moores, Carolyn A.; Thomas, David D.; Rosenfeld, Steven S.
2013-01-01
Members of the kinesin superfamily of molecular motors differ in several key structural domains, which probably allows these molecular motors to serve the different physiologies required of them. One of the most variable of these is a stem-loop motif referred to as L5. This loop is longest in the mitotic kinesin Eg5, and previous structural studies have shown that it can assume different conformations in different nucleotide states. However, enzymatic domains often consist of a mixture of conformations whose distribution shifts in response to substrate binding or product release, and this information is not available from the “static” images that structural studies provide. We have addressed this issue in the case of Eg5 by attaching a fluorescent probe to L5 and examining its fluorescence, using both steady state and time-resolved methods. This reveals that L5 assumes an equilibrium mixture of three orientations that differ in their local environment and segmental mobility. Combining these studies with transient state kinetics demonstrates that there is a major shift in this distribution during transitions that interconvert weak and strong microtubule binding states. Finally, in conjunction with previous cryo-EM reconstructions of Eg5·microtubule complexes, these fluorescence studies suggest a model in which L5 regulates both nucleotide and microtubule binding through a set of reversible interactions with helix α3. We propose that these features facilitate the production of sustained opposing force by Eg5, which underlies its role in supporting formation of a bipolar spindle in mitosis. PMID:24145034
On well-posedness of variational models of charged drops.
Muratov, Cyrill B; Novaga, Matteo
2016-03-01
Electrified liquids are well known to be prone to a variety of interfacial instabilities that result in the onset of apparent interfacial singularities and liquid fragmentation. In the case of electrically conducting liquids, one of the basic models describing the equilibrium interfacial configurations and the onset of instability assumes the liquid to be equipotential and interprets those configurations as local minimizers of the energy consisting of the sum of the surface energy and the electrostatic energy. Here we show that, surprisingly, this classical geometric variational model is mathematically ill-posed irrespective of the degree to which the liquid is electrified. Specifically, we demonstrate that an isolated spherical droplet is never a local minimizer, no matter how small is the total charge on the droplet, as the energy can always be lowered by a smooth, arbitrarily small distortion of the droplet's surface. This is in sharp contrast to the experimental observations that a critical amount of charge is needed in order to destabilize a spherical droplet. We discuss several possible regularization mechanisms for the considered free boundary problem and argue that well-posedness can be restored by the inclusion of the entropic effects resulting in finite screening of free charges.
On well-posedness of variational models of charged drops
Novaga, Matteo
2016-01-01
Electrified liquids are well known to be prone to a variety of interfacial instabilities that result in the onset of apparent interfacial singularities and liquid fragmentation. In the case of electrically conducting liquids, one of the basic models describing the equilibrium interfacial configurations and the onset of instability assumes the liquid to be equipotential and interprets those configurations as local minimizers of the energy consisting of the sum of the surface energy and the electrostatic energy. Here we show that, surprisingly, this classical geometric variational model is mathematically ill-posed irrespective of the degree to which the liquid is electrified. Specifically, we demonstrate that an isolated spherical droplet is never a local minimizer, no matter how small is the total charge on the droplet, as the energy can always be lowered by a smooth, arbitrarily small distortion of the droplet's surface. This is in sharp contrast to the experimental observations that a critical amount of charge is needed in order to destabilize a spherical droplet. We discuss several possible regularization mechanisms for the considered free boundary problem and argue that well-posedness can be restored by the inclusion of the entropic effects resulting in finite screening of free charges. PMID:27118921
Michaels, Chris A.; Cook, Robert F.
2016-01-01
Maps of residual stress distributions arising from anisotropic thermal expansion effects in a polycrystalline alumina are generated using fluorescence microscopy. The shifts of both the R1 and R2 ruby fluorescence lines of Cr in alumina are used to create maps with sub-µm resolution of either the local mean and shear stresses or local crystallographic a- and c-stresses in the material, with approximately ± 1 MPa stress resolution. The use of single crystal control materials and explicit correction for temperature and composition effects on line shifts enabled determination of the absolute values and distributions of values of stresses. Temperature correction is shown to be critical in absolute stress determination. Experimental determinations of average stress parameters in the mapped structure are consistent with assumed equilibrium conditions and with integrated large-area measurements. Average crystallographic stresses of order hundreds of MPa are determined with characteristic distribution widths of tens of MPa. The stress distributions reflect contributions from individual clusters of stress in the structure; the cluster size is somewhat larger than the grain size. An example application of the use of stress maps is shown in the calculation of stress-intensity factors for fracture in the residual stress field. PMID:27563163
NASA Astrophysics Data System (ADS)
Wu, Meng-Ru; Tamborra, Irene; Just, Oliver; Janka, Hans-Thomas
2017-12-01
The remnant of neutron star mergers is dense in neutrinos. By employing inputs from one hydrodynamical simulation of a binary neutron star merger remnant with a black hole of 3 M⊙ in the center, dimensionless spin parameter 0.8 and an accretion torus of 0.3 M⊙, the neutrino emission properties are investigated as the merger remnant evolves. Initially, the local number density of ν¯e is larger than that of νe everywhere above the remnant. Then, as the torus approaches self-regulated equilibrium, the local abundance of neutrinos overcomes that of antineutrinos in a funnel around the polar region. The region where the fast pairwise flavor conversions can occur shrinks accordingly as time evolves. Still, we find that fast flavor conversions do affect most of the neutrino-driven ejecta. Assuming that fast flavor conversions lead to flavor equilibration, a significant enhancement of nuclei with mass numbers A >130 is found as well as a change of the lanthanide mass fraction by more than a factor of a thousand. Our findings hint towards a potentially relevant role of neutrino flavor oscillations for the prediction of the kilonova (macronova) light curves and motivate further work in this direction.
Axisymmetric magnetic modes of neutron stars having mixed poloidal and toroidal magnetic fields
NASA Astrophysics Data System (ADS)
Lee, Umin
2018-05-01
We calculate axisymmetric magnetic modes of a neutron star possessing a mixed poloidal and toroidal magnetic field, where the toroidal field is assumed to be proportional to a dimensionless parameter ζ0. Here, we assume an isentropic structure for the neutron star and consider no effects of rotation. Ignoring the equilibrium deformation due to the magnetic field, we employ a polytrope of the index n = 1 as the background model for our modal analyses. For the mixed poloidal and toroidal magnetic field with ζ _0\
Two-fluid flowing equilibria of spherical torus sustained by coaxial helicity injection
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Steinhauer, Loren; Nagata, Masayoshi
2007-11-01
Two-dimensional equilibria in helicity-driven systems using two-fluid model were previously computed, showing the existence of an ultra-low-q spherical torus (ST) configuration with diamagnetism and higher beta. However, this computation assumed purely toroidal ion flow and uniform density. The purpose of the present study is to apply the two-fluid model to the two-dimensional equilibria of helicity-driven ST with non-uniform density and both toroidal and poloidal flows for each species by means of the nearby-fluids procedure, and to explore their properties. We focus our attention on the equilibria relevant to the HIST device, which are characterized by either driven or decaying λ profiles. The equilibrium for the driven λ profile has a diamagnetic toroidal field, high-β (βt = 32%), and centrally broad density. By contrast, the decaying equilibrium has a paramagnetic toroidal field, low-β (βt = 10%), and centrally peaked density with a steep gradient in the outer edge region. In the driven case, the toroidal ion and electron flows are in the same direction, and two-fluid effects are less important since the ExB drift is dominant. In the decaying case, the toroidal ion and electron flows are opposite in the outer edge region, and two-fluid effects are significant locally in the edge due to the ion diamagnetic drift.
Thermodynamic Study on Plasma Expansion along a Divergent Magnetic Field.
Zhang, Yunchao; Charles, Christine; Boswell, Rod
2016-01-15
Thermodynamic properties are revisited for electrons that are governed by nonlocal electron energy probability functions in a plasma of low collisionality. Measurements in a laboratory helicon double layer experiment have shown that the effective electron temperature and density show a polytropic correlation with an index of γ_{e}=1.17±0.02 along the divergent magnetic field, implying a nearly isothermal plasma (γ_{e}=1) with heat being brought into the system. However, the evolution of electrons along the divergent magnetic field is essentially an adiabatic process, which should have a γ_{e}=5/3. The reason for this apparent contradiction is that the nearly collisionless plasma is very far from local thermodynamic equilibrium and the electrons behave nonlocally. The corresponding effective electron enthalpy has a conservation relation with the potential energy, which verifies that there is no heat transferred into the system during the electron evolution. The electrons are shown in nonlocal momentum equilibrium under the electric field and the gradient of the effective electron pressure. The convective momentum of ions, which can be assumed as a cold species, is determined by the effective electron pressure and the effective electron enthalpy is shown to be the source for ion acceleration. For these nearly collisionless plasmas, the use of traditional thermodynamic concepts can lead to very erroneous conclusions regarding the thermal conductivity.
The ESS and replicator equation in matrix games under time constraints.
Garay, József; Cressman, Ross; Móri, Tamás F; Varga, Tamás
2018-06-01
Recently, we introduced the class of matrix games under time constraints and characterized the concept of (monomorphic) evolutionarily stable strategy (ESS) in them. We are now interested in how the ESS is related to the existence and stability of equilibria for polymorphic populations. We point out that, although the ESS may no longer be a polymorphic equilibrium, there is a connection between them. Specifically, the polymorphic state at which the average strategy of the active individuals in the population is equal to the ESS is an equilibrium of the polymorphic model. Moreover, in the case when there are only two pure strategies, a polymorphic equilibrium is locally asymptotically stable under the replicator equation for the pure-strategy polymorphic model if and only if it corresponds to an ESS. Finally, we prove that a strict Nash equilibrium is a pure-strategy ESS that is a locally asymptotically stable equilibrium of the replicator equation in n-strategy time-constrained matrix games.
Para hydrogen equilibration in the atmospheres of the outer planets
NASA Technical Reports Server (NTRS)
Conrath, Barney J.
1986-01-01
The thermodynamic behavior of the atmospheres of the Jovian planets is strongly dependent on the extent to which local thermal equilibration of the ortho and para states of molecular hydrogen is achieved. Voyager IRIS data from Jupiter imply substantial departures of the para hydrogen fraction from equilibrium in the upper troposphere at low latitudes, but with values approaching equilibrium at higher latitudes. Data from Saturn are less sensitive to the orth-para ratio, but suggest para hydrogen fractions near the equilibrium value. Above approximately the 200 K temperature level, para hydrogen conversion can enhance the efficiency of convection, resulting in a substantial increase in overturning times on all of the outer planets. Currently available data cannot definitively establish the ortho-para ratios in the atmospheres of Uranus and Neptune, but suggest values closer to local equilibrium than to the 3.1 normal ratio. Modeling of sub-millimeter wavelength measurements of these planets suggest thermal structures with frozen equilibrium lapse rates in their convective regions.
“Towards building better linkages between aqueous phase chemistry and microphysics in CMAQ”
Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and e...
NASA Technical Reports Server (NTRS)
Hickman, D. R.; Nier, A. O.
1972-01-01
Measurement of the neutral atmospheric composition above Fort Churchill, Canada (59 N, 94 W), by mass spectrometers in two rocket flights at 0835 CST on Feb. 4 and 6, 1969. A quantitative measure for the extent of agreement with static diffusive equilibrium is introduced, and substantial agreement with profiles predicted when static diffusive equilibrium was assumed is found for all constituents including helium. A sensitive search for atomic nitrogen yielded upper limits of a few per cent for one flight and of 0.2% for the other.
Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badruddin, Irfan Anjum; Quadir, G. A.
2016-06-08
Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter.
A Game Theoretical Model for Location of Terror Response Facilities under Capacitated Resources
Kang, Qi; Xu, Weisheng; Wu, Qidi
2013-01-01
This paper is concerned with the effect of capacity constraints on the locations of terror response facilities. We assume that the state has limited resources, and multiple facilities may be involved in the response until the demand is satisfied consequently. We formulate a leader-follower game model between the state and the terrorist and prove the existence and uniqueness of the Nash equilibrium. An integer linear programming is proposed to obtain the equilibrium results when the facility number is fixed. The problem is demonstrated by a case study of the 19 districts of Shanghai, China. PMID:24459446
NASA Technical Reports Server (NTRS)
Bovina, T. A.; Zviagin, Y. V.; Markelov, N. V.; Chudetskiy, Y. V.
1986-01-01
A method is presented for calculating the heating and erosion of blunt bodies made of graphite in a high-enthalpy flow of dissociated air, assuming chemical equilibrium on the surface and taking account of the thermal effects of combustion and sublimation of graphite. The analysis involves the use of a finite difference scheme to solve an equation of unsteady heat conduction. Attention is given to the equilibrium vaporization of C, C2 and C3 molecules. The calculations agree well with experimental data for a wide range of temperatures and stagnation pressures.
NASA Astrophysics Data System (ADS)
Reimer, R.; Marchuk, O.; Geiger, B.; Mc Carthy, P. J.; Dunne, M.; Hobirk, J.; Wolf, R.; ASDEX Upgrade Team
2017-08-01
The Motional Stark Effect (MSE) diagnostic is a well established technique to infer the local internal magnetic field in fusion plasmas. In this paper, the existing forward model which describes the MSE data is extended by the Zeeman effect, fine-structure, and relativistic corrections in the interpretation of the MSE spectra for different experimental conditions at the tokamak ASDEX Upgrade. The contribution of the non-Local Thermodynamic Equilibrium (non-LTE) populations among the magnetic sub-levels and the Zeeman effect on the derived plasma parameters is different. The obtained pitch angle is changed by 3 ° … 4 ° and by 0 . 5 ° … 1 ° including the non-LTE and the Zeeman effects into the standard statistical MSE model. The total correction is about 4°. Moreover, the variation of the magnetic field strength is significantly changed by 2.2% due to the Zeeman effect only. While the data on the derived pitch angle still could not be tested against the other diagnostics, the results from an equilibrium reconstruction solver confirm the obtained values for magnetic field strength.
The C2'- and C3'-endo equilibrium for AMP molecules bound in the cystathionine-beta-synthase domain.
Feng, Na; Qi, Chao; Hou, Yan-Jie; Zhang, Ying; Wang, Da-Cheng; Li, De-Feng
2018-03-04
The equilibrium between C2'- and C3'-endo conformations of nucleotides in solution, as well as their polymers DNA and RNA, has been well studied in previous work. However, this equilibrium of nucleotides in their binding state remains unclear. We observed two AMP molecules, in C3'- and C2'-endo conformations respectively, simultaneously bound to a cystathionine-beta-synthase (CBS) domain dimer of the magnesium and cobalt efflux protein CorC in the crystallographic study. The C2'-endo AMP molecule assumes the higher sugar pucker energy and one more hydrogen bond with the protein than the C3'-endo molecule does. The balance between the high sugar pucker energy and the low binding energy suggests an equilibrium or switch between C2'- and C3'-endo conformations of the bound nucleotides. Our work challenge the previous hypothesis that the ribose of the bound nucleotides would be locked in a fixed conformation. Copyright © 2018 Elsevier Inc. All rights reserved.
Viscous-shock-layer solutions with coupled radiation and ablation injection for earth entry
NASA Technical Reports Server (NTRS)
Gupta, Roop N.; Lee, Kam-Pui; Moos, James N.; Sutton, Kenneth
1990-01-01
Results are obtained for the forebody of a planetary exploration vehicle entering the earth's atmosphere. A viscous-shock-layer analysis is used assuming the flow to be laminar and in chemical equilibrium. Presented results include coupled radiation and ablation injection. This study further includes the effect of different transport and thermodynamic properties and radiation models. A Lewis number of 1.4 appears adequate for the radiation-dominated flows. Five velocities corresponding to different possible trajectory points at an altitude of 70 km have been further analyzed in detail. Sublimation and radiative equilibrium wall temperatures are employed for cases with and without coupled injection, respectively. For the cases analyzed here, the mass injection rates are small. However, the rates could become large if a lower altitude is used for aerobraking and/or the body size is increased. A comparison of the equilibrium results with finite-rate chemistry calculation shows the flowfield to be in chemical equilibrium.
Do nuclear collisions create a locally equilibrated quark–gluon plasma?
Romatschke, P.
2017-01-10
Experimental results on azimuthal correlations in high energy nuclear collisions (nucleus–nucleus, proton–nucleus, and proton–proton) seem to be well described by viscous hydrodynamics. It is often argued that this agreement implies either local thermal equilibrium or at least local isotropy. In this note, I present arguments why this is not the case. Neither local near-equilibrium nor near-isotropy are required in order for hydrodynamics to offer a successful and accurate description of experimental results. However, I predict the breakdown of hydrodynamics at momenta of order seven times the temperature, corresponding to a smallest possible QCD liquid drop size of 0.15 fm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiche, D.; Dalvit, D. A. R.; Busch, K.
We investigate the influence of spatial dispersion on atom-surface quantum friction. We show that for atom-surface separations shorter than the carrier's mean free path within the material, the frictional force can be several orders of magnitude larger than that predicted by local optics. In addition, when taking into account spatial dispersion effects, we show that the commonly used local thermal equilibrium approximation underestimates by approximately 95% the drag force, obtained by employing the recently reported nonequilibrium fluctuation-dissipation relation for quantum friction. Unlike the treatment based on local optics, spatial dispersion in conjunction with corrections to local thermal equilibrium change notmore » only the magnitude but also the distance scaling of quantum friction.« less
Communication Policy and Theory: Current Perspectives on Mass Communication Research.
ERIC Educational Resources Information Center
Bybee, Carl R.; Cahn, Dudley D.
The integration of American and European mass communication research models would provide a broader sociocultural framework for formulating communication policy. Emphasizing a functional approach, the American diffusionist model assumes that society is a system of interrelated parts naturally tending toward a state of dynamic equilibrium. The…
46 CFR 172.245 - Survival conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... conditions. A vessel is presumed to survive assumed damage if it meets the following conditions in the final..., and trim must be below the lower edge of an opening through which progressive flooding may take place... inches (50 mm) when the vessel is in the equilibrium position. (e) Progressive flooding. In the design...
46 CFR 172.245 - Survival conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... conditions. A vessel is presumed to survive assumed damage if it meets the following conditions in the final..., and trim must be below the lower edge of an opening through which progressive flooding may take place... inches (50 mm) when the vessel is in the equilibrium position. (e) Progressive flooding. In the design...
46 CFR 172.245 - Survival conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... conditions. A vessel is presumed to survive assumed damage if it meets the following conditions in the final..., and trim must be below the lower edge of an opening through which progressive flooding may take place... inches (50 mm) when the vessel is in the equilibrium position. (e) Progressive flooding. In the design...
An Equilibrium Flow Model of a University Campus.
ERIC Educational Resources Information Center
Oliver, Robert M.; Hopkins, David S. P.
This paper develops a simple deterministic model that relates student admissions and enrollments to the final demand for educated students. It includes the effects of dropout rates and student-teacher ratios on student enrollments and faculty staffing levels. Certain technological requirements are assumed known and given. These, as well as the…
Titan's Interior Chemical Composition: A Thermochemical Assessment*
NASA Astrophysics Data System (ADS)
Howard, Michael; Zaug, J. M.; Khare, B. N.; McKay, C. P.
2007-10-01
We study the interior composition of Titan using thermal chemical equilibrium calculations that are valid to high pressures and temperatures. The equations of state are based on exponential-6 fluid theory and have been validated against experimental data up to a few Mbars in pressure and approximately 20000K in temperature. In addition to CHNO molecules, we account for multi-phases of carbon, water and a variety of metals such as Al and Fe, and their oxides. With these fluid equations of state, chemical equilibrium is calculated for a set of product species. As the temperature and pressure evolves for increasing depth in the interior, the chemical equilibrium shifts. We assume that Titan is initially composed of comet material, which we assume to be solar, except for hydrogen, which we take to be depleted by a factor 1/690. We find that a significant amount of nitrogen is in the form of n2, rather than nh3. Moreover, above 12 kbars, as is the interior pressure of Titan, a significant amount of the carbon is in the form of graphite, rather than co2 and ch4. We discuss the implications of these results for understanding the atmospheric and surface composition of Titan. • This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Mate-sampling costs and sexy sons.
Kokko, H; Booksmythe, I; Jennions, M D
2015-01-01
Costly female mating preferences for purely Fisherian male traits (i.e. sexual ornaments that are genetically uncorrelated with inherent viability) are not expected to persist at equilibrium. The indirect benefit of producing 'sexy sons' (Fisher process) disappears: in some models, the male trait becomes fixed; in others, a range of male trait values persist, but a larger trait confers no net fitness advantage because it lowers survival. Insufficient indirect selection to counter the direct cost of producing fewer offspring means that preferences are lost. The only well-cited exception assumes biased mutation on male traits. The above findings generally assume constant direct selection against female preferences (i.e. fixed costs). We show that if mate-sampling costs are instead derived based on an explicit account of how females acquire mates, an initially costly mating preference can coevolve with a male trait so that both persist in the presence or absence of biased mutation. Our models predict that empirically detecting selection at equilibrium will be difficult, even if selection was responsible for the location of the current equilibrium. In general, it appears useful to integrate mate sampling theory with models of genetic consequences of mating preferences: being explicit about the process by which individuals select mates can alter equilibria. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Titan's Interior Chemical Composition: Possible Important Phase Transitions
NASA Astrophysics Data System (ADS)
Howard, Michael; Fried, L. E.; Khare, B. N.; McKay, C. P.
2008-09-01
We study the interior composition of Titan using thermal chemical equilibrium calculations that are valid to high pressures and temperatures. The equations of state are based on exponential-6 fluid theory and have been validated against experimental data up to a few Mbars in pressure and approximately 20000K in temperature. In addition to CHNO molecules, we account for multi-phases of carbon, water and a variety of metals such as Al and Fe, and their oxides. With these fluid equations of state, chemical equilibrium is calculated for a set of product species. As the temperature and pressure evolves for increasing depth in the interior, the chemical equilibrium shifts. We assume that Titan is initially composed of comet material, which we assume to be solar, except for hydrogen, which we take to be depleted by a factor 1/1000. We find that a significant amount of nitrogen is in the form of N2, rather than NH3. Moreover, above 12 kbars pressure, as is the interior pressure of Titan, a significant amount of the carbon is in the form of graphite, rather than CO2 and CH4. We discuss the implications of these results for understanding the atmospheric and surface composition of Titan. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Jahnke, Annika; MacLeod, Matthew; Wickström, Håkan; Mayer, Philipp
2014-10-07
Equilibrium partitioning (EqP) theory is currently the most widely used approach for linking sediment pollution by persistent hydrophobic organic chemicals to bioaccumulation. Most applications of the EqP approach assume (I) a generic relationship between organic carbon-normalized chemical concentrations in sediments and lipid-normalized concentrations in biota and (II) that bioaccumulation does not induce levels exceeding those expected from equilibrium partitioning. Here, we demonstrate that assumption I can be obviated by equilibrating a silicone sampler with chemicals in sediment, measuring chemical concentrations in the silicone, and applying lipid/silicone partition ratios to yield concentrations in lipid at thermodynamic equilibrium with the sediment (CLip⇌Sed). Furthermore, we evaluated the validity of assumption II by comparing CLip⇌Sed of selected persistent, bioaccumulative and toxic pollutants (polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB)) to lipid-normalized concentrations for a range of biota from a Swedish background lake. PCBs in duck mussels, roach, eel, pikeperch, perch and pike were mostly below the equilibrium partitioning level relative to the sediment, i.e., lipid-normalized concentrations were ≤CLip⇌Sed, whereas HCB was near equilibrium between biota and sediment. Equilibrium sampling allows straightforward, sensitive and precise measurement of CLip⇌Sed. We propose CLip⇌Sed as a metric of the thermodynamic potential for bioaccumulation of persistent organic chemicals from sediment useful to prioritize management actions to remediate contaminated sites.
Solvable Hydrodynamics of Quantum Integrable Systems
NASA Astrophysics Data System (ADS)
Bulchandani, Vir B.; Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.
2017-12-01
The conventional theory of hydrodynamics describes the evolution in time of chaotic many-particle systems from local to global equilibrium. In a quantum integrable system, local equilibrium is characterized by a local generalized Gibbs ensemble or equivalently a local distribution of pseudomomenta. We study time evolution from local equilibria in such models by solving a certain kinetic equation, the "Bethe-Boltzmann" equation satisfied by the local pseudomomentum density. Explicit comparison with density matrix renormalization group time evolution of a thermal expansion in the XXZ model shows that hydrodynamical predictions from smooth initial conditions can be remarkably accurate, even for small system sizes. Solutions are also obtained in the Lieb-Liniger model for free expansion into vacuum and collisions between clouds of particles, which model experiments on ultracold one-dimensional Bose gases.
Modeling and simulation of radiation from hypersonic flows with Monte Carlo methods
NASA Astrophysics Data System (ADS)
Sohn, Ilyoup
During extreme-Mach number reentry into Earth's atmosphere, spacecraft experience hypersonic non-equilibrium flow conditions that dissociate molecules and ionize atoms. Such situations occur behind a shock wave leading to high temperatures, which have an adverse effect on the thermal protection system and radar communications. Since the electronic energy levels of gaseous species are strongly excited for high Mach number conditions, the radiative contribution to the total heat load can be significant. In addition, radiative heat source within the shock layer may affect the internal energy distribution of dissociated and weakly ionized gas species and the number density of ablative species released from the surface of vehicles. Due to the radiation total heat load to the heat shield surface of the vehicle may be altered beyond mission tolerances. Therefore, in the design process of spacecrafts the effect of radiation must be considered and radiation analyses coupled with flow solvers have to be implemented to improve the reliability during the vehicle design stage. To perform the first stage for radiation analyses coupled with gas-dynamics, efficient databasing schemes for emission and absorption coefficients were developed to model radiation from hypersonic, non-equilibrium flows. For bound-bound transitions, spectral information including the line-center wavelength and assembled parameters for efficient calculations of emission and absorption coefficients are stored for typical air plasma species. Since the flow is non-equilibrium, a rate equation approach including both collisional and radiatively induced transitions was used to calculate the electronic state populations, assuming quasi-steady-state (QSS). The Voigt line shape function was assumed for modeling the line broadening effect. The accuracy and efficiency of the databasing scheme was examined by comparing results of the databasing scheme with those of NEQAIR for the Stardust flowfield. An accuracy of approximately 1 % was achieved with an efficiency about three times faster than the NEQAIR code. To perform accurate and efficient analyses of chemically reacting flowfield - radiation interactions, the direct simulation Monte Carlo (DSMC) and the photon Monte Carlo (PMC) radiative transport methods are used to simulate flowfield - radiation coupling from transitional to peak heating freestream conditions. The non-catalytic and fully catalytic surface conditions were modeled and good agreement of the stagnation-point convective heating between DSMC and continuum fluid dynamics (CFD) calculation under the assumption of fully catalytic surface was achieved. Stagnation-point radiative heating, however, was found to be very different. To simulate three-dimensional radiative transport, the finite-volume based PMC (FV-PMC) method was employed. DSMC - FV-PMC simulations with the goal of understanding the effect of radiation on the flow structure for different degrees of hypersonic non-equilibrium are presented. It is found that except for the highest altitudes, the coupling of radiation influences the flowfield, leading to a decrease in both heavy particle translational and internal temperatures and a decrease in the convective heat flux to the vehicle body. The DSMC - FV-PMC coupled simulations are compared with the previous coupled simulations and correlations obtained using continuum flow modeling and one-dimensional radiative transport. The modeling of radiative transport is further complicated by radiative transitions occurring during the excitation process of the same radiating gas species. This interaction affects the distribution of electronic state populations and, in turn, the radiative transport. The radiative transition rate in the excitation/de-excitation processes and the radiative transport equation (RTE) must be coupled simultaneously to account for non-local effects. The QSS model is presented to predict the electronic state populations of radiating gas species taking into account non-local radiation. The definition of the escape factor which is dependent on the incoming radiative intensity from over all directions is presented. The effect of the escape factor on the distribution of electronic state populations of the atomic N and O radiating species is examined in a highly non-equilibrium flow condition using DSMC and PMC methods and the corresponding change of the radiative heat flux due to the non-local radiation is also investigated.
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
NASA Technical Reports Server (NTRS)
Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei
2006-01-01
The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.
Understanding how biodiversity unfolds through time under neutral theory.
Missa, Olivier; Dytham, Calvin; Morlon, Hélène
2016-04-05
Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time. © 2016 The Author(s).
Understanding how biodiversity unfolds through time under neutral theory
2016-01-01
Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time. PMID:26977066
Effects of sorption kinetics on the fate and transport of pharmaceuticals in estuaries.
Liu, Dong; Lung, Wu-Seng; Colosi, Lisa M
2013-08-01
Many current fate and transport models based on the assumption of instantaneous sorption equilibrium of contaminants in the water column may not be valid for certain pharmaceuticals with long times to reach sorption equilibrium. In this study, a sorption kinetics model was developed and incorporated into a water quality model for the Patuxent River Estuary to evaluate the effect of sorption kinetics. Model results indicate that the assumption of instantaneous sorption equilibrium results in significant under-prediction of water column concentrations for some pharmaceuticals. The relative difference between predicted concentrations for the instantaneous versus kinetic approach is as large as 150% at upstream locations in the Patuxent Estuary. At downstream locations, where sorption processes have had sufficient time to reach equilibrium, the relative difference decreases to roughly 25%. This indicates that sorption kinetics affect a model's ability to capture accumulation of pharmaceuticals into riverbeds and the transport of pharmaceuticals in estuaries. These results offer strong evidence that chemicals are not removed from the water column as rapidly as has been assumed on the basis of equilibrium-based analyses. The findings are applicable not only for pharmaceutical compounds, but also for diverse contaminants that reach sorption equilibrium slowly. Copyright © 2013 Elsevier Ltd. All rights reserved.
Restoration ecology: two-sex dynamics and cost minimization.
Molnár, Ferenc; Caragine, Christina; Caraco, Thomas; Korniss, Gyorgy
2013-01-01
We model a spatially detailed, two-sex population dynamics, to study the cost of ecological restoration. We assume that cost is proportional to the number of individuals introduced into a large habitat. We treat dispersal as homogeneous diffusion in a one-dimensional reaction-diffusion system. The local population dynamics depends on sex ratio at birth, and allows mortality rates to differ between sexes. Furthermore, local density dependence induces a strong Allee effect, implying that the initial population must be sufficiently large to avert rapid extinction. We address three different initial spatial distributions for the introduced individuals; for each we minimize the associated cost, constrained by the requirement that the species must be restored throughout the habitat. First, we consider spatially inhomogeneous, unstable stationary solutions of the model's equations as plausible candidates for small restoration cost. Second, we use numerical simulations to find the smallest rectangular cluster, enclosing a spatially homogeneous population density, that minimizes the cost of assured restoration. Finally, by employing simulated annealing, we minimize restoration cost among all possible initial spatial distributions of females and males. For biased sex ratios, or for a significant between-sex difference in mortality, we find that sex-specific spatial distributions minimize the cost. But as long as the sex ratio maximizes the local equilibrium density for given mortality rates, a common homogeneous distribution for both sexes that spans a critical distance yields a similarly low cost.
Restoration Ecology: Two-Sex Dynamics and Cost Minimization
Molnár, Ferenc; Caragine, Christina; Caraco, Thomas; Korniss, Gyorgy
2013-01-01
We model a spatially detailed, two-sex population dynamics, to study the cost of ecological restoration. We assume that cost is proportional to the number of individuals introduced into a large habitat. We treat dispersal as homogeneous diffusion in a one-dimensional reaction-diffusion system. The local population dynamics depends on sex ratio at birth, and allows mortality rates to differ between sexes. Furthermore, local density dependence induces a strong Allee effect, implying that the initial population must be sufficiently large to avert rapid extinction. We address three different initial spatial distributions for the introduced individuals; for each we minimize the associated cost, constrained by the requirement that the species must be restored throughout the habitat. First, we consider spatially inhomogeneous, unstable stationary solutions of the model’s equations as plausible candidates for small restoration cost. Second, we use numerical simulations to find the smallest rectangular cluster, enclosing a spatially homogeneous population density, that minimizes the cost of assured restoration. Finally, by employing simulated annealing, we minimize restoration cost among all possible initial spatial distributions of females and males. For biased sex ratios, or for a significant between-sex difference in mortality, we find that sex-specific spatial distributions minimize the cost. But as long as the sex ratio maximizes the local equilibrium density for given mortality rates, a common homogeneous distribution for both sexes that spans a critical distance yields a similarly low cost. PMID:24204810
Magma transport and metasomatism in the mantle: a critical review of current geochemical models
Nielson, J.E.; Wilshire, H.G.
1993-01-01
Conflicting geochemical models of metasomatic interactions between mantle peridotite and melt all assume that mantle reactions reflect chromatographic processes. Examination of field, petrological, and compositional data suggests that the hypothesis of chromatographic fractionation based on the supposition of large-scale percolative processes needs review and revision. Well-constrained rock and mineral data from xenoliths indicate that many elements that behave incompatibly in equilibrium crystallization processes are absorbed immediately when melts emerge from conduits into depleted peridotite. After reacting to equilibrium with the peridotite, melt that percolates away from the conduit is largely depleted of incompatible elements. Continued addition of melts extends the zone of equilibrium farther from the conduit. Such a process resembles ion-exchange chromatography for H2O purification, rather than the model of chromatographic species separation. -from Authors
On the asymptotic stability of nonlinear mechanical switched systems
NASA Astrophysics Data System (ADS)
Platonov, A. V.
2018-05-01
Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.
Evolution of specialization under non-equilibrium population dynamics.
Nurmi, Tuomas; Parvinen, Kalle
2013-03-21
We analyze the evolution of specialization in resource utilization in a mechanistically underpinned discrete-time model using the adaptive dynamics approach. We assume two nutritionally equivalent resources that in the absence of consumers grow sigmoidally towards a resource-specific carrying capacity. The consumers use resources according to the law of mass-action with rates involving trade-off. The resulting discrete-time model for the consumer population has over-compensatory dynamics. We illuminate the way non-equilibrium population dynamics affect the evolutionary dynamics of the resource consumption rates, and show that evolution to the trimorphic coexistence of a generalist and two specialists is possible due to asynchronous non-equilibrium population dynamics of the specialists. In addition, various forms of cyclic evolutionary dynamics are possible. Furthermore, evolutionary suicide may occur even without Allee effects and demographic stochasticity. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chakraborty, A.; Narayan, A.
2018-03-01
The existence and linear stability of the planar equilibrium points for photogravitational elliptical restricted three body problem is investigated in this paper. Assuming that the primaries, one of which is radiating are rotating in an elliptical orbit around their common center of mass. The effect of the radiation pressure, forces due to stellar wind and Poynting-Robertson drag on the dust particles are considered. The location of the five equilibrium points are found using analytical methods. It is observed that the collinear equilibrium points L 1, L 2 and L 3 do not lie on the line joining the primaries but are shifted along the y-coordinate. The instability of the libration points due to the presence of the drag forces is demonstrated by Lyapunov's first method of stability.
Two-phase vesicles: a study on evolutionary and stationary models.
Sahebifard, MohammadMahdi; Shahidi, Alireza; Ziaei-Rad, Saeed
2017-05-01
In the current article, the dynamic evolution of two-phase vesicles is presented as an extension to a previous stationary model and based on an equilibrium of local forces. In the simplified model, ignoring the effects of membrane inertia, a dynamic equilibrium between the membrane bending potential and local fluid friction is considered in each phase. The equilibrium equations at the domain borders are completed by extended introduction of membrane section reactions. We show that in some cases, the results of stationary and evolutionary models are in agreement with each other and also with experimental observations, while in others the two models differ markedly. The value of our approach is that we can account for unresponsive points of uncertainty using our equations with the local velocity of the lipid membranes and calculating the intermediate states (shapes) in the consequent evolutionary, or response, path.
Nie, Xiaobing; Cao, Jinde
2011-11-01
In this paper, second-order interactions are introduced into competitive neural networks (NNs) and the multistability is discussed for second-order competitive NNs (SOCNNs) with nondecreasing saturated activation functions. Firstly, based on decomposition of state space, Cauchy convergence principle, and inequality technique, some sufficient conditions ensuring the local exponential stability of 2N equilibrium points are derived. Secondly, some conditions are obtained for ascertaining equilibrium points to be locally exponentially stable and to be located in any designated region. Thirdly, the theory is extended to more general saturated activation functions with 2r corner points and a sufficient criterion is given under which the SOCNNs can have (r+1)N locally exponentially stable equilibrium points. Even if there is no second-order interactions, the obtained results are less restrictive than those in some recent works. Finally, three examples with their simulations are presented to verify the theoretical analysis.
Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles
NASA Astrophysics Data System (ADS)
Sasikumar, Kiran
Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the Laplace pressure associated with the formation of a vapor nanocavity and the associated effect on the Gibbs free energy. Separately, we also demonstrate the role of extreme temperature gradients (108-1010 K/m) in elevating the boiling point of liquids. We show that, assuming local thermal equilibrium, the observed elevation of the boiling point is associated with the interplay between the "bulk" driving force for the phase change and surface tension of the liquid-vapor interface that suppresses the transformation. In transient simulations that mimic laser-heating experiments we observe the formation and collapse of vapor bubbles around the nanoparticles beyond a threshold. Detailed analysis of the cavitation dynamics indicates adiabatic formation followed by an isothermal final stage of growth and isothermal collapse.
DEPARTURE OF HIGH-TEMPERATURE IRON LINES FROM THE EQUILIBRIUM STATE IN FLARING SOLAR PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawate, T.; Keenan, F. P.; Jess, D. B., E-mail: t.kawate@qub.ac.uk
2016-07-20
The aim of this study is to clarify if the assumption of ionization equilibrium and a Maxwellian electron energy distribution is valid in flaring solar plasmas. We analyze the 2014 December 20 X1.8 flare, in which the Fe xxi 187 Å, Fe xxii 253 Å, Fe xxiii 263 Å, and Fe xxiv 255 Å emission lines were simultaneously observed by the EUV Imaging Spectrometer on board the Hinode satellite. Intensity ratios among these high-temperature Fe lines are compared and departures from isothermal conditions and ionization equilibrium examined. Temperatures derived from intensity ratios involving these four lines show significant discrepancies atmore » the flare footpoints in the impulsive phase, and at the looptop in the gradual phase. Among these, the temperature derived from the Fe xxii/Fe xxiv intensity ratio is the lowest, which cannot be explained if we assume a Maxwellian electron distribution and ionization equilibrium, even in the case of a multithermal structure. This result suggests that the assumption of ionization equilibrium and/or a Maxwellian electron energy distribution can be violated in evaporating solar plasma around 10 MK.« less
Anomaly on Superspace of Time Series Data
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Pincak, Richard; Kanjamapornkul, Kabin
2017-11-01
We apply the G-theory and anomaly of ghost and antighost fields in the theory of supersymmetry to study a superspace over time series data for the detection of hidden general supply and demand equilibrium in the financial market. We provide proof of the existence of a general equilibrium point over 14 extradimensions of the new G-theory compared with the M-theory of the 11 dimensions model of Edward Witten. We found that the process of coupling between nonequilibrium and equilibrium spinor fields of expectation ghost fields in the superspace of time series data induces an infinitely long exact sequence of cohomology from a short exact sequence of moduli state space model. If we assume that the financial market is separated into two topological spaces of supply and demand as the D-brane and anti-D-brane model, then we can use a cohomology group to compute the stability of the market as a stable point of the general equilibrium of the interaction between D-branes of the market. We obtain the result that the general equilibrium will exist if and only if the 14th Batalin-Vilkovisky cohomology group with the negative dimensions underlying 14 major hidden factors influencing the market is zero.
Conformal field theory out of equilibrium: a review
NASA Astrophysics Data System (ADS)
Bernard, Denis; Doyon, Benjamin
2016-06-01
We provide a pedagogical review of the main ideas and results in non-equilibrium conformal field theory and connected subjects. These concern the understanding of quantum transport and its statistics at and near critical points. Starting with phenomenological considerations, we explain the general framework, illustrated by the example of the Heisenberg quantum chain. We then introduce the main concepts underlying conformal field theory (CFT), the emergence of critical ballistic transport, and the CFT scattering construction of non-equilibrium steady states. Using this we review the theory for energy transport in homogeneous one-dimensional critical systems, including the complete description of its large deviations and the resulting (extended) fluctuation relations. We generalize some of these ideas to one-dimensional critical charge transport and to the presence of defects, as well as beyond one-dimensional criticality. We describe non-equilibrium transport in free-particle models, where connections are made with generalized Gibbs ensembles, and in higher-dimensional and non-integrable quantum field theories, where the use of the powerful hydrodynamic ideas for non-equilibrium steady states is explained. We finish with a list of open questions. The review does not assume any advanced prior knowledge of conformal field theory, large-deviation theory or hydrodynamics.
NASA Astrophysics Data System (ADS)
Li, He-Ping; Chen, Jian; Guo, Heng; Jiang, Dong-Jun; Zhou, Ming-Sheng; Department of Engineering Physics Team
2017-10-01
Ion extraction from a plasma under an externally applied electric field involve multi-particle and multi-field interactions, and has wide applications in the fields of materials processing, etching, chemical analysis, etc. In order to develop the high-efficiency ion extraction methods, it is indispensable to establish a feasible model to understand the non-equilibrium transportation processes of the charged particles and the evolutions of the space charge sheath during the extraction process. Most of the previous studies on the ion extraction process are mainly based on the electron-equilibrium fluid model, which assumed that the electrons are in the thermodynamic equilibrium state. However, it may lead to some confusions with neglecting the electron movement during the sheath formation process. In this study, a non-electron-equilibrium model is established to describe the transportation of the charged particles in a parallel-plate ion extraction process. The numerical results show that the formation of the Child-Langmuir sheath is mainly caused by the charge separation. And thus, the sheath shielding effect will be significantly weakened if the charge separation is suppressed during the extraction process of the charged particles.
Spatial dispersion in atom-surface quantum friction
Reiche, D.; Dalvit, D. A. R.; Busch, K.; ...
2017-04-15
We investigate the influence of spatial dispersion on atom-surface quantum friction. We show that for atom-surface separations shorter than the carrier's mean free path within the material, the frictional force can be several orders of magnitude larger than that predicted by local optics. In addition, when taking into account spatial dispersion effects, we show that the commonly used local thermal equilibrium approximation underestimates by approximately 95% the drag force, obtained by employing the recently reported nonequilibrium fluctuation-dissipation relation for quantum friction. Unlike the treatment based on local optics, spatial dispersion in conjunction with corrections to local thermal equilibrium change notmore » only the magnitude but also the distance scaling of quantum friction.« less
Ideal relaxation of the Hopf fibration
NASA Astrophysics Data System (ADS)
Smiet, Christopher Berg; Candelaresi, Simon; Bouwmeester, Dirk
2017-07-01
Ideal magnetohydrodynamics relaxation is the topology-conserving reconfiguration of a magnetic field into a lower energy state where the net force is zero. This is achieved by modeling the plasma as perfectly conducting viscous fluid. It is an important tool for investigating plasma equilibria and is often used to study the magnetic configurations in fusion devices and astrophysical plasmas. We study the equilibrium reached by a localized magnetic field through the topology conserving relaxation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles that are all linked with one another. Magnetic fields with this topology have recently been shown to occur in non-ideal numerical simulations. Our results show that any localized field can only attain equilibrium if there is a finite external pressure, and that for such a field a Taylor state is unattainable. We find an equilibrium plasma configuration that is characterized by a lowered pressure in a toroidal region, with field lines lying on surfaces of constant pressure. Therefore, the field is in a Grad-Shafranov equilibrium. Localized helical magnetic fields are found when plasma is ejected from astrophysical bodies and subsequently relaxes against the background plasma, as well as on earth in plasmoids generated by, e.g., a Marshall gun. This work shows under which conditions an equilibrium can be reached and identifies a toroidal depression as the characteristic feature of such a configuration.
Li, Guanchen; von Spakovsky, Michael R
2016-09-01
This paper presents a nonequilibrium thermodynamic model for the relaxation of a local, isolated system in nonequilibrium using the principle of steepest entropy ascent (SEA), which can be expressed as a variational principle in thermodynamic state space. The model is able to arrive at the Onsager relations for such a system. Since no assumption of local equilibrium is made, the conjugate fluxes and forces are intrinsic to the subspaces of the system's state space and are defined using the concepts of hypoequilibrium state and nonequilibrium intensive properties, which describe the nonmutual equilibrium status between subspaces of the thermodynamic state space. The Onsager relations are shown to be a thermodynamic kinematic feature of the system independent of the specific details of the micromechanical dynamics. Two kinds of relaxation processes are studied with different constraints (i.e., conservation laws) corresponding to heat and mass diffusion. Linear behavior in the near-equilibrium region as well as nonlinear behavior in the far-from-equilibrium region are discussed. Thermodynamic relations in the equilibrium and near-equilibrium realm, including the Gibbs relation, the Clausius inequality, and the Onsager relations, are generalized to the far-from-equilibrium realm. The variational principle in the space spanned by the intrinsic conjugate fluxes and forces is expressed via the quadratic dissipation potential. As an application, the model is applied to the heat and mass diffusion of a system represented by a single-particle ensemble, which can also be applied to a simple system of many particles. Phenomenological transport coefficients are also derived in the near-equilibrium realm.
Tagliazucchi, Mario; de la Cruz, Mónica Olvera; Szleifer, Igal
2010-03-23
The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.
NASA Astrophysics Data System (ADS)
Guzzo, M. M.; Holanda, P. C.; Reggiani, N.
2003-08-01
The neutrino energy spectrum observed in KamLAND is compatible with the predictions based on the Large Mixing Angle realization of the MSW (Mikheyev-Smirnov-Wolfenstein) mechanism, which provides the best solution to the solar neutrino anomaly. From the agreement between solar neutrino data and KamLAND observations, we can obtain the best fit values of the mixing angle and square difference mass. When doing the fitting of the MSW predictions to the solar neutrino data, it is assumed the solar matter do not have any kind of perturbations, that is, it is assumed the the matter density monothonically decays from the center to the surface of the Sun. There are reasons to believe, nevertheless, that the solar matter density fluctuates around the equilibrium profile. In this work, we analysed the effect on the Large Mixing Angle parameters when the density matter randomically fluctuates around the equilibrium profile, solving the evolution equation in this case. We find that, in the presence of these density perturbations, the best fit values of the mixing angle and the square difference mass assume smaller values, compared with the values obtained for the standard Large Mixing Angle Solution without noise. Considering this effect of the random perturbations, the lowest island of allowed region for KamLAND spectral data in the parameter space must be considered and we call it very-low region.
WIDE FIELD CO MAPPING IN THE REGION OF IRAS 19312+1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Jun-ichi; Ladeyschikov, Dmitry A.; Sobolev, Andrej M.
2016-07-01
We report the results of wide field CO mapping in the region of IRAS 19312+1950. This Infrared Astronomical Satellite ( IRAS ) object exhibits SiO/H{sub 2}O/OH maser emission, and is embedded in a chemically rich molecular component, the origin of which is still unknown. In order to reveal the entire structure and gas mass of the surrounding molecular component for the first time, we have mapped a wide region around IRAS 19312+1950 in the {sup 12}CO J = 1–0, {sup 13}CO J = 1–0 and C{sup 18}O J = 1–0 lines using the Nobeyama 45 m telescope. In conjunction withmore » archival CO maps, we investigated a region up to 20′ × 20′ in size around this IRAS object. We calculated the CO gas mass assuming local thermal equilibrium, the stellar velocity through the interstellar medium assuming an analytic model of bow shock, and the absolute luminosity, using the latest archival data and trigonometric parallax distance. The derived gas mass (225 M {sub ⊙}–478 M {sub ⊙}) of the molecular component and the relatively large luminosity (2.63 × 10{sup 4} L {sub ☉}) suggest that the central SiO/H{sub 2}O/OH maser source is a red supergiant rather than an asymptotic giant branch (AGB) star or post-AGB star.« less
NASA Technical Reports Server (NTRS)
Hartmann, William K.
1991-01-01
While interpreting outer planetary satellites, the Voyager imaging team repeatedly referred to a lunar frontside highland calibration curve. It was assumed that it is unmodified and not in steady state equilibrium, but rather records all impacts that have occurred. It was also assumed that it records the size distribution of an early population of impactors, called Population I, evidence for which was found on various satellites. New evidence is reported that the Voyager team interpretation of this population is wrong, a conclusion that seriously affects the cratering histories reported for outer planet satellites.
Supporting Structure of the LSD Wave in an Energy Absorption Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukui, Akihiro; Hatai, Keigo; Cho, Shinatora
In Repetitively Pulsed (RP) Laser Propulsion, laser energy irradiated to a vehicle is converted to blast wave enthalpy during the Laser Supported Detonation (LSD) regime. Based on the measured post-LSD electron number density profiles by two-wavelength Mach Zehnder interferometer in a line-focusing optics, electron temperature and absorption coefficient were estimated assuming Local Thermal Equilibrium. A 10J/pulse CO{sub 2} laser was used. As a result, laser absorption was found completed in the layer between the shock wave and the electron density peak. Although the LSD-termination timing was not clear from the shock-front/ionization-front separation in the shadowgraph images, there observed drastic changesmore » in the absorption layer thickness from 0.2 mm to 0.5 mm and in the peak heating rate from 12-17x10{sup 13} kW/m{sup 3} to 5x10{sup 13} kW/m{sup 3} at the termination.« less
Brightening and locking a weak and floppy N-H chromophore: the case of pyrrolidine.
Hesse, Susanne; Wassermann, Tobias N; Suhm, Martin A
2010-10-07
The N-H stretching signature of the puckering equilibrium between equatorial and axial pyrrolidine is analyzed via FTIR and Raman spectroscopy in supersonic jets as a function of aggregation. Vibrational temperatures along the expansion axis can be extracted from the Raman spectra and allow for a localization of the compression shock waves. While the equatorial conformation is more stable in the ground state monomer, this preference is probably switched in the excited state with one N-H stretching quantum. Furthermore, the dominant dimer involves an axial donor and the trimer and tetramer structures seem to prefer uniform axial conformations. The IR intensity is boosted by up to 3 orders of magnitude upon aggregation, whereas the Raman scattering intensity shows only moderate hydrogen bond effects. B3LYP and MP2 calculations provide a reasonable description of the N-H vibrational dynamics under the influence of self-aggregation. In mixed dimers with pyrrole, pyrrolidine assumes the role of a hydrogen bond acceptor.
SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy
NASA Astrophysics Data System (ADS)
Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.
2016-08-01
SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.
NASA Astrophysics Data System (ADS)
Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong
2018-05-01
The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (<80 ns) stage of plasma expansion. At longer delay times, it was not applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.
Le Châtelier Braun principle in cosmological physics
NASA Astrophysics Data System (ADS)
Pavón, Diego; Wang, Bin
2009-01-01
Assuming that dark energy may be treated as a fluid with a well-defined temperature, close to equilibrium, we argue that if nowadays there is a transfer of energy between dark energy and dark matter, it must be such that the latter gains energy from the former and not the other way around.
Buckling of beams supported by Pasternak foundation.
NASA Technical Reports Server (NTRS)
Murthy, G. K. N.
1973-01-01
The determination of buckling loads for infinitely long beams resting on a Pasternak (1954) foundation is considered. It is assumed that the onset of buckling takes place at neutral equilibrium. The effect of extending the foundation beyond the width of the beam is determined by comparing the results obtained for two- and three-dimensional foundations.
To predict the niche, model colonization and extinction
Charles B. Yackulic; James D. Nichols; Janice Reid; Ricky Der
2015-01-01
Ecologists frequently try to predict the future geographic distributions of species. Most studies assume that the current distribution of a species reflects its environmental requirements (i.e., the speciesâ niche). However, the current distributions of many species are unlikely to be at equilibrium with the current distribution of environmental conditions, both...
46 CFR 42.20-12 - Conditions of equilibrium.
Code of Federal Regulations, 2013 CFR
2013-10-01
... § 42.15-65. (b) Progressive flooding. If pipes, ducts, or tunnels are situated within the assumed extent of damage penetration as defined in § 42.20-11 (a) and (b), progressive flooding cannot extend to..., heel, and trim, is below the lower edge of any opening through which progressive flooding can take...
46 CFR 42.20-12 - Conditions of equilibrium.
Code of Federal Regulations, 2012 CFR
2012-10-01
... § 42.15-65. (b) Progressive flooding. If pipes, ducts, or tunnels are situated within the assumed extent of damage penetration as defined in § 42.20-11 (a) and (b), progressive flooding cannot extend to..., heel, and trim, is below the lower edge of any opening through which progressive flooding can take...
46 CFR 42.20-12 - Conditions of equilibrium.
Code of Federal Regulations, 2014 CFR
2014-10-01
... § 42.15-65. (b) Progressive flooding. If pipes, ducts, or tunnels are situated within the assumed extent of damage penetration as defined in § 42.20-11 (a) and (b), progressive flooding cannot extend to..., heel, and trim, is below the lower edge of any opening through which progressive flooding can take...
New Wine in Old Flasks: A New Solution of the Clapeyron Equation
ERIC Educational Resources Information Center
Shilo, Doron; Ghez, Richard
2008-01-01
The coexisting equilibrium states between single-component gas and condensed phases (liquid or solid) are often calculated by assuming that the condensed phase's molar volume is negligible in comparison with the gas's. Here, we present an analytic solution of Clapeyron's equation when this assumption is relaxed. It differs substantially from…
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Jha, M. K.
1993-01-01
Basic formulations, analyses, and numerical procedures are presented to investigate radiative heat interactions in diatomic and polyatomic gases under local and nonlocal thermodynamic equilibrium conditions. Essential governing equations are presented for both gray and nongray gases. Information is provided on absorption models, relaxation times, and transfer equations. Radiative flux equations are developed which are applicable under local and nonlocal thermodynamic equilibrium conditions. The problem is solved for fully developed laminar incompressible flows between two parallel plates under the boundary condition of a uniform surface heat flux. For specific applications, three diatomic and three polyatomic gases are considered. The results are obtained numerically by employing the method of variation of parameters. The results are compared under local and nonlocal thermodynamic equilibrium conditions at different temperature and pressure conditions. Both gray and nongray studies are conducted extensively for all molecular gases considered. The particular gases selected for this investigation are CO, NO, OH, CO2, H2O, and CH4. The temperature and pressure range considered are 300-2000 K and 0.1-10 atmosphere, respectively. In general, results demonstrate that the gray gas approximation overestimates the effect of radiative interaction for all conditions. The conditions of NLTE, however, result in underestimation of radiative interactions. The method developed for this study can be extended to solve complex problems of radiative heat transfer involving nonequilibrium phenomena.
Ionization balance in Titan's nightside ionosphere
NASA Astrophysics Data System (ADS)
Vigren, E.; Galand, M.; Yelle, R. V.; Wellbrock, A.; Coates, A. J.; Snowden, D.; Cui, J.; Lavvas, P.; Edberg, N. J. T.; Shebanits, O.; Wahlund, J.-E.; Vuitton, V.; Mandt, K.
2015-03-01
Based on a multi-instrumental Cassini dataset we make model versus observation comparisons of plasma number densities, nP = (nenI)1/2 (ne and nI being the electron number density and total positive ion number density, respectively) and short-lived ion number densities (N+, CH2+, CH3+, CH4+) in the southern hemisphere of Titan's nightside ionosphere over altitudes ranging from 1100 and 1200 km and from 1100 to 1350 km, respectively. The nP model assumes photochemical equilibrium, ion-electron pair production driven by magnetospheric electron precipitation and dissociative recombination as the principal plasma neutralization process. The model to derive short-lived-ion number densities assumes photochemical equilibrium for the short-lived ions, primary ion production by electron-impact ionization of N2 and CH4 and removal of the short-lived ions through reactions with CH4. It is shown that the models reasonably reproduce the observations, both with regards to nP and the number densities of the short-lived ions. This is contrasted by the difficulties in accurately reproducing ion and electron number densities in Titan's sunlit ionosphere.
Equilibria of perceptrons for simple contingency problems.
Dawson, Michael R W; Dupuis, Brian
2012-08-01
The contingency between cues and outcomes is fundamentally important to theories of causal reasoning and to theories of associative learning. Researchers have computed the equilibria of Rescorla-Wagner models for a variety of contingency problems, and have used these equilibria to identify situations in which the Rescorla-Wagner model is consistent, or inconsistent, with normative models of contingency. Mathematical analyses that directly compare artificial neural networks to contingency theory have not been performed, because of the assumed equivalence between the Rescorla-Wagner learning rule and the delta rule training of artificial neural networks. However, recent results indicate that this equivalence is not as straightforward as typically assumed, suggesting a strong need for mathematical accounts of how networks deal with contingency problems. One such analysis is presented here, where it is proven that the structure of the equilibrium for a simple network trained on a basic contingency problem is quite different from the structure of the equilibrium for a Rescorla-Wagner model faced with the same problem. However, these structural differences lead to functionally equivalent behavior. The implications of this result for the relationships between associative learning, contingency theory, and connectionism are discussed.
NASA Astrophysics Data System (ADS)
Parfenov, S. Yu.; Semenov, D. A.; Henning, Th.; Shapovalova, A. S.; Sobolev, A. M.; Teague, R.
2017-06-01
The recent detection of gas-phase methanol (CH3OH) lines in the disc of TW Hya by Walsh et al. provided the first observational constraints on the complex O-bearing organic content in protoplanetary discs. The emission has a ring-like morphology, with a peak at ˜30-50 au and an inferred column density of ˜3-6 × 1012 cm-2. A low CH3OH fractional abundance of ˜0.3-4 × 10-11 (with respect to H2) is derived, depending on the assumed vertical location of the CH3OH molecular layer. In this study, we use a thermochemical model of the TW Hya disc, coupled with the alchemic gas-grain chemical model, assuming laboratory-motivated, fast diffusivities of the surface molecules to interpret the CH3OH detection. Based on this disc model, we performed radiative transfer calculations with the lime code and simulations of the observations with the casa simulator. We found that our model allows us to reproduce the observations well. The CH3OH emission in our model appears as a ring with radius of ˜60 au. Synthetic and observed line flux densities are equal within the rms noise level of observations. The synthetic CH3OH spectra calculated assuming local thermodynamic equilibrium (LTE) can differ by up to a factor of 3.5 from the non-LTE spectra. For the strongest lines, the differences between LTE and non-LTE flux densities are very small and practically negligible. Variations in the diffusivity of the surface molecules can lead to variations of the CH3OH abundance and, therefore, line flux densities by an order of magnitude.
Structure of the Soot Growth Region of Laminar Premixer Methane/Oxygen Flames
NASA Technical Reports Server (NTRS)
Xu, F.; Faeth, G. M.
1999-01-01
Soot is a dominant feature of hydrocarbon/air flames, affecting their reaction mechanisms and structure. As a result, soot processes affect capabilities for computational combustion as well as predictions of flame radiation and pollution emissions. Motivated by these observations, the present investigation extended past work on soot growth in laminar premixed flames, seeking to evaluate model predictions of flame structure. Xu et al. report direct measurements of soot residence times, soot concentrations, soot structure, gas temperatures and gas compositions for premixed flames similar to those studied by Harris and Weiner and Ramer et al. respectively. It was found that predictions of major stable gas species concentrations based on mechanisms of Leung and Lindstedt and Frenklach and coworkers, were in good agreement with the measurements. The results were also used to evaluate the hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms of Frenklach and coworkers and Colket and Hall. It was found that these mechanisms were effective using quite reasonable correlations for the steric factors appearing in the theories. The successful evaluation of the HACA mechanism of soot growth in Refs. 1 and 2 is encouraging but one aspect of this evaluation is a concern. In particular, H-atom concentrations play a crucial role in the HACA mechanism and it was necessary to estimate these concentrations because they were not measured directly. These estimates were made assuming local thermodynamic equilibrium between H, and H based on measured temperatures and H2 concentrations and the equilibrium constant data of Kee et al.. This approach was justified by the flame structure predictions; nevertheless, direct evaluation of equilibrium estimates of H-atom concentrations in the soot growth regions of laminar premixed flames is needed to provide more convincing proof of this behavior. Thus, the objective of the present investigation was to complete new measurements of the structure of the soot growth region of laminar premixed flames and to use these results to evaluate whether H and H2 are in thermodynamic equilibrium and to extend the earlier evaluation of predictions of concentrations of major gas species.
CFD analysis of laboratory scale phase equilibrium cell operation
NASA Astrophysics Data System (ADS)
Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville
2017-10-01
For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process.: Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.
CFD analysis of laboratory scale phase equilibrium cell operation.
Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville
2017-10-01
For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.
Analytical Phase Equilibrium Function for Mixtures Obeying Raoult's and Henry's Laws
NASA Astrophysics Data System (ADS)
Hayes, Robert
When a mixture of two substances exists in both the liquid and gas phase at equilibrium, Raoults and Henry's laws (ideal solution and ideal dilute solution approximations) can be used to estimate the gas and liquid mole fractions at the extremes of either very little solute or solvent. By assuming that a cubic polynomial can reasonably approximate the intermediate values to these extremes as a function of mole fraction, the cubic polynomial is solved and presented. A closed form equation approximating the pressure dependence on mole fraction of the constituents is thereby obtained. As a first approximation, this is a very simple and potentially useful means to estimate gas and liquid mole fractions of equilibrium mixtures. Mixtures with an azeotrope require additional attention if this type of approach is to be utilized. This work supported in part by federal Grant NRC-HQ-84-14-G-0059.
Lability of Secondary Organic Particulate Matter
Liu, Pengfei; Li, Yong Jie; Wang, Yan; ...
2016-10-24
Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM,more » no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.« less
NASA Astrophysics Data System (ADS)
Liolios, Konstantinos; Bergman, Jan; Moussas, Xenophon
2017-04-01
Heliospheric energetic particle populations of energies higher than 1 MeV are studied using a 33 year long data record composed of hourly measurements, as extracted from the NASA Goddard Space Flight Center's OMNI data set. Their periodicities are examined by means least-squares spectral analysis and wavelet analysis and found to be in good agreement with periodicities seen in sunspot numbers, which are well-known indicators of variations in solar activity. Hence, the source of this energetic and positively charged gas is mainly the Sun but part of it should be cosmic rays. As derived from the analyses of suprathermal "heavy" tails of the probability distribution, we assume that the gas kinetics is described by a deformed Maxwell-Boltzmann distribution, namely, the kappa distribution. The q-index analogue to the κ-index is computed for every hour in the data record and used to investigate how far away the gas is from being in classical thermal equilibrium (q = 1). We compare the q-index time series with that of sunspot numbers and conclude that the gas is in continously variable states away (q > 1) from the almost always assumed thermal equilibrium. During the first ˜15 years, the q-indices somewhat exceed the theoretically predicted limit but follow a pattern which is very homogeneous. However, just before 1990, the q-indices begin to fluctuate in a periodic manner, creating maxima and minima, as they continuously increase until they peak about 1996-1997, while after these years, they decrease following a similar pattern. As a result, we assume that after 1990, for a period that lasted at least 10 years, something changed in the Sun's behaviour. A higher number of solar bursts could easily affect the gas but further research, for instance an analysis of solar flare timeseries from the same period, is required to draw a more robust conclusion of what may have caused the observed anomaly.
The assumption of equilibrium in models of migration.
Schachter, J; Althaus, P G
1993-02-01
In recent articles Evans (1990) and Harrigan and McGregor (1993) (hereafter HM) scrutinized the equilibrium model of migration presented in a 1989 paper by Schachter and Althaus. This model used standard microeconomics to analyze gross interregional migration flows based on the assumption that gross flows are in approximate equilibrium. HM criticized the model as theoretically untenable, while Evans summoned empirical as well as theoretical objections. HM claimed that equilibrium of gross migration flows could be ruled out on theoretical grounds. They argued that the absence of net migration requires that either all regions have equal populations or that unsustainable regional migration propensities must obtain. In fact some moves are inter- and other are intraregional. It does not follow, however, that the number of interregional migrants will be larger for the more populous region. Alternatively, a country could be divided into a large number of small regions that have equal populations. With uniform propensities to move, each of these analytical regions would experience in equilibrium zero net migration. Hence, the condition that net migration equal zero is entirely consistent with unequal distributions of population across regions. The criticisms of Evans were based both on flawed reasoning and on misinterpretation of the results of a number of econometric studies. His reasoning assumed that the existence of demand shifts as found by Goldfarb and Yezer (1987) and Topel (1986) invalidated the equilibrium model. The equilibrium never really obtains exactly, but economic modeling of migration properly begins with a simple equilibrium model of the system. A careful reading of the papers Evans cited in support of his position showed that in fact they affirmed rather than denied the appropriateness of equilibrium modeling. Zero net migration together with nonzero gross migration are not theoretically incompatible with regional heterogeneity of population, wages, or amenities.
NASA Astrophysics Data System (ADS)
Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.
2007-01-01
In this paper we are concerned with the fractional-order predator-prey model and the fractional-order rabies model. Existence and uniqueness of solutions are proved. The stability of equilibrium points are studied. Numerical solutions of these models are given. An example is given where the equilibrium point is a centre for the integer order system but locally asymptotically stable for its fractional-order counterpart.
Magnons and Phonons Optically Driven out of Local Equilibrium in a Magnetic Insulator.
An, Kyongmo; Olsson, Kevin S; Weathers, Annie; Sullivan, Sean; Chen, Xi; Li, Xiang; Marshall, Luke G; Ma, Xin; Klimovich, Nikita; Zhou, Jianshi; Shi, Li; Li, Xiaoqin
2016-09-02
The coupling and possible nonequilibrium between magnons and other energy carriers have been used to explain several recently discovered thermally driven spin transport and energy conversion phenomena. Here, we report experiments in which local nonequilibrium between magnons and phonons in a single crystalline bulk magnetic insulator, Y_{3}Fe_{5}O_{12}, has been created optically within a focused laser spot and probed directly via micro-Brillouin light scattering. Through analyzing the deviation in the magnon number density from the local equilibrium value, we obtain the diffusion length of thermal magnons. By explicitly establishing and observing local nonequilibrium between magnons and phonons, our studies represent an important step toward a quantitative understanding of various spin-heat coupling phenomena.
Role of cell division and self-propulsion in self-organization of 2D cell co-cultures
NASA Astrophysics Data System (ADS)
Das, Moumita; Dey, Supravat; Wu, Mingming; Ma, Minglin
Self-organization of cells is a key process in developmental and cancer biology. The differential adhesion hypothesis (DAH), which assumes cells as equilibrium liquid droplets and relates the self-assembly of cells to differences in inter-cellular adhesiveness, has been very successful in explaining cellular organization during morphogenesis where neighboring cells have the same non-equilibrium properties (motility, proliferation rate). However, recently it has been experimentally shown that for a co-culture of two different cell types proliferating at different rates, the resulting spatial morphologies cannot be explained using the DAH alone. Motivated by this, we develop and study a two-dimensional model of a cell co-culture that includes cell division and self-propulsion in addition to cell-cell adhesion, and systemically study how cells with significantly different adhesion, motility, and proliferation rate dynamically organize themselves in a spatiotemporal and context-dependent manner. Our results may help to understand how differential equilibrium and non-equilibrium properties cooperate and compete leading to different morphologies during tumor development, with important consequences for invasion and metastasis
Crystallochemistry and origin of pyroxenes in komatiites
NASA Astrophysics Data System (ADS)
Bouquain, Sebastien; Arndt, N. T.; Hellebrand, E.; Faure, F.
2009-11-01
We present a detailed mineralogical and major- and trace-element study of pyroxenes in two Archean komatiitic flows in Alexo, Canada. The pyroxenes in spinifex-textured lavas commonly are zoned with cores of magnesian pigeonite and rims of augite. Concentrations of incompatible trace elements are low in pigeonite and jump to higher values in the augite mantles, a variation that can be modelled using accepted partition coefficients and assuming crystallization from komatiitic liquids. Crystallization sequences are very different in different parts of both flows. In the flow top, the sequence is olivine followed by augite: deeper in the spinifex sequence, pigeonite crystallizes after olivine, followed by augite; in lower cumulates, orthopyroxene or augite accompany olivine. In spinifex lavas, pigeonite crystallizes sooner than would be predicted on the basis of equilibrium phase relations. We propose that contrasting crystallization sequences depend on the position in the flow and on the conditions of crystal growth. In the flowtop, rapid cooling causes quench crystallization. Deeper in the spinifex layer, constrained growth in a thermal gradient, perhaps augmented by Soret differentiation, accounts for the early crystallization of pigeonite. The cumulus minerals represent a near-equilibrium assemblage. Augites in Al-undepleted Archean komatiites in various localities in Canada and Zimbabwe have high moderate to high Wo contents but their Mg# (Mg/(Mg + Fe) are lower than in augites in komatiites from Barberton, South Africa. We attribute the combination of high Wo and high Mg# in Barberton rocks to the unusually high CaO/Al2O3 of these Al-depleted komatiites.
Photochemical ozone budget during the BIBLE A and B campaigns
NASA Astrophysics Data System (ADS)
Ko, Malcolm; Hu, Wenjie; Rodríguez, José M.; Kondo, Yutaka; Koike, Makoto; Kita, Kazuyuki; Kawakami, Shuji; Blake, Donald; Liu, Shaw; Ogawa, Toshihiro
2003-02-01
Using the measured concentrations of NO, O3, H2O, CO, CH4, and NMHCs along the flight tracks, a photochemical box model is used to calculate the concentrations of the Ox radicals, the HOx radicals, and the nitrogen species at the sampling points. The calculations make use of the measurements from radiometers to scale clear sky photolysis rates to account for cloud cover and ground albedo at the sampling time/point. The concentrations of the nitrogen species in each of the sampled air parcels are computed assuming they are in instantaneous equilibrium with the measured NO and O3. The diurnally varying species concentrations are next calculated using the box model and used to estimate the diurnally averaged production and removal rates of ozone for the sampled air parcels. Clear sky photolysis rates are used in the diurnal calculations. The campaign also provided measured concentration of NOy. The observed NO/NOy ratio is usually larger than the model calculated equilibrium value. There are several possible explanations. It could be a result of recent injection of NO into the air parcel, recent removal of HNO3 from the parcel, recent rapid transport of an air parcel from another location, or a combination of all processes. Our analyses suggest that the local production rate of O3 can be used as another indicator of recent NO injection. However, more direct studies using air trajectory analyses and other collaborative evidences are needed to ascertain the roles played by individual process.
Photochemical ozone budget during the BIBLE A and B campaigns
NASA Astrophysics Data System (ADS)
Ko, Malcolm; Hu, Wenjie; RodríGuez, José M.; Kondo, Yutaka; Koike, Makoto; Kita, Kazuyuki; Kawakami, Shuji; Blake, Donald; Liu, Shaw; Ogawa, Toshihiro
2002-02-01
Using the measured concentrations of NO, O3, H2O, CO, CH4, and NMHCs along the flight tracks, a photochemical box model is used to calculate the concentrations of the Ox radicals, the HOx radicals, and the nitrogen species at the sampling points. The calculations make use of the measurements from radiometers to scale clear sky photolysis rates to account for cloud cover and ground albedo at the sampling time/point. The concentrations of the nitrogen species in each of the sampled air parcels are computed assuming they are in instantaneous equilibrium with the measured NO and O3. The diurnally varying species concentrations are next calculated using the box model and used to estimate the diurnally averaged production and removal rates of ozone for the sampled air parcels. Clear sky photolysis rates are used in the diurnal calculations. The campaign also provided measured concentration of NOy. The observed NO/NOy ratio is usually larger than the model calculated equilibrium value. There are several possible explanations. It could be a result of recent injection of NO into the air parcel, recent removal of HNO3 from the parcel, recent rapid transport of an air parcel from another location, or a combination of all processes. Our analyses suggest that the local production rate of O3 can be used as another indicator of recent NO injection. However, more direct studies using air trajectory analyses and other collaborative evidences are needed to ascertain the roles played by individual process.
Diffusion Behavior of Mn and Si Between Liquid Oxide Inclusions and Solid Iron-Based Alloy at 1473 K
NASA Astrophysics Data System (ADS)
Kim, Sun-Joong; Tago, Hanae; Kim, Kyung-Ho; Kitamura, Shin-ya; Shibata, Hiroyuki
2018-06-01
In order to clarify the changes in the composition of oxide inclusions in steel, the effect of the metal and oxide composition on the reaction between solid Fe-based alloys and liquid multi-component oxides was investigated using the diffusion couple method at 1473 K. The measured concentration gradients of Mn and Si in the metal indicated that Mn diffused into the metal from the oxide, while the diffusion of Si occurred in the opposite direction. In addition, the MnO content in the oxide decreased with heat treatment time, while the SiO2 content increased. The compositional changes in both phases indicated that the Mn content in the metal near the interface increased with heat treatment with decreasing MnO content in the oxide. Assuming local equilibrium at the interface, the calculated [Mn]2/[Si] ratio at the interface in equilibrium with the oxide increased with increases in the MnO/SiO2 ratio in the oxide. The difference in the [Mn]2/[Si] ratios between the interface and the metal matrix increased, which caused the diffusion of Mn and Si between the multi-component oxide and metal. By measuring the diffusion lengths of Mn and Si in the metal, the chemical diffusion coefficients of Mn and Si were obtained to calculate the composition changes in Mn and Si in the metal. The calculated changes in Mn and Si in the metal agreed with the experimental results.
Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids
NASA Astrophysics Data System (ADS)
Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk
2018-03-01
The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.
Effect of (social) media on the political figure fever model: Jokowi-fever model
NASA Astrophysics Data System (ADS)
Yong, Benny; Samat, Nor Azah
2016-02-01
In recent years, political figures begin to utilize social media as one of alternative to engage in communication with their supporters. Publics referred to Jokowi, one of the candidates in Indonesia presidential election in 2014, as the first politician in Indonesia to truly understand the power of social media. Social media is very important in shaping public opinion. In this paper, effect of social media on the Jokowi-fever model in a closed population will be discussed. Supporter population is divided into three class sub-population, i.e susceptible supporters, Jokowi infected supporters, and recovered supporters. For case no positive media, there are two equilibrium points; the Jokowi-fever free equilibrium point in which it locally stable if basic reproductive ratio less than one and the Jokowi-fever endemic equilibrium point in which it locally stable if basic reproductive ratio greater than one. For case no negative media, there is only the Jokowi-fever endemic equilibrium point in which it locally stable if the condition is satisfied. Generally, for case positive media proportion is positive, there is no Jokowi-fever free equilibrium point. The numerical result shows that social media gives significantly effect on Jokowi-fever model, a sharp increase or a sharp decrease in the number of Jokowi infected supporters. It is also shown that the boredom rate is one of the sensitive parameters in the Jokowi-fever model; it affects the number of Jokowi infected supporters.
NASA Astrophysics Data System (ADS)
Fu, Roger R.; Moullet, Arielle; Patel, Nimesh A.; Biersteker, John; Derose, Kimberly L.; Young, Kenneth H.
2012-02-01
We report Submillimeter Array observations of SO2 emission in the circumstellar envelope (CSE) of the red supergiant VY Canis Majoris, with an angular resolution of ≈1''. SO2 emission appears in three distinct outflow regions surrounding the central continuum peak emission that is spatially unresolved. No bipolar structure is noted in the sources. A fourth source of SO2 is identified as a spherical wind centered at the systemic velocity. We estimate the SO2 column density and rotational temperature assuming local thermal equilibrium (LTE) as well as perform non-LTE radiative transfer analysis using RADEX. Column densities of SO2 are found to be ~1016 cm-2 in the outflows and in the spherical wind. Comparison with existing maps of the two parent species OH and SO shows the SO2 distribution to be consistent with that of OH. The abundance ratio f_{SO_{2}}/f_{SO} is greater than unity for all radii larger than 3 × 1016 cm. SO2 is distributed in fragmented clumps compared to SO, PN, and SiS molecules. These observations lend support to specific models of circumstellar chemistry that predict f_{SO_{2}}/f_{SO}>1 and may suggest the role of localized effects such as shocks in the production of SO2 in the CSE.
Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde
2015-11-01
The problem of coexistence and dynamical behaviors of multiple equilibrium points is addressed for a class of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays. By virtue of the fixed point theorem, nonsmooth analysis theory and other analytical tools, some sufficient conditions are established to guarantee that such n-dimensional memristive Cohen-Grossberg neural networks can have 5(n) equilibrium points, among which 3(n) equilibrium points are locally exponentially stable. It is shown that greater storage capacity can be achieved by neural networks with the non-monotonic activation functions introduced herein than the ones with Mexican-hat-type activation function. In addition, unlike most existing multistability results of neural networks with monotonic activation functions, those obtained 3(n) locally stable equilibrium points are located both in saturated regions and unsaturated regions. The theoretical findings are verified by an illustrative example with computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xian-Qu; Zhang, Rui-Bin; Meng, Guo
2016-07-15
The destabilization of ideal internal kink modes by trapped fast particles in tokamak plasmas with a “shoulder”-like equilibrium current is investigated. It is found that energetic particle branch of the mode is unstable with the driving of fast-particle precession drifts and corresponds to a precessional fishbone. The mode with a low stability threshold is also more easily excited than the conventional precessional fishbone. This is different from earlier studies for the same equilibrium in which the magnetohydrodynamic (MHD) branch of the mode is stable. Furthermore, the stability and characteristic frequency of the mode are analyzed by solving the dispersion relationmore » and comparing with the conventional fishbone. The results suggest that an equilibrium with a locally flattened q-profile, may be modified by localized current drive (or bootstrap current, etc.), is prone to the onset of the precessional fishbone branch of the mode.« less
NASA Astrophysics Data System (ADS)
Ignatavichyus, M. V.; Kazakyavichyus, É.; Orshevski, G.; Danyunas, V.
1991-11-01
An investigation was made of plasma formation accompanying the interaction with aluminum, iron, and VK-6 alloy targets of nanosecond radiation from a YAG:Nd3+ laser (Emax = 50 mJ, τ = 3-8 ns). The duration of the plasma formation process depended weakly on the laser radiation parameters [the power density was varied in the range 1-3 GW/cm2, the pulse rise time in the range 2-8 ns, or the rate of rise of the power density in the range (1-8) × 108 W · cm - 2 · ns -1]. A study was made of the establishment of a local thermodynamic equilibrium in a plasma jet excited by radiation from nanosecond and picosecond (E = 30 mJ, τ = 40 ps) lasers. The maximum of the luminescence from an aluminum plasma excited by picosecond laser radiation was found to correspond to a local thermodynamic equilibrium. A local thermodynamic equilibrium could be absent in the case of excitation by nanosecond laser radiation.
ERIC Educational Resources Information Center
Kretschmer, Hildrun
2002-01-01
Based on Gestalt theory, the author assumes the existence of a field-force equilibrium to explain how, according to the conciseness principle, mathematically precise gestalts could exist in coauthorship networks. Develops a mathematical function to describe these gestalts in scientific literature and discusses structural characteristics of…
46 CFR 42.20-7 - Flooding standard: Type “B” vessel, 60 percent reduction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Flooding standard: Type âBâ vessel, 60 percent reduction... the conditions of equilibrium specified in § 42.20-12 assuming the damage specified in § 42.20-11 as... one compartment, treating the machinery space as a floodable compartment. (b) When doing the...
46 CFR 42.20-7 - Flooding standard: Type “B” vessel, 60 percent reduction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Flooding standard: Type âBâ vessel, 60 percent reduction... the conditions of equilibrium specified in § 42.20-12 assuming the damage specified in § 42.20-11 as... one compartment, treating the machinery space as a floodable compartment. (b) When doing the...
Marketing technology in macroeconomics.
Tamegawa, Kenichi
2012-01-01
In this paper, we incorporate a marketing technology into a dynamic stochastic general equilibrium model by assuming a matching friction for consumption. An improvement in matching can be interpreted as an increase in matching technology, which we call marketing technology because of similar properties. Using a simulation analysis, we confirm that a positive matching technology shock can increase output and consumption.
Topologically protected modes in non-equilibrium stochastic systems.
Murugan, Arvind; Vaikuntanathan, Suriyanarayanan
2017-01-10
Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.
Evolution of wealth in a non-conservative economy driven by local Nash equilibria.
Degond, Pierre; Liu, Jian-Guo; Ringhofer, Christian
2014-11-13
We develop a model for the evolution of wealth in a non-conservative economic environment, extending a theory developed in Degond et al. (2014 J. Stat. Phys. 154, 751-780 (doi:10.1007/s10955-013-0888-4)). The model considers a system of rational agents interacting in a game-theoretical framework. This evolution drives the dynamics of the agents in both wealth and economic configuration variables. The cost function is chosen to represent a risk-averse strategy of each agent. That is, the agent is more likely to interact with the market, the more predictable the market, and therefore the smaller its individual risk. This yields a kinetic equation for an effective single particle agent density with a Nash equilibrium serving as the local thermodynamic equilibrium. We consider a regime of scale separation where the large-scale dynamics is given by a hydrodynamic closure with this local equilibrium. A class of generalized collision invariants is developed to overcome the difficulty of the non-conservative property in the hydrodynamic closure derivation of the large-scale dynamics for the evolution of wealth distribution. The result is a system of gas dynamics-type equations for the density and average wealth of the agents on large scales. We recover the inverse Gamma distribution, which has been previously considered in the literature, as a local equilibrium for particular choices of the cost function. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Spontaneous collective synchronization in the Kuramoto model with additional non-local interactions
NASA Astrophysics Data System (ADS)
Gupta, Shamik
2017-10-01
In the context of the celebrated Kuramoto model of globally-coupled phase oscillators of distributed natural frequencies, which serves as a paradigm to investigate spontaneous collective synchronization in many-body interacting systems, we report on a very rich phase diagram in presence of thermal noise and an additional non-local interaction on a one-dimensional periodic lattice. Remarkably, the phase diagram involves both equilibrium and non-equilibrium phase transitions. In two contrasting limits of the dynamics, we obtain exact analytical results for the phase transitions. These two limits correspond to (i) the absence of thermal noise, when the dynamics reduces to that of a non-linear dynamical system, and (ii) the oscillators having the same natural frequency, when the dynamics becomes that of a statistical system in contact with a heat bath and relaxing to a statistical equilibrium state. In the former case, our exact analysis is based on the use of the so-called Ott-Antonsen ansatz to derive a reduced set of nonlinear partial differential equations for the macroscopic evolution of the system. Our results for the case of statistical equilibrium are on the other hand obtained by extending the well-known transfer matrix approach for nearest-neighbor Ising model to consider non-local interactions. The work offers a case study of exact analysis in many-body interacting systems. The results obtained underline the crucial role of additional non-local interactions in either destroying or enhancing the possibility of observing synchrony in mean-field systems exhibiting spontaneous synchronization.
Supersaturation of Dissolved Hydrogen and Methane in Rumen of Tibetan Sheep
Wang, Min; Ungerfeld, Emilio M.; Wang, Rong; Zhou, Chuan She; Basang, Zhu Zha; Ao, Si Man; Tan, Zhi Liang
2016-01-01
Hydrogen (H2) is an essential substrate for methanogens to produce methane (CH4), and also influences pathways of volatile fatty acids (VFA) production in the rumen. Dissolved H2 (H2 (aq)) is the form of H2 available to microbes, and dissolved CH4 (CH4 (aq)) is important for indicating methanogens activity. Rumen H2 (aq) concentration has been estimated by assuming equilibrium with headspace gaseous H2 (H2 (g)) concentration using Henry's law, and has also been directly measured in the liquid phase in some in vitro and in vivo experiments. In this in vivo study, H2 (aq) and CH4 (aq) concentration measured directly in rumen fluid and their corresponding concentrations estimated from their gaseous phase concentrations, were compared to investigate the existence of equilibrium between the gas and liquid phases. Twenty-four Tibetan sheep were randomly assigned to two mixed diets containing the same concentrate mixed with oat grass (OG diet) or barley straw (BS diet). Rumen gaseous phase and contents were sampled using rumenocentesis and oral stomach tubing, respectively. Rumen H2 (aq) and CH4 (aq) concentration and VFA profile differed between sheep fed OG and BS diets. Measured H2 (aq) and CH4 (aq) concentration were greater than H2 (aq) and CH4 (aq) concentrations estimated using gas concentrations, indicating lack of equilibrium between gas and liquid phase and supersaturation of H2 and CH4 in rumen fluid. As a consequence, Gibbs energy changes (ΔG) estimated for various metabolic pathways were different when calculated using dissolved gases concentrations directly measured and when using dissolved gases concentrations assuming equilibrium with the gaseous phase. Dissolved CH4, but not CH4 (g), was positively correlated with H2 (aq). Both H2 (aq) and H2 (g) concentrations were positively correlated with the molar percentage of butyrate and negatively correlated with the molar percentage of acetate. In summary, rumen fluid was supersaturated with both H2 and CH4, and H2 (aq) was closely associated with the VFA profile and CH4 (aq) concentration. The assumption of equilibrium between dissolved gases and gaseous phase affected ΔG estimation. PMID:27379028
Friedly, J.C.; Kent, D.B.; Davis, J.A.
2002-01-01
Reactive transport simulations were conducted to model chemical reactions between metal - EDTA (ethylenediaminetetraacetic acid) complexes during transport in a mildly acidic quartz - sand aquifer. Simulations were compared with the results of small-scale tracer tests wherein nickel-, zinc-, and calcium - EDTA complexes and free EDTA were injected into three distinct chemical zones of a plume of sewage-contaminated groundwater. One zone had a large mass of adsorbed, sewage-derived zinc; one zone had a large mass of adsorbed manganese resulting from mildly reducing conditions created bythe sewage plume; and one zone had significantly less adsorbed manganese and negligible zinc background. The chemical model assumed that the dissolution of iron(III) from metal - hydroxypolymer coatings on the aquifer sediments by the metal - EDTA complexes was kinetically restricted. All other reactions, including metal - EDTA complexation, zinc and manganese adsorption, and aluminum hydroxide dissolution were assumed to reach equilibrium on the time scale of transport; equilibrium constants were either taken from the literature or determined independently in the laboratory. A single iron(III) dissolution rate constant was used to fit the breakthrough curves observed in the zone with negligible zinc background. Simulation results agreed well with the experimental data in all three zones, which included temporal moments derived from breakthrough curves at different distances downgradient from the injections and spatial moments calculated from synoptic samplings conducted at different times. Results show that the tracer cloud was near equilibrium with respect to Fe in the sediment after 11 m of transport in the Zn-contaminated region but remained far from equilibrium in the other two zones. Sensitivity studies showed that the relative rate of iron(III) dissolution by the different metal - EDTA complexes was less important than the fact that these reactions are rate controlled. Results suggest that the published solubility for ferrihydrite reasonably approximates the Fe solubility of the hydroxypolymer coatings on the sediments. Aluminum may be somewhat more soluble than represented by the equilibrium constant for gibbsite, and its dissolution may be rate controlled when reacting with Ca - EDTA complexes.
Stability limit of liquid water in metastable equilibrium with subsaturated vapors.
Wheeler, Tobias D; Stroock, Abraham D
2009-07-07
A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapair
NASA Astrophysics Data System (ADS)
Harré, Michael S.
2013-02-01
Two aspects of modern economic theory have dominated the recent discussion on the state of the global economy: Crashes in financial markets and whether or not traditional notions of economic equilibrium have any validity. We have all seen the consequences of market crashes: plummeting share prices, businesses collapsing and considerable uncertainty throughout the global economy. This seems contrary to what might be expected of a system in equilibrium where growth dominates the relatively minor fluctuations in prices. Recent work from within economics as well as by physicists, psychologists and computational scientists has significantly improved our understanding of the more complex aspects of these systems. With this interdisciplinary approach in mind, a behavioural economics model of local optimisation is introduced and three general properties are proven. The first is that under very specific conditions local optimisation leads to a conventional macro-economic notion of a global equilibrium. The second is that if both global optimisation and economic growth are required then under very mild assumptions market catastrophes are an unavoidable consequence. Third, if only local optimisation and economic growth are required then there is sufficient parametric freedom for macro-economic policy makers to steer an economy around catastrophes without overtly disrupting local optimisation.
Good-enough linguistic representations and online cognitive equilibrium in language processing.
Karimi, Hossein; Ferreira, Fernanda
2016-01-01
We review previous research showing that representations formed during language processing are sometimes just "good enough" for the task at hand and propose the "online cognitive equilibrium" hypothesis as the driving force behind the formation of good-enough representations in language processing. Based on this view, we assume that the language comprehension system by default prefers to achieve as early as possible and remain as long as possible in a state of cognitive equilibrium where linguistic representations are successfully incorporated with existing knowledge structures (i.e., schemata) so that a meaningful and coherent overall representation is formed, and uncertainty is resolved or at least minimized. We also argue that the online equilibrium hypothesis is consistent with current theories of language processing, which maintain that linguistic representations are formed through a complex interplay between simple heuristics and deep syntactic algorithms and also theories that hold that linguistic representations are often incomplete and lacking in detail. We also propose a model of language processing that makes use of both heuristic and algorithmic processing, is sensitive to online cognitive equilibrium, and, we argue, is capable of explaining the formation of underspecified representations. We review previous findings providing evidence for underspecification in relation to this hypothesis and the associated language processing model and argue that most of these findings are compatible with them.
NASA Technical Reports Server (NTRS)
Mihalas, D.; Kunasz, P. B.
1978-01-01
The coupled radiative transfer and statistical equilibrium equations for multilevel ionic structures in the atmospheres of early-type stars are solved. Both lines and continua are treated consistently; the treatment is applicable throughout a transonic wind, and allows for the presence of background continuum sources and sinks in the transfer. An equivalent-two-level-atoms approach provides the solution for the equations. Calculations for simplified He (+)-like model atoms in parameterized isothermal wind models indicate that subordinate line profiles are sensitive to the assumed mass-loss rate, and to the assumed structure of the velocity law in the atmospheres.
Local thermodynamic equilibrium in a laser-induced plasma evidenced by blackbody radiation
NASA Astrophysics Data System (ADS)
Hermann, Jörg; Grojo, David; Axente, Emanuel; Craciun, Valentin
2018-06-01
We show that the plasma produced by laser ablation of solid materials in specific conditions has an emission spectrum that is characterized by the saturation of the most intense spectral lines at the blackbody radiance. The blackbody temperature equals the excitation temperature of atoms and ions, proving directly and unambiguously a plasma in local thermodynamic equilibrium. The present investigations take benefit from the very rich and intense emission spectrum generated by ablation of a nickel-chromium-molybdenum alloy. This alternative and direct proof of the plasma equilibrium state re-opens the perspectives of quantitative material analyses via calibration-free laser-induced breakdown spectroscopy. Moreover, the unique properties of this laser-produced plasma promote its use as radiation standard for intensity calibration of spectroscopic instruments.
Force Model for Control of Tendon Driven Hands
NASA Technical Reports Server (NTRS)
Pena, Edward; Thompson, David E.
1997-01-01
Knowing the tendon forces generated for a given task such as grasping via a model, an artificial hand can be controlled. A two-dimensional force model for the index finger was developed. This system is assumed to be in static equilibrium, therefore, the equations of equilibrium were applied at each joint. Constraint equations describing the tendon branch connectivity were used. Gaussian elimination was used to solve for the unknowns of the Linear system. Results from initial work on estimating tendon forces in post-operative hands during active motion therapy were discussed. The results are important for understanding the effects of hand position on tendon tension, elastic effects on tendon tension, and overall functional anatomy of the hand.
Matrix-valued Boltzmann equation for the nonintegrable Hubbard chain.
Fürst, Martin L R; Mendl, Christian B; Spohn, Herbert
2013-07-01
The standard Fermi-Hubbard chain becomes nonintegrable by adding to the nearest neighbor hopping additional longer range hopping amplitudes. We assume that the quartic interaction is weak and investigate numerically the dynamics of the chain on the level of the Boltzmann type kinetic equation. Only the spatially homogeneous case is considered. We observe that the huge degeneracy of stationary states in the case of nearest neighbor hopping is lost and the convergence to the thermal Fermi-Dirac distribution is restored. The convergence to equilibrium is exponentially fast. However for small next-nearest neighbor hopping amplitudes one has a rapid relaxation towards the manifold of quasistationary states and slow relaxation to the final equilibrium state.
An improved flux-split algorithm applied to hypersonic flows in chemical equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1988-01-01
An explicit, finite-difference, shock-capturing numerical algorithm is presented and applied to hypersonic flows assumed to be in thermochemical equilibrium. Real-gas chemistry is either loosely coupled to the gasdynamics by way of a Gibbs free energy minimization package or fully coupled using species mass conservation equations with finite-rate chemical reactions. A scheme is developed that maintains stability in the explicit, finite-rate formulation while allowing relatively high time steps. The codes use flux vector splitting to difference the inviscid fluxes and employ real-gas corrections to viscosity and thermal conductivity. Numerical results are compared against existing ballistic range and flight data. Flows about complex geometries are also computed.
NASA Technical Reports Server (NTRS)
Blander, M.
1979-01-01
Kinetic effects, for example nucleation constraints and slow reactions, should have been important in nebular condensation. Consideration of these effects leads to the prediction of pressure-dependent compositions and physical properties of nebular condensates which is consistent with (1) the differences between different classes of chondritic meteorites, (2) some of the differences between planets, and (3) the presence of oxidized iron on the moon and in the eucrite parent body (presumably an asteroid) despite the low abundance of volatiles. Diffusion effects appear to be important for understanding oxygen isotope anomalies in refractory inclusions in Allende. The consideration of kinetic effects leads to more information concerning nebular processes than if equilibrium is assumed.
Stability of polar frosts in spherical bowl-shaped craters on the moon, Mercury, and Mars
NASA Technical Reports Server (NTRS)
Ingersoll, Andrew P.; Svitek, Tomas; Murray, Bruce C.
1992-01-01
A model of spherical bowl-shaped craters is described and applied to the moon, Mercury, and Mars. The maximum temperature of permanently shadowed areas are calculated using estimates of the depth/diameter ratios of typical lunar bowl-shaped craters and assuming a saturated surface in which the craters are completely overlapping. For Mars, two cases are considered: water frost in radiative equilibrium and subliming CO2 frost in vapor equilibrium. Energy budgets and temperatures are used to determine whether a craterlike depression loses mass faster or slower than a flat horizontal surface. This reveals qualitatively whether the frost surface becomes rougher or smoother as it sublimes.
Analysis of rainfall-induced slope instability using a field of local factor of safety
Lu, Ning; Şener-Kaya, Başak; Wayllace, Alexandra; Godt, Jonathan W.
2012-01-01
Slope-stability analyses are mostly conducted by identifying or assuming a potential failure surface and assessing the factor of safety (FS) of that surface. This approach of assigning a single FS to a potentially unstable slope provides little insight on where the failure initiates or the ultimate geometry and location of a landslide rupture surface. We describe a method to quantify a scalar field of FS based on the concept of the Coulomb stress and the shift in the state of stress toward failure that results from rainfall infiltration. The FS at each point within a hillslope is called the local factor of safety (LFS) and is defined as the ratio of the Coulomb stress at the current state of stress to the Coulomb stress of the potential failure state under the Mohr-Coulomb criterion. Comparative assessment with limit-equilibrium and hybrid finite element limit-equilibrium methods show that the proposed LFS is consistent with these approaches and yields additional insight into the geometry and location of the potential failure surface and how instability may initiate and evolve with changes in pore water conditions. Quantitative assessments applying the new LFS field method to slopes under infiltration conditions demonstrate that the LFS has the potential to overcome several major limitations in the classical FS methodologies such as the shape of the failure surface and the inherent underestimation of slope instability. Comparison with infinite-slope methods, including a recent extension to variably saturated conditions, shows further enhancement in assessing shallow landslide occurrence using the LFS methodology. Although we use only a linear elastic solution for the state of stress with no post-failure analysis that require more sophisticated elastoplastic or other theories, the LFS provides a new means to quantify the potential instability zones in hillslopes under variably saturated conditions using stress-field based methods.
Principle of Maximum Fisher Information from Hardy’s Axioms Applied to Statistical Systems
Frieden, B. Roy; Gatenby, Robert A.
2014-01-01
Consider a finite-sized, multidimensional system in a parameter state a. The system is in either a state of equilibrium or general non-equilibrium, and may obey either classical or quantum physics. L. Hardy’s mathematical axioms provide a basis for the physics obeyed by any such system. One axiom is that the number N of distinguishable states a in the system obeys N = max. This assumes that N is known as deterministic prior knowledge. However, most observed systems suffer statistical fluctuations, for which N is therefore only known approximately. Then what happens if the scope of the axiom N = max is extended to include such observed systems? It is found that the state a of the system must obey a principle of maximum Fisher information, I = Imax. This is important because many physical laws have been derived, assuming as a working hypothesis that I = Imax. These derivations include uses of the principle of Extreme physical information (EPI). Examples of such derivations were of the De Broglie wave hypothesis, quantum wave equations, Maxwell’s equations, new laws of biology (e.g. of Coulomb force-directed cell development, and of in situ cancer growth), and new laws of economic fluctuation and investment. That the principle I = Imax itself derives, from suitably extended Hardy axioms, thereby eliminates its need to be assumed in these derivations. Thus, uses of I = Imax and EPI express physics at its most fundamental level – its axiomatic basis in math. PMID:24229152
NASA Astrophysics Data System (ADS)
Fujiwara, K.; Shibahara, M.
2018-02-01
Molecular evaporation processes from a vapor-liquid interface formed in a slit-like pore were examined based on the classical molecular dynamics method, in order to elucidate a molecular mechanism of local mass and energy transports in a slit. The calculation system consisted of monatomic molecules and atoms which interact through the 12-6 Lennard-Jones potential. At first, a liquid was situated in a slit with a vapor-liquid interface, and instantaneous amounts of the mass and energy fluxes defined locally in the slit were obtained in two dimensions to reveal local fluctuation properties of the fluid in equilibrium states. Then, imposing a temperature gradient in the calculation system, non-equilibrium evaporation processes in the slit were investigated in details based on the local mass and energy fluxes. In this study, we focused on the fluid which is in the vicinity of the solid surface and in contact with the vapor phase. In the non-equilibrium evaporation processes, the results revealed that the local energy transport mechanism in the vicinity of the solid surface is different from that of the vapor phase, especially in the case of the relatively strong fluid-solid interaction. The results also revealed that the local mass transport in the vicinity of the solid surface can be interpreted based on the mechanism of the local energy transport, and the mechanism provides valuable information about pictures of the evaporation phenomena especially in the vicinity of the hydrophilic surfaces. It suggests that evaluating and changing this mechanism of the local energy transport are necessary to control the local mass flux more precisely in the vicinity of the solid surface.
Local thermodynamic equilibrium for globally disequilibrium open systems under stress
NASA Astrophysics Data System (ADS)
Podladchikov, Yury
2016-04-01
Predictive modeling of far and near equilibrium processes is essential for understanding of patterns formation and for quantifying of natural processes that are never in global equilibrium. Methods of both equilibrium and non-equilibrium thermodynamics are needed and have to be combined. For example, predicting temperature evolution due to heat conduction requires simultaneous use of equilibrium relationship between internal energy and temperature via heat capacity (the caloric equation of state) and disequilibrium relationship between heat flux and temperature gradient. Similarly, modeling of rocks deforming under stress, reactions in system open for the porous fluid flow, or kinetic overstepping of the equilibrium reaction boundary necessarily needs both equilibrium and disequilibrium material properties measured under fundamentally different laboratory conditions. Classical irreversible thermodynamics (CIT) is the well-developed discipline providing the working recipes for the combined application of mutually exclusive experimental data such as density and chemical potential at rest under constant pressure and temperature and viscosity of the flow under stress. Several examples will be presented.
Suzuki, Masataka; Yamazaki, Yoshihiko
2005-01-01
According to the equilibrium point hypothesis of voluntary motor control, control action of muscles is not explicitly computed, but rather arises as a consequence of interaction between moving equilibrium position, current kinematics and stiffness of the joint. This approach is attractive as it obviates the need to explicitly specify the forces controlling limb movements. However, many debatable aspects of this hypothesis remain in the manner of specification of the equilibrium point trajectory and muscle activation (or its stiffness), which elicits a restoring force toward the planned equilibrium trajectory. In this study, we expanded the framework of this hypothesis by assuming that the control system uses the velocity measure as the origin of subordinate variables scaling descending commands. The velocity command is translated into muscle control inputs by second order pattern generators, which yield reciprocal command and coactivation commands, and create alternating activation of the antagonistic muscles during movement and coactivation in the post-movement phase, respectively. The velocity command is also integrated to give a position command specifying a moving equilibrium point. This model is purely kinematics-dependent, since the descending commands needed to modulate the visco-elasticity of muscles are implicitly given by simple parametric specifications of the velocity command alone. The simulated movements of fast elbow single-joint movements corresponded well with measured data performed over a wide range of movement distances, in terms of both muscle excitations and kinematics. Our proposal on a synthesis for the equilibrium point approach and velocity command, may offer some insights into the control scheme of the single-joint arm movements.
Simple Derivation of the Maxwell Stress Tensor and Electrostrictive Effects in Crystals
ERIC Educational Resources Information Center
Juretschke, H. J.
1977-01-01
Shows that local equilibrium and energy considerations in an elastic dielectric crystal lead to a simple derivation of the Maxwell stress tensor in anisotropic dielectric solids. The resulting equilibrium stress-strain relations are applied to determine the deformations of a charged parallel plate capacitor. (MLH)
Local noise in a diffusive conductor
Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S.
2016-01-01
The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes. PMID:27466216
Local noise in a diffusive conductor
NASA Astrophysics Data System (ADS)
Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S.
2016-07-01
The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes.
Dynamical behaviors of inter-out-of-equilibrium state intervals in Korean futures exchange markets
NASA Astrophysics Data System (ADS)
Lim, Gyuchang; Kim, SooYong; Kim, Kyungsik; Lee, Dong-In; Scalas, Enrico
2008-05-01
A recently discovered feature of financial markets, the two-phase phenomenon, is utilized to categorize a financial time series into two phases, namely equilibrium and out-of-equilibrium states. For out-of-equilibrium states, we analyze the time intervals at which the state is revisited. The power-law distribution of inter-out-of-equilibrium state intervals is shown and we present an analogy with discrete-time heat bath dynamics, similar to random Ising systems. In the mean-field approximation, this model reduces to a one-dimensional multiplicative process. By varying global and local model parameters, the relevance between volatilities in financial markets and the interaction strengths between agents in the Ising model are investigated and discussed.
NASA Astrophysics Data System (ADS)
Tzou, J. C.; Ward, M. J.
2018-06-01
Spot patterns, whereby the activator field becomes spatially localized near certain dynamically-evolving discrete spatial locations in a bounded multi-dimensional domain, is a common occurrence for two-component reaction-diffusion (RD) systems in the singular limit of a large diffusivity ratio. In previous studies of 2-D localized spot patterns for various specific well-known RD systems, the domain boundary was assumed to be impermeable to both the activator and inhibitor, and the reaction-kinetics were assumed to be spatially uniform. As an extension of this previous theory, we use formal asymptotic methods to study the existence, stability, and slow dynamics of localized spot patterns for the singularly perturbed 2-D Brusselator RD model when the domain boundary is only partially impermeable, as modeled by an inhomogeneous Robin boundary condition, or when there is an influx of inhibitor across the domain boundary. In our analysis, we will also allow for the effect of a spatially variable bulk feed term in the reaction kinetics. By applying our extended theory to the special case of one-spot patterns and ring patterns of spots inside the unit disk, we provide a detailed analysis of the effect on spot patterns of these three different sources of heterogeneity. In particular, when there is an influx of inhibitor across the boundary of the unit disk, a ring pattern of spots can become pinned to a ring-radius closer to the domain boundary. Under a Robin condition, a quasi-equilibrium ring pattern of spots is shown to exhibit a novel saddle-node bifurcation behavior in terms of either the inhibitor diffusivity, the Robin constant, or the ambient background concentration. A spatially variable bulk feed term, with a concentrated source of "fuel" inside the domain, is shown to yield a saddle-node bifurcation structure of spot equilibria, which leads to qualitatively new spot-pinning behavior. Results from our asymptotic theory are validated from full numerical simulations of the Brusselator model.
NASA Astrophysics Data System (ADS)
Wan, Li; Zhou, Qinghua
2007-10-01
The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem.
Development of a Cost-Effectiveness Methodology to Prioritize Environmental Mitigation Projects
1993-09-01
GEOMET Technologies, Inc., 1991:2.4- 2.16). Other factors that determine exposure to home radon is time spent at home and equilibrium factor of radon ... daughters . The EPA assumes that people in the United States spend about 75% of their time in the home, based on a study by GEOMET (EPA, 1992:2.13, 2.33
Finite Element Analysis of a Dynamically Loaded Flat Laminated Plate
1980-07-01
and the elements are stacked in the thickness direction to represent various material layers. This analysis allows for orthotropic, elastic- plastic or...INCREMENTS 27 V. PLASTICITY 34 Orthotropic Elastic- Plastic Yielding 34 Orthotropic Elastic-Viscoplastic Yielding 37 VI. ELEMENT EQUILIBRIUM...with time, consequently the materials are assumed to be represented by elastic- plastic and elastic-viscoplastic models. The finite element model
NASA Astrophysics Data System (ADS)
Kaur, Bhavneet; Aggarwal, Rajiv
2014-01-01
In this problem, one of the primaries of mass m 1 is a Roche ellipsoid filled with a homogeneous incompressible fluid of density ρ 1. The smaller primary of mass m 2 is an oblate body outside the Ellipsoid. The third and the fourth bodies (of mass m 3 and m 4 respectively) are small solid spheres of density ρ 3 and ρ 4 respectively inside the Ellipsoid, with the assumption that the mass and the radius of the third and the fourth body are infinitesimal. We assume that m 2 is describing a circle around m 1. The masses m 3 and m 4 mutually attract each other, do not influence the motions of m 1 and m 2 but are influenced by them. We have extended the Robe's restricted three-body problem to 2+2 body problem under the assumption that the fluid body assumes the shape of the Roche ellipsoid (Chandrashekhar in Ellipsoidal figures of equilibrium, Chap. 8, Dover, New York, 1987). We have taken into consideration all the three components of the pressure field in deriving the expression for the buoyancy force viz (i) due to the own gravitational field of the fluid (ii) that originating in the attraction of m 2 (iii) that arising from the centrifugal force. In this paper, equilibrium solutions of m 3 and m 4 and their linear stability are analyzed. We have proved that there exist only six equilibrium solutions of the system, provided they lie within the Roche ellipsoid. In a system where the primaries are considered as Earth-Moon and m 3, m 4 as submarines, the equilibrium solutions of m 3 and m 4 respectively when the displacement is given in the direction of x 1-axis or x 2-axis are unstable.
Exploring Resilience of Canadian Rivers to Climate Change
NASA Astrophysics Data System (ADS)
Creed, I. F.; Paltsev, A.; Accatino, F.; Aldred, D. A.; Guo, J.; Lehner, B.; Ouellet Dallaire, C. O.
2015-12-01
Climate change is leading to a hydrological intensification (i.e., wet areas and periods are becoming wetter; dry areas and periods are becoming drier). Impacts of climate change across Canada will vary, and Canadians would benefit from insights as to where these impacts will occur and what these impacts will be in order to be in a position to effectively respond to these changes. Resilience is a term that is often used - and occasionally misused. We make the distinction between engineering resilience and ecological resilience. Engineering resilience assumes that a system may exist in only one stable equilibrium state, and measures the system's resistance to change. In contrast, ecological resilience assumes that a system may exist in multiple equilibrium states and measures the magnitude of change a system can absorb before shifting from one equilibrium state to another. We adopt the concept of engineering resilience and explore the ability of riverscapes (rivers and their watersheds) to maintain or quickly return to an equilibrium state in response to changing climatic conditions. We use the Budyko curve to examine interactions of climate and water yield in riverscapes across Canada. The Budyko curve describes the relationship between a riverscape's potential evapotranspiration (PET) and its actual evapotranspiration (AET) both normalized by precipitation (P) - i.e., the curve describes AET/P as a function of PET/P. We define elasticity is a measure of a system's ability to maintain this relationship consistent with the Budyko curve as climate changes (ratio of range of PET/P to range of AET/P between different climate periods). We classify each riverscape as resilient (elasticity > 1) or non-resilient (elasticity ≤ 1) in response to climate change - exploring both past and future climate change scenarios. This Budyko approach enables us to characterize the resilience of riverscapes, predict their vulnerability to climate change, and propose management measures that will enable societies to adapt to climate change.
NASA Astrophysics Data System (ADS)
Arfi, Badredine
2007-02-01
Most game-theoretic studies of strategic interaction assume independent individual strategies as the basic unit of analysis. This paper explores the effects of non-independence on strategic interaction. Two types of non-independence effects are considered. First, the paper considers subjective non-independence at the level of the individual actor by looking at how choice ambivalence shapes the decision-making process. Specifically, how do alternative individual choices superpose with one another to “constructively/destructively” shape each other's role within an actor's decision-making process? This process is termed as quantum superposition of alternative choices. Second, the paper considers how inter-subjective non-independence across actors engenders collective strategies among two or more interacting actors. This is termed as quantum entanglement of strategies. Taking into account both types of non-independence effect makes possible the emergence of a new collective equilibrium, without assuming signaling, prior “contract” agreement or third-party moderation, or even “cheap talk”. I apply these ideas to analyze the equilibrium possibilities of a situation wherein N actors play a quantum social game of cooperation. I consider different configurations of large- N quantum entanglement using the approach of density operator. I specifically consider the following configurations: star-shaped, nearest-neighbors, and full entanglement.
NASA Astrophysics Data System (ADS)
McAlister, Jason A.; Kettler, Richard M.
2008-01-01
Linear saturated dicarboxylic acids are present in carbonaceous chondrite samples at concentrations that suggest aqueous alteration under conditions of metastable equilibrium. In this study, previously published values of dicarboxylic acid concentrations measured in Murchison, Yamato-791198, and Tagish Lake carbonaceous chondrites are converted to aqueous activities during aqueous alteration assuming water:rock ratios that range from 1:10 to 10:1. Logarithmic plots of the aqueous activities of any two dicarboxylic acids are proximal to lines whose slope is fixed by the stoichiometry of reactions describing the oxidation-reduction equilibrium between the two species. The precise position of any line is controlled by the equilibrium constant of the reaction relating the species and the hydrogen fugacity for the reaction of interest. Reactions among succinic (C4), glutaric (C5), and adipic (C6) acids obtained from CM2 chondrites show evidence of metastable equilibrium and yield logf values that agree to within 0.3 log units at 298.15 K and 0.6 log units at 473.15 K. At a water:rock ratio of 1:1, metastable equilibrium among succinic, glutaric, and adipic acids results in calculated logf values during aqueous alteration that range from -6.2 at 298.15 K to -3.3 at 373.15 K. These values are consistent with those obtained in previous work on carbonaceous chondrites and with metastable equilibrium at temperatures ranging from 300 to 355 K in contact with cronstedtite + magnetite.
Maruyama, Takeo; Kimura, Motoo
1980-01-01
If a population (species) consists of n haploid lines (subpopulations) which reproduce asexually and each of which is subject to random extinction and subsequent replacement, it is shown that, at equilibrium in which mutational production of new alleles and their random extinction balance each other, the genetic diversity (1 minus the sum of squares of allelic frequencies) is given by 2Nev/(1 + 2Nev), where [Formula: see text] in which Ñ is the harmonic mean of the population size per line, n is the number of lines (assumed to be large), λ is the rate of line extinction, and v is the mutation rate (assuming the infinite neutral allele model). In a diploid population (species) consisting of n colonies, if migration takes place between colonies at the rate m (the island model) in addition to extinction and recolonization of colonies, it is shown that effective population size is [Formula: see text] If the rate of colony extinction (λ) is much larger than the migration rate of individuals, the effective population size is greatly reduced compared with the case in which no colony extinctions occur (in which case Ne = nÑ). The stepping-stone type of recolonization scheme is also considered. Bearing of these results on the interpretation of the level of genetic variability at the enzyme level observed in natural populations is discussed from the standpoint of the neutral mutation-random drift hypothesis. PMID:16592920
Available Energy via Nonequilibrium Thermodynamics.
ERIC Educational Resources Information Center
Woollett, E. L.
1979-01-01
Presents basic relations involving the concept of available energy that are derived from the local equations of nonequilibrium thermodynamics. The equations and applications of the local thermodynamic equilibrium LTD model are also presented. (HM)
NASA Astrophysics Data System (ADS)
Pelissetto, Andrea; Rossini, Davide; Vicari, Ettore
2018-03-01
We investigate the quantum dynamics of many-body systems subject to local (i.e., restricted to a limited space region) time-dependent perturbations. If the system crosses a quantum phase transition, an off-equilibrium behavior is observed, even for a very slow driving. We show that, close to the transition, time-dependent quantities obey scaling laws. In first-order transitions, the scaling behavior is universal, and some scaling functions can be computed exactly. For continuous transitions, the scaling laws are controlled by the standard critical exponents and by the renormalization-group dimension of the perturbation at the transition. Our protocol can be implemented in existing relatively small quantum simulators, paving the way for a quantitative probe of the universal off-equilibrium scaling behavior, without the need to manipulate systems close to the thermodynamic limit.
The vertical structure and stability of accretion disks surrounding black holes and neutron stars
NASA Technical Reports Server (NTRS)
Milsom, J. A.; Chen, Xingming; Taam, Ronald E.
1994-01-01
The structure and stability of the inner regions of accretion disks surrounding neutron stars and black holes have been investigated. Within the framework of the alpha viscosity prescription for optically thick disks, we assume the viscous stress scales with gas pressure only, and the alpha parameter, which is less than or equal to unity, is formulated as alpha(sub 0)(h/r)(exp n), where h is the local scale height and n and alpha(sub 0) are constants. We neglect advective energy transport associated with radial motions and construct the vertical structure of the disks by assuming a Keplerian rotation law and local hydrostatic and thermal equilibrium. The vertical structures have been calculated with and without convective energy transport, and it has been demonstrated that convection is important especially for mass accretion rates, M-dot, greater than about 0.1 times the Eddington value, M-dot(sub Edd). Although the efficiency of convection is not high, convection significantly modifies the vertical structure of the disk (as compared with a purely radiative model) and leads to lower temperatures at a given M-dot. The results show that the disk can be locally unstable and that for n greater than or = 0.75, an S-shaped relation can exist between M-dot and the column density, sigma, at a given radius. While the lower stable branch (derivative of M-dot/derivative of sigma greater than 0) and middle unstable branch (derivative of M-dot/derivative of sigma less than 0) represent structures for which the gas and radiation pressure dominate respectively, the stable upper branch (derivative of M-dot/derivative of sigma greater than 0) is a consequence of the saturation of alpha. This saturation of alpha can occur for large alpha(sub 0) and at M-dot less than or = M-dot(sub Edd). The instability is found to occur at higher mass accretion rates for neutron stars than for black holes. In particular, the disk is locally unstable for M-dot greater than or = 0.5 M-dot(sub Edd) for neutron stars and for M-dot greater than or = M-dot(sub Edd) for black holes for a viscosity prescription characterized by n = 1 and alpha(sub 0) = 10.
EnKF with closed-eye period - bridging intermittent model structural errors in soil hydrology
NASA Astrophysics Data System (ADS)
Bauser, Hannes H.; Jaumann, Stefan; Berg, Daniel; Roth, Kurt
2017-04-01
The representation of soil water movement exposes uncertainties in all model components, namely dynamics, forcing, subscale physics and the state itself. Especially model structural errors in the description of the dynamics are difficult to represent and can lead to an inconsistent estimation of the other components. We address the challenge of a consistent aggregation of information for a manageable specific hydraulic situation: a 1D soil profile with TDR-measured water contents during a time period of less than 2 months. We assess the uncertainties for this situation and detect initial condition, soil hydraulic parameters, small-scale heterogeneity, upper boundary condition, and (during rain events) the local equilibrium assumption by the Richards equation as the most important ones. We employ an iterative Ensemble Kalman Filter (EnKF) with an augmented state. Based on a single rain event, we are able to reduce all uncertainties directly, except for the intermittent violation of the local equilibrium assumption. We detect these times by analyzing the temporal evolution of estimated parameters. By introducing a closed-eye period - during which we do not estimate parameters, but only guide the state based on measurements - we can bridge these times. The introduced closed-eye period ensured constant parameters, suggesting that they resemble the believed true material properties. The closed-eye period improves predictions during periods when the local equilibrium assumption is met, but consequently worsens predictions when the assumption is violated. Such a prediction requires a description of the dynamics during local non-equilibrium phases, which remains an open challenge.
Individual-based models for adaptive diversification in high-dimensional phenotype spaces.
Ispolatov, Iaroslav; Madhok, Vaibhav; Doebeli, Michael
2016-02-07
Most theories of evolutionary diversification are based on equilibrium assumptions: they are either based on optimality arguments involving static fitness landscapes, or they assume that populations first evolve to an equilibrium state before diversification occurs, as exemplified by the concept of evolutionary branching points in adaptive dynamics theory. Recent results indicate that adaptive dynamics may often not converge to equilibrium points and instead generate complicated trajectories if evolution takes place in high-dimensional phenotype spaces. Even though some analytical results on diversification in complex phenotype spaces are available, to study this problem in general we need to reconstruct individual-based models from the adaptive dynamics generating the non-equilibrium dynamics. Here we first provide a method to construct individual-based models such that they faithfully reproduce the given adaptive dynamics attractor without diversification. We then show that a propensity to diversify can be introduced by adding Gaussian competition terms that generate frequency dependence while still preserving the same adaptive dynamics. For sufficiently strong competition, the disruptive selection generated by frequency-dependence overcomes the directional evolution along the selection gradient and leads to diversification in phenotypic directions that are orthogonal to the selection gradient. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lateral interactions and non-equilibrium in surface kinetics
NASA Astrophysics Data System (ADS)
Menzel, Dietrich
2016-08-01
Work modelling reactions between surface species frequently use Langmuir kinetics, assuming that the layer is in internal equilibrium, and that the chemical potential of adsorbates corresponds to that of an ideal gas. Coverage dependences of reacting species and of site blocking are usually treated with simple power law coverage dependences (linear in the simplest case), neglecting that lateral interactions are strong in adsorbate and co-adsorbate layers which may influence kinetics considerably. My research group has in the past investigated many co-adsorbate systems and simple reactions in them. We have collected a number of examples where strong deviations from simple coverage dependences exist, in blocking, promoting, and selecting reactions. Interactions can range from those between next neighbors to larger distances, and can be quite complex. In addition, internal equilibrium in the layer as well as equilibrium distributions over product degrees of freedom can be violated. The latter effect leads to non-equipartition of energy over molecular degrees of freedom (for products) or non-equal response to those of reactants. While such behavior can usually be described by dynamic or kinetic models, the deeper reasons require detailed theoretical analysis. Here, a selection of such cases is reviewed to exemplify these points.
Ma, Junhai; Zhang, Junling
2012-12-01
Combining with the actual competition in Chinese property insurance market and assuming that the property insurance companies take the marginal utility maximization as the basis of decision-making when they play price games, we first established the price game model with three oligarchs who have different rationalities. Then, we discussed the existence and stability of equilibrium points. Third, we studied the theoretical value of Lyapunov exponent at Nash equilibrium point and its change process with the main parameters' changes though having numerical simulation for the system such as the bifurcation, chaos attractors, and so on. Finally, we analyzed the influences which the changes of different parameters have on the profits and utilities of oligarchs and their corresponding competition advantage. Based on this, we used the variable feedback control method to control the chaos of the system and stabilized the chaos state to Nash equilibrium point again. The results have significant theoretical and practical application value.
The effect of capturing the correct turbulence dissipation rate in BHR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarzkopf, John Dennis; Ristorcelli, Raymond
In this manuscript, we discuss the shortcoming of a quasi-equilibrium assumption made in the BHR closure model. Turbulence closure models generally assume fully developed turbulence, which is not applicable to 1) non-equilibrium turbulence (e.g. change in mean pressure gradient) or 2) laminar-turbulence transition flows. Based on DNS data, we show that the current BHR dissipation equation [modeled based on the fully developed turbulence phenomenology] does not capture important features of nonequilibrium flows. To demonstrate our thesis, we use the BHR equations to predict a non-equilibrium flow both with the BHR dissipation and the dissipation from DNS. We find that themore » prediction can be substantially improved, both qualitatively and quantitatively, with the correct dissipation rate. We conclude that a new set of nonequilibrium phenomenological assumptions must be used to develop a new model equation for the dissipation to accurately predict the turbulence time scale used by other models.« less
Wang, Changyou; Liang, Shengkang; Guo, Wenting; Yu, Hua; Xing, Wenhui
2015-09-01
The threshold concentrations of pollutants are determined by extrapolating single-species effect data to community-level effects. This assumes the most sensitive endpoint of the life cycle of individuals and the species sensitivity distribution from single-species toxic effect tests, thus, ignoring the ecological interactions. The uncertainties due to this extrapolation can be partially overcome using the equilibrium point of a customized ecosystem. This method incorporates ecological interactions and integrates the effects on growth, survival, and ingestion into a single effect measure, the equilibrium point excursion in the customized ecosystem, in order to describe the toxic effects on plankton. A case study showed that the threshold concentration of copper calculated with the endpoint of the equilibrium point was 10 μg L(-1), which is significantly different from the threshold calculated with a single-species endpoint. The endpoint calculated using this method provides a more relevant measure of the ecological impact than any single individual-level endpoint. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Moss, J. N.
1971-01-01
Numerical solutions are presented for the viscous shocklayer equations where the chemistry is treated as being either frozen, equilibrium, or nonequilibrium. Also the effects of the diffusion model, surface catalyticity, and mass injection on surface transport and flow parameters are considered. The equilibrium calculations for air species using multicomponent: diffusion provide solutions previously unavailable. The viscous shock-layer equations are solved by using an implicit finite-difference scheme. The flow is treated as a mixture of inert and thermally perfect species. Also the flow is assumed to be in vibrational equilibrium. All calculations are for a 45 deg hyperboloid. The flight conditions are those for various altitudes and velocities in the earth's atmosphere. Data are presented showing the effects of the chemical models; diffusion models; surface catalyticity; and mass injection of air, water, and ablation products on heat transfer; skin friction; shock stand-off distance; wall pressure distribution; and tangential velocity, temperature, and species profiles.
NASA Astrophysics Data System (ADS)
Muryanto, S.; Djatmiko Hadi, S.
2016-11-01
Adsorption laboratory experiment for undergraduate chemical engineering program is discussed. The experiment demonstrated adsorption of copper ions commonly found in wastewater using bio-sorbent, i.e. agricultural wastes. The adsorption was performed in a batch mode under various parameters: adsorption time (up to 120 min), initial pH (2 to 6), adsorbent dose (2.0 to 12.0 g L-1), adsorbent size (50 to 170 mesh), initial Cu2+ concentration (25 to 100 ppm) and temperatures (room temp to 40°C). The equilibrium and kinetic data of the experiments were calculated using the two commonly used isotherms: Langmuir and Lagergren pseudo-first-order kinetics. The maximum adsorption capacity for Cu2+ was found as 94.34 mg g-1. Thermodynamically, the adsorption process was spontaneous and endothermic. The calculated activation energy for the adsorption was observed as high as 127.94 kJ mol-1. Pedagogically, the experiment was assumed to be important in increasing student understanding of kinetic, equilibrium and thermodynamic concepts.
On Nash Equilibrium and Evolutionarily Stable States That Are Not Characterised by the Folk Theorem
Li, Jiawei; Kendall, Graham
2015-01-01
In evolutionary game theory, evolutionarily stable states are characterised by the folk theorem because exact solutions to the replicator equation are difficult to obtain. It is generally assumed that the folk theorem, which is the fundamental theory for non-cooperative games, defines all Nash equilibria in infinitely repeated games. Here, we prove that Nash equilibria that are not characterised by the folk theorem do exist. By adopting specific reactive strategies, a group of players can be better off by coordinating their actions in repeated games. We call it a type-k equilibrium when a group of k players coordinate their actions and they have no incentive to deviate from their strategies simultaneously. The existence and stability of the type-k equilibrium in general games is discussed. This study shows that the sets of Nash equilibria and evolutionarily stable states have greater cardinality than classic game theory has predicted in many repeated games. PMID:26288088
NASA Astrophysics Data System (ADS)
Ma, Junhai; Zhang, Junling
2012-12-01
Combining with the actual competition in Chinese property insurance market and assuming that the property insurance companies take the marginal utility maximization as the basis of decision-making when they play price games, we first established the price game model with three oligarchs who have different rationalities. Then, we discussed the existence and stability of equilibrium points. Third, we studied the theoretical value of Lyapunov exponent at Nash equilibrium point and its change process with the main parameters' changes though having numerical simulation for the system such as the bifurcation, chaos attractors, and so on. Finally, we analyzed the influences which the changes of different parameters have on the profits and utilities of oligarchs and their corresponding competition advantage. Based on this, we used the variable feedback control method to control the chaos of the system and stabilized the chaos state to Nash equilibrium point again. The results have significant theoretical and practical application value.
A Generalized Multi-Phase Framework for Modeling Cavitation in Cryogenic Fluids
NASA Technical Reports Server (NTRS)
Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet
2003-01-01
A generalized multi-phase formulation for cavitation in fluids operating at temperatures elevated relative to their critical temperatures is presented. The thermal effects and the accompanying property variations due to phase change are modeled rigorously. Thermal equilibrium is assumed and fluid thermodynamic properties are specified along the saturation line using the NIST-12 databank. Fundamental changes in the physical characteristics of the cavity when thermal effects become pronounced are identified; the cavity becomes more porous, the interface less distinct, and has increased entrainment when temperature variations are present. Quantitative estimates of temperature and pressure depressions in both liquid nitrogen and liquid hydrogen were computed and compared with experimental data of Hord for hydrofoils. Excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable. Liquid nitrogen cavities were consistently found to be in thermal equilibrium while liquid hydrogen cavities exhibited small, but distinct, non-equilibrium effects.
Equilibrium configurations of the conducting liquid surface in a nonuniform electric field
NASA Astrophysics Data System (ADS)
Zubarev, N. M.; Zubareva, O. V.
2011-01-01
Possible equilibrium configurations of the free surface of a conducting liquid deformed by a nonuniform external electric field are investigated. The liquid rests on an electrode that has the shape of a dihedral angle formed by two intersecting equipotential half-planes (conducting wedge). It is assumed that the problem has plane symmetry: the surface is invariant under shift along the edge of the dihedral angle. A one-parametric family of exact solutions for the shape of the surface is found in which the opening angle of the region above the wedge serves as a parameter. The solutions are valid when the pressure difference between the inside and outside of the liquid is zero. For an arbitrary pressure difference, approximate solutions to the problem are constructed and it is demonstrated the approximation error is small. It is found that, when the potential difference exceeds a certain threshold value, equilibrium solutions are absent. In this case, the region occupied by the liquid disintegrates, the disintegration scenario depending on the opening angle.
Effects of mass variation on structures of differentially rotating polytropic stars
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Saini, Seema; Singh, Kamal Krishan
2018-07-01
A method is proposed for determining equilibrium structures and various physical parameters of differentially rotating polytropic models of stars, taking into account the effect of mass variation inside the star and on its equipotential surfaces. The law of differential rotation has been assumed to be the form of ω2(s) =b1 +b2s2 +b3s4 . The proposed method utilizes the averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential to incorporate the effects of differential rotation on the equilibrium structures of polytropic stellar models. Mathematical expressions of determining the equipotential surfaces, volume, surface area and other physical parameters are also obtained under the effects of mass variation inside the stars. Some significant conclusions are also drawn.
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes
1986-01-01
Field-aligned Birkeland currents and the angle of the magnetic line twist were calculated for an axially symmetric pole-on magnetosphere (assumed to be in MHD equilibrium). The angle of the field line twist was shown to have a strong radial dependence on the axisymmetric magnetotail as well as on the ionospheric conductivity and the amount of thermal plasma contained in closed magnetotail flux tubes. The field line twist results from the planetary rotation, which leads to the development of a toroidal magnetic B-sub-phi component and to differentially rotating magnetic field lines. It was shown that the time development of the toroidal magnetic B-sub-phi component and the rotation frequency are related through an induction equation.
NASA Astrophysics Data System (ADS)
Kishimoto, Naoki; Waizumi, Hiroki
2017-10-01
Stable conformers of L-cysteine and L,L-cystine were explored using an automated and efficient conformational searching method. The Gibbs energies of the stable conformers of L-cysteine and L,L-cystine were calculated with G4 and MP2 methods, respectively, at 450, 298.15, and 150 K. By assuming thermodynamic equilibrium and the barrier energies for the conformational isomerization pathways, the estimated ratios of the stable conformers of L-cysteine were compared with those determined by microwave spectroscopy in a previous study. Equilibrium structures of 1:1 and 2:1 cystine-Fe complexes were also calculated, and the energy of insertion of Fe into the disulfide bond was obtained.
Regarding `Information Preservation and Weather Forecasting for Black Holes' by S. W. Hawking
NASA Astrophysics Data System (ADS)
Winterberg, Friedwardt
2014-06-01
It is proposed that the `apparent horizons' assumed by Hawking to resolve the black hole information paradox, are in reality the regions where in Lorentzian relativity the absolute velocity against a preferred reference system at rest with the zero point vacuum energy reaches the velocity of light, and where an elliptical differential equation holding matter in a stable equilibrium goes over a transluminal Euler-Tricomi equation into a hyperbolic differential equation where such an equilibrium is not more possible, with matter in approaching this region disintegrating into radiation. Hawking's proposal depends on the anti-de Sitter/conformal field theory (AdS/CFT) conjecture which in turn depends on string/M theory which in the absence of super-symmetry will not work.
A Dynamical Analysis of a Piecewise Smooth Pest Control SI Model
NASA Astrophysics Data System (ADS)
Liu, Bing; Liu, Wanbo; Tao, Fennmei; Kang, Baolin; Cong, Jiguang
In this paper, we propose a piecewise smooth SI pest control system to model the process of spraying pesticides and releasing infectious pests. We assume that the pest population consists of susceptible pests and infectious pests, and that the disease spreads horizontally between pests. We take the susceptible pest as the control index on whether to implement chemical control and biological control strategies. Based on the theory of Filippov system, the sliding-mode domain and conditions for the existence of real equilibria, virtual equilibria, pseudo-equilibrium and boundary equilibria are given. Further, we show the global stability of real equilibria (or boundary equilibria) and pseudo-equilibrium. Our results can provide theoretical guidance for the problem of pest control.
Correcting anthropogenic ocean heat uptake estimates for the Little Ice Age
NASA Astrophysics Data System (ADS)
Gebbie, Geoffrey
2017-04-01
Estimates of anthropogenic ocean heat uptake typically assume that the ocean was in equilibrium during the pre-industrial era. Recent reconstructions of the Common Era, however, show a multi-century surface cooling trend before the Industrial Revolution. Using a time-evolving state estimation method, we find that the 1750 C.E. ocean must have been out of equilibrium in order to fit the H.M.S. Challenger, WOCE, and Argo hydrographic data. When the disequilibrated ocean conditions are taken into account, the inferred ocean heat uptake from 1750-2014 C.E. is revised due to the deep ocean memory of Little Ice Age surface forcing. These effects of ocean disequilibrium should also be considered when interpreting climate sensitivity estimates.
Estimated Performance of Radial-Flow Exit Nozzles for Air in Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Englert, Gerald W.; Kochendorfer, Fred D.
1959-01-01
The thrust, boundary-layer, and heat-transfer characteristics were computed for nozzles having radial flow in the divergent part. The working medium was air in chemical equilibrium, and the boundary layer was assumed to be all turbulent. Stagnation pressure was varied from 1 to 32 atmospheres, stagnation temperature from 1000 to 6000 R, and wall temperature from 1000 to 3000 R. Design pressure ratio was varied from 5 to 320, and operating pressure ratio was varied from 0.25 to 8 times the design pressure ratio. Results were generalized independent of divergence angle and were also generalized independent of stagnation pressure in the temperature range of 1000 to 3000 R. A means of determining the aerodynamically optimum wall angle is provided.
Limits on plasma anisotropy in a tail-like magnetic field
NASA Technical Reports Server (NTRS)
Hill, T. W.; Voigt, G.-H.
1992-01-01
The condition of magnetohydrostatic equilibrium implies tight constraints on the degree of anisotropy that is supportable in a magnetotail field geometry. If the plasma pressure tensor is assumed to be gyrotropic at the tail midplane (z = 0), then equilibrium requires that it also be nearly isotropic there, with P-perpendicular sub 0/P-parallel sub 0 in the range 1 +/- delta square, where delta of about 0.1 is the ratio of the normal field component at the symmetry plane to the field strength in the tail lobe. The upper and the lower limits are essentially equivalent, respectively, to the marginal mirror and firehose stability conditions evaluated at z = 0, which have been invoked previously to limit the degree of anisotropy in the plasma sheet.
Finite elements based on consistently assumed stresses and displacements
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1985-01-01
Finite element stiffness matrices are derived using an extended Hellinger-Reissner principle in which internal displacements are added to serve as Lagrange multipliers to introduce the equilibrium constraint in each element. In a consistent formulation the assumed stresses are initially unconstrained and complete polynomials and the total displacements are also complete such that the corresponding strains are complete in the same order as the stresses. Several examples indicate that resulting properties for elements constructed by this consistent formulation are ideal and are less sensitive to distortions of element geometries. The method has been used to find the optimal stress terms for plane elements, 3-D solids, axisymmetric solids, and plate bending elements.
Stability and bifurcation analysis on a ratio-dependent predator-prey model with time delay
NASA Astrophysics Data System (ADS)
Xu, Rui; Gan, Qintao; Ma, Zhien
2009-08-01
A ratio-dependent predator-prey model with time delay due to the gestation of the predator is investigated. By analyzing the corresponding characteristic equations, the local stability of a positive equilibrium and a semi-trivial boundary equilibrium is discussed, respectively. Further, it is proved that the system undergoes a Hopf bifurcation at the positive equilibrium. Using the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction of bifurcations and the stability and other properties of bifurcating periodic solutions. By means of an iteration technique, sufficient conditions are obtained for the global attractiveness of the positive equilibrium. By comparison arguments, the global stability of the semi-trivial equilibrium is also addressed. Numerical simulations are carried out to illustrate the main results.
Polymorphism in the two-locus Levene model with nonepistatic directional selection.
Bürger, Reinhard
2009-11-01
For the Levene model with soft selection in two demes, the maintenance of polymorphism at two diallelic loci is studied. Selection is nonepistatic and dominance is intermediate. Thus, there is directional selection in every deme and at every locus. We assume that selection is in opposite directions in the two demes because otherwise no polymorphism is possible. If at one locus there is no dominance, then a complete analysis of the dynamical and equilibrium properties is performed. In particular, a simple necessary and sufficient condition for the existence of an internal equilibrium and sufficient conditions for global asymptotic stability are obtained. These results are extended to deme-independent degree of dominance at one locus. A perturbation analysis establishes structural stability within the full parameter space. In the absence of genotype-environment interaction, which requires deme-independent dominance at both loci, nongeneric equilibrium behavior occurs, and the introduction of arbitrarily small genotype-environment interaction changes the equilibrium structure and may destroy stable polymorphism. The volume of the parameter space for which a (stable) two-locus polymorphism is maintained is computed numerically. It is investigated how this volume depends on the strength of selection and on the dominance relations. If the favorable allele is (partially) dominant in its deme, more than 20% of all parameter combinations lead to a globally asymptotically stable, fully polymorphic equilibrium.
The futility of utility: how market dynamics marginalize Adam Smith
NASA Astrophysics Data System (ADS)
McCauley, Joseph L.
2000-10-01
Economic theorizing is based on the postulated, nonempiric notion of utility. Economists assume that prices, dynamics, and market equilibria are supposed to be derived from utility. The results are supposed to represent mathematically the stabilizing action of Adam Smith's invisible hand. In deterministic excess demand dynamics I show the following. A utility function generally does not exist mathematically due to nonintegrable dynamics when production/investment are accounted for, resolving Mirowski's thesis. Price as a function of demand does not exist mathematically either. All equilibria are unstable. I then explain how deterministic chaos can be distinguished from random noise at short times. In the generalization to liquid markets and finance theory described by stochastic excess demand dynamics, I also show the following. Market price distributions cannot be rescaled to describe price movements as ‘equilibrium’ fluctuations about a systematic drift in price. Utility maximization does not describe equilibrium. Maximization of the Gibbs entropy of the observed price distribution of an asset would describe equilibrium, if equilibrium could be achieved, but equilibrium does not describe real, liquid markets (stocks, bonds, foreign exchange). There are three inconsistent definitions of equilibrium used in economics and finance, only one of which is correct. Prices in unregulated free markets are unstable against both noise and rising or falling expectations: Adam Smith's stabilizing invisible hand does not exist, either in mathematical models of liquid market data, or in real market data.
A novel spatially-explicit condition for the onset of waterborne diseases in complex environments
NASA Astrophysics Data System (ADS)
Mari, L.; Gatto, M.; Bertuzzo, E.; Casagrandi, R.; Righetto, L.; Rodriguez-Iturbe, I.; Rinaldo, A.
2012-12-01
In spatial models of waterborne infections the condition that all the local reproduction numbers be larger than one is neither necessary nor sufficient for outbreaks to occur. Here, to properly determine epidemic onset conditions, we examine the transition from stable to unstable of the disease-free equilibrium of a system of nonlinear differential equations characterizing the evolution of susceptible and infected individuals within their respective settlements, and pathogen concentration in their accessible environment. Two different network connectivity layers are assumed to link human settlements: hydrologic pathways serve as ecological corridors for pathogens, while human mobility acts as disease vehicle through susceptibles contracting the disease and asymptomatic infectives shedding bacteria at their temporary destinations. We show that an epidemic outbreak can be triggered if the dominant eigenvalue of a generalized reproduction matrix G0, suitably accounting for spatial distribution of human settlements, hydrological pathways for pathogen dispersal and pathogen redistribution mechanisms due to human mobility, is larger than unity. Matrix G0 and its dominant eigenvalue thus replace the usual reproduction number whenever spatial effects on disease propagation cannot be ignored. Conversely, our novel criterion decays into the standard onset condition based on local reproduction numbers in nonspatial settings. By analyzing realistic test cases we show that within a connected network system the disease can start even if all the local reproduction numbers are smaller than unity, or might not start even if all the local reproduction numbers are larger than unity. We also show that onset geography in complex environments is linked to the dominant eigenvector of matrix G0. Applications to cholera outbreaks in developing countries demonstrate that our approach can be successfully used for disease prediction and emergency management.
Local Burn-Up Effects in the NBSR Fuel Element
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown N. R.; Hanson A.; Diamond, D.
2013-01-31
This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peakingmore » relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.« less
Jawor-Baczynska, Anna; Moore, Barry D; Lee, Han Seung; McCormick, Alon V; Sefcik, Jan
2013-01-01
Aqueous solutions of highly soluble substances such as small amino acids are usually assumed to be essentially homogenous systems with some degree of short range local structuring due to specific interactions on the sub-nanometre scale (e.g. molecular clusters, hydration shells), usually not exceeding several solute molecules. However, recent theoretical and experimental studies have indicated the presence of much larger supramolecular assemblies or mesospecies in solutions of small organic and inorganic molecules as well as proteins. We investigated both supersaturated and undersaturated aqueous solutions of two simple amino acids (glycine and DL-alanine) using Dynamic Light Scattering (DLS), Brownian Microscopy/Nanoparticles Tracking Analysis (NTA) and Cryogenic Transmission Electron Microscopy (Cryo-TEM). Colloidal scale mesospecies (nanodroplets) were previously reported in supersaturated solutions of these amino acids and were implicated as intermediate species on non-classical crystallization pathways. Surprisingly, we have found that the mesospecies are also present in significant numbers in undersaturated solutions even when the solute concentration is well below the solid-liquid equilibrium concentration (saturation limit). Thus, mesopecies can be observed with mean diameters ranging from 100 to 300 nm and a size distribution that broadens towards larger size with increasing solute concentration. We note that the mesospecies are not a separate phase and the system is better described as a thermodynamically stable mesostructured liquid containing solute-rich domains dispersed within bulk solute solution. At a given temperature, solute molecules in such a mesostructured liquid phase are subject to equilibrium distribution between solute-rich mesospecies and the surrounding bulk solution.
A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction
Gleitsman, Kristin R.
2014-01-01
Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very slow association rate constants. These and additional literature observations support a model in which the free ribozyme is not conformationally competent to bind G and in which the probability of assuming the binding-competent state is determined by tertiary interactions of peripheral elements. As proposed previously, the slow binding of guanosine may play a role in the specificity of group I intron self-splicing, and slow binding may be used analogously in other biological processes. The internal equilibrium between ribozyme-bound substrates and products is similar for these ribozymes, but the Azoarcus ribozyme does not display the coupling in the binding of substrates that is observed with the Tetrahymena ribozyme, suggesting that local preorganization of the active site and rearrangements within the active site upon substrate binding are different for these ribozymes. Our results also confirm the much greater tertiary binding energy of the 5′-splice site analog with the Azoarcus ribozyme, binding energy that presumably compensates for the fewer base-pairing interactions to allow the 5′-exon intermediate in self splicing to remain bound subsequent to 5′-exon cleavage and prior to exon ligation. Most generally, these frameworks provide a foundation for design and interpretation of experiments investigating fundamental properties of these and other structured RNAs. PMID:25246656
NASA Technical Reports Server (NTRS)
Wahls, Richard A.
1990-01-01
The method presented is designed to improve the accuracy and computational efficiency of existing numerical methods for the solution of flows with compressible turbulent boundary layers. A compressible defect stream function formulation of the governing equations assuming an arbitrary turbulence model is derived. This formulation is advantageous because it has a constrained zero-order approximation with respect to the wall shear stress and the tangential momentum equation has a first integral. Previous problems with this type of formulation near the wall are eliminated by using empirically based analytic expressions to define the flow near the wall. The van Driest law of the wall for velocity and the modified Crocco temperature-velocity relationship are used. The associated compressible law of the wake is determined and it extends the valid range of the analytical expressions beyond the logarithmic region of the boundary layer. The need for an inner-region eddy viscosity model is completely avoided. The near-wall analytic expressions are patched to numerically computed outer region solutions at a point determined during the computation. A new boundary condition on the normal derivative of the tangential velocity at the surface is presented; this condition replaces the no-slip condition and enables numerical integration to the surface with a relatively coarse grid using only an outer region turbulence model. The method was evaluated for incompressible and compressible equilibrium flows and was implemented into an existing Navier-Stokes code using the assumption of local equilibrium flow with respect to the patching. The method has proven to be accurate and efficient.
The complex fluid dynamics of simple diffusion
NASA Astrophysics Data System (ADS)
Vold, Erik
2017-11-01
Diffusion as the mass transport process responsible for mixing fluids at the atomic level is often underestimated in its complexity. An initial discontinuity between two species of different atomic masses exhibits a mass density discontinuity under isothermal pressure equilibrium implying equal species molar densities. The self-consistent kinetic transport processes across such an interface leads to a zero sum of mass flux relative to the center of mass and so diffusion alone cannot relax an initially stationary mass discontinuity nor broaden the density profile at the interface. The diffusive mixing leads to a molar imbalance which drives a center of mass velocity which moves the heavier species toward the lighter species leading to the interfacial density relaxation. Simultaneously, the species non-zero molar flux modifies the pressure profile in a transient wave and in a local perturbation. The resulting center of mass velocity has two components; one, associated with the divergence of the flow, persists in the diffusive mixing region throughout the diffusive mixing process, and two, travelling waves at the front of the pressure perturbations propagate away from the mixing region. The momentum in these waves is necessary to maintain momentum conservation in the center of mass frame. Thus, in a number of ways, the diffusive mixing provides feedback into the small scale advective motions. Numerical methods which diffuse all species assuming P-T equilibrium may not recover the subtle dynamics of mass transport at an interface. Work performed by the LANS, LLC, under USDOE Contract No. DE-AC52-06NA25396, funded by the (ASC) Program.
Dynamical potentials for nonequilibrium quantum many-body phases
NASA Astrophysics Data System (ADS)
Roy, Sthitadhi; Lazarides, Achilleas; Heyl, Markus; Moessner, Roderich
2018-05-01
Out of equilibrium phases of matter exhibiting order in individual eigenstates, such as many-body localized spin glasses and discrete time crystals, can be characterized by inherently dynamical quantities such as spatiotemporal correlation functions. In this paper, we introduce dynamical potentials which act as generating functions for such correlations and capture eigenstate phases and order. These potentials show formal similarities to their equilibrium counterparts, namely thermodynamic potentials. We provide three representative examples: a disordered XXZ chain showing many-body localization, a disordered Ising chain exhibiting spin-glass order, and its periodically-driven cousin exhibiting time-crystalline order.
Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law
NASA Astrophysics Data System (ADS)
Greffet, Jean-Jacques; Bouchon, Patrick; Brucoli, Giovanni; Marquier, François
2018-04-01
The goal of this paper is to introduce a local form of Kirchhoff law to model light emission by nonequilibrium bodies. While absorption by a finite-size body is usually described using the absorption cross section, we introduce a local absorption rate per unit volume and also a local thermal emission rate per unit volume. Their equality is a local form of Kirchhoff law. We revisit the derivation of this equality and extend it to situations with subsystems in local thermodynamic equilibrium but not in equilibrium between them, such as hot electrons in a metal or electrons with different Fermi levels in the conduction band and in the valence band of a semiconductor. This form of Kirchhoff law can be used to model (i) thermal emission by nonisothermal finite-size bodies, (ii) thermal emission by bodies with carriers at different temperatures, and (iii) spontaneous emission by semiconductors under optical (photoluminescence) or electrical pumping (electroluminescence). Finally, we show that the reciprocity relation connecting light-emitting diodes and photovoltaic cells derived by Rau is a particular case of the local Kirchhoff law.
NASA Astrophysics Data System (ADS)
Merabia, Samy; Termentzidis, Konstantinos
2012-09-01
In this article, we compare the results of nonequilibrium (NEMD) and equilibrium (EMD) molecular dynamics methods to compute the thermal conductance at the interface between solids. We propose to probe the thermal conductance using equilibrium simulations measuring the decay of the thermally induced energy fluctuations of each solid. We also show that NEMD and EMD give generally speaking inconsistent results for the thermal conductance: Green-Kubo simulations probe the Landauer conductance between two solids which assumes phonons on both sides of the interface to be at equilibrium. On the other hand, we show that NEMD give access to the out-of-equilibrium interfacial conductance consistent with the interfacial flux describing phonon transport in each solid. The difference may be large and reaches typically a factor 5 for interfaces between usual semiconductors. We analyze finite size effects for the two determinations of the interfacial thermal conductance, and show that the equilibrium simulations suffer from severe size effects as compared to NEMD. We also compare the predictions of the two above-mentioned methods—EMD and NEMD—regarding the interfacial conductance of a series of mass mismatched Lennard-Jones solids. We show that the Kapitza conductance obtained with EMD can be well described using the classical diffuse mismatch model (DMM). On the other hand, NEMD simulation results are consistent with an out-of-equilibrium generalization of the acoustic mismatch model (AMM). These considerations are important in rationalizing previous results obtained using molecular dynamics, and help in pinpointing the physical scattering mechanisms taking place at atomically perfect interfaces between solids, which is a prerequisite to understand interfacial heat transfer across real interfaces.
Blend lines in the polarized spectrum of the Sun
NASA Astrophysics Data System (ADS)
Sowmya, K.; Nagendra, K. N.; Sampoorna, M.
2012-07-01
Blend lines form an integral part of the theoretical analysis and modelling of the polarized spectrum of the Sun. Their interaction with other spectral lines needs to be explored and understood before we can properly use the main spectral lines to diagnose the Sun. They are known to cause a decrease in the polarization in the wings of the main line on which they superpose, or in the polarization of the continuum, when they are assumed to be formed either under the local thermodynamic equilibrium (LTE) conditions or when their intrinsic polarizability factor is zero. In this paper, we describe the theoretical framework to include the blend lines formed under non-LTE conditions, in the radiative transfer equation, and the numerical techniques to solve it. The properties of a blend line having an intrinsic polarization of its own and its interaction with the main line are discussed. The results of our analysis show that the influence of the blend lines on the main spectral lines, though small in the present context, is important and needs to be considered when interpreting the polarized spectral lines in the second solar spectrum.
Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport
NASA Astrophysics Data System (ADS)
Ouyang, Hao
2001-03-01
The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.
NASA Astrophysics Data System (ADS)
Tellmann, Silvia; Häusler, Bernd; Hinson, David P.; Tyler, G. Leonard; Andert, Thomas P.; Bird, Michael K.; Imamura, Takeshi; Pätzold, Martin; Remus, Stefan
2015-04-01
Atmospheric waves on all spatial scales play a crucial role in the redistribution of energy, momentum, and atmospheric constituent in planetary atmosphere and are thought to be involved in the development and maintenance of the atmospheric superrotation on Venus. The Venus Express Radio-Science Experiment VeRa sounded the Venus neutral atmosphere and ionosphere in Earth occultation geometry using the spacecraft radio subsystem at two coherent frequencies. Radial profiles of neutral number density, covering the altitude range 40-90 km, are then converted to vertical profiles of temperature and pressure, assuming hydrostatic equilibrium. The extensive VeRa data set enables us to study global scale atmospheric wave phenomena like thermal tides in the mesosphere and troposphere. A pronounced local time dependency of the temperature is found in the mesosphere at different altitude levels. Wave-2 structures dominate the low latitude range in the upper mesosphere while the higher latitudes show a strong wave-1 structure at the top of the cloud layer. The investigation of these wave structures provides valuable information about the energy transport in the atmosphere.
Evaluation of pressure in a plasma produced by laser ablation of steel
NASA Astrophysics Data System (ADS)
Hermann, Jörg; Axente, Emanuel; Craciun, Valentin; Taleb, Aya; Pelascini, Frédéric
2018-05-01
We investigated the time evolution of pressure in the plume generated by laser ablation with ultraviolet nanosecond laser pulses in a near-atmospheric argon atmosphere. These conditions were previously identified to produce a plasma of properties that facilitate accurate spectroscopic diagnostics. Using steel as sample material, the present investigations benefit from the large number of reliable spectroscopic data available for iron. Recording time-resolved emission spectra with an echelle spectrometer, we were able to perform accurate measurements of electron density and temperature over a time interval from 200 ns to 12 μs. Assuming local thermodynamic equilibrium, we computed the plasma composition within the ablated vapor material and the corresponding kinetic pressure. The time evolution of plume pressure is shown to reach a minimum value below the pressure of the background gas. This indicates that the process of vapor-gas interdiffusion has a negligible influence on the plume expansion dynamics in the considered timescale. Moreover, the results promote the plasma pressure as a control parameter in calibration-free laser-induced breakdown spectroscopy.
Spectroscopic investigation of the high-current phase of a pulsed GMAW process
NASA Astrophysics Data System (ADS)
Rouffet, M. E.; Wendt, M.; Goett, G.; Kozakov, R.; Schoepp, H.; Weltmann, K. D.; Uhrlandt, D.
2010-11-01
While metal vapours have an important impact on the efficiency of the pulsed gas metal arc welding process, only a few papers are focused on this effect. In this paper, methods based on emission spectroscopy are performed to improve the understanding of the physical phenomena occurring during the high-current pulse. Boltzmann plots applied to iron lines, the Stark broadening of the 696.5 nm argon line and composition calculations assuming local thermodynamic equilibrium are used to determine characteristic parameters of the plasma. It is observed that the central part of the arc is composed mainly of iron. The percentage of iron increases quickly at the beginning of the high-current pulse, and slowly decreases when the central part broadens. During the high-current phase the temperature profile has a minimum value of around 8000 K at the axis of the arc while the argon envelope of the central part reaches temperatures of approximately 13.000 K. The high percentage of iron and the high radiation of the plasma at the centre can explain the measured shape of the temperature profile.
NASA Astrophysics Data System (ADS)
Yamada, Takayoshi; Kasai, Yasuko; Yoshida, Naohiro
2016-07-01
The Submillimeter Wave Instrument (SWI) is one of the scientific instruments on the JUpiter Icy moon Explorer (JUICE). We plan to observe atmospheric compositions including water vapor and its isotopomers in Galilean moons (Io, Europa, Ganymede, and Callisto). The frequency windows of SWI are 530 to 625 GHz and 1080 to 1275 GHz with 100 kHz spectral resolution. We are developing a radiative transfer code in Japan with line-by-line method for Ganymede atmosphere in THz region (0 - 3 THz). Molecular line parameters (line intensity and partition function) were taken from JPL (Jet Propulsion Laboratory) catalogue. The pencil beam was assumed to calculate a spectrum of H _{2}O and CO in rotational transitions at the THz region. We performed comparisons between our model and ARTS (Atmospheric Radiative Transfer Simulator). The difference were less than 10% and 5% for H _{2}O and CO, respectively, under the condition of the local thermodynamic equilibrium (LTE). Comparison with several models with non-LTE assumption will be presented.
Direct numerical simulations of an arc-powered heater for used in a hypersonic wind tunnel
NASA Astrophysics Data System (ADS)
Kim, Pilbum; Panesi, Marco; Freund, Jonathan
2017-11-01
We study a model arc-heater using direct numerical simulations, in a configuration motivated by its used to generated inflow of a high-speed wind tunnel for hypersonics research. The flow is assumed to be in local thermal equilibrium (LTE) and is modeled with with 11 species (N2, O2, NO, N, O, N2+,O2+,NO+, N+, O+, e-). The flow equations are solved in conjunction with an electrostatic field solver and the gas electric conductivity in LTE. The flow rate and the mean arc power are set to be 50.42 g/s and 84.7 kW with 214.0 V of the mean arc voltage , respectively. We study the flow details, the heading and thrust mechanisms, and make general comparisons with a corresponding, though geometrically more complex, experimental configuration. We particularly interested in the radical species it produces and will potentially be present in the wind-tunnel test section. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.
Preferential Mating in Symmetric Multilocus Systems: Limits for Multiallelism and for Many Loci
Raper, J.
1982-01-01
Models in which general forms of preferential mating have been superimposed on the framework of the symmetric heterozygosity selection regime have been examined previously with respect to the existence and local stability of a central polymorphic equilibrium. The results are now extended to produce the limiting form of the stability conditions in two cases: First, where the number of alleles per locus is assumed to be very large; second, where the number of loci affecting the character is very large. It is argued that some type of frequency dependence in the mating pattern must be included, and a particular case is examined in detail. It is shown that multiallelism is ambiguous in its effect on stability, while an increasing number of loci, at least under zero linkage, leads to a simple stability condition which is analogous to the one-locus heterosis principle. Assortative mating appears to be more likely to produce a stable central polymorphism under high levels of allelism than is sexual selection, but is relatively very much weaker than sexual or viability selection if the number of loci involved is large. PMID:17246061
NASA Astrophysics Data System (ADS)
Nojoomizadeh, Mehdi; D'Orazio, Annunziata; Karimipour, Arash; Afrand, Masoud; Goodarzi, Marjan
2018-03-01
The fluid flow and heat transfer of a nanofluid is numerically examined in a two dimensional microchannel filled by a porous media. Present nanofluid consists of the functionalized multi-walled carbon nanotubes suspended in water which are enough stable through the base fluid. The homogenous mixture is in the thermal equilibrium which means provide a single phase substance. The porous media is considered as a Darcy- Forchheimer model. Moreover the slip velocity and temperature jump boundary conditions are assumed on the microchannel horizontal sides which mean the influences of permeability and porosity values on theses boundary conditions are presented for the first time at present work. To do this, the wide range of thermo physical parameters are examined as like Da = 0.1 to 0.001, Re = 10,100, dimensionless slip coefficient from 0.001 to 0.1 at different mass fraction of nanoparticles. It is observed that less Darcy number leads to more local Nusselt number and also applying the porous medium corresponds to higher slip velocity.
Multiphase flow and transport in porous media
NASA Astrophysics Data System (ADS)
Parker, J. C.
1989-08-01
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.
On the modelling of non-reactive and reactive turbulent combustor flows
NASA Technical Reports Server (NTRS)
Nikjooy, Mohammad; So, Ronald M. C.
1987-01-01
A study of non-reactive and reactive axisymmetric combustor flows with and without swirl is presented. Closure of the Reynolds equations is achieved by three models: kappa-epsilon, algebraic stress and Reynolds stress closure. Performance of two locally nonequilibrium and one equilibrium algebraic stress models is analyzed assuming four pressure strain models. A comparison is also made of the performance of a high and a low Reynolds number model for combustor flow calculations using Reynolds stress closures. Effects of diffusion and pressure-strain models on these closures are also investigated. Two models for the scalar transport are presented. One employs the second-moment closure which solves the transport equations for the scalar fluxes, while the other solves the algebraic equations for the scalar fluxes. In addition, two cases of non-premixed and one case of premixed combustion are considered. Fast- and finite-rate chemistry models are applied to non-premixed combustion. Both show promise for application in gas turbine combustors. However, finite rate chemistry models need to be examined to establish a suitable coupling of the heat release effects on turbulence field and rate constants.
Nash Equilibria in Noncooperative Predator-Prey Games
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, Angel Manuel; Roubicek, Tomas
2007-09-15
A noncooperative game governed by a distributed-parameter predator-prey system is considered, assuming that two players control initial conditions for predator and prey, respectively. Existence of a Nash equilibrium is shown under the condition that the desired population profiles and the environmental carrying capacity for the prey are sufficiently small. A conceptual approximation algorithm is proposed and analyzed. Finally, numerical simulations are performed, too.
Robust Active Portfolio Management
2006-11-27
the Markowitz mean-variance model led to development of the Capital Asset Pricing Model ( CAPM ) for asset pricing [35, 29, 23] which remains one of the...active portfolio management. Our model uses historical returns and equilibrium expected returns predicted by the CAPM to identify assets that are...incorrectly priced in the market. There is a fundamental inconsistency between the CAPM and active portfolio management. The CAPM assumes that markets are
Modeling non-equilibrium mass transport in biologically reactive porous media
NASA Astrophysics Data System (ADS)
Davit, Yohan; Debenest, Gérald; Wood, Brian D.; Quintard, Michel
2010-09-01
We develop a one-equation non-equilibrium model to describe the Darcy-scale transport of a solute undergoing biodegradation in porous media. Most of the mathematical models that describe the macroscale transport in such systems have been developed intuitively on the basis of simple conceptual schemes. There are two problems with such a heuristic analysis. First, it is unclear how much information these models are able to capture; that is, it is not clear what the model's domain of validity is. Second, there is no obvious connection between the macroscale effective parameters and the microscopic processes and parameters. As an alternative, a number of upscaling techniques have been developed to derive the appropriate macroscale equations that are used to describe mass transport and reactions in multiphase media. These approaches have been adapted to the problem of biodegradation in porous media with biofilms, but most of the work has focused on systems that are restricted to small concentration gradients at the microscale. This assumption, referred to as the local mass equilibrium approximation, generally has constraints that are overly restrictive. In this article, we devise a model that does not require the assumption of local mass equilibrium to be valid. In this approach, one instead requires only that, at sufficiently long times, anomalous behaviors of the third and higher spatial moments can be neglected; this, in turn, implies that the macroscopic model is well represented by a convection-dispersion-reaction type equation. This strategy is very much in the spirit of the developments for Taylor dispersion presented by Aris (1956). On the basis of our numerical results, we carefully describe the domain of validity of the model and show that the time-asymptotic constraint may be adhered to even for systems that are not at local mass equilibrium.
Universality in volume-law entanglement of scrambled pure quantum states.
Nakagawa, Yuya O; Watanabe, Masataka; Fujita, Hiroyuki; Sugiura, Sho
2018-04-24
A pure quantum state can fully describe thermal equilibrium as long as one focuses on local observables. The thermodynamic entropy can also be recovered as the entanglement entropy of small subsystems. When the size of the subsystem increases, however, quantum correlations break the correspondence and mandate a correction to this simple volume law. The elucidation of the size dependence of the entanglement entropy is thus essentially important in linking quantum physics with thermodynamics. Here we derive an analytic formula of the entanglement entropy for a class of pure states called cTPQ states representing equilibrium. We numerically find that our formula applies universally to any sufficiently scrambled pure state representing thermal equilibrium, i.e., energy eigenstates of non-integrable models and states after quantum quenches. Our formula is exploited as diagnostics for chaotic systems; it can distinguish integrable models from non-integrable models and many-body localization phases from chaotic phases.
State-to-State Internal Energy Relaxation Following the Quantum-Kinetic Model in DSMC
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2014-01-01
A new model for chemical reactions, the Quantum-Kinetic (Q-K) model of Bird, has recently been introduced that does not depend on macroscopic rate equations or values of local flow field data. Subsequently, the Q-K model has been extended to include reactions involving charged species and electronic energy level transitions. Although this is a phenomenological model, it has been shown to accurately reproduce both equilibrium and non-equilibrium reaction rates. The usefulness of this model becomes clear as local flow conditions either exceed the conditions used to build previous models or when they depart from an equilibrium distribution. Presently, the applicability of the relaxation technique is investigated for the vibrational internal energy mode. The Forced Harmonic Oscillator (FHO) theory for vibrational energy level transitions is combined with the Q-K energy level transition model to accurately reproduce energy level transitions at a reduced computational cost compared to the older FHO models.
Miyazono, S.; Aycock, J.N.; Miranda, L.E.; Tietjen, T.E.
2010-01-01
We evaluated the influences of habitat connectivity and local environmental factors on the distribution and abundance patterns of fish functional groups in 17 floodplain lakes in the Yazoo River Basin, USA. The results of univariate and multivariate analyses showed that species-environmental relationships varied with the functional groups. Species richness and assemblage structure of periodic strategists showed strong and positive correlations with habitat connectivity. Densities of most equilibrium and opportunistic strategists decreased with habitat connectivity. Densities of certain equilibrium and opportunistic strategists increased with turbidity. Forested wetlands around the lakes were positively related to the densities of periodic and equilibrium strategists. These results suggest that decreases in habitat connectivity, forested wetland buffers and water quality resulting from environmental manipulations may cause local extinction of certain fish taxa and accelerate the dominance of tolerant fishes in floodplain lakes. ?? 2010 John Wiley & Sons A/S.
Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics.
Glavatskiy, K S
2015-05-28
We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an "integral of evolution" which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.
Local stability of a five dimensional food chain model in the ocean
NASA Astrophysics Data System (ADS)
Kusumawinahyu, W. M.; Hidayatulloh, M. R.
2014-02-01
This paper discuss a food chain model on a microbiology ecosystem in the ocean, where predation process occurs. Four population growth rates are discussed, namely bacteria, phytoplankton, zooplankton, and protozoa growth rate. When the growth of nutrient density is also considered, the model is governed by a five dimensional dynamical system. The system considered in this paper is a modification of a model proposed by Hadley and Forbes [1], by taking Holling Type I as the functional response. For sake of simplicity, the model needs to be scaled. Dynamical behavior, such as existence condition of equilibrium points and their local stability are addressed. There are eight equilibrium points, where two of them exist under certain conditions. Three equilibrium points are unstable, while two points stable under certain conditions and the other three points are stable if the Ruth-Hurwitz criteria are satisfied. Numerical simulations are carried out to illustrate analytical findings.
Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glavatskiy, K. S.
We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such thatmore » there exists an “integral of evolution” which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngo, Van; Wang, Yibo; Haas, Stephan
Crystal structures of several bacterial Na v channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Na v channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial Na vAb channel. This approach provided new insight into the mechanism of selective ion permeation inmore » bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K + ions can block the entrance to the selectivity filter of Na vAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place bymodest applied forces. In contrast to K +, three Na + ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na + ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K + block is equivalent to large applied potentials experimentally measured for two bacterial Na v channels to induce inward currents of K + ions. Here, these results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free-energy landscapes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, C.M.
Major element and trace element compositions of whole rocks, mineral compositions, and Rb-Sr isotopic compositions of enclave and host granitoid pairs from the Early Cretaceous, calc-alkaline Turtle pluton of southeastern California suggest that the local environmental profoundly affects some enclave types. In the Turtle pluton, where the source of fine-grained, mafic enclaves can be deduced to be magmatic by the presence of partially disaggregated basaltic dikes, mineral chemistry suggests partial or complete local equilibrium among mineral species in the enclave and its host granitoid. Because of local Rb-Sr isotopic equilibration between fine-grained enclaves and host granitoid, one cannot use Srmore » isotopes to distinguish an enclave source independent of its host rocks from an enclave source related to the enclosing pluton. However, preliminary Nd isotopic data suggest an independent, mantle source for enclaves.« less
NASA Astrophysics Data System (ADS)
Chapelier, Jean-Baptiste; Wasistho, Bono; Scalo, Carlo
2017-11-01
A new approach to Large-Eddy Simulation (LES) is introduced, where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated in regions dominated by large-scale vortical motion. The proposed CvP-LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy: σ = ξ ∧ / ξ . Values of σ = 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of any subgrid-scale model. Values of σ < 1 span conditions ranging from incipient spectral broadening σ <= 1 , to equilibrium turbulence σ =σeq < 1 , where σeq is solely as a function of the test-to-grid filter-width ratio Δ ∧ / Δ , derived assuming a Kolmogorov's spectrum. Eddy viscosity is fully restored for σ <=σeq . The proposed approach removes unnecessary SGS dissipation, can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. A CvP-LES of a pair of unstable helical vortices, representative of rotor-blade wake dynamics, show the ability of the method to sort the coherent motion from the small-scale dynamics. This work is funded by subcontract KSC-17-001 between Purdue University and Kord Technologies, Inc (Huntsville), under the US Navy Contract N68335-17-C-0159 STTR-Phase II, Purdue Proposal No. 00065007, Topic N15A-T002.
NASA Astrophysics Data System (ADS)
Zimmermann, Martín G.; Eguíluz, Víctor M.
2005-11-01
Cooperative behavior among a group of agents is studied assuming adaptive interactions. Each agent plays a Prisoner’s Dilemma game with its local neighbors, collects an aggregate payoff, and imitates the strategy of its best neighbor. Agents may punish or reward their neighbors by removing or sustaining the interactions, according to their satisfaction level and strategy played. An agent may dismiss an interaction, and the corresponding neighbor is replaced by another randomly chosen agent, introducing diversity and evolution to the network structure. We perform an extensive numerical and analytical study, extending results in M. G. Zimmermann, V. M. Eguíluz, and M. San Miguel, Phys. Rev. E 69, 065102(R) (2004). We show that the system typically reaches either a full-defective state or a highly cooperative steady state. The latter equilibrium solution is composed mostly by cooperative agents, with a minor population of defectors that exploit the cooperators. It is shown how the network adaptation dynamics favors the emergence of cooperators with the highest payoff. These “leaders” are shown to sustain the global cooperative steady state. Also we find that the average payoff of defectors is larger than the average payoff of cooperators. Whenever “leaders” are perturbed (e.g., by addition of noise), an unstable situation arises and global cascades with oscillations between the nearly full defection network and the fully cooperative outcome are observed.
Dissipative dark matter halos: The steady state solution. II.
NASA Astrophysics Data System (ADS)
Foot, R.
2018-05-01
Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.
Analysis of the dynamics of multi-team Bertrand game with heterogeneous players
NASA Astrophysics Data System (ADS)
Ding, Zhanwen; Hang, Qinglan; Yang, Honglin
2011-06-01
In this article, we study the dynamics of a two-team Bertrand game with players having heterogeneous expectations. We study the equilibrium solutions and the conditions of their locally asymptotic stability. Numerical simulations are used to illustrate the complex behaviours of the proposed model of the Bertrand game. We demonstrate that some parameters of the model have great influence on the stability of Nash equilibrium and on the speed of convergence to Nash equilibrium. The chaotic behaviour of the model has been controlled by using feedback control method.
A rumor transmission model with incubation in social networks
NASA Astrophysics Data System (ADS)
Jia, Jianwen; Wu, Wenjiang
2018-02-01
In this paper, we propose a rumor transmission model with incubation period and constant recruitment in social networks. By carrying out an analysis of the model, we study the stability of rumor-free equilibrium and come to the local stable condition of the rumor equilibrium. We use the geometric approach for ordinary differential equations for showing the global stability of the rumor equilibrium. And when ℜ0 = 1, the new model occurs a transcritical bifurcation. Furthermore, numerical simulations are used to support the analysis. At last, some conclusions are presented.
Local quantum measurement and no-signaling imply quantum correlations.
Barnum, H; Beigi, S; Boixo, S; Elliott, M B; Wehner, S
2010-04-09
We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.
Many-Body Localization and Thermalization in Quantum Statistical Mechanics
NASA Astrophysics Data System (ADS)
Nandkishore, Rahul; Huse, David A.
2015-03-01
We review some recent developments in the statistical mechanics of isolated quantum systems. We provide a brief introduction to quantum thermalization, paying particular attention to the eigenstate thermalization hypothesis (ETH) and the resulting single-eigenstate statistical mechanics. We then focus on a class of systems that fail to quantum thermalize and whose eigenstates violate the ETH: These are the many-body Anderson-localized systems; their long-time properties are not captured by the conventional ensembles of quantum statistical mechanics. These systems can forever locally remember information about their local initial conditions and are thus of interest for possibilities of storing quantum information. We discuss key features of many-body localization (MBL) and review a phenomenology of the MBL phase. Single-eigenstate statistical mechanics within the MBL phase reveal dynamically stable ordered phases, and phase transitions among them, that are invisible to equilibrium statistical mechanics and can occur at high energy and low spatial dimensionality, where equilibrium ordering is forbidden.
Instabilities of Current Carrying Torus
NASA Astrophysics Data System (ADS)
Liu, Wenjuan; Qiu, J.
2010-05-01
We investigate the initial equilibrium and stability conditions for an uniform current-carrying plasma ring with a non-trivial toroidal magnetic field Bt. Realistic parameters comparable to observations are used to describe the magnetic field inside and outside the torus. The external poloidal magnetic field is assumed to fall off as a power function with decay index n (n = - d log (Bex) /d log(h)). The parameter space is explored to find all initial equilibrium solutions, at which perturbation is introduced. It is shown that with non-trivial toroidal field, the current ring attains equilibrium with a weaker external field. It is also shown that the torus attains equilibrium at higher altitude when the external field decays more rapidly (greater n) or the ratio of the toroidal flux in the torus to the external field increases. We further study stabilities of the torus at equilibrium by defining a critical decay index ncr (Kliem and Török 2006). A sufficiently strong toroidal field can completely suppress the torus instability due to the current hoop force. With a weak toroidal field, similar to the case of Bt=0, the instability occurs when the external magnetic field declines rapidly with height when the field decay index n>ncr. For realistic sets of parameters, the equilibrium height is within 10 solar radii, and the effective ncr is in the range of 1.0-1.6. The critical decay index increases when the ratio of the toroidal flux to the external field decreases. This work is supported by NSF CAREER grant ATM-0748428.
On the time needed to reach an equilibrium structure of the radiation belts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ripoll, J. -F.; Loran, V.; Cunningham, Gregory Scott
In this paper, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as themore » radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L-shell. Equilibrium electron flux profiles are governed by the Biot number (τ Diffusion/τ loss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (≤3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp ≥ 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can reach the equilibrium value: E ~ [200, 300] keV for L = [3.7, 4] at Kp = 1, E ~ [0.6, 1] MeV for L = [3, 4] at Kp = 3, and E ~ 300 keV for L = [3.5, 4] at Kp = 6 assuming no new incoming electrons.« less
On the time needed to reach an equilibrium structure of the radiation belts
Ripoll, J. -F.; Loran, V.; Cunningham, Gregory Scott; ...
2016-08-01
In this paper, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as themore » radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L-shell. Equilibrium electron flux profiles are governed by the Biot number (τ Diffusion/τ loss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (≤3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp ≥ 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can reach the equilibrium value: E ~ [200, 300] keV for L = [3.7, 4] at Kp = 1, E ~ [0.6, 1] MeV for L = [3, 4] at Kp = 3, and E ~ 300 keV for L = [3.5, 4] at Kp = 6 assuming no new incoming electrons.« less
Poliszczuk, Tatiana; Broda, Daria
2010-01-01
The greatest similarities in body constitution were noted in competitors practising the same discipline. The similarities increase with the training level. A typical body constitution for a given discipline not only favourably affects athletic performance, but is also the factor preventing sportsrelated contusions. The ability to maintain body equilibrium, together with somatic constitution, are the basic selective criteria in rhythmic gymnastics. The objective of this paper was to determine somatotypes, to evaluate the ability to maintain dynamic body equilibrium in girls practicing rhythmic gymnastics and to develop model characteristics enabling early diagnosis of the disorders equilibrium system function. The sample comprised 19 girls aged 8-11 years, practising rhythmic gymnastics. For the evaluation of the competitors' somatotypes, the Heath-Carter method was used, based on the classic concept of Sheldon's body constitution components. Body equilibrium level was evaluated by means of posturography. The mean values of the endomorphic component I, mesomorphic component II and ectomorphic component III in the gymnasts were 2.65+/-1.29, 2.45+/-0.37 and 3.95+/-0.64 respectively. The mean body mass index (BMI) value for this cohort was 15.32, which means advanced slimness. The level of dynamic equilibrium is determined by the following mean values: the time of reaching the equilibrium, the way of reaching it and the duration of stay at the defined point. The model of above mentioned indicates was developed based on the analysis of it's best results. Body constitution type in the qualified gymnasts is characterised by the prevalence of the ectomorphic component. The study results indicate that female gymnasts are generally slim and lean. It is necessary to monitor BMI in order to exclude weight-related disorders and to observe the changes with age. The poorest result was found when the gymnasts bent in the backward direction as this body position is most difficult to assume and to maintain body equilibrium as compared to all other directions.
Evolution and polymorphism in the multilocus Levene model with no or weak epistasis.
Bürger, Reinhard
2010-09-01
Evolution and the maintenance of polymorphism under the multilocus Levene model with soft selection are studied. The number of loci and alleles, the number of demes, the linkage map, and the degree of dominance are arbitrary, but epistasis is absent or weak. We prove that, without epistasis and under mild, generic conditions, every trajectory converges to a stationary point in linkage equilibrium. Consequently, the equilibrium and stability structure can be determined by investigating the much simpler gene-frequency dynamics on the linkage-equilibrium manifold. For a haploid species an analogous result is shown. For weak epistasis, global convergence to quasi-linkage equilibrium is established. As an application, the maintenance of multilocus polymorphism is explored if the degree of dominance is intermediate at every locus and epistasis is absent or weak. If there are at least two demes, then arbitrarily many multiallelic loci can be maintained polymorphic at a globally asymptotically stable equilibrium. Because this holds for an open set of parameters, such equilibria are structurally stable. If the degree of dominance is not only intermediate but also deme independent, and loci are diallelic, an open set of parameters yielding an internal equilibrium exists only if the number of loci is strictly less than the number of demes. Otherwise, a fully polymorphic equilibrium exists only nongenerically, and if it exists, it consists of a manifold of equilibria. Its dimension is determined. In the absence of genotype-by-environment interaction, however, a manifold of equilibria occurs for an open set of parameters. In this case, the equilibrium structure is not robust to small deviations from no genotype-by-environment interaction. In a quantitative-genetic setting, the assumptions of no epistasis and intermediate dominance are equivalent to assuming that in every deme directional selection acts on a trait that is determined additively, i.e., by nonepistatic loci with dominance. Some of our results are exemplified in this quantitative-genetic context. Copyright 2010 Elsevier Inc. All rights reserved.
A framework for modelling gene regulation which accommodates non-equilibrium mechanisms.
Ahsendorf, Tobias; Wong, Felix; Eils, Roland; Gunawardena, Jeremy
2014-12-05
Gene regulation has, for the most part, been quantitatively analysed by assuming that regulatory mechanisms operate at thermodynamic equilibrium. This formalism was originally developed to analyse the binding and unbinding of transcription factors from naked DNA in eubacteria. Although widely used, it has made it difficult to understand the role of energy-dissipating, epigenetic mechanisms, such as DNA methylation, nucleosome remodelling and post-translational modification of histones and co-regulators, which act together with transcription factors to regulate gene expression in eukaryotes. Here, we introduce a graph-based framework that can accommodate non-equilibrium mechanisms. A gene-regulatory system is described as a graph, which specifies the DNA microstates (vertices), the transitions between microstates (edges) and the transition rates (edge labels). The graph yields a stochastic master equation for how microstate probabilities change over time. We show that this framework has broad scope by providing new insights into three very different ad hoc models, of steroid-hormone responsive genes, of inherently bounded chromatin domains and of the yeast PHO5 gene. We find, moreover, surprising complexity in the regulation of PHO5, which has not yet been experimentally explored, and we show that this complexity is an inherent feature of being away from equilibrium. At equilibrium, microstate probabilities do not depend on how a microstate is reached but, away from equilibrium, each path to a microstate can contribute to its steady-state probability. Systems that are far from equilibrium thereby become dependent on history and the resulting complexity is a fundamental challenge. To begin addressing this, we introduce a graph-based concept of independence, which can be applied to sub-systems that are far from equilibrium, and prove that history-dependent complexity can be circumvented when sub-systems operate independently. As epigenomic data become increasingly available, we anticipate that gene function will come to be represented by graphs, as gene structure has been represented by sequences, and that the methods introduced here will provide a broader foundation for understanding how genes work.
Anti-sway control of tethered satellite systems using attitude control of the main satellite
NASA Astrophysics Data System (ADS)
Yousefian, Peyman; Salarieh, Hassan
2015-06-01
In this study a new method is introduced to suppress libration of a tethered satellite system (TSS). It benefits from coupling between satellites and tether libration dynamics. The control concept uses the main satellite attitude maneuvers to suppress librational motion of the tether, and the main satellite's actuators for attitude control are used as the only actuation in the system. The study considers planar motion of a two body TSS system in a circular orbit and it is assumed that the tether's motion will not change it. Governing dynamic equations of motion are derived using the extended Lagrange method. Controllability of the system around the equilibrium state is studied and a linear LQG controller is designed to regulate libration of the system. Tether tension and satellite attitude are assumed as only measurable outputs of the system. The Extended Kalman Filter (EKF) is used to estimate states of the system to be used as feedback to the controller. The designed controller and observer are implemented to the nonlinear plant and simulations demonstrate that the controller lead to reduction of the tether libration propoerly. By the way, because the controller is linear, it is applicable only at low amplitudes in the vicinity of equilibrium point. To reach global stability, a nonlinear controller is demanded.
Latash, M L; Gutman, S R
1994-01-01
Until now, the equilibrium-point hypothesis (lambda model) of motor control has assumed nonintersecting force-length characteristics of the tonic stretch reflex for individual muscles. Limited data from animal experiments suggest, however, that such intersections may occur. We have assumed the possibility of intersection of the characteristics of the tonic stretch reflex and performed a computer simulation of movement trajectories and electromyographic patterns. The simulation has demonstrated, in particular, that a transient change in the slope of the characteristic of an agonist muscle may lead to temporary movement reversals, hesitations, oscillations, and multiple electromyographic bursts that are typical of movements of patients with dystonia. The movement patterns of three patients with idiopathic dystonia during attempts at fast single-joint movements (in the elbow, wrist, and ankle) were recorded and compared with the results of the computer simulation. This approach considers that motor disorders in dystonia result from faulty control patterns that may not correlate with any morphological or neurophysiological changes. It provides a basis for the high variability of dystonic movements. The uniqueness of abnormal motor patterns in dystonia, that precludes statistical analysis across patients, may result from subtle differences in the patterns of intersecting characteristics of the tonic stretch reflex. The applicability of our analysis to disordered multijoint movement patterns is discussed.
Quantum Kinetics and the Zeno Ansatz: Sterile Neutrino Dark Matter in the Early Universe
NASA Astrophysics Data System (ADS)
Dvornikov, Olexiy V.
We solved the quantum kinetic equations for the evolution of neutrino states in the early universe. Starting at high temperatures, we evolve neutrino states to observe the resonant conversion of active-to-sterile neutrinos in a lepton asymmetric (more neutrinos than anti-neutrinos) universe. We find that at high temperatures, the high neutrino scattering and oscillation rates enforce a local equilibrium that balances the growth of coherence at the oscillation rate and the damping of coherence through scattering. This equilibrium, which we call a "quantum kinetic equilibrium," appears to approximately hold throughout the neutrino evolution, from the initial conditions through resonances that may be non adiabatic. Using this quantum kinetic equilibrium informs a proper choice of the initial conditions of the neutrino state and the relaxation process that occurs to this equilibrium when the initial conditions (as are typically chosen in the literature) are not coincident with the equilibrium values. We also discuss how to use this equilibrium to reduce the computational expense of solving the full quantum kinetic equations for neutrino states evolving in the early universe.
NASA Technical Reports Server (NTRS)
Del Genio, Anthony; Way, Michael; Amundsen, David; Sohl, Linda; Fujii, Yuka; Ebihara, Yuka; Kiang, Nancy; Chandler, Mark; Aleinov, Igor; Kelley, Maxwell
2017-01-01
The potential habitability of detected exoplanets is typically assessed using the concept of equilibrium temperature (T[subscript] e) based on cloud-free 1-D models with assumed albedo equal to Earth's (0.3) to determine whether a planet lies in the habitable zone. Incident stellar flux appears to be a better metric for stars unlike the Sun. These estimates, however, ignore the effect of clouds on planetary albedo and the fact that the climates of synchronously rotating planets are not well predicted by 1-D models. Given that most planet candidates that will be detected in the next few years will be tidally locked and orbiting M stars, how might the habitable zone e tailored to better in-form characterization with scarce observing resources?
Non-equilibrium Green's functions method: Non-trivial and disordered leads
NASA Astrophysics Data System (ADS)
He, Yu; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann
2014-11-01
The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si0.5Ge0.5. It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si0.5Ge0.5 transistors by 45% compared to conventional lead methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz’menkov, L.S., E-mail: lsk@phys.msu.ru
We consider quantum plasmas of electrons and motionless ions. We describe separate evolution of spin-up and spin-down electrons. We present corresponding set of quantum hydrodynamic equations. We assume that plasmas are placed in an uniform external magnetic field. We account different occupation of spin-up and spin-down quantum states in equilibrium degenerate plasmas. This effect is included via equations of state for pressure of each species of electrons. We study oblique propagation of longitudinal waves. We show that instead of two well-known waves (the Langmuir wave and the Trivelpiece–Gould wave), plasmas reveal four wave solutions. New solutions exist due to bothmore » the separate consideration of spin-up and spin-down electrons and different occupation of spin-up and spin-down quantum states in equilibrium state of degenerate plasmas.« less
NASA Astrophysics Data System (ADS)
Cosgrove, R. B.; Schultz, A.; Imamura, N.
2016-12-01
Although electrostatic equilibrium is always assumed in the ionosphere, there is no good theoretical or experimental justification for the assumption. In fact, recent theoretical investigations suggest that the electrostatic assumption may be grossly in error. If true, many commonly used modeling methods are placed in doubt. For example, the accepted method for calculating ionospheric conductance??field line integration??may be invalid. In this talk we briefly outline the theoretical research that places the electrostatic assumption in doubt, and then describe how comparison of ground magnetic field data with incoherent scatter radar (ISR) data can be used to test the electrostatic assumption in the ionosphere. We describe a recent experiment conducted for the purpose, where an array of magnetometers was temporalily installed under the Poker Flat AMISR.
24 CFR 248.121 - Annual authorized return and aggregate preservation rents.
Code of Federal Regulations, 2010 CFR
2010-04-01
... for the project, assuming a market rate of interest and customary terms; (3) Debt service on the... rehabilitation loan for the project, assuming a market rate of interest and customary terms; (3) Debt service on... local governments and assuming market rate interest rates. ...
Modelling non-equilibrium thermodynamic systems from the speed-gradient principle.
Khantuleva, Tatiana A; Shalymov, Dmitry S
2017-03-06
The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).
Modelling non-equilibrium thermodynamic systems from the speed-gradient principle
NASA Astrophysics Data System (ADS)
Khantuleva, Tatiana A.; Shalymov, Dmitry S.
2017-03-01
The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed. This article is part of the themed issue 'Horizons of cybernetical physics'.
Modelling non-equilibrium thermodynamic systems from the speed-gradient principle
Khantuleva, Tatiana A.
2017-01-01
The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed. This article is part of the themed issue ‘Horizons of cybernetical physics’. PMID:28115617
NASA Astrophysics Data System (ADS)
Latella, Ivan; Ben-Abdallah, Philippe; Biehs, Svend-Age; Antezza, Mauro; Messina, Riccardo
2017-05-01
A general theory of photon-mediated energy and momentum transfer in N -body planar systems out of thermal equilibrium is introduced. It is based on the combination of the scattering theory and the fluctuational-electrodynamics approach in many-body systems. By making a Landauer-like formulation of the heat transfer problem, explicit formulas for the energy transmission coefficients between two distinct slabs as well as the self-coupling coefficients are derived and expressed in terms of the reflection and transmission coefficients of the single bodies. We also show how to calculate local equilibrium temperatures in such systems. An analogous formulation is introduced to quantify momentum transfer coefficients describing Casimir-Lifshitz forces out of thermal equilibrium. Forces at thermal equilibrium are readily obtained as a particular case. As an illustration of this general theoretical framework, we show on three-body systems how the presence of a fourth slab can impact equilibrium temperatures in heat-transfer problems and equilibrium positions resulting from the forces acting on the system.
Non-axisymmetric local magnetostatic equilibrium
Candy, Jefferey M.; Belli, Emily A.
2015-03-24
In this study, we outline an approach to the problem of local equilibrium in non-axisymmetric configurations that adheres closely to Miller's original method for axisymmetric plasmas. Importantly, this method is novel in that it allows not only specification of 3D shape, but also explicit specification of the shear in the 3D shape. A spectrally-accurate method for solution of the resulting nonlinear partial differential equations is also developed. We verify the correctness of the spectral method, in the axisymmetric limit, through comparisons with an independent numerical solution. Some analytic results for the two-dimensional case are given, and the connection to Boozermore » coordinates is clarified.« less
Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan
2016-10-01
A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.
Plasma Transport and Magnetic Flux Circulation in Saturn's Magnetosphere
NASA Astrophysics Data System (ADS)
Neupane, B. R.; Delamere, P. A.; Ma, X.; Wilson, R. J.
2017-12-01
Radial transport of plasma in the rapidly rotating magnetospheres is an important dynamical process. Radial transport is due to the centrifugally driven interchange instability and magnetodisc reconnection, allowing net mass to be transported outward while conserving magnetic flux. Using Cassini Plasma Spectrometer instrument (CAPS) data products (e.g., Thomsen et al., [2010]; Wilson et al., [2017]) we estimate plasma mass and magnetic flux transport rates as functions of radial distance and local time. The physical requirement for zero net magnetic flux transport provides a key benchmark for assessing the validity of our mass transport estimate. We also evaluate magnetodisc stability using a two-dimensional axisymmetric equilibrium model [Caudal, 1986]. Observed local properties (e.g., specific entropy and estimates of flux tube mass and entropy content) are compared with modeled equilibrium conditions such that departures from equilibrium can be correlated with radial flows and local magnetic field structure. Finally, observations of specific entropy indicate that plasma is non-adiabatic heated during transport. However, the values of specific entropy are well organized in inner magnetosphere (i.e. L<10), and become widely scattered in the middle magnetosphere, suggesting that the transport dynamics of the inner and middle magnetosphere are different.
Amorphous ices explained in terms of nonequilibrium phase transitions in supercooled water
NASA Astrophysics Data System (ADS)
Limmer, David; Chandler, David
2013-03-01
We analyze the phase diagram of supercooled water out-of-equilibrium using concepts from space-time thermodynamics and the dynamic facilitation theory of the glass transition, together with molecular dynamics simulations. We find that when water is driven out-of-equilibrium, it can exist in multiple amorphous states. In contrast, we find that when water is at equilibrium, it can exist in only one liquid state. The amorphous non-equilibrium states are solids, distinguished from the liquid by their lack of mobility, and distinguished from each other by their different densities and local structure. This finding explains the experimentally observed polyamorphism of water as a class of nonequilibrium phenomena involving glasses of different densities. While the amorphous solids can be long lived, they are thermodynamically unstable. When allowed to relax to equilibrium, they crystallize with pathways that pass first through liquid state configurations and then to ordered ice.
NASA Astrophysics Data System (ADS)
Qorbani, Khadijeh; Kvamme, Bjørn
2016-04-01
Natural gas hydrates (NGHs) in nature are formed from various hydrate formers (i.e. aqueous, gas, and adsorbed phases). As a result, due to Gibbs phase rule and the combined first and second laws of thermodynamics CH4-hydrate cannot reach thermodynamic equilibrium in real reservoir conditions. CH4 is the dominant component in NGH reservoirs. It is formed as a result of biogenic degradation of biological material in the upper few hundred meters of subsurface. It has been estimated that the amount of fuel-gas reserve in NGHs exceed the total amount of fossil fuel explored until today. Thus, these reservoirs have the potential to satisfy the energy requirements of the future. However, released CH4 from dissociated NGHs could find its way to the atmosphere and it is a far more aggressive greenhouse gas than CO2, even though its life-time is shorter. Lack of reliable field data makes it difficult to predict the production potential, as well as safety of CH4 production from NGHs. Computer simulations can be used as a tool to investigate CH4 production through different scenarios. Most hydrate simulators within academia and industry treat hydrate phase transitions as an equilibrium process and those which employ the kinetic approach utilize simple laboratory data in their models. Furthermore, it is typical to utilize a limited thermodynamic description where only temperature and pressure projections are considered. Another widely used simplification is to assume only a single route for the hydrate phase transitions. The non-equilibrium nature of hydrate indicates a need for proper kinetic models to describe hydrate dissociation and reformation in the reservoir with respect to thermodynamics variables, CH4 mole-fraction, pressure and temperature. The RetrasoCodeBright (RCB) hydrate simulator has previously been extended to model CH4-hydrate dissociation towards CH4 gas and water. CH4-hydrate is added to the RCB data-base as a pseudo mineral. Phase transitions are treated as non-equilibrium processes under local constraint of mass and heat fluxes. In this work, we have extended RCB by adding another route for dissociation or reformation of CH4-hydrate towards CH4 into the aqueous phase and water. CH4-hydrate formation and dissociation is resolved by looking at supersaturation and undersaturation with respect to thermodynamics variables. Hydrate instability due to undersaturation of CH4 in the contacting water phase is also considered. A complete non-equilibrium thermodynamic package, developed in-house, was combined with RCB to account for competing phase transitions by considering the minimization of Gibb's free energy. The energy differences were calculated from variations in chemical potentials of hydrate and hydrate formers. Mass transport, heat transport and non-equilibrium thermodynamic effects were implemented through classical nucleation theory to model the kinetic rate of hydrate phase transitions. To illustrate our implementations we ran simulations covering time-spans in the order of hundred years. CH4 production was modelled using the depressurization method, where we employed the Messoyakha field data. We discuss our implementations, as well as results obtained from simulations utilizing our modifications.
The measurable heat flux that accompanies active transport by Ca2+-ATPase.
Bedeaux, Dick; Kjelstrup, Signe
2008-12-28
We present a new mesoscopic basis which can be used to derive flux equations for the forward and reverse mode of operation of ion-pumps. We obtain a description of the fluxes far from global equilibrium. An asymmetric set of transport coefficients is obtained, by assuming that the chemical reaction as well as the ion transports are activated, and that the enzyme has a temperature independent of the activation coordinates. Close to global equilibrium, the description reduces to the well known one from non-equilibrium thermodynamics with a symmetric set of transport coefficients. We show how the measurable heat flux and the heat production under isothermal conditions, as well as thermogenesis, can be defined. Thermogenesis is defined via the onset of the chemical reaction or ion transports by a temperature drop. A prescription has been given for how to determine transport coefficients on the mesocopic level, using the macroscopic coefficient obtained from measurements, the activation enthalpy, and a proper probability distribution. The method may give new impetus to a long-standing unsolved transport problem in biophysics.
Recent advances in modeling Hugoniots with Cheetah
NASA Astrophysics Data System (ADS)
Glaesemann, Kurt
2005-07-01
The detonation of an energetic material is the result of a complex interaction between kinetic chemical reactions and thermodynamic chemical equilibrium. Unfortunately, little is known concerning the detailed chemical kinetics of reacting energetic materials. Cheetah uses rate laws to treat species with the slowest chemical reactions, while assuming other chemical species are in equilibrium. Cheetah supports a wide range of elements and condensed detonation products and can also be applied to gas phase reactions. Improvements have been made to Cheetah's equilibrium solver, that allow it to find a wider range of thermodynamic states. Many of the difficulties experienced by users in earlier versions of Cheetah have been fixed. New capabilities have also been added. The ultimate result is a code that can be applied to a wide range of shock problems involving both energetic and non-energetic materials. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Subramanian, S. V.
1981-01-01
The influence of nonequilibrium radiative energy transfer and the effect of probe configuration changes on the flow phenomena around a Jovian entry body are investigated. The radiating shock layer flow is assumed to be axisymmetric, viscous, laminar and in chemical equilibrium. The radiative transfer equations are derived under nonequilibrium conditions which include multilevel energy transitions. The equilibrium radiative transfer analysis is performed with an existing nongray radiation model which accounts for molecular band, atomic line, and continuum transitions. The nonequilibrium results are obtained with and without ablation injection in the shock layer. The nonequilibrium results are found to be greatly influenced by the temperature distribution in the shock layer. In the absence of ablative products, the convective and radiative heating to the entry body are reduced under nonequilibrium conditions. The influence of nonequilibrium is found to be greater at higher entry altitudes. With coupled ablation and carbon phenolic injection, 16 chemical species are used in the ablation layer for radiation absorption. Equilibrium and nonequilibrium results are compared under peak heating conditions.
NASA Technical Reports Server (NTRS)
Bade, W. L.; Yos, J. M.
1975-01-01
A computer program for calculating quasi-one-dimensional gas flow in axisymmetric and two-dimensional nozzles and rectangular channels is presented. Flow is assumed to start from a state of thermochemical equilibrium at a high temperature in an upstream reservoir. The program provides solutions based on frozen chemistry, chemical equilibrium, and nonequilibrium flow with finite reaction rates. Electronic nonequilibrium effects can be included using a two-temperature model. An approximate laminar boundary layer calculation is given for the shear and heat flux on the nozzle wall. Boundary layer displacement effects on the inviscid flow are considered also. Chemical equilibrium and transport property calculations are provided by subroutines. The code contains precoded thermochemical, chemical kinetic, and transport cross section data for high-temperature air, CO2-N2-Ar mixtures, helium, and argon. It provides calculations of the stagnation conditions on axisymmetric or two-dimensional models, and of the conditions on the flat surface of a blunt wedge. The primary purpose of the code is to describe the flow conditions and test conditions in electric arc heated wind tunnels.
Primordial Earth's Environment Suggested from Equilibrium Conditions among Proteinic Amino Acids
NASA Astrophysics Data System (ADS)
Yamaguchi, Yoshimitsu; Nakazawa, K.; Emori, H.
2006-12-01
Amino acids are one of the essential substances for terrestrial lives. There are, as is well known, two interesting and important properties on amino acids in terrestrial lives: one is that infinite kinds of amino acids can be synthesized formally but, marvelously, only about 20 amino acids of these are utilized by proteinic materials of a wide variety of terrestrial lives. Another is that the relative molar ratios among the 20 amino acids are almost equal, at least, by the order of magnitude. In our present paper, paying attention to these facts, we will make an attempt to specify physical and chemical environments of the primordial Earth where first vital organic compounds begin to be synthesized. By assuming that two amino acids and appropriate inorganic compounds (CO2, NH3, CH4, etc.) are in chemical equilibrium under the condition of heated water, we can find the activity ratios (or activities) of inorganic compounds. Our results suggest that the heated water must be in a reducing condition and that the oxidizing compounds like O2 or SO2 cannot contribute to the equilibrium reactions.
Surface currents on the plasma-vacuum interface in MHD equilibria
NASA Astrophysics Data System (ADS)
Hanson, James
2017-10-01
The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the interface. While this surface current may be small in MHD equilibrium, it is readily computed in terms of the magnetic potentials in both the interior and exterior regions, evaluated on the surface. If only the external magnetic potential is known (as in VMEC), then the surface current can be computed from the discontinuity of the tangential field across the interface. Examples of the surface current for VMEC equilibria will be shown for a zero-pressure stellarator equilibrium. Field-line following of the vacuum magnetic field shows magnetic islands within the plasma region.
Analytical modeling of the temporal evolution of hot spot temperatures in silicon solar cells
NASA Astrophysics Data System (ADS)
Wasmer, Sven; Rajsrima, Narong; Geisemeyer, Ino; Fertig, Fabian; Greulich, Johannes Michael; Rein, Stefan
2018-03-01
We present an approach to predict the equilibrium temperature of hot spots in crystalline silicon solar cells based on the analysis of their temporal evolution right after turning on a reverse bias. For this end, we derive an analytical expression for the time-dependent heat diffusion of a breakdown channel that is assumed to be cylindrical. We validate this by means of thermography imaging of hot spots right after turning on a reverse bias. The expression allows to be used to extract hot spot powers and radii from short-term measurements, targeting application in inline solar cell characterization. The extracted hot spot powers are validated at the hands of long-term dark lock-in thermography imaging. Using a look-up table of expected equilibrium temperatures determined by numerical and analytical simulations, we utilize the determined hot spot properties to predict the equilibrium temperatures of about 100 industrial aluminum back-surface field solar cells and achieve a high correlation coefficient of 0.86 and a mean absolute error of only 3.3 K.
Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon
NASA Technical Reports Server (NTRS)
Chung, Serena H.; Seinfeld,John H.
2008-01-01
The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.
Obliquity variation in a Mars climate evolution model
NASA Technical Reports Server (NTRS)
Tyler, D.; Haberle, Robert M.
1993-01-01
The existence of layered terrain in both polar regions of Mars is strong evidence supporting a cyclic variation in climate. It has been suggested that periods of net deposition have alternated with periods of net erosion in creating the layered structure that is seen today. The cause for this cyclic climatic behavior is variation in the annually averaged latitudinal distribution of solar insolation in response to obliquity cycles. For Mars, obliquity variation leads to major climatological excursion due to the condensation and sublimation of the major atmospheric constituent, CO2. The atmosphere will collapse into the polar caps, or existing caps will rapidly sublimate into the atmosphere, dependent upon the polar surface heat balance and the direction of the change in obliquity. It has been argued that variations in the obliquity of Mars cause substantial departures from the current climatological values of the surface pressure and the amount of CO2 stored in both the planetary regolith and polar caps. In this new work we have modified the Haberle et al. model to incorporate variable obliquity by allowing the polar and equatorial insolation to become functions of obliquity, which we assume to vary sinusoidally in time. As obliquity varies in the model, there can be discontinuities in the time evolution of the model equilibrium values for surface pressure, regolith, and polar cap storage. The time constant, tau r, for the regolith to find equilibrium with the climate is estimated--depending on the depth, thermal conductivity, and porosity of the regolith--between 10(exp 4) and 10(exp 6) yr. Thus, using 2000-yr timesteps to move smoothly through the 0.1250 m.y. obliquity cycles, we have an atmosphere/regolith system that cannot be assumed in equilibrium. We have dealt with this problem by limiting the rate at which CO2, can move between the atmosphere and regolith, mimicking the diffusive nature and effects of the temperature and pressure waves, by setting the time rate of change of regolith storage proportional to the difference between equilibrium storage and current storage.
NASA Astrophysics Data System (ADS)
Ashworth, J. R.; Birdi, J. J.; Emmett, T. F.
1992-01-01
Retrograde coronas of Caledonian age, between clinopyroxene and plagioclase in the Jotun Nappe Complex, Norway, illustrate the effects of diffusion kinetics on mineral distributions among layers and on the compositions of hornblende-actinolite. One corona type comprises a symplectite of epidote + quartz adjacent to plagioclase, and a less well-organized intergrowth of amphibole + quartz replacing clinopyroxene. The observed mineral proportions imply an open-system reaction, but the similarity of Al/Si ratios in reactant plagioclase and product symplectite indicates approximate conservation of Al2O3 and SiO2. The largest inferred open-system flux is a loss of CaO, mostly derived from consumption of clinopyroxene. The approximate layer structure, Pl|Ep + Qtz|Hbl + Qtz|Act±Hbl + Qtz|Cpx, is modelled using the theory of steady-state diffusion-controlled growth with local equilibrium. To obtain a solution, it is necessary to use a reactant plagioclase composition which takes into account aluminous (epidote) inclusions. The results indicate that, in terms of Onsager diffusion coefficients L ii , Ca is more mobile than AL ( L CaCa/ L AlAl≳3.) (where ≳ means greater than or approximately equal to). This behaviour of Ca is comparable with that of Mg in previously studied coronas around olivine. Si is non-diffusing in the present modelling, because of silica saturation. Oxidation of some Fe2+ to Fe3+ occurs within the corona. Mg diffuses towards its source (clinopyroxene) to maintain local equilibrium. Other coronas consist of two layers, hornblende adjacent to plagioclase and zoned amphibole + quartz adjacent to clinopyroxene. In the zoned layer, actinolitic hornblende forms relict patches, separated from quartz blebs by more aluminous hornblende. A preliminary steady-state, local-equilibrium model of grain-boundary diffusion explains the formation of low-Al and high-Al layers as due to Al immobility. Zoning and replacement are qualitatively explained in terms of evolution of actinolite to more stable aluminous compositions. This is modelled by a non-steady-state modification of the theory, retaining local equilibrium in grain boundaries while relatively steep zoning profiles develop in grain interiors through slow intracrystalline diffusion. Replacement of actinolite by hornblende does not require a change in P- T conditions if actinolite is a kinetically determined, non-equilibrium product. The common preservation of a sharp contact between hornblende and actionolite layers may be explained by ineffectiveness of intracrystalline diffusion: according to the theory, given sufficient grain-boundary Al flux, a metastable actinolite + quartz layer in contact with hornblende may be diffusionally stable and may continue to grow in a steady state.
The effects of intraspecific competition and stabilizing selection on a polygenic trait.
Bürger, Reinhard; Gimelfarb, Alexander
2004-01-01
The equilibrium properties of an additive multilocus model of a quantitative trait under frequency- and density-dependent selection are investigated. Two opposing evolutionary forces are assumed to act: (i) stabilizing selection on the trait, which favors genotypes with an intermediate phenotype, and (ii) intraspecific competition mediated by that trait, which favors genotypes whose effect on the trait deviates most from that of the prevailing genotypes. Accordingly, fitnesses of genotypes have a frequency-independent component describing stabilizing selection and a frequency- and density-dependent component modeling competition. We study how the equilibrium structure, in particular, number, degree of polymorphism, and genetic variance of stable equilibria, is affected by the strength of frequency dependence, and what role the number of loci, the amount of recombination, and the demographic parameters play. To this end, we employ a statistical and numerical approach, complemented by analytical results, and explore how the equilibrium properties averaged over a large number of genetic systems with a given number of loci and average amount of recombination depend on the ecological and demographic parameters. We identify two parameter regions with a transitory region in between, in which the equilibrium properties of genetic systems are distinctively different. These regions depend on the strength of frequency dependence relative to pure stabilizing selection and on the demographic parameters, but not on the number of loci or the amount of recombination. We further study the shape of the fitness function observed at equilibrium and the extent to which the dynamics in this model are adaptive, and we present examples of equilibrium distributions of genotypic values under strong frequency dependence. Consequences for the maintenance of genetic variation, the detection of disruptive selection, and models of sympatric speciation are discussed. PMID:15280253
NASA Astrophysics Data System (ADS)
Couvidat, F.; Sartelet, K.
2014-01-01
The Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model is designed to be modular with different user options depending on the computing time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption on the aqueous phase of particles, activity coefficients, phase separation). Each surrogate can be hydrophilic (condenses only on the aqueous phase of particles), hydrophobic (condenses only on the organic phase of particles) or both (condenses on both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC thermodynamic model for short-range interactions and with the AIOMFAC parameterization for medium and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium and a dynamic representation of the organic aerosol. In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol (OA) is not at equilibrium with the gas phase because the organic phase could be semi-solid (very viscous liquid phase). The condensation or evaporation of organic compounds could then be limited by the diffusion in the organic phase due to the high viscosity. A dynamic representation of secondary organic aerosols (SOA) is used with OA divided into layers, the first layer at the center of the particle (slowly reaches equilibrium) and the final layer near the interface with the gas phase (quickly reaches equilibrium).
Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde
2016-12-01
In this paper, the coexistence and dynamical behaviors of multiple equilibrium points are discussed for a class of memristive neural networks (MNNs) with unbounded time-varying delays and nonmonotonic piecewise linear activation functions. By means of the fixed point theorem, nonsmooth analysis theory and rigorous mathematical analysis, it is proven that under some conditions, such n-neuron MNNs can have 5 n equilibrium points located in ℜ n , and 3 n of them are locally μ-stable. As a direct application, some criteria are also obtained on the multiple exponential stability, multiple power stability, multiple log-stability and multiple log-log-stability. All these results reveal that the addressed neural networks with activation functions introduced in this paper can generate greater storage capacity than the ones with Mexican-hat-type activation function. Numerical simulations are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Śloderbach, Zdzisław
2016-05-01
This paper reports the results of a study into global and local conditions of uniqueness and the criteria excluding the possibility of bifurcation of the equilibrium state for small strains. The conditions and criteria are derived on the basis of an analysis of the problem of uniqueness of a solution involving the basic incremental boundary problem of coupled generalized thermo-elasto-plasticity. This work forms a follow-up of previous research (Śloderbach in Bifurcations criteria for equilibrium states in generalized thermoplasticity, IFTR Reports, 1980, Arch Mech 3(35):337-349, 351-367, 1983), but contains a new derivation of global and local criteria excluding a possibility of bifurcation of an equilibrium state regarding a comparison body dependent on the admissible fields of stress rate. The thermal elasto-plastic coupling effects, non-associated laws of plastic flow and influence of plastic strains on thermoplastic properties of a body were taken into account in this work. Thus, the mathematical problem considered here is not a self-conjugated problem.
Bandula, Steve; White, Steven K; Flett, Andrew S; Lawrence, David; Pugliese, Francesca; Ashworth, Michael T; Punwani, Shonit; Taylor, Stuart A; Moon, James C
2013-11-01
To develop and validate equilibrium contrast material-enhanced computed tomography (CT) to measure myocardial extracellular volume (ECV) fraction by using a histologic reference standard and to compare equilibrium CT with equilibrium contrast-enhanced magnetic resonance (MR) imaging. A local ethics committee approved the study, and all subjects gave fully informed written consent. An equilibrium CT protocol was developed using iohexol at 300 mg of iodine per milliliter (bolus of 1 mg per kilogram of body weight administered at a rate of 3 mL/sec, followed immediately by an infusion of 1.88 mL/kg per hour with CT imaging before and at 25 minutes after injection of bolus of contrast agent) and ECV within the myocardial septum measured using both equilibrium CT and equilibrium MR imaging in patients with severe aortic stenosis. Biopsy samples of the myocardial septum collected during valve replacement surgery were used for histologic quantification of extracellular fibrosis with picrosirius red staining. Equilibrium CT- and equilibrium MR imaging-derived ECV measurements were compared with histologically quantified fibrosis by using Pearson correlation. Agreement between equilibrium CT and equilibrium MR imaging was assessed by using Bland-Altman comparison. Twenty-three patients (16 male, seven female; mean age, 70.8 years; standard deviation, 8.3) were recruited. The mean percentage of histologic fibrosis was 18% (intersubject range, 5%-40%). There was a significant correlation between both equilibrium CT- and equilibrium MR imaging-derived ECV and percentage of histologic fibrosis (r = 0.71 [P < .001] and r = 0.84 [P < .0001], respectively). Equilibrium CT-derived ECV was significantly correlated to equilibrium MR imaging-derived ECV (r = 0.73). ECV measured by using equilibrium CT in patients with aortic stenosis correlates with histologic quantification of myocardial fibrosis and with ECV derived by using equilibrium MR imaging. RSNA, 2013
Pressure Studies of Protein Dynamics
1990-02-28
a frozen and metastable complex system In the present section was generated by a flashlamp-pumped dye laser (Phase-R DL- treat the equilibrium region...determination of the relative thermodynamic parameters of the and the temperature was monitored with a Si diode on the pressure We assume that the A substates...temperature controller (Model proteins is essentially linear from 200 to 320 K. 2" The entropy 93C). A silicon diode mounted on the sample cell
Self-consistent models for Coulomb heated X-ray pulsar atmospheres
NASA Technical Reports Server (NTRS)
Harding, A.; Meszaros, S. P.; Kirk, J.; Galloway, D.
1983-01-01
Calculations of accreting magnetized neutron star atmospheres heated by the gradual deceleration of protons via Coulomb collisions are presented. Self consistent determinations of the temperature and density structure for different accretion rates are made by assuming hydrostatic equilibrium and energy balance, coupled with radiative transfer. The full radiative transfer in two polarizations, using magnetic cross sections but with cyclotron resonance effects treated approximately, is carried out in the inhomogeneous atmospheres.
NASA Technical Reports Server (NTRS)
Rea, James Buchanan
1941-01-01
The performance of an exhaust turbine driving a supercharger is investigated by means of a sample calculation based on reasonable assumptions for the purpose of determining whether the assumed installation is stable with respect to changes in the mass of gas handled, boost pressure, etc. The arrangement was found to be stable throughout the entire range of operation. The method developed can be generally applied.
2015-09-22
to relate to spatial variations in evapotranspiration (Western et al., 1999). All of these attributes are standardized and regressed against each...infiltration F, deep drainage or recharge to groundwater G, lateral flow L, and evapotranspiration E. The water balance is assumed to be at equilibrium...Temperature and insolation measurements were collected to determine the potential evapotranspiration (PET), which was calculated for each location type
A 3-Component System of Competition and Diffusion.
1983-08-01
assume * that the distribution of the populations are determined by competition of’ Lotka - Volterra - * Gause type and simple diffusion. Suppose ui(t,x...diffusive Lotka - Volterra system with three species can have a stable non-constant equilibrium solutions. J. Math. Biol., (in press). [7] Kishimoto, K., Mimura...M. and Yoshida, K., Stable spatlo-temporal oscillations of diffusive Lotka - Volterra systems with three or more species, to appear in J. Math. Biol
NASA Astrophysics Data System (ADS)
Oliveira, Amir Antonio Martins
The existence of large gradients within particles and fast temporal variations in the temperature and species concentration prevents the use of asymptotic approximations for the closure of the volume-averaged, specimen-level formulations. In this case a solution of the particle-level transport problem is needed to complement the specimen-level volume-averaged equations. Here, the use of combined specimen-level and particle-level models for transport in reactive porous media is demonstrated with two examples. For the gasless compacted-powder combustion synthesis, a three-scale model is developed. The specimen-level model is based on the volume-averaged equations for species and temperature. Local thermal equilibrium is assumed and the macroscopic mass diffusion and convection fluxes are neglected. The particle-level model accounts for the interparticle diffusion (i.e., the liquid migration from liquid-rich to liquid-lean regions) and the intraparticle diffusion (i.e., the species mass diffusion within the product layer formed at the surface of the high melting temperature component). It is found that the interparticle diffusion controls the extent of conversion to the final product, the maximum temperature, and to a smaller degree the propagation velocity. The intraparticle diffusion controls the propagation velocity and to a smaller degree the maximum temperature. The initial stages of thermal degradation of EVA from molded specimens is modeled using volume-averaged equations for the species and empirical models for the kinetics of the thermal degradation, the vapor-liquid equilibrium, and the diffusion coefficient of acetic acid in the molten polymer. It is assumed that a bubble forms when the partial pressure of acetic acid exceeds the external ambient pressure. It is found that the removal of acetic acid is characterized by two regimes, a pre-charge dominated regime and a generation dominated regime. For the development of an optimum debinding schedule, the heating rate is modulated to avoid bubbling, while the concentration and temperature follow the bubble-point line for the mixture. The results show a strong dependence on the presence of a pre-charge. It is shown that isolation of the pre-charge effect by using temporary lower heating rates results in an optimum schedule for which the process time is reduced by over 70% when compared to a constant heating rate schedule.
On the global dynamics of a chronic myelogenous leukemia model
NASA Astrophysics Data System (ADS)
Krishchenko, Alexander P.; Starkov, Konstantin E.
2016-04-01
In this paper we analyze some features of global dynamics of a three-dimensional chronic myelogenous leukemia (CML) model with the help of the stability analysis and the localization method of compact invariant sets. The behavior of CML model is defined by concentrations of three cellpopulations circulating in the blood: naive T cells, effector T cells specific to CML and CML cancer cells. We prove that the dynamics of the CML system around the tumor-free equilibrium point is unstable. Further, we compute ultimate upper bounds for all three cell populations and provide the existence conditions of the positively invariant polytope. One ultimate lower bound is obtained as well. Moreover, we describe the iterative localization procedure for refining localization bounds; this procedure is based on cyclic using of localizing functions. Applying this procedure we obtain conditions under which the internal tumor equilibrium point is globally asymptotically stable. Our theoretical analyses are supplied by results of the numerical simulation.
Localization and Symmetry Breaking in the Quantum Quasiperiodic Ising Glass
NASA Astrophysics Data System (ADS)
Chandran, A.; Laumann, C. R.
2017-07-01
Quasiperiodic modulation can prevent isolated quantum systems from equilibrating by localizing their degrees of freedom. In this article, we show that such systems can exhibit dynamically stable long-range orders forbidden in equilibrium. Specifically, we show that the interplay of symmetry breaking and localization in the quasiperiodic quantum Ising chain produces a quasiperiodic Ising glass stable at all energy densities. The glass order parameter vanishes with an essential singularity at the melting transition with no signatures in the equilibrium properties. The zero-temperature phase diagram is also surprisingly rich, consisting of paramagnetic, ferromagnetic, and quasiperiodically alternating ground-state phases with extended, localized, and critically delocalized low-energy excitations. The system exhibits an unusual quantum Ising transition whose properties are intermediate between those of the clean and infinite randomness Ising transitions. Many of these results follow from a geometric generalization of the Aubry-André duality that we develop. The quasiperiodic Ising glass may be realized in near-term quantum optical experiments.
A perspective on quantum integrability in many-body-localized and Yang-Baxter systems
NASA Astrophysics Data System (ADS)
Moore, Joel E.
2017-10-01
Two of the most active areas in quantum many-particle dynamics involve systems with an unusually large number of conservation laws. Many-body-localized systems generalize ideas of Anderson localization by disorder to interacting systems. While localization still exists with interactions and inhibits thermalization, the interactions between conserved quantities lead to some dramatic differences from the Anderson case. Quantum integrable models such as the XXZ spin chain or Bose gas with delta-function interactions also have infinite sets of conservation laws, again leading to modifications of conventional thermalization. A practical way to treat the hydrodynamic evolution from local equilibrium to global equilibrium in such models is discussed. This paper expands upon a presentation at a discussion meeting of the Royal Society on 7 February 2017. The work described was carried out with a number of collaborators, including Jens Bardarson, Vir Bulchandani, Roni Ilan, Christoph Karrasch, Siddharth Parameswaran, Frank Pollmann and Romain Vasseur. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.
Lozenge Tiling Dynamics and Convergence to the Hydrodynamic Equation
NASA Astrophysics Data System (ADS)
Laslier, Benoît; Toninelli, Fabio Lucio
2018-03-01
We study a reversible continuous-time Markov dynamics of a discrete (2 + 1)-dimensional interface. This can be alternatively viewed as a dynamics of lozenge tilings of the {L× L} torus, or as a conservative dynamics for a two-dimensional system of interlaced particles. The particle interlacement constraints imply that the equilibrium measures are far from being product Bernoulli: particle correlations decay like the inverse distance squared and interface height fluctuations behave on large scales like a massless Gaussian field. We consider a particular choice of the transition rates, originally proposed in Luby et al. (SIAM J Comput 31:167-192, 2001): in terms of interlaced particles, a particle jump of length n that preserves the interlacement constraints has rate 1/(2 n). This dynamics presents special features: the average mutual volume between two interface configurations decreases with time (Luby et al. 2001) and a certain one-dimensional projection of the dynamics is described by the heat equation (Wilson in Ann Appl Probab 14:274-325, 2004). In this work we prove a hydrodynamic limit: after a diffusive rescaling of time and space, the height function evolution tends as L\\to∞ to the solution of a non-linear parabolic PDE. The initial profile is assumed to be C 2 differentiable and to contain no "frozen region". The explicit form of the PDE was recently conjectured (Laslier and Toninelli in Ann Henri Poincaré Theor Math Phys 18:2007-2043, 2017) on the basis of local equilibrium considerations. In contrast with the hydrodynamic equation for the Langevin dynamics of the Ginzburg-Landau model (Funaki and Spohn in Commun Math Phys 85:1-36, 1997; Nishikawa in Commun Math Phys 127:205-227, 2003), here the mobility coefficient turns out to be a non-trivial function of the interface slope.
NASA Astrophysics Data System (ADS)
Sasamoto, Hiroshi; Yui, Mikazu; Arthur, Randolph C.
Based on geochemical data collected by Japan Nuclear Cycle Development Institute (JNC) in the Tono uranium mine, a conceptual groundwater evolution model developed by JNC is tested to evaluate whether equilibrium-based concepts of water-rock interaction are consistent with observed variations in the mineralogy and hydrochemistry of the Tono mine area. The chemical evolution of the groundwaters is modeled assuming local equilibrium for selected mineral-fluid reactions, taking into account the rainwater origin of these solutions. Results suggest that it is possible to interpret approximately the actual groundwater chemistry (i.e., pH, Eh, total dissolved concentrations of Si, Na, Ca, K, Al, carbonate and sulfate) if the following assumptions are adopted (a) CO 2 concentration in the gas phase contacting pore solutions in the overlying soil zone=10 -1 atm, and (b) minerals in the rock zone that control the solubility of respective elements in the groundwater include: chalcedony (Si), albite (Na), kaolinite (Al), calcite (Ca and carbonate), muscovite (K) and pyrite (Eh and sulfate). This result helps to build confidence in the use of simplified geochemical modeling techniques to develop an understanding of dominant geochemical reactions controlling groundwater chemistry in rocks similar to those that could be used for the geological disposal of radioactive wastes. It is noted, however, that the available field data may not be sufficient to adequately constrain parameters in the groundwater evolution model. In particular, more detailed information characterizing certain site properties are needed to improve the model. For this reason, a model that accounts for ion-exchange reactions among clay minerals, and which is based on the results of laboratory experiments, has also been evaluated in the present study. Further improvement of model considering ion-exchange reactions are needed in future, however.
Behavior of Triple Langmuir Probes in Non-Equilibrium Plasmas
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Ratcliffe, Alicia C.
2018-01-01
The triple Langmuir probe is an electrostatic probe in which three probe tips collect current when inserted into a plasma. The triple probe differs from a simple single Langmuir probe in the nature of the voltage applied to the probe tips. In the single probe, a swept voltage is applied to the probe tip to acquire a waveform showing the collected current as a function of applied voltage (I-V curve). In a triple probe three probe tips are electrically coupled to each other with constant voltages applied between each of the tips. The voltages are selected such that they would represent three points on the single Langmuir probe I-V curve. Elimination of the voltage sweep makes it possible to measure time-varying plasma properties in transient plasmas. Under the assumption of a Maxwellian plasma, one can determine the time-varying plasma temperature T(sub e)(t) and number density n(sub e)(t) from the applied voltage levels and the time-histories of the collected currents. In the present paper we examine the theory of triple probe operation, specifically focusing on the assumption of a Maxwellian plasma. Triple probe measurements have been widely employed for a number of pulsed and timevarying plasmas, including pulsed plasma thrusters (PPTs), dense plasma focus devices, plasma flows, and fusion experiments. While the equilibrium assumption may be justified for some applications, it is unlikely that it is fully justifiable for all pulsed and time-varying plasmas or for all times during the pulse of a plasma device. To examine a simple non-equilibrium plasma case, we return to basic governing equations of probe current collection and compute the current to the probes for a distribution function consisting of two Maxwellian distributions with different temperatures (the two-temperature Maxwellian). A variation of this method is also employed, where one of the Maxwellians is offset from zero (in velocity space) to add a suprathermal beam of electrons to the tail of the main Maxwellian distribution (the bump-on-the-tail distribution function). For a range of parameters in these non-Maxwellian distributions, we compute the current collection to the probes. We compare the distribution function that was assumed a priori with the distribution function one would infer when applying standard triple probe theory to analyze the collected currents. For the assumed class of non-Maxwellian distribution functions this serves to illustrate the effect a non-Maxwellian plasma would have on results interpreted using the equilibrium triple probe current collection theory, allowing us to state the magnitudes of these deviations as a function of the assumed distribution function properties.
NASA Astrophysics Data System (ADS)
Nüske, Feliks; Wu, Hao; Prinz, Jan-Hendrik; Wehmeyer, Christoph; Clementi, Cecilia; Noé, Frank
2017-03-01
Many state-of-the-art methods for the thermodynamic and kinetic characterization of large and complex biomolecular systems by simulation rely on ensemble approaches, where data from large numbers of relatively short trajectories are integrated. In this context, Markov state models (MSMs) are extremely popular because they can be used to compute stationary quantities and long-time kinetics from ensembles of short simulations, provided that these short simulations are in "local equilibrium" within the MSM states. However, over the last 15 years since the inception of MSMs, it has been controversially discussed and not yet been answered how deviations from local equilibrium can be detected, whether these deviations induce a practical bias in MSM estimation, and how to correct for them. In this paper, we address these issues: We systematically analyze the estimation of MSMs from short non-equilibrium simulations, and we provide an expression for the error between unbiased transition probabilities and the expected estimate from many short simulations. We show that the unbiased MSM estimate can be obtained even from relatively short non-equilibrium simulations in the limit of long lag times and good discretization. Further, we exploit observable operator model (OOM) theory to derive an unbiased estimator for the MSM transition matrix that corrects for the effect of starting out of equilibrium, even when short lag times are used. Finally, we show how the OOM framework can be used to estimate the exact eigenvalues or relaxation time scales of the system without estimating an MSM transition matrix, which allows us to practically assess the discretization quality of the MSM. Applications to model systems and molecular dynamics simulation data of alanine dipeptide are included for illustration. The improved MSM estimator is implemented in PyEMMA of version 2.3.
Thermalization of entanglement.
Zhang, Liangsheng; Kim, Hyungwon; Huse, David A
2015-06-01
We explore the dynamics of the entanglement entropy near equilibrium in highly entangled pure states of two quantum-chaotic spin chains undergoing unitary time evolution. We examine the relaxation to equilibrium from initial states with either less or more entanglement entropy than the equilibrium value, as well as the dynamics of the spontaneous fluctuations of the entanglement that occur in equilibrium. For the spin chain with a time-independent Hamiltonian and thus an extensive conserved energy, we find slow relaxation of the entanglement entropy near equilibration. Such slow relaxation is absent in a Floquet spin chain with a Hamiltonian that is periodic in time and thus has no local conservation law. Therefore, we argue that slow diffusive energy transport is responsible for the slow relaxation of the entanglement entropy in the Hamiltonian system.
Intrachain exciton dynamics in conjugated polymer chains in solution.
Tozer, Oliver Robert; Barford, William
2015-08-28
We investigate exciton dynamics on a polymer chain in solution induced by the Brownian rotational motion of the monomers. Poly(para-phenylene) is chosen as the model system and excitons are modeled via the Frenkel exciton Hamiltonian. The Brownian fluctuations of the torsional modes were modeled via the Langevin equation. The rotation of monomers in polymer chains in solution has a number of important consequences for the excited state properties. First, the dihedral angles assume a thermal equilibrium which causes off-diagonal disorder in the Frenkel Hamiltonian. This disorder Anderson localizes the Frenkel exciton center-of-mass wavefunctions into super-localized local exciton ground states (LEGSs) and higher-energy more delocalized quasi-extended exciton states (QEESs). LEGSs correspond to chromophores on polymer chains. The second consequence of rotations-that are low-frequency-is that their coupling to the exciton wavefunction causes local planarization and the formation of an exciton-polaron. This torsional relaxation causes additional self-localization. Finally, and crucially, the torsional dynamics cause the Frenkel Hamiltonian to be time-dependent, leading to exciton dynamics. We identify two distinct types of dynamics. At low temperatures, the torsional fluctuations act as a perturbation on the polaronic nature of the exciton state. Thus, the exciton dynamics at low temperatures is a small-displacement diffusive adiabatic motion of the exciton-polaron as a whole. The temperature dependence of the diffusion constant has a linear dependence, indicating an activationless process. As the temperature increases, however, the diffusion constant increases at a faster than linear rate, indicating a second non-adiabatic dynamics mechanism begins to dominate. Excitons are thermally activated into higher energy more delocalized exciton states (i.e., LEGSs and QEESs). These states are not self-localized by local torsional planarization. During the exciton's temporary occupation of a LEGS-and particularly a quasi-band QEES-its motion is semi-ballistic with a large group velocity. After a short period of rapid transport, the exciton wavefunction collapses again into an exciton-polaron state. We present a simple model for the activated dynamics which is in agreement with the data.
Analytical approach to Eigen-emittance evolution in storage rings
NASA Astrophysics Data System (ADS)
Nash, Boaz
This dissertation develops the subject of beam evolution in storage rings with nearly uncoupled symplectic linear dynamics. Linear coupling and dissipative/diffusive processes are treated perturbatively. The beam distribution is assumed Gaussian and a function of the invariants. The development requires two pieces: the global invariants and the local stochastic processes which change the emittances, or averages of the invariants. A map based perturbation theory is described, providing explicit expressions for the invariants near each linear resonance, where small perturbations can have a large effect. Emittance evolution is determined by the damping and diffusion coefficients. The discussion is divided into the cases of uniform and non-uniform stochasticity, synchrotron radiation an example of the former and intrabeam scattering the latter. For the uniform case, the beam dynamics is captured by a global diffusion coefficent and damping decrement for each eigen-invariant. Explicit expressions for these quantities near coupling resonances are given. In many cases, they are simply related to the uncoupled values. Near a sum resonance, it is found that one of the damping decrements becomes negative, indicating an anti-damping instability. The formalism is applied to a number of examples, including synchrobetatron coupling caused by a crab cavity, a case of current interest where there is concern about operation near half integer betatron tune. In the non-uniform case, the moment evolution is computed directly, which is illustrated through the example of intrabeam scattering. Our approach to intrabeam scattering damping and diffusion has the advantage of not requiring a loosely-defined Coulomb Logarithm. It is found that in some situations there is a small difference between our results and the standard approaches such as Bjorken-Mtingwa, which is illustrated by comparison of the two approaches and with a measurement of Au evolution in RHIC. Finally, in combining IBS with the global invariants some general statements about IBS equilibrium can be made. Specifically, it is emphasized that no such equilibrium is possible in a non-smooth lattice, even below transition. Near enough to a synchrobetatron coupling resonance, it is found that even for a smooth ring, no IBS equilibrium occurs.
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1994-01-01
The primary accomplishments of the project were as follows: (1) From an overall standpoint, the primary accomplishment of this research was the development of a complete gasdynamic-radiatively coupled nonequilibrium viscous shock layer solution method for axisymmetric blunt bodies. This method can be used for rapid engineering modeling of nonequilibrium re-entry flowfields over a wide range of conditions. (2) Another significant accomplishment was the development of an air radiation model that included local thermodynamic nonequilibrium (LTNE) phenomena. (3) As part of this research, three electron-electronic energy models were developed. The first was a quasi-equilibrium electron (QEE) model which determined an effective free electron temperature and assumed that the electronic states were in equilibrium with the free electrons. The second was a quasi-equilibrium electron-electronic (QEEE) model which computed an effective electron-electronic temperature. The third model was a full electron-electronic (FEE) differential equation model which included convective, collisional, viscous, conductive, vibrational coupling, and chemical effects on electron-electronic energy. (4) Since vibration-dissociation coupling phenomena as well as vibrational thermal nonequilibrium phenomena are important in the nonequilibrium zone behind a shock front, a vibrational energy and vibration-dissociation coupling model was developed and included in the flowfield model. This model was a modified coupled vibrational dissociation vibrational (MCVDV) model and also included electron-vibrational coupling. (5) Another accomplishment of the project was the usage of the developed models to investigate radiative heating. (6) A multi-component diffusion model which properly models the multi-component nature of diffusion in complex gas mixtures such as air, was developed and incorporated into the blunt body model. (7) A model was developed to predict the magnitude and characteristics of the shock wave precursor ahead of vehicles entering the Earth's atmosphere. (8) Since considerable data exists for radiating nonequilibrium flow behind normal shock waves, a normal shock wave version of the blunt body code was developed. (9) By comparing predictions from the models and codes with available normal shock data and the flight data of Fire II, it is believed that the developed flowfield and nonequilibrium radiation models have been essentially validated for engineering applications.
Radial localization of magnetospheric guided poloidal Pc 4-5 waves
NASA Astrophysics Data System (ADS)
Denton, R. E.; Lessard, M. R.; Kistler, L. M.
2003-03-01
The toroidal Alfvén wave, with magnetic field oscillations in the azimuthal direction, exhibits a singularity in the vicinity of the toroidal resonant frequency (field line resonance), so it is not surprising that this wave often exhibits varying frequency as a function of L shell. It is less clear why the poloidal Alfvén wave, with magnetic field oscillations in the radial direction, often exhibits a relatively constant frequency over a range of L shells. So far, the most promising proposal to explain this phenomenon is the theory of [1994, 1996], who showed that an energetically trapped global poloidal mode can exist in a region where the poloidal Alfvén frequency is lower than the toroidal frequency and where it exhibits a dip (minimum) with respect to L. While this theory is mathematically plausible, it has never been shown that poloidal Alfvén waves actually occur in association with such a dip in poloidal frequency. Here we examine poloidal wave events observed by the AMPTE/IRM spacecraft and calculate the theoretical poloidal frequency as a function of L using the equilibrium parameters obtained from the spacecraft observations. We find that the poloidal Alfvén wave does occur in association with such a dip (or at least a flattening) in poloidal frequency. While Vetoulis and Chen hypothesized that such a dip would occur because of a sharp gradient in plasma pressure, we find that the dip in poloidal frequency may result from the L dependence of the equilibrium density or magnetic field. The observed frequencies are in rough agreement with the theoretical frequencies, though in some cases we must assume that the observed oscillations result from a high harmonic (third or fourth harmonic structure along the magnetic field). We also apply the same analysis to compressional wave events (with oscillations in the direction of the equilibrium magnetic field). Such oscillations may be on the poloidal wave branch or the mirror mode branch. Here also, the observed fluctuations occur in the region of a dip in poloidal frequency. In one case the observed frequency is consistent with the theoretical poloidal frequency, whereas in another case it is not.
The chromospheric structure of the cool giant star g Herculis
NASA Technical Reports Server (NTRS)
Luttermoser, Donald G.; Johnson, Hollis R.; Eaton, Joel
1994-01-01
Non-Local Thermodynamic Equilibrium (LTE) calculations of semiempirical chromospheric models are presented for 30 g Her (M6 III). This star is one of the coolest (T(sub eff) = 3250 K) SRb (semiregular) variable stars and has a mass perhaps as great as 4 solar mass. Chromospheric features we have observed in its spectrum include Mg II h and k; C II) UV0.01, which is sensitive to electron density; Mg I lambda 2852; Ca II H, K, and IRT; Ca I lambda 4227 and lambda 6573; Al II) UV 1; and H alpha. We pay special attention to fitting the C II intersystem lines and the Mg II resonance lines but use all the other features as constraints to some extent. The equations of radiative transfer and statistical equilibrium are solved self-consistently for H I, H(-), H2, He I, C I, C II, Na I, Mg I, Mg II, Al I, Al II, Ca I, and Ca II with the equivalent two-level technique. To simplify these calculations, a one-dimensional hydrostatic, plane-parallel atmosphere is assumed. We investigate 10 separate 'classical' chromospheric models, differing most importantly in total mass column density above the temperature minimum. Synthetic spectra from these models fit some but not all of the observations. These comparisons are discussed in detail. However, we find that no single-component classical model in hydrostatic equilibrium is able to reproduce both the Mg II line profiles and the relative strengths of the CII) lines. In all these models, chromospheric emission features are formed relatively close to the star (approximately less than 0.05 R(sub *). The circumstellar environment has a thick, cool component overlying the Mg II emission region, which is relatively static and very turbulent. Finally, we find that thermalization in the Mg II h and k lines in the coolest giant stars is controlled by continuum absorption from Ca I 4p 4p3 P0 bound-free opacity and not collisional de-excitation as is the case for warmer K giants.
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
NASA Astrophysics Data System (ADS)
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin
2015-02-01
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.
Non-LTE calculation of HCL earthlimb emission and implication for detection of HCl in the atmosphere
NASA Technical Reports Server (NTRS)
Kumer, J. B.; James, T. C.
1982-01-01
Calculation results are presented for the contribution of the non-Local Thermodynamic Equilibrium process of resonant scattering of sunlight in the 1-0 band of HCl to the earthlimb radiance, for the case of tangent altitudes from 20 to 90 km. It is established that the mechanism in question is a significant contributor to radiance at altitudes as low as 20 km, and that it becomes greater than the Local Thermodynamic Equilibrium contribution above 40 km. Attention is given to the prospects for detection of HCl at altitudes approaching 80 km, by means of the Cryogenic Limb Array Etalon Spectrometer scheduled for deployment by the NASA Upper Atmospheric Research Satellite.
Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system
NASA Astrophysics Data System (ADS)
Wang, Wan-Yong; Pei, Li-Jun
2011-04-01
Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluctuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratio-dependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation.
K + block is the mechanism of functional asymmetry in bacterial Na v channels
Ngo, Van; Wang, Yibo; Haas, Stephan; ...
2016-01-04
Crystal structures of several bacterial Na v channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Na v channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial Na vAb channel. This approach provided new insight into the mechanism of selective ion permeation inmore » bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K + ions can block the entrance to the selectivity filter of Na vAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place bymodest applied forces. In contrast to K +, three Na + ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na + ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K + block is equivalent to large applied potentials experimentally measured for two bacterial Na v channels to induce inward currents of K + ions. Here, these results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free-energy landscapes.« less
K+ Block Is the Mechanism of Functional Asymmetry in Bacterial Nav Channels
Ngo, Van; Wang, Yibo; Haas, Stephan; Noskov, Sergei Y.; Farley, Robert A.
2016-01-01
Crystal structures of several bacterial Nav channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Nav channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial NavAb channel. This approach provided new insight into the mechanism of selective ion permeation in bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K+ ions can block the entrance to the selectivity filter of NavAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place by modest applied forces. In contrast to K+, three Na+ ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na+ ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K+ block is equivalent to large applied potentials experimentally measured for two bacterial Nav channels to induce inward currents of K+ ions. These results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free-energy landscapes. PMID:26727271
Kalgin, Igor V; Chekmarev, Sergei F; Karplus, Martin
2014-04-24
Simulations of first-passage folding of the antiparallel β-sheet miniprotein beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-workers, show that the kinetics and dynamics are significantly different from those for equilibrium folding. Because the folding of a protein in a living system generally corresponds to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare because they contain unfavorable parallel β-strand arrangements, which are difficult to form dynamically due to the distant N- and C-terminal strands. At the same time, the formation of helical conformations becomes much easier (particularly in the early stage of folding) due to short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed that while the equilibrium flow field presented a collection of local vortices with closed "streamlines", the first-passage folding is characterized by a pronounced overall flow from the unfolded states to the native state. The flows through the locally stable structures Cs-or and Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these structures and the native state. Although there are significant differences in the general picture of the folding process from the equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations.
2015-01-01
Simulations of first-passage folding of the antiparallel β-sheet miniprotein beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-workers, show that the kinetics and dynamics are significantly different from those for equilibrium folding. Because the folding of a protein in a living system generally corresponds to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare because they contain unfavorable parallel β-strand arrangements, which are difficult to form dynamically due to the distant N- and C-terminal strands. At the same time, the formation of helical conformations becomes much easier (particularly in the early stage of folding) due to short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed that while the equilibrium flow field presented a collection of local vortices with closed ”streamlines”, the first-passage folding is characterized by a pronounced overall flow from the unfolded states to the native state. The flows through the locally stable structures Cs-or and Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these structures and the native state. Although there are significant differences in the general picture of the folding process from the equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations. PMID:24669953
NASA Technical Reports Server (NTRS)
Milynczak, Martin G.
1991-01-01
The conversion of chemical potential energy and infrared radiative energy to kinetic energy by non-LTE processes involving ozone is a potentially significant source of heat in the terrestrial upper mesosphere and lower thermosphere. Heating rates are calculated and compared using two different statistical equilibrium models previously applied in the analysis of measurements of limb emission from ozone. The calculated heating depends strongly on the assumed distribution and relaxation of energy in the quasi-nascent ozone molecule. Finally, in the absence of a detailed data base of rate coefficients it may be possible to estimate the heating rate due to non-LTE processes in ozone from appropriate satellite measurements of the ozone concentration and of the infrared emission from ozone in the 9-12 micron spectral interval.
NO PSEUDOSYNCHRONOUS ROTATION FOR TERRESTRIAL PLANETS AND MOONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Valeri V.; Efroimsky, Michael, E-mail: vvm@usno.navy.mil, E-mail: michael.efroimsky@usno.navy.mil
2013-02-10
We re-examine the popular belief that a telluric planet or a satellite on an eccentric orbit can, outside a spin-orbit resonance, be captured in a quasi-static tidal equilibrium called pseudosynchronous rotation. The existence of such configurations was deduced from oversimplified tidal models assuming either a constant tidal torque or a torque linear in the tidal frequency. A more accurate treatment requires that the torque be decomposed into the Darwin-Kaula series over the tidal modes, and that this decomposition be combined with a realistic choice of rheological properties of the mantle, which we choose to be a combination of the Andrademore » model at ordinary frequencies and the Maxwell model at low frequencies. This development demonstrates that there exist no stable equilibrium states for solid planets and moons, other than spin-orbit resonances.« less
Final excitation energy of fission fragments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Karl-Heinz; Jurado, Beatriz
We study how the excitation energy of the fully accelerated fission fragments is built up. It is stressed that only the intrinsic excitation energy available before scission can be exchanged between the fission fragments to achieve thermal equilibrium. This is in contradiction with most models used to calculate prompt neutron emission, where it is assumed that the total excitation energy of the final fragments is shared between the fragments by the condition of equal temperatures. We also study the intrinsic excitation-energy partition in statistical equilibrium for different level-density descriptions as a function of the total intrinsic excitation energy of themore » fissioning system. Excitation energies are found to be strongly enhanced in the heavy fragment, if the level density follows a constant-temperature behavior at low energies, e.g., in the composed Gilbert-Cameron description.« less
Temperature distribution and heat radiation of patterned surfaces at short wavelengths.
Emig, Thorsten
2017-05-01
We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.
Temperature distribution and heat radiation of patterned surfaces at short wavelengths
NASA Astrophysics Data System (ADS)
Emig, Thorsten
2017-05-01
We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.
Linkage Disequilibrium in a Finite Population That Is Partially Selfing
Golding, G. B.; Strobeck, C.
1980-01-01
The linkage disequilibrium expected in a finite, partially selfing population is analyzed, assuming the infinite allele model. Formulas for the expected sum of squares of the linkage disequilibria and the squared standard linkage disequilibrium are derived from the equilibrium values of sixteen inbreeding coefficients required to describe the behavior of the system. These formulas are identical to those obtained with random mating if the effective population size Ne = (1-½S)N and the effective recombination value re = (1-S)r/(1-½S), where S is the proportion of selfing, are substituted for the population size and the recombination value. Therefore, the effect of partial selfing at equilibrium is to reduce the population size by a factor 1-½S and the recombination value by a factor (1-S)/(1-½S). PMID:17249017
Kolkata Paise Restaurant Problem and the Cyclically Fair Norm
NASA Astrophysics Data System (ADS)
Banerjee, Priyodorshi; Mitra, Manipushpak; Mukherjee, Conan
In this paper we revisit the Kolkata Paise Restaurant problem by allowing for a more general (but common) preference of the n customers defined over the set of n restaurants. This generalization allows for the possibility that each pure strategy Nash equilibrium differs from the Pareto efficient allocation. By assuming that n is small and by allowing for mutual interaction across all customers we design strategies to sustain cyclically fair norm as a sub-game perfect equilibrium of the Kolkata Paise Restaurant problem. We have a cyclically fair norm if n strategically different Pareto efficient strategies are sequentially sustained in a way such that each customer gets serviced in all the n restaurants exactly once between periods 1 and n and then again the same process is repeated between periods (n+1) and 2n and so on.
Transport properties of interacting magnetic islands in tokamak plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianakon, T.A.; Callen, J.D.; Hegna, C.C.
1993-10-01
This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly non-overlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to: a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficientmore » which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.« less
Large eddy simulation of cavitating flows
NASA Astrophysics Data System (ADS)
Gnanaskandan, Aswin; Mahesh, Krishnan
2014-11-01
Large eddy simulation on unstructured grids is used to study hydrodynamic cavitation. The multiphase medium is represented using a homogeneous equilibrium model that assumes thermal equilibrium between the liquid and the vapor phase. Surface tension effects are ignored and the governing equations are the compressible Navier Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. A characteristic-based filtering scheme is developed to handle shocks and material discontinuities in non-ideal gases and mixtures. A TVD filter is applied as a corrector step in a predictor-corrector approach with the predictor scheme being non-dissipative and symmetric. The method is validated for canonical one dimensional flows and leading edge cavitation over a hydrofoil, and applied to study sheet to cloud cavitation over a wedge. This work is supported by the Office of Naval Research.
Non-equilibrium Green's functions method: Non-trivial and disordered leads
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yu, E-mail: heyuyhe@gmail.com; Wang, Yu; Klimeck, Gerhard
2014-11-24
The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si{sub 0.5}Ge{sub 0.5}. It is found that alloy randomnessmore » in the leads can reduce the predicted ON-state current of Si{sub 0.5}Ge{sub 0.5} transistors by 45% compared to conventional lead methods.« less
Algorithmic mechanisms for reliable crowdsourcing computation under collusion.
Fernández Anta, Antonio; Georgiou, Chryssis; Mosteiro, Miguel A; Pareja, Daniel
2015-01-01
We consider a computing system where a master processor assigns a task for execution to worker processors that may collude. We model the workers' decision of whether to comply (compute the task) or not (return a bogus result to save the computation cost) as a game among workers. That is, we assume that workers are rational in a game-theoretic sense. We identify analytically the parameter conditions for a unique Nash Equilibrium where the master obtains the correct result. We also evaluate experimentally mixed equilibria aiming to attain better reliability-profit trade-offs. For a wide range of parameter values that may be used in practice, our simulations show that, in fact, both master and workers are better off using a pure equilibrium where no worker cheats, even under collusion, and even for colluding behaviors that involve deviating from the game.
Comparison of the analytical and simulation results of the equilibrium beam profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z. J.; Zhu Shaoping; Cao, L. H.
2007-10-15
The evolution of high current electron beams in dense plasmas has been investigated by using two-dimensional particle-in-cell (PIC) simulations with immobile ions. It is shown that electron beams are split into many filaments at the beginning due to the Weibel instability, and then different filamentation beams attract each other and coalesce. The profile of the filaments can be described by formulas. Hammer et al. [Phys. Fluids 13, 1831 (1970)] developed a self-consistent relativistic electron beam model that allows the propagation of relativistic electron fluxes in excess of the Alfven-Lawson critical-current limit for a fully neutralized beam. The equilibrium solution hasmore » been observed in the simulation results, but the electron distribution function assumed by Hammer et al. is different from the simulation results.« less
A theoretical method for selecting space craft and space suit atmospheres.
Vann, R D; Torre-Bueno, J R
1984-12-01
A theoretical method for selecting space craft and space suit atmospheres assumes that gas bubbles cause decompression sickness and that the risk increases when a critical bubble volume is exceeded. The method is consistent with empirical decompression exposures for humans under conditions of nitrogen equilibrium between the lungs and tissues. Space station atmospheres are selected so that flight crews may decompress immediately from sea level to station pressure without preoxygenation. Bubbles form as a result of this decompression but are less than the critical volume. The bubbles are absorbed during an equilibration period after which immediate transition to suit pressure is possible. Exercise after decompression and incomplete nitrogen equilibrium are shown to increase bubble size, and limit the usefulness of one previously tested stage decompression procedure for the Shuttle. The method might be helpful for evaluating decompression procedures before testing.
New Variational Formulations of Hybrid Stress Elements
NASA Technical Reports Server (NTRS)
Pian, T. H. H.; Sumihara, K.; Kang, D.
1984-01-01
In the variational formulations of finite elements by the Hu-Washizu and Hellinger-Reissner principles the stress equilibrium condition is maintained by the inclusion of internal displacements which function as the Lagrange multipliers for the constraints. These versions permit the use of natural coordinates and the relaxation of the equilibrium conditions and render considerable improvements in the assumed stress hybrid elements. These include the derivation of invariant hybrid elements which possess the ideal qualities such as minimum sensitivity to geometric distortions, minimum number of independent stress parameters, rank sufficient, and ability to represent constant strain states and bending moments. Another application is the formulation of semiLoof thin shell elements which can yield excellent results for many severe test cases because the rigid body nodes, the momentless membrane strains, and the inextensional bending modes are all represented.
Algorithmic Mechanisms for Reliable Crowdsourcing Computation under Collusion
Fernández Anta, Antonio; Georgiou, Chryssis; Mosteiro, Miguel A.; Pareja, Daniel
2015-01-01
We consider a computing system where a master processor assigns a task for execution to worker processors that may collude. We model the workers’ decision of whether to comply (compute the task) or not (return a bogus result to save the computation cost) as a game among workers. That is, we assume that workers are rational in a game-theoretic sense. We identify analytically the parameter conditions for a unique Nash Equilibrium where the master obtains the correct result. We also evaluate experimentally mixed equilibria aiming to attain better reliability-profit trade-offs. For a wide range of parameter values that may be used in practice, our simulations show that, in fact, both master and workers are better off using a pure equilibrium where no worker cheats, even under collusion, and even for colluding behaviors that involve deviating from the game. PMID:25793524
Progress Toward an Efficient and General CFD Tool for Propulsion Design/Analysis
NASA Technical Reports Server (NTRS)
Cox, C. F.; Cinnella, P.; Westmoreland, S.
1996-01-01
The simulation of propulsive flows inherently involves chemical activity. Recent years have seen substantial strides made in the development of numerical schemes for reacting flowfields, in particular those involving finite-rate chemistry. However, finite-rate calculations are computationally intensive and require knowledge of the actual kinetics, which are not always known with sufficient accuracy. Alternatively, flow simulations based on the assumption of local chemical equilibrium are capable of obtaining physically reasonable results at far less computational cost. The present study summarizes the development of efficient numerical techniques for the simulation of flows in local chemical equilibrium, whereby a 'Black Box' chemical equilibrium solver is coupled to the usual gasdynamic equations. The generalization of the methods enables the modelling of any arbitrary mixture of thermally perfect gases, including air, combustion mixtures and plasmas. As demonstration of the potential of the methodologies, several solutions, involving reacting and perfect gas flows, will be presented. Included is a preliminary simulation of the SSME startup transient. Future enhancements to the proposed techniques will be discussed, including more efficient finite-rate and hybrid (partial equilibrium) schemes. The algorithms that have been developed and are being optimized provide for an efficient and general tool for the design and analysis of propulsion systems.
Clustering of galaxies with f(R) gravity
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Faizal, Mir; Hameeda, Mir; Pourhassan, Behnam; Salzano, Vincenzo; Upadhyay, Sudhaker
2018-02-01
Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newton's potential given by f(R) gravity. We compute the corrected N-particle partition function analytically. The corrected partition function leads to more exact equations of state of the system. By assuming that the system follows quasi-equilibrium, we derive the exact distribution function that exhibits the f(R) correction. Moreover, we evaluate the critical temperature and discuss the stability of the system. We observe the effects of correction of f(R) gravity on the power-law behaviour of particle-particle correlation function also. In order to check the feasibility of an f(R) gravity approach to the clustering of galaxies, we compare our results with an observational galaxy cluster catalogue.
NASA Astrophysics Data System (ADS)
Açıkkalp, Emin; Yamık, Hasan
2015-03-01
In classical thermodynamics, the maximum power obtained from a system is defined as exergy (availability). However, the term exergy is used for reversible cycles only; in reality, reversible cycles do not exist, and all systems are irreversible. Reversible cycles do not have such restrictions as time and dimension, and are assumed to work in an equilibrium state. The objective of this study is to obtain maximum available work for SI, CI and Brayton cycles while considering the aforementioned restrictions and assumptions. We assume that the specific heat of the working fluid varies with temperature, we define optimum compression ratios and pressure ratio in order to obtain maximum available work, and we discuss the results obtained. The design parameter most appropriate for the results obtained is presented.
NASA Astrophysics Data System (ADS)
Kovalev, V. M.
2018-04-01
A two-dimensional system with two nonequivalent valleys in the field of a strong circularly polarized electromagnetic wave is considered. It is assumed that the optical selection rules for a given polarization of light allow band-to-band transitions only in valleys of one, optically active, type (two-dimensional layer based on transition metal dichalcogenides, gapped graphene, etc.). This leads to the formation of photon-coupled electron-hole pairs, or an "optical insulator" state. It is assumed that the valleys of the second type (optically inactive) are populated with an equilibrium electron gas. The relaxation of elementary excitations in this hybrid system consisting of an electron gas and a gas of electron-hole pairs caused by the Coulomb interaction between the particles is investigated.
NASA Astrophysics Data System (ADS)
Wang, Wei-Hua; Huang, Xi; Zheng, Xiao-Ping
We discuss the effect of compression on Urca shells in the ocean and crust of accreting neutron stars, especially in superbursting sources. We find that Urca shells may be deviated from chemical equilibrium in neutron stars which accrete at several tenths of the local Eddington accretion rate. The deviation depends on the energy threshold of the parent and daughter nuclei, the transition strength, the temperature, and the local accretion rate. In a typical crust model of accreting neutron stars, the chemical departures range from a few tenths of kBT to tens of kBT for various Urca pairs. If the Urca shell can exist in crusts of accreting neutron stars, compression may enhance the net neutrino cooling rate by a factor of about 1-2 relative to the neutrino emissivity in chemical equilibrium. For some cases, such as Urca pairs with small energy thresholds and/or weak transition strength, the large chemical departure may result in net heating rather than cooling, although the released heat can be small. Strong Urca pairs in the deep crust are hard to be deviated even in neutron stars accreting at the local Eddington accretion rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, James R; Shashkov, Mikhail J
2009-01-01
Despite decades of development, Lagrangian hydrodynamics of strengthfree materials presents numerous open issues, even in one dimension. We focus on the problem of closing a system of equations for a two-material cell under the assumption of a single velocity model. There are several existing models and approaches, each possessing different levels of fidelity to the underlying physics and each exhibiting unique features in the computed solutions. We consider the case in which the change in heat in the constituent materials in the mixed cell is assumed equal. An instantaneous pressure equilibration model for a mixed cell can be cast asmore » four equations in four unknowns, comprised of the updated values of the specific internal energy and the specific volume for each of the two materials in the mixed cell. The unique contribution of our approach is a physics-inspired, geometry-based model in which the updated values of the sub-cell, relaxing-toward-equilibrium constituent pressures are related to a local Riemann problem through an optimization principle. This approach couples the modeling problem of assigning sub-cell pressures to the physics associated with the local, dynamic evolution. We package our approach in the framework of a standard predictor-corrector time integration scheme. We evaluate our model using idealized, two material problems using either ideal-gas or stiffened-gas equations of state and compare these results to those computed with the method of Tipton and with corresponding pure-material calculations.« less
On the spectrum and polarization of magnetar flare emission
NASA Astrophysics Data System (ADS)
Taverna, R.; Turolla, R.
2017-08-01
Bursts and flares are among the distinctive observational manifestations of magnetars, isolated neutron stars endowed with an ultrastrong magnetic field (B ≈ 1014-1015 G). It is believed that these events arise in a hot electron-positron plasma that remains trapped within the closed magnetic field lines. We developed a simple radiative transfer model to simulate magnetar flare emission in the case of a steady trapped fireball. After dividing the fireball surface in a number of plane-parallel slabs, the local spectral and polarization properties are obtained integrating the radiative transfer equations for the two normal modes. We assume that magnetic Thomson scattering is the dominant source of opacity, and neglect contributions from second-order radiative processes, although double-Compton scattering is accounted for in establishing local thermal equilibrium in the fireball atmospheric layers. The observed spectral and polarization properties as measured by a distant observer are obtained by summing the contributions from the patches that are visible for a given viewing geometry by means of a ray-tracing code. The spectra we obtained in the 1-100 keV energy range are thermal and can be described in terms of the superposition of two blackbodies. The blackbody temperature and the emitting area ratio are in broad agreement with the available observations. The predicted linear polarization degree is, in general, greater than 80 per cent over the entire energy range and should be easily detectable by new-generation X-ray polarimeters, such as IXPE, XIPE and eXTP.
Markovian master equations for quantum thermal machines: local versus global approach
NASA Astrophysics Data System (ADS)
Hofer, Patrick P.; Perarnau-Llobet, Martí; Miranda, L. David M.; Haack, Géraldine; Silva, Ralph; Bohr Brask, Jonatan; Brunner, Nicolas
2017-12-01
The study of quantum thermal machines, and more generally of open quantum systems, often relies on master equations. Two approaches are mainly followed. On the one hand, there is the widely used, but often criticized, local approach, where machine sub-systems locally couple to thermal baths. On the other hand, in the more established global approach, thermal baths couple to global degrees of freedom of the machine. There has been debate as to which of these two conceptually different approaches should be used in situations out of thermal equilibrium. Here we compare the local and global approaches against an exact solution for a particular class of thermal machines. We consider thermodynamically relevant observables, such as heat currents, as well as the quantum state of the machine. Our results show that the use of a local master equation is generally well justified. In particular, for weak inter-system coupling, the local approach agrees with the exact solution, whereas the global approach fails for non-equilibrium situations. For intermediate coupling, the local and the global approach both agree with the exact solution and for strong coupling, the global approach is preferable. These results are backed by detailed derivations of the regimes of validity for the respective approaches.
An approximate fluvial equilibrium topography for the Alps
NASA Astrophysics Data System (ADS)
Stüwe, K.; Hergarten, S.
2012-04-01
This contribution addresses the question whether the present topography of the Alps can be approximated by a fluvial equilibrium topography and whether this can be used to determine uplift rates. Based on a statistical analysis of the present topography we use a stream-power approach for erosion where the erosion rate is proportional to the square root of the catchment size for catchment sizes larger than 12 square kilometers and a logarithmic dependence to mimic slope processes at smaller catchment sizes. If we assume a homogeneous uplift rate over the entire region (block uplift), the best-fit fluvial equilibrium topography differs from the real topography by about 500 m RMS (root mean square) with a strong systematic deviation. Regions of low elevation are too high in the equilibrium topography, while high-mountain regions are too low. The RMS difference significantly decreases if a spatially variable uplift function is allowed. If a strong variation of the uplift rate on a scale of 5 km is allowed, the systematic deviation becomes rather small, and the RMS difference decreases to about 150 m. A significant part of the remaining deviation apparently arises from glacially-shaped valleys, while another part may result from prematurity of the relief (Hergarten, Wagner & Stüwe, EPSL 297:453, 2010). The best-fit uplift function can probably be used for forward or backward simulation of the landform evolution.
Zhang, Songping; Sun, Yan
2004-01-01
A model describing the salt effect on adsorption equilibrium of a basic protein, lysozyme, to Cibacron Blue 3GA-modified Sepharose CL-6B (CB-Sepharose) has been developed. In this model, it is assumed that the presence of salt causes a fraction of dye-ligand molecules to lodge to the surface of the agarose gel, resulting from the induced strong hydrophobic interaction between dye ligand and agarose matrix. The salt effect on the lodging of dye-ligand is expressed by the equilibrium between salt and dye-ligand. For the interactions between protein and vacant binding sites, stoichiometric equations based either on cation exchanges or on hydrophobic interactions are proposed since the CB dye can be regarded as a cation exchanger contributed by the sulfonate groups on it. Combining with the basic concept of steric mass-action theory for ion exchange, which considers both the multipoint nature and the macromolecular steric shielding of protein adsorption, an explicit isotherm for protein adsorption equilibrium on the dye-ligand adsorbent is formulated, involving salt concentration as a variable. Analysis of the model parameters has yielded better understanding of the mechanism of salt effects on adsorption of the basic protein. Moreover, the model predictions are in good agreement with the experimental data over a wide range of salt and ligand concentrations, indicating the predictive nature of the model.
A new equilibrium torus solution and GRMHD initial conditions
NASA Astrophysics Data System (ADS)
Penna, Robert F.; Kulkarni, Akshay; Narayan, Ramesh
2013-11-01
Context. General relativistic magnetohydrodynamic (GRMHD) simulations are providing influential models for black hole spin measurements, gamma ray bursts, and supermassive black hole feedback. Many of these simulations use the same initial condition: a rotating torus of fluid in hydrostatic equilibrium. A persistent concern is that simulation results sometimes depend on arbitrary features of the initial torus. For example, the Bernoulli parameter (which is related to outflows), appears to be controlled by the Bernoulli parameter of the initial torus. Aims: In this paper, we give a new equilibrium torus solution and describe two applications for the future. First, it can be used as a more physical initial condition for GRMHD simulations than earlier torus solutions. Second, it can be used in conjunction with earlier torus solutions to isolate the simulation results that depend on initial conditions. Methods: We assume axisymmetry, an ideal gas equation of state, constant entropy, and ignore self-gravity. We fix an angular momentum distribution and solve the relativistic Euler equations in the Kerr metric. Results: The Bernoulli parameter, rotation rate, and geometrical thickness of the torus can be adjusted independently. Our torus tends to be more bound and have a larger radial extent than earlier torus solutions. Conclusions: While this paper was in preparation, several GRMHD simulations appeared based on our equilibrium torus. We believe it will continue to provide a more realistic starting point for future simulations.
Stresses in Solder Joints of Electronic Packages
1991-12-31
soldering process. The device is soldered to the circuit board at a temperature of +185zc and this tempature is assumed to propagate only to the lead wire...tri-material assembly, showing the notation used hereafter, is shown in Figure 7. The Suhir model is applicable to assemblies with continuous...therefore the radii of curvature of layers are all equal. Using equilibrium equation (7) and moment-curvature equation (9) yields ()D D Xp (x) D T() -m 3 x
Stern, L.A.; Brown, Gordon E.; Bird, D.K.; Jahns, R.H.; Foord, E.E.; Shigley, J.E.; Spaulding, L.B.
1986-01-01
Several layered pegmatite-aplite intrusives exposed at the Little Three mine, Ramona, display closely associated fine-grained to giant-textured mineral assemblages which are believed to have co-evolved from a hydrous aluminosilicate residual melt with an exsolved supercritical vapour phase. Calculations of phase relations between the major pegmatite-aplite mineral assemblages and supercritical aqueous fluid were made, assuming equilibrium and closed-system behaviour as a first-order model.-J.A.Z.
Exploring the Diffuse X-ray Emission of Supernova Remnant Kesteven 69 with XMM-Newton
NASA Astrophysics Data System (ADS)
Seo, Kyoung-Ae; Hui, Chung Yue
2013-06-01
We have investigated the X-ray emission from the shock-heated plasma of the Galactic supernova remnant Kesteven 69 with XMM-Newton. Assuming the plasma is at collisional ionization equilibrium, a plasma temperature and a column absorption are found to be kT ~ 0.62 keV and NH ~ 2.85 ×10^22 cm-2 respectively by imaging spectroscopy. Together with the deduced emission measure, we place constraints on its Sedov parameters.
1976-10-01
aerodynamic flow field pertaining to the design point is defined on twenty-one stream surfaces, and radial and meridional distributions of significant...full radial equilibrium analysis of the compressor flow field using the streamline curvature solution technique. Through a series of iterations, it...one can assume the blade geometry, solving for the equilibriwn flow field using specified relative flow aigles as input to the aerodynamic program. In
Glucans monomer-exchange dynamics as an open chemical network
NASA Astrophysics Data System (ADS)
Rao, Riccardo; Lacoste, David; Esposito, Massimiliano
2015-12-01
We describe the oligosaccharides-exchange dynamics performed by the so-called D-enzymes on polysaccharides. To mimic physiological conditions, we treat this process as an open chemical network by assuming some of the polymer concentrations fixed (chemostatting). We show that three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states, and continuous growth states. We dynamically and thermodynamically characterize these states and emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing them.
Glucans monomer-exchange dynamics as an open chemical network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Riccardo, E-mail: riccardo.rao@uni.lu; Esposito, Massimiliano, E-mail: massimiliano.esposito@uni.lu; Lacoste, David
2015-12-28
We describe the oligosaccharides-exchange dynamics performed by the so-called D-enzymes on polysaccharides. To mimic physiological conditions, we treat this process as an open chemical network by assuming some of the polymer concentrations fixed (chemostatting). We show that three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states, and continuous growth states. We dynamically and thermodynamically characterize these states and emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing them.
Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment
DOE R&D Accomplishments Database
Marcus, R. A.
1964-01-01
In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.
Han, Shuping; Naito, Wataru; Masunaga, Shigeki
To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron.
Scaling laws for homogeneous turbulent shear flows in a rotating frame
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Mhuiris, Nessan Macgiolla
1988-01-01
The scaling properties of plane homogeneous turbulent shear flows in a rotating frame are examined mathematically by a direct analysis of the Navier-Stokes equations. It is proved that two such shear flows are dynamically similar if and only if their initial dimensionless energy spectrum E star (k star, 0), initial dimensionless shear rate SK sub 0/epsilon sub 0, initial Reynolds number K squared sub 0/nu epsilon sub 0, and the ration of the rotation rate to the shear rate omega/S are identical. Consequently, if universal equilibrium states exist, at high Reynolds numbers, they will only depend on the single parameter omega/S. The commonly assumed dependence of such equilibrium states on omega/S through the Richardson number Ri=-2(omega/S)(1-2 omega/S) is proven to be inconsistent with the full Navier-Stokes equations and to constitute no more than a weak approximation. To be more specific, Richardson number similarity is shown to only rigorously apply to certain low-order truncations of the Navier-Stokes equations (i.e., to certain second-order closure models) wherein closure is achieved at the second-moment level by assuming that the higher-order moments are a small perturbation of their isotropic states. The physical dependence of rotating turbulent shear flows on omega/S is discussed in detail along with the implications for turbulence modeling.
Termination of the solar wind in the hot, partially ionized interstellar medium. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lombard, C. K.
1974-01-01
Theoretical foundations for understanding the problem of the termination of the solar wind are reexamined in the light of most recent findings concerning the states of the solar wind and the local interstellar medium. The investigation suggests that a simple extention of Parker's (1961) analytical model provides a useful approximate description of the combined solar wind, interstellar wind plasma flowfield under conditions presently thought to occur. A linear perturbation solution exhibiting both the effects of photoionization and charge exchange is obtained for the supersonic solar wind. A numerical algorithm is described for computing moments of the non-equilibrium hydrogen distribution function and associated source terms for the MHD equations. Computed using the algorithm in conjunction with the extended Parker solution to approximate the plasma flowfield, profiles of hydrogen number density are given in the solar wind along the upstream and downstream axes of flow with respect to the direction of the interstellar wind. Predictions of solar Lyman-alpha backscatter intensities to be observed at 1 a.u. have been computed, in turn, from a set of such hydrogen number density profiles varied over assumed conditions of the interstellar wind.
Pulsatile Flow and Gas Transport of Blood over an Array of Cylinders
NASA Astrophysics Data System (ADS)
Chan, Kit Yan
2005-11-01
In the artificial lung, blood passes through an array of micro-fibers and the gas transfer is strongly dependent on the flow field. The blood flow is unsteady and pulsatile. We have numerically simulated pulsatile flow and gas transfer of blood (modeled as a Casson fluid) over arrays of cylindrical micro-fibers. Oxygen and carbon dioxide are assumed to be in local equilibrium with hemoglobin in blood; and the carbon dioxide facilitated oxygen transport is incorporated into the model by allowing the coupling of carbon dioxide partial pressure and oxygen saturation. The pulsatile flow inputs considered are the sinusoidal and the cardiac waveforms. The squared and staggered arrays of arrangement of the cylinders are considered in this study. Gas transport can be enhanced by: increasing the oscillation frequency; increasing the Reynolds number; increasing the oscillation amplitude; decreasing the void fraction; the use of the cardiac pulsatile input. The overall gas transport is greatly enhanced by the presence of hemoglobin in blood even though the non-Newtonian effect of blood tends to decrease the size and strength of vortices. The pressure drop is also presented as it is an important design parameter confronting the heart.