Science.gov

Sample records for astaxanthin biosynthesis pathway

  1. "Glucose and ethanol-dependent transcriptional regulation of the astaxanthin biosynthesis pathway in Xanthophyllomyces dendrorhous"

    PubMed Central

    2011-01-01

    Background The yeast Xanthophyllomyces dendrorhous is one of the most promising and economically attractive natural sources of astaxanthin. The biosynthesis of this valuable carotenoid is a complex process for which the regulatory mechanisms remain mostly unknown. Several studies have shown a strong correlation between the carbon source present in the medium and the amount of pigments synthesized. Carotenoid production is especially low when high glucose concentrations are used in the medium, while a significant increase is observed with non-fermentable carbon sources. However, the molecular basis of this phenomenon has not been established. Results In this work, we showed that glucose caused transcriptional repression of the three genes involved in the synthesis of astaxanthin from geranylgeranyl pyrophosphate in X. dendrorhous, which correlates with a complete inhibition of pigment synthesis. Strikingly, this regulatory response was completely altered in mutant strains that are incapable of synthesizing astaxanthin. However, we found that addition of ethanol caused the induction of crtYB and crtS gene expression and promoted de novo synthesis of carotenoids. The induction of carotenogenesis was noticeable as early as 24 h after ethanol addition. Conclusion For the first time, we demonstrated that carbon source-dependent regulation of astaxanthin biosynthesis in X. dendrorhous involves changes at the transcriptional level. Such regulatory mechanism provides an explanation for the strong and early inhibitory effect of glucose on the biosynthesis of this carotenoid. PMID:21861883

  2. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae).

    PubMed

    Chen, Guanqun; Wang, Baobei; Han, Danxiang; Sommerfeld, Milton; Lu, Yinghua; Chen, Feng; Hu, Qiang

    2015-01-01

    Astaxanthin, a red ketocarotenoid with strong antioxidant activity and high commercial value, possesses important physiological functions in astaxanthin-producing microalgae. The green microalga Haematococcus pluvialis accumulates up to 4% fatty acid-esterified astaxanthin (by dry weight), and is used as a model species for exploring astaxanthin biosynthesis in unicellular photosynthetic organisms. Although coordination of astaxanthin and fatty acid biosynthesis in a stoichiometric fashion was observed in H. pluvialis, the interaction mechanism is unclear. Here we dissected the molecular mechanism underlying coordination between the two pathways in H. pluvialis. Our results eliminated possible coordination of this inter-dependence at the transcriptional level, and showed that this interaction was feedback-coordinated at the metabolite level. In vivo and in vitro experiments indicated that astaxanthin esterification drove the formation and accumulation of astaxanthin. We further showed that both free astaxanthin biosynthesis and esterification occurred in the endoplasmic reticulum, and that certain diacylglycerol acyltransferases may be the candidate enzymes catalyzing astaxanthin esterification. A model of astaxanthin biosynthesis in H. pluvialis was subsequently proposed. These findings provide further insights into astaxanthin biosynthesis in H. pluvialis.

  3. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin

    PubMed Central

    2011-01-01

    Background The xanthophyll astaxanthin is a high-value compound with applications in the nutraceutical, cosmetic, food, and animal feed industries. Besides chemical synthesis and extraction from naturally producing organisms like Haematococcus pluvialis, heterologous biosynthesis in non-carotenogenic microorganisms like Escherichia coli, is a promising alternative for sustainable production of natural astaxanthin. Recent achievements in the metabolic engineering of E. coli strains have led to a significant increase in the productivity of carotenoids like lycopene or β-carotene by increasing the metabolic flux towards the isoprenoid precursors. For the heterologous biosynthesis of astaxanthin in E. coli, however, the conversion of β-carotene to astaxanthin is obviously the most critical step towards an efficient biosynthesis of astaxanthin. Results Here we report the construction of the first plasmid-free E. coli strain that produces astaxanthin as the sole carotenoid compound with a yield of 1.4 mg/g cdw (E. coli BW-ASTA). This engineered E. coli strain harbors xanthophyll biosynthetic genes from Pantoea ananatis and Nostoc punctiforme as individual expression cassettes on the chromosome and is based on a β-carotene-producing strain (E. coli BW-CARO) recently developed in our lab. E. coli BW-CARO has an enhanced biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP) and produces β-carotene in a concentration of 6.2 mg/g cdw. The expression of crtEBIY along with the β-carotene-ketolase gene crtW148 (NpF4798) and the β-carotene-hydroxylase gene (crtZ) under controlled expression conditions in E. coli BW-ASTA directed the pathway exclusively towards the desired product astaxanthin (1.4 mg/g cdw). Conclusions By using the λ-Red recombineering technique, genes encoding for the astaxanthin biosynthesis pathway were stably integrated into the chromosome of E. coli. The expression levels of chromosomal integrated recombinant biosynthetic genes were

  4. Transcriptome sequencing and metabolic pathways of astaxanthin accumulated in Haematococcus pluvialis mutant under 15% CO2.

    PubMed

    Cheng, Jun; Li, Ke; Zhu, Yanxia; Yang, Weijuan; Zhou, Junhu; Cen, Kefa

    2017-03-01

    Transcriptome sequencing and annotation was performed on Haematococcus pluvialis mutant red cells induced with high light under 15% CO2 to demonstrate why astaxanthin yield of the mutant was 1.7 times higher than that of a wild strain. It was found that 56% of 1947 differentially expressed genes were upregulated in mutant cells. Most significant differences were found in unigenes related to photosynthesis, carotenoid biosynthesis and fatty acid biosynthesis pathways. The pyruvate kinase increased by 3.5-fold in mutant cells. Thus, more pyruvate, which was beneficial to carotenoids and fatty acid biosynthesis, was generated. Phytoene synthase, zeta-carotene desaturase, lycopene beta-cyclase involved in β-carotene biosynthesis in mutant cells were upregulated by 10.4-, 4.4-, and 5.8-fold, respectively. Beta-carotene 3-hydroxylase catalyzing conversion of β-carotene into astaxanthin was upregulated by 18.4-fold. The fatty acid biosynthesis was promoted because of the upregulation of acetyl-CoA synthetase and acetyl-CoA carboxylase, thus increasing astaxanthin esterification and accumulation in mutant cells.

  5. Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature.

    PubMed

    Ducrey Sanpietro, L M; Kula, M R

    1998-08-01

    The effect of nicotine and diphenylamine on astaxanthin biosynthesis in Xanthophyllomyces dendrorhous was studied. The effects were analysed under standard and low temperature conditions. It was found that 10 mM-nicotine inhibits the cyclization of lycopene and de novo protein synthesis was not needed to reverse the inhibition. The oxidation of beta-carotene was irreversibly inhibited by 10 microM-diphenylamine while the dehydrogenation of phytoene was reversibly inhibited by 60 microM-diphenylamine. The simultaneous exposure to low temperature (4 degrees C) overcomes the inhibition of beta-carotene oxidation at low diphenylamine concentration.

  6. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli

    PubMed Central

    Ma, Tian; Zhou, Yuanjie; Li, Xiaowei; Zhu, Fayin; Cheng, Yongbo; Liu, Yi; Deng, Zixin

    2015-01-01

    Abstract As a highly valued keto‐carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the α‐Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole‐genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio‐Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high‐efficiency targeted engineering carotenoid synthesis platform was constructed in E. coli for identifying the functional roles of candidate genes. All genes involved in astaxanthin biosynthesis showed discrete distributions on the chromosome. Moreover, the overexpression of exogenous E. coli idi in Sphingomonas sp. ATCC 55669 increased astaxanthin production by 5.4‐fold. This study described a new astaxanthin producer and provided more biosynthesis components for bioengineering of astaxanthin in the future. PMID:26580858

  7. Amino Acid Biosynthesis Pathways in Diatoms

    PubMed Central

    Bromke, Mariusz A.

    2013-01-01

    Amino acids are not only building blocks for proteins but serve as precursors for the synthesis of many metabolites with multiple functions in growth and other biological processes of a living organism. The biosynthesis of amino acids is tightly connected with central carbon, nitrogen and sulfur metabolism. Recent publication of genome sequences for two diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum created an opportunity for extensive studies on the structure of these metabolic pathways. Based on sequence homology found in the analyzed diatomal genes, the biosynthesis of amino acids in diatoms seems to be similar to higher plants. However, one of the most striking differences between the pathways in plants and in diatomas is that the latter possess and utilize the urea cycle. It serves as an important anaplerotic pathway for carbon fixation into amino acids and other N-containing compounds, which are essential for diatom growth and contribute to their high productivity. PMID:24957993

  8. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies

    PubMed Central

    Schmid, Jochen; Sieber, Volker; Rehm, Bernd

    2015-01-01

    Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications. PMID:26074894

  9. Enzymology of the carnitine biosynthesis pathway.

    PubMed

    Strijbis, Karin; Vaz, Frédéric M; Distel, Ben

    2010-05-01

    The water-soluble zwitterion carnitine is an essential metabolite in eukaryotes required for fatty acid oxidation as it functions as a carrier during transfer of activated acyl and acetyl groups across intracellular membranes. Most eukaryotes are able to synthesize carnitine endogenously, besides their capacity to take up carnitine from the diet or extracellular medium through plasma membrane transporters. This review discusses the current knowledge on carnitine homeostasis with special emphasis on the enzymology of the four steps of the carnitine biosynthesis pathway.

  10. Carotenoid Biosynthesis in Arabidopsis: A Colorful Pathway

    PubMed Central

    Ruiz-Sola, M. Águila; Rodríguez-Concepción, Manuel

    2012-01-01

    Plant carotenoids are a family of pigments that participate in light harvesting and are essential for photoprotection against excess light. Furthermore, they act as precursors for the production of apocarotenoid hormones such as abscisic acid and strigolactones. In this review, we summarize the current knowledge on the genes and enzymes of the carotenoid biosynthetic pathway (which is now almost completely elucidated) and on the regulation of carotenoid biosynthesis at both transcriptional and post-transcriptional levels. We also discuss the relevance of Arabidopsis as a model system for the study of carotenogenesis and how metabolic engineering approaches in this plant have taught important lessons for carotenoid biotechnology. PMID:22582030

  11. Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways

    PubMed Central

    Yan, Tingting; Zhao, Yan; Zhang, Xia; Lin, Xiaotong

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption. PMID:26978376

  12. Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia; Lin, Xiaotong

    2016-03-10

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption.

  13. Methylerythritol Phosphate Pathway of Isoprenoid Biosynthesis

    PubMed Central

    Zhao, Lishan; Chang, Wei-chen; Xiao, Youli; Liu, Hung-wen; Liu, Pinghua

    2016-01-01

    Isoprenoids are a class of natural products with more than 50,000 members. All isoprenoids are constructed from two precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). Two of the most important discoveries in isoprenoid biosynthetic studies in recent years are the elucidation of a second isoprenoid biosynthetic pathway (the methylerythritol phosphate (MEP) pathway) and a modified mevalonate (MVA) pathway. In this review, mechanistic insights on the MEP pathway enzymes are summarized. Since many isoprenoids have important biological activities, the need to produce them in sufficient quantities for downstream research efforts or commercial application is apparent. Recent advances in both the MVA and MEP pathway-based synthetic biology efforts are also illustrated by reviewing the landmark work of artemisinic acid and taxadien-5α-ol production through microbial fermentations. PMID:23746261

  14. Tracking the sterol biosynthesis pathway of the diatom Phaeodactylum tricornutum.

    PubMed

    Fabris, Michele; Matthijs, Michiel; Carbonelle, Sophie; Moses, Tessa; Pollier, Jacob; Dasseville, Renaat; Baart, Gino J E; Vyverman, Wim; Goossens, Alain

    2014-11-01

    Diatoms are unicellular photosynthetic microalgae that play a major role in global primary production and aquatic biogeochemical cycling. Endosymbiotic events and recurrent gene transfers uniquely shaped the genome of diatoms, which contains features from several domains of life. The biosynthesis pathways of sterols, essential compounds in all eukaryotic cells, and many of the enzymes involved are evolutionarily conserved in eukaryotes. Although well characterized in most eukaryotes, the pathway leading to sterol biosynthesis in diatoms has remained hitherto unidentified. Through the DiatomCyc database we reconstructed the mevalonate and sterol biosynthetic pathways of the model diatom Phaeodactylum tricornutum in silico. We experimentally verified the predicted pathways using enzyme inhibitor, gene silencing and heterologous gene expression approaches. Our analysis revealed a peculiar, chimeric organization of the diatom sterol biosynthesis pathway, which possesses features of both plant and fungal pathways. Strikingly, it lacks a conventional squalene epoxidase and utilizes an extended oxidosqualene cyclase and a multifunctional isopentenyl diphosphate isomerase/squalene synthase enzyme. The reconstruction of the P. tricornutum sterol pathway underscores the metabolic plasticity of diatoms and offers important insights for the engineering of diatoms for sustainable production of biofuels and high-value chemicals.

  15. Spectral Dependence of Chlorophyll Biosynthesis Pathways in Plant Leaves.

    PubMed

    Belyaeva, O B; Litvin, F F

    2015-12-01

    This review covers studies on the dependence of chlorophyll photobiosynthesis reactions from protochlorophyllide on the spectral composition of actinic light. A general scheme of the reaction sequence for the photochemical stage in chlorophyll biosynthesis for etiolated plant leaves is presented. Comparative analysis of the data shows that the use of light with varied wavelengths for etiolated plant illumination reveals parallel transformation pathways of different protochlorophyllide forms into chlorophyllide, including a pathway for early photosystem II reaction center P-680 pigment formation.

  16. Cloning of the cytochrome p450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous

    PubMed Central

    Alcaíno, Jennifer; Barahona, Salvador; Carmona, Marisela; Lozano, Carla; Marcoleta, Andrés; Niklitschek, Mauricio; Sepúlveda, Dionisia; Baeza, Marcelo; Cifuentes, Víctor

    2008-01-01

    Background The yeast Xanthophyllomyces dendrorhous synthesizes astaxanthin, a carotenoid with high commercial interest. The proposed biosynthetic route in this organism is isopentenyl-pyrophosphate (IPP) → geranyleranyl pyrophosphate (GGPP) → phytoene → lycopene → β-carotene → astaxanthin. Recently, it has been published that the conversion of β-carotene into astaxanthin requires only one enzyme, astaxanthin synthase or CrtS, encoded by crtS gene. This enzyme belongs to the cytochrome P450 protein family. Results In this work, a crtR gene was isolated from X. dendrorhous yeast, which encodes a cytochrome P450 reductase (CPR) that provides CrtS with the necessary electrons for substrate oxygenation. We determined the structural organization of the crtR gene and its location in the yeast electrophoretic karyotype. Two transformants, CBSTr and T13, were obtained by deleting the crtR gene and inserting a hygromycin B resistance cassette. The carotenoid composition of the transformants was altered in relation to the wild type strain. CBSTr forms yellow colonies because it is unable to produce astaxanthin, hence accumulating β-carotene. T13 forms pale colonies because its astaxanthin content is reduced and its β-carotene content is increased. Conclusion In addition to the crtS gene, X. dendrorhous requires a novel gene, crtR, for the conversion of β-carotene to astaxanthin. PMID:18837978

  17. An engineered pathway for the biosynthesis of renewable propane.

    PubMed

    Kallio, Pauli; Pásztor, András; Thiel, Kati; Akhtar, M Kalim; Jones, Patrik R

    2014-09-02

    The deployment of next-generation renewable biofuels can be enhanced by improving their compatibility with the current infrastructure for transportation, storage and utilization. Propane, the bulk component of liquid petroleum gas, is an appealing target as it already has a global market. In addition, it is a gas under standard conditions, but can easily be liquefied. This allows the fuel to immediately separate from the biocatalytic process after synthesis, yet does not preclude energy-dense storage as a liquid. Here we report, for the first time, a synthetic metabolic pathway for producing renewable propane. The pathway is based on a thioesterase specific for butyryl-acyl carrier protein (ACP), which allows native fatty acid biosynthesis of the Escherichia coli host to be redirected towards a synthetic alkane pathway. Propane biosynthesis is markedly stimulated by the introduction of an electron-donating module, optimizing the balance of O2 supply and removal of native aldehyde reductases.

  18. An engineered pathway for the biosynthesis of renewable propane

    PubMed Central

    Kallio, Pauli; Pásztor, András; Thiel, Kati; Akhtar, M. Kalim; Jones, Patrik R.

    2014-01-01

    The deployment of next-generation renewable biofuels can be enhanced by improving their compatibility with the current infrastructure for transportation, storage and utilization. Propane, the bulk component of liquid petroleum gas, is an appealing target as it already has a global market. In addition, it is a gas under standard conditions, but can easily be liquefied. This allows the fuel to immediately separate from the biocatalytic process after synthesis, yet does not preclude energy-dense storage as a liquid. Here we report, for the first time, a synthetic metabolic pathway for producing renewable propane. The pathway is based on a thioesterase specific for butyryl-acyl carrier protein (ACP), which allows native fatty acid biosynthesis of the Escherichia coli host to be redirected towards a synthetic alkane pathway. Propane biosynthesis is markedly stimulated by the introduction of an electron-donating module, optimizing the balance of O2 supply and removal of native aldehyde reductases. PMID:25181600

  19. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation.

    PubMed

    Park, Je Won; Park, Sung Ryeol; Nepal, Keshav Kumar; Han, Ah Reum; Ban, Yeon Hee; Yoo, Young Ji; Kim, Eun Ji; Kim, Eui Min; Kim, Dooil; Sohng, Jae Kyung; Yoon, Yeo Joon

    2011-10-09

    Kanamycin is one of the most widely used antibiotics, yet its biosynthetic pathway remains unclear. Current proposals suggest that the kanamycin biosynthetic products are linearly related via single enzymatic transformations. To explore this system, we have reconstructed the entire biosynthetic pathway through the heterologous expression of combinations of putative biosynthetic genes from Streptomyces kanamyceticus in the non-aminoglycoside-producing Streptomyces venezuelae. Unexpectedly, we discovered that the biosynthetic pathway contains an early branch point, governed by the substrate promiscuity of a glycosyltransferase, that leads to the formation of two parallel pathways in which early intermediates are further modified. Glycosyltransferase exchange can alter flux through these two parallel pathways, and the addition of other biosynthetic enzymes can be used to synthesize known and new highly active antibiotics. These results complete our understanding of kanamycin biosynthesis and demonstrate the potential of pathway engineering for direct in vivo production of clinically useful antibiotics and more robust aminoglycosides.

  20. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria.

    PubMed

    Tan, Gao-Yi; Liu, Tiangang

    2017-01-01

    Natural products (NPs) and their derivatives are widely used as frontline treatments for many diseases. Actinobacteria spp. are used to produce most of NP antibiotics and have also been intensively investigated for NP production, derivatization, and discovery. However, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in Actinobacteria, especially in the cases of genome mining and heterologous expression, it is often difficult to rationally and systematically engineer synthetic pathways to maximize biosynthetic efficiency. With the emergence of new tools and methods in metabolic engineering, the synthetic pathways of many chemicals, such as fatty acids and biofuels, in model organisms (e.g. Escherichia coli ), have been refactored to realize precise and flexible control of production. These studies also offer a promising approach for synthetic pathway refactoring in Actinobacteria. In this review, the great potential of Actinobacteria as a microbial cell factory for biosynthesis of NPs is discussed. To this end, recent progress in metabolic engineering of NP synthetic pathways in Actinobacteria are summarized and strategies and perspectives to rationally and systematically refactor synthetic pathways in Actinobacteria are highlighted.

  1. [Salidroside biosynthesis pathway: the initial reaction and glycosylation of tyrosol].

    PubMed

    Ma, Lanqing; Liu, Chunmei; Yu, Hansong; Zhang, Jixing; Gao, Dongyao; Li, Yanfang; Wang, Younian

    2012-03-01

    Salidroside, the 8-O-beta-D-glucoside of tyrosol, is a novel adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Due to the scarcity of R. sachalinensis and its low yield of salidroside, there is great interest in enhancing the production of salidroside by biotechnological process. Glucosylation of tyrosol is thought to be the final step in salidroside biosynthesis. In our related works, three UGT clones were isolated from the roots and the cultured cells. Our intention was to combine the catalytic specificity of these UGTs in vitro in order to change the level of salidroside in vivo by over-expression of the above UGTs. However, as the aglycone substrate of salidroside, the biosynthetic pathway of tyrosol and its regulation are less well understood. The results of related studies revealed that there are two different possibilities for the tyrosol biosynthetic pathway. One possibility is that tyrosol is produced from a p-coumaric acid precursor, which is derived mainly from phenylalanine. The second possibility is that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. Our previous work demonstrated that over-expression of the endogenous phenylalanine ammonia-lyase gene (PALrs1) and accumulation of p-coumaric acid did not facilitate tyrosol biosynthesis. In contrast, the data presented in our recent work provide in vitro and in vivo evidence that the tyrosine decarboxylase (RsTyrDC) is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. Sachalinensis.

  2. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference

    PubMed Central

    Xu, Zhongping; Li, Jingwen; Guo, Xiaoping; Jin, Shuangxia; Zhang, Xianlong

    2016-01-01

    Cottonseed oil is recognized as an important oil in food industry for its unique characters: low flavor reversion and the high level of antioxidants (VitaminE) as well as unsaturated fatty acid. However, the cottonseed oil content of cultivated cotton (Gossypium hirsutum) is only around 20%. In this study, we modified the accumulation of oils by the down-regulation of phosphoenolpyruvate carboxylase 1 (GhPEPC1) via RNA interference in transgenic cotton plants. The qRT-PCR and enzyme activity assay revealed that the transcription and expression of GhPEPC1 was dramatically down-regulated in transgenic lines. Consequently, the cottonseed oil content in several transgenic lines showed a significant (P < 0.01) increase (up to 16.7%) without obvious phenotypic changes under filed condition when compared to the control plants. In order to elucidate the molecular mechanism of GhPEPC1 in the regulation of seed oil content, we quantified the expression of the carbon metabolism related genes of transgenic GhPEPC1 RNAi lines by transcriptome analysis. This analysis revealed the decrease of GhPEPC1 expression led to the increase expression of triacylglycerol biosynthesis-related genes, which eventually contributed to the lipid biosynthesis in cotton. This result provides a valuable information for cottonseed oil biosynthesis pathway and shows the potential of creating high cottonseed oil germplasm by RNAi strategy for cotton breeding. PMID:27620452

  3. Regulatory Cross-Talks and Cascades in Rice Hormone Biosynthesis Pathways Contribute to Stress Signaling

    PubMed Central

    Deb, Arindam; Grewal, Rumdeep K.; Kundu, Sudip

    2016-01-01

    Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus, independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level. We identified some master transcription regulators that co-ordinate different hormone biosynthesis pathways under stress. We found that Abscisic acid and Brassinosteroid regulate Cytokinin conjugation; conversely Brassinosteroid biosynthesis is affected by both Abscisic acid and Cytokinin. Jasmonic acid and Ethylene biosynthesis may be modulated by Abscisic acid through DREB transcription factors. Jasmonic acid or Salicylic acid biosynthesis pathways are co-regulated but they are unlikely to influence each others production directly. Thus, multiple hormones may modulate hormone biosynthesis pathways through a complex regulatory network, where biosynthesis of one hormone is affected by several other contributing hormones. PMID:27617021

  4. An alternative methylation pathway in lignin biosynthesis in Zinnia.

    PubMed Central

    Ye, Z H; Kneusel, R E; Matern, U; Varner, J E

    1994-01-01

    S-Adenosyl-L-methionine:trans-caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT) is implicated in disease resistant response, but whether it is involved in lignin biosynthesis is not known. We isolated a cDNA clone for CCoAOMT in differentiating tracheary elements (TEs) induced from Zinnia-isolated mesophyll cells. RNA gel blot analysis showed that the expression of the CCoAOMT gene was markedly induced during TE differentiation from the isolated mesophyll cells. Tissue print hybridization showed that the expression of the CCoAOMT gene is temporally and spatially regulated and that it is associated with lignification in xylem and in phloem fibers in Zinnia organs. Both CCoAOMT and caffeic acid O-methyltransferase (COMT) activities increased when the isolated Zinnia mesophyll cells were cultured, whereas only CCoAOMT activity was markedly enhanced during lignification in the in vitro-differentiating TEs. The induction pattern of the OMT activity using 5-hydroxyferuloyl CoA as substrate during lignification was the same as that using caffeoyl CoA. Taken together, the results indicate that CCoAOMT is associated with lignification during xylogenesis both in vitro and in the plant, whereas COMT is only involved in a stress response in vitro. We propose that CCoAOMT is involved in an alternative methylation pathway in lignin biosynthesis. In Zinnia in vitro-differentiating TEs, the CCoAOMT mediated methylation pathway is dominant. PMID:7994176

  5. Abbreviated Pathway for Biosynthesis of 2-Thiouridine in Bacillus subtilis

    PubMed Central

    Black, Katherine A.

    2015-01-01

    ABSTRACT The 2-thiouridine (s2U) modification of the wobble position in glutamate, glutamine, and lysine tRNA molecules serves to stabilize the anticodon structure, improving ribosomal binding and overall efficiency of the translational process. Biosynthesis of s2U in Escherichia coli requires a cysteine desulfurase (IscS), a thiouridylase (MnmA), and five intermediate sulfur-relay enzymes (TusABCDE). The E. coli MnmA adenylates and subsequently thiolates tRNA to form the s2U modification. Bacillus subtilis lacks IscS and the intermediate sulfur relay proteins, yet its genome contains a cysteine desulfurase gene, yrvO, directly adjacent to mnmA. The genomic synteny of yrvO and mnmA combined with the absence of the Tus proteins indicated a potential functionality of these proteins in s2U formation. Here, we provide evidence that the B. subtilis YrvO and MnmA are sufficient for s2U biosynthesis. A conditional B. subtilis knockout strain showed that s2U abundance correlates with MnmA expression, and in vivo complementation studies in E. coli IscS- or MnmA-deficient strains revealed the competency of these proteins in s2U biosynthesis. In vitro experiments demonstrated s2U formation by YrvO and MnmA, and kinetic analysis established a partnership between the B. subtilis proteins that is contingent upon the presence of ATP. Furthermore, we observed that the slow-growth phenotype of E. coli ΔiscS and ΔmnmA strains associated with s2U depletion is recovered by B. subtilis yrvO and mnmA. These results support the proposal that the involvement of a devoted cysteine desulfurase, YrvO, in s2U synthesis bypasses the need for a complex biosynthetic pathway by direct sulfur transfer to MnmA. IMPORTANCE The 2-thiouridine (s2U) modification of the wobble position in glutamate, glutamine, and lysine tRNA is conserved in all three domains of life and stabilizes the anticodon structure, thus guaranteeing fidelity in translation. The biosynthesis of s2U in Escherichia coli requires

  6. Pathways associated with lignin biosynthesis in lignomaniac jute fibres.

    PubMed

    Chakraborty, Avrajit; Sarkar, Debabrata; Satya, Pratik; Karmakar, Pran Gobinda; Singh, Nagendra Kumar

    2015-08-01

    We generated the bast transcriptomes of a deficient lignified phloem fibre mutant and its wild-type jute (Corchorus capsularis) using Illumina paired-end sequencing. A total of 34,163 wild-type and 29,463 mutant unigenes, with average lengths of 1442 and 1136 bp, respectively, were assembled de novo, ~77-79 % of which were functionally annotated. These annotated unigenes were assigned to COG (~37-40 %) and GO (~22-28 %) classifications and mapped to 189 KEGG pathways (~19-21 %). We discovered 38 and 43 isoforms of 16 and 10 genes of the upstream shikimate-aromatic amino acid and downstream monolignol biosynthetic pathways, respectively, rendered their sequence similarities, confirmed the identities of 22 of these candidate gene families by phylogenetic analyses and reconstructed the pathway leading to lignin biosynthesis in jute fibres. We also identified major genes and bast-related transcription factors involved in secondary cell wall (SCW) formation. The quantitative RT-PCRs revealed that phenylalanine ammonia-lyase 1 (CcPAL1) was co-down-regulated with several genes of the upstream shikimate pathway in mutant bast tissues at an early growth stage, although its expression relapsed to the normal level at the later growth stage. However, cinnamyl alcohol dehydrogenase 7 (CcCAD7) was strongly down-regulated in mutant bast tissues irrespective of growth stages. CcCAD7 disruption at an early growth stage was accompanied by co-up-regulation of SCW-specific genes cellulose synthase A7 (CcCesA7) and fasciclin-like arabinogalactan 6 (CcFLA6), which was predicted to be involved in coordinating the S-layers' deposition in the xylan-type jute fibres. Our results identified CAD as a promising target for developing low-lignin jute fibres using genomics-assisted molecular approaches.

  7. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.

    PubMed

    Oborník, Miroslav; Green, Beverley R

    2005-12-01

    Heme biosynthesis represents one of the most essential metabolic pathways in living organisms, providing the precursors for cytochrome prosthetic groups, photosynthetic pigments, and vitamin B(12). Using genomic data, we have compared the heme pathway in the diatom Thalassiosira pseudonana and the red alga Cyanidioschyzon merolae to those of green algae and higher plants, as well as to those of heterotrophic eukaryotes (fungi, apicomplexans, and animals). Phylogenetic analyses showed the mosaic character of this pathway in photosynthetic eukaryotes. Although most of the algal and plant enzymes showed the expected plastid (cyanobacterial) origin, at least one of them (porphobilinogen deaminase) appears to have a mitochondrial (alpha-proteobacterial) origin. Another enzyme, glutamyl-tRNA synthase, obviously originated in the eukaryotic nucleus. Because all the plastid-targeted sequences consistently form a well-supported cluster, this suggests that genes were either transferred from the primary endosymbiont (cyanobacteria) to the primary host nucleus shortly after the primary endosymbiotic event or replaced with genes from other sources at an equally early time, i.e., before the formation of three primary plastid lineages. The one striking exception to this pattern is ferrochelatase, the enzyme catalyzing the first committed step to heme and bilin pigments. In this case, two red algal sequences do not cluster either with the other plastid sequences or with cyanobacterial sequences and appear to have a proteobacterial origin like that of the apicomplexan parasites Plasmodium and Toxoplasma. Although the heterokonts also acquired their plastid via secondary endosymbiosis from a red alga, the diatom has a typical plastid-cyanobacterial ferrochelatase. We have not found any remnants of the plastidlike heme pathway in the nonphotosynthetic heterokonts Phytophthora ramorum and Phytophthora sojae.

  8. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    PubMed Central

    de Souza, Wanderley; Rodrigues, Juliany Cola Fernandes

    2009-01-01

    Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB) that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a) statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b) bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c) zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS), which catalyzes the first committed step in sterol biosynthesis, (d) allylamines, inhibitors of squalene epoxidase, (e) azoles, which inhibit C14α-demethylase, and (f) azasterols, which inhibit Δ24(25)-sterol methyltransferase (SMT). Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures), and their effects on protozoan structural organization (as evaluted by light and electron microscopy) and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take place in

  9. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    PubMed Central

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  10. Biosynthesis and pathway engineering of antifungal polyene macrolides in actinomycetes.

    PubMed

    Kong, Dekun; Lee, Mi-Jin; Lin, Shuangjun; Kim, Eung-Soo

    2013-06-01

    Polyene macrolides are a large family of natural products typically produced by soil actinomycetes. Polyene macrolides are usually biosynthesized by modular and large type I polyketide synthases (PKSs), followed by several steps of sequential post-PKS modifications such as region-specific oxidations and glycosylations. Although known as powerful antibiotics containing potent antifungal activities (along with additional activities against parasites, enveloped viruses and prion diseases), their high toxicity toward mammalian cells and poor distribution in tissues have led to the continuous identification and structural modification of polyene macrolides to expand their general uses. Advances in in-depth investigations of the biosynthetic mechanism of polyene macrolides and the genetic manipulations of the polyene biosynthetic pathways provide great opportunities to generate new analogues. Recently, a novel class of polyene antibiotics was discovered (a disaccharide-containing NPP) that displays better pharmacological properties such as improved water-solubility and reduced hemolysis. In this review, we summarize the recent advances in the biosynthesis, pathway engineering, and regulation of polyene antibiotics in actinomycetes.

  11. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?1[OPEN

    PubMed Central

    Nichols, David S.; Smith, Jason; Chourey, Prem S.; McAdam, Erin L.; Quittenden, Laura

    2016-01-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA. However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  12. A strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application.

    PubMed

    Lee, Changsu; Choi, Yoon-E; Yun, Yeoung-Sang

    2016-10-20

    The green algae Haematococcus pluvialis is a freshwater unicellular microalga belonging to Chlorophyceae. It is one of the best natural sources of astaxanthin, a secondary metabolite commonly used as an antioxidant and anti-inflammatory agent. Due to the importance of astaxanthin, various efforts have been made to increase its production. In this study, we attempted to develop a strategy for promoting astaxanthin accumulation in H. pluvialis using 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene (normally known as an aging hormone in plants). Our results demonstrated that ACC could enhance the growth of H. pluvialis, thereby promoting astaxanthin accumulation. Therefore, ACC has an indirect influence on astaxanthin production. We further verified the effect of ACC with a direct treatment of ethylene originated from banana peels. These results indicate that ethylene could be applied as an indirect method for enhancing growth and astaxanthin biosynthesis in H. pluvialis.

  13. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    SciTech Connect

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to produce TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.

  14. The role of photorespiration during astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae).

    PubMed

    Zhang, Chunhui; Zhang, Litao; Liu, Jianguo

    2016-10-01

    Most previous studies on Haematococcus pluvialis have been focused on growth and astaxanthin accumulation. However, the relationships between photorespiration and astaxanthin accumulation have not been clarified. The purpose of this study was to examine the role of photorespiration during the process of astaxanthin accumulation in H. pluvialis. During astaxanthin accumulation, the astaxanthin content was reduced significantly when photorespiration was inhibited by its specific inhibitor, carboxymethoxylamine. The inhibition of photorespiration did not change the dry weight, chlorophyll content and OJIP transients during the incubation; however, the inhibition of photorespiration significantly decreased the photochemistry of photosystem II and total photosynthetic O2 evolution capacity. Moreover, the restriction in photorespiration was synchronized with a decrease of astaxanthin accumulation. These results suggest that the photorespiratory pathway in H. pluvialis can accelerate astaxanthin accumulation. We speculate that photorespiration can enhance astaxanthin accumulation in the following ways: (i) photorespiration directly affects the glycerate-3-phosphate (PGA) level, which is intrinsically related to the accumulation of astaxanthin in H. pluvialis; (ii) the photorespiratory pathway indirectly affects the PGA level by effecting the dark reactions of photosynthesis, which then results in the enhancement of astaxanthin accumulation in H. pluvialis.

  15. Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites.

    PubMed

    Urbina, J A

    1997-01-01

    Inhibitors of sterol and phospholipid biosynthesis in kinetoplastid parasites such as Trypanosoma cruzi, the causative agent of Chagas' disease, and different species of Leishmania have potent and selective activity as chemotherapeutic agents in vitro and in vivo. Recent work with the sterol C14 alpha-demethylase inhibitor D0870, a bis triazole derivative, showed that this compound is capable of inducing radical parasitological cure in murine models of both acute and chronic Chagas' disease. Other inhibitors of this type, such as SCH 56592, have also shown curative, rather than suppressive, activity against T. cruzi in these models. Leishmania species have different susceptibilities to sterol biosynthesis inhibitors, both in vitro and in vivo. Leishmania braziliensis promastigotes, naturally resistant to C14 alpha-demethylase inhibitors such as ketoconazole and D0870, were susceptible to these drugs when used in combination with the squalene epoxidase inhibitor terbinafine. Inhibitors of delta 24(25) sterol methyl transferase have been shown to act as potent antiproliferative agents against Trypanosoma cruzi, both in vitro and in vivo. New inhibitors of this type which show enhanced activity and novel mechanisms of action have been synthesized. Recent work has also demonstrated that this type of enzyme inhibitors can block sterol biosynthesis and cell proliferation in Pneumocystis carinii, a fungal pathogen which had previously been found resistant to other sterol biosynthesis inhibitors. Ajoene, an antiplatelet compound derived from garlic, was shown to have potent antiproliferative activity against epimastigotes and amastigotes of Trypanosoma cruzi in vitro; this activity was associated with a significant alteration of the phospholipid composition of the cells with no significant effects on the sterol content. In addition, alkyllsophospholipids such as ilmofosine, miltefosine and edelfosine have been shown to block the proliferation of T. cruzi and Leishmania and

  16. Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy.

    PubMed

    Xi, Tianqi; Kim, Dae Geun; Roh, Seong Woon; Choi, Jong-Soon; Choi, Yoon-E

    2016-07-01

    Haematococcus pluvialis is a green microalga of particular interest, since it is considered the best potential natural source of astaxanthin, which is widely used as an additive for natural pigmentation. In addition, astaxanthin has recently garnered commercial interest as a nutraceutical, cosmetic, and pharmaceutical. However, producing astaxanthin from H. pluvialis necessitates separation with distinctive culture conditions, dividing between the microalgae growth and the astaxanthin production stages. Light-emitting diodes (LEDs) have emerged as a replacement for traditional light sources, and LED applications are now rapidly expanding to multiple areas in fields such as biotechnology. However, further detail application into microalgae biotechnology remains limited. In this study, we have attempted to establish new protocols based on the specific wavelength of LEDs for the cultivation and production of astaxanthin using H. pluvialis. Specifically, we applied red LEDs for microalgae cell growth and then switched to blue LEDs to induce astaxanthin biosynthesis. The result showed that astaxanthin productions based on a wavelength shift from red to blue were significantly increased, compared to those with continuous illumination using red LEDs. Furthermore, additional increase of astaxanthin production was achieved with simultaneous application of exogenous carbon with blue LED illumination. Our approach based on the proper manipulation of LED wavelengths upon H. pluvialis cell stages will enable the improvement of biomass and enhance astaxanthin production using H. pluvialis.

  17. Biochemical pathways supporting beta-lactam biosynthesis in the springtail Folsomia candida

    PubMed Central

    Suring, Wouter; Mariën, Janine; Broekman, Rhody; van Straalen, Nico M.

    2016-01-01

    ABSTRACT Recently, an active set of beta-lactam biosynthesis genes was reported in the genome of the arthropod springtail Folsomia candida (Collembola). Evidence was provided that these genes were acquired through horizontal gene transfer. However, successful integration of fungal- or bacterial-derived beta-lactam biosynthesis into the metabolism of an animal requires the beta-lactam precursor L-α-aminoadipic acid and a phosphopantetheinyl transferase for activation of the first enzyme of the pathway, δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine synthetase (ACVS). In this study, we characterized these supporting pathways and their transcriptional regulation in F. candida. We identified one phosphopantetheinyl transferase and three pathways for L-α-aminoadipic acid production, distinct from the pathways utilized by microorganisms. We found that after heat shock, the phosphopantetheinyl transferase was co-regulated with ACVS, confirming its role in activating ACVS. Two of the three L-α-aminoadipic acid production pathways were downregulated, while PIPOX, an enzyme participating in the pipecolate pathway, was slightly co-regulated with ACVS. This indicates that L-α-aminoadipic acid may not be a limiting factor in beta-lactam biosynthesis in F. candida, in contrast to microorganisms. In conclusion, we show that all components for L-α-aminoadipic acid synthesis are present and transcriptionally active in F. candida. This demonstrates how springtails could have recruited native enzymes to integrate a beta-lactam biosynthesis pathway into their metabolism after horizontal gene transfer. PMID:27793835

  18. In vivo kinetic analysis of the penicillin biosynthesis pathway using PAA stimulus response experiments.

    PubMed

    Deshmukh, Amit T; Verheijen, Peter J T; Maleki Seifar, Reza; Heijnen, Joseph J; van Gulik, Walter M

    2015-11-01

    In this study we combined experimentation with mathematical modeling to unravel the in vivo kinetic properties of the enzymes and transporters of the penicillin biosynthesis pathway in a high yielding Penicillium chrysogenum strain. The experiment consisted of a step response experiment with the side chain precursor phenyl acetic acid (PAA) in a glucose-limited chemostat. The metabolite data showed that in the absence of PAA all penicillin pathway enzymes were expressed, leading to the production of a significant amount of 6-aminopenicillanic acid (6APA) as end product. After the stepwise perturbation with PAA, the pathway produced PenG within seconds. From the extra- and intracellular metabolite measurements, hypotheses for the secretion mechanisms of penicillin pathway metabolites were derived. A dynamic model of the penicillin biosynthesis pathway was then constructed that included the formation and transport over the cytoplasmic membrane of pathway intermediates, PAA and the product penicillin-G (PenG). The model parameters and changes in the enzyme levels of the penicillin biosynthesis pathway under in vivo conditions were simultaneously estimated using experimental data obtained at three different timescales (seconds, minutes, hours). The model was applied to determine changes in the penicillin pathway enzymes in time, calculate fluxes and analyze the flux control of the pathway. This led to a reassessment of the in vivo behavior of the pathway enzymes and in particular Acyl-CoA:Isopenicillin N Acyltransferase (AT).

  19. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    PubMed Central

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  20. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis.

    PubMed

    Zhang, Zhen; Wang, Baobei; Hu, Qiang; Sommerfeld, Milton; Li, Yuanguang; Han, Danxiang

    2016-10-01

    The unicellular green alga Haematococcus pluvialis has been exploited as a cell factory to produce the high-value antioxidant astaxanthin for over two decades, due to its superior ability to synthesize astaxanthin under adverse culture conditions. However, slow vegetative growth under favorable culture conditions and cell deterioration or death under stress conditions (e.g., high light, nitrogen starvation) has limited the astaxanthin production. In this study, a new paradigm that integrated heterotrophic cultivation, acclimation of heterotrophically grown cells to specific light/nutrient regimes, followed by induction of astaxanthin accumulation under photoautotrophic conditions was developed. First, the environmental conditions such as pH, carbon source, nitrogen regime, and light intensity, were optimized to induce astaxanthin accumulation in the dark-grown cells. Although moderate astaxanthin content (e.g., 1% of dry weight) and astaxanthin productivity (2.5 mg L(-1)  day(-1) ) were obtained under the optimized conditions, a considerable number of cells died off when subjected to stress for astaxanthin induction. To minimize the susceptibility of dark-grown cells to light stress, the algal cells were acclimated, prior to light induction of astaxanthin biosynthesis, under moderate illumination in the presence of nitrogen. Introduction of this strategy significantly reduced the cell mortality rate under high-light and resulted in increased cellular astaxanthin content and astaxanthin productivity. The productivity of astaxanthin was further improved to 10.5 mg L(-1)  day(-1) by implementation of such a strategy in a bubbling column photobioreactor. Biochemical and physiological analyses suggested that rebuilding of photosynthetic apparatus including D1 protein and PsbO, and recovery of PSII activities, are essential for acclimation of dark-grown cells under photo-induction conditions. Biotechnol. Bioeng. 2016;113: 2088-2099. © 2016 The Authors

  1. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis

    PubMed Central

    Zhang, Zhen; Wang, Baobei; Hu, Qiang; Sommerfeld, Milton

    2016-01-01

    ABSTRACT The unicellular green alga Haematococcus pluvialis has been exploited as a cell factory to produce the high‐value antioxidant astaxanthin for over two decades, due to its superior ability to synthesize astaxanthin under adverse culture conditions. However, slow vegetative growth under favorable culture conditions and cell deterioration or death under stress conditions (e.g., high light, nitrogen starvation) has limited the astaxanthin production. In this study, a new paradigm that integrated heterotrophic cultivation, acclimation of heterotrophically grown cells to specific light/nutrient regimes, followed by induction of astaxanthin accumulation under photoautotrophic conditions was developed. First, the environmental conditions such as pH, carbon source, nitrogen regime, and light intensity, were optimized to induce astaxanthin accumulation in the dark‐grown cells. Although moderate astaxanthin content (e.g., 1% of dry weight) and astaxanthin productivity (2.5 mg L−1 day−1) were obtained under the optimized conditions, a considerable number of cells died off when subjected to stress for astaxanthin induction. To minimize the susceptibility of dark‐grown cells to light stress, the algal cells were acclimated, prior to light induction of astaxanthin biosynthesis, under moderate illumination in the presence of nitrogen. Introduction of this strategy significantly reduced the cell mortality rate under high‐light and resulted in increased cellular astaxanthin content and astaxanthin productivity. The productivity of astaxanthin was further improved to 10.5 mg L−1 day−1 by implementation of such a strategy in a bubbling column photobioreactor. Biochemical and physiological analyses suggested that rebuilding of photosynthetic apparatus including D1 protein and PsbO, and recovery of PSII activities, are essential for acclimation of dark‐grown cells under photo‐induction conditions. Biotechnol. Bioeng. 2016;113: 2088–2099.

  2. Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis.

    PubMed

    Liu, Jin; Mao, Xuemei; Zhou, Wenguang; Guarnieri, Michael T

    2016-08-01

    The production of lipids and astaxanthin, a high-value carotenoid, by Chlorella zofingiensis was investigated under different culture conditions. Comparative analysis revealed a good correlation between triacylglycerol (TAG) and astaxanthin accumulation in C. zofingiensis. Stress conditions promoted cell size and weight and induced the accumulation of neutral lipids, especially TAG and astaxanthin, with a concomitant decrease in membrane lipids. The highest contents of TAG and astaxanthin achieved were 387 and 4.89mgg(-1) dry weight, respectively. A semi-continuous culture strategy was developed to optimize the TAG and astaxanthin productivities, which reached 297 and 3.3mgL(-1)day(-1), respectively. Additionally, astaxanthin accumulation was enhanced by inhibiting de novo fatty acid biosynthesis. In summary, our study represents a pioneering work of utilizing Chlorella for the integrated production of lipids and high-value products and C. zofingiensis has great potential to be a promising production strain and serve as an emerging oleaginous model alga.

  3. Simultaneous Production of Triacylglycerol and High-Value Carotenoids by the Astaxanthin-Producing Oleaginous Green Microalga Chlorella zofingiensis

    SciTech Connect

    Liu, Jin; Mao, Xuemei; Zhou, Wenguang; Guarnieri, Michael T.

    2016-08-01

    The production of lipids and astaxanthin, a high-value carotenoid, by Chlorella zofingiensis was investigated under different culture conditions. Comparative analysis revealed a good correlation between triacylglycerol (TAG) and astaxanthin accumulation in C. zofingiensis. Stress conditions promoted cell size and weight and induced the accumulation of neutral lipids, especially TAG and astaxanthin, with a concomitant decrease in membrane lipids. The highest contents of TAG and astaxanthin achieved were 387 and 4.89 mg g-1 dry weight, respectively. A semi-continuous culture strategy was developed to optimize the TAG and astaxanthin productivities, which reached 297 and 3.3 mg L-1 day-1, respectively. Additionally, astaxanthin accumulation was enhanced by inhibiting de novo fatty acid biosynthesis. In summary, our study represents a pioneering work of utilizing Chlorella for the integrated production of lipids and high-value products and C. zofingiensis has great potential to be a promising production strain and serve as an emerging oleaginous model alga.

  4. Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants.

    PubMed

    Huang, Junchao; Zhong, Yujuan; Sandmann, Gerhard; Liu, Jin; Chen, Feng

    2012-08-01

    β-Carotene ketolase (BKT) catalyzes the rate-limiting steps for the biosynthesis of astaxanthin. Several bkt genes have been isolated and explored to modify plant carotenoids to astaxanthin with limited success. In this study, five algal BKT cDNAs were isolated and characterized for the engineering of high-yield astaxanthin in plants. The products of the cDNAs showed high similarity in sequence and enzymatic activity of converting β-carotene into canthaxanthin. However, the enzymes exhibited extremely different activities in converting zeaxanthin into astaxanthin. Chlamydomonas reinhardtii BKT showed the highest conversion rate (ca 85%), whereas, Neochloris wimmeri BKT exhibited very poor activity of ketolating zeaxanthin. Expression of C. reinhardtii BKT in tobacco led to a twofold increase of total carotenoids in the leaves with astaxanthin being the predominant. The bkt genes described here provide a valuable resource for metabolic engineering of plants as cell factories for astaxanthin production.

  5. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.

    PubMed

    Dailey, Harry A; Dailey, Tamara A; Gerdes, Svetlana; Jahn, Dieter; Jahn, Martina; O'Brian, Mark R; Warren, Martin J

    2017-03-01

    The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.

  6. Methionine salvage pathway in relation to ethylene biosynthesis

    SciTech Connect

    Miyazaki, J.H.

    1987-01-01

    The recycling of methionine during ethylene biosynthesis (the methionine cycle) was studied. During ethylene biosynthesis, the H/sub 3/CS-group of S-adenosylmethionine (SAM) is released at 5'-methylthioadenosine (MTA), which is recycled to methionine via 5'-methylthioribose (MTS). In mungbean hypocotyls and cell-free extracts of avocado fruit, (/sup 14/C)MTR was converted to labeled methionine via 2-keto-4-methylthiobutyric acid (KMB) and 2-hydroxy-4-methylthiobutyric acid (HMB) as intermediates. Radioactive tracer studies showed that KMB was converted readily in vivo and in vitro to methionine, while HMB was converted much more slowly. The conversion of KMB to methionine by dialyzed avocado extract required an amino group donor. Among several potential donors tested, L-glutamine was the most efficient. Incubation of (ribose-U-/sup 14/C)MTR with avocado extract resulted in the production of (/sup 14/C)formate, with little evolution of other /sup 14/C-labeled one-carbon compounds, indicating that the conversion of MTR to KMB involves a loss of formate, presumably from C-1 of MTR.

  7. An Alternative Pathway for Formononetin Biosynthesis in Pueraria lobata

    PubMed Central

    Li, Jia; Li, Changfu; Gou, Junbo; Wang, Xin; Fan, Rongyan; Zhang, Yansheng

    2016-01-01

    The O-methylation is an important tailing process in Pueraria lobata isoflavone metabolism, but the molecular mechanism governing it remains not elucidated. This manuscript describes the mining of key O-methyltransferases (OMTs) involved in the process. Using our previously constructed P. lobata transcriptome, the OMT candidates were searched, extensively analyzed, and their functions were investigated by expression in yeast, Escherichia coli, or Glycine max hairy roots. Here, we report the identification of the key OMT gene responsible for formononetin production in P. lobata (designated as PlOMT9). PlOMT9 primarily functions as an isoflavone-specific 4′-O-methyltransferase, although it shows high sequence identities with isoflavone 7-O-methyltransferases. Moreover, unlike the previously reported OMTs that catalyze the 4′-O-methylation for formononetin biosynthesis at the isoflavanone stage, PlOMT9 performs this modifying step at the isoflavone level, using daidzein rather than 2,7,4′-trihydroxy-isoflavanone as the substrate. Gene expression analyses and metabolite profiling supported its proposed roles in P. lobata. Using the system of transgenic G. max hairy roots, the role of PlOMT9 in the biosynthesis of formononetin was further demonstrated in vivo. PMID:27379141

  8. Vitamin and co-factor biosynthesis pathways in Plasmodium and other apicomplexan parasites

    PubMed Central

    Müller, Sylke; Kappes, Barbara

    2007-01-01

    Vitamins are essential components of the human diet. By contrast, the malaria parasite Plasmodium falciparum and related apicomplexan parasites synthesise certain vitamins, de novo, either completely or in parts. The occurrence of the various biosynthesis pathways is specific to different apicomplexan parasites, emphasising their distinct requirements for nutrients and growth factors. The absence of vitamin biosynthesis from the human host implies that inhibition of the parasite pathways may be a way to interfere specifically with parasite development. However, the precise role of biosynthesis and potential uptake of vitamins for the overall regulation of vitamin homeostasis in the parasites needs to be established first. In this review Sylke Müller and Barbara Kappes focus mainly on the procurement of vitamin B1, B5 and B6 by Plasmodium and other apicomplexan parasites. PMID:17276140

  9. Vitamin and cofactor biosynthesis pathways in Plasmodium and other apicomplexan parasites.

    PubMed

    Müller, Sylke; Kappes, Barbara

    2007-03-01

    Vitamins are essential components of the human diet. By contrast, the malaria parasite Plasmodium falciparum and related apicomplexan parasites synthesize certain vitamins de novo, either completely or in parts. The various biosynthesis pathways are specific to different apicomplexan parasites and emphasize the distinct requirements of these parasites for nutrients and growth factors. The absence of vitamin biosynthesis in humans implies that inhibition of the parasite pathways might be a way to interfere specifically with parasite development. However, the roles of biosynthesis and uptake of vitamins in the regulation of vitamin homeostasis in parasites needs to be established first. In this article, the procurement of vitamins B(1), B(5) and B(6) by Plasmodium and other apicomplexan parasites is discussed.

  10. Mutational and Functional Analysis of the β-Carotene Ketolase Involved in the Production of Canthaxanthin and Astaxanthin

    PubMed Central

    Ye, Rick W.; Stead, Kristen J.; Yao, Henry; He, Hongxian

    2006-01-01

    Biosynthesis of the commercial carotenoids canthaxanthin and astaxanthin requires β-carotene ketolase. The functional importance of the conserved amino acid residues of this enzyme from Paracoccus sp. strain N81106 (formerly classified as Agrobacterium aurantiacum) was analyzed by alanine-scanning mutagenesis. Mutations in the three highly conserved histidine motifs involved in iron coordination abolished its ability to catalyze the formation of ketocarotenoids. This supports the hypothesis that the CrtW ketolase belongs to the family of iron-dependent integral membrane proteins. Most of the mutations generated at other highly conserved residues resulted in partial activity. All partially active mutants showed a higher amount of adonixanthin accumulation than did the wild type when expressed in Escherichia coli cells harboring the zeaxanthin biosynthetic gene cluster. Some of the partially active mutants also produced a significant amount of echinenone when expressed in cells producing β-carotene. In fact, expression of a mutant carrying D117A resulted in the accumulation of echinenone as the predominant carotenoid. These observations indicate that partial inactivation of the CrtW ketolase can often lead to the production of monoketolated intermediates. In order to improve the conversion rate of astaxanthin catalyzed by the CrtW ketolase, a color screening system was developed. Three randomly generated mutants, carrying L175M, M99V, and M99I, were identified to have improved activity. These mutants are potentially useful in pathway engineering for the production of astaxanthin. PMID:16957201

  11. Ecdysteroid biosynthesis in varroa mites: identification of halloween genes from the biosynthetic pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosynthesis of ecdysteroids involves sequential enzymatic hydroxylations by microsomal enzymes and mitochondrial cytochrome P450’s. Enzymes of the pathway are collectively known as Halloween genes. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), w...

  12. Genome-Wide Analysis of the Lysine Biosynthesis Pathway Network during Maize Seed Development

    PubMed Central

    Liu, Yuwei; Xie, Shaojun; Yu, Jingjuan

    2016-01-01

    Lysine is one of the most limiting essential amino acids for humans and livestock. The nutritional value of maize (Zea mays L.) is reduced by its poor lysine content. To better understand the lysine biosynthesis pathway in maize seed, we conducted a genome-wide analysis of the genes involved in lysine biosynthesis. We identified lysine biosynthesis pathway genes (LBPGs) and investigated whether a diaminopimelate pathway variant exists in maize. We analyzed two genes encoding the key enzyme dihydrodipicolinate synthase, and determined that they contribute differently to lysine synthesis during maize seed development. A coexpression network of LBPGs was constructed using RNA-sequencing data from 21 developmental stages of B73 maize seed. We found a large set of genes encoding ribosomal proteins, elongation factors and zein proteins that were coexpressed with LBPGs. The coexpressed genes were enriched in cellular metabolism terms and protein related terms. A phylogenetic analysis of the LBPGs from different plant species revealed different relationships. Additionally, six transcription factor (TF) families containing 13 TFs were identified as the Hub TFs of the LBPGs modules. Several expression quantitative trait loci of LBPGs were also identified. Our results should help to elucidate the lysine biosynthesis pathway network in maize seed. PMID:26829553

  13. Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae

    SciTech Connect

    Sporty, J; Lin, S; Kato, M; Ognibene, T; Stewart, B; Turteltaub, K; Bench, G

    2009-02-18

    Nicotinamide adenine dinucleotide (NAD{sup +}) is synthesized via two major pathways in prokaryotic and eukaryotic systems: the de novo biosynthesis pathway from tryptophan precursors, or by the salvage biosynthesis pathway from either extracellular nicotinic acid or various intracellular NAD{sup +} decomposition products. NAD{sup +} biosynthesis via the salvage pathway has been linked to an increase in yeast replicative lifespan under calorie restriction (CR). However, the relative contribution of each pathway to NAD{sup +} biosynthesis under both normal and CR conditions is not known. Here, we have performed lifespan, NAD{sup +} and NADH (the reduced form of NAD{sup +}) analyses on BY4742 wild type, NAD+ salvage pathway knockout (npt1{Delta}), and NAD+ de novo pathway knockout (qpt1{Delta}) yeast strains cultured in media containing either 2% glucose (normal growth) or 0.5% glucose (CR). We have utilized {sup 14}C labeled nicotinic acid in the culture media combined with HPLC speciation and both UV and {sup 14}C detection to quantitate the total amounts of NAD{sup +} and NADH and the amounts derived from the salvage pathway. We observe that wild type and qpt1{Delta} yeast exclusively utilize extracellular nicotinic acid for NAD{sup +} and NADH biosynthesis under both the 2% and 0.5% glucose growth conditions suggesting that the de novo pathway plays little role if a functional salvage pathway is present. We also observe that NAD{sup +} concentrations decrease in all three strains under CR. However, unlike the wild type strain, NADH concentrations do not decrease and NAD{sup +}:NADH ratios do not increase under CR for either knockout strain. Lifespan analyses reveal that CR results in a lifespan increase of approximately 25% for the wild type and qpt1{Delta} strains, while no increase in lifespan is observed for the npt1{Delta} strain. In combination these data suggest that having a functional salvage pathway is more important than the absolute levels of NAD

  14. Diversity and Evolution of the Phenazine Biosynthesis Pathway ▿ †

    PubMed Central

    Mavrodi, Dmitri V.; Peever, Tobin L.; Mavrodi, Olga V.; Parejko, James A.; Raaijmakers, Jos M.; Lemanceau, Philippe; Mazurier, Sylvie; Heide, Lutz; Blankenfeldt, Wulf; Weller, David M.; Thomashow, Linda S.

    2010-01-01

    Phenazines are versatile secondary metabolites of bacterial origin that function in biological control of plant pathogens and contribute to the ecological fitness and pathogenicity of the producing strains. In this study, we employed a collection of 94 strains having various geographic, environmental, and clinical origins to study the distribution and evolution of phenazine genes in members of the genera Pseudomonas, Burkholderia, Pectobacterium, Brevibacterium, and Streptomyces. Our results confirmed the diversity of phenazine producers and revealed that most of them appear to be soil-dwelling and/or plant-associated species. Genome analyses and comparisons of phylogenies inferred from sequences of the key phenazine biosynthesis (phzF) and housekeeping (rrs, recA, rpoB, atpD, and gyrB) genes revealed that the evolution and dispersal of phenazine genes are driven by mechanisms ranging from conservation in Pseudomonas spp. to horizontal gene transfer in Burkholderia spp. and Pectobacterium spp. DNA extracted from cereal crop rhizospheres and screened for the presence of phzF contained sequences consistent with the presence of a diverse population of phenazine producers in commercial farm fields located in central Washington state, which provided the first evidence of United States soils enriched in indigenous phenazine-producing bacteria. PMID:20008172

  15. Molecular evolution of multiple-level control of heme biosynthesis pathway in animal kingdom.

    PubMed

    Tzou, Wen-Shyong; Chu, Ying; Lin, Tzung-Yi; Hu, Chin-Hwa; Pai, Tun-Wen; Liu, Hsin-Fu; Lin, Han-Jia; Cases, Ildeofonso; Rojas, Ana; Sanchez, Mayka; You, Zong-Ye; Hsu, Ming-Wei

    2014-01-01

    Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5' untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway.

  16. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli.

    PubMed

    Yu, Jia-Le; Xia, Xiao-Xia; Zhong, Jian-Jiang; Qian, Zhi-Gang

    2014-12-01

    The C6 dicarboxylic acid, adipic acid, is an important platform chemical in industry. Biobased production of adipic acid is a promising alternative to the current petrochemical route. Here, we report biosynthesis of adipic acid using an artificial pathway inspired by the reversal of beta-oxidation of dicarboxylic acids. The biosynthetic pathway comprises condensation of acetyl-CoA and succinyl-CoA to form the C6 backbone and subsequent reduction, dehydration, hydrogenation, and release of adipic acid from its thioester. The pathway was first tested in vitro with reconstituted pathway enzymes and then functionally introduced into Escherichia coli for the biosynthesis and excretion of adipic acid into the culture medium. The production titer was increased by approximately 20-fold through the combination of recruiting enzymes that were more suitable to catalyze the synthetic reactions and increasing availability of the condensation substrates. This work demonstrates direct biosynthesis of adipic acid via non-natural synthetic pathway, which may enable its renewable production.

  17. Backdoor pathway for dihydrotestosterone biosynthesis: implications for normal and abnormal human sex development.

    PubMed

    Fukami, Maki; Homma, Keiko; Hasegawa, Tomonobu; Ogata, Tsutomu

    2013-04-01

    We review the current knowledge about the "backdoor" pathway for the biosynthesis of dihydrotestosterone (DHT). While DHT is produced from cholesterol through the conventional "frontdoor" pathway via testosterone, recent studies have provided compelling evidence for the presence of an alternative "backdoor" pathway to DHT without testosterone intermediacy. This backdoor pathway is known to exist in the tammar wallaby pouch young testis and the immature mouse testis, and has been suggested to be present in the human as well. Indeed, molecular analysis has identified pathologic mutations of genes involved in the backdoor pathway in genetic male patients with undermasculinized external genitalia, and urine steroid profile analysis has argued for the relevance of the activated backdoor pathway to abnormal virilization in genetic females with cytochrome P450 oxidoreductase deficiency and 21-hydroxylase deficiency. It is likely that the backdoor pathway is primarily operating in the fetal testis in a physiological condition to produce a sufficient amount of DHT for male sex development, and that the backdoor pathway is driven with a possible interaction between fetal and permanent adrenals in pathologic conditions with increased 17-hydroxyprogesterone levels. These findings provide novel insights into androgen biosynthesis in both physiological and pathological conditions.

  18. Serine biosynthesis by photorespiratory and non-photorespiratory pathways: an interesting interplay with unknown regulatory networks.

    PubMed

    Ros, R; Cascales-Miñana, B; Segura, J; Anoman, A D; Toujani, W; Flores-Tornero, M; Rosa-Tellez, S; Muñoz-Bertomeu, J

    2013-07-01

    Photorespiration is a primary metabolic pathway, which, given its energy costs, has often been viewed as a wasteful process. Despite having reached the consensus that one important function of photorespiration is the removal of toxic metabolite intermediates, other possible functions have emerged, and others could well emerge in the future. As a primary metabolic pathway, photorespiration interacts with other routes; however the nature of these interactions is not well known. One of these interacting pathways could be the biosynthesis of serine, since this amino acid is synthesised through photorespiratory and non-photorespiratory routes. At present, the exact contribution of each route to serine supply in different tissues and organs, their biological significance and how pathways are integrated and/or regulated remain unknown. Here, we review the non-photorespiratory serine biosynthetic pathways, their interactions with the photorespiratory pathway, their putative role in plants and their biotechnological interest.

  19. Foreign gene recruitment to the fatty acid biosynthesis pathway in diatoms.

    PubMed

    Chan, Cheong Xin; Baglivi, Francesca L; Jenkins, Christina E; Bhattacharya, Debashish

    2013-09-01

    Diatoms are highly successful marine and freshwater algae that contribute up to 20% of global carbon fixation. These species are leading candidates for biofuel production owing to ease of culturing and high fatty acid content. To assist in strain improvement and downstream applications for potential use as a biofuel, it is important to understand the evolution of lipid biosynthesis in diatoms. The evolutionary history of diatoms is however complicated by likely multiple endosymbioses involving the capture of foreign cells and horizontal gene transfer into the host genome. Using a phylogenomic approach, we assessed the evolutionary history of 12 diatom genes putatively encoding functions related to lipid biosynthesis. We found evidence of gene transfer likely from a green algal source for seven of these genes, with the remaining showing either vertical inheritance or evolutionary histories too complicated to interpret given current genome data. The functions of horizontally transferred genes encompass all aspects of lipid biosynthesis (initiation, biosynthesis, and desaturation of fatty acids) as well as fatty acid elongation, and are not restricted to plastid-targeted proteins. Our findings demonstrate that the transfer, duplication, and subfunctionalization of genes were key steps in the evolution of lipid biosynthesis in diatoms and other photosynthetic eukaryotes. This target pathway for biofuel research is highly chimeric and surprisingly, our results suggest that research done on related genes in green algae may have application to diatom models.

  20. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    SciTech Connect

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann; Lindquist, Erika

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidence supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.

  1. An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants.

    PubMed

    Peng, Qing-Zhong; Zhu, Yue; Liu, Zhong; Du, Ci; Li, Ke-Gang; Xie, De-Yu

    2012-09-01

    Proanthocyanidins (PAs) are oligomers or polymers of plant flavan-3-ols and are important to plant adaptation in extreme environmental conditions. The characterization of anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) has demonstrated the different biogenesis of four stereo-configurations of flavan-3-ols. It is important to understand whether ANR and the ANR pathway widely occur in the plant kingdom. Here, we report an integrated approach to demonstrate the ANR pathway in plants. This includes different methods to extract native ANR from different tissues of eight angiosperm plants (Lotus corniculatus, Desmodium uncinatum, Medicago sativa, Hordeum vulgare, Vitis vinifera, Vitis bellula, Parthenocissus heterophylla, and Cerasus serrulata) and one fern plant (Dryopteris pycnopteroides), a general enzymatic analysis approach to demonstrate the ANR activity, high-performance liquid chromatography-based fingerprinting to demonstrate (-)-epicatechin and other flavan-3-ol molecules, and phytochemical analysis of PAs. Results demonstrate that in addition to leaves of M. sativa, tissues of other eight plants contain an active ANR pathway. Particularly, the leaves, flowers and pods of D. uncinatum, which is a model plant to study LAR and the LAR pathways, are demonstrated to express an active ANR pathway. This finding suggests that the ANR pathway involves PA biosynthesis in D. uncinatum. In addition, a sequence BLAST analysis reveals that ANR homologs have been sequenced in plants from both gymnosperms and angiosperms. These data show that the ANR pathway to PA biosynthesis occurs in both seed and seedless vascular plants.

  2. Complete genome sequencing and antibiotics biosynthesis pathways analysis of Streptomyces lydicus 103

    PubMed Central

    Jia, Nan; Ding, Ming-Zhu; Luo, Hao; Gao, Feng; Yuan, Ying-Jin

    2017-01-01

    More and more new natural products have been found in Streptomyces species, which become the significant resource for antibiotics production. Among them, Streptomyces lydicus has been known as its ability of streptolydigin biosynthesis. Herein, we present the genome analysis of S. lydicus based on the complete genome sequencing. The circular chromosome of S. lydicus 103 comprises 8,201,357 base pairs with average GC content 72.22%. With the aid of KEGG analysis, we found that S. lydicus 103 can transfer propanoate to succinate, glutamine or glutamate to 2-oxoglutarate, CO2 and L-glutamate to ammonia, which are conducive to the the supply of amino acids. S. lydicus 103 encodes acyl-CoA thioesterase II that takes part in biosynthesis of unsaturated fatty acids, and harbors the complete biosynthesis pathways of lysine, valine, leucine, phenylalanine, tyrosine and isoleucine. Furthermore, a total of 27 putative gene clusters have been predicted to be involved in secondary metabolism, including biosynthesis of streptolydigin, erythromycin, mannopeptimycin, ectoine and desferrioxamine B. Comparative genome analysis of S. lydicus 103 will help us deeply understand its metabolic pathways, which is essential for enhancing the antibiotic production through metabolic engineering. PMID:28317865

  3. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed.

    PubMed

    Wu, Xue-Long; Liu, Zhi-Hong; Hu, Zhang-Hua; Huang, Rui-Zhi

    2014-06-01

    Photosynthesis in "green" seeds, such as rapeseed, soybean, and Arabidopsis, plays a substantial role in the improved efficiency of oil accumulation. However, the molecular mechanism underpinning the coordinated expression of fatty acid (FA) biosynthesis- and photosynthesis-related genes in such developing seeds remains to be elucidated. Here, we found that seed-specific overexpression of BnWRI1, a WRI1 homolog from rapeseed (Brassica napus cv. ZGY2), results in enhanced chlorophyll content in developing seeds and increased oil content and seed mass in matured seeds. BnWRI1 was co-expressed with BnBCCP and BnCAB, two marker genes of FA biosynthesis and photosynthesis during seed development, respectively. Overexpression of BnWRI1 increased expression of both marker genes. Further, the nuclear-localized BnWRI1 protein was found to act as a transcription activator. It could bind to the GT1-element and/or GCC-box, which are widespread in the upstream regions of genes involved in FA biosynthesis and photosynthesis pathways. Accordingly, BnWRI1 could interact with promoters of BCCP2 and LHB1B2 in vivo. These results suggested that BnWRI1 may coordinate FA biosynthesis and photosynthesis pathways in developing seeds via directly stimulating expression of GT1-element and/or GCC-box containing genes.

  4. Complete genome sequencing and antibiotics biosynthesis pathways analysis of Streptomyces lydicus 103.

    PubMed

    Jia, Nan; Ding, Ming-Zhu; Luo, Hao; Gao, Feng; Yuan, Ying-Jin

    2017-03-20

    More and more new natural products have been found in Streptomyces species, which become the significant resource for antibiotics production. Among them, Streptomyces lydicus has been known as its ability of streptolydigin biosynthesis. Herein, we present the genome analysis of S. lydicus based on the complete genome sequencing. The circular chromosome of S. lydicus 103 comprises 8,201,357 base pairs with average GC content 72.22%. With the aid of KEGG analysis, we found that S. lydicus 103 can transfer propanoate to succinate, glutamine or glutamate to 2-oxoglutarate, CO2 and L-glutamate to ammonia, which are conducive to the the supply of amino acids. S. lydicus 103 encodes acyl-CoA thioesterase II that takes part in biosynthesis of unsaturated fatty acids, and harbors the complete biosynthesis pathways of lysine, valine, leucine, phenylalanine, tyrosine and isoleucine. Furthermore, a total of 27 putative gene clusters have been predicted to be involved in secondary metabolism, including biosynthesis of streptolydigin, erythromycin, mannopeptimycin, ectoine and desferrioxamine B. Comparative genome analysis of S. lydicus 103 will help us deeply understand its metabolic pathways, which is essential for enhancing the antibiotic production through metabolic engineering.

  5. Biosynthesis of salvinorin A proceeds via the deoxyxylulose phosphate pathway.

    PubMed

    Kutrzeba, Lukasz; Dayan, Franck E; Howell, J'Lynn; Feng, Ju; Giner, José-Luis; Zjawiony, Jordan K

    2007-07-01

    Salvinorin A, a neoclerodane diterpenoid, isolated from the Mexican hallucinogenic plant Salvia divinorum, is a potent kappa-opioid receptor agonist. Its biosynthetic route was studied by NMR and HR-ESI-MS analysis of the products of the incorporation of [1-(13)C]-glucose, [Me-(13)C]-methionine, and [1-(13)C;3,4-(2)H2]-1-deoxy-D-xylulose into its structure. While the use of cuttings and direct-stem injection were unsuccessful, incorporation of (13)C into salvinorin A was achieved using in vitro sterile culture of microshoots. NMR spectroscopic analysis of salvinorin A (2.7 mg) isolated from 200 microshoots grown in the presence of [1-(13)C]-glucose established that this pharmacologically important diterpene is biosynthesized via the 1-deoxy-D-xylulose-5-phosphate pathway, instead of the classic mevalonic acid pathway. This was confirmed further in plants grown in the presence of [1-(13)C;3,4-(2)H2]-1-deoxy-D-xylulose. In addition, analysis of salvinorin A produced by plants grown in the presence of [Me-(13)C]-methionine indicates that methylation of the C-4 carboxyl group is catalyzed by a type III S-adenosyl-L-methionine-dependent O-methyltransferase.

  6. Biosynthesis of salvinorin A proceeds via the deoxyxylulose phosphate pathway

    PubMed Central

    Kutrzeba, Lukasz; Dayan, Franck E.; Howell, J’Lynn; Feng, Ju; Giner, José-Luis; Zjawiony, Jordan K.

    2007-01-01

    Salvinorin A, a neoclerodane diterpenoid, isolated from the Mexican hallucinogenic plant, Salvia divinorum is a potent kappa-opioid receptor agonist. Its biosynthetic route was studied by NMR and HR-ESI-MS analysis of the products of the incorporation of [1-13C]-glucose, [Me-13C]-methionine, and [1-13C; 3,4-2H2]-1-deoxy-d-xylulose into its structure. The use of cuttings and direct stem injection were unsuccessful, however, incorporation of 13C into salvinorin A was achieved using in vitro sterile culture of microshoots. NMR analysis of salvinorin A (2.7 mg) isolated from 200 microshoots grown in the presence of [1-13C]-glucose established that this pharmacologically important diterpene is biosynthesized via the 1-deoxy-d-xylulose-5-phosphate pathway, instead of the classic mevalonic acid pathway. This was confirmed in plants grown in the presence of [1-13C; 3,4-2H2]-1-deoxy-d-xylulose. In addition, analysis of salvinorin A produced by plants grown in the presence of [Me-13C]-methionine indicates that the methylation of the C-4 carboxyl group is catalyzed by a type III S-adenosyl-l-methionine-dependent O-methyltransferase. PMID:17574635

  7. De novo purine biosynthesis by two pathways in Burkitt lymphoma cells and in human spleen.

    PubMed

    Reem, G H

    1972-05-01

    This study was designed to answer the question whether human lymphocytes and spleen cells were capable of de novo purine biosynthesis. Experiments were carried out in cell-free extracts prepared from human spleen, and from a cell line established from Burkitt lymphoma. Burkitt lymphoma cells and human spleen cells could synthesize the first and second intermediates of the purine biosynthetic pathway. Cell-free extracts of all cell lines studied contained the enzyme systems which catalyze the synthesis of phosphoribosyl-1-amine, the first intermediate unique to the purine biosynthetic pathway and of phosphoribosyl glycinamide, the second intermediate of this pathway. Phosphoribosyl-1-amine could be synthesized in cell-free extracts from alpha-5-phosphoribosyl-1-pyrophosphate (PRPP) and glutamine, from PRPP and ammonia, and by an alternative pathway, directly from ribose-5-phosphate and ammonia. These findings suggest that extrahepatic tissues may be an important source for the de novo synthesis of purine ribonucleotide in man. They also indicate that ammonia may play an important role in purine biosynthesis. The alternative pathway for the synthesis of phosphoribosyl-1-amine from ribose-5-phosphate and ammonia was found to be subject to inhibition by the end products of the purine synthetic pathway, particularly by adenylic acid and to a lesser degree by guanylic acid. The alternative pathway for phosphoribosyl-1-amine synthesis from ribose-5-phosphate and ammonia may contribute significantly towards the regulation of the rate of de novo purine biosynthesis in the normal state, in metabolic disorders in which purines are excessively produced and in myeloproliferative diseases.

  8. Tailoring pathway modularity in the biosynthesis of erythromycin analogs heterologously engineered in E. coli

    PubMed Central

    Zhang, Guojian; Li, Yi; Fang, Lei; Pfeifer, Blaine A.

    2015-01-01

    Type I modular polyketide synthases are responsible for potent therapeutic compounds that include avermectin (antihelinthic), rapamycin (immunosuppressant), pikromycin (antibiotic), and erythromycin (antibiotic). However, compound access and biosynthetic manipulation are often complicated by properties of native production organisms, prompting an approach (termed heterologous biosynthesis) illustrated in this study through the reconstitution of the erythromycin pathway through Escherichia coli. Using this heterologous system, 16 tailoring pathways were introduced, systematically producing eight chiral pairs of deoxysugar substrates. Successful analog formation for each new pathway emphasizes the remarkable flexibility of downstream enzymes to accommodate molecular variation. Furthermore, analogs resulting from three of the pathways demonstrated bioactivity against an erythromycin-resistant Bacillus subtilis strain. The approach and results support a platform for continued molecular diversification of the tailoring components of this and other complex natural product pathways in a manner that mirrors the modular nature of the upstream megasynthases responsible for aglycone polyketide formation. PMID:26601183

  9. Tailoring pathway modularity in the biosynthesis of erythromycin analogs heterologously engineered in E. coli.

    PubMed

    Zhang, Guojian; Li, Yi; Fang, Lei; Pfeifer, Blaine A

    2015-05-01

    Type I modular polyketide synthases are responsible for potent therapeutic compounds that include avermectin (antihelinthic), rapamycin (immunosuppressant), pikromycin (antibiotic), and erythromycin (antibiotic). However, compound access and biosynthetic manipulation are often complicated by properties of native production organisms, prompting an approach (termed heterologous biosynthesis) illustrated in this study through the reconstitution of the erythromycin pathway through Escherichia coli. Using this heterologous system, 16 tailoring pathways were introduced, systematically producing eight chiral pairs of deoxysugar substrates. Successful analog formation for each new pathway emphasizes the remarkable flexibility of downstream enzymes to accommodate molecular variation. Furthermore, analogs resulting from three of the pathways demonstrated bioactivity against an erythromycin-resistant Bacillus subtilis strain. The approach and results support a platform for continued molecular diversification of the tailoring components of this and other complex natural product pathways in a manner that mirrors the modular nature of the upstream megasynthases responsible for aglycone polyketide formation.

  10. Exploring cyanobacterial genomes for natural product biosynthesis pathways.

    PubMed

    Micallef, Melinda L; D'Agostino, Paul M; Al-Sinawi, Bakir; Neilan, Brett A; Moffitt, Michelle C

    2015-06-01

    Cyanobacteria produce a vast array of natural products, some of which are toxic to human health, while others possess potential pharmaceutical activities. Genome mining enables the identification and characterisation of natural product gene clusters; however, the current number of cyanobacterial genomes remains low compared to other phyla. There has been a recent effort to rectify this issue by increasing the number of sequenced cyanobacterial genomes. This has enabled the identification of biosynthetic gene clusters for structurally diverse metabolites, including non-ribosomal peptides, polyketides, ribosomal peptides, UV-absorbing compounds, alkaloids, terpenes and fatty acids. While some of the identified biosynthetic gene clusters correlate with known metabolites, genome mining also highlights the number and diversity of clusters for which the product is unknown (referred to as orphan gene clusters). A number of bioinformatic tools have recently been developed in order to predict the products of orphan gene clusters; however, in some cases the complexity of the cyanobacterial pathways makes the prediction problematic. This can be overcome by the use of mass spectrometry-guided natural product genome mining, or heterologous expression. Application of these techniques to cyanobacterial natural product gene clusters will be explored.

  11. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway

    PubMed Central

    Cárdenas, Pablo D.; Sonawane, Prashant D.; Pollier, Jacob; Vanden Bossche, Robin; Dewangan, Veena; Weithorn, Efrat; Tal, Lior; Meir, Sagit; Rogachev, Ilana; Malitsky, Sergey; Giri, Ashok P.; Goossens, Alain; Burdman, Saul; Aharoni, Asaph

    2016-01-01

    Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules produced by solanaceous species. They contribute to pathogen defence but are toxic to humans and considered as anti-nutritional compounds. Here we show that GLYCOALKALOID METABOLISM 9 (GAME9), an APETALA2/Ethylene Response Factor, related to regulators of alkaloid production in tobacco and Catharanthus roseus, controls SGA biosynthesis. GAME9 knockdown and overexpression in tomato and potato alters expression of SGAs and upstream mevalonate pathway genes including the cholesterol biosynthesis gene STEROL SIDE CHAIN REDUCTASE 2 (SSR2). Levels of SGAs, C24-alkylsterols and the upstream mevalonate and cholesterol pathways intermediates are modified in these plants. Δ(7)-STEROL-C5(6)-DESATURASE (C5-SD) in the hitherto unresolved cholesterol pathway is a direct target of GAME9. Transactivation and promoter-binding assays show that GAME9 exerts its activity either directly or cooperatively with the SlMYC2 transcription factor as in the case of the C5-SD gene promoter. Our findings provide insight into the regulation of SGA biosynthesis and means for manipulating these metabolites in crops. PMID:26876023

  12. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli

    PubMed Central

    Zhang, Junli; Kang, Zhen; Chen, Jian; Du, Guocheng

    2015-01-01

    5-Aminolevulinic acid (ALA), the committed intermediate of the heme biosynthesis pathway, shows significant promise for cancer treatment. Here, we identified that in addition to hemA and hemL, hemB, hemD, hemF, hemG and hemH are also the major regulatory targets of the heme biosynthesis pathway. Interestingly, up-regulation of hemD and hemF benefited ALA accumulation whereas overexpression of hemB, hemG and hemH diminished ALA accumulation. Accordingly, by combinatorial overexpression of the hemA, hemL, hemD and hemF with different copy-number plasmids, the titer of ALA was improved to 3.25 g l−1. Furthermore, in combination with transcriptional and enzymatic analysis, we demonstrated that ALA dehydratase (HemB) encoded by hemB is feedback inhibited by the downstream intermediate protoporphyrinogen IX. This work has great potential to be scaled-up for microbial production of ALA and provides new important insights into the regulatory mechanism of the heme biosynthesis pathway. PMID:25716896

  13. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway.

    PubMed

    Cárdenas, Pablo D; Sonawane, Prashant D; Pollier, Jacob; Vanden Bossche, Robin; Dewangan, Veena; Weithorn, Efrat; Tal, Lior; Meir, Sagit; Rogachev, Ilana; Malitsky, Sergey; Giri, Ashok P; Goossens, Alain; Burdman, Saul; Aharoni, Asaph

    2016-02-15

    Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules produced by solanaceous species. They contribute to pathogen defence but are toxic to humans and considered as anti-nutritional compounds. Here we show that GLYCOALKALOID METABOLISM 9 (GAME9), an APETALA2/Ethylene Response Factor, related to regulators of alkaloid production in tobacco and Catharanthus roseus, controls SGA biosynthesis. GAME9 knockdown and overexpression in tomato and potato alters expression of SGAs and upstream mevalonate pathway genes including the cholesterol biosynthesis gene STEROL SIDE CHAIN REDUCTASE 2 (SSR2). Levels of SGAs, C24-alkylsterols and the upstream mevalonate and cholesterol pathways intermediates are modified in these plants. Δ(7)-STEROL-C5(6)-DESATURASE (C5-SD) in the hitherto unresolved cholesterol pathway is a direct target of GAME9. Transactivation and promoter-binding assays show that GAME9 exerts its activity either directly or cooperatively with the SlMYC2 transcription factor as in the case of the C5-SD gene promoter. Our findings provide insight into the regulation of SGA biosynthesis and means for manipulating these metabolites in crops.

  14. Fungal Indole Alkaloid Biosynthesis: Genetic and Biochemical Investigation of Tryptoquialanine Pathway in Penicillium aethiopicum

    PubMed Central

    Gao, Xue; Chooi, Yit-Heng; Ames, Brian D.; Wang, Peng; Walsh, Christopher T.; Tang, Yi

    2011-01-01

    Tremorgenic mycotoxins are a group of indole alkaloids which include the quinazoline-containing tryptoquivaline 2 that are capable of eliciting intermittent or sustained tremors in vertebrate animals. The biosynthesis of this group of bioactive compounds, which are characterized by an acetylated quinazoline ring connected to a 6-5-5 imidazoindolone ring system via a 5-membered spirolactone, has remained uncharacterized. Here, we report the identification of a gene cluster (tqa) from P. aethiopicum that is involved in the biosynthesis of tryptoquialanine 1, which is structurally similar to 2. The pathway has been confirmed to go through an intermediate common to the fumiquinazoline pathway, fumiquinazoline F, which originates from a fungal trimodular nonribosomal peptide synthetase (NRPS). By systematically inactivating every biosynthetic gene in the cluster, followed by isolation and characterization of the intermediates, we were able to establish the biosynthetic sequence of the pathway. An unusual oxidative opening of the pyrazinone ring by an FAD-dependent berberine bridge enzyme-like oxidoreductase has been proposed based on genetic knockout studies. Notably, a 2-aminoisobutyric acid (AIB)-utilizing NRPS module has been identified and reconstituted in vitro, along with two putative enzymes of unknown functions that are involved in the synthesis of the unnatural amino acid by genetic analysis. This work provides new genetic and biochemical insights into the biosynthesis of this group of fungal alkaloids, including the tremorgens related to 2. PMID:21299212

  15. Fungal indole alkaloid biosynthesis: genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum.

    PubMed

    Gao, Xue; Chooi, Yit-Heng; Ames, Brian D; Wang, Peng; Walsh, Christopher T; Tang, Yi

    2011-03-02

    Tremorgenic mycotoxins are a group of indole alkaloids which include the quinazoline-containing tryptoquivaline (2) that are capable of eliciting intermittent or sustained tremors in vertebrate animals. The biosynthesis of this group of bioactive compounds, which are characterized by an acetylated quinazoline ring connected to a 6-5-5 imidazoindolone ring system via a 5-membered spirolactone, has remained uncharacterized. Here, we report the identification of a gene cluster (tqa) from P. aethiopicum that is involved in the biosynthesis of tryptoquialanine (1), which is structurally similar to 2. The pathway has been confirmed to go through an intermediate common to the fumiquinazoline pathway, fumiquinazoline F, which originates from a fungal trimodular nonribosomal peptide synthetase (NRPS). By systematically inactivating every biosynthetic gene in the cluster, followed by isolation and characterization of the intermediates, we were able to establish the biosynthetic sequence of the pathway. An unusual oxidative opening of the pyrazinone ring by an FAD-dependent berberine bridge enzyme-like oxidoreductase has been proposed based on genetic knockout studies. Notably, a 2-aminoisobutyric acid (AIB)-utilizing NRPS module has been identified and reconstituted in vitro, along with two putative enzymes of unknown functions that are involved in the synthesis of the unnatural amino acid by genetic analysis. This work provides new genetic and biochemical insights into the biosynthesis of this group of fungal alkaloids, including the tremorgens related to 2.

  16. Regulation of the Flavonoid Biosynthesis Pathway Genes in Purple and Black Grains of Hordeum vulgare

    PubMed Central

    Mock, Hans-Peter; Kukoeva, Tatjana V.; Börner, Andreas; Khlestkina, Elena K.

    2016-01-01

    Barley grain at maturity can have yellow, purple, blue, and black pigmentations which are suggested to play a protective role under stress conditions. The first three types of the colors are caused by phenolic compounds flavonoids; the last one is caused by phytomelanins, oxidized and polymerized phenolic compounds. Although the genetic basis of the flavonoid biosynthesis pathway in barley has been thoroughly studied, there is no data yet on its regulation in purple and black barley grains. In the current study, genetic model of Hordeum vulgare ‘Bowman’ near-isogenic lines (NILs) was used to investigate the regulation of the flavonoid biosynthesis in white, purple, and black barley grains. Microsatellite genotyping revealed donor segments in the purple- and black-grained lines on chromosomes 2H (in region of the Ant2 gene determining purple color of grains) and 1H (in region of the Blp gene determining black lemma and pericarp), respectively. The isolated dominant Ant2 allele of the purple-grained line has high level of sequence similarity with the recessive Bowman’s ant2 in coding region, whereas an insertion of 179 bp was detected in promoter region of ant2. This structural divergence between Ant2 and ant2 alleles may underlie their different expression in grain pericarp: Bowman’s Ant2 is not transcribed, whereas it was up-regulated in the purple-grained line with coordinately co-expressed flavonoid biosynthesis structural genes (Chs, Chi, F3h, F3’h, Dfr, Ans). This led to total anthocyain content increase in purple-grained line identified by ultra-performance liquid chromatography (HPLC). Collectively, these results proved the regulatory function of the Ant2 gene in anthocyanin biosynthesis in barley grain pericarp. In the black-grained line, the specific transcriptional regulation of the flavonoid biosynthesis pathway genes was not detected, suggesting that flavonoid pigments are not involved in development of black lemma and pericarp trait. PMID

  17. Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in Brassica napus.

    PubMed

    Bhinu, V-S; Schäfer, Ulrike A; Li, Rong; Huang, Jun; Hannoufa, Abdelali

    2009-02-01

    Arabidopsis thaliana and other members of the Brassicaceae accumulate the hydroxycinnamic acid esters sinapoylmalate in leaves and sinapoylcholine in seeds. Our recent understanding of the phenylpropanoid pathway although complex has enabled us to perturb the sinapine biosynthesis pathway in plants. Sinapine (sinapoylcholine) is the most abundant antinutritional phenolic compound in seeds of cruciferous species and therefore is a target for elimination in canola (Brassica napus) meal. We analysed A. thaliana mutants with specific blocks in the phenylpropanoid pathway and identified mutant lines with significantly altered sinapine content. Knowledge gained from A. thaliana was extended to B. napus and the corresponding phenylpropanoid pathway genes were manipulated to disrupt sinapine biosynthesis in B. napus. Based on our understanding of the A. thaliana genetics, we have successfully developed transgenic B. napus lines with ferulic acid 5-hydroxylase (FAH) and sinapoylglucose:choline sinapoyltransferase (SCT)-antisense. These lines with concomitant downregulation of FAH and SCT showed up to 90% reduction in sinapine. In addition to reduced sinapine content, we detected higher levels of free choline accumulation in the seeds. These results indicate that it is possible to develop plants with low sinapine and higher choline by manipulating specific steps in the biosynthetic pathway. These improvements are important to add value to canola meal for livestock feed.

  18. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts.

    PubMed

    Back, Kyoungwhan; Tan, Dun-Xian; Reiter, Russel J

    2016-11-01

    Melatonin is an animal hormone as well as a signaling molecule in plants. It was first identified in plants in 1995, and almost all enzymes responsible for melatonin biosynthesis had already been characterized in these species. Melatonin biosynthesis from tryptophan requires four-step reactions. However, six genes, that is, TDC, TPH, T5H, SNAT, ASMT, and COMT, have been implicated in the synthesis of melatonin in plants, suggesting the presence of multiple pathways. Two major pathways have been proposed based on the enzyme kinetics: One is the tryptophan/tryptamine/serotonin/N-acetylserotonin/melatonin pathway, which may occur under normal growth conditions; the other is the tryptophan/tryptamine/serotonin/5-methoxytryptamine/melatonin pathway, which may occur when plants produce large amounts of serotonin, for example, upon senescence. The melatonin biosynthetic capacity associated with conversion of tryptophan to serotonin is much higher than that associated with conversion of serotonin to melatonin, which yields a low level of melatonin synthesis in plants. Many melatonin intermediates are produced in various subcellular compartments, such as the cytoplasm, endoplasmic reticulum, and chloroplasts, which either facilitates or impedes the subsequent enzymatic steps. Depending on the pathways, the final subcellular sites of melatonin synthesis vary at either the cytoplasm or chloroplasts, which may differentially affect the mode of action of melatonin in plants.

  19. Ethanol induced astaxanthin accumulation and transcriptional expression of carotenogenic genes in Haematococcus pluvialis.

    PubMed

    Wen, Zewen; Liu, Zhiyong; Hou, Yuyong; Liu, Chenfeng; Gao, Feng; Zheng, Yubin; Chen, Fangjian

    2015-10-01

    Haematococcus pluvialis is one of the most promising natural sources of astaxanthin. However, inducing the accumulation process has become one of the primary obstacles in astaxanthin production. In this study, the effect of ethanol on astaxanthin accumulation was investigated. The results demonstrated that astaxanthin accumulation occurred with ethanol addition even under low-light conditions. The astaxanthin productivity could reach 11.26 mg L(-1) d(-1) at 3% (v/v) ethanol, which was 2.03 times of that of the control. The transcriptional expression patterns of eight carotenogenic genes were evaluated using real-time PCR. The results showed that ethanol greatly enhanced transcription of the isopentenyl diphosphate (IPP) isomerase genes (ipi-1 and ipi-2), which were responsible for isomerization reaction of IPP and dimethylallyl diphosphate (DMAPP). This finding suggests that ethanol induced astaxanthin biosynthesis was up-regulated mainly by ipi-1 and ipi-2 at transcriptional level, promoting isoprenoid synthesis and substrate supply to carotenoid formation. Thus ethanol has the potential to be used as an effective reagent to induce astaxanthin accumulation in H. pluvialis.

  20. 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals.

    PubMed

    Tashiro, Yohei; Rodriguez, Gabriel M; Atsumi, Shota

    2015-03-01

    Global energy and environmental concerns have driven the development of biological chemical production from renewable sources. Biological processes using microorganisms are efficient and have been traditionally utilized to convert biomass (i.e., glucose) to useful chemicals such as amino acids. To produce desired fuels and chemicals with high yield and rate, metabolic pathways have been enhanced and expanded with metabolic engineering and synthetic biology approaches. 2-Keto acids, which are key intermediates in amino acid biosynthesis, can be converted to a wide range of chemicals. 2-Keto acid pathways were engineered in previous research efforts and these studies demonstrated that 2-keto acid pathways have high potential for novel metabolic routes with high productivity. In this review, we discuss recently developed 2-keto acid-based pathways.

  1. Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway.

    PubMed

    Yoshino, Tomoko; Liang, Yue; Arai, Daichi; Maeda, Yoshiaki; Honda, Toru; Muto, Masaki; Kakunaka, Natsumi; Tanaka, Tsuyoshi

    2015-02-01

    The production of alkanes in a marine cyanobacterium possessing the α-olefin biosynthesis pathway was achieved by introducing an exogenous alkane biosynthesis pathway. Cyanobacterial hydrocarbons are synthesized via two separate pathways: the acyl-acyl carrier protein (ACP) reductase/aldehyde-deformylating oxygenase (AAR/ADO) pathway for the alkane biosynthesis and the α-olefin synthase (OLS) pathway for the α-olefin biosynthesis. Coexistence of these pathways has not yet been reported. In this study, the marine cyanobacterium Synechococcus sp. NKBG15041c was shown to produce α-olefins similar to those of Synechococcus sp. PCC7002 via the α-olefin biosynthesis pathway. The production of heptadecane in Synechococcus sp. NKBG15041c was achieved by expressing the AAR/ADO pathway genes from Synechococcus elongatus PCC 7942. The production yields of heptadecane in Synechococcus sp. NKBG15041c varied with the expression level of the aar and ado genes. The maximal yield of heptadecane was 4.2 ± 1.2 μg/g of dried cell weight in the transformant carrying a homologous promoter. Our results also suggested that the effective activation of ADO may be more important for the enhancement of alkane production by cyanobacteria.

  2. Identification and Characterization of Multiple Intermediate Alleles of the Key Genes Regulating Brassinosteroid Biosynthesis Pathways

    PubMed Central

    Du, Junbo; Zhao, Baolin; Sun, Xin; Sun, Mengyuan; Zhang, Dongzhi; Zhang, Shasha; Yang, Wenyu

    2017-01-01

    Most of the early identified brassinosteroid signaling and biosynthetic mutants are null mutants, exhibiting extremely dwarfed phenotypes and male sterility. These null mutants are usually unable to be directly transformed via a routinely used Agrobacterium-mediated gene transformation system and therefore are less useful for genetic characterization of the brassinosteroid (BR)-related pathways. Identification of intermediate signaling mutants such as bri1–5 and bri1–9 has contributed drastically to the elucidation of BR signaling pathway using both genetic and biochemical approaches. However, intermediate mutants of key genes regulating BR biosynthesis have seldom been reported. Here we report identification of several intermediate BR biosynthesis mutants mainly resulted from leaky transcriptions due to the insertions of T-DNAs in the introns. These mutants are semi-dwarfed and fertile and capable to be transformed. These intermediate mutants could be useful tools for future discovery and analyses of novel components regulating BR biosynthesis and catabolism via genetic modifier screen. PMID:28138331

  3. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus)

    PubMed Central

    2013-01-01

    Background Bitter acids (e.g. humulone) are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus) which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA) degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP) pathway. We used RNA sequencing (RNA-seq) to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves. Results Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT) enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves. Recombinant HlBCAT1 and HlBCAT2 catalyzed forward (biosynthetic) and reverse (catabolic) reactions with similar kinetic parameters. HlBCAT1 is targeted to mitochondria where it likely plays a role in BCAA catabolism. HlBCAT2 is a plastidial enzyme likely involved in BCAA biosynthesis. Phylogenetic analysis of the hop BCATs and those from other plants showed that they group into distinct biosynthetic (plastidial) and catabolic (mitochondrial

  4. Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli

    PubMed Central

    2014-01-01

    Background Cysteine, a sulfur-containing amino acid, plays an important role in a variety of cellular functions such as protein biosynthesis, methylation, and polyamine and glutathione syntheses. In trypanosomatids, glutathione is conjugated with spermidine to form the specific antioxidant thiol trypanothione (T[SH]2) that plays a central role in maintaining intracellular redox homeostasis and providing defence against oxidative stress. Methods We cloned and characterised genes coding for a cystathionine β-synthase (CβS) and cysteine synthase (CS), key enzymes of the transsulfuration and assimilatory pathways, respectively, from the hemoflagellate protozoan parasite Trypanosoma rangeli. Results Our results show that T. rangeli CβS (TrCβS), similar to its homologs in T. cruzi, contains the catalytic domain essential for enzymatic activity. Unlike the enzymes in bacteria, plants, and other parasites, T. rangeli CS lacks two of the four lysine residues (Lys26 and Lys184) required for activity. Enzymatic studies using T. rangeli extracts confirmed the absence of CS activity but confirmed the expression of an active CβS. Moreover, CβS biochemical assays revealed that the T. rangeli CβS enzyme also has serine sulfhydrylase activity. Conclusion These findings demonstrate that the RTS pathway is active in T. rangeli, suggesting that this may be the only pathway for cysteine biosynthesis in this parasite. In this sense, the RTS pathway appears to have an important functional role during the insect stage of the life cycle of this protozoan parasite. PMID:24761813

  5. Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1)

    DOE PAGES

    Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco; ...

    2017-01-10

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fattymore » acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of FA transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for FA-biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the FA profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. As a result, the gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.« less

  6. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1)

    PubMed Central

    Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco; Allen, Eric E.; Kalyuzhnaya, Marina G.

    2017-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph. PMID:28119683

  7. Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products

    PubMed Central

    Shah, Md. Mahfuzur R.; Liang, Yuanmei; Cheng, Jay J.; Daroch, Maurycy

    2016-01-01

    Many species of microalgae have been used as source of nutrient rich food, feed, and health promoting compounds. Among the commercially important microalgae, Haematococcus pluvialis is the richest source of natural astaxanthin which is considered as “super anti-oxidant.” Natural astaxanthin produced by H. pluvialis has significantly greater antioxidant capacity than the synthetic one. Astaxanthin has important applications in the nutraceuticals, cosmetics, food, and aquaculture industries. It is now evident that, astaxanthin can significantly reduce free radicals and oxidative stress and help human body maintain a healthy state. With extraordinary potency and increase in demand, astaxanthin is one of the high-value microalgal products of the future.This comprehensive review summarizes the most important aspects of the biology, biochemical composition, biosynthesis, and astaxanthin accumulation in the cells of H. pluvialis and its wide range of applications for humans and animals. In this paper, important and recent developments ranging from cultivation, harvest and postharvest bio-processing technologies to metabolic control and genetic engineering are reviewed in detail, focusing on biomass and astaxanthin production from this biotechnologically important microalga. Simultaneously, critical bottlenecks and major challenges in commercial scale production; current and prospective global market of H. pluvialis derived astaxanthin are also presented in a critical manner. A new biorefinery concept for H. pluvialis has been also suggested to guide toward economically sustainable approach for microalgae cultivation and processing. This report could serve as a useful guide to present current status of knowledge in the field and highlight key areas for future development of H. pluvialis astaxanthin technology and its large scale commercial implementation. PMID:27200009

  8. Perfusion culture process plus H2O2 stimulation for efficient astaxanthin production by Xanthophyllomyces dendrorhous.

    PubMed

    Liu, Yuan Shuai; Wu, Jian Yong

    2007-06-15

    A semicontinuous perfusion culture process (repeated medium renewal with cell retention) was evaluated together with batch and repeated fed-batch processes for astaxanthin production in shake-flask cultures of Xanthophyllomyces dendrorhous. The perfusion process with 25% medium renewal every 12 h for 10 days achieved a biomass density of 65.6 g/L, a volumetric astaxanthin yield of 52.5 mg/L, and an astaxanthin productivity of 4.38 mg/L-d, which were 8.4-fold, 5.6-fold, and 2.3-fold of those in the batch process, 7.8 g/L, 9.4 mg/L, and 1.88 mg/L-d, respectively. The incorporation of hydrogen peroxide (H(2)O(2)) stimulation of astaxanthin biosynthesis into the perfusion process further increased the astaxanthin yield to 58.3 mg/L and the productivity to 4.86 mg/L-d. The repeated fed-batch process with 8 g/L glucose and 4 g/L corn steep liquor fed every 12 h achieved 42.2 g/L biomass density, 36.5 mg/L astaxanthin yield, and 3.04 mg/L-d astaxanthin productivity. The lower biomass and astaxanthin productivity in the repeated fed-batch than in the perfusion process may be mostly attributed to the accumulation of inhibitory metabolites such as ethanol and acetic acid in the culture. The study shows that perfusion process plus H(2)O(2) stimulation is an effective strategy for enhanced astaxanthin production in X. dendrorhous cultures.

  9. Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products.

    PubMed

    Shah, Md Mahfuzur R; Liang, Yuanmei; Cheng, Jay J; Daroch, Maurycy

    2016-01-01

    Many species of microalgae have been used as source of nutrient rich food, feed, and health promoting compounds. Among the commercially important microalgae, Haematococcus pluvialis is the richest source of natural astaxanthin which is considered as "super anti-oxidant." Natural astaxanthin produced by H. pluvialis has significantly greater antioxidant capacity than the synthetic one. Astaxanthin has important applications in the nutraceuticals, cosmetics, food, and aquaculture industries. It is now evident that, astaxanthin can significantly reduce free radicals and oxidative stress and help human body maintain a healthy state. With extraordinary potency and increase in demand, astaxanthin is one of the high-value microalgal products of the future.This comprehensive review summarizes the most important aspects of the biology, biochemical composition, biosynthesis, and astaxanthin accumulation in the cells of H. pluvialis and its wide range of applications for humans and animals. In this paper, important and recent developments ranging from cultivation, harvest and postharvest bio-processing technologies to metabolic control and genetic engineering are reviewed in detail, focusing on biomass and astaxanthin production from this biotechnologically important microalga. Simultaneously, critical bottlenecks and major challenges in commercial scale production; current and prospective global market of H. pluvialis derived astaxanthin are also presented in a critical manner. A new biorefinery concept for H. pluvialis has been also suggested to guide toward economically sustainable approach for microalgae cultivation and processing. This report could serve as a useful guide to present current status of knowledge in the field and highlight key areas for future development of H. pluvialis astaxanthin technology and its large scale commercial implementation.

  10. Contents of therapeutic metabolites in Swertia chirayita correlate with the expression profiles of multiple genes in corresponding biosynthesis pathways.

    PubMed

    Padhan, Jibesh Kumar; Kumar, Varun; Sood, Hemant; Singh, Tiratha Raj; Chauhan, Rajinder S

    2015-08-01

    Swertia chirayita, an endangered medicinal herb, contains three major secondary metabolites swertiamarin, amarogentin and mangiferin, exhibiting valuable therapeutic traits. No information exists as of today on the biosynthesis of these metabolites in S. chirayita. The current study reports the expression profiling of swertiamarin, amarogentin and mangiferin biosynthesis pathway genes and their correlation with the respective metabolites content in different tissues of S. chirayita. Root tissues of greenhouse grown plants contained the maximum amount of secoiridoids (swertiamarin, 2.8% of fr. wt and amarogentin, 0.1% of fr. wt), whereas maximum accumulation of mangiferin (1.0% of fr. wt) was observed in floral organs. Differential gene expression analysis and their subsequent principal component analysis unveiled ten genes (encoding HMGR, PMK, MVK, ISPD, ISPE, GES, G10H, 8HGO, IS and 7DLGT) of the secoiridoids biosynthesis pathway and five genes (encoding EPSPS, PAL, ADT, CM and CS) of mangiferin biosynthesis with elevated transcript amounts in relation to corresponding metabolite contents. Three genes of the secoiridoids biosynthesis pathway (encoding PMK, ISPD and IS) showed elevated levels (∼57-104 fold increase in roots), and EPSPS of mangiferin biosynthesis showed an about 117 fold increase in transcripts in leaf tissues of the greenhouse grown plants. The study does provide leads on potential candidate genes correlating with the metabolites biosynthesis in S. chirayita as an initiative towards its genetic improvement.

  11. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA).

    PubMed

    Gao, Zhengquan; Li, Yan; Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen

    2015-01-01

    Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis.

  12. A new alternative non-mevalonate pathway for isoprenoid biosynthesis in eubacteria and plants.

    PubMed

    Paseshnichenko, V A

    1998-02-01

    Data concerning the discovery of an alternative non-mevalonate pathway for isoprenoid biosynthesis leading to isopentenyl diphosphate formation are reviewed. This pathway has been discovered in experiments with several eubacteria producing triterpenoids of the hopane series. 13C-labeled acetate, glucose, and triose phosphates were used as precursors. The 13C-labeling patterns in isoprenoids were studied by 13C-NMR spectrometry. In eubacteria the universal C5 precursor--isopentenyl diphosphate--did not appear to form via the classical acetate/mevalonate pathway, but via a novel glyceraldehyde 3-phosphate/pyruvate pathway. It is postulated that the condensation of the C2 unit formed as a result of pyruvate decarboxylation with the C3 unit (glyceraldehyde 3-phosphate) and the next transposition leads to the formation of the branched C5 precursor--isopentenyl diphosphate. In Scenedesmus obliquus not only all plastid isoprenoids (carotenoids and prenyl side chains of chlorophylls and plastoquinone-9) were formed via this novel pathway, but also the non-plastid cytoplasmic sterols. In higher plants the plastid isoprenoids were formed via the glyceraldehyde 3-phosphate/pyruvate pathway, while the cytoplasmic sterols were formed via the acetate/mevalonate pathway.

  13. A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy pathway phospholipid biosynthesis

    PubMed Central

    Ahmed, Mustafa Y.; Al-Khayat, Aisha; Al-Murshedi, Fathiya; Al-Futaisi, Amna; Chioza, Barry A.; Pedro Fernandez-Murray, J.; Self, Jay E.; Salter, Claire G.; Harlalka, Gaurav V.; Rawlins, Lettie E.; Al-Zuhaibi, Sana; Al-Azri, Faisal; Al-Rashdi, Fatma; Cazenave-Gassiot, Amaury; Wenk, Markus R.; Al-Salmi, Fatema; Patton, Michael A.; Silver, David L.; McMaster, Christopher R.; Crosby, Andrew H.

    2017-01-01

    Abstract Mutations in genes involved in lipid metabolism have increasingly been associated with various subtypes of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative motor neuron disorders characterized by spastic paraparesis. Here, we report an unusual autosomal recessive neurodegenerative condition, best classified as a complicated form of hereditary spastic paraplegia, associated with mutation in the ethanolaminephosphotransferase 1 (EPT1) gene (now known as SELENOI), responsible for the final step in Kennedy pathway forming phosphatidylethanolamine from CDP-ethanolamine. Phosphatidylethanolamine is a glycerophospholipid that, together with phosphatidylcholine, constitutes more than half of the total phospholipids in eukaryotic cell membranes. We determined that the mutation defined dramatically reduces the enzymatic activity of EPT1, thereby hindering the final step in phosphatidylethanolamine synthesis. Additionally, due to central nervous system inaccessibility we undertook quantification of phosphatidylethanolamine levels and species in patient and control blood samples as an indication of liver phosphatidylethanolamine biosynthesis. Although this revealed alteration to levels of specific phosphatidylethanolamine fatty acyl species in patients, overall phosphatidylethanolamine levels were broadly unaffected indicating that in blood EPT1 inactivity may be compensated for, in part, via alternate biochemical pathways. These studies define the first human disorder arising due to defective CDP-ethanolamine biosynthesis and provide new insight into the role of Kennedy pathway components in human neurological function. PMID:28052917

  14. Proposed pathway for biosynthesis of the S-layer glycoprotein of Bacillus alvei.

    PubMed Central

    Hartmann, E; Messner, P; Allmeier, G; König, H

    1993-01-01

    The outer surface of the murein sacculus of the eubacterium Bacillus alvei is covered by a surface layer (S-layer) glycoprotein. The glycan chain of this S-layer glycoprotein consists of trisaccharide repeating units with ManNAc, Gal, and Glc as constituents. From cell extracts of B. alvei, nucleotide-activated derivatives of ManNAc, Gal, Glc, and GlcNAc were isolated. Furthermore, GDP- and dolichyl-activated oligosaccharides were obtained. On the basis of the isolated putative glycoprotein precursors, a pathway for the biosynthesis of the oligosaccharide chain is proposed. PMID:8331079

  15. Analysis of putative nonulosonic acid biosynthesis pathways in Archaea reveals a complex evolutionary history.

    PubMed

    Kandiba, Lina; Eichler, Jerry

    2013-08-01

    Sialic acids and the other nonulosonic acid sugars, legionaminic acid and pseudaminic acid, are nine carbon-containing sugars that can be detected as components of the glycans decorating proteins and other molecules in Eukarya and Bacteria. Yet, despite the prevalence of N-glycosylation in Archaea and the variety of sugars recruited for the archaeal version of this post-translational modification, only a single report of a nonulosonic acid sugar in an archaeal N-linked glycan has appeared. Hence, to obtain a clearer picture of nonulosonic acid sugar biosynthesis capability in Archaea, 122 sequenced genomes were scanned for the presence of genes involved in the biogenesis of these sugars. The results reveal that while Archaea and Bacteria share a common route of sialic acid biosynthesis, numerous archaeal nonulosonic acid sugar biosynthesis pathway components were acquired from elsewhere via various routes. Still, the limited number of Archaea encoding components involved in the synthesis of nonulosonic acid sugars implies that such saccharides are not major components of glycans in this domain.

  16. Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance.

    PubMed

    Ding, Pingtao; Rekhter, Dmitrij; Ding, Yuli; Feussner, Kirstin; Busta, Lucas; Haroth, Sven; Xu, Shaohua; Li, Xin; Jetter, Reinhard; Feussner, Ivo; Zhang, Yuelin

    2016-10-01

    Systemic acquired resistance (SAR) is an immune response induced in the distal parts of plants following defense activation in local tissue. Pipecolic acid (Pip) accumulation orchestrates SAR and local resistance responses. Here, we report the identification and characterization of SAR-DEFICIENT4 (SARD4), which encodes a critical enzyme for Pip biosynthesis in Arabidopsis thaliana Loss of function of SARD4 leads to reduced Pip levels and accumulation of a Pip precursor, Δ(1)-piperideine-2-carboxylic acid (P2C). In Escherichia coli, expression of the aminotransferase ALD1 leads to production of P2C and addition of SARD4 results in Pip production, suggesting that a Pip biosynthesis pathway can be reconstituted in bacteria by coexpression of ALD1 and SARD4. In vitro experiments showed that ALD1 can use l-lysine as a substrate to produce P2C and P2C is converted to Pip by SARD4. Analysis of sard4 mutant plants showed that SARD4 is required for SAR as well as enhanced pathogen resistance conditioned by overexpression of the SAR regulator FLAVIN-DEPENDENT MONOOXYGENASE1. Compared with the wild type, pathogen-induced Pip accumulation is only modestly reduced in the local tissue of sard4 mutant plants, but it is below detection in distal leaves, suggesting that Pip is synthesized in systemic tissue by SARD4-mediated reduction of P2C and biosynthesis of Pip in systemic tissue contributes to SAR establishment.

  17. Aromatic Glucosinolate Biosynthesis Pathway in Barbarea vulgaris and its Response to Plutella xylostella Infestation

    PubMed Central

    Liu, Tongjin; Zhang, Xiaohui; Yang, Haohui; Agerbirk, Niels; Qiu, Yang; Wang, Haiping; Shen, Di; Song, Jiangping; Li, Xixiang

    2016-01-01

    The inducibility of the glucosinolate resistance mechanism is an energy-saving strategy for plants, but whether induction would still be triggered by glucosinolate-tolerant Plutella xylostella (diamondback moth, DBM) after a plant had evolved a new resistance mechanism (e.g., saponins in Barbara vulgaris) was unknown. In B. vulgaris, aromatic glucosinolates derived from homo-phenylalanine are the dominant glucosinolates, but their biosynthesis pathway was unclear. In this study, we used G-type (pest-resistant) and P-type (pest-susceptible) B. vulgaris to compare glucosinolate levels and the expression profiles of their biosynthesis genes before and after infestation by DBM larvae. Two different stereoisomers of hydroxylated aromatic glucosinolates are dominant in G- and P-type B. vulgaris, respectively, and are induced by DBM. The transcripts of genes in the glucosinolate biosynthesis pathway and their corresponding transcription factors were identified from an Illumina dataset of G- and P-type B. vulgaris. Many genes involved or potentially involved in glucosinolate biosynthesis were induced in both plant types. The expression patterns of six DBM induced genes were validated by quantitative PCR (qPCR), while six long-fragment genes were validated by molecular cloning. The core structure biosynthetic genes showed high sequence similarities between the two genotypes. In contrast, the sequence identity of two apparent side chain modification genes, the SHO gene in the G-type and the RHO in P-type plants, showed only 77.50% identity in coding DNA sequences and 65.48% identity in deduced amino acid sequences. The homology to GS-OH in Arabidopsis, DBM induction of the transcript and a series of qPCR and glucosinolate analyses of G-type, P-type and F1 plants indicated that these genes control the production of S and R isomers of 2-hydroxy-2-phenylethyl glucosinolate. These glucosinolates were significantly induced by P. xylostella larvae in both the susceptiple P

  18. Iron-dependent remodeling of fungal metabolic pathways associated with ferrichrome biosynthesis.

    PubMed

    Mercier, Alexandre; Labbé, Simon

    2010-06-01

    The fission yeast Schizosaccharomyces pombe excretes and accumulates the hydroxamate-type siderophore ferrichrome. The sib1(+) and sib2(+) genes encode, respectively, a siderophore synthetase and an l-ornithine N(5)-oxygenase that participate in ferrichrome biosynthesis. In the present report, we demonstrate that sib1(+) and sib2(+) are repressed by the GATA-type transcriptional repressor Fep1 in response to high levels of iron. We further found that the loss of Fep1 results in increased ferrichrome production. We showed that a sib1Delta sib2Delta mutant strain exhibits a severe growth defect on iron-poor media. We determined that two metabolic pathways are involved in biosynthesis of ornithine, an obligatory precursor of ferrichrome. Ornithine is produced by hydrolysis of arginine by the Car1 and Car3 proteins. Although car3(+) was constitutively expressed, car1(+) transcription levels were repressed upon exposure to iron, with a concomitant decrease of Car1 arginase activity. Ornithine is also generated by transformation of glutamate, which itself is produced by two separate biosynthetic pathways which are transcriptionally regulated by iron in an opposite fashion. In one pathway, the glutamate dehydrogenase Gdh1, which produces glutamate from 2-ketoglutarate, was repressed under iron-replete conditions in a Fep1-dependent manner. The other pathway involves two coupled enzymes, glutamine synthetase Gln1 and Fe-S cluster-containing glutamate synthase Glt1, which were both repressed under iron-limiting conditions but were expressed under iron-replete conditions. Collectively, these results indicate that under conditions of iron deprivation, yeast remodels metabolic pathways linked to ferrichrome synthesis in order to limit iron utilization without compromising siderophore production and its ability to sequester iron from the environment.

  19. MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind

    PubMed Central

    Kuwahara, Hiroyuki; Alazmi, Meshari; Cui, Xuefeng; Gao, Xin

    2016-01-01

    To rationally design a productive heterologous biosynthesis system, it is essential to consider the suitability of foreign reactions for the specific endogenous metabolic infrastructure of a host. We developed a novel web server, called MRE, which, for a given pair of starting and desired compounds in a given chassis organism, ranks biosynthesis routes from the perspective of the integration of new reactions into the endogenous metabolic system. For each promising heterologous biosynthesis pathway, MRE suggests actual enzymes for foreign metabolic reactions and generates information on competing endogenous reactions for the consumption of metabolites. These unique, chassis-centered features distinguish MRE from existing pathway design tools and allow synthetic biologists to evaluate the design of their biosynthesis systems from a different angle. By using biosynthesis of a range of high-value natural products as a case study, we show that MRE is an effective tool to guide the design and optimization of heterologous biosynthesis pathways. The URL of MRE is http://www.cbrc.kaust.edu.sa/mre/. PMID:27131375

  20. MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind.

    PubMed

    Kuwahara, Hiroyuki; Alazmi, Meshari; Cui, Xuefeng; Gao, Xin

    2016-07-08

    To rationally design a productive heterologous biosynthesis system, it is essential to consider the suitability of foreign reactions for the specific endogenous metabolic infrastructure of a host. We developed a novel web server, called MRE, which, for a given pair of starting and desired compounds in a given chassis organism, ranks biosynthesis routes from the perspective of the integration of new reactions into the endogenous metabolic system. For each promising heterologous biosynthesis pathway, MRE suggests actual enzymes for foreign metabolic reactions and generates information on competing endogenous reactions for the consumption of metabolites. These unique, chassis-centered features distinguish MRE from existing pathway design tools and allow synthetic biologists to evaluate the design of their biosynthesis systems from a different angle. By using biosynthesis of a range of high-value natural products as a case study, we show that MRE is an effective tool to guide the design and optimization of heterologous biosynthesis pathways. The URL of MRE is http://www.cbrc.kaust.edu.sa/mre/.

  1. Unravelling the architecture and dynamics of tropane alkaloid biosynthesis pathways using metabolite correlation networks.

    PubMed

    Nguyen, Thi-Kieu-Oanh; Jamali, Arash; Lanoue, Arnaud; Gontier, Eric; Dauwe, Rebecca

    2015-08-01

    The tropane alkaloid spectrum in Solanaceae is highly variable within and between species. Little is known about the topology and the coordination of the biosynthetic pathways leading to the variety of tropine and pseudotropine derived esters in the alkaloid spectrum, or about the metabolic dynamics induced by tropane alkaloid biosynthesis stimulating conditions. A good understanding of the metabolism, including all ramifications, is however necessary for the development of strategies to increase the abundance of pharmacologically interesting compounds such as hyoscyamine and scopolamine. The present study explores the tropane alkaloid metabolic pathways in an untargeted approach involving a correlation-based network analysis. Using GC-MS metabolite profiling, the variation and co-variation among tropane alkaloids and primary metabolites was monitored in 60 Datura innoxia Mill. individuals, of which half were exposed to tropane alkaloid biosynthesis stimulating conditions by co-culture with Agrobacterium rhizogenes. Considerable variation was evident in the relative proportions of the tropane alkaloids. Remodeling of the tropane alkaloid spectrum under co-culture with A. rhizogenes involved a specific and strong increase of hyoscyamine production and revealed that the accumulation of hyoscyamine, 3-tigloyloxy-6,7-epoxytropane, and 3-methylbutyryloxytropane was controlled independently of the majority of tropane alkaloids. Based on correlations between metabolites, we propose a biosynthetic origin of hygrine, the order of esterification of certain di-oxygenated tropanes, and that the rate of acetoxylation contributes to control of hyoscyamine production. Overall, this study shows that the biosynthesis of tropane alkaloids may be far more complex and finely controlled than previously expected.

  2. Steviol glycosides from Stevia: biosynthesis pathway review and their application in foods and medicine.

    PubMed

    Yadav, Sudesh Kumar; Guleria, Praveen

    2012-01-01

    Stevia rebaudiana, a perennial herb from the Asteraceae family, is known to the scientific world for its sweetness and steviol glycosides (SGs). SGs are the secondary metabolites responsible for the sweetness of Stevia. They are synthesized by SG biosynthesis pathway operating in the leaves. Most of the genes encoding the enzymes of this pathway have been cloned and characterized from Stevia. Out of various SGs, stevioside and rebaudioside A are the major metabolites. SGs including stevioside have also been synthesized by enzymes and microbial agents. These are non-mutagenic, non-toxic, antimicrobial, and do not show any remarkable side-effects upon consumption. Stevioside has many medical applications and its role against diabetes is most important. SGs have made Stevia an important part of the medicinal world as well as the food and beverage industry. This article presents an overview on Stevia and the importance of SGs.

  3. Artemether Exhibits Amoebicidal Activity against Acanthamoeba castellanii through Inhibition of the Serine Biosynthesis Pathway

    PubMed Central

    Deng, Yihong; Ran, Wei; Man, Suqin; Li, Xueping; Gao, Hongjian; Tang, Wei

    2015-01-01

    Acanthamoeba sp. parasites are the causative agents of Acanthamoeba keratitis, fatal granulomatous amoebic encephalitis, and cutaneous infections. However, there are currently no effective drugs for these organisms. Here, we evaluated the activity of the antimalarial agent artemether against Acanthamoeba castellanii trophozoites and identified potential targets of this agent through a proteomic approach. Artemether exhibited in vitro amoebicidal activity in a time- and dose-dependent manner and induced ultrastructural modification and cell apoptosis. The iTRAQ quantitative proteomic analysis identified 707 proteins that were differentially expressed after artemether treatment. We focused on phosphoglycerate dehydrogenase and phosphoserine aminotransferase in the serine biosynthesis pathway because of their importance to the growth and proliferation of protozoan and cancer cells. The expression of these proteins in Acanthamoeba was validated using quantitative real-time PCR and Western blotting after artemether treatment. The changes in the expression levels of phosphoserine aminotransferase were consistent with those of phosphoglycerate dehydrogenase. Therefore, the downregulation of phosphoserine aminotransferase may be due to the downregulation of phosphoglycerate dehydrogenase. Furthermore, exogenous serine might antagonize the activity of artemether against Acanthamoeba trophozoites. These results indicate that the serine biosynthesis pathway is important to amoeba survival and that targeting these enzymes would improve the treatment of Acanthamoeba infections. Artemether may be used as a phosphoglycerate dehydrogenase inhibitor to control or block Acanthamoeba infections. PMID:26014935

  4. Evidence from Solanum tuberosum in support of the dual-pathway hypothesis of aromatic biosynthesis

    SciTech Connect

    Morris, P.F.; Doong, R.L.; Jensen, R.A. )

    1989-01-01

    Key branchpoint enzymes of aromatic amino acid biosynthesis, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DS) and chorismate mutase (CM), have previously been shown to exist as separate compartmentalized isozymes in the chloroplasts and cytosol of tobacco, sorghum and spinach. Although additional examples of plants containing these isozyme pairs are accumulating, some studies in the literature report the presence of only the single plastidic DS or CM enzyme. Such apparent exceptions contradict the universality of pathway organization existing in higher plants that is implied by the dual-pathway hypothesis of aromatic biosynthesis. Since potato (Solanum tuberosum) exemplifies a case where only a single species of both DS and CM have been reported, we selected this system for further analysis. The DS-Mn and DS-Co isozyme pair, exhibiting all of the differential properties described in Nicotiana silvestris, have now been identified in S. tuberosum. Likwise, partial purification via DEAE-cellulose chromatography revealed two isozymes of CM in disks excised from tubers of S. tuberosum. The differential regulatory properties of these isozymes were comparable to the CM-1 and CM-2 isozymes of N. silvestris.

  5. Artemether Exhibits Amoebicidal Activity against Acanthamoeba castellanii through Inhibition of the Serine Biosynthesis Pathway.

    PubMed

    Deng, Yihong; Ran, Wei; Man, Suqin; Li, Xueping; Gao, Hongjian; Tang, Wei; Tachibana, Hiroshi; Cheng, Xunjia

    2015-08-01

    Acanthamoeba sp. parasites are the causative agents of Acanthamoeba keratitis, fatal granulomatous amoebic encephalitis, and cutaneous infections. However, there are currently no effective drugs for these organisms. Here, we evaluated the activity of the antimalarial agent artemether against Acanthamoeba castellanii trophozoites and identified potential targets of this agent through a proteomic approach. Artemether exhibited in vitro amoebicidal activity in a time- and dose-dependent manner and induced ultrastructural modification and cell apoptosis. The iTRAQ quantitative proteomic analysis identified 707 proteins that were differentially expressed after artemether treatment. We focused on phosphoglycerate dehydrogenase and phosphoserine aminotransferase in the serine biosynthesis pathway because of their importance to the growth and proliferation of protozoan and cancer cells. The expression of these proteins in Acanthamoeba was validated using quantitative real-time PCR and Western blotting after artemether treatment. The changes in the expression levels of phosphoserine aminotransferase were consistent with those of phosphoglycerate dehydrogenase. Therefore, the downregulation of phosphoserine aminotransferase may be due to the downregulation of phosphoglycerate dehydrogenase. Furthermore, exogenous serine might antagonize the activity of artemether against Acanthamoeba trophozoites. These results indicate that the serine biosynthesis pathway is important to amoeba survival and that targeting these enzymes would improve the treatment of Acanthamoeba infections. Artemether may be used as a phosphoglycerate dehydrogenase inhibitor to control or block Acanthamoeba infections.

  6. Reconstruction of the carnitine biosynthesis pathway from Neurospora crassa in the yeast Saccharomyces cerevisiae.

    PubMed

    Franken, Jaco; Burger, Anita; Swiegers, Jan H; Bauer, Florian F

    2015-08-01

    Industrial synthesis of L-carnitine is currently performed by whole-cell biotransformation of industrial waste products, mostly D-carnitine and cronobetaine, through specific bacterial species. No comparable system has been established using eukaryotic microorganisms, even though there is a significant and growing international demand for either the pure compound or carnitine-enriched consumables. In eukaryotes, including the fungus Neurospora crassa, L-carnitine is biosynthesized through a four-step metabolic conversion of trimethyllysine to L-carnitine. In contrast, the industrial yeast, Saccharomyces cerevisiae lacks the enzymes of the eukaryotic biosynthesis pathway and is unable to synthesize carnitine. This study describes the cloning of all four of the N. crassa carnitine biosynthesis genes and the reconstruction of the entire pathway in S. cerevisiae. The engineered yeast strains were able to catalyze the synthesis of L-carnitine, which was quantified using hydrophilic interaction liquid chromatography electrospray ionization mass spectrometry (HILIC-ESI-MS) analyses, from trimethyllysine. Furthermore, the yeast threonine aldolase Gly1p was shown to effectively catalyze the second step of the pathway, fulfilling the role of a serine hydroxymethyltransferase. The analyses also identified yeast enzymes that interact with the introduced pathway, including Can1p, which was identified as the yeast transporter for trimethyllysine, and the two yeast serine hydroxymethyltransferases, Shm1p and Shm2p. Together, this study opens the possibility of using an engineered, carnitine-producing yeast in various industrial applications while providing insight into possible future strategies aimed at tailoring the production capacity of such strains.

  7. Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings.

    PubMed

    Zhang, Xue; Yu, Hong Jun; Zhang, Xiao Meng; Yang, Xue Yong; Zhao, Wen Chao; Li, Qiang; Jiang, Wei Jie

    2016-11-01

    L-Ascorbic acid (AsA, ascorbate) is one of the most abundant natural antioxidants, and it is an important factor in the nutritional quality of cucumber. In this work, key enzymes involved in the ascorbic acid biosynthesis and recycling pathway in cucumber seedlings under nitrogen deficiency were investigated at the levels of transcription and enzyme activity. The activities of myo-inositol oxygenase (MIOX) and transcript levels of MIOXs increased dramatically, while the activities of ascorbate oxidase (AO) and glutathione reductase (GR) and transcript levels of AOs and GR2 decreased significantly in N-limited leaves, as did the ascorbate concentration, in nitrogen-deficient cucumber seedlings. The activities of other enzymes and transcript levels of other genes involved in the ascorbate recycling pathway and ascorbate synthesis pathways decreased or remained unchanged under nitrogen deficiency. These results indicate that nitrogen deficiency induced genes involved in the ascorbate-glutathione recycling and myo-inositol pathway in cucumber leaves. Thus, the AO, GR and MIOX involved in the pathways might play roles in AsA accumulation.

  8. The long-overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis.

    PubMed

    Oves-Costales, Daniel; Kadi, Nadia; Challis, Gregory L

    2009-11-21

    Siderophores are high-affinity ferric iron chelators biosynthesised and excreted by most microorganisms that play an important role in iron acquisition. Siderophore-mediated scavenging of ferric iron from hosts contributes significantly to the virulence of pathogenic microbes. As a consequence siderophore biosynthesis is an attractive target for chemotherapeutic intervention. Two main pathways for siderophore biosynthesis exist in microbes. One pathway involves nonribosomal peptide synthetase (NRPS) multienzymes while the other is NRPS-independent. The enzymology of NRPS-mediated siderophore biosynthesis has been extensively studied for more than a decade. In contrast, the enzymology of NRPS-independent siderophore (NIS) biosynthesis was overlooked for almost thirty years since the first genetic characterisation of the NIS biosynthetic pathway to aerobactin. However, the past three years have witnessed an explosion of interest in the enzymology of NIS synthetases, the key enzymes in the assembly of siderophores via the NIS pathway. The biochemical characterisation of ten purified recombinant synthetases has been reported since 2007, along with the first structural characterisation of a synthetase by X-ray crystallography in 2009. In this feature article we summarise the recent progress that has been made in understanding the long-overlooked enzymology of NRPS-independent siderophore biosynthesis, highlight important remaining questions, and suggest likely directions for future research.

  9. Transcriptome Analysis Reveals the Genetic Basis of the Resveratrol Biosynthesis Pathway in an Endophytic Fungus (Alternaria sp. MG1) Isolated from Vitis vinifera

    PubMed Central

    Che, Jinxin; Shi, Junling; Gao, Zhenhong; Zhang, Yan

    2016-01-01

    Alternaria sp. MG1, an endophytic fungus previously isolated from Merlot grape, produces resveratrol from glucose, showing similar metabolic flux to the phenylpropanoid biosynthesis pathway, currently found solely in plants. In order to identify the resveratrol biosynthesis pathway in this strain at the gene level, de novo transcriptome sequencing was conducted using Illumina paired-end sequencing. A total of 22,954,434 high-quality reads were assembled into contigs and 18,570 unigenes were identified. Among these unigenes, 14,153 were annotated in the NCBI non-redundant protein database and 5341 were annotated in the Swiss-Prot database. After KEGG mapping, 2701 unigenes were mapped onto 115 pathways. Eighty-four unigenes were annotated in major pathways from glucose to resveratrol, coding 20 enzymes for glycolysis, 10 for phenylalanine biosynthesis, 4 for phenylpropanoid biosynthesis, and 4 for stilbenoid biosynthesis. Chalcone synthase was identified for resveratrol biosynthesis in this strain, due to the absence of stilbene synthase. All the identified enzymes indicated a reasonable biosynthesis pathway from glucose to resveratrol via glycolysis, phenylalanine biosynthesis, phenylpropanoid biosynthesis, and stilbenoid pathways. These results provide essential evidence for the occurrence of resveratrol biosynthesis in Alternaria sp. MG1 at the gene level, facilitating further elucidation of the molecular mechanisms involved in this strain's secondary metabolism. PMID:27588016

  10. A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni).

    PubMed

    Kumar, Hitesh; Kaul, Kiran; Bajpai-Gupta, Suphla; Kaul, Vijay Kumar; Kumar, Sanjay

    2012-01-15

    Stevia [Stevia rebuaidana (Bertoni); family: Asteraceae] is known to yield diterpenoid steviol glycosides (SGs), which are about 300 times sweeter than sugar. The present work analyzed the expression of various genes of the SGs biosynthesis pathway in different organs of the plant in relation to the SGs content. Of the various genes of the pathway, SrDXS, SrDXR, SrCPPS, SrKS, SrKO and three glucosyltransferases namely SrUGT85C2, SrUGT74G1 and SrUGT76G1 were reported from stevia. Here, we report cloning of seven additional full-length cDNA sequences namely, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI and SrGGDPS followed by expression analysis of all the fifteen genes vis-à-vis SGs content analysis. SGs content was highest in the leaf at 3rd node position (node position with reference to the apical leaf as the first leaf) as compared to the leaves at other node positions. Except for SrDXR and SrKO, gene expression was maximum in leaf at 1st node and minimum in leaf at 5th node. The expression of SrKO was highest in leaf at 3rd node while in case of SrDXR expression showed an increase up to 3rd leaf and decrease thereafter. SGs accumulated maximum in leaf tissue followed by stem and root, and similar was the pattern of expression of all the fifteen genes. The genes responded to the modulators of the terpenopids biosynthesis. Gibberellin (GA(3)) treatment up-regulated the expression of SrMCT, SrCMK, SrMDS and SrUGT74G1, whereas methyl jasmonate and kinetin treatment down-regulated the expression of all the fifteen genes of the pathway.

  11. Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition.

    PubMed

    Zhou, Yongjin J; Buijs, Nicolaas A; Zhu, Zhiwei; Gómez, Diego Orol; Boonsombuti, Akarin; Siewers, Verena; Nielsen, Jens

    2016-11-30

    Establishing efficient synthetic pathways for microbial production of biochemicals is often hampered by competing pathways and/or insufficient precursor supply. Compartmentalization in cellular organelles can isolate synthetic pathways from competing pathways, and provide a compact and suitable environment for biosynthesis. Peroxisomes are cellular organelles where fatty acids are degraded, a process that is inhibited under typical fermentation conditions making them an interesting workhouse for production of fatty-acid-derived molecules. Here, we show that targeting synthetic pathways to peroxisomes can increase the production of fatty-acid-derived fatty alcohols, alkanes and olefins up to 700%. In addition, we demonstrate that biosynthesis of these chemicals in the peroxisomes results in significantly decreased accumulation of byproducts formed by competing enzymes. We further demonstrate that production can be enhanced up to 3-fold by increasing the peroxisome population. The strategies described here could be used for production of other chemicals, especially acyl-CoA-derived molecules.

  12. Biosynthesis of D-arabinose in mycobacteria - a novel bacterial pathway with implications for antimycobacterial therapy.

    PubMed

    Wolucka, Beata A

    2008-06-01

    Decaprenyl-phospho-arabinose (beta-D-arabinofuranosyl-1-O-monophosphodecaprenol), the only known donor of d-arabinose in bacteria, and its precursor, decaprenyl-phospho-ribose (beta-D-ribofuranosyl-1-O-monophosphodecaprenol), were first described in 1992. En route to D-arabinofuranose, the decaprenyl-phospho-ribose 2'-epimerase converts decaprenyl-phospho-ribose to decaprenyl-phospho-arabinose, which is a substrate for arabinosyltransferases in the synthesis of the cell-wall arabinogalactan and lipoarabinomannan polysaccharides of mycobacteria. The first step of the proposed decaprenyl-phospho-arabinose biosynthesis pathway in Mycobacterium tuberculosis and related actinobacteria is the formation of D-ribose 5-phosphate from sedoheptulose 7-phosphate, catalysed by the Rv1449 transketolase, and/or the isomerization of d-ribulose 5-phosphate, catalysed by the Rv2465 d-ribose 5-phosphate isomerase. d-Ribose 5-phosphate is a substrate for the Rv1017 phosphoribosyl pyrophosphate synthetase which forms 5-phosphoribosyl 1-pyrophosphate (PRPP). The activated 5-phosphoribofuranosyl residue of PRPP is transferred by the Rv3806 5-phosphoribosyltransferase to decaprenyl phosphate, thus forming 5'-phosphoribosyl-monophospho-decaprenol. The dephosphorylation of 5'-phosphoribosyl-monophospho-decaprenol to decaprenyl-phospho-ribose by the putative Rv3807 phospholipid phosphatase is the committed step of the pathway. A subsequent 2'-epimerization of decaprenyl-phospho-ribose by the heteromeric Rv3790/Rv3791 2'-epimerase leads to the formation of the decaprenyl-phospho-arabinose precursor for the synthesis of the cell-wall arabinans in Actinomycetales. The mycobacterial 2'-epimerase Rv3790 subunit is similar to the fungal D-arabinono-1,4-lactone oxidase, the last enzyme in the biosynthesis of D-erythroascorbic acid, thus pointing to an evolutionary link between the D-arabinofuranose- and L-ascorbic acid-related pathways. Decaprenyl-phospho-arabinose has been a lead compound for the

  13. Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis.

    PubMed

    Benstein, Ruben Maximilian; Ludewig, Katja; Wulfert, Sabine; Wittek, Sebastian; Gigolashvili, Tamara; Frerigmann, Henning; Gierth, Markus; Flügge, Ulf-Ingo; Krueger, Stephan

    2013-12-01

    In plants, two independent serine biosynthetic pathways, the photorespiratory and glycolytic phosphoserine (PS) pathways, have been postulated. Although the photorespiratory pathway is well characterized, little information is available on the function of the PS pathway in plants. Here, we present a detailed characterization of phosphoglycerate dehydrogenases (PGDHs) as components of the PS pathway in Arabidopsis thaliana. All PGDHs localize to plastids and possess similar kinetic properties, but they differ with respect to their sensitivity to serine feedback inhibition. Furthermore, analysis of pgdh1 and phosphoserine phosphatase mutants revealed an embryo-lethal phenotype and PGDH1-silenced lines were inhibited in growth. Metabolic analyses of PGDH1-silenced lines grown under ambient and high CO2 conditions indicate a direct link between PS biosynthesis and ammonium assimilation. In addition, we obtained several lines of evidence for an interconnection between PS and tryptophan biosynthesis, because the expression of PGDH1 and phosphoserine aminotransferase1 is regulated by MYB51 and MYB34, two activators of tryptophan biosynthesis. Moreover, the concentration of tryptophan-derived glucosinolates and auxin were reduced in PGDH1-silenced plants. In essence, our results provide evidence for a vital function of PS biosynthesis for plant development and metabolism.

  14. Metabolic cross-talk between pathways of terpenoid backbone biosynthesis in spike lavender.

    PubMed

    Mendoza-Poudereux, Isabel; Kutzner, Erika; Huber, Claudia; Segura, Juan; Eisenreich, Wolfgang; Arrillaga, Isabel

    2015-10-01

    The metabolic cross-talk between the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in developing spike lavender (Lavandula latifolia Med) was analyzed using specific inhibitors and on the basis of (13)C-labeling experiments. The presence of mevinolin (MEV), an inhibitor of the MVA pathway, at concentrations higher than 0.5 μM significantly reduced plant development, but not the synthesis of chlorophylls and carotenoids. On the other hand, fosmidomycin (FSM), an inhibitor of the MEP pathway, at concentrations higher than 20 μM blocked the synthesis of chlorophyll, carotenoids and essential oils, and significantly reduced stem development. Notably, 1.2 mM MVA could recover the phenotype of MEV-treated plants, including the normal growth and development of roots, and could partially restore the biosynthesis of photosynthetic pigments and, to a lesser extent, of the essential oils in plantlets treated with FSM. Spike lavender shoot apices were also used in (13)C-labeling experiments, where the plantlets were grown in the presence of [U-(13)C6]glucose. GC-MS-analysis of 1,8-cineole and camphor indicated that the C5-precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) of both monoterpenes are predominantly biosynthesized via the methylerythritol phosphate (MEP) pathway. However, on the basis of the isotopologue profiles, a minor contribution of the MVA pathway was evident that was increased in transgenic spike lavender plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the first enzyme of the MVA pathway. Together, these findings provide evidence for a transport of MVA-derived precursors from the cytosol to the plastids in leaves of spike lavender.

  15. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate.

    PubMed

    Rohmer, M; Knani, M; Simonin, P; Sutter, B; Sahm, H

    1993-10-15

    Incorporation of 13C-labelled glucose, acetate, pyruvate or erythrose allowed the determination of the origin of the carbon atoms of triterpenoids of the hopane series and/or of the ubiquinones from several bacteria (Zymomonas mobilis, Methylobacterium fujisawaense, Escherichia coli and Alicyclobacillus acidoterrestris) confirmed our earlier results obtained by incorporation of 13C-labelled acetate into the hopanoids of other bacteria and led to the identification of a novel biosynthetic route for the early steps of isoprenoid biosynthesis. The C5 framework of isoprenic units results most probably (i) from the condensation of a C2 unit derived from pyruvate decarboxylation (e.g. thiamine-activated acetaldehyde) on the C-2 carbonyl group of a triose phosphate derivative issued probably from dihydroxyacetone phosphate and not from pyruvate and (ii) from a transposition step. Although this hypothetical biosynthetic pathway resembles that of L-valine biosynthesis, this amino acid or its C5 precursors could be excluded as intermediates in the formation of isoprenic units.

  16. Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger.

    PubMed Central

    Kubicek, C P; Schreferl-Kunar, G; Wöhrer, W; Röhr, M

    1988-01-01

    Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of Pi and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added 14CO2 was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this was oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle. PMID:3132096

  17. TDP-l-Megosamine Biosynthesis Pathway Elucidation and Megalomicin A Production in Escherichia coli▿

    PubMed Central

    Useglio, Mariana; Peirú, Salvador; Rodríguez, Eduardo; Labadie, Guillermo R.; Carney, John R.; Gramajo, Hugo

    2010-01-01

    In vivo reconstitution of the TDP-l-megosamine pathway from the megalomicin gene cluster of Micromonospora megalomicea was accomplished by the heterologous expression of its biosynthetic genes in Escherichia coli. Mass spectrometric analysis of the TDP-sugar intermediates produced from operons containing different sets of genes showed that the production of TDP-l-megosamine from TDP-4-keto-6-deoxy-d-glucose requires only five biosynthetic steps, catalyzed by MegBVI, MegDII, MegDIII, MegDIV, and MegDV. Bioconversion studies demonstrated that the sugar transferase MegDI, along with the helper protein MegDVI, catalyzes the transfer of l-megosamine to either erythromycin C or erythromycin D, suggesting two possible routes for the production of megalomicin A. Analysis in vivo of the hydroxylation step by MegK indicated that erythromycin C is the intermediate of megalomicin A biosynthesis. PMID:20418422

  18. Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis.

    PubMed

    Gao, Zhengquan; Meng, Chunxiao; Zhang, Xiaowen; Xu, Dong; Miao, Xuexia; Wang, Yitao; Yang, Liming; Lv, Hongxin; Chen, Lingling; Ye, Naihao

    2012-09-10

    The green alga Haematococcus pluvialis can produce large amounts of pink carotenoid astaxanthin which is a high value ketocarotenoid. In our study, transcriptional expression patterns of eight carotenoid genes in H. pluvialis in response to SA were measured using qRT-PCR. Results indicated that both 25 and 50 mg/L salicylic acid (SA) could increase astaxanthin productivity and enhance transcriptional expression of eight carotenoid genes in H. pluvialis. But these genes exhibited different expression profiles. Moreover, SA25 (25 mg/L SA) induction had a greater effect on the transcriptional expression of ipi-1, psy, pds, crtR-B and lyc (more than 6-fold up-regulation) than on ipi-2, bkt and crtO, but SA50 (50 mg/L SA) treatment had a greater impact on the transcriptional expression of ipi-1, ipi-2, pds, crtR-B and lyc than on psy, bkt and crtO. Furthermore, astaxanthin biosynthesis under SA was up-regulated mainly by ipi-1, ipi-2, psy, crtR-B, bkt and crtO at transcriptional level, lyc at post-transcriptional level and pds at both levels. Summarily, these results suggest that SA constitute molecular signals in the network of astaxanthin biosynthesis. Induction of astaxanthin accumulation by SA without any other stimuli presents an attractive application potential in astaxanthin production with H. pluvialis.

  19. Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin.

    PubMed

    Dailey, Harry A; Gerdes, Svetlana; Dailey, Tamara A; Burch, Joseph S; Phillips, John D

    2015-02-17

    It has been generally accepted that biosynthesis of protoheme (heme) uses a common set of core metabolic intermediates that includes protoporphyrin. Herein, we show that the Actinobacteria and Firmicutes (high-GC and low-GC Gram-positive bacteria) are unable to synthesize protoporphyrin. Instead, they oxidize coproporphyrinogen to coproporphyrin, insert ferrous iron to make Fe-coproporphyrin (coproheme), and then decarboxylate coproheme to generate protoheme. This pathway is specified by three genes named hemY, hemH, and hemQ. The analysis of 982 representative prokaryotic genomes is consistent with this pathway being the most ancient heme synthesis pathway in the Eubacteria. Our results identifying a previously unknown branch of tetrapyrrole synthesis support a significant shift from current models for the evolution of bacterial heme and chlorophyll synthesis. Because some organisms that possess this coproporphyrin-dependent branch are major causes of human disease, HemQ is a novel pharmacological target of significant therapeutic relevance, particularly given high rates of antimicrobial resistance among these pathogens.

  20. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants.

    PubMed

    Frey, Monika; Schullehner, Katrin; Dick, Regina; Fiesselmann, Andreas; Gierl, Alfons

    2009-01-01

    Benzoxazinoids are secondary metabolites that are effective in defence and allelopathy. They are synthesised in two subfamilies of the Poaceae and sporadically found in single species of the dicots. The biosynthesis is fully elucidated in maize; here the genes encoding the enzymes of the pathway are in physical proximity. This "biosynthetic cluster" might facilitate coordinated gene regulation. Data from Zea mays, Triticum aestivum and Hordeum lechleri suggest that the pathway is of monophyletic origin in the Poaceae. The branchpoint from the primary metabolism (Bx1 gene) can be traced back to duplication and functionalisation of the alpha-subunit of tryptophan synthase (TSA). Modification of the intermediates by consecutive hydroxylation is catalysed by members of a cytochrome P450 enzyme subfamily (Bx2-Bx5). Glucosylation by an UDP-glucosyltransferase (UGT, Bx8, Bx9) is essential for the reduction of autotoxicity of the benzoxazinoids. In some species 2,4-dihydroxy-1,4-benzoxazin-3-one-glucoside (DIBOA-glc) is further modified by the 2-oxoglutarate-dependent dioxygenase BX6 and the O-methyltransferase BX7. In the dicots Aphelandra squarrosa, Consolida orientalis, and Lamium galeobdolon, benzoxazinoid biosynthesis is analogously organised: The branchpoint is established by a homolog of TSA, P450 enzymes catalyse hydroxylations and at least the first hydroxylation reaction is identical in dicots and Poaceae, the toxic aglucon is glucosylated by an UGT. Functionally, TSA and BX1 are indole-glycerolphosphate lyases (IGLs). Igl genes seem to be generally duplicated in angiosperms. Modelling and biochemical characterisation of IGLs reveal that the catalytic properties of the enzyme can easily be modified by mutation. Independent evolution can be assumed for the BX1 function in dicots and Poaceae.

  1. Inhibition of isoprene biosynthesis pathway enzymes by phosphonates, bisphosphonates, and diphosphates.

    PubMed

    Cheng, Feng; Oldfield, Eric

    2004-10-07

    We have investigated the docking of a variety of inhibitors and substrates to the isoprene biosynthesis pathway enzymes farnesyl diphosphate synthase (FPPS), isopentenyl diphosphate/dimethylallyl diphosphate isomerase (IPPI) and deoxyxylulose-5-phosphate reductoisomerase (DXR) using the Lamarckian genetic alogorithm program, AutoDock. The docked ligand structures are predicted with a approximately 0.8 A rms deviation from the structures determined crystallographically. The errors found are a function of the number of atoms in the ligand (R = 0.91, p < 0.0001) and, to a lesser extent, on the resolution of the crystallographic structure (R = 0.70, p < 0.008). The structures of three isoprenoid diphosphates docked to the FPPS enzyme reveal strong electrostatic interactions with Mg(2+), lysine and arginine active site residues. Similar results are obtained with the docking of four IPPI inhibitors to the IPPI enzyme. The DXR substrate, deoxyxylulose-5-phosphate, is found to dock to Mn(2+)-NADPH-DXR in an almost identical manner as does the inhibitor fosimdomycin to Mn(2+)-DXR (ligand heavy atom rms deviation = 0.90 A) and is poised to interact with NADPH. Bisphosphonate inhibitors are found to bind to the allylic binding sites in both eukaryotic and prokaryotic FPPSs, in good accord with recent crystallographic results (a 0.4 A rms deviation from the X-ray structure with the E. coli enzyme). Overall, these results show for the first time that the geometries of a broad variety of phosphorus-containing inhibitors and substrates of isoprene biosynthesis pathway enzymes can be well predicted by using computational methods, which can be expected to facilitate the design of novel inhibitors of these enzymes.

  2. Surprising Arginine Biosynthesis: a Reappraisal of the Enzymology and Evolution of the Pathway in Microorganisms

    PubMed Central

    Xu, Ying; Labedan, Bernard; Glansdorff, Nicolas

    2007-01-01

    Summary: Major aspects of the pathway of de novo arginine biosynthesis via acetylated intermediates in microorganisms must be revised in light of recent enzymatic and genomic investigations. The enzyme N-acetylglutamate synthase (NAGS), which used to be considered responsible for the first committed step of the pathway, is present in a limited number of bacterial phyla only and is absent from Archaea. In many Bacteria, shorter proteins related to the Gcn5-related N-acetyltransferase family appear to acetylate l-glutamate; some are clearly similar to the C-terminal, acetyl-coenzyme A (CoA) binding domain of classical NAGS, while others are more distantly related. Short NAGSs can be single gene products, as in Mycobacterium spp. and Thermus spp., or fused to the enzyme catalyzing the last step of the pathway (argininosuccinase), as in members of the Alteromonas-Vibrio group. How these proteins bind glutamate remains to be determined. In some Bacteria, a bifunctional ornithine acetyltransferase (i.e., using both acetylornithine and acetyl-CoA as donors of the acetyl group) accounts for glutamate acetylation. In many Archaea, the enzyme responsible for glutamate acetylation remains elusive, but possible connections with a novel lysine biosynthetic pathway arose recently from genomic investigations. In some Proteobacteria (notably Xanthomonadaceae) and Bacteroidetes, the carbamoylation step of the pathway appears to involve N-acetylornithine or N-succinylornithine rather than ornithine. The product N-acetylcitrulline is deacetylated by an enzyme that is also involved in the provision of ornithine from acetylornithine; this is an important metabolic function, as ornithine itself can become essential as a source of other metabolites. This review insists on the biochemical and evolutionary implications of these findings. PMID:17347518

  3. Ecdysteroid biosynthesis in varroa mites: identification of halloween genes from the biosynthetic pathway and their regulation during reproduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosynthesis of ecdysteroids involves sequential enzymatic hydroxylations by microsomal enzymes and mitochondrial cytochrome P450’s. Enzymes of the pathway are collectively known as Halloween genes. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), w...

  4. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis

    PubMed Central

    2014-01-01

    Background Purine nucleotides are essential metabolites for living organisms because they are involved in many important processes, such as nucleic acid synthesis, energy supply, and biosynthesis of several amino acids and riboflavin. Owing to the pivotal roles of purines in cell physiology, the pool of intracellular purine nucleotides must be maintained under strict control, and hence the de novo purine biosynthetic pathway is tightly regulated by transcription repression and inhibition mechanism. Deregulation of purine pathway is essential for this pathway engineering in Bacillus subtilis. Results Deregulation of purine pathway was attempted to improve purine nucleotides supply, based on a riboflavin producer B. subtilis strain with modification of its rib operon. To eliminate transcription repression, the pur operon repressor PurR and the 5’-UTR of pur operon containing a guanine-sensing riboswitch were disrupted. Quantitative RT-PCR analysis revealed that the relative transcription levels of purine genes were up-regulated about 380 times. Furthermore, site-directed mutagenesis was successfully introduced into PRPP amidotransferase (encoded by purF) to remove feedback inhibition by homologous alignment and analysis. Overexpression of the novel mutant PurF (D293V, K316Q and S400W) significantly increased PRPP amidotransferase activity and triggered a strong refractory effect on purine nucleotides mediated inhibition. Intracellular metabolite target analysis indicated that the purine nucleotides supply in engineered strains was facilitated by a stepwise gene-targeted deregulation. With these genetic manipulations, we managed to enhance the metabolic flow through purine pathway and consequently increased riboflavin production 3-fold (826.52 mg/L) in the purF-VQW mutant strain. Conclusions A sequential optimization strategy was applied to deregulate the rib operon and purine pathway of B. subtilis to create genetic diversities and to improve riboflavin production

  5. A novel pathway for the biosynthesis of heme in Archaea: genome-based bioinformatic predictions and experimental evidence.

    PubMed

    Storbeck, Sonja; Rolfes, Sarah; Raux-Deery, Evelyne; Warren, Martin J; Jahn, Dieter; Layer, Gunhild

    2010-12-13

    Heme is an essential prosthetic group for many proteins involved in fundamental biological processes in all three domains of life. In Eukaryota and Bacteria heme is formed via a conserved and well-studied biosynthetic pathway. Surprisingly, in Archaea heme biosynthesis proceeds via an alternative route which is poorly understood. In order to formulate a working hypothesis for this novel pathway, we searched 59 completely sequenced archaeal genomes for the presence of gene clusters consisting of established heme biosynthetic genes and colocalized conserved candidate genes. Within the majority of archaeal genomes it was possible to identify such heme biosynthesis gene clusters. From this analysis we have been able to identify several novel heme biosynthesis genes that are restricted to archaea. Intriguingly, several of the encoded proteins display similarity to enzymes involved in heme d(1) biosynthesis. To initiate an experimental verification of our proposals two Methanosarcina barkeri proteins predicted to catalyze the initial steps of archaeal heme biosynthesis were recombinantly produced, purified, and their predicted enzymatic functions verified.

  6. Genetic Profiling of the Isoprenoid and Sterol Biosynthesis Pathway Genes of Trypanosoma cruzi

    PubMed Central

    Cosentino, Raúl O.; Agüero, Fernán

    2014-01-01

    In Trypanosoma cruzi the isoprenoid and sterol biosynthesis pathways are validated targets for chemotherapeutic intervention. In this work we present a study of the genetic diversity observed in genes from these pathways. Using a number of bioinformatic strategies, we first identified genes that were missing and/or were truncated in the T. cruzi genome. Based on this analysis we obtained the complete sequence of the ortholog of the yeast ERG26 gene and identified a non-orthologous homolog of the yeast ERG25 gene (sterol methyl oxidase, SMO), and we propose that the orthologs of ERG25 have been lost in trypanosomes (but not in Leishmanias). Next, starting from a set of 16 T. cruzi strains representative of all extant evolutionary lineages, we amplified and sequenced ∼24 Kbp from 22 genes, identifying a total of 975 SNPs or fixed differences, of which 28% represent non-synonymous changes. We observed genes with a density of substitutions ranging from those close to the average (∼2.5/100 bp) to some showing a high number of changes (11.4/100 bp, for the putative lathosterol oxidase gene). All the genes of the pathway are under apparent purifying selection, but genes coding for the sterol C14-demethylase, the HMG-CoA synthase, and the HMG-CoA reductase have the lowest density of missense SNPs in the panel. Other genes (TcPMK, TcSMO-like) have a relatively high density of non-synonymous SNPs (2.5 and 1.9 every 100 bp, respectively). However, none of the non-synonymous changes identified affect a catalytic or ligand binding site residue. A comparative analysis of the corresponding genes from African trypanosomes and Leishmania shows similar levels of apparent selection for each gene. This information will be essential for future drug development studies focused on this pathway. PMID:24828104

  7. Potential Anti-Atherosclerotic Properties of Astaxanthin

    PubMed Central

    Kishimoto, Yoshimi; Yoshida, Hiroshi; Kondo, Kazuo

    2016-01-01

    Astaxanthin is a naturally occurring red carotenoid pigment classified as a xanthophyll, found in microalgae and seafood such as salmon, trout, and shrimp. This review focuses on astaxanthin as a bioactive compound and outlines the evidence associated with its potential role in the prevention of atherosclerosis. Astaxanthin has a unique molecular structure that is responsible for its powerful antioxidant activities by quenching singlet oxygen and scavenging free radicals. Astaxanthin has been reported to inhibit low-density lipoprotein (LDL) oxidation and to increase high-density lipoprotein (HDL)-cholesterol and adiponectin levels in clinical studies. Accumulating evidence suggests that astaxanthin could exert preventive actions against atherosclerotic cardiovascular disease (CVD) via its potential to improve oxidative stress, inflammation, lipid metabolism, and glucose metabolism. In addition to identifying mechanisms of astaxanthin bioactivity by basic research, much more epidemiological and clinical evidence linking reduced CVD risk with dietary astaxanthin intake is needed. PMID:26861359

  8. Methanococci use the diaminopimelate aminotransferase (DapL) pathway for lysine biosynthesis.

    PubMed

    Liu, Yuchen; White, Robert H; Whitman, William B

    2010-07-01

    The pathway of lysine biosynthesis in the methanococci has not been identified previously. A variant of the diaminopimelic acid (DAP) pathway uses diaminopimelate aminotransferase (DapL) to catalyze the direct conversion of tetrahydrodipicolinate (THDPA) to ll-DAP. Recently, the enzyme DapL (MTH52) was identified in Methanothermobacter thermautotrophicus and shown to belong to the DapL1 group. Although the Methanococcus maripaludis genome lacks a gene that can be unambiguously assigned a DapL function based on sequence similarity, the open reading frame MMP1527 product shares 30% amino acid sequence identity with MTH52. A Deltammp1527 deletion mutant was constructed and found to be a lysine auxotroph, suggesting that this DapL homolog in methanococci is required for lysine biosynthesis. In cell extracts of the M. maripaludis wild-type strain, the specific activity of DapL using ll-DAP and alpha-ketoglutarate as substrates was 24.3 + or - 2.0 nmol min(-1) mg of protein(-1). The gene encoding the DapL homolog in Methanocaldococcus jannaschii (MJ1391) was cloned and expressed in Escherichia coli, and the protein was purified. The maximum activity of MJ1391 was observed at 70 degrees C and pH 8.0 to 9.0. The apparent K(m)s of MJ1391 for ll-DAP and alpha-ketoglutarate were 82.8 + or - 10 microM and 0.42 + or - 0.02 mM, respectively. MJ1391 was not able to use succinyl-DAP or acetyl-DAP as a substrate. Phylogenetic analyses suggested that two lateral gene transfers occurred in the DapL genes, one from the archaea to the bacteria in the DapL2 group and one from the bacteria to the archaea in the DapL1 group. These results demonstrated that the DapL pathway is present in marine methanogens belonging to the Methanococcales.

  9. Methanococci Use the Diaminopimelate Aminotransferase (DapL) Pathway for Lysine Biosynthesis

    PubMed Central

    Liu, Yuchen; White, Robert H.; Whitman, William B.

    2010-01-01

    The pathway of lysine biosynthesis in the methanococci has not been identified previously. A variant of the diaminopimelic acid (DAP) pathway uses diaminopimelate aminotransferase (DapL) to catalyze the direct conversion of tetrahydrodipicolinate (THDPA) to ll-DAP. Recently, the enzyme DapL (MTH52) was identified in Methanothermobacter thermautotrophicus and shown to belong to the DapL1 group. Although the Methanococcus maripaludis genome lacks a gene that can be unambiguously assigned a DapL function based on sequence similarity, the open reading frame MMP1527 product shares 30% amino acid sequence identity with MTH52. A Δmmp1527 deletion mutant was constructed and found to be a lysine auxotroph, suggesting that this DapL homolog in methanococci is required for lysine biosynthesis. In cell extracts of the M. maripaludis wild-type strain, the specific activity of DapL using ll-DAP and α-ketoglutarate as substrates was 24.3 ± 2.0 nmol min−1 mg of protein−1. The gene encoding the DapL homolog in Methanocaldococcus jannaschii (MJ1391) was cloned and expressed in Escherichia coli, and the protein was purified. The maximum activity of MJ1391 was observed at 70°C and pH 8.0 to 9.0. The apparent Kms of MJ1391 for ll-DAP and α-ketoglutarate were 82.8 ± 10 μM and 0.42 ± 0.02 mM, respectively. MJ1391 was not able to use succinyl-DAP or acetyl-DAP as a substrate. Phylogenetic analyses suggested that two lateral gene transfers occurred in the DapL genes, one from the archaea to the bacteria in the DapL2 group and one from the bacteria to the archaea in the DapL1 group. These results demonstrated that the DapL pathway is present in marine methanogens belonging to the Methanococcales. PMID:20418392

  10. Fluoride-induced changes in haem biosynthesis pathway, neurological variables and tissue histopathology of rats.

    PubMed

    Chouhan, Swapnila; Lomash, Vinay; Flora, S J S

    2010-01-01

    This study intended to determine the effects of various concentrations of fluoride (1, 10, 50 and 100 ppm) in drinking water for a period of 12 weeks on changes in haem biosynthesis pathway, oxidative stress and neurological variables supported by histopathological observations and fluoride in rats. The data indicates significant alterations in the parameters related to haeme synthesis pathway like inhibition of blood delta-aminolevulinic acid dehydratase, delta-aminolevulinic acid synthetase, oxidative stress like depletion of glutathione (GSH) and increase in oxidized glutathione (GSSG) and thiobarbituric acid reactive substances. These changes were accompanied by depletion in GSH:GSSG ratio, whole brain biogenic amine levels and a dose-dependent increase in fluoride concentration. Interestingly and most significantly, these changes were more pronounced at lower concentrations of fluoride compared with higher fluoride dose. Biochemical changes were supported by the histological observations, which also revealed that at high concentrations of fluoride, toxic effects and damages to organs were more pronounced. These changes support our earlier findings regarding the role of decreased ionic mobility of fluoride ion at higher concentrations, leading to less pronounced toxicity.

  11. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16

    SciTech Connect

    Lu, JN; Brigham, CJ; Plassmeier, JK; Sinskey, AJ

    2014-08-01

    2-Ketoisovalerate is an important cellular intermediate for the synthesis of branched-chain amino acids as well as other important molecules, such as pantothenate, coenzyme A, and glucosinolate. This ketoacid can also serve as a precursor molecule for the production of biofuels, pharmaceutical agents, and flavor agents in engineered organisms, such as the betaproteobacterium Ralstonia eutropha. The biosynthesis of 2-ketoisovalerate from pyruvate is carried out by three enzymes: acetohydroxyacid synthase (AHAS, encoded by ilvBH), acetohydroxyacid isomeroreductase (AHAIR, encoded by ilvC), and dihydroxyacid dehydratase (DHAD, encoded by ilvD). In this study, enzymatic activities and kinetic parameters were determined for each of the three R. eutropha enzymes as heterologously purified proteins. AHAS, which serves as a gatekeeper for the biosynthesis of all three branched-chain amino acids, demonstrated the tightest regulation through feedback inhibition by l-valine (IC50 = 1.2 mM), l-isoleucine (IC50 = 2.3 mM), and l-leucine (IC50 = 5.4 mM). Intermediates in the valine biosynthesis pathway also exhibit feedback inhibitory control of the AHAS enzyme. In addition, AHAS has a very weak affinity for pyruvate (K-M = 10.5 mu M) and is highly selective towards 2-ketobutyrate (R = 140) as a second substrate. AHAIR and DHAD are also inhibited by the branched-chain amino acids, although to a lesser extent when compared to AHAS. Experimental evolution and rational site-directed mutagenesis revealed mutants of the regulatory subunit of AHAS (IlvH) (N11S, T34I, A36V, T104S, N11F, G14E, and N29H), which, when reconstituted with wild-type IlvB, lead to AHAS having reduced valine, leucine, and isoleucine sensitivity. The study of the kinetics and inhibition mechanisms of R. eutropha AHAS, AHAIR, and DHAD has shed light on interactions between these enzymes and the products they produce; it, therefore, can be used to engineer R. eutropha strains with optimal production of 2

  12. Complex Patterns of Gene Fission in the Eukaryotic Folate Biosynthesis Pathway

    PubMed Central

    Maguire, Finlay; Henriquez, Fiona L.; Leonard, Guy; Dacks, Joel B.; Brown, Matthew W.; Richards, Thomas A.

    2014-01-01

    Shared derived genomic characters can be useful for polarizing phylogenetic relationships, for example, gene fusions have been used to identify deep-branching relationships in the eukaryotes. Here, we report the evolutionary analysis of a three-gene fusion of folB, folK, and folP, which encode enzymes that catalyze consecutive steps in de novo folate biosynthesis. The folK-folP fusion was found across the eukaryotes and a sparse collection of prokaryotes. This suggests an ancient derivation with a number of gene losses in the eukaryotes potentially as a consequence of adaptation to heterotrophic lifestyles. In contrast, the folB-folK-folP gene is specific to a mosaic collection of Amorphea taxa (a group encompassing: Amoebozoa, Apusomonadida, Breviatea, and Opisthokonta). Next, we investigated the stability of this character. We identified numerous gene losses and a total of nine gene fission events, either by break up of an open reading frame (four events identified) or loss of a component domain (five events identified). This indicates that this three gene fusion is highly labile. These data are consistent with a growing body of data indicating gene fission events occur at high relative rates. Accounting for these sources of homoplasy, our data suggest that the folB-folK-folP gene fusion was present in the last common ancestor of Amoebozoa and Opisthokonta but absent in the Metazoa including the human genome. Comparative genomic data of these genes provides an important resource for designing therapeutic strategies targeting the de novo folate biosynthesis pathway of a variety of eukaryotic pathogens such as Acanthamoeba castellanii. PMID:25252772

  13. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals.

    PubMed

    Sanderson, J Thomas

    2006-11-01

    Various chemicals found in the human and wildlife environments have the potential to disrupt endocrine functions in exposed organisms. Increasingly, the enzymes involved in the steroid biosynthesis pathway are being recognized as important targets for the actions of various endocrine-disrupting chemicals. Interferences with steroid biosynthesis may result in impaired reproduction, alterations in (sexual) differentiation, growth, and development and the development of certain cancers. Steroid hormone synthesis is controlled by the activity of several highly substrate-selective cytochrome P450 enzymes and a number of steroid dehydrogenases and reductases. Particularly aromatase (CYP19), the enzyme that converts androgens to estrogens, has been the subject of studies into the mechanisms by which chemicals interfere with sex steroid hormone homeostasis and function, often related to (de)feminization and (de)masculinazation processes. Studies in vivo and in vitro have focussed on ovarian and testicular function, with less attention given to other steroidogenic organs, such as the adrenal cortex. This review aims to provide a comprehensive overview of the state of knowledge regarding the mechanisms by which chemicals interfere with the function of steroidogenic enzymes in various tissues and organisms. The endocrine toxicities and mechanisms of action related to steroidogenesis of a number of classes of drugs and environmental contaminants are discussed. In addition, several potential in vitro bioassays are reviewed for their usefulness as screening tools for the detection of chemicals that can interfere with steroidogenesis. Analysis of the currently scattered state of knowledge indicates that still relatively little is known about the underlying mechanisms of interference of chemicals with steroidogenesis and their potential toxicity in steroidogenic tissues, neither in humans nor in wildlife. Considerably more detailed and systematic research in this area of

  14. A novel radio-tolerant astaxanthin-producing bacterium reveals a new astaxanthin derivative: astaxanthin dirhamnoside.

    PubMed

    Asker, Dalal; Awad, Tarek S; Beppu, Teruhiko; Ueda, Kenji

    2012-01-01

    Astaxanthin is a red ketocarotenoid that exhibits extraordinary health-promoting activities such as antioxidant, anti-inflammatory, antitumor, and immune booster. The recent discovery of the beneficial roles of astaxanthin against many degenerative diseases such as cancers, heart diseases, and exercise-induced fatigue has raised its market demand as a nutraceutical and medicinal ingredient in aquaculture, food, and pharmaceutical industries. To satisfy the growing demand for this high-value nutraceuticals ingredient and consumer interest in natural products, many research efforts are being made to discover novel microbial producers with effective biotechnological production of astaxanthin. Using a rapid screening method based on 16S rRNA gene, and effective HPLC-Diodearray-MS methods for carotenoids analysis, we succeeded to isolate a unique astaxanthin-producing bacterium (strain TDMA-17(T)) that belongs to the family Sphingomonadaceae (Asker et al., Appl Microbiol Biotechnol 77: 383-392, 2007). In this chapter, we provide a detailed description of effective HPLC-Diodearray-MS methods for rapid analysis and identification of the carotenoids produced by strain TDMA-17(T). We also describe the methods of isolation and identification for a novel bacterial carotenoid (astaxanthin derivative), a major carotenoid that is produced by strain TDMA-17(T). Finally, we describe the polyphasic taxonomic analysis of strain TDMA-17(T) and the description of a novel species belonging to genus Sphingomonas.

  15. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium.

    PubMed

    Sacchi, Romina; Li, Johnathon; Villarreal, Fernando; Gardell, Alison M; Kültz, Dietmar

    2013-12-15

    The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish.

  16. Coordinated Regulation of Species-Specific Hydroxycinnamic Acid Degradation and Siderophore Biosynthesis Pathways in Agrobacterium fabrum

    PubMed Central

    Baude, Jessica; Vial, Ludovic; Villard, Camille; Campillo, Tony; Lavire, Céline; Nesme, Xavier

    2016-01-01

    ABSTRACT The rhizosphere-inhabiting species Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to degrade hydroxycinnamic acids (HCAs), especially ferulic acid and p-coumaric acid, via the novel A. fabrum HCA degradation pathway. Gene expression profiles of A. fabrum strain C58 were investigated in the presence of HCAs, using a C58 whole-genome oligoarray. Both ferulic acid and p-coumaric acid caused variations in the expression of more than 10% of the C58 genes. Genes of the A. fabrum HCA degradation pathway, together with the genes involved in iron acquisition, were among the most highly induced in the presence of HCAs. Two operons coding for the biosynthesis of a particular siderophore, as well as genes of the A. fabrum HCA degradation pathway, have been described as being specific to the species. We demonstrate here their coordinated expression, emphasizing the interdependence between the iron concentration in the growth medium and the rate at which ferulic acid is degraded by cells. The coordinated expression of these functions may be advantageous in HCA-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. The present results confirm that there is cooperation between the A. fabrum-specific genes, defining a particular ecological niche. IMPORTANCE We previously identified seven genomic regions in Agrobacterium fabrum that were specifically present in all of the members of this species only. Here we demonstrated that two of these regions, encoding the hydroxycinnamic acid degradation pathway and the iron acquisition pathway, were regulated in a coordinated manner. The coexpression of these functions may be advantageous in hydroxycinnamic acid-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. These data support the view that bacterial genomic species

  17. Inhibition of the mevalonate pathway enhances carvacrol biosynthesis and DXR gene expression in shoot cultures of Satureja khuzistanica Jamzad.

    PubMed

    Ramak, Parvin; Kazempour Osaloo, Shahrokh; Ebrahimzadeh, Hassan; Sharifi, Mozafar; Behmanesh, Mehrdad

    2013-09-01

    Carvacrol is a major component of Satureja khuzistanica Jamzad (≤90%) that has significant antimicrobial and antioxidant properties. Considering the specific capabilities of S. khuzistanica to produce highly pure carvacrol, this plant is an important potential source of carvacrol that could address the abundant consumption and increasing demand for this monoterpene in current world markets. This research was performed to better understand the process of biosynthesis and accumulation of carvacrol in S. khuzistanica. Tests were performed on shoot cultures of S. khuzistanica in Linsmaier-Skoog (LS) medium treated with different concentrations of fosmidomycin (an inhibitor of the non-mevalonate pathway) and mevinolin (an inhibitor of the mevalonate pathway) for 21 days at the following concentrations: 0, 10, 25, 50, 75 and 100 μM. The present study demonstrated that the MEP pathway is the major pathway that provides IPP for the biosynthesis of carvacrol, and the expression and activity levels of the DXR enzyme have a critical effect on carvacrol biosynthesis. Surprisingly, Mevinolin at concentrations of 75 and 100 μM increased the carvacrol content and the DXR activity and gene expression in S. khuzistanica plantlets.

  18. Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid β-oxidation pathway.

    PubMed

    Gulevich, Andrey Yu; Skorokhodova, Alexandra Yu; Sukhozhenko, Alexey V; Shakulov, Rustem S; Debabov, Vladimir G

    2012-03-01

    The basic reactions of the clostridial 1-butanol biosynthesis pathway can be regarded to be the inverted reactions of the fatty acid β-oxidation pathway. A pathway for the biosynthesis of fuels and chemicals was recently engineered by combining enzymes from both aerobic and anaerobic fatty acid β-oxidation as well as enzymes from other metabolic pathways. In the current study, we demonstrate the inversion of the entire aerobic fatty acid β-oxidation cycle for 1-butanol biosynthesis. The constructed markerless and plasmidless Escherichia coli strain BOX-3 (MG1655 lacI(Q) attB-P(trc-ideal-4)-SD(φ10)-adhE(Glu568Lys) attB-P(trc-ideal-4)-SD(φ10)-atoB attB-P(trc-ideal-4)-SD(φ10)-fadB attB-P(trc-ideal-4)-SD(φ10)-fadE) synthesises 0.3-1 mg 1-butanol/l in the presence of the specific inducer. No 1-butanol production was detected in the absence of the inducer.

  19. A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus.

    PubMed

    Galpaz, Navot; Ronen, Gil; Khalfa, Zehava; Zamir, Dani; Hirschberg, Joseph

    2006-08-01

    Carotenoids and their oxygenated derivatives xanthophylls play essential roles in the pigmentation of flowers and fruits. Wild-type tomato (Solanum lycopersicum) flowers are intensely yellow due to accumulation of the xanthophylls neoxanthin and violaxanthin. To study the regulation of xanthophyll biosynthesis, we analyzed the mutant white-flower (wf). It was found that the recessive wf phenotype is caused by mutations in a flower-specific beta-ring carotene hyroxylase gene (CrtR-b2). Two deletions and one exon-skipping mutation in different CrtR-b2 wf alleles abolish carotenoid biosynthesis in flowers but not leaves, where the homologous CrtR-b1 is constitutively expressed. A second beta-carotene hydroxylase enzyme as well as flower- and fruit-specific geranylgeranyl diphosphate synthase, phytoene synthase, and lycopene beta-cyclase together define a carotenoid biosynthesis pathway active in chromoplasts only, underscoring the crucial role of gene duplication in specialized plant metabolic pathways. We hypothesize that this pathway in tomato was initially selected during evolution to enhance flower coloration and only later recruited to enhance fruit pigmentation. The elimination of beta-carotene hydroxylation in wf petals results in an 80% reduction in total carotenoid concentration, possibly caused by the inability of petals to store high concentrations of carotenoids other than xanthophylls and by degradation of beta-carotene, which accumulates as a result of the wf mutation but is not due to altered expression of genes in the biosynthetic pathway.

  20. Biosynthesis Pathway of ADP-l-glycero-β-d-manno-Heptose in Escherichia coli

    PubMed Central

    Kneidinger, Bernd; Marolda, Cristina; Graninger, Michael; Zamyatina, Alla; McArthur, Fiona; Kosma, Paul; Valvano, Miguel A.; Messner, Paul

    2002-01-01

    The steps involved in the biosynthesis of the ADP-l-glycero-β-d-manno-heptose (ADP-l-β-d-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the synthesis of ADP-d-β-d-heptose and have biochemically characterized the reaction products by high-performance anion-exchange chromatography. We have also constructed a deletion in a novel gene, gmhB (formerly yaeD), which results in the formation of an altered LPS core. This mutation confirms that the GmhB protein is required for the formation of ADP-d-β-d-heptose. Our results demonstrate that the synthesis of ADP-d-β-d-heptose in Escherichia coli requires three proteins, GmhA (sedoheptulose 7-phosphate isomerase), HldE (bifunctional d-β-d-heptose 7-phosphate kinase/d-β-d-heptose 1-phosphate adenylyltransferase), and GmhB (d,d-heptose 1,7-bisphosphate phosphatase), as well as ATP and the ketose phosphate precursor sedoheptulose 7-phosphate. A previously characterized epimerase, formerly named WaaD (RfaD) and now renamed HldD, completes the pathway to form the ADP-l-β-d-heptose precursor utilized in the assembly of inner core LPS. PMID:11751812

  1. Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development.

    PubMed

    Camerini, Serena; Senatore, Beatrice; Lonardo, Enza; Imperlini, Esther; Bianco, Carmen; Moschetti, Giancarlo; Rotino, Giuseppe L; Campion, Bruno; Defez, Roberto

    2008-07-01

    We introduced into Rhizobium leguminosarum bv. viciae LPR1105 a new pathway for the biosynthesis of the auxin, indole-3-acetic acid (IAA), under the control of a stationary phase-activated promoter active both in free-living bacteria and bacteroids. The newly introduced genes are the iaaM gene from Pseudomonas savastanoi and the tms2 gene from Agrobacterium tumefaciens. Free-living bacteria harbouring the promoter-iaaMtms2 construct release into the growth medium 14-fold more IAA than the wild-type parental strain. This IAA overproducing R. l. viciae, the RD20 strain, elicits the development of vetch root nodules containing up to 60-fold more IAA than nodules infected by the wild-type strain LPR1105. Vetch root nodules derived from RD20 are fewer in number per plant, heavier in terms of dry weight and show an enlarged and more active meristem. A significant increase in acetylene reduction activity was measured in nodules elicited in vetch by RD20.

  2. Action of 2,2',4,4'-tetrahydroxybenzophenone in the biosynthesis pathway of melanin.

    PubMed

    Garcia-Jimenez, Antonio; Teruel-Puche, Jose Antonio; Garcia-Ruiz, Pedro Antonio; Berna, Jose; Rodríguez-López, Jose Neptuno; Tudela, Jose; Garcia-Canovas, Francisco

    2017-05-01

    2,2',4,4'-tetrahydroxybenzophenone (Uvinul D50), a sunscreen used in cosmetics, has two effects in the melanin biosynthesis pathway. On the one hand, it acts a weak inhibitor of tyrosinase and on the other, it accelerates the conversion of dopachrome to melanin. Uvinul D50 was seen to behave as a weak competitive inhibitor: apparent constant inhibition=2.02±0.09mM and IC50=3.82±0.39mM established in this work. These values are higher than those in the bibliography, which tend to be undersetimated. This discrepancy could be explained by the reaction of Uvinul D50 with the dopachrome produced from l-tyrosine or l-dopa, which would interfere in the measurement. Based on studies of its docking to tyrosinase, it seems that Uvinul D50 interacts with the active site of the enzyme (oxytyrosinase) both in its protonated and deprotonated forms (pKa=7). However, it cannot be hydroxylated, meaning that it acts as a weak inhibitor, not as an alternative substrate, despite its resorcinol structure. Uvinul D50 can be used as sunscreen, in low concentrations without significant adverse effects on melanogenesis.

  3. UDP-sugar biosynthetic pathway: contribution to cyanidin 3-galactoside biosynthesis in apple skin.

    PubMed

    Ban, Yusuke; Kondo, Satoru; Ubi, Benjamin Ewa; Honda, Chikako; Bessho, Hideo; Moriguchi, Takaya

    2009-10-01

    UDP-galactose:flavonoid 3-O-galactosyltransferase (UFGalT) is responsible for cyanidin 3-galactoside (cy3-gal) synthesis from cyanidin (cy) and UDP-galactose (UDP-gal) which are, respectively, catalyzed by anthocyanidin synthase (ANS) and UDP-glucose 4-epimerase (UGE). To clarify the contribution of UDP-galactose pathway to cy3-gal accumulation in apple skin, we analyzed the contents of UDP-gal and UDP-glucose (UDP-glu), cy, and, cy3-gal contents along with UGE activity. We confirmed that transcript levels for apple ANS and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) coincided with anthocyanin accumulation in three apple cultivars differing in their skin colors. During fruit development, changes in level of cy coincided with that of cy3-gal, whereas UDP-gal and UGE activity showed no similar trend with cy3-gal. Significant correlation was not observed between the changes in UGE activity and UDP-sugar contents. The effect of temperature and UV-B radiation (different environmental conditions) on the accumulation of UDP-sugars, cy and cy3-gal, and UGE activity were also investigated in a pale-red cultivar. High temperature tended to depress the accumulation of both UDP-sugars and cy concomitant with the decrease in cy3-gal content irrespective of UV-B radiation. Although there was no high inhibition of both cy and UDP-sugars at low-temperature without UV-B, cy3-gal accumulation was highly depressed. UGE activity was highest at low temperature with UV-B, but not much different under other conditions. Most of the parameters under different environmental conditions were significantly correlated with each other. Based on these results, contribution of UDP-sugar biosynthetic pathway to anthocyanin biosynthesis under different environmental conditions as well as during fruit development is discussed.

  4. Carotenoid genes transcriptional regulation for astaxanthin accumulation in fresh water unicellular alga Haematococcus pluvialis by gibberellin A3 (GA3).

    PubMed

    Gao, Zhengquan; Meng, Chunxiao; Gao, Hongzheng; Li, Yan; Zhang, Xiaowen; Xu, Dong; Zhou, Shitan; Liu, Banghui; Su, Yuanfeng; Ye, Naihao

    2013-12-01

    The fresh water unicellular alga Haematococcus pluvialis is a promising natural source of astaxanthin. The present study investigated the transcriptional expression of carotenoid genes for astaxanthin accumulation in H. pluvialis using real-time fluorescence quantitative PCR (qRT-PCR). With treatments of 20 and 40 mg/L of gibberllin A3 (GA3), five genes ipi-1, ipi-2, psy, pds and bkt2 were up-regulated with different expression profiles. GA20 (20 mg/L of GA3) treatment had a greater effect on transcriptional expression of bkt2 than on ipi-1 ipi-2, psy and pds (> 4-fold up-regulation). However, GA40 (40 mg/L of GA3) induced more transcriptional expression of ipi-2, psy and bkt2 than both ipi-1 and pds. The expression of lyc, crtR-B and crtO for astaxanthin biosynthesis was not affected by GA3 in H. piuvialis. In the presence of GA3, astaxanthin biosynthesis genes of ipi-1, pds and bkt2 were up-regulated at transcriptional level, psy at post-transcriptional level, whereas ipi-2 was up-regulated at both levels. The study could potentially lead to a scale application of exogenous GA3 in astaxanthin production with H. pluvialis just like GAs perform in increasing crops production and it would provide new insight about the multifunctional roles of carotenogenesis in response to GA3.

  5. Transcriptomics and Metabolite Analysis Reveals the Molecular Mechanism of Anthocyanin Biosynthesis Branch Pathway in Different Senecio cruentus Cultivars

    PubMed Central

    Jin, Xuehua; Huang, He; Wang, Lu; Sun, Yi; Dai, Silan

    2016-01-01

    The cyanidin (Cy), pelargonidin (Pg), and delphinidin (Dp) pathways are the three major branching anthocyanin biosynthesis pathways that regulate flavonoid metabolic flux and are responsible for red, orange, and blue flower colors, respectively. Different species have evolved to develop multiple regulation mechanisms that form the branched pathways. In the current study, five Senecio cruentus cultivars with different colors were investigated. We found that the white and yellow cultivars do not accumulate anthocyanin and that the blue, pink, and carmine cultivars mainly accumulate Dp, Pg, and Cy in differing densities. Subsequent transcriptome analysis determined that there were 43 unigenes encoding anthocyanin biosynthesis genes in the blue cultivar. We also combined chemical and transcriptomic analyses to investigate the major metabolic pathways that are related to the observed differences in flower pigmentation in the series of S. cruentus. The results showed that mutations of the ScbHLH17 and ScCHI1/2 coding regions abolish anthocyanin formation in the white and the yellow cultivars; the competition of the ScF3′H1, ScF3′5′H, and ScDFR1/2 genes for naringenin determines the differences in branching metabolic flux of the Cy, Dp, and Pg pathways. Our findings provide new insights into the regulation of anthocyanin branching and also supplement gene resources (including ScF3′5 ′H, ScF3′H, and ScDFRs) for flower color modification of ornamentals. PMID:27656188

  6. Altered activity of heme biosynthesis pathway enzymes in individuals chronically exposed to arsenic in Mexico.

    PubMed

    Hernández-Zavala, A; Del Razo, L M; García-Vargas, G G; Aguilar, C; Borja, V H; Albores, A; Cebrián, M E

    1999-03-01

    Our objective was to evaluate the activities of some enzymes of the heme biosynthesis pathway and their relationship with the profile of urinary porphyrin excretion in individuals exposed chronically to arsenic (As) via drinking water in Region Lagunera, Mexico. We selected 17 individuals from each village studied: Benito Juarez, which has current exposure to 0.3 mg As/l; Santa Ana, where individuals have been exposed for more than 35 years to 0.4 mg As/l, but due to changes in the water supply (in 1992) exposure was reduced to its current level (0.1 mg As/l), and Nazareno, with 0.014 mg As/l. Average arsenic concentrations in urine were 2058, 398, and 88 microg As/g creatinine, respectively. The more evident alterations in heme metabolism observed in the highly exposed individuals were: (1) small but significant increases in porphobilinogen deaminase (PBG-D) and uroporphyrinogen decarboxylase (URO-D) activities in peripheral blood erythrocytes; (2) increases in the urinary excretion of total porphyrins, mainly due to coproporphyrin III (COPROIII) and uroporphyrin III (UROIII); and (3) increases in the COPRO/URO and COPROIII/COPROI ratios. No significant changes were observed in uroporphyrinogen III synthetase (UROIII-S) activity. The direct relationships between enzyme activities and urinary porphyrins, suggest that the increased porphyrin excretion was related to PBG-D, whereas the increased URO-D activity would enhance coproporphyrin synthesis and excretion at the expense of uroporphyrin. None of the human studies available have reported the marked porphyric response and enzyme inhibition observed in rodents. In conclusion, chronic As exposure alters human heme metabolism; however the severity of the effects appears to depend on characteristics of exposure not yet fully characterized.

  7. Developmental changes in skin collagen biosynthesis pathway in posthatch male and female chickens

    NASA Technical Reports Server (NTRS)

    Pines, M.; Schickler, M.; Hurwitz, S.; Yamauchi, M.

    1996-01-01

    The developmental changes in skin collagen biosynthesis pathway in male and female chickens were evaluated. Concentration of collagen, levels of mRNA for collagen type I subunits and for lysyl hydroxylase, and the level of three lysyl oxidase-derived cross-links: dehydro-dihydroxylysinonorleucine (DHLNL), dehydro-hydroxylysinonorleucine (HLNL), and dehydro-histidinohydroxymerodesmosine (HHMD) were determined during 4 wk posthatching. Skin collagen content increased with age and was higher in males than in females. In both sexes, the expression of the genes coding for alpha 1 and alpha 2 of collagen type I decreased with age: alpha 1(I) gene expression decreased from Day 3 onwards, whereas the reduction in alpha 2(I) gene expression started 1 wk later. At all ages examined, the expression of both genes was higher in male than in female skin. Males and females lysyl hydroxylase gene expression remained low until Day 16, after which an increase in the enzyme gene expression was observed. An increase in skin HLNL content was observed from Day 3 in both sexes reaching a peak in males at Day 9 and in females 1 wk later. The DHLNL content, which was higher in males than in females at all ages tested, dramatically decreased in both male and female skin from 3 d of age, reaching its lowest level at Day 16, and remained at that low level thereafter. The skin content of HHMD in males and females followed an oscillatory behavior with higher peaks in the male skin. The results suggest that the higher tensile strength of male skin than female skin may be due to the elevated skin collagen content that resulted from increased expression in collagen type I genes on the one hand, and from the higher amounts of various collagen cross-links on the other.

  8. Differential contribution of the proline and glutamine pathways to glutamate biosynthesis and nitrogen assimilation in yeast lacking glutamate dehydrogenase.

    PubMed

    Sieg, Alex G; Trotter, Pamela J

    2014-01-01

    In Saccharomyces cerevisiae, the glutamate dehydrogenase (GDH) enzymes play a pivotal role in glutamate biosynthesis and nitrogen assimilation. It has been proposed that, in GDH-deficient yeast, either the proline utilization (PUT) or the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway serves as the alternative pathway for glutamate production and nitrogen assimilation to the exclusion of the other. Using a gdh-null mutant (gdh1Δ2Δ3Δ), this ambiguity was addressed using a combination of growth studies and pathway-specific enzyme assays on a variety of nitrogen sources (ammonia, glutamine, proline and urea). The GDH-null mutant was viable on all nitrogen sources tested, confirming that alternate pathways for nitrogen assimilation exist in the gdh-null strain. Enzyme assays point to GS/GOGAT as the primary alternative pathway on the preferred nitrogen sources ammonia and glutamine, whereas growth on proline required both the PUT and GS/GOGAT pathways. In contrast, growth on glucose-urea media elicited a decrease in GOGAT activity along with an increase in activity of the PUT pathway specific enzyme Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH). Together, these results suggest the alternative pathway for nitrogen assimilation in strains lacking the preferred GDH-dependent route is nitrogen source dependent and that neither GS/GOGAT nor PUT serves as the sole compensatory pathway.

  9. Differential contribution of the proline and glutamine pathways to glutamate biosynthesis and nitrogen assimilation in yeast lacking glutamate dehydrogenase

    PubMed Central

    Sieg, Alex G.; Trotter, Pamela J.

    2014-01-01

    In Saccharomyces cerevisiae, the glutamate dehydrogenase (GDH) enzymes play a pivotal role in glutamate biosynthesis and nitrogen assimilation. It has been proposed that, in GDH-deficient yeast, either the proline utilization (PUT) or the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway serves as the alternative pathway for glutamate production and nitrogen assimilation to the exclusion of the other. Using a gdh-null mutant (gdh1Δ2Δ3Δ), this ambiguity was addressed using a combination of growth studies and pathway-specific enzyme assays on a variety of nitrogen sources (ammonia, glutamine, proline and urea). The GDH-null mutant was viable on all nitrogen sources tested, confirming that alternate pathways for nitrogen assimilation exist in the gdh-null strain. Enzyme assays point to GS/GOGAT as the primary alternative pathway on the preferred nitrogen sources ammonia and glutamine, whereas growth on proline required both the PUT and GS/GOGAT pathways. In contrast, growth on glucose-urea media elicited a decrease in GOGAT activity along with an increase in activity of the PUT pathway specific enzyme Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH). Together, these results suggest the alternative pathway for nitrogen assimilation in strains lacking the preferred GDH-dependent route is nitrogen source dependent and that neither GS/GOGAT nor PUT serves as the sole compensatory pathway. PMID:24629525

  10. De Novo Transcriptome and Expression Profile Analysis to Reveal Genes and Pathways Potentially Involved in Cantharidin Biosynthesis in the Blister Beetle Mylabris cichorii

    PubMed Central

    Huang, Yi; Wang, Zhongkang; Zha, Shenfang; Wang, Yu; Jiang, Wei; Liao, Yufeng; Song, Zhangyong; Qi, Zhaoran; Yin, Youping

    2016-01-01

    The dried body of Mylabris cichorii is well-known Chinese traditional medicine. The sesquiterpenoid cantharidin, which is secreted mostly by adult male beetles, has recently been used as an anti-cancer drug. However, little is known about the mechanisms of cantharidin biosynthesis. Furthermore, there is currently no genomic or transcriptomic information for M. cichorii. In this study, we performed de novo assembly transcriptome of M. cichorii using the Illumina Hiseq2000. A single run produced 9.19 Gb of clean nucleotides comprising 29,247 sequences, including 23,739 annotated sequences (about 81%). We also constructed two expression profile libraries (20–25 day-old adult males and 20–25 day-old adult females) and discovered 2,465 significantly differentially-expressed genes. Putative genes and pathways involved in the biosynthesis of cantharidin were then characterized. We also found that cantharidin biosynthesis in M. cichorii might only occur via the mevalonate (MVA) pathway, not via the methylerythritol 4-phosphate/deoxyxylulose 5-phosphate (MEP/DOXP) pathway or a mixture of these. Besides, we considered that cantharidin biosynthesis might be related to the juvenile hormone (JH) biosynthesis or degradation. The results of transcriptome and expression profiling analysis provide a comprehensive sequence resource for M. cichorii that could facilitate the in-depth study of candidate genes and pathways involved in cantharidin biosynthesis, and may thus help to improve our understanding of the mechanisms of cantharidin biosynthesis in blister beetles. PMID:26752526

  11. New prospects for deducing the evolutionary history of metabolic pathways in prokaryotes: Aromatic biosynthesis as a case-in-point

    NASA Astrophysics Data System (ADS)

    Ahmad, Suhail; Jensen, Roy A.

    1988-03-01

    Metabolic pathways of prokaryotes are more biochemically diverse than is generally recognized. Distinctive biochemical features are shared by phylogenetic clusters. The hierarchical levels of characterstate clustering depends upon evolutionary events which fortuitously became fixed in the genome of a common ancestor. Prokaryotes can now be ordered on a phylogenetic tree. This allows the evolutionary steps that underlie the construction and regulation of appropriately complex biochemical pathways to be traced in an evolutionary progression of prokaryote types that house these pathways. Essentially the approach is to deduce ancestral character states at ever deeper phylogenetic levels, utilizing logical principles of maximum parsimony. The current perspective on the evolution of the biochemical pathway for biosynthesis of aromatic amino acids is developed as a case-in-point model for analyses that should be feasible with many major metabolic systems. Phenylalanine biosynthesis probably arose prior to the addition of branches leading to tyrosine and tryptophan. An evolutionary scenario is developed that begins with non-enzymatic reactions which may have operated in primitive systems, followed by the evolution of an enzymatic system that pre-dated the divergence of major lineages of modern eubacteria (Gram-positive bacteria, Gram-negative purple bacteria, and cyanobacteria).

  12. Hypericin biosynthesis in Hypericum hookerianum Wight and Arn: investigation on biochemical pathways using metabolite inhibitors and suppression subtractive hybridization.

    PubMed

    Pillai, Padmesh P; Nair, Aswati R

    2014-10-01

    The biochemical pathway to hypericin biosynthesis is presumed to be polyketide synthase (PKS) mediated, but it has not been experimentally validated, and no alternate route (chorismate/o-succinylbenzoate pathway) has been analyzed. We report here our earlier developed auxin inducible culture systems of Hypericum hookerianum as a model, to study the metabolic pathway to hypericin synthesis. Inhibitors of the alternate pathway at varying concentrations showed steady synthesis of total hypericins with means of 2.80±0.22, 18.75±0.01; 16.39±3.75, 29.60±1.90 (mevinolin) 2.53±0.10, 18.12±0.56; 0.14±0.01, 14.28±1.11 (fosmidomycin) and 2.7±0.35, 18.75±0.61; 0.14±0.01, 12.80±1.09 mg g(-1) DW (glyphosate) in the control and auxin-induced shoot and shoot-forming callus cultures, respectively. SSH analysis classified the differentially expressed sequences into protein synthesis (38%), modification (20%), electron transport (9%) and remaining as unclassified (11%) and unknown proteins (22%). Functional annotation of sequences indicates the presence of additional protein components besides PKS activity. Our results demonstrate direct biochemical and molecular evidence of PKS hypothesis of hypericin biosynthesis for the first time.

  13. Critical importance of the de novo pyrimidine biosynthesis pathway for Trypanosoma cruzi growth in the mammalian host cell cytoplasm

    SciTech Connect

    Hashimoto, Muneaki; Morales, Jorge; Fukai, Yoshihisa; Suzuki, Shigeo; Takamiya, Shinzaburo; Tsubouchi, Akiko; Inoue, Syou; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu; Tanaka, Akiko; Aoki, Takashi; Nara, Takeshi

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We established Trypanosoma cruzi lacking the gene for carbamoyl phosphate synthetase II. Black-Right-Pointing-Pointer Disruption of the cpsII gene significantly reduced the growth of epimastigotes. Black-Right-Pointing-Pointer In particular, the CPSII-null mutant severely retarded intracellular growth. Black-Right-Pointing-Pointer The de novo pyrimidine pathway is critical for the parasite growth in the host cell. -- Abstract: The intracellular parasitic protist Trypanosoma cruzi is the causative agent of Chagas disease in Latin America. In general, pyrimidine nucleotides are supplied by both de novo biosynthesis and salvage pathways. While epimastigotes-an insect form-possess both activities, amastigotes-an intracellular replicating form of T. cruzi-are unable to mediate the uptake of pyrimidine. However, the requirement of de novo pyrimidine biosynthesis for parasite growth and survival has not yet been elucidated. Carbamoyl-phosphate synthetase II (CPSII) is the first and rate-limiting enzyme of the de novo biosynthetic pathway, and increased CPSII activity is associated with the rapid proliferation of tumor cells. In the present study, we showed that disruption of the T. cruzicpsII gene significantly reduced parasite growth. In particular, the growth of amastigotes lacking the cpsII gene was severely suppressed. Thus, the de novo pyrimidine pathway is important for proliferation of T. cruzi in the host cell cytoplasm and represents a promising target for chemotherapy against Chagas disease.

  14. Comparative transcriptome analysis using high papaverine mutant of Papaver somniferum reveals pathway and uncharacterized steps of papaverine biosynthesis.

    PubMed

    Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Mishra, Brij Kishore; Shukla, Sudhir; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2013-01-01

    The benzylisoquinoline alkaloid papaverine, synthesized in low amount in most of the opium poppy varieties of Papaver somniferum, is used as a vasodilator muscle relaxant and antispasmodic. Papaverine biosynthesis remains controversial as two different routes utilizing either (S)-coclaurine or (S)-reticuline have been proposed with uncharacterized intermediate steps. In an attempt to elucidate papaverine biosynthesis and identify putative genes involved in uncharacterized steps, we carried out comparative transcriptome analysis of high papaverine mutant (pap1) and normal cultivar (BR086) of P. somniferum. This natural mutant synthesizes more than 12-fold papaverine in comparison to BR086. We established more than 238 Mb transcriptome data separately for pap1 and BR086. Assembly of reads generated 127,342 and 106,128 unigenes in pap1 and BR086, respectively. Digital gene expression analysis of transcriptomes revealed 3,336 differentially expressing unigenes. Enhanced expression of (S)-norcoclaurine-6-O-methyltransferase (6OMT), (S)-3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT), norreticuline 7-O-methyltransferase (N7OMT) and down-regulation of reticuline 7-O-methyltransferase (7OMT) in pap1 in comparison to BR086 suggest (S)-coclaurine as the route for papaverine biosynthesis. We also identified several methyltransferases and dehydrogenases with enhanced expression in pap1 in comparison to BR086. Our analysis using natural mutant, pap1, concludes that (S)-coclaurine is the branch-point intermediate and preferred route for papaverine biosynthesis. Differentially expressing methyltransferases and dehydrogenases identified in this study will help in elucidating complete biosynthetic pathway of papaverine. The information generated will be helpful in developing strategies for enhanced biosynthesis of papaverine through biotechnological approaches.

  15. Comparative Transcriptome Analysis Using High Papaverine Mutant of Papaver somniferum Reveals Pathway and Uncharacterized Steps of Papaverine Biosynthesis

    PubMed Central

    Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Mishra, Brij Kishore; Shukla, Sudhir; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2013-01-01

    The benzylisoquinoline alkaloid papaverine, synthesized in low amount in most of the opium poppy varieties of Papaver somniferum, is used as a vasodilator muscle relaxant and antispasmodic. Papaverine biosynthesis remains controversial as two different routes utilizing either (S)-coclaurine or (S)-reticuline have been proposed with uncharacterized intermediate steps. In an attempt to elucidate papaverine biosynthesis and identify putative genes involved in uncharacterized steps, we carried out comparative transcriptome analysis of high papaverine mutant (pap1) and normal cultivar (BR086) of P. somniferum. This natural mutant synthesizes more than 12-fold papaverine in comparison to BR086. We established more than 238 Mb transcriptome data separately for pap1 and BR086. Assembly of reads generated 127,342 and 106,128 unigenes in pap1 and BR086, respectively. Digital gene expression analysis of transcriptomes revealed 3,336 differentially expressing unigenes. Enhanced expression of (S)-norcoclaurine-6-O-methyltransferase (6OMT), (S)-3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase (4′OMT), norreticuline 7-O-methyltransferase (N7OMT) and down-regulation of reticuline 7-O-methyltransferase (7OMT) in pap1 in comparison to BR086 suggest (S)-coclaurine as the route for papaverine biosynthesis. We also identified several methyltransferases and dehydrogenases with enhanced expression in pap1 in comparison to BR086. Our analysis using natural mutant, pap1, concludes that (S)-coclaurine is the branch-point intermediate and preferred route for papaverine biosynthesis. Differentially expressing methyltransferases and dehydrogenases identified in this study will help in elucidating complete biosynthetic pathway of papaverine. The information generated will be helpful in developing strategies for enhanced biosynthesis of papaverine through biotechnological approaches. PMID:23738019

  16. The Arabidopsis thiamin deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway.

    PubMed

    Hsieh, Wei-Yu; Liao, Jo-Chien; Wang, Hsin-Tzu; Hung, Tzu-Huan; Tseng, Ching-Chih; Chung, Tsui-Yun; Hsieh, Ming-Hsiun

    2017-03-27

    Thiamin diphosphate (TPP, vitamin B1) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPP de novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll, and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-GUS activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were up-regulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes. This article is protected by copyright. All rights reserved.

  17. 21 CFR 73.35 - Astaxanthin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.35 Astaxanthin. (a) Identity. (1) The color additive... as a component of a stabilized color additive mixture. Color additive mixtures for fish feed use made... safe for use in color additive mixtures for coloring foods. (b) Specifications. Astaxanthin...

  18. Hydrolysis kinetics of astaxanthin esters and stability of astaxanthin of Haematococcus pluvialis during saponification.

    PubMed

    Yuan, J P; Chen, F

    1999-01-01

    The reaction kinetics for the hydrolysis of astaxanthin esters and the degradation of astaxanthin during saponification of the pigment extract from the microalga Haematococcus pluvialis were investigated. Different concentrations of sodium hydroxide in methanol were used for the saponification under nitrogen in darkness at ambient temperature (22 degrees C) followed by the analysis of astaxanthins and other carotenoids using an HPLC method. The concentration of methanolic NaOH solution was important for promoting the hydrolysis of astaxanthin esters and minimizing the degradation of astaxanthin during saponification. With a higher concentration of methanolic NaOH solution, the reaction rate of hydrolysis was high, but the degradation of astaxanthin occurred significantly. The rate constants of the hydrolysis reaction (first order) of astaxanthin esters and the degradation reaction (zero-order) of astaxanthin were directly proportional to the concentration of sodium hydroxide in the saponified solution. Although the concentration of sodium hydroxide in the saponified solution was 0.018 M, complete hydrolysis of astaxanthin esters was achieved in 6 h for different concentrations (10-100 mg/L) of pigment extracts. Results also indicated that a higher temperature should be avoided to minimize the degradation of astaxanthin. In addition, during saponification, no loss of lutein, beta-carotene, and canthaxanthin was found.

  19. Effect of thermal processing on astaxanthin and astaxanthin esters in pacific white shrimp Litopenaeus vannamei.

    PubMed

    Yang, Shu; Zhou, Qingxin; Yang, Lu; Xue, Yong; Xu, Jie; Xue, Changhu

    2015-01-01

    The red color of processed shrimp, one of the most attractive attributes and an important criterion for consumers, is often limited by thermal processing (microwaving, boiling and frying), due to astaxanthin degradation. The effect of thermal processing on astaxanthin in Pacific white shrimp (Litopenaeus vannamei) were investigated. A High-performance liquid chromatographic - atmospheric pressure chemical ionization mass spectrometry (LC-(APCI)-MS/MS) method was used to identify and quantify all-trans- and cis-isomers of astaxanthin, and molecular species of astaxanthin esters in fresh and thermal processed shrimps. Total astaxanthin loss ranged from 7.99% to 52.01% in first 3 min under three thermal processing. All-trans-astaxanthin was most affected, with a reduction from 32.81 to 8.72 μg kg(-1), while 13-cis-astxanthin had a rise (from 2.38 to 4.58 μg kg(-1)). Esterified astaxanthin was shown to hydrolyze and degrade, furthermore astaxanthin diesters had a better thermostability compare to astaxanthin monoesters. Astaxanthin monoesters with eicosapntemacnioc acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6), had a lower thermal stability than those with saturated fatty acids, however, it was the opposite of astaxanthin diesters. The findings suggested that the method of thermal processing should be carefully used in the manufacturing and domestic cooking of shrimps. The results also could be useful in calculating the dietary intake of astaxanthin and in assessing astaxanthin profiles and contents of shrimp containing products.

  20. Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera

    PubMed Central

    Gupta, Parul; Goel, Ridhi; Agarwal, Aditya Vikram; Asif, Mehar Hasan; Sangwan, Neelam Singh; Sangwan, Rajender Singh; Trivedi, Prabodh Kumar

    2015-01-01

    Withania somnifera is one of the most valuable medicinal plants synthesizing secondary metabolites known as withanolides. Despite pharmaceutical importance, limited information is available about the biosynthesis of withanolides. Chemo-profiling of leaf and root tissues of Withania suggest differences in the content and/or nature of withanolides in different chemotypes. To identify genes involved in chemotype and/or tissue-specific withanolide biosynthesis, we established transcriptomes of leaf and root tissues of distinct chemotypes. Genes encoding enzymes for intermediate steps of terpenoid backbone biosynthesis with their alternatively spliced forms and paralogous have been identified. Analysis suggests differential expression of large number genes among leaf and root tissues of different chemotypes. Study also identified differentially expressing transcripts encoding cytochrome P450s, glycosyltransferases, methyltransferases and transcription factors which might be involved in chemodiversity in Withania. Virus induced gene silencing of the sterol ∆7-reductase (WsDWF5) involved in the synthesis of 24-methylene cholesterol, withanolide backbone, suggests role of this enzyme in biosynthesis of withanolides. Information generated, in this study, provides a rich resource for functional analysis of withanolide-specific genes to elucidate chemotype- as well as tissue-specific withanolide biosynthesis. This genomic resource will also help in development of new tools for functional genomics and breeding in Withania. PMID:26688389

  1. Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway.

    PubMed

    Wang, Ying; Hua, Wenping; Wang, Jian; Hannoufa, Abdelali; Xu, Ziqin; Wang, Zhezhi

    2013-04-01

    Lotus corniculatus L. is used worldwide as a forage crop due to its abundance of secondary metabolites and its ability to grow in severe environments. Although the entire genome of L. corniculatus var. japonicus R. is being sequenced, the differences in morphology and production of secondary metabolites between these two related species have led us to investigate this variability at the genetic level, in particular the differences in flavonoid biosynthesis. Our goal is to use the resulting information to develop more valuable forage crops and medicinal materials. Here, we conducted Illumina/Solexa sequencing to profile the transcriptome of L. corniculatus. We produced 26,492,952 short reads that corresponded to 2.38 gigabytes of total nucleotides. These reads were then assembled into 45,698 unigenes, of which a large number associated with secondary metabolism were annotated. In addition, we identified 2,998 unigenes based on homology with L. japonicus transcription factors (TFs) and grouped them into 55 families. Meanwhile, a comparison of four tag-based digital gene expression libraries, built from the flowers, pods, leaves, and roots, revealed distinct patterns of spatial expression of candidate unigenes in flavonoid biosynthesis. Based on these results, we identified many key enzymes from L. corniculatus which were different from reference genes of L. japonicus, and five TFs that are potential enhancers in flavonoid biosynthesis. Our results provide initial genetics resources that will be valuable in efforts to manipulate the flavonoid metabolic pathway in plants.

  2. Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis.

    PubMed

    Grieshaber, Nicole A; Fischer, Elizabeth R; Mead, David J; Dooley, Cheryl A; Hackstadt, Ted

    2004-05-11

    The chlamydial developmental cycle is characterized by an intracellular replicative form, termed the reticulate body, and an extracellular form called the elementary body. Elementary bodies are characterized by a condensed chromatin, which is maintained by a histone H1-like protein, Hc1. Differentiation of elementary bodies to reticulate bodies is accompanied by dispersal of the chromatin as chlamydiae become transcriptionally active, although the mechanisms of Hc1 release from DNA have remained unknown. Dissociation of the nucleoid requires chlamydial transcription and translation with negligible loss of Hc1. A genetic screen was therefore designed to identify chlamydial genes rescuing Escherichia coli from the lethal effects of Hc1 overexpression. CT804, a gene homologous to ispE, which encodes an intermediate enzyme of the non-mevalonate methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, was selected. E. coli coexpressing CT804 and Hc1 grew normally, although they expressed Hc1 to a level equivalent to that which condensed the chromatin of parent Hc1-expressing controls. Inhibition of the MEP pathway with fosmidomycin abolished IspE rescue of Hc1-expressing E. coli. Deproteinated extract from IspE-expressing bacteria caused dispersal of purified chlamydial nucleoids, suggesting that chlamydial histone-DNA interactions are disrupted by a small metabolite within the MEP pathway rather than by direct action of IspE. By partial reconstruction of the MEP pathway, we determined that 2-C-methylerythritol 2,4-cyclodiphosphate dissociated Hc1 from chlamydial chromatin. These results suggest that chlamydial histone-DNA interactions are disrupted upon germination by a small metabolite in the MEP pathway of isoprenoid biosynthesis.

  3. Induction of the cholesterol biosynthesis pathway in differentiated Caco-2 cells by the potato glycoalkaloid alpha-chaconine.

    PubMed

    Mandimika, Tafadzwa; Baykus, Hakan; Poortman, Jenneke; Garza, Cutberto; Kuiper, Harry; Peijnenburg, Ad

    2007-10-01

    Glycoalkaloids are naturally occurring toxins in potatoes, which at high levels may induce toxic effects in humans, mainly on the gastrointestinal tract by cell membrane disruption. In order to better understand the molecular mechanisms underlying glycoalkaloid toxicity, we examined the effects of alpha-chaconine on gene expression in the Caco-2 intestinal epithelial cell line using DNA microarrays. Caco-2 cells were exposed for 6h to 10 microM alpha-chaconine in three independent experiments (randomized block design). The most prominent finding from our gene expression and pathway analyses was the upregulation of expression of several genes involved in cholesterol biosynthesis. This to some extent is in line with the literature-described mechanism of cell membrane disruption by glycoalkaloids. In addition, various growth factor signaling pathways were found to be significantly upregulated. This study is useful in understanding the mechanism(s) of alpha-chaconine toxicity, which may be extended to other potato glycoalkaloids more generally.

  4. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.

    PubMed

    Linares, Daniel M; del Río, Beatriz; Ladero, Victor; Redruello, Begoña; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2013-07-01

    Lactococcus lactis is the lactic acid bacterium most widely used by the dairy industry as a starter for the manufacture of fermented products such as cheese and buttermilk. However, some strains produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The proteins involved in this pathway, including those necessary for agmatine uptake and conversion into putrescine, are encoded by the aguB, aguD, aguA and aguC genes, which together form an operon. This paper reports the mechanism of regulation of putrescine biosynthesis in L. lactis. It is shown that the aguBDAC operon, which contains a cre site at the promoter of aguB (the first gene of the operon), is transcriptionally regulated by carbon catabolic repression (CCR) mediated by the catabolite control protein CcpA.

  5. Diversity of the biosynthesis pathway for threonylcarbamoyladenosine (t6A), a universal modification of tRNA

    PubMed Central

    Thiaville, Patrick C; Iwata-Reuyl, Dirk; de Crécy-Lagard, Valérie

    2014-01-01

    The tRNA modification field has a rich literature covering biochemical analysis going back more than 40 years, but many of the corresponding genes were only identified in the last decade. In recent years, comparative genomic-driven analysis has allowed for the identification of the genes and subsequent characterization of the enzymes responsible for N6-threonylcarbamoyladenosine (t6A). This universal modification, located in the anticodon stem-loop at position 37 adjacent to the anticodon of tRNAs, is found in nearly all tRNAs that decode ANN codons. The t6A biosynthesis enzymes and synthesis pathways have now been identified, revealing both a core set of enzymes and kingdom-specific variations. This review focuses on the elucidation of the pathway, diversity of the synthesis genes, and proposes a new nomenclature for t6A synthesis enzymes. PMID:25629598

  6. PqsE of Pseudomonas aeruginosa Acts as Pathway-Specific Thioesterase in the Biosynthesis of Alkylquinolone Signaling Molecules.

    PubMed

    Drees, Steffen Lorenz; Fetzner, Susanne

    2015-05-21

    Pseudomonas aeruginosa uses the alkylquinolones PQS (2-heptyl-3-hydroxy-4(1H)-quinolone) and HHQ (2-heptyl-4(1H)-quinolone) as quorum-sensing signal molecules, controlling the expression of many virulence genes as a function of cell population density. The biosynthesis of HHQ is generally accepted to require the pqsABCD gene products. We now reconstitute the biosynthetic pathway in vitro, and demonstrate that in addition to PqsABCD, PqsE has a role in HHQ synthesis. PqsE acts as thioesterase, hydrolyzing the biosynthetic intermediate 2-aminobenzoylacetyl-coenzyme A to form 2-aminobenzoylacetate, the precursor of HHQ and 2-aminoacetophenone. The role of PqsE can be taken over to some extent by the broad-specificity thioesterase TesB, explaining why the pqsE deletion mutant of P. aeruginosa still synthesizes HHQ. Interestingly, the pqsE mutant produces increased levels of 2,4-dihydroxyquinoline, resulting from intramolecular cyclization of 2-aminobenzoylacetyl-coenzyme A. Overall, our data suggest that PqsE promotes the efficiency of alkylquinolone signal molecule biosynthesis in P. aeruginosa and balances the levels of secondary metabolites deriving from the alkylquinolone biosynthetic pathway.

  7. Biosynthesis of Unusual Moth Pheromone Components Involves Two Different Pathways in the Navel Orangeworm, Amyelois transitella

    PubMed Central

    Wang, Hong-Lei; Zhao, Cheng-Hua; Millar, Jocelyn G.; Cardé, Ring T.

    2010-01-01

    The sex pheromone of the navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), consists of two different types of components, one type including (11Z,13Z)-11,13-hexadecadienal (11Z,13Z-16:Ald) with a terminal functional group containing oxygen, similar to the majority of moth pheromones reported, and another type including the unusual long-chain pentaenes, (3Z,6Z,9Z,12Z,15Z)-3,6,9,12,15-tricosapentaene (3Z,6Z,9Z,12Z,15Z-23:H) and (3Z,6Z,9Z,12Z,15Z)- 3,6,9,12,15-pentacosapentaene (3Z,6Z,9Z,12Z,15Z-25:H). After decapitation of females, the titer of 11Z,13Z-16:Ald in the pheromone gland decreased significantly, whereas the titer of the pentaenes remained unchanged. Injection of a pheromone biosynthesis activating peptide (PBAN) into the abdomens of decapitated females restored the titer of 11Z,13Z-16:Ald and even increased it above that in intact females, whereas the titer of the pentaenes in the pheromone gland was not affected by PBAN injection. In addition to common fatty acids, two likely precursors of 11Z,13Z-16:Ald, i.e., (Z)-11-hexadecenoic and (11Z,13Z)-11,13-hexadecadienoic acid, as well as traces of (Z)-6-hexadecenoic acid, were found in gland extracts. In addition, pheromone gland lipids contained (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, which also was found in extracts of the rest of the abdomen. Deuterium-labeled fatty acids, (16,16,16-D3)-hexadecanoic acid and (Z)-[13,13,14,14,15,15,16,16,16-D9]-11-hexadecenoic acid, were incorporated into 11Z,13Z-16:Ald after topical application to the sex pheromone gland coupled with abdominal injection of PBAN. Deuterium label was incorporated into the C23 and C25 pentaenes after injection of (9Z,12Z,15Z)- [17,17,18,18,18-D5]-9,12,15-octadecatrienoic acid into 1–2 d old female pupae. These labeling results, in conjunction with the composition of fatty acid intermediates found in pheromone gland extracts, support different pathways leading to the two pheromone components. 11Z,13Z-16

  8. Modeling the flux of metabolites in the juvenile hormone biosynthesis pathway using generalized additive models and ordinary differential equations.

    PubMed

    Martínez-Rincón, Raúl O; Rivera-Pérez, Crisalejandra; Diambra, Luis; Noriega, Fernando G

    2017-01-01

    Juvenile hormone (JH) regulates development and reproductive maturation in insects. The corpora allata (CA) from female adult mosquitoes synthesize fluctuating levels of JH, which have been linked to the ovarian development and are influenced by nutritional signals. The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A comprehensive study of the changes in enzymatic activities and precursor pool sizes have been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the present studies, we used two different quantitative approaches to describe and predict how changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we constructed generalized additive models (GAMs) that described the association between changes in specific metabolite concentrations with changes in enzymatic activities and substrate concentrations. Changes in substrate concentrations explained 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzymatic activities almost always improved the fitness of GAMs built solely based on substrate concentrations. GAMs were validated using experimental data that were not included when the model was built. In addition, a system of ordinary differential equations (ODE) was developed to describe the instantaneous changes in metabolites as a function of the levels of enzymatic catalytic activities. The results demonstrated the ability of the models to predict changes in the flux of metabolites in the JH pathway, and can be used in the future to design and validate experimental manipulations of JH synthesis.

  9. Modeling the flux of metabolites in the juvenile hormone biosynthesis pathway using generalized additive models and ordinary differential equations

    PubMed Central

    Martínez-Rincón, Raúl O.; Rivera-Pérez, Crisalejandra; Diambra, Luis; Noriega, Fernando G.

    2017-01-01

    Juvenile hormone (JH) regulates development and reproductive maturation in insects. The corpora allata (CA) from female adult mosquitoes synthesize fluctuating levels of JH, which have been linked to the ovarian development and are influenced by nutritional signals. The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A comprehensive study of the changes in enzymatic activities and precursor pool sizes have been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the present studies, we used two different quantitative approaches to describe and predict how changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we constructed generalized additive models (GAMs) that described the association between changes in specific metabolite concentrations with changes in enzymatic activities and substrate concentrations. Changes in substrate concentrations explained 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzymatic activities almost always improved the fitness of GAMs built solely based on substrate concentrations. GAMs were validated using experimental data that were not included when the model was built. In addition, a system of ordinary differential equations (ODE) was developed to describe the instantaneous changes in metabolites as a function of the levels of enzymatic catalytic activities. The results demonstrated the ability of the models to predict changes in the flux of metabolites in the JH pathway, and can be used in the future to design and validate experimental manipulations of JH synthesis. PMID:28158248

  10. Designed biosynthesis of 36-methyl-FK506 by polyketide precursor pathway engineering

    PubMed Central

    Lechner, Anna; Wilson, Micheal C.; Ban, Yeon Hee; Hwang, Jae-yeon; Yoon, Yeo Joon; Moore, Bradley S.

    2012-01-01

    The polyketide synthase (PKS) biosynthetic code has recently expanded to include a newly recognized group of extender unit substrates derived from α,β-unsaturated acyl-CoA molecules that deliver diverse side chain chemistry to polyketide backbones. Herein we report the identification of a three-gene operon responsible for the biosynthesis of the PKS building block isobutyrylmalonyl-CoA associated with the macrolide ansalactam A from the marine bacterium Streptomyces sp. CNH189. Using a synthetic biology approach, we engineered the production of unnatural 36-methyl-FK506 in Streptomyces sp. KCTC 11604BP by incorporating the branched extender unit into FK506 biosynthesis in place of its natural C-21 allyl side chain, which has been shown to be critical for FK506’s potent immunosuppressant and neurite outgrowth activities. PMID:23654255

  11. Auxin Biosynthesis

    PubMed Central

    Zhao, Yunde

    2014-01-01

    lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then undergoes oxidative decarboxylation catalyzed by the YUCCA (YUC) family of flavin monooxygenases to produce IAA. This two-step auxin biosynthesis pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. The successful elucidation of a complete auxin biosynthesis pathway provides the necessary tools for effectively modulating auxin concentrations in plants with temporal and spatial precision. The progress in auxin biosynthesis also lays a foundation for understanding polar auxin transport and for dissecting auxin signaling mechanisms during plant development. PMID:24955076

  12. Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces.

    PubMed

    Williamson, Neil R; Simonsen, Henrik T; Ahmed, Raef A A; Goldet, Gabrielle; Slater, Holly; Woodley, Louise; Leeper, Finian J; Salmond, George P C

    2005-05-01

    The biosynthetic pathway of the red-pigmented antibiotic, prodigiosin, produced by Serratia sp. is known to involve separate pathways for the production of the monopyrrole, 2-methyl-3-n-amyl-pyrrole (MAP) and the bipyrrole, 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) which are then coupled in the final condensation step. We have previously reported the cloning, sequencing and heterologous expression of the pig cluster responsible for prodigiosin biosynthesis in two Serratia sp. In this article we report the creation of in-frame deletions or insertions in every biosynthetic gene in the cluster from Serratia sp. ATCC 39006. The biosynthetic intermediates accumulating in each mutant have been analysed by LC-MS, cross-feeding and genetic complementation studies. Based on these results we assign specific roles in the biosynthesis of MBC to the following Pig proteins: PigI, PigG, PigA, PigJ, PigH, PigM, PigF and PigN. We report a novel pathway for the biosynthesis of MAP, involving PigD, PigE and PigB. We also report a new chemical synthesis of MAP and one of its precursors, 3-acetyloctanal. Finally, we identify the condensing enzyme as PigC. We reassess the existing literature and discuss the significance of the results for the biosynthesis of undecylprodigiosin by the Red cluster in Streptomyces coelicolor A3(2).

  13. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway.

    PubMed Central

    Braus, G H

    1991-01-01

    This review focuses on the gene-enzyme relationships and the regulation of different levels of the aromatic amino acid biosynthetic pathway in a simple eukaryotic system, the unicellular yeast Saccharomyces cerevisiae. Most reactions of this branched pathway are common to all organisms which are able to synthesize tryptophan, phenylalanine, and tyrosine. The current knowledge about the two main control mechanisms of the yeast aromatic amino acid biosynthesis is reviewed. (i) At the transcriptional level, most structural genes are regulated by the transcriptional activator GCN4, the regulator of the general amino acid control network, which couples transcriptional derepression to amino acid starvation of numerous structural genes in multiple amino acid biosynthetic pathways. (ii) At the enzyme level, the carbon flow is controlled mainly by modulating the enzyme activities at the first step of the pathway and at the branch points by feedback action of the three aromatic amino acid end products. Implications of these findings for the relationship of S. cerevisiae to prokaryotic as well as to higher eukaryotic organisms and for general regulatory mechanisms occurring in a living cell such as initiation of transcription, enzyme regulation, and the regulation of a metabolic branch point are discussed. PMID:1943992

  14. Astaxanthin in cardiovascular health and disease.

    PubMed

    Fassett, Robert G; Coombes, Jeff S

    2012-02-20

    Oxidative stress and inflammation are established processes contributing to cardiovascular disease caused by atherosclerosis. However, antioxidant therapies tested in cardiovascular disease such as vitamin E, C and β-carotene have proved unsuccessful at reducing cardiovascular events and mortality. Although these outcomes may reflect limitations in trial design, new, more potent antioxidant therapies are being pursued. Astaxanthin, a carotenoid found in microalgae, fungi, complex plants, seafood, flamingos and quail is one such agent. It has antioxidant and anti-inflammatory effects. Limited, short duration and small sample size studies have assessed the effects of astaxanthin on oxidative stress and inflammation biomarkers and have investigated bioavailability and safety. So far no significant adverse events have been observed and biomarkers of oxidative stress and inflammation are attenuated with astaxanthin supplementation. Experimental investigations in a range of species using a cardiac ischaemia-reperfusion model demonstrated cardiac muscle preservation when astaxanthin is administered either orally or intravenously prior to the induction of ischaemia. Human clinical cardiovascular studies using astaxanthin therapy have not yet been reported. On the basis of the promising results of experimental cardiovascular studies and the physicochemical and antioxidant properties and safety profile of astaxanthin, clinical trials should be undertaken.

  15. Antioxidant effect of astaxanthin on phospholipid peroxidation in human erythrocytes.

    PubMed

    Nakagawa, Kiyotaka; Kiko, Takehiro; Miyazawa, Taiki; Carpentero Burdeos, Gregor; Kimura, Fumiko; Satoh, Akira; Miyazawa, Teruo

    2011-06-01

    Phospholipid hydroperoxides (PLOOH) accumulate abnormally in the erythrocytes of dementia patients, and dietary xanthophylls (polar carotenoids such as astaxanthin) are hypothesised to prevent the accumulation. In the present study, we conducted a randomised, double-blind, placebo-controlled human trial to assess the efficacy of 12-week astaxanthin supplementation (6 or 12 mg/d) on both astaxanthin and PLOOH levels in the erythrocytes of thirty middle-aged and senior subjects. After 12 weeks of treatment, erythrocyte astaxanthin concentrations were higher in both the 6 and 12 mg astaxanthin groups than in the placebo group. In contrast, erythrocyte PLOOH concentrations were lower in the astaxanthin groups than in the placebo group. In the plasma, somewhat lower PLOOH levels were found after astaxanthin treatment. These results suggest that astaxanthin supplementation results in improved erythrocyte antioxidant status and decreased PLOOH levels, which may contribute to the prevention of dementia.

  16. Arabidopsis Phosphoglycerate Dehydrogenase1 of the Phosphoserine Pathway Is Essential for Development and Required for Ammonium Assimilation and Tryptophan Biosynthesis[C][W][OPEN

    PubMed Central

    Benstein, Ruben Maximilian; Ludewig, Katja; Wulfert, Sabine; Wittek, Sebastian; Gigolashvili, Tamara; Frerigmann, Henning; Gierth, Markus; Flügge, Ulf-Ingo; Krueger, Stephan

    2013-01-01

    In plants, two independent serine biosynthetic pathways, the photorespiratory and glycolytic phosphoserine (PS) pathways, have been postulated. Although the photorespiratory pathway is well characterized, little information is available on the function of the PS pathway in plants. Here, we present a detailed characterization of phosphoglycerate dehydrogenases (PGDHs) as components of the PS pathway in Arabidopsis thaliana. All PGDHs localize to plastids and possess similar kinetic properties, but they differ with respect to their sensitivity to serine feedback inhibition. Furthermore, analysis of pgdh1 and phosphoserine phosphatase mutants revealed an embryo-lethal phenotype and PGDH1-silenced lines were inhibited in growth. Metabolic analyses of PGDH1-silenced lines grown under ambient and high CO2 conditions indicate a direct link between PS biosynthesis and ammonium assimilation. In addition, we obtained several lines of evidence for an interconnection between PS and tryptophan biosynthesis, because the expression of PGDH1 and PHOSPHOSERINE AMINOTRANSFERASE1 is regulated by MYB51 and MYB34, two activators of tryptophan biosynthesis. Moreover, the concentration of tryptophan-derived glucosinolates and auxin were reduced in PGDH1-silenced plants. In essence, our results provide evidence for a vital function of PS biosynthesis for plant development and metabolism. PMID:24368794

  17. Vitamins B1, B2, B3 and B9 - Occurrence, Biosynthesis Pathways and Functions in Human Nutrition.

    PubMed

    Wolak, Natalia; Zawrotniak, Marcin; Gogol, Mariusz; Kozik, Andrzej; Rapala-Kozik, Maria

    2016-07-24

    Vitamins are chemical compounds whose derivatives are involved in vital metabolic pathways of all living organisms. The complete endogenous biosynthesis of vitamins can be performed by many bacteria, yeast and plants, but humans need to acquire most of these essential nutrients with food. In recent years, new types of action of the well-recognized vitamins or their more sophisticated relationships have been reported. In this review we present the current knowledge of factors that can influence the yield and regulation of vitamin B1, B2, B3 and B9 biosynthesis in plants which can be important for human nutrition. A summary of modern methods applied for vitamin analysis in biological materials is also provided. Contributions of the selected vitamins to the homeostasis of the human organism, as well as their relations to the progress or prevention of some important diseases such as cancer, cardiovascular diseases, diabetes and Alzheimer's disease are discussed in the light of recent investigations. Better understanding of the mechanisms of vitamin uptake by human tissues and possible metabolic or genetic backgrounds of vitamin deficiencies can open new perspectives on the medical strategies and biotechnological processes of food fortification.

  18. A Type II Pathway for Fatty Acid Biosynthesis Presents Drug Targets in Plasmodium falciparum

    PubMed Central

    Waller, Ross F.; Ralph, Stuart A.; Reed, Michael B.; Su, Vanessa; Douglas, James D.; Minnikin, David E.; Cowman, Alan F.; Besra, Gurdyal S.; McFadden, Geoffrey I.

    2003-01-01

    It has long been held that the malaria parasite, Plasmodium sp., is incapable of de novo fatty acid synthesis. This view has recently been overturned with the emergence of data for the presence of a fatty acid biosynthetic pathway in the relict plastid of P. falciparum (known as the apicoplast). This pathway represents the type II pathway common to plant chloroplasts and bacteria but distinct from the type I pathway of animals including humans. Specific inhibitors of the type II pathway, thiolactomycin and triclosan, have been reported to target this Plasmodium pathway. Here we report further inhibitors of the plastid-based pathway that inhibit Plasmodium parasites. These include several analogues of thiolactomycin, two with sixfold-greater efficacy than thiolactomycin. We also report that parasites respond very rapidly to such inhibitors and that the greatest sensitivity is seen in ring-stage parasites. This study substantiates the importance of fatty acid synthesis for blood-stage parasite survival and shows that this pathway provides scope for the development of novel antimalarial drugs. PMID:12499205

  19. A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus

    PubMed Central

    2013-01-01

    Background The aerial parts of land plants are covered with cuticular waxes that limit non-stomatal water loss and gaseous exchange, and protect plants from ultraviolet radiation and pathogen attack. This is the first report on the characterization and genetic mapping of a novel dominant glossy mutant (BnaA.GL) in Brassica napus. Results Transmission electron microscopy revealed that the cuticle ultrastructure of GL mutant leaf and stem were altered dramatically compared with that of wide type (WT). Scanning electron microscopy corroborated the reduction of wax on the leaf and stem surface. A cuticular wax analysis of the GL mutant leaves further confirmed the drastic decrease in the total wax content, and a wax compositional analysis revealed an increase in aldehydes but a severe decrease in alkanes, ketones and secondary alcohols. These results suggested a likely blockage of the decarbonylation step in the wax biosynthesis pathway. Genetic mapping narrowed the location of the BnaA.GL gene to the end of A9 chromosome. A single-nucleotide polymorphism (SNP) chip assay in combination with bulk segregant analysis (BSA) also located SNPs in the same region. Two SNPs, two single sequence repeat (SSR) markers and one IP marker were located on the flanking region of the BnaA.GL gene at a distance of 0.6 cM. A gene homologous to ECERIFERUM1 (CER1) was located in the mapped region. A cDNA microarray chip assay revealed coordinated down regulation of genes encoding enzymes of the cuticular wax biosynthetic pathway in the glossy mutant, with BnCER1 being one of the most severely suppressed genes. Conclusions Our results indicated that surface wax biosynthesis is broadly affected in the glossy mutant due to the suppression of the BnCER1 and other wax-related genes. These findings offer novel clues for elucidating the molecular basis of the glossy phenotype. PMID:24330756

  20. The P450-4 gene of Gibberella fujikuroi encodes ent-kaurene oxidase in the gibberellin biosynthesis pathway.

    PubMed

    Tudzynski, B; Hedden, P; Carrera, E; Gaskin, P

    2001-08-01

    At least five genes of the gibberellin (GA) biosynthesis pathway are clustered on chromosome 4 of Gibberella fujikuroi; these genes encode the bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase, a GA-specific geranylgeranyl diphosphate synthase, and three cytochrome P450 monooxygenases. We now describe a fourth cytochrome P450 monooxygenase gene (P450-4). Gas chromatography-mass spectrometry analysis of extracts of mycelia and culture fluid of a P450-4 knockout mutant identified ent-kaurene as the only intermediate of the GA pathway. Incubations with radiolabeled precursors showed that the metabolism of ent-kaurene, ent-kaurenol, and ent-kaurenal was blocked in the transformants, whereas ent-kaurenoic acid was metabolized efficiently to GA(4). The GA-deficient mutant strain SG139, which lacks the 30-kb GA biosynthesis gene cluster, converted ent-kaurene to ent-kaurenoic acid after transformation with P450-4. The B1-41a mutant, described as blocked between ent-kaurenal and ent-kaurenoic acid, was fully complemented by P450-4. There is a single nucleotide difference between the sequence of the B1-41a and wild-type P450-4 alleles at the 3' consensus sequence of intron 2 in the mutant, resulting in reduced levels of active protein due to a splicing defect in the mutant. These data suggest that P450-4 encodes a multifunctional ent-kaurene oxidase catalyzing all three oxidation steps between ent-kaurene and ent-kaurenoic acid.

  1. Co-opting sulphur-carrier proteins from primary metabolic pathways for 2-thiosugar biosynthesis.

    PubMed

    Sasaki, Eita; Zhang, Xuan; Sun, He G; Lu, Mei-yeh Jade; Liu, Tsung-lin; Ou, Albert; Li, Jeng-yi; Chen, Yu-hsiang; Ealick, Steven E; Liu, Hung-wen

    2014-06-19

    Sulphur is an essential element for life and is ubiquitous in living systems. Yet how the sulphur atom is incorporated into many sulphur-containing secondary metabolites is poorly understood. For bond formation between carbon and sulphur in primary metabolites, the major ionic sulphur sources are the persulphide and thiocarboxylate groups on sulphur-carrier (donor) proteins. Each group is post-translationally generated through the action of a specific activating enzyme. In all reported bacterial cases, the gene encoding the enzyme that catalyses the carbon-sulphur bond formation reaction and that encoding the cognate sulphur-carrier protein exist in the same gene cluster. To study the production of the 2-thiosugar moiety in BE-7585A, an antibiotic from Amycolatopsis orientalis, we identified a putative 2-thioglucose synthase, BexX, whose protein sequence and mode of action seem similar to those of ThiG, the enzyme that catalyses thiazole formation in thiamine biosynthesis. However, no gene encoding a sulphur-carrier protein could be located in the BE-7585A cluster. Subsequent genome sequencing uncovered a few genes encoding sulphur-carrier proteins that are probably involved in the biosynthesis of primary metabolites but only one activating enzyme gene in the A. orientalis genome. Further experiments showed that this activating enzyme can adenylate each of these sulphur-carrier proteins and probably also catalyses the subsequent thiolation, through its rhodanese domain. A proper combination of these sulphur-delivery systems is effective for BexX-catalysed 2-thioglucose production. The ability of BexX to selectively distinguish sulphur-carrier proteins is given a structural basis using X-ray crystallography. This study is, to our knowledge, the first complete characterization of thiosugar formation in nature and also demonstrates the receptor promiscuity of the A. orientalis sulphur-delivery system. Our results also show that co-opting the sulphur-delivery machinery

  2. Gut Symbionts from Distinct Hosts Exhibit Genotoxic Activity via Divergent Colibactin Biosynthesis Pathways

    PubMed Central

    Vizcaino, Maria I.; Crawford, Jason M.

    2014-01-01

    Secondary metabolites produced by nonribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways are chemical mediators of microbial interactions in diverse environments. However, little is known about their distribution, evolution, and functional roles in bacterial symbionts associated with animals. A prominent example is colibactin, a largely unknown family of secondary metabolites produced by Escherichia coli via a hybrid NRPS-PKS biosynthetic pathway that inflicts DNA damage upon eukaryotic cells and contributes to colorectal cancer and tumor formation in the mammalian gut. Thus far, homologs of this pathway have only been found in closely related Enterobacteriaceae, while a divergent variant of this gene cluster was recently discovered in a marine alphaproteobacterial Pseudovibrio strain. Herein, we sequenced the genome of Frischella perrara PEB0191, a bacterial gut symbiont of honey bees and identified a homologous colibactin biosynthetic pathway related to those found in Enterobacteriaceae. We show that the colibactin genomic island (GI) has conserved gene synteny and biosynthetic module architecture across F. perrara, Enterobacteriaceae, and the Pseudovibrio strain. Comparative metabolomics analyses of F. perrara and E. coli further reveal that these two bacteria produce related colibactin pathway-dependent metabolites. Finally, we demonstrate that F. perrara, like E. coli, causes DNA damage in eukaryotic cells in vitro in a colibactin pathway-dependent manner. Together, these results support that divergent variants of the colibactin biosynthetic pathway are widely distributed among bacterial symbionts, producing related secondary metabolites and likely endowing its producer with functional capabilities important for diverse symbiotic associations. PMID:25527542

  3. Modulating carnitine levels by targeting its biosynthesis pathway – selective inhibition of γ-butyrobetaine hydroxylase

    PubMed Central

    Rydzik, Anna M.; Chowdhury, Rasheduzzaman; Kochan, Grazyna T.; Williams, Sophie T.; McDonough, Michael A.; Kawamura, Akane; Schofield, Christopher J.

    2015-01-01

    Carnitine is essential for fatty acid metabolism, but is associated with both health benefits and risks, especially heart diseases. We report the identification of potent, selective and cell active inhibitors of γ-butyrobetaine hydroxylase (BBOX), which catalyses the final step of carnitine biosynthesis in animals. A crystal structure of BBOX in complex with a lead inhibitor reveals that it binds in two modes, one of which adopts an unusual ‘U-shape’ conformation stabilised by inter- and intra-molecular π-stacking interactions. Conformational changes observed on binding of the inhibitor to BBOX likely reflect those occurring in catalysis; they also rationalise the inhibition of BBOX by high levels of its substrate γ-butyrobetaine (GBB), as observed both with isolated BBOX protein and in cellular studies. PMID:26682037

  4. Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum

    PubMed Central

    Heider, Sabine A. E.; Wolf, Natalie; Hofemeier, Arne; Peters-Wendisch, Petra; Wendisch, Volker F.

    2014-01-01

    The biotechnologically relevant bacterium Corynebacterium glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate, are synthesized in this organism via the methylerythritol phosphate (MEP) or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various non-native C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encoding the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP, astaxanthin could be produced in the milligrams per gram cell dry weight range when the endogenous genes crtE, crtB, and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4) oxygenase from Brevundimonas aurantiaca. PMID:25191655

  5. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    PubMed

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc.

  6. SlnR is a positive pathway-specific regulator for salinomycin biosynthesis in Streptomyces albus.

    PubMed

    Zhu, Zhenhong; Li, Han; Yu, Pin; Guo, Yuanyang; Luo, Shuai; Chen, Zhongbin; Mao, Xuming; Guan, Wenjun; Li, Yongquan

    2017-02-01

    Salinomycin, a polyether antibiotic produced by Streptomyces albus, is widely used in animal husbandry as an anticoccidial drug and growth promoter. Situated within the salinomycin biosynthetic gene cluster, slnR encodes a LAL-family transcriptional regulator. The role of slnR in salinomycin production in S. albus was investigated by gene deletion, complementation, and overexpression. Gene replacement of slnR from S. albus chromosome results in almost loss of salinomycin production. Complementation of slnR restored salinomycin production, suggesting that SlnR is a positive regulator of salinomycin biosynthesis. Overexpression of slnR in S. albus led to about 25 % increase in salinomycin production compared to wild type. Quantitative RT-PCR analysis revealed that the expression of most sal structural genes was downregulated in the ΔslnR mutant but upregulated in the slnR overexpression strain. Electrophoretic mobility gel shift assays (EMSAs) also revealed that SlnR(DBD) binds directly to the three intergenic regions of slnQ-slnA1, slnF-slnT1, and slnC-slnB3. The SlnR binding sites within the three intergenic regions were determined by footprinting analysis and identified a consensus-directed repeat sequence 5'-ACCCCT-3'. These results indicated that SlnR modulated salinomycin biosynthesis as an enhancer via interaction with the promoters of slnA1, slnQ, slnF, slnT1, slnC, and slnB3 and activates the transcription of most of the genes belonging to the salinomycin gene cluster but not its own transcription.

  7. Metabolic pathway reconstruction strategies for central metabolism and natural product biosynthesis.

    PubMed

    Kotera, Masaaki; Goto, Susumu

    2016-01-01

    Metabolic pathway reconstruction presents a challenge for understanding metabolic pathways in organisms of interest. Different strategies, i.e., reference-based vs. de novo, must be used for pathway reconstruction depending on the availability of well-characterized enzymatic reactions. If at least one enzyme is already known to catalyze a reaction, its amino acid sequence can be used as a reference for identifying homologous enzymes in the genome of an organism of interest. Where there is no known enzyme able to catalyze a corresponding reaction, however, the reaction and the corresponding enzyme must be predicted de novo from chemical transformations of the putative substrate-product pair. This review summarizes studies involving reference-based and de novo metabolic pathway reconstruction and discusses the importance of the classification and structure-function relationships of enzymes.

  8. Metabolic pathway reconstruction strategies for central metabolism and natural product biosynthesis

    PubMed Central

    Kotera, Masaaki; Goto, Susumu

    2016-01-01

    Metabolic pathway reconstruction presents a challenge for understanding metabolic pathways in organisms of interest. Different strategies, i.e., reference-based vs. de novo, must be used for pathway reconstruction depending on the availability of well-characterized enzymatic reactions. If at least one enzyme is already known to catalyze a reaction, its amino acid sequence can be used as a reference for identifying homologous enzymes in the genome of an organism of interest. Where there is no known enzyme able to catalyze a corresponding reaction, however, the reaction and the corresponding enzyme must be predicted de novo from chemical transformations of the putative substrate-product pair. This review summarizes studies involving reference-based and de novo metabolic pathway reconstruction and discusses the importance of the classification and structure-function relationships of enzymes. PMID:27924274

  9. Metabolic Engineering of a Novel Muconic Acid Biosynthesis Pathway via 4-Hydroxybenzoic Acid in Escherichia coli

    PubMed Central

    Sengupta, Sudeshna; Goonewardena, Lakshani; Juturu, Veeresh

    2015-01-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroFFBR, aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  10. Evidence for an Elongation/Reduction/C1-Elimination Pathway in the Biosynthesis of n-Heptane in Xylem of Jeffrey Pine.

    PubMed Central

    Savage, T. J.; Hristova, M. K.; Croteau, R.

    1996-01-01

    The biosynthetic pathway to n-heptane was investigated by examining the effect of the [beta]-keto acyl-acyl carrier protein synthase inhibitor (2R,3S)-2,3-epoxy-4-oxo-7E,10E-dodecadienamide (cerulenin), a thiol reagent ([beta]-mercaptoethanol), and an aldehydetrapping reagent (hydroxylamine) on the biosynthesis of n-[14C]heptane and putative intermediates in xylem sections of Jeffrey pine (Pinus jeffreyi Grev.& Balf.) incubated with [14C]acetate. Cerulenin inhibited C18 fatty acid biosynthesis but had relatively little effect on radiolabel incorporation into C8 fatty acyl groups and n-heptane. [beta]-Mercaptoethanol inhibited n-heptane biosynthesis, with a corresponding accumulation of radiolabel into both octanal and 1-octanol, whereas hydroxylamine inhibited both n-heptane and 1-octanol biosynthesis, with radiolabel accumulation in octyl oximes. [14C]Octanal was converted to both n-heptane and 1-octanol when incubated with xylem sections, whereas [14C]1-octanol was converted to octanal and n-heptane in a hydroxylamine-sensitive reaction. These results suggest a pathway for the biosynthesis of n-heptane whereby acetate is polymerized via a typical fatty acid synthase reaction sequence to yield a C8 thioester, which subsequently undergoes a two-electron reduction to generate a free thiol and octanal, the latter of which alternately undergoes an additional, reversible reduction to form 1-octanol or loss of C1 to generate n-heptane. PMID:12226360

  11. Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation.

    PubMed

    Flück, Christa E; Meyer-Böni, Monika; Pandey, Amit V; Kempná, Petra; Miller, Walter L; Schoenle, Eugen J; Biason-Lauber, Anna

    2011-08-12

    Human sexual determination is initiated by a cascade of genes that lead to the development of the fetal gonad. Whereas development of the female external genitalia does not require fetal ovarian hormones, male genital development requires the action of testicular testosterone and its more potent derivative dihydrotestosterone (DHT). The "classic" biosynthetic pathway from cholesterol to testosterone in the testis and the subsequent conversion of testosterone to DHT in genital skin is well established. Recently, an alternative pathway leading to DHT has been described in marsupials, but its potential importance to human development is unclear. AKR1C2 is an enzyme that participates in the alternative but not the classic pathway. Using a candidate gene approach, we identified AKR1C2 mutations with sex-limited recessive inheritance in four 46,XY individuals with disordered sexual development (DSD). Analysis of the inheritance of microsatellite markers excluded other candidate loci. Affected individuals had moderate to severe undervirilization at birth; when recreated by site-directed mutagenesis and expressed in bacteria, the mutant AKR1C2 had diminished but not absent catalytic activities. The 46,XY DSD individuals also carry a mutation causing aberrant splicing in AKR1C4, which encodes an enzyme with similar activity. This suggests a mode of inheritance where the severity of the developmental defect depends on the number of mutations in the two genes. An unrelated 46,XY DSD patient carried AKR1C2 mutations on both alleles, confirming the essential role of AKR1C2 and corroborating the hypothesis that both the classic and alternative pathways of testicular androgen biosynthesis are needed for normal human male sexual differentiation.

  12. Tracing metabolic pathways of lipid biosynthesis in ectomycorrhizal fungi from position-specific 13C-labelling in glucose.

    PubMed

    Scandellari, Francesca; Hobbie, Erik A; Ouimette, Andrew P; Stucker, Valerie K

    2009-12-01

    Six position-specific (13)C-labelled isotopomers of glucose were supplied to the ectomycorrhizal fungi Suillus pungens and Tricholoma flavovirens. From the resulting distribution of (13)C among fungal PLFAs, the overall order and contribution of each glucose atom to fatty acid (13)C enrichment was: C6 (approximately 31%) > C5 (approximately 25%) > C1 (approximately 18%) > C2 (approximately 18%) > C3 (approximately 8%) > C4 (approximately 1%). These data were used to parameterize a metabolic model of the relative fluxes from glucose degradation to lipid synthesis. Our data revealed that a higher amount of carbon is directed to glycolysis than to the oxidative pentose phosphate pathway (60% and 40% respectively) and that a significant part flows through these pathways more than once (73%) due to the reversibility of some glycolysis reactions. Surprisingly, 95% of carbon cycled through glyoxylate prior to incorporation into lipids, possibly to consume the excess of acetyl-CoA produced during fatty acid turnover. Our approach provides a rigorous framework for analysing lipid biosynthesis in fungi. In addition, this approach could ultimately improve the interpretation of isotopic patterns at natural abundance in field studies.

  13. Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae to strengthen the fumaric acid biosynthesis from crude glycerol.

    PubMed

    Huang, Di; Wang, Ru; Du, Wenjie; Wang, Guanyi; Xia, Menglei

    2015-11-01

    Rhizopus oryzae is strictly inhibited by biodiesel-based by-product crude glycerol, which results in low fumaric acid production. In this study, evolutionary engineering was employed to activate the glycerol utilization pathway for fumaric acid production. An evolved strain G80 was selected, which could tolerate and utilize high concentrations of crude glycerol to produce 14.9g/L fumaric acid with a yield of 0.248g/g glycerol. Key enzymes activity analysis revealed that the evolved strain displayed a significant upregulation in glycerol dissimilation, pyruvate consumption and reductive tricarboxylic acid pathways, compared with the parent strain. Subsequently, intracellular metabolic profiling analysis showed that amino acid biosynthesis, tricarboxylic acid cycle, fatty acid and stress response metabolites accounted for metabolic difference between two strains. Moreover, a glycerol fed-batch strategy was optimized to obtain the highest fumaric acid production of 25.5g/L, significantly increased by 20.9-fold than that of the parent strain of 1.2g/L.

  14. Amino acids biosynthesis and nitrogen assimilation pathways: a great genomic deletion during eukaryotes evolution

    PubMed Central

    2011-01-01

    Background Besides being building blocks for proteins, amino acids are also key metabolic intermediates in living cells. Surprisingly a variety of organisms are incapable of synthesizing some of them, thus named Essential Amino Acids (EAAs). How certain ancestral organisms successfully competed for survival after losing key genes involved in amino acids anabolism remains an open question. Comparative genomics searches on current protein databases including sequences from both complete and incomplete genomes among diverse taxonomic groups help us to understand amino acids auxotrophy distribution. Results Here, we applied a methodology based on clustering of homologous genes to seed sequences from autotrophic organisms Saccharomyces cerevisiae (yeast) and Arabidopsis thaliana (plant). Thus we depict evidences of presence/absence of EAA biosynthetic and nitrogen assimilation enzymes at phyla level. Results show broad loss of the phenotype of EAAs biosynthesis in several groups of eukaryotes, followed by multiple secondary gene losses. A subsequent inability for nitrogen assimilation is observed in derived metazoans. Conclusions A Great Deletion model is proposed here as a broad phenomenon generating the phenotype of amino acids essentiality followed, in metazoans, by organic nitrogen dependency. This phenomenon is probably associated to a relaxed selective pressure conferred by heterotrophy and, taking advantage of available homologous clustering tools, a complete and updated picture of it is provided. PMID:22369087

  15. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources.

    PubMed

    Ni, Jun; Tao, Fei; Du, Huaiqing; Xu, Ping

    2015-09-02

    Plant secondary metabolites have been attracting people's attention for centuries, due to their potentials; however, their production is still difficult and costly. The rich diversity of microbes and microbial genome sequence data provide unprecedented gene resources that enable to develop efficient artificial pathways in microorganisms. Here, by mimicking a natural pathway of plants using microbial genes, a new metabolic route was developed in E. coli for the synthesis of vanillin, the most widely used flavoring agent. A series of factors were systematically investigated for raising production, including efficiency and suitability of genes, gene dosage, and culture media. The metabolically engineered strain produced 97.2 mg/L vanillin from l-tyrosine, 19.3 mg/L from glucose, 13.3 mg/L from xylose and 24.7 mg/L from glycerol. These results show that the metabolic route enables production of natural vanillin from low-cost substrates, suggesting that it is a good strategy to mimick natural pathways for artificial pathway design.

  16. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources

    PubMed Central

    Ni, Jun; Tao, Fei; Du, Huaiqing; Xu, Ping

    2015-01-01

    Plant secondary metabolites have been attracting people’s attention for centuries, due to their potentials; however, their production is still difficult and costly. The rich diversity of microbes and microbial genome sequence data provide unprecedented gene resources that enable to develop efficient artificial pathways in microorganisms. Here, by mimicking a natural pathway of plants using microbial genes, a new metabolic route was developed in E. coli for the synthesis of vanillin, the most widely used flavoring agent. A series of factors were systematically investigated for raising production, including efficiency and suitability of genes, gene dosage, and culture media. The metabolically engineered strain produced 97.2 mg/L vanillin from l-tyrosine, 19.3 mg/L from glucose, 13.3 mg/L from xylose and 24.7 mg/L from glycerol. These results show that the metabolic route enables production of natural vanillin from low-cost substrates, suggesting that it is a good strategy to mimick natural pathways for artificial pathway design. PMID:26329726

  17. Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In maize, mutations in the pr1 locus lead to the accumulation of pelargonidin (red) rather than cyanidin (purple) pigments in aleurone cells where the anthocyanin biosynthetic pathway is active. We characterized pr1 mutation and isolated a putative F3'H encoding gene (Zmf3'h1), and showed by segrega...

  18. Interspecies Complementation of the LuxR Family Pathway-Specific Regulator Involved in Macrolide Biosynthesis.

    PubMed

    Mo, SangJoon; Yoon, Yeo Joon

    2016-01-01

    PikD is a widely known pathway-specific regulator for controlling pikromycin production in Streptomyces venezuelae ATCC 15439, which is a representative of the large ATP-binding regulator of the LuxR family (LAL) in Streptomyces sp. RapH and FkbN also belong to the LAL family of transcriptional regulators, which show greatest homology with the ATP-binding motif and helix-turn-helix DNA-binding motif of PikD. Overexpression of pikD and heterologous expression of rapH and fkbN led to enhanced production of pikromycin by approximately 1.8-, 1.6-, and 1.6-fold in S. venezuelae, respectively. Cross-complementation of rapH and fkbN in the pikD deletion mutant (ΔpikD) restored pikromycin and derived macrolactone production. Overall, these results show that heterologous expression of rapH and fkbN leads to the overproduction of pikromycin and its congeners from the pikromycin biosynthetic pathway in S. venezuelae, and they have the same functionality as the pathwayspecific transcriptional activator for the pikromycin biosynthetic pathway in the ΔpikD strain. These results also show extensive "cross-communication" between pathway-specific regulators of streptomycetes and suggest revision of the current paradigm for pathwayspecific versus global regulation of secondary metabolism in Streptomyces species.

  19. Neoproterozoic Oxygenation of Earth Surface Environments Reflected in the Late Evolution of the O2-Dependent Vitamin B12 Biosynthesis Pathway

    NASA Astrophysics Data System (ADS)

    Saito, M. A.; Bertrand, E. M.; Anbar, A.

    2008-12-01

    There are multiple lines of evidence for a significant rise of O2 in the Earth's atmosphere ~2.4 Ga. A second oxygenation event in the Neoproterozoic is not as well constrained. These changes in environmental redox affected the abundances of bioessential elements. Trace elements such as Co, Fe, and Ni were likely favored in the early evolution of metalloenzymes, prior to the first oxidation event. Consistent with this expectation, vitamin B12 is a Co-containing biomolecule whose biosynthesis is thought to have evolved prior to the origin of oxygenic photosynthesis and the first rise in O2. However, biochemical characterization of the many enzymes involved in B12 biosynthesis has revealed two distinct pathways: an O2-independent pathway and an O2-dependant pathway. The major difference between these pathways involves the timing of the insertion of Co. We examined the amino acid sequences of enzymes in the B12 biosynthesis pathway from a set of 100 phylogenetically diverse microbial genomes, focusing on enzymes exclusive to each pathway as well as enzymes shared by both. Molecular clock and phylogenetic analyses were performed on alignments of the sequences obtained from these study genomes. This approach focused on functional genes rather than the phylogeny of microbes in an attempt to understand the evolution of the pathway itself, rather than its presence in individual phylogenetic groups. Clear differences in age are apparent between representatives of each pathway. The O2-independent pathway and enzymes shared in both pathways show the most ancient last common ancestors. In contrast, the enzymes associated exclusively with the O2-dependent pathway diverged from a common ancestor less than a billion years ago. Phylogenetic analysis suggests that these enzymes were recruited from other biochemical pathways. From these results it seems likely that the evolution of the O2-dependent pathway occurred long after the initial evolution of the B12 biosynthesis. This

  20. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.

  1. Physiological function of IspE, a plastid MEP pathway gene for isoprenoid biosynthesis, in organelle biogenesis and cell morphogenesis in Nicotiana benthamiana.

    PubMed

    Ahn, Chang Sook; Pai, Hyun-Sook

    2008-03-01

    Isoprenoid biosynthesis in plants occurs by two independent pathways: the cytosolic mevalonate (MVA) pathway and the plastidic methylerythritol phosphate (MEP) pathway. In this study, we investigated the cellular effects of depletion of IspE, a protein involved in the MEP pathway, using virus-induced gene silencing (VIGS). The IspE gene is preferentially expressed in young tissues, and induced by light and methyl jasmonate. The GFP fusion protein of IspE was targeted to chloroplasts. Reduction of IspE expression by VIGS resulted in a severe leaf yellowing phenotype. At the cellular level, depletion of IspE severely affected chloroplast development, dramatically reducing both the number and size of chloroplasts. Interestingly, mitochondrial development was also impaired, suggesting a possibility that the plastidic MEP pathway contributes to mitochondrial isoprenoid biosynthesis in leaves. A deficiency in IspE activity decreased cellular levels of the metabolites produced by the MEP pathway, such as chlorophylls and carotenoids, and stimulated expression of some of the downstream MEP pathway genes, particularly IspF and IspG. Interestingly, the IspE VIGS lines had significantly increased numbers of cells of reduced size in all leaf layers, compared with TRV control and other VIGS lines for the MEP pathway genes. The increased cell division in the IspE VIGS lines was particularly pronounced in the abaxial epidermal layer, in which the over-proliferated cells bulged out of the plane, making the surface uneven. In addition, trichome numbers dramatically increased and the stomata size varied in the affected tissues. Our results show that IspE deficiency causes novel developmental phenotypes distinct from the phenotypes of other MEP pathway mutants, indicating that IspE may have an additional role in plant development besides its role in isoprenoid biosynthesis.

  2. Mutations in the Prokaryotic Pathway Rescue the fatty acid biosynthesis1 Mutant in the Cold1[OPEN

    PubMed Central

    Gao, Jinpeng; Wallis, James G.; Browse, John

    2015-01-01

    The Arabidopsis (Arabidopsis thaliana) fatty acid biosynthesis1 (fab1) mutant has increased levels of the saturated fatty acid 16:0 due to decreased activity of 3-ketoacyl-acyl carrier protein (ACP) synthase II. In fab1 leaves, phosphatidylglycerol, the major chloroplast phospholipid, contains up to 45% high-melting-point molecular species (molecules that contain only 16:0, 16:1-trans, and 18:0), a trait associated with chilling-sensitive plants, compared with less than 10% in wild-type Arabidopsis. Although they do not exhibit typical chilling sensitivity, when exposed to low temperatures (2°C–6°C) for long periods, fab1 plants do suffer collapse of photosynthesis, degradation of chloroplasts, and eventually death. A screen for suppressors of this low-temperature phenotype has identified 11 lines, some of which contain additional alterations in leaf-lipid composition relative to fab1. Here, we report the identification of two suppressor mutations, one in act1, which encodes the chloroplast acyl-ACP:glycerol-3-phosphate acyltransferase, and one in lpat1, which encodes the chloroplast acyl-ACP:lysophosphatidic acid acyltransferase. These enzymes catalyze the first two steps of the prokaryotic pathway for glycerolipid synthesis, so we investigated whether other mutations in this pathway would rescue the fab1 phenotype. Both the gly1 mutation, which reduces glycerol-3-phosphate supply to the prokaryotic pathway, and fad6, which is deficient in the chloroplast 16:1/18:1 fatty acyl desaturase, were discovered to be suppressors. Analyses of leaf-lipid compositions revealed that mutations at all four of the suppressor loci result in reductions in the proportion of high-melting-point molecular species of phosphatidylglycerol relative to fab1. We conclude that these reductions are likely the basis for the suppressor phenotypes. PMID:26224803

  3. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco

    SciTech Connect

    Yalpani, N.; Leon, J.; Lawton, M.A.; Raskin, I. )

    1993-10-01

    Salicylic acid (SA) is a likely endogenous regulator of localized and systemic disease resistance in plants. During the hypersensitive response of Nicotiana tabacum L. cv Xanthi-nc to tobacco mosaic virus (TMV), SA levels rise dramatically. We studied Sa biosynthesis in healthy and TMV-inoculated tobacco by monitoring the levels of SA and its likely precursors in extracts of leaves and cell suspensions. In TMV-inoculated leaves, stimulation of Sa accumulation is accompanied by a corresponding increase in the levels of benzoic acid. [sup 14]C-Tracer studies with cell suspensions and mock- or TMV-inoculated leaves indicate that the label moves from trans-cinnamic acid to SA via benzoic acid. In healthy and TMV-inoculated tobacco leaves, benzoic acid induced SA accumulation. o-Coumaric acid, which was previously reported as a possible precursor of SA in other species, did not increase SA levels in tobacco. In healthy tobacco tissue, the specific activity of newly formed SA was equal to that of the supplied [[sup 14]C] benzoic acid, whereas in TMV-inoculated leaves some isotope dilution was observed, presumably because of the increase in the pool of endogenous benzoic acid. We observed accumulation of pathogenesis-related-1 proteins and increased resistance to TMV in benzoic acid but no in 0-coumaric acid-treated tobacco leaves. This is consistent with benzoic acid being the immediate precursor of SA. We conclude that in healthy and virus-inoculated tobacco, SA is formed from cinnamic acid via benzoic acid. 27 refs., 7 figs., 1 tab.

  4. Antisense and chemical suppression of the nonmevalonate pathway affects ent-kaurene biosynthesis in Arabidopsis.

    PubMed

    Okada, Kazunori; Kawaide, Hiroshi; Kuzuyama, Tomohisa; Seto, Haruo; Curtis, Ian S; Kamiya, Yuji

    2002-06-01

    Transgenic plants of Arabidopsis thaliana (L.) Heynh. (ecotype Columbia) expressing the antisense AtMECT gene, encoding 2- C-methyl- D-erythritol 4-phosphate cytidylyltransferase, were generated to elucidate the physiological role of the nonmevalonate pathway for production of ent-kaurene, the latter being the plastidic precursor of gibberellins. In transformed plants pigmentation and accumulation of ent-kaurene were reduced compared to wild-type plants. Fosmidomycin, an inhibitor of 1-deoxy- D-xylulose 5-phosphate reductoisomerase (DXR), caused a similar depletion of these compounds in transgenic plants. These observations suggest that both AtMECT and DXR are important in the synthesis of isopentenyl diphosphate and dimethylallyl diphosphate and that ent-kaurene is mainly produced through the nonmevalonate pathway in the plastid.

  5. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway.

    PubMed

    Zhao, Yaru; Yang, Jianming; Qin, Bo; Li, Yonghao; Sun, Yuanzhang; Su, Sizheng; Xian, Mo

    2011-06-01

    Isoprene is an aviation fuel of high quality and an important polymer building block in the synthetic chemistry industry. In light of high oil prices, sustained availability, and environmental concerns, isoprene from renewable materials is contemplated as a substitute for petroleum-based product. Escherichia coli with advantages over other wild microorganisms, is considered as a powerful host for biofuels and chemicals. Here, we constructed a synthetic pathway of isoprene in E. coli by introducing an isoprene synthase (ispS) gene from Populus nigra, which catalyzes the conversion of dimethylallyl diphosphate (DMAPP) to isoprene. To improve the isoprene production, we overexpressed the native 1-deoxy-D: -xylulose-5-phosphate (DXP) synthase gene (dxs) and DXP reductoisomerase gene (dxr) in E. coli, which catalyzed the first step and the second step of MEP pathway, respectively. The fed-batch fermentation results showed that overexpression of DXS is helpful for the improvement of isoprene production. Surprisingly, heterologous expression of dxs and dxr from Bacillus subtilis in the E. coli expressing ispS resulted in a 2.3-fold enhancement of isoprene production (from 94 to 314 mg/L). The promising results showed that dxs and dxr from B. subtilis functioned more efficiently on the enhancement of isoprene production than native ones. This could be caused by the consequence of great difference in protein structures of the two original DXSs. It could be practical to produce isoprene in E. coli via MEP pathway through metabolic engineering. This work provides an alternative way for production of isoprene by engineered E. coli via MEP pathway through metabolic engineering.

  6. Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis.

    PubMed

    Liu, Changshui; Ding, Yamei; Zhang, Rubing; Liu, Huizhou; Xian, Mo; Zhao, Guang

    2016-03-01

    3-Hydroxypropionate (3HP) is an important platform chemical, and four 3HP biosynthetic routes were reported, in which the malonyl-CoA pathway has some expected advantages but presented the lowest 3HP yield. Here, we demonstrated that this low yield was caused by a serious functional imbalance between MCR-C and MCR-N proteins, responsible for the two-step reduction of malonyl-CoA to 3HP. Then we minimized the enzyme activity imbalance by directed evolution of rate-limiting enzyme MCR-C and fine tuning of MCR-N expression level. Combined with culture conditions optimization, our engineering approaches increased the 3HP titer 270-fold, from 0.15 g/L to 40.6 g/L, representing the highest 3HP production via malonyl-CoA pathway so far. This study not only significantly improved the 3HP productivity of recombinant Escherichia coli strain, but also proved the importance of metabolic balance in a multistep biosynthetic pathway, which should be always considered in any metabolic engineering study.

  7. New Approaches to Target the Mycolic Acid Biosynthesis Pathway for the Development of Tuberculosis Therapeutics

    PubMed Central

    North, E. Jeffrey; Jackson, Mary; Lee, Richard E.

    2015-01-01

    Mycolic acids are the major lipid component of the unique mycobacterial cell wall responsible for the protection of the tuberculosis bacilli from many outside threats. Mycolic acids are synthesized in the cytoplasm and transported to the outer membrane as trehalose-containing glycolipids before being esterified to the arabinogalactan portion of the cell wall and outer membrane glycolipids. The large size of these unique fatty acids is a result of a huge metabolic investment that has been evolutionarily conserved, indicating the importance of these lipids to the mycobacterial cellular survival. There are many key enzymes involved in the mycolic acid biosynthetic pathway, including fatty acid synthesis (KasA, KasB, MabA, InhA, HadABC), mycolic acid modifying enzymes (SAM-dependent methyltransferases, aNAT), fatty acid activating and condensing enzymes (FadD32, Acc, Pks13), transporters (MmpL3) and tranferases (Antigen 85A-C) all of which are excellent potential drug targets. Not surprisingly, in recent years many new compounds have been reported to inhibit specific portions of this pathway, discovered through both phenotypic screening and target enzyme screening. In this review, we analyze the new and emerging inhibitors of this pathway discovered in the post-genomic era of tuberculosis drug discovery, several of which show great promise as selective tuberculosis therapeutics. PMID:24245756

  8. A positive feedback pathway of estrogen biosynthesis in breast cancer cells is contained by resveratrol.

    PubMed

    Wang, Yun; Ye, Lan; Leung, Lai K

    2008-06-27

    Cytochrome P450 (CYP) 19 enzyme or aromatase catalyses the rate-determining step of estrogen synthesis. The transcriptional control of CYP19 gene is highly specific in different cell types, for instance, Promoter I.3/II is commonly used for regulation in breast cancer cells. Recently, a positive feedback pathway for estrogen synthesis has been identified in ER alpha expressing SK-BR-3 cells. CYP19 mRNA abundance and activity are increased in this pathway and the promoter usage is switched from Promoter I.3/II to I.1 through a non-genomic process. In the present study, effect of the phytocompound resveratrol on this Promoter I.1-controlled expression of aromatase was investigated. Results indicated that resveratrol reduced the estradiol-induced mRNA abundance in SK-BR-3 cells expressing ER alpha. Luciferase reporter gene assays revealed that resveratrol could also repress the transcriptional control dictated by Promoter I.1. Since the ERE-driven luciferase activity was not repressed by resveratrol, the nuclear events of estrogen were unlikely to be suppressed by resveratrol. Instead the phytochemical reduced the amount of ERK activated by estradiol, which could be the pathway responsible for Promoter I.1 transactivation and the induced CYP19 expression. The present study illustrated that resveratrol impeded the non-genomic induction of estrogen on CYP19.

  9. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis

    PubMed Central

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Background Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. Results The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Conclusions

  10. The Arabidopsis IspH homolog is involved in the plastid nonmevalonate pathway of isoprenoid biosynthesis.

    PubMed

    Hsieh, Ming-Hsiun; Goodman, Howard M

    2005-06-01

    Plant isoprenoids are synthesized via two independent pathways, the cytosolic mevalonate (MVA) pathway and the plastid nonmevalonate pathway. The Escherichia coli IspH (LytB) protein is involved in the last step of the nonmevalonate pathway. We have isolated an Arabidopsis (Arabidopsis thaliana) ispH null mutant that has an albino phenotype and have generated Arabidopsis transgenic lines showing various albino patterns caused by IspH transgene-induced gene silencing. The initiation of albino phenotypes rendered by IspH gene silencing can arise independently from multiple sites of the same plant. After a spontaneous initiation, the albino phenotype is systemically spread toward younger tissues along the source-to-sink flow relative to the initiation site. The development of chloroplasts is severely impaired in the IspH-deficient albino tissues. Instead of thylakoids, mutant chloroplasts are filled with vesicles. Immunoblot analysis reveals that Arabidopsis IspH is a chloroplast stromal protein. Expression of Arabidopsis IspH complements the lethal phenotype of an E. coli ispH mutant. In 2-week-old Arabidopsis seedlings, the expression of 1-deoxy-d-xylulose 5-phosphate synthase (DXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), IspD, IspE, IspF, and IspG genes is induced by light, whereas the expression of the IspH gene is constitutive. The addition of 3% sucrose in the media slightly increased levels of DXS, DXR, IspD, IspE, and IspF mRNA in the dark. In a 16-h-light/8-h-dark photoperiod, the accumulation of the IspH transcript oscillates with the highest levels detected in the early light period (2-6 h) and the late dark period (4-6 h). The expression patterns of DXS and IspG are similar to that of IspH, indicating that these genes are coordinately regulated in Arabidopsis when grown in a 16-h-light/8-h-dark photoperiod.

  11. Effect of hydrogen peroxide on the biosynthesis of heme and proteins: potential implications for the partitioning of Glu-tRNA(Glu) between these pathways.

    PubMed

    Farah, Carolina; Levicán, Gloria; Ibba, Michael; Orellana, Omar

    2014-12-11

    Glutamyl-tRNA (Glu-tRNA(Glu)) is the common substrate for both protein translation and heme biosynthesis via the C5 pathway. Under normal conditions, an adequate supply of this aminoacyl-tRNA is available to both pathways. However, under certain circumstances, Glu-tRNA(Glu) can become scarce, resulting in competition between the two pathways for this aminoacyl-tRNA. In Acidithiobacillus ferrooxidans, glutamyl-tRNA synthetase 1 (GluRS1) is the main enzyme that synthesizes Glu-tRNA(Glu). Previous studies have shown that GluRS1 is inactivated in vitro by hydrogen peroxide (H2O2). This raises the question as to whether H2O2 negatively affects in vivo GluRS1 activity in A. ferrooxidans and whether Glu-tRNA(Glu) distribution between the heme and protein biosynthesis processes may be affected by these conditions. To address this issue, we measured GluRS1 activity. We determined that GluRS1 is inactivated when cells are exposed to H2O2, with a concomitant reduction in intracellular heme level. The effects of H2O2 on the activity of purified glutamyl-tRNA reductase (GluTR), the key enzyme for heme biosynthesis, and on the elongation factor Tu (EF-Tu) were also measured. While exposing purified GluTR, the first enzyme of heme biosynthesis, to H2O2 resulted in its inactivation, the binding of glutamyl-tRNA to EF-Tu was not affected. Taken together, these data suggest that in A. ferrooxidans, the flow of glutamyl-tRNA is diverted from heme biosynthesis towards protein synthesis under oxidative stress conditions.

  12. Effect of Hydrogen Peroxide on the Biosynthesis of Heme and Proteins: Potential Implications for the Partitioning of Glu-tRNAGlu between These Pathways

    PubMed Central

    Farah, Carolina; Levicán, Gloria; Ibba, Michael; Orellana, Omar

    2014-01-01

    Glutamyl-tRNA (Glu-tRNAGlu) is the common substrate for both protein translation and heme biosynthesis via the C5 pathway. Under normal conditions, an adequate supply of this aminoacyl-tRNA is available to both pathways. However, under certain circumstances, Glu-tRNAGlu can become scarce, resulting in competition between the two pathways for this aminoacyl-tRNA. In Acidithiobacillus ferrooxidans, glutamyl-tRNA synthetase 1 (GluRS1) is the main enzyme that synthesizes Glu-tRNAGlu. Previous studies have shown that GluRS1 is inactivated in vitro by hydrogen peroxide (H2O2). This raises the question as to whether H2O2 negatively affects in vivo GluRS1 activity in A. ferrooxidans and whether Glu-tRNAGlu distribution between the heme and protein biosynthesis processes may be affected by these conditions. To address this issue, we measured GluRS1 activity. We determined that GluRS1 is inactivated when cells are exposed to H2O2, with a concomitant reduction in intracellular heme level. The effects of H2O2 on the activity of purified glutamyl-tRNA reductase (GluTR), the key enzyme for heme biosynthesis, and on the elongation factor Tu (EF-Tu) were also measured. While exposing purified GluTR, the first enzyme of heme biosynthesis, to H2O2 resulted in its inactivation, the binding of glutamyl-tRNA to EF-Tu was not affected. Taken together, these data suggest that in A. ferrooxidans, the flow of glutamyl-tRNA is diverted from heme biosynthesis towards protein synthesis under oxidative stress conditions. PMID:25514408

  13. Effect of red cyst cell inoculation and iron(II) supplementation on autotrophic astaxanthin production by Haematococcus pluvialis under outdoor summer conditions.

    PubMed

    Hong, Min-Eui; Choi, Yoon Young; Sim, Sang Jun

    2016-01-20

    The negative effect of heat stress on the autotrophic astaxanthin production by Haematococcus pluvialis has been observed during outdoor culture in summer. Under the summer conditions, the proliferation of vegetative cells was highly halted in the green stage and the inducibility in the biosynthesis of astaxanthin was partly hindered in the red stage. Herein, under outdoor summer conditions in which variations of the diurnal temperature occur, heat-stress-driven inefficient vegetative growth of H. pluvialis was highly improved by inoculating the red cyst cells; thereby, maintaining relatively moderate intracellular carotenoid levels in the green stage. Subsequently, a remarkably enhanced astaxanthin titer was successfully obtained by supplementing 50 μM iron(II) to induce the heat stress-driven Haber-Weiss reaction in the red stage. As a result, the productivity of astaxanthin in the cells cultured under summer temperature conditions (23.4-33.5 °C) using the two methods of red cell (cyst) inoculation and the iron(Fe(2+)) supplementation was increased by 147% up to 5.53 mg/L day compared with that of the cells cultured under spring temperature conditions (17.5-27.3 °C). Our technical solutions will definitely improve the annual natural astaxanthin productivity in H. pluvialis in locations confronted by hot summer weather, particularly in large-scale closed photobioreactor systems.

  14. Identification of the Pr1 Gene Product Completes the Anthocyanin Biosynthesis Pathway of Maize

    PubMed Central

    Sharma, Mandeep; Cortes-Cruz, Moises; Ahern, Kevin R.; McMullen, Michael; Brutnell, Thomas P.; Chopra, Surinder

    2011-01-01

    In maize, mutations in the pr1 locus lead to the accumulation of pelargonidin (red) rather than cyanidin (purple) pigments in aleurone cells where the anthocyanin biosynthetic pathway is active. We characterized pr1 mutation and isolated a putative F3′H encoding gene (Zmf3′h1) and showed by segregation analysis that the red kernel phenotype is linked to this gene. Genetic mapping using SNP markers confirms its position on chromosome 5L. Furthermore, genetic complementation experiments using a CaMV 35S::ZmF3′H1 promoter–gene construct established that the encoded protein product was sufficient to perform a 3′-hydroxylation reaction. The Zmf3′h1-specific transcripts were detected in floral and vegetative tissues of Pr1 plants and were absent in pr1. Four pr1 alleles were characterized: two carry a 24 TA dinucleotide repeat insertion in the 5′-upstream promoter region, a third has a 17-bp deletion near the TATA box, and a fourth contains a Ds insertion in exon1. Genetic and transcription assays demonstrated that the pr1 gene is under the regulatory control of anthocyanin transcription factors red1 and colorless1. The cloning and characterization of pr1 completes the molecular identification of all genes encoding structural enzymes of the anthocyanin pathway of maize. PMID:21385724

  15. Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis.

    PubMed

    Liu, Changshui; Ding, Yamei; Xian, Mo; Liu, Min; Liu, Huizhou; Ma, Qingjun; Zhao, Guang

    2017-01-12

    3-Hydroxypropionate (3HP) is an attractive platform chemical, serving as a precursor to a variety of commodity chemicals like acrylate and acrylamide, as well as a monomer of a biodegradable plastic. To establish a sustainable way to produce these commercially important chemicals and materials, fermentative production of 3HP is widely investigated in recent years. It is reported that 3HP can be produced from several intermediates, such as glycerol, malonyl-CoA, and β-alanine. Among all these biosynthetic routes, the malonyl-CoA pathway has some distinct advantages, including a broad feedstock spectrum, thermodynamic feasibility, and redox neutrality. To date, this pathway has been successfully constructed in various species including Escherichia coli, yeast and cyanobacteria, and optimized through carbon flux redirection, enzyme screening and engineering, and an increasing supply of energy and cofactors, resulting in significantly enhanced 3HP titer up to 40 g/L. These results show the feasibility of commercial manufacturing of 3HP and its derivatives in the future.

  16. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    SciTech Connect

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  17. Astaxanthin affects oxidative stress and hyposalivation in aging mice

    PubMed Central

    Kuraji, Manatsu; Matsuno, Tomonori; Satoh, Tazuko

    2016-01-01

    Oral dryness, a serious problem for the aging Japanese society, is induced by aging-related hyposalivation and causes dysphagia, dysgeusia, inadaptation of dentures, and growth of oral Candida albicans. Oxidative stress clearly plays a role in decreasing saliva secretion and treatment with antioxidants such astaxanthin supplements may be beneficial. Therefore, we evaluated the effects of astaxanthin on the oral saliva secretory function of aging mice. The saliva flow increased in astaxanthin-treated mice 72 weeks after administration while that of the control decreased by half. The plasma d-ROMs values of the control but not astaxanthin-treated group measured before and 72 weeks after treatment increased. The diacron-reactive oxygen metabolites (d-ROMs) value of astaxanthin-treated mice 72 weeks after treatment was significantly lower than that of the control group was. The plasma biological antioxidative potential (BAP) values of the control but not astaxanthin-treated mice before and 72 weeks after treatment decreased. Moreover, the BAP value of the astaxanthin-treated group 72 weeks after treatment was significantly higher than that of the control was. Furthermore, the submandibular glands of astaxanthin-treated mice had fewer inflammatory cells than the control did. Specifically, immunofluorescence revealed a significantly large aquaporin-5 positive cells in astaxanthin-treated mice. Our results suggest that astaxanthin treatment may prevent age-related decreased saliva secretion. PMID:27698533

  18. A multienzyme complex channels substrates and electrons through acetyl-CoA and methane biosynthesis pathways in Methanosarcina.

    PubMed

    Lieber, Dillon J; Catlett, Jennifer; Madayiputhiya, Nandu; Nandakumar, Renu; Lopez, Madeline M; Metcalf, William W; Buan, Nicole R

    2014-01-01

    Multienzyme complexes catalyze important metabolic reactions in many organisms, but little is known about the complexes involved in biological methane production (methanogenesis). A crosslinking-mass spectrometry (XL-MS) strategy was employed to identify proteins associated with coenzyme M-coenzyme B heterodisulfide reductase (Hdr), an essential enzyme in all methane-producing archaea (methanogens). In Methanosarcina acetivorans, Hdr forms a multienzyme complex with acetyl-CoA decarbonylase synthase (ACDS), and F420-dependent methylene-H4MPT reductase (Mer). ACDS is essential for production of acetyl-CoA during growth on methanol, or for methanogenesis from acetate, whereas Mer is essential for methanogenesis from all substrates. Existence of a Hdr:ACDS:Mer complex is consistent with growth phenotypes of ACDS and Mer mutant strains in which the complex samples the redox status of electron carriers and directs carbon flux to acetyl-CoA or methanogenesis. We propose the Hdr:ACDS:Mer complex comprises a special class of multienzyme redox complex which functions as a "biological router" that physically links methanogenesis and acetyl-CoA biosynthesis pathways.

  19. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from sup 18 O incorporation patterns

    SciTech Connect

    Zeevaart, J.A.D.; Heath, T.G.; Gage, D.A. )

    1989-12-01

    Previous labeling studies of abscisic acid (ABA) with {sup 18}O{sub 2} have been mainly conducted with water-stressed leaves. In this study, {sup 18}O incorporation into ABA of stressed leaves of various species was compared with {sup 18}O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), {sup 18}O was most abundant in the carboxyl group, whereas incorporation of a second and third {sup 18}O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in {sup 18}O{sub 2}. ABA from turgid bean leaves showed significant {sup 18}O incorporation, again with highest {sup 18}O enrichment in the carboxyl group. On the basis of {sup 18}O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid.

  20. Characterization of three novel desaturases involved in the delta-6 desaturation pathways for polyunsaturated fatty acid biosynthesis from Phytophthora infestans.

    PubMed

    Sun, Quanxi; Liu, Jiang; Zhang, Qin; Qing, Xiaohe; Dobson, Gary; Li, Xinzheng; Qi, Baoxiu

    2013-09-01

    Phytophthora infestans is the causative agent of potato blight that resulted in the great famine in Ireland in the nineteenth century. This microbe can release large amounts of the C20 very long-chain polyunsaturated fatty acids arachidonic acid (ARA; 20:4Δ(5, 8, 11, 14)) and eicosapentaenoic acid (EPA; 20:5Δ(5, 8, 11, 14, 17)) upon invasion that is known to elicit a hypersensitive response to their host plant. In order to identify enzymes responsible for the biosynthesis of these fatty acids, we blasted the recently fully sequenced P. infestans genome and identified three novel putatively encoding desaturase sequences. These were subsequently functionally characterized by expression in Saccharomyces cerevisiae and confirmed that they encode desaturases with Δ12, Δ6 and Δ5 activity, designated here as PinDes12, PinDes6 and PinDes5, respectively. This, together with the combined fatty acid profiles and a previously identified Δ6 elongase activity, implies that the ARA and EPA are biosynthesized predominantly via the Δ6 desaturation pathways in P. infestans. Elucidation of ARA and EPA biosynthetic mechanism may provide new routes to combating this potato blight microbe directly or by means of conferring resistance to important crops.

  1. Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis.

    PubMed

    Crocoll, Christoph; Asbach, Julia; Novak, Johannes; Gershenzon, Jonathan; Degenhardt, Jörg

    2010-08-01

    The aroma, flavor and pharmaceutical value of cultivated oregano (Origanum vulgare L.) is a consequence of its essential oil which consists mostly of monoterpenes and sesquiterpenes. To investigate the biosynthetic pathway to oregano terpenes and its regulation, we identified and characterized seven terpene synthases, key enzymes of terpene biosynthesis, from two cultivars of O. vulgare. Heterologous expression of these enzymes showed that each forms multiple mono- or sesquiterpene products and together they are responsible for the direct production of almost all terpenes found in O. vulgare essential oil. The correlation of essential oil composition with relative and absolute terpene synthase transcript concentrations in different lines of O. vulgare demonstrated that monoterpene synthase activity is predominantly regulated on the level of transcription and that the phenolic monoterpene alcohol thymol is derived from gamma-terpinene, a product of a single monoterpene synthase. The combination of heterologously-expressed terpene synthases for in vitro assays resulted in blends of mono- and sesquiterpene products that strongly resemble those found in vivo, indicating that terpene synthase expression levels directly control the composition of the essential oil. These results will facilitate metabolic engineering and directed breeding of O. vulgare cultivars with higher quantity of essential oil and improved oil composition.

  2. Retroconversion of docosapentaenoic acid (n-6): an alternative pathway for biosynthesis of arachidonic acid in Daphnia magna.

    PubMed

    Strandberg, Ursula; Taipale, Sami J; Kainz, Martin J; Brett, Michael T

    2014-06-01

    The aim of this study was to assess metabolic pathways for arachidonic acid (20:4n-6) biosynthesis in Daphnia magna. Neonates of D. magna were maintained on [(13)C] enriched Scenedesmus obliquus and supplemented with liposomes that contained separate treatments of unlabeled docosapentaenoic acid (22:5n-6), 20:4n-6, linoleic acid (18:2n-6) or oleic acid (18:1n-9). Daphnia in the control treatment, without any supplementary fatty acids (FA) containing only trace amounts of 20:4n-6 (~0.3% of all FA). As expected, the highest proportion of 20:4n-6 (~6.3%) was detected in Daphnia that received liposomes supplemented with this FA. Higher availability of 18:2n-6 in the diet increased the proportion of 18:2n-6 in Daphnia, but the proportion of 20:4n-6 was not affected. Daphnia supplemented with 22:5n-6 contained ~3.5% 20:4n-6 in the lipids and FA specific stable isotope analyses validated that the increase in the proportion of 20:4n-6 was due to retroconversion of unlabeled 22:5n-6. These results suggest that chain shortening of 22:5n-6 is a more efficient pathway to synthesize 20:4n-6 in D. magna than elongation and desaturation of 18:2n-6. These results may at least partially explain the discrepancies noticed between phytoplankton FA composition and the expected FA composition in freshwater cladocerans. Finally, retroconversion of dietary 22:5n-6 to 20:4n-6 indicates Daphnia efficiently retain long chain n-6 FA in lake food webs, which might be important for the nutritional ecology of fish.

  3. Biosynthesis of gallic acid in Rhus typhina: discrimination between alternative pathways from natural oxygen isotope abundance.

    PubMed

    Werner, Roland A; Rossmann, Andreas; Schwarz, Christine; Bacher, Adelbert; Schmidt, Hanns-Ludwig; Eisenreich, Wolfgang

    2004-10-01

    The biosynthetic pathway of gallic acid in leaves of Rhus typhina is studied by oxygen isotope ratio mass spectrometry at natural oxygen isotope abundance. The observed delta18O-values of gallic acid indicate an 18O-enrichment of the phenolic oxygen atoms of more than 30 per thousand above that of the leaf water. This enrichment implies biogenetical equivalence with oxygen atoms of carbohydrates but not with oxygen atoms introduced by monooxygenase activation of molecular oxygen. It can be concluded that all phenolic oxygen atoms of gallic acid are retained from the carbohydrate-derived precursor 5-dehydroshikimate. This supports that gallic acid is synthesized entirely or predominantly by dehydrogenation of 5-dehydroshikimate.

  4. Quality Control Pathways for Nucleus-Encoded Eukaryotic tRNA Biosynthesis and Subcellular Trafficking

    PubMed Central

    Huang, Hsiao-Yun

    2015-01-01

    tRNAs perform an essential role in translating the genetic code. They are long-lived RNAs that are generated via numerous posttranscriptional steps. Eukaryotic cells have evolved numerous layers of quality control mechanisms to ensure that the tRNAs are appropriately structured, processed, and modified. We describe the known tRNA quality control processes that check tRNAs and correct or destroy aberrant tRNAs. These mechanisms employ two types of exonucleases, CCA end addition, tRNA nuclear aminoacylation, and tRNA subcellular traffic. We arrange these processes in order of the steps that occur from generation of precursor tRNAs by RNA polymerase (Pol) III transcription to end maturation and modification in the nucleus to splicing and additional modifications in the cytoplasm. Finally, we discuss the tRNA retrograde pathway, which allows tRNA reimport into the nucleus for degradation or repair. PMID:25848089

  5. Two Pathways for Glutamate Biosynthesis in the Syntrophic Bacterium Syntrophus aciditrophicus

    PubMed Central

    Kim, Marie; Le, Huynh M.; Xie, Xiulan; Feng, Xueyang; Tang, Yinjie J.; Mouttaki, Housna; McInerney, Michael J.

    2015-01-01

    The anaerobic metabolism of crotonate, benzoate, and cyclohexane carboxylate by Syntrophus aciditrophicus grown syntrophically with Methanospirillum hungatei provides a model to study syntrophic cooperation. Recent studies revealed that S. aciditrophicus contains Re-citrate synthase but lacks the common Si-citrate synthase. To establish whether the Re-citrate synthase is involved in glutamate synthesis via the oxidative branch of the Krebs cycle, we have used [1-13C]acetate and [1-14C]acetate as well as [13C]bicarbonate as additional carbon sources during axenic growth of S. aciditrophicus on crotonate. Our analyses showed that labeled carbons were detected in at least 14 amino acids, indicating the global utilization of acetate and bicarbonate. The labeling patterns of alanine and aspartate verified that pyruvate and oxaloacetate were synthesized by consecutive carboxylations of acetyl coenzyme A (acetyl-CoA). The isotopomer profile and 13C nuclear magnetic resonance (NMR) spectroscopy of the obtained [13C]glutamate, as well as decarboxylation of [14C]glutamate, revealed that this amino acid was synthesized by two pathways. Unexpectedly, only the minor route used Re-citrate synthase (30 to 40%), whereas the majority of glutamate was synthesized via the reductive carboxylation of succinate. This symmetrical intermediate could have been formed from two acetates via hydration of crotonyl-CoA to 4-hydroxybutyryl-CoA. 4-Hydroxybutyrate was detected in the medium of S. aciditrophicus when grown on crotonate, but an active hydratase could not be measured in cell extracts, and the annotated 4-hydroxybutyryl-CoA dehydratase (SYN_02445) lacks key amino acids needed to catalyze the hydration of crotonyl-CoA. Besides Clostridium kluyveri, this study reveals the second example of a microbial species to employ two pathways for glutamate synthesis. PMID:26431966

  6. Elevated glucose levels impair the WNT/β-catenin pathway via the activation of the hexosamine biosynthesis pathway in endometrial cancer.

    PubMed

    Zhou, Fuxing; Huo, Junwei; Liu, Yu; Liu, Haixia; Liu, Gaowei; Chen, Ying; Chen, Biliang

    2016-05-01

    Endometrial cancer (EC) is one of the most common gynecological malignancies in the world. Associations between fasting glucose levels (greater than 5.6mmol/L) and the risk of cancer fatality have been reported. However, the underlying link between glucose metabolic disease and EC remains unclear. In the present study, we explored the influence of elevated glucose levels on the WNT/β-catenin pathway in EC. Previous studies have suggested that elevated concentrations of glucose can drive the hexosamine biosynthesis pathway (HBP) flux, thereby enhancing the O-GlcNAc modification of proteins. Here, we cultured EC cell lines, AN3CA and HEC-1-B, with various concentrations of glucose. Results showed that when treated with high levels of glucose, both lines showed increased expression of β-catenin and O-GlcNAcylation levels; however, these effects could be abolished by the HBP inhibitors, Azaserine and 6-Diazo-5-oxo-l-norleucine, and be restored by glucosamine. Moreover the AN3CA and HEC-1-B cells that were cultured with or without PUGNAc, an inhibitor of the O-GlcNAcase, showed that PUGNAc increased β-catenin levels. The results suggest that elevated glucose levels increase β-catenin expression via the activation of the HBP in EC cells. Subcellular fractionation experiments showed that AN3CA cells had a higher expression of intranuclear β-catenin in high glucose medium. Furthermore, TOP/FOP-Flash and RT-PCR results showed that glucose-induced increased expression of β-catenin triggered the transcription of target genes. In conclusion, elevated glucose levels, via HBP, increase the O-GlcNAcylation level, thereby inducing the over expression of β-catenin and subsequent transcription of the target genes in EC cells.

  7. Non-enzymatic conversion of chlorophyll-a into chlorophyll-d in vitro: a model oxidation pathway for chlorophyll-d biosynthesis.

    PubMed

    Fukusumi, Takanori; Matsuda, Kohei; Mizoguchi, Tadashi; Miyatake, Tomohiro; Ito, Satoshi; Ikeda, Tsukasa; Tamiaki, Hitoshi; Oba, Toru

    2012-07-30

    Chlorophyll-a (Chl-a) was readily converted into Chl-d under mild conditions without any enzymes. Treatment of Chl-a dissolved in dry tetrahydrofuran (THF) with thiophenol and acetic acid at room temperature successfully produced Chl-d in 31% yield. During the acidic oxidation, removal of the central magnesium, pheophytinization, was sufficiently suppressed. This mild pathway can give insights into the yet unidentified Chl-d biosynthesis.

  8. 21 CFR 73.35 - Astaxanthin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... as a component of a stabilized color additive mixture. Color additive mixtures for fish feed use made... safe for use in color additive mixtures for coloring foods. (b) Specifications. Astaxanthin shall... percent solution in chloroform, complete and clear. Absorption maximum wavelength 484-493 nanometers...

  9. 21 CFR 73.35 - Astaxanthin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... million. Mercury, not more than 1 part per million. Heavy metals, not more than 10 parts per million... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Astaxanthin. 73.35 Section 73.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF...

  10. 21 CFR 73.35 - Astaxanthin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... million. Mercury, not more than 1 part per million. Heavy metals, not more than 10 parts per million... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Astaxanthin. 73.35 Section 73.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF...

  11. 21 CFR 73.35 - Astaxanthin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... million. Mercury, not more than 1 part per million. Heavy metals, not more than 10 parts per million... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Astaxanthin. 73.35 Section 73.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF...

  12. A mathematical model of the sterol regulatory element binding protein 2 cholesterol biosynthesis pathway.

    PubMed

    Bhattacharya, Bonhi S; Sweby, Peter K; Minihane, Anne-Marie; Jackson, Kim G; Tindall, Marcus J

    2014-05-21

    Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic regulatory pathway in a hepatocyte. The mathematical model includes a description of genetic transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main regulator of cholesterol synthesis. Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback formulation. Parameterised with data from the literature, the model is used to understand how SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or monotic behaviour under certain parameter conditions. In light of our findings we postulate how cholesterol homeostasis is maintained within the cell and the advantages of our model formulation are discussed with respect to other models of genetic regulation within the literature.

  13. Haloferax volcanii N-glycosylation: delineating the pathway of dTDP-rhamnose biosynthesis.

    PubMed

    Kaminski, Lina; Eichler, Jerry

    2014-01-01

    In the halophilic archaea Haloferax volcanii, the surface (S)-layer glycoprotein can be modified by two distinct N-linked glycans. The tetrasaccharide attached to S-layer glycoprotein Asn-498 comprises a sulfated hexose, two hexoses and a rhamnose. While Agl11-14 have been implicated in the appearance of the terminal rhamnose subunit, the precise roles of these proteins have yet to be defined. Accordingly, a series of in vitro assays conducted with purified Agl11-Agl14 showed these proteins to catalyze the stepwise conversion of glucose-1-phosphate to dTDP-rhamnose, the final sugar of the tetrasaccharide glycan. Specifically, Agl11 is a glucose-1-phosphate thymidylyltransferase, Agl12 is a dTDP-glucose-4,6-dehydratase and Agl13 is a dTDP-4-dehydro-6-deoxy-glucose-3,5-epimerase, while Agl14 is a dTDP-4-dehydrorhamnose reductase. Archaea thus synthesize nucleotide-activated rhamnose by a pathway similar to that employed by Bacteria and distinct from that used by Eukarya and viruses. Moreover, a bioinformatics screen identified homologues of agl11-14 clustered in other archaeal genomes, often as part of an extended gene cluster also containing aglB, encoding the archaeal oligosaccharyltransferase. This points to rhamnose as being a component of N-linked glycans in Archaea other than Hfx. volcanii.

  14. Pathway redesign for deoxyviolacein biosynthesis in Citrobacter freundii and characterization of this pigment.

    PubMed

    Jiang, Pei-xia; Wang, Hai-sheng; Xiao, Su; Fang, Ming-yue; Zhang, Rui-ping; He, Shu-ying; Lou, Kai; Xing, Xin-Hui

    2012-06-01

    Violacein (Vio) is an important purple pigment with many potential bioactivities. Deoxyviolacein, a structural analog of Vio, is always synthesized in low concentrations with Vio in wild-type bacteria. Due to deoxyviolacein's low production and difficulties in isolation and purification, little has been learned regarding its function and potential applications. This study was the first effort in developing a stable and efficient biosynthetic system for producing pure deoxyviolacein. A recombinant plasmid with vioabce genes was constructed by splicing using an overlapping extension-polymerase chain reaction, based on the Vio-synthesizing gene cluster of vioabcde, originating from Duganella sp. B2, and was introduced into Citrobacter freundii. With the viod gene disrupted in the Vio synthetic pathway, Vio production was completely abolished and the recombinant C. freundii synthesized only deoxyviolacein. Interestingly, vioe gene expression was strongly stimulated in the viod-deleted recombinant strain, indicating that viod disruptions could potentially induce polar effects upon the downstream vioe gene within this small operon. Deoxyviolacein production by this strain reached 1.9 g/L in shaker flasks. The product exhibited significant acid/alkali and UV resistance as well as significant inhibition of hepatocellular carcinoma cell proliferation at low concentrations of 0.1-1 μM. These physical characteristics and antitumor activities of deoxyviolacein contribute to illuminating its potential applications.

  15. Biochemical evidence for an alternate pathway in N-linked glycoprotein biosynthesis

    PubMed Central

    Larkin, Angelyn; Chang, Michelle M.; Whitworth, Garrett E.; Imperiali, Barbara

    2013-01-01

    Asparagine-linked glycosylation is a complex protein modification conserved among all three domains of life. Herein we report the in vitro analysis of N-linked glycosylation from the methanogenic archaeon Methanococcus voltae. Using a suite of synthetic and semisynthetic substrates, we show that AglK initiates N-linked glycosylation in M. voltae through the formation of α-linked dolichyl monophosphate N-acetylglucosamine (Dol-P-GlcNAc), which contrasts with the polyprenyl-diphosphate intermediates that feature in both eukaryotes and bacteria. Intriguingly, AglK exhibits high sequence homology to dolichyl-phosphate β-glucosyltransferases, including Alg5 in eukaryotes, suggesting a common evolutionary origin. The combined action of the first two enzymes, AglK and AglC, afforded an α-linked Dol-P-glycan that serves as a competent substrate for the archaeal oligosaccharyl transferase AglB. These studies provide the first biochemical evidence revealing that despite the apparent similarity of the overall pathways, there are actually two general strategies to achieve N-linked glycoproteins across the domains of life. PMID:23624439

  16. Haloferax volcanii N-Glycosylation: Delineating the Pathway of dTDP-rhamnose Biosynthesis

    PubMed Central

    Kaminski, Lina; Eichler, Jerry

    2014-01-01

    In the halophilic archaea Haloferax volcanii, the surface (S)-layer glycoprotein can be modified by two distinct N-linked glycans. The tetrasaccharide attached to S-layer glycoprotein Asn-498 comprises a sulfated hexose, two hexoses and a rhamnose. While Agl11-14 have been implicated in the appearance of the terminal rhamnose subunit, the precise roles of these proteins have yet to be defined. Accordingly, a series of in vitro assays conducted with purified Agl11-Agl14 showed these proteins to catalyze the stepwise conversion of glucose-1-phosphate to dTDP-rhamnose, the final sugar of the tetrasaccharide glycan. Specifically, Agl11 is a glucose-1-phosphate thymidylyltransferase, Agl12 is a dTDP-glucose-4,6-dehydratase and Agl13 is a dTDP-4-dehydro-6-deoxy-glucose-3,5-epimerase, while Agl14 is a dTDP-4-dehydrorhamnose reductase. Archaea thus synthesize nucleotide-activated rhamnose by a pathway similar to that employed by Bacteria and distinct from that used by Eukarya and viruses. Moreover, a bioinformatics screen identified homologues of agl11-14 clustered in other archaeal genomes, often as part of an extended gene cluster also containing aglB, encoding the archaeal oligosaccharyltransferase. This points to rhamnose as being a component of N-linked glycans in Archaea other than Hfx. volcanii. PMID:24831810

  17. A mathematical model of the sterol regulatory element binding protein 2 cholesterol biosynthesis pathway

    PubMed Central

    Bhattacharya, Bonhi S.; Sweby, Peter K.; Minihane, Anne-Marie; Jackson, Kim G.; Tindall, Marcus J.

    2014-01-01

    Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic regulatory pathway in a hepatocyte. The mathematical model includes a description of genetic transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main regulator of cholesterol synthesis. Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback formulation. Parameterised with data from the literature, the model is used to understand how SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or monotic behaviour under certain parameter conditions. In light of our findings we postulate how cholesterol homeostasis is maintained within the cell and the advantages of our model formulation are discussed with respect to other models of genetic regulation within the literature. PMID:24444765

  18. Analysis of mRNA expression profiles of carotenogenesis and astaxanthin production of Haematococcus pluvialis under exogenous 2, 4-epibrassinolide (EBR).

    PubMed

    Gao, Zhengquan; Meng, Chunxiao; Gao, Hongzheng; Zhang, Xiaowen; Xu, Dong; Su, Yuanfeng; Wang, Yuanyuan; Zhao, Yuren; Ye, Naihao

    2013-01-01

    The fresh-water green unicellular alga Haematococcus pluvialis is known to accumulate astaxanthin under stress conditions. In the present study, transcriptional expression of eight genes involved in astaxanthin biosynthesis exposed to EBR (25 and 50 mg/L) was analyzed using qRT-PCR. The results demonstrated that both 25 and 50 mg/L EBR could increase astaxanthin productivity and the eight carotenogenic genes were up-regulated by EBR with different expression profiles. Moreover, EBR25 induction had a greater influence on the transcriptional expression of ipi-1, ipi-2, crtR-B, lyc and crtO (> 5- fold up-regulation) than on psy, pds, bkt; EBR50 treatment had a greater effect on the transcriptional expression of ipi-2, pds, lyc, crtR-B, bkt and crtO than on ipi-1 and psy. Furthermore, astaxanthin biosynthesis under EBR was up-regulated mainly by ipi1־ and psy at the post-transcriptional level, pds, lyc, crtR-B, bkt and crtO at the transcriptional level and ipi-2 at both levels.

  19. The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel shikimate pathway homologues and a monomodular non-ribosomal peptide synthetase gene.

    PubMed

    He, J; Magarvey, N; Piraee, M; Vining, L C

    2001-10-01

    Regions of the Streptomyces venezuelae ISP5230 chromosome flanking pabAB, an amino-deoxychorismate synthase gene needed for chloramphenicol (Cm) production, were examined for involvement in biosynthesis of the antibiotic. Three of four ORFs in the sequence downstream of pabAB resembled genes involved in the shikimate pathway. BLASTX searches of GenBank showed that the deduced amino acid sequences of ORF3 and ORF4 were similar to proteins encoded by monofunctional genes for chorismate mutase and prephenate dehydrogenase, respectively, while the sequence of the ORF5 product resembled deoxy-arabino-heptulosonate-7-phosphate (DAHP) synthase, the enzyme that initiates the shikimate pathway. A relationship to Cm biosynthesis was indicated by sequence similarities between the ORF6 product and membrane proteins associated with Cm export. BLASTX searches of GenBank for matches with the translated sequence of ORF1 in chromosomal DNA immediately upstream of pabAB did not detect products relevant to Cm biosynthesis. However, the presence of Cm biosynthesis genes in a 7.5 kb segment of the chromosome beyond ORF1 was inferred when conjugal transfer of the DNA into a blocked S. venezuelae mutant restored Cm production. Deletions in the 7.5 kb segment of the wild-type chromosome eliminated Cm production, confirming the presence of Cm biosynthesis genes in this region. Sequencing and analysis located five ORFs, one of which (ORF8) was deduced from BLAST searches of GenBank, and from characteristic motifs detected in alignments of its deduced amino acid sequence, to be a monomodular nonribosomal peptide synthetase. GenBank searches did not identify ORF7, but matched the translated sequences of ORFs 9, 10 and 11 with short-chain ketoreductases, the ATP-binding cassettes of ABC transporters, and coenzyme A ligases, respectively. As has been shown for ORF2, disrupting ORF3, ORF7, ORF8 or ORF9 blocked Cm production.

  20. Tobacco Nicotine Uptake Permease Regulates the Expression of a Key Transcription Factor Gene in the Nicotine Biosynthesis Pathway1[C][W

    PubMed Central

    2014-01-01

    The down-regulation of a tobacco (Nicotiana tabacum) plasma membrane-localized nicotine uptake permease, NUP1, was previously reported to reduce total alkaloid levels in tobacco plants. However, it was unclear how this nicotine transporter affected the biosynthesis of the alkaloid nicotine. When NUP1 expression was suppressed in cultured tobacco cells treated with jasmonate, which induces nicotine biosynthesis, the NICOTINE2-locus transcription factor gene ETHYLENE RESPONSE FACTOR189 (ERF189) and its target structural genes, which function in nicotine biosynthesis and transport, were strongly suppressed, resulting in decreased total alkaloid levels. Conversely, NUP1 overexpression had the opposite effect. In these experiments, the expression levels of the MYC2 transcription factor gene and its jasmonate-inducible target gene were not altered. Inhibiting tobacco alkaloid biosynthesis by suppressing the expression of genes encoding enzymes in the nicotine pathway did not affect the expression of ERF189 and other nicotine pathway genes, indicating that ERF189 is not regulated by cellular alkaloid levels. Suppressing the expression of jasmonate signaling components in cultured tobacco cells showed that NUP1 acts downstream of the CORONATINE INSENSITIVE1 receptor and MYC2, but upstream of ERF189. These results suggest that although jasmonate-activated expression of MYC2 induces the expression of both NUP1 and ERF189, expression of ERF189 may actually be mediated by NUP1. Furthermore, NUP1 overexpression in tobacco plants inhibited the long-range transport of nicotine from the roots to the aerial parts. Thus, NUP1 not only mediates the uptake of tobacco alkaloids into root cells, but also positively controls the expression of ERF189, a key gene in the biosynthesis of these alkaloids. PMID:25344505

  1. Neu-Laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway.

    PubMed

    Acuna-Hidalgo, Rocio; Schanze, Denny; Kariminejad, Ariana; Nordgren, Ann; Kariminejad, Mohamad Hasan; Conner, Peter; Grigelioniene, Giedre; Nilsson, Daniel; Nordenskjöld, Magnus; Wedell, Anna; Freyer, Christoph; Wredenberg, Anna; Wieczorek, Dagmar; Gillessen-Kaesbach, Gabriele; Kayserili, Hülya; Elcioglu, Nursel; Ghaderi-Sohi, Siavash; Goodarzi, Payman; Setayesh, Hamidreza; van de Vorst, Maartje; Steehouwer, Marloes; Pfundt, Rolph; Krabichler, Birgit; Curry, Cynthia; MacKenzie, Malcolm G; Boycott, Kym M; Gilissen, Christian; Janecke, Andreas R; Hoischen, Alexander; Zenker, Martin

    2014-09-04

    Neu-Laxova syndrome (NLS) is a rare autosomal-recessive disorder characterized by a recognizable pattern of severe malformations leading to prenatal or early postnatal lethality. Homozygous mutations in PHGDH, a gene involved in the first and limiting step in L-serine biosynthesis, were recently identified as the cause of the disease in three families. By studying a cohort of 12 unrelated families affected by NLS, we provide evidence that NLS is genetically heterogeneous and can be caused by mutations in all three genes encoding enzymes of the L-serine biosynthesis pathway. Consistent with recently reported findings, we could identify PHGDH missense mutations in three unrelated families of our cohort. Furthermore, we mapped an overlapping homozygous chromosome 9 region containing PSAT1 in four consanguineous families. This gene encodes phosphoserine aminotransferase, the enzyme for the second step in L-serine biosynthesis. We identified six families with three different missense and frameshift PSAT1 mutations fully segregating with the disease. In another family, we discovered a homozygous frameshift mutation in PSPH, the gene encoding phosphoserine phosphatase, which catalyzes the last step of L-serine biosynthesis. Interestingly, all three identified genes have been previously implicated in serine-deficiency disorders, characterized by variable neurological manifestations. Our findings expand our understanding of NLS as a disorder of the L-serine biosynthesis pathway and suggest that NLS represents the severe end of serine-deficiency disorders, demonstrating that certain complex syndromes characterized by early lethality could indeed be the extreme end of the phenotypic spectrum of already known disorders.

  2. Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin

    PubMed Central

    Dose, Janina; Matsugo, Seiichi; Yokokawa, Haruka; Koshida, Yutaro; Okazaki, Shigetoshi; Seidel, Ulrike; Eggersdorfer, Manfred; Rimbach, Gerald; Esatbeyoglu, Tuba

    2016-01-01

    Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR) and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH) and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health. PMID:26784174

  3. Effects of Exogenous Salicylic Acid on Ganoderic Acid Biosynthesis and the Expression of Key Genes in the Ganoderic Acid Biosynthesis Pathway in the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes).

    PubMed

    Cao, Peng-Fei; Wu, Chen-Gao; Dang, Zhi-Hao; Shi, Liang; Jiang, Ai-Liang; Ren, Ang; Zhao, Ming-Wen

    2017-01-01

    We demonstrate herein that salicylic acid (SA) can enhance ganoderic acid (GA) accumulation in the lingzhi or reishi medicinal mushroom Ganoderma lucidum. Following treatment with different concentrations of SA, the GA content was increased 22.72% to 43.04% compared with the control group. When the fungi were treated with 200 μmol/L SA at different times, the GA content was improved 10.21% to 35.24% compared with the control group. By choosing the optimum point based on response surface methodology, the GA content could be increased up to 229.03 μg/100 mg, which was improved 66.38% compared with the control group. When the fungi were treated with 200 μmol/L SA, the transcription levels of key genes in the GA biosynthesis pathway-squalene (SQ) synthase (sqs), lanosterol (Lano; osc), and hydroxy-3-methylglutaryl-coenzyme A reductase (hmgr)-were improved 119.6-, 3.2-, and 4.2-fold, respectively. In addition, following treatment with 100 μmol/L SA, the levels of Lano and SQ, which are intermediate metabolites of GA biosynthesis, were increased 2.8- and 1.4-fold, respectively. These results indicate that SA can regulate the expression of genes related to GA biosynthesis and increases the metabolic levels of Lano and SQ, thereby resulting in the accumulation of GA.

  4. BRANCHED-CHAIN AMINOTRANSFERASE4 Is Part of the Chain Elongation Pathway in the Biosynthesis of Methionine-Derived Glucosinolates in Arabidopsis[W

    PubMed Central

    Schuster, Joachim; Knill, Tanja; Reichelt, Michael; Gershenzon, Jonathan; Binder, Stefan

    2006-01-01

    As part of our analysis of branched-chain amino acid metabolism in plants, we analyzed the function of Arabidopsis thaliana BRANCHED-CHAIN AMINOTRANSFERASE4 (BCAT4). Recombinant BCAT4 showed high efficiency with Met and its derivatives and the corresponding 2-oxo acids, suggesting its participation in the chain elongation pathway of Met-derived glucosinolate biosynthesis. This was substantiated by in vivo analysis of two BCAT4 T-DNA knockout mutants, in which Met-derived aliphatic glucosinolate accumulation is reduced by ∼50%. The increase in free Met and S-methylmethionine levels in these mutants, together with in vitro substrate specificity, strongly implicate BCAT4 in catalysis of the initial deamination of Met to 4-methylthio-2-oxobutyrate. BCAT4 transcription is induced by wounding and is predominantly observed in the phloem. BCAT4 transcript accumulation also follows a diurnal rhythm, and green fluorescent protein tagging experiments and subcellular protein fractions show that BCAT4 is located in the cytosol. The assignment of BCAT4 to the Met chain elongation pathway documents the close evolutionary relationship of this pathway to Leu biosynthesis. In addition to BCAT4, the enzyme methylthioalkylmalate synthase 1 has been recruited for the Met chain elongation pathway from a gene family involved in Leu formation. This suggests that the two pathways have a common evolutionary origin. PMID:17056707

  5. Transcription factors FabR and FadR regulate both aerobic and anaerobic pathways for unsaturated fatty acid biosynthesis in Shewanella oneidensis.

    PubMed

    Luo, Qixia; Shi, Miaomiao; Ren, Yedan; Gao, Haichun

    2014-01-01

    As genes for type II fatty acid synthesis are essential to the growth of Escherichia coli, its sole (anaerobic) pathway has significant potential as a target for novel antibacterial drug, and has been extensively studied. Despite this, we still know surprisingly little about fatty acid synthesis in bacteria because this anaerobic pathway in fact is not widely distributed. In this study, we show a novel model of unsaturated fatty acid (UFA) synthesis in Shewanella, emerging human pathogens in addition to well-known metal reducers. We identify both anaerobic and aerobic UFA biosynthesis pathways in the representative species, S. oneidensis. Uniquely, the bacterium also contains two regulators FabR and FadR, whose counterparts in other bacteria control the anaerobic pathway. However, we show that in S. oneidensis these two regulators are involved in regulation of both pathways, in either direct or indirect manner. Overall, our results indicate that the UFA biosynthesis and its regulation are far more complex than previously expected, and S. oneidensis serves as a good research model for further work.

  6. RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica

    PubMed Central

    Li, Qingyuan; Lei, Sheng; Du, Kebing; Li, Lizhi; Pang, Xufeng; Wang, Zhanchang; Wei, Ming; Fu, Shao; Hu, Limin; Xu, Lin

    2016-01-01

    Camellia is a well-known ornamental flower native to Southeast of Asia, including regions such as Japan, Korea and South China. However, most species in the genus Camellia are cold sensitive. To elucidate the cold stress responses in camellia plants, we carried out deep transcriptome sequencing of ‘Jiangxue’, a cold-tolerant cultivar of Camellia japonica, and approximately 1,006 million clean reads were generated using Illumina sequencing technology. The assembly of the clean reads produced 367,620 transcripts, including 207,592 unigenes. Overall, 28,038 differentially expressed genes were identified during cold acclimation. Detailed elucidation of responses of transcription factors, protein kinases and plant hormone signalling-related genes described the interplay of signal that allowed the plant to fine-tune cold stress responses. On the basis of global gene regulation of unsaturated fatty acid biosynthesis- and jasmonic acid biosynthesis-related genes, unsaturated fatty acid biosynthesis and jasmonic acid biosynthesis pathways were deduced to be involved in the low temperature responses in C. japonica. These results were supported by the determination of the fatty acid composition and jasmonic acid content. Our results provide insights into the genetic and molecular basis of the responses to cold acclimation in camellia plants. PMID:27819341

  7. PpASCL, a moss ortholog of anther-specific chalcone synthase-like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway.

    PubMed

    Colpitts, Che C; Kim, Sung Soo; Posehn, Sarah E; Jepson, Christina; Kim, Sun Young; Wiedemann, Gertrud; Reski, Ralf; Wee, Andrew G H; Douglas, Carl J; Suh, Dae-Yeon

    2011-12-01

    Sporopollenin is the main constituent of the exine layer of spore and pollen walls. Recently, several Arabidopsis genes, including polyketide synthase A (PKSA), which encodes an anther-specific chalcone synthase-like enzyme (ASCL), have been shown to be involved in sporopollenin biosynthesis. The genome of the moss Physcomitrella patens contains putative orthologs of the Arabidopsis sporopollenin biosynthesis genes. We analyzed available P.patens expressed sequence tag (EST) data for putative moss orthologs of the Arabidopsis genes of sporopollenin biosynthesis and studied the enzymatic properties and reaction mechanism of recombinant PpASCL, the P.patens ortholog of Arabidopsis PKSA. We also generated structure models of PpASCL and Arabidopsis PKSA to study their substrate specificity. Physcomitrella patens orthologs of Arabidopsis genes for sporopollenin biosynthesis were found to be expressed in the sporophyte generation. Similarly to Arabidopsis PKSA, PpASCL condenses hydroxy fatty acyl-CoA esters with malonyl-CoA and produces hydroxyalkyl α-pyrones that probably serve as building blocks of sporopollenin. The ASCL-specific set of Gly-Gly-Ala residues predicted by the models to be located at the floor of the putative active site is proposed to serve as the opening of an acyl-binding tunnel in ASCL. These results suggest that ASCL functions together with other sporophyte-specific enzymes to provide polyhydroxylated precursors of sporopollenin in a pathway common to land plants.

  8. De novo assembly and transcriptome analysis of the rubber tree (Hevea brasiliensis) and SNP markers development for rubber biosynthesis pathways.

    PubMed

    Mantello, Camila Campos; Cardoso-Silva, Claudio Benicio; da Silva, Carla Cristina; de Souza, Livia Moura; Scaloppi Junior, Erivaldo José; de Souza Gonçalves, Paulo; Vicentini, Renato; de Souza, Anete Pereira

    2014-01-01

    Hevea brasiliensis (Willd. Ex Adr. Juss.) Muell.-Arg. is the primary source of natural rubber that is native to the Amazon rainforest. The singular properties of natural rubber make it superior to and competitive with synthetic rubber for use in several applications. Here, we performed RNA sequencing (RNA-seq) of H. brasiliensis bark on the Illumina GAIIx platform, which generated 179,326,804 raw reads on the Illumina GAIIx platform. A total of 50,384 contigs that were over 400 bp in size were obtained and subjected to further analyses. A similarity search against the non-redundant (nr) protein database returned 32,018 (63%) positive BLASTx hits. The transcriptome analysis was annotated using the clusters of orthologous groups (COG), gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Pfam databases. A search for putative molecular marker was performed to identify simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). In total, 17,927 SSRs and 404,114 SNPs were detected. Finally, we selected sequences that were identified as belonging to the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, which are involved in rubber biosynthesis, to validate the SNP markers. A total of 78 SNPs were validated in 36 genotypes of H. brasiliensis. This new dataset represents a powerful information source for rubber tree bark genes and will be an important tool for the development of microsatellites and SNP markers for use in future genetic analyses such as genetic linkage mapping, quantitative trait loci identification, investigations of linkage disequilibrium and marker-assisted selection.

  9. De Novo Assembly and Transcriptome Analysis of the Rubber Tree (Hevea brasiliensis) and SNP Markers Development for Rubber Biosynthesis Pathways

    PubMed Central

    Mantello, Camila Campos; Cardoso-Silva, Claudio Benicio; da Silva, Carla Cristina; de Souza, Livia Moura; Scaloppi Junior, Erivaldo José; de Souza Gonçalves, Paulo; Vicentini, Renato; de Souza, Anete Pereira

    2014-01-01

    Hevea brasiliensis (Willd. Ex Adr. Juss.) Muell.-Arg. is the primary source of natural rubber that is native to the Amazon rainforest. The singular properties of natural rubber make it superior to and competitive with synthetic rubber for use in several applications. Here, we performed RNA sequencing (RNA-seq) of H. brasiliensis bark on the Illumina GAIIx platform, which generated 179,326,804 raw reads on the Illumina GAIIx platform. A total of 50,384 contigs that were over 400 bp in size were obtained and subjected to further analyses. A similarity search against the non-redundant (nr) protein database returned 32,018 (63%) positive BLASTx hits. The transcriptome analysis was annotated using the clusters of orthologous groups (COG), gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Pfam databases. A search for putative molecular marker was performed to identify simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). In total, 17,927 SSRs and 404,114 SNPs were detected. Finally, we selected sequences that were identified as belonging to the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, which are involved in rubber biosynthesis, to validate the SNP markers. A total of 78 SNPs were validated in 36 genotypes of H. brasiliensis. This new dataset represents a powerful information source for rubber tree bark genes and will be an important tool for the development of microsatellites and SNP markers for use in future genetic analyses such as genetic linkage mapping, quantitative trait loci identification, investigations of linkage disequilibrium and marker-assisted selection. PMID:25048025

  10. De Novo Guanine Biosynthesis but Not the Riboswitch-Regulated Purine Salvage Pathway Is Required for Staphylococcus aureus Infection In Vivo

    PubMed Central

    Yan, Donghong; Katakam, Anand K.; Reichelt, Mike; Lin, Baiwei; Kim, Janice; Park, Summer; Date, Shailesh V.; Monk, Ian R.; Xu, Min; Austin, Cary D.; Maurer, Till

    2016-01-01

    ABSTRACT De novo guanine biosynthesis is an evolutionarily conserved pathway that creates sufficient nucleotides to support DNA replication, transcription, and translation. Bacteria can also salvage nutrients from the environment to supplement the de novo pathway, but the relative importance of either pathway during Staphylococcus aureus infection is not known. In S. aureus, genes important for both de novo and salvage pathways are regulated by a guanine riboswitch. Bacterial riboswitches have attracted attention as a novel class of antibacterial drug targets because they have high affinity for small molecules, are absent in humans, and regulate the expression of multiple genes, including those essential for cell viability. Genetic and biophysical methods confirm the existence of a bona fide guanine riboswitch upstream of an operon encoding xanthine phosphoribosyltransferase (xpt), xanthine permease (pbuX), inosine-5′-monophosphate dehydrogenase (guaB), and GMP synthetase (guaA) that represses the expression of these genes in response to guanine. We found that S. aureus guaB and guaA are also transcribed independently of riboswitch control by alternative promoter elements. Deletion of xpt-pbuX-guaB-guaA genes resulted in guanine auxotrophy, failure to grow in human serum, profound abnormalities in cell morphology, and avirulence in mouse infection models, whereas deletion of the purine salvage genes xpt-pbuX had none of these effects. Disruption of guaB or guaA recapitulates the xpt-pbuX-guaB-guaA deletion in vivo. In total, the data demonstrate that targeting the guanine riboswitch alone is insufficient to treat S. aureus infections but that inhibition of guaA or guaB could have therapeutic utility. IMPORTANCE De novo guanine biosynthesis and purine salvage genes were reported to be regulated by a guanine riboswitch in Staphylococcus aureus. We demonstrate here that this is not true, because alternative promoter elements that uncouple the de novo pathway from

  11. In silico analysis of the genes encoding proteins that are involved in the biosynthesis of the RMS/MAX/D pathway revealed new roles of Strigolactones in plants.

    PubMed

    Marzec, Marek; Muszynska, Aleksandra

    2015-03-25

    Strigolactones were described as a new group of phytohormones in 2008 and since then notable large number of their functions has been uncovered, including the regulation of plant growth and development, interactions with other organisms and a plant's response to different abiotic stresses. In the last year, investigations of the strigolactone biosynthesis pathway in two model species, Arabidopsis thaliana and Oryza sativa, resulted in great progress in understanding the functions of four enzymes that are involved in this process. We performed in silico analyses, including the identification of the cis-regulatory elements in the promoters of genes encoding proteins of the strigolactone biosynthesis pathway and the identification of the miRNAs that are able to regulate their posttranscriptional level. We also searched the databases that contain the microarray data for the genes that were analyzed from both species in order to check their expression level under different growth conditions. The results that were obtained indicate that there are universal regulations of expression of all of the genes that are involved in the strigolactone biosynthesis in Arabidopsis and rice, but on the other hand each stage of strigolactone production may be additionally regulated independently. This work indicates the presence of crosstalk between strigolactones and almost all of the other phytohormones and suggests the role of strigolactones in the response to abiotic stresses, such as wounding, cold or flooding, as well as in the response to biotic stresses.

  12. A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway.

    PubMed

    Helliwell, C A; Sullivan, J A; Mould, R M; Gray, J C; Peacock, W J; Dennis, E S

    2001-10-01

    We have used fusions of gibberellin biosynthesis enzymes to green fluorescent protein (GFP) to determine the subcellular localization of the early steps of the pathway. Gibberellin biosynthesis from geranylgeranyl diphosphate is catalysed by enzymes of the terpene cyclase, cytochrome P450 mono-oxygenase and 2-oxoglutarate-dependent dioxygenase classes. We show that the N-terminal pre-sequences of the Arabidopsis thaliana terpene cyclases copalyl diphosphate synthase (AtCPS1) and ent-kaurene synthase (AtKS1) direct GFP to chloroplasts in transient assays following microprojectile bombardment of tobacco leaves. The AtKS1-GFP fusion is also imported by isolated pea chloroplasts. The N-terminal portion of the cytochrome P450 protein ent-kaurene oxidase (AtKO1) directs GFP to chloroplasts in tobacco leaf transient assays. Chloroplast import assays with 35S-labelled AtKO1 protein show that it is targeted to the outer face of the chloroplast envelope. The leader sequences of the two ent-kaurenoic acid oxidases (AtKAO1 and AtKAO2) from Arabidopsis direct GFP to the endoplasmic reticulum. These data suggest that the AtKO1 protein links the plastid- and endoplasmic reticulum-located steps of the gibberellin biosynthesis pathway by association with the outer envelope of the plastid.

  13. Methylerythritol and mevalonate pathway contributions to biosynthesis of mono-, sesqui-, and diterpenes in glandular trichomes and leaves of Stevia rebaudiana Bertoni.

    PubMed

    Wölwer-Rieck, Ursula; May, Bianca; Lankes, Christa; Wüst, Matthias

    2014-03-19

    The biosynthesis of the diterpenoid steviol glycosides rebaudioside A and stevioside in nonrooted cuttings of Stevia rebaudiana was investigated by feeding experiments using the labeled key precursors [5,5-(2)H2]-mevalonic acid lactone (d2-MVL) and [5,5-(2)H2]-1-deoxy-d-xylulose (d2-DOX). Labeled glycosides were extracted from the leaves and stems and were directly analyzed by LC-(-ESI)-MS/MS and by GC-MS after hydrolysis and derivatization of the resulting isosteviol to the corresponding TMS-ester. Additionally, the incorporation of the proffered d2-MVL and d2-DOX into volatile monoterpenes, sesquiterpenes, and diterpenes in glandular trichomes on leaves and stems was investigated by headspace-solid phase microextraction-GC-MS (HS-SPME-GC-MS). Incorporation of the labeled precursors indicated that diterpenes in leaves and monoterpenes and diterpenes in glandular trichomes are predominately biosynthesized via the methylerythritol phosphate (MEP) pathway, whereas both the MEP and mevalonate (MVA) pathways contribute to the biosynthesis of sesquiterpenes at equal rates in glandular trichomes. These findings give evidence for a transport of MEP pathway derived farnesyl diphosphate precursors from plastids to the cytosol. Contrarily, the transport of MVA pathway derived geranyl diphosphate and geranylgeranyl diphosphate precursors from the cytosol to the plastid is limited.

  14. Hexameric assembly of the bifunctional methylerythritol 2,4-cyclodiphosphate synthase and protein-protein associations in the deoxy-xylulose-dependent pathway of isoprenoid precursor biosynthesis.

    PubMed

    Gabrielsen, Mads; Bond, Charles S; Hallyburton, Irene; Hecht, Stefan; Bacher, Adelbert; Eisenreich, Wolfgang; Rohdich, Felix; Hunter, William N

    2004-12-10

    The bifunctional methylerythritol 4-phosphate cytidylyltransferase methylerythritol 2,4-cyclodiphosphate synthase (IspDF) is unusual in that it catalyzes nonconsecutive reactions in the 1-deoxy-D-xylulose 5-phosphate (DOXP) pathway of isoprenoid precursor biosynthesis. The crystal structure of IspDF from the bacterial pathogen Campylobacter jejuni reveals an elongated hexamer with D3 symmetry compatible with the dimeric 2C-methyl-D-erythritol-4-phosphate cytidylyltransferase and trimeric 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase monofunctional enzymes. Complex formation of IspDF with 4-diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE), the intervening enzyme activity in the pathway, has been observed in solution for the enzymes from C. jejuni and Agrobacterium tumefaciens. The monofunctional enzymes (2C-methyl-D-erythritol-4-phosphate cytidylyltransferase, IspE, and 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase) involved in the DOXP biosynthetic pathway of Escherichia coli also show physical associations. We propose that complex formation of the three enzymes at the core of the DOXP pathway can produce an assembly localizing 18 catalytic centers for the early stages of isoprenoid biosynthesis.

  15. Proteomic analysis of conidia germination in Fusarium oxysporum f. sp. cubense tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana.

    PubMed

    Deng, Gui-Ming; Yang, Qiao-Song; He, Wei-Di; Li, Chun-Yu; Yang, Jing; Zuo, Cun-Wu; Gao, Jie; Sheng, Ou; Lu, Shao-Yun; Zhang, Sheng; Yi, Gan-Jun

    2015-09-01

    Conidial germination is a crucial step of the soilborne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), a most important lethal disease of banana. In this study, a total of 3659 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic approach, of which 1009 were differentially expressed during conidial germination of the fungus at 0, 3, 7, and 11 h. Functional classification and bioinformatics analysis revealed that the majority of the differentially expressed proteins are involved in six metabolic pathways. Particularly, all differential proteins involved in the ergosterol biosynthesis pathway were significantly upregulated, indicating the importance of the ergosterol biosynthesis pathway to the conidial germination of Foc TR4. Quantitative RT-PCR, western blotting, and in vitro growth inhibition assay by several categories of fungicides on the Foc TR4 were used to validate the proteomics results. Four enzymes, C-24 sterol methyltransferase (ERG6), cytochrome P450 lanosterol C-14α-demethylase (EGR11), hydroxymethylglutaryl-CoA synthase (ERG13), and C-4 sterol methyl oxidase (ERG25), in the ergosterol biosynthesis pathway were identified and verified, and they hold great promise as new targets for effective inhibition of Foc TR4 early growth in controlling Fusarium wilt of banana. To the best of our knowledge, this report represents the first comprehensive study on proteomics profiling of conidia germination in Foc TR4. It provides new insights into a better understanding of the developmental processes of Foc TR4 spores. More importantly, by host plant-induced gene silencing (HIGS) technology, the new targets reported in this work allow us to develop novel transgenic banana leading to high protection from Fusarium wilt and to explore more effective antifungal drugs against either individual or multiple target proteins of Foc TR4.

  16. Enhanced killing of SCC17B human head and neck squamous cell carcinoma cells after photodynamic therapy plus fenretinide via the de novo sphingolipid biosynthesis pathway and apoptosis.

    PubMed

    Boppana, Nithin B; Stochaj, Ursula; Kodiha, Mohamed; Bielawska, Alicja; Bielawski, Jacek; Pierce, Jason S; Korbelik, Mladen; Separovic, Duska

    2015-05-01

    Because photodynamic therapy (PDT) alone is not always effective as an anticancer treatment, PDT is combined with other anticancer agents for improved efficacy. The clinically-relevant fenretinide [N-(4-hydroxyphenyl) retinamide; 4HPR], was combined with the silicon phthalocyanine photosensitizer Pc4-mediated PDT to test for their potential to enhance killing of SCC17B cells, a clinically-relevant model of human head and neck squamous cell carcinoma. Because each of these treatments induces apoptosis and regulates the de novo sphingolipid (SL) biosynthesis pathway, the role of ceramide synthase, the pathway-associated enzyme, in PDT+4HPR-induced apoptotic cell death was determined using the ceramide synthase inhibitor fumonisin B1 (FB). PDT+4HPR enhanced loss of clonogenicity. zVAD-fmk, a pan-caspase inhibitor, and FB, protected cells from death post-PDT+4HPR. In contrast, the anti-apoptotic protein Bcl2 inhibitor ABT199 enhanced cell killing after PDT+4HPR. Combining PDT with 4HPR led to FB-sensitive, enhanced Bax associated with mitochondria and cytochrome c redistribution. Mass spectrometry data showed that the accumulation of C16-dihydroceramide, a precursor of ceramide in the de novo SL biosynthesis pathway, was enhanced after PDT+4HPR. Using quantitative confocal microscopy, we found that PDT+4HPR enhanced dihydroceramide/ceramide accumulation in the ER, which was inhibited by FB. The results suggest that SCC17B cells are sensitized to PDT by 4HPR via the de novo SL biosynthesis pathway and apoptosis, and imply potential clinical relevance of the combination for cancer treatment.

  17. Enhanced killing of SCC17B human head and neck squamous cell carcinoma cells after photodynamic therapy plus fenretinide via the de novo sphingolipid biosynthesis pathway and apoptosis

    PubMed Central

    BOPPANA, NITHIN B.; STOCHAJ, URSULA; KODIHA, MOHAMED; BIELAWSKA, ALICJA; BIELAWSKI, JACEK; PIERCE, JASON S.; KORBELIK, MLADEN; SEPAROVIC, DUSKA

    2015-01-01

    Because photodynamic therapy (PDT) alone is not always effective as an anticancer treatment, PDT is combined with other anticancer agents for improved efficacy. The clinically-relevant fenretinide [N-(4-hydroxyphenyl) retinamide; 4HPR], was combined with the silicon phthalocyanine photosensitizer Pc4-mediated PDT to test for their potential to enhance killing of SCC17B cells, a clinically-relevant model of human head and neck squamous cell carcinoma. Because each of these treatments induces apoptosis and regulates the de novo sphingolipid (SL) biosynthesis pathway, the role of ceramide synthase, the pathway-associated enzyme, in PDT+4HPR-induced apoptotic cell death was determined using the ceramide synthase inhibitor fumonisin B1 (FB). PDT+4HPR enhanced loss of clonogenicity. zVAD-fmk, a pan-caspase inhibitor, and FB, protected cells from death post-PDT+4HPR. In contrast, the anti-apoptotic protein Bcl2 inhibitor ABT199 enhanced cell killing after PDT+4HPR. Combining PDT with 4HPR led to FB-sensitive, enhanced Bax associated with mitochondria and cytochrome c redistribution. Mass spectrometry data showed that the accumulation of C16-dihydroceramide, a precursor of ceramide in the de novo SL biosynthesis pathway, was enhanced after PDT+4HPR. Using quantitative confocal microscopy, we found that PDT+4HPR enhanced dihydroceramide/ceramide accumulation in the ER, which was inhibited by FB. The results suggest that SCC17B cells are sensitized to PDT by 4HPR via the de novo SL biosynthesis pathway and apoptosis, and imply potential clinical relevance of the combination for cancer treatment. PMID:25739041

  18. Activation of a Silent Fungal Polyketide Biosynthesis Pathway through Regulatory Cross Talk with a Cryptic Nonribosomal Peptide Synthetase Gene Cluster ▿ †

    PubMed Central

    Bergmann, Sebastian; Funk, Alexander N.; Scherlach, Kirstin; Schroeckh, Volker; Shelest, Ekaterina; Horn, Uwe; Hertweck, Christian; Brakhage, Axel A.

    2010-01-01

    Filamentous fungi produce numerous natural products that constitute a consistent source of potential drug leads, yet it seems that the majority of natural products are overlooked since most biosynthesis gene clusters are silent under standard cultivation conditions. Screening secondary metabolite genes of the model fungus Aspergillus nidulans, we noted a silent gene cluster on chromosome II comprising two nonribosomal peptide synthetase (NRPS) genes, inpA and inpB, flanked by a regulatory gene that we named scpR for secondary metabolism cross-pathway regulator. The induced expression of the scpR gene using the promoter of the alcohol dehydrogenase AlcA led to the transcriptional activation of both the endogenous scpR gene and the NRPS genes. Surprisingly, metabolic profiling of the supernatant of mycelia overexpressing scpR revealed the production of the polyketide asperfuranone. Through transcriptome analysis we found that another silent secondary metabolite gene cluster located on chromosome VIII coding for asperfuranone biosynthesis was specifically induced. Quantitative reverse transcription-PCR proved the transcription not only of the corresponding polyketide synthase (PKS) biosynthesis genes, afoE and afoG, but also of their activator, afoA, under alcAp-scpR-inducing conditions. To exclude the possibility that the product of the inp cluster induced the asperfuranone gene cluster, a strain carrying a deletion of the NRPS gene inpB and, in addition, the alcAp-scpR overexpression cassette was generated. In this strain, under inducing conditions, transcripts of the biosynthesis genes of both the NRPS-containing gene cluster inp and the asperfuranone gene cluster except gene inpB were detected. Moreover, the existence of the polyketide product asperfuranone indicates that the transcription factor ScpR controls the expression of the asperfuranone biosynthesis gene cluster. This expression as well as the biosynthesis of asperfuranone was abolished after the deletion

  19. Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate.

    PubMed Central

    Hoeffler, Jean-François; Hemmerlin, Andréa; Grosdemange-Billiard, Catherine; Bach, Thomas J; Rohmer, Michel

    2002-01-01

    In the bacterium Escherichia coli, the mevalonic-acid (MVA)-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway is characterized by two branches leading separately to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). The signature of this branching is the retention of deuterium in DMAPP and the deuterium loss in IPP after incorporation of 1-[4-(2)H]deoxy-d-xylulose ([4-(2)H]DX). Feeding tobacco BY-2 cell-suspension cultures with [4-(2)H]DX resulted in deuterium retention in the isoprene units derived from DMAPP, as well as from IPP in the plastidial isoprenoids, phytoene and plastoquinone, synthesized via the MEP pathway. This labelling pattern represents direct evidence for the presence of the DMAPP branch of the MEP pathway in a higher plant, and shows that IPP can be synthesized from DMAPP in plant plastids, most probably via a plastidial IPP isomerase. PMID:12010124

  20. [Screening of potential antibiotics, inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis--2-C-methyl-D-erythritol-2,4-cyclodiphosphate derivatives].

    PubMed

    Ershov, Iu V; Mazikin, K V; Ostrovskiĭ, D N

    2010-01-01

    The recently discovered nonmevalonate pathway of isoprenoid biosynthesis is a prospective target in screening of new antibiotics. Because of the absence of the pathway in the animal cells, the specific inhibitors of the pathway will be a new class of antibiotics against many pathogens (which cause, e.g., malaria, tuberculosis, etc), combining high efficiency and low toxicity. Several derivatives of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (MEC) were synthesized. 4-Phospho-methyl-D-erythritol-1,2-cyclophosphate, benzyl ether and benzyliden derivative of MEC inhibited the 14C-MEC incorporation into isoprenoids of chromoplasts from red pepper with IC50 of 1.7-5 MM. Some inhibition (about 10%) was also observed with the use of dimethyl ether and isopropyliden derivative of MEC.

  1. The phosphorylated pathway of serine biosynthesis is essential both for male gametophyte and embryo development and for root growth in Arabidopsis.

    PubMed

    Cascales-Miñana, Borja; Muñoz-Bertomeu, Jesús; Flores-Tornero, María; Anoman, Armand Djoro; Pertusa, José; Alaiz, Manuel; Osorio, Sonia; Fernie, Alisdair R; Segura, Juan; Ros, Roc

    2013-06-01

    This study characterizes the phosphorylated pathway of Ser biosynthesis (PPSB) in Arabidopsis thaliana by targeting phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Lack of PSP1 activity delayed embryo development, leading to aborted embryos that could be classified as early curled cotyledons. The embryo-lethal phenotype of psp1 mutants could be complemented with PSP1 cDNA under the control of Pro35S (Pro35S:PSP1). However, this construct, which was poorly expressed in the anther tapetum, did not complement mutant fertility. Microspore development in psp1.1/psp1.1 Pro35S:PSP1 arrested at the polarized stage. The tapetum from these lines displayed delayed and irregular development. The expression of PSP1 in the tapetum at critical stages of microspore development suggests that PSP1 activity in this cell layer is essential in pollen development. In addition to embryo death and male sterility, conditional psp1 mutants displayed a short-root phenotype, which was reverted in the presence of Ser. A metabolomic study demonstrated that the PPSB plays a crucial role in plant metabolism by affecting glycolysis, the tricarboxylic acid cycle, and the biosynthesis of amino acids. We provide evidence of the crucial role of the PPSB in embryo, pollen, and root development and suggest that this pathway is an important link connecting primary metabolism with development.

  2. Biochemical and phylogenetic characterization of a novel diaminopimelate biosynthesis pathway in prokaryotes identifies a diverged form of LL-diaminopimelate aminotransferase.

    PubMed

    Hudson, André O; Gilvarg, Charles; Leustek, Thomas

    2008-05-01

    A variant of the diaminopimelate (DAP)-lysine biosynthesis pathway uses an LL-DAP aminotransferase (DapL, EC 2.6.1.83) to catalyze the direct conversion of L-2,3,4,5-tetrahydrodipicolinate to LL-DAP. Comparative genomic analysis and experimental verification of DapL candidates revealed the existence of two diverged forms of DapL (DapL1 and DapL2). DapL orthologs were identified in eubacteria and archaea. In some species the corresponding dapL gene was found to lie in genomic contiguity with other dap genes, suggestive of a polycistronic structure. The DapL candidate enzymes were found to cluster into two classes sharing approximately 30% amino acid identity. The function of selected enzymes from each class was studied. Both classes were able to functionally complement Escherichia coli dapD and dapE mutants and to catalyze LL-DAP transamination, providing functional evidence for a role in DAP/lysine biosynthesis. In all cases the occurrence of dapL in a species correlated with the absence of genes for dapD and dapE representing the acyl DAP pathway variants, and only in a few cases was dapL coincident with ddh encoding meso-DAP dehydrogenase. The results indicate that the DapL pathway is restricted to specific lineages of eubacteria including the Cyanobacteria, Desulfuromonadales, Firmicutes, Bacteroidetes, Chlamydiae, Spirochaeta, and Chloroflexi and two archaeal groups, the Methanobacteriaceae and Archaeoglobaceae.

  3. The Phosphorylated Pathway of Serine Biosynthesis Is Essential Both for Male Gametophyte and Embryo Development and for Root Growth in Arabidopsis[W

    PubMed Central

    Cascales-Miñana, Borja; Muñoz-Bertomeu, Jesús; Flores-Tornero, María; Anoman, Armand Djoro; Pertusa, José; Alaiz, Manuel; Osorio, Sonia; Fernie, Alisdair R.; Segura, Juan; Ros, Roc

    2013-01-01

    This study characterizes the phosphorylated pathway of Ser biosynthesis (PPSB) in Arabidopsis thaliana by targeting phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Lack of PSP1 activity delayed embryo development, leading to aborted embryos that could be classified as early curled cotyledons. The embryo-lethal phenotype of psp1 mutants could be complemented with PSP1 cDNA under the control of Pro35S (Pro35S:PSP1). However, this construct, which was poorly expressed in the anther tapetum, did not complement mutant fertility. Microspore development in psp1.1/psp1.1 Pro35S:PSP1 arrested at the polarized stage. The tapetum from these lines displayed delayed and irregular development. The expression of PSP1 in the tapetum at critical stages of microspore development suggests that PSP1 activity in this cell layer is essential in pollen development. In addition to embryo death and male sterility, conditional psp1 mutants displayed a short-root phenotype, which was reverted in the presence of Ser. A metabolomic study demonstrated that the PPSB plays a crucial role in plant metabolism by affecting glycolysis, the tricarboxylic acid cycle, and the biosynthesis of amino acids. We provide evidence of the crucial role of the PPSB in embryo, pollen, and root development and suggest that this pathway is an important link connecting primary metabolism with development. PMID:23771893

  4. Stability and changes in astaxanthin ester composition from Haematococcus pluvialis during storage

    NASA Astrophysics Data System (ADS)

    Miao, Fengping; Geng, Yahong; Lu, Dayan; Zuo, Jincheng; Li, Yeguang

    2013-11-01

    In this paper, we investigated the effects of temperature, oxygen, antioxidants, and corn germ oil on the stability of astaxanthin from Haematococcus pluvialis under different storage conditions, and changes in the composition of astaxanthin esters during storage using high performance liquid chromatography and spectrophotometry. Oxygen and high temperatures (22-25°C) significantly reduced the stability of astaxanthin esters. Corn germ oil and antioxidants (ascorbic acid and vitamin E) failed to protect astaxanthin from oxidation, and actually significantly increased the instability of astaxanthin. A change in the relative composition of astaxanthin esters was observed after 96 weeks of long-term storage. During storage, the relative amounts of free astaxanthin and astaxanthin monoesters declined, while the relative amount of astaxanthin diesters increased. Thus, the ratio of astaxanthin diester to monoester increased, and this ratio could be used to indicate if astaxanthin esters have been properly preserved. If the ratio is greater than 0.2, it suggests that the decrease in astaxanthin content could be higher than 20%. Our results show that storing algal powder from H. pluvialis or other natural astaxanthin products under vacuum and in the dark below 4°C is the most economical and applicable storage method for the large-scale production of astaxanthin from H. pluvialis. This storage method can produce an astaxanthin preservation rate of at least 80% after 96 weeks of storage.

  5. Identification of a trichothecene gene cluster and description of the harzianum A biosynthesis pathway in the fungus Trichoderma arundinaceum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes are sesquiterpenes that act like mycotoxins. Their biosynthesis has been mainly studied in the fungal genera Fusarium, where most of the biosynthetic genes (tri) are grouped in a cluster regulated by ambient conditions and regulatory genes. Unexpectedly, few studies are available abou...

  6. The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis: identification and functional characterization of aldonolactonase.

    PubMed

    Ishikawa, Takahiro; Nishikawa, Hitoshi; Gao, Youngshun; Sawa, Yoshihiro; Shibata, Hitoshi; Yabuta, Yukinori; Maruta, Takanori; Shigeoka, Shigeru

    2008-11-07

    We have previously proposed that Euglena gracilis possesses a pathway for the production of ascorbate (AsA) through d-galacturonate/L-galactonate as representative intermediates ( Shigeoka, S., Nakano, Y., and Kitaoka, S. (1979) J. Nutr. Sci. Vitaminol. 25, 299-307 ). However, genetic evidence proving that the pathway exists has not been obtained yet. We report here the identification of a gene encoding aldonolactonase, which catalyzes a penultimate step of the biosynthesis of AsA in Euglena. By a BLAST search, we identified one candidate for the enzyme having significant sequence identity with rat gluconolactonase, a key enzyme for the production of AsA via d-glucuronate in animals. The purified recombinant aldonolactonase expressed in Escherichia coli catalyzed the reversible reaction of L-galactonate and L-galactono-1,4-lactone with zinc ion as a cofactor. The apparent K(m) values for L-galactonate and L-galactono-1,4-lactone were 1.55 +/- 0.3 and 1.67 +/- 0.39 mm, respectively. The cell growth of Euglena was arrested by silencing the expression of aldonolactonase through RNA interference and then restored to the normal state by supplementation with L-galactono-1,4-lactone. Euglena cells accumulated more AsA on supplementation with d-galacturonate than d-glucuronate. The present results indicate that aldonolactonase is significant for the biosynthesis of AsA in Euglena cells, which predominantly utilize the pathwayviad-galacturonate/L-galactonate. The identification of aldonolactonase provides the first insight into the biosynthesis of AsA via uronic acids as the intermediate in photosynthetic algae including Euglena.

  7. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission

    PubMed Central

    Parra-Lobato, Maria C.; Gomez-Jimenez, Maria C.

    2011-01-01

    After fruit ripening, many fruit-tree species undergo massive natural fruit abscission. Olive (Olea europaea L.) is a stone-fruit with cultivars such as Picual (PIC) and Arbequina (ARB) which differ in mature fruit abscission potential. Ethylene (ET) is associated with abscission, but its role during mature fruit abscission remains largely uncharacterized. The present study investigates the possible roles of ET and polyamine (PA) during mature fruit abscission by modulating genes involved in the ET signalling and biosynthesis pathways in the abscission zone (AZ) of both cultivars. Five ET-related genes (OeACS2, OeACO2, OeCTR1, OeERS1, and OeEIL2) were isolated in the AZ and adjacent cells (AZ–AC), and their expression in various olive organs and during mature fruit abscission, in relation to interactions between ET and PA and the expression induction of these genes, was determined. OeACS2, OeACO2, and OeEIL2 were found to be the only genes that were up-regulated in association with mature fruit abscission. Using the inhibition of ET and PA biosynthesis, it is demonstrated that OeACS2 and OeEIL2 expression are under the negative control of PA while ET induces their expression in AZ–AC. Furthermore, mature fruit abscission depressed nitric oxide (NO) production present mainly in the epidermal cells and xylem of the AZ. Also, NO production was differentially responsive to ET, PA, and different inhibitors. Taken together, the results indicate that PA-dependent ET signalling and biosynthesis pathways participate, at least partially, during mature fruit abscission, and that endogenous NO and 1-aminocyclopropane-1-carboxylic acid maintain an inverse correlation, suggesting an antagonistic action of NO and ET in abscission signalling. PMID:21633085

  8. A Novel Pathway for Triacylglycerol Biosynthesis Is Responsible for the Accumulation of Massive Quantities of Glycerolipids in the Surface Wax of Bayberry (Myrica pensylvanica) Fruit[OPEN

    PubMed Central

    Ohlrogge, John B.

    2016-01-01

    Bayberry (Myrica pensylvanica) fruits synthesize an extremely thick and unusual layer of crystalline surface wax that accumulates to 32% of fruit dry weight, the highest reported surface lipid accumulation in plants. The composition is also striking, consisting of completely saturated triacylglycerol, diacylglycerol, and monoacylglycerol with palmitate and myristate acyl chains. To gain insight into the unique properties of Bayberry wax synthesis, we examined the chemical and morphological development of the wax layer, monitored wax biosynthesis through [14C]-radiolabeling, and sequenced the transcriptome. Radiolabeling identified sn-2 monoacylglycerol as an initial glycerolipid intermediate. The kinetics of [14C]-DAG and [14C]-TAG accumulation and the regiospecificity of their [14C]-acyl chains indicated distinct pools of acyl donors and that final TAG assembly occurs outside of cells. The most highly expressed lipid-related genes were associated with production of cutin, whereas transcripts for conventional TAG synthesis were >50-fold less abundant. The biochemical and expression data together indicate that Bayberry surface glycerolipids are synthesized by a pathway for TAG synthesis that is related to cutin biosynthesis. The combination of a unique surface wax and massive accumulation may aid understanding of how plants produce and secrete non-membrane glycerolipids and also how to engineer alternative pathways for lipid production in non-seeds. PMID:26744217

  9. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus.

    PubMed

    Yahyaraeyat, R; Khosravi, A R; Shahbazzadeh, D; Khalaj, V

    2013-01-01

    This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription- polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC) for aflatoxinB1 (AFB1), aflatoxinB2 (AFB2), aflatoxinG1 (AFG1), aflatoxinG2 (AFG2) and aflatoxin total (AFTotal) production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm) on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm) nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity.

  10. Oxygen-dependent copper toxicity: targets in the chlorophyll biosynthesis pathway identified in the copper efflux ATPase CopA deficient mutant.

    PubMed

    Liotenberg, Sylviane; Steunou, Anne-Soisig; Durand, Anne; Bourbon, Marie-Line; Bollivar, David; Hansson, Mats; Astier, Chantal; Ouchane, Soufian

    2015-06-01

    Characterization of a copA(-) mutant in the purple photosynthetic bacterium Rubrivivax gelatinosus under low oxygen or anaerobic conditions, as well as in the human pathogen Neisseria gonorrhoeae identified HemN as a copper toxicity target enzyme in the porphyrin synthesis pathway. Heme synthesis is, however, unaffected by copper under high oxygen tension because of the aerobic coproporphyrinogen III oxidase HemF. Nevertheless, in the copA(-) mutant under aerobiosis, we show that the chlorophyll biosynthesis pathway is affected by excess copper resulting in a substantial decrease of the photosystem. Analyses of pigments and enzyme activity showed that under low copper concentrations, the mutant accumulated protochlorophyllide, suggesting that the protochlorophyllide reductase activity is affected by excess copper. Increase of copper concentration led to a complete lack of chlorophyll synthesis as a result of the loss of Mg-chelatase activity. Both enzymes are widely distributed from bacteria to plants; both are [4Fe-4S] proteins and oxygen sensitive; our data demonstrate their in vivo susceptibility to copper in the presence of oxygen. Additionally, our study provides the understanding of molecular mechanisms that may contribute to chlorosis in plants when exposed to metals. The role of copper efflux systems and the impact of copper on heme and chlorophyll biosynthesis in phototrophs are addressed.

  11. Astaxanthin: a potential therapeutic agent in cardiovascular disease.

    PubMed

    Fassett, Robert G; Coombes, Jeff S

    2011-03-21

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin.

  12. Accurate quantification of astaxanthin from Haematococcus crude extract spectrophotometrically

    NASA Astrophysics Data System (ADS)

    Li, Yeguang; Miao, Fengping; Geng, Yahong; Lu, Dayan; Zhang, Chengwu; Zeng, Mingtao

    2012-07-01

    The influence of alkali on astaxanthin and the optimal working wave length for measurement of astaxanthin from Haematococcus crude extract were investigated, and a spectrophotometric method for precise quantification of the astaxanthin based on the method of Boussiba et al. was established. According to Boussiba's method, alkali treatment destroys chlorophyll. However, we found that: 1) carotenoid content declined for about 25% in Haematococcus fresh cysts and up to 30% in dry powder of Haematococcus broken cysts after alkali treatment; and 2) dimethyl sulfoxide (DMSO)-extracted chlorophyll of green Haematococcus bares little absorption at 520-550 nm. Interestingly, a good linear relationship existed between absorbance at 530 nm and astaxanthin content, while an unknown interference at 540-550 nm was detected in our study. Therefore, with 530 nm as working wavelength, the alkali treatment to destroy chlorophyll was not necessary and the influence of chlorophyll, other carotenoids, and the unknown interference could be avoided. The astaxanthin contents of two samples were measured at 492 nm and 530 nm; the measured values at 530 nm were 2.617 g/100 g and 1.811 g/100 g. When compared with the measured values at 492 nm, the measured values at 530 nm decreased by 6.93% and 11.96%, respectively. The measured values at 530 nm are closer to the true astaxanthin contents in the samples. The data show that 530 nm is the most suitable wave length for spectrophotometric determination to the astaxanthin in Haematococcus crude extract.

  13. The de novo and salvage pathways of GDP-mannose biosynthesis are both sufficient for the growth of bloodstream-form Trypanosoma brucei.

    PubMed

    Kuettel, Sabine; Wadum, Majken C T; Güther, Maria Lucia S; Mariño, Karina; Riemer, Carolin; Ferguson, Michael A J

    2012-04-01

    The sugar nucleotide GDP-mannose is essential for Trypanosoma brucei. Phosphomannose isomerase occupies a key position on the de novo pathway to GDP-mannose from glucose, just before intersection with the salvage pathway from free mannose. We identified the parasite phosphomannose isomerase gene, confirmed that it encodes phosphomannose isomerase activity and localized the endogenous enzyme to the glycosome. We also created a bloodstream-form conditional null mutant of phosphomannose isomerase to assess the relative roles of the de novo and salvage pathways of GDP-mannose biosynthesis. Phosphomannose isomerase was found to be essential for parasite growth. However, supplementation of the medium with low concentrations of mannose, including that found in human plasma, relieved this dependence. Therefore, we do not consider phosphomannose isomerase to be a viable drug target. We further established culture conditions where we can control glucose and mannose concentrations and perform steady-state [U-(13) C]-D-glucose labelling. Analysis of the isotopic sugar composition of the parasites variant surface glycoprotein synthesized in cells incubated in 5 mM [U-(13) C]-D-glucose in the presence and absence of unlabelled mannose showed that, under physiological conditions, about 80% of GDP-mannose synthesis comes from the de novo pathway and 20% from the salvage pathway.

  14. Echinomycin biosynthesis.

    PubMed

    Sato, Michio; Nakazawa, Takehito; Tsunematsu, Yuta; Hotta, Kinya; Watanabe, Kenji

    2013-08-01

    Echinomycin is an antitumor antibiotic secondary metabolite isolated from streptomycetes, whose core structure is biosynthesized by nonribosomal peptide synthetase (NRPS). The echinomycin biosynthetic pathway was successfully reconstituted in Escherichia coli. NRPS often contains a thioesterase domain at its C terminus for cyclorelease of the elongating peptide chain. Those thioesterase domains were shown to exhibit significant substrate tolerance. More recently, an oxidoreductase Ecm17, which forms the disulfide bridge in triostin A, was characterized. Surprisingly, an unrelated disulfide-forming enzyme GliT for gliotoxin biosynthesis was also able to catalyze the same reaction, providing another example of broad substrate specificity in secondary metabolite biosynthetic enzymes. Those promiscuous catalysts can be a valuable tool in generating diversity in natural products analogs we can produce heterologously.

  15. Biochemical and Phylogenetic Characterization of a Novel Diaminopimelate Biosynthesis Pathway in Prokaryotes Identifies a Diverged Form of ll-Diaminopimelate Aminotransferase▿ †

    PubMed Central

    Hudson, André O.; Gilvarg, Charles; Leustek, Thomas

    2008-01-01

    A variant of the diaminopimelate (DAP)-lysine biosynthesis pathway uses an ll-DAP aminotransferase (DapL, EC 2.6.1.83) to catalyze the direct conversion of l-2,3,4,5-tetrahydrodipicolinate to ll-DAP. Comparative genomic analysis and experimental verification of DapL candidates revealed the existence of two diverged forms of DapL (DapL1 and DapL2). DapL orthologs were identified in eubacteria and archaea. In some species the corresponding dapL gene was found to lie in genomic contiguity with other dap genes, suggestive of a polycistronic structure. The DapL candidate enzymes were found to cluster into two classes sharing approximately 30% amino acid identity. The function of selected enzymes from each class was studied. Both classes were able to functionally complement Escherichia coli dapD and dapE mutants and to catalyze ll-DAP transamination, providing functional evidence for a role in DAP/lysine biosynthesis. In all cases the occurrence of dapL in a species correlated with the absence of genes for dapD and dapE representing the acyl DAP pathway variants, and only in a few cases was dapL coincident with ddh encoding meso-DAP dehydrogenase. The results indicate that the DapL pathway is restricted to specific lineages of eubacteria including the Cyanobacteria, Desulfuromonadales, Firmicutes, Bacteroidetes, Chlamydiae, Spirochaeta, and Chloroflexi and two archaeal groups, the Methanobacteriaceae and Archaeoglobaceae. PMID:18310350

  16. Mutations in Escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway.

    PubMed

    Perez-Gil, Jordi; Uros, Eva Maria; Sauret-Güeto, Susanna; Lois, L Maria; Kirby, James; Nishimoto, Minobu; Baidoo, Edward E K; Keasling, Jay D; Boronat, Albert; Rodriguez-Concepcion, Manuel

    2012-01-01

    A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway.

  17. A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum.

    PubMed

    Fernández-Aguado, Marta; Teijeira, Fernando; Martín, Juan F; Ullán, Ricardo V

    2013-01-01

    The knowledge about enzymes' compartmentalization and transport processes involved in the penicillin biosynthesis in Penicillium chrysogenum is very limited. The genome of this fungus contains multiple genes encoding transporter proteins, but very little is known about them. A bioinformatic search was made to find major facilitator supefamily (MFS) membrane proteins related to CefP transporter protein involved in the entry of isopenicillin N to the peroxisome in Acremonium chrysogenum. No strict homologue of CefP was observed in P. chrysogenum, but the penV gene was found to encode a membrane protein that contained 10 clear transmembrane spanners and two other motifs COG5594 and DUF221, typical of membrane proteins. RNAi-mediated silencing of penV gene provoked a drastic reduction of the production of the δ-(L-α-aminoadipyl-L-cysteinyl-D-valine) (ACV) and isopenicillin N intermediates and the final product of the pathway. RT-PCR and northern blot analyses confirmed a reduction in the expression levels of the pcbC and penDE biosynthetic genes, whereas that of the pcbAB gene increased. Localization studies by fluorescent laser scanning microscopy using Dsred and GFP fluorescent fusion proteins and the FM 4-64 fluorescent dye showed clearly that the protein was located in the vacuolar membrane. These results indicate that PenV participates in the first stage of the beta-lactam biosynthesis (i.e., the formation of the ACV tripeptide), probably taking part in the supply of amino acids from the vacuolar lumen to the vacuole-anchored ACV synthetase. This is in agreement with several reports on the localization of the ACV synthetase and provides increased evidence for a compartmentalized storage of precursor amino acids for non-ribosomal peptides. PenV is the first MFS transporter of P. chrysogenum linked to the beta-lactam biosynthesis that has been located in the vacuolar membrane.

  18. Analyses of MbtB, MbtE, and MbtF Suggest Revisions to the Mycobactin Biosynthesis Pathway in Mycobacterium tuberculosis

    PubMed Central

    McMahon, Matthew D.; Rush, Jason S.

    2012-01-01

    The production of mycobactin (MBT) by Mycobacterium tuberculosis is essential for this bacterium to access iron when it is in an infected host. Due to this essential function, there is considerable interest in deciphering the mechanism of MBT assembly, with the goal of targeting select biosynthetic steps for antituberculosis drug development. The proposed scheme for MBT biosynthesis involves assembly of the MBT backbone by a hybrid nonribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) megasynthase followed by the tailoring of this backbone by N6 acylation of the central l-Lys residue and subsequent N6-hydroxylation of the central N6-acyl-l-Lys and the terminal caprolactam. A complete testing of this hypothesis has been hindered by the inability to heterologously produce soluble megasynthase components. Here we show that soluble forms of the NRPS components MbtB, MbtE, and MbtF are obtained when these enzymes are coproduced with MbtH. Using these soluble enzymes we determined the amino acid specificity of each adenylation (A) domain. These results suggest that the proposed tailoring enzymes are actually involved in precursor biosynthesis since the A domains of MbtE and MbtF are specific for N6-acyl-N6-hydroxy-l-Lys and N6-hydroxy-l-Lys, respectively. Furthermore, the preference of the A domain of MbtB for l-Thr over l-Ser suggests that the megasynthase produces MBT derivatives with β-methyl oxazoline rings. Since the most prominent form of MBT produced by M. tuberculosis lacks this β-methyl group, a mechanism for demethylation remains to be discovered. These results suggest revisions to the MBT biosynthesis pathway while also identifying new targets for antituberculosis drug development. PMID:22447909

  19. Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli

    PubMed Central

    2012-01-01

    Background With the increasing stress from oil price and environmental pollution, aroused attention has been paid to the microbial production of chemicals from renewable sources. The C12/14 and C16/18 alcohols are important feedstocks for the production of surfactants and detergents, which are widely used in the most respected consumer detergents, cleaning products and personal care products worldwide. Though bioproduction of fatty alcohols has been carried out in engineered E. coli, several key problems have not been solved in earlier studies, such as the quite low production of C16/18 alcohol, the lack of optimization of the fatty alcohol biosynthesis pathway, and the uncharacterized performance of the engineered strains in scaled-up system. Results We improved the fatty alcohol production by systematically optimizing the fatty alcohol biosynthesis pathway, mainly targeting three key steps from fatty acyl-acyl carrier proteins (ACPs) to fatty alcohols, which are sequentially catalyzed by thioesterase, acyl-coenzyme A (CoA) synthase and fatty acyl-CoA reductase. By coexpression of thioesterase gene BTE, acyl-CoA synthase gene fadD and fatty acyl-CoA reductase gene acr1, 210.1 mg/L C12/14 alcohol was obtained. A further optimization of expression level of BTE, fadD and acr1 increased the C12/14 alcohol production to 449.2 mg/L, accounting for 75.0% of the total fatty alcohol production (598.6 mg/L). In addition, by coexpression of thioesterase gene ‘tesA, acyl-CoA synthase gene fadD and fatty acyl-CoA reductase gene FAR, 101.5 mg/L C16/18 alcohol was obtained, with C16/18 alcohol accounting for 89.2% of the total fatty alcohol production. Conclusions To our knowledge, this is the first report on selective production of C12/14 and C16/18 alcohols by microbial fermentation. This work achieved high-specificity production of both C12/14 and C16/18 alcohols. The encouraging 598.6 mg/L of fatty alcohols represents the highest titer reported so far. In

  20. Characterization of the Caulobacter crescentus Holdfast Polysaccharide Biosynthesis Pathway Reveals Significant Redundancy in the Initiating Glycosyltransferase and Polymerase Steps▿

    PubMed Central

    Toh, Evelyn; Kurtz, Harry D.; Brun, Yves V.

    2008-01-01

    Caulobacter crescentus cells adhere to surfaces by using an extremely strong polar adhesin called the holdfast. The polysaccharide component of the holdfast is comprised in part of oligomers of N-acetylglucosamine. The genes involved in the export of the holdfast polysaccharide and the anchoring of the holdfast to the cell were previously discovered. In this study, we identified a cluster of polysaccharide biosynthesis genes (hfsEFGH) directly adjacent to the holdfast polysaccharide export genes. Sequence analysis indicated that these genes are involved in the biosynthesis of the minimum repeat unit of the holdfast polysaccharide. HfsE is predicted to be a UDP-sugar lipid-carrier transferase, the glycosyltransferase that catalyzes the first step in polysaccharide biosynthesis. HfsF is predicted to be a flippase, HfsG is a glycosyltransferase, and HfsH is similar to a polysaccharide (chitin) deacetylase. In-frame hfsG and hfsH deletion mutants resulted in severe deficiencies both in surface adhesion and in binding to the holdfast-specific lectin wheat germ agglutinin. In contrast, hfsE and hfsF mutants exhibited nearly wild-type levels of adhesion and holdfast synthesis. We identified three paralogs to hfsE, two of which are redundant to hfsE for holdfast synthesis. We also identified a redundant paralog to the hfsC gene, encoding the putative polysaccharide polymerase, and present evidence that the hfsE and hfsC paralogs, together with the hfs genes, are absolutely required for proper holdfast synthesis. PMID:18757530

  1. Astaxanthin as a Potential Neuroprotective Agent for Neurological Diseases

    PubMed Central

    Wu, Haijian; Niu, Huanjiang; Shao, Anwen; Wu, Cheng; Dixon, Brandon J.; Zhang, Jianmin; Yang, Shuxu; Wang, Yirong

    2015-01-01

    Neurological diseases, which consist of acute injuries and chronic neurodegeneration, are the leading causes of human death and disability. However, the pathophysiology of these diseases have not been fully elucidated, and effective treatments are still lacking. Astaxanthin, a member of the xanthophyll group, is a red-orange carotenoid with unique cell membrane actions and diverse biological activities. More importantly, there is evidence demonstrating that astaxanthin confers neuroprotective effects in experimental models of acute injuries, chronic neurodegenerative disorders, and neurological diseases. The beneficial effects of astaxanthin are linked to its oxidative, anti-inflammatory, and anti-apoptotic characteristics. In this review, we will focus on the neuroprotective properties of astaxanthin and explore the underlying mechanisms in the setting of neurological diseases. PMID:26378548

  2. The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control.

    PubMed

    Millerioux, Yoann; Ebikeme, Charles; Biran, Marc; Morand, Pauline; Bouyssou, Guillaume; Vincent, Isabel M; Mazet, Muriel; Riviere, Loïc; Franconi, Jean-Michel; Burchmore, Richard J S; Moreau, Patrick; Barrett, Michael P; Bringaud, Frédéric

    2013-10-01

    The Trypanosoma brucei procyclic form resides within the digestive tract of its insect vector, where it exploits amino acids as carbon sources. Threonine is the amino acid most rapidly consumed by this parasite, however its role is poorly understood. Here, we show that the procyclic trypanosomes grown in rich medium only use glucose and threonine for lipid biosynthesis, with threonine's contribution being ∼ 2.5 times higher than that of glucose. A combination of reverse genetics and NMR analysis of excreted end-products from threonine and glucose metabolism, shows that acetate, which feeds lipid biosynthesis, is also produced primarily from threonine. Interestingly, the first enzymatic step of the threonine degradation pathway, threonine dehydrogenase (TDH, EC 1.1.1.103), is under metabolic control and plays a key role in the rate of catabolism. Indeed, a trypanosome mutant deleted for the phosphoenolpyruvate decarboxylase gene (PEPCK, EC 4.1.1.49) shows a 1.7-fold and twofold decrease of TDH protein level and activity, respectively, associated with a 1.8-fold reduction in threonine-derived acetate production. We conclude that TDH expression is under control and can be downregulated in response to metabolic perturbations, such as in the PEPCK mutant in which the glycolytic metabolic flux was redirected towards acetate production.

  3. Identification of LmUAP1 as a 20-hydroxyecdysone response gene in the chitin biosynthesis pathway from the migratory locust, Locusta migratoria.

    PubMed

    Liu, Xiao-Jian; Sun, Ya-Wen; Li, Da-Qi; Li, Sheng; Ma, En-Bo; Zhang, Jian-Zhen

    2016-10-03

    In Locusta migratoria, we found that two chitin biosynthesis genes, UDP N-acetylglucosamine pyrophosphorylase gene LmUAP1 and chitin synthase gene LmCHS1, are expressed mainly in the integument and are responsible for cuticle formation. However, whether these genes are regulated by 20-hydroxyecdysone (20E) is still largely unclear. Here, we showed the developmental expression pattern of LmUAP1, LmCHS1 and the corresponding 20E titer during the last instar nymph stage of locust. RNA interference (RNAi) directed toward a common region of the two isoforms of LmEcR (LmEcRcom) reduced the expression level of LmUAP1, while there was no difference in the expression of LmCHS1. Meantime, injection of 20E in vivo induced the expression of LmUAP1 but not LmCHS1. Further, we found injection-based RNAi of LmEcRcom resulted in 100% mortality. The locusts failed to molt with no apolysis, and maintained in the nymph stage until death. In conclusion, our preliminary results indicated that LmUAP1 in the chitin biosynthesis pathway is a 20E late-response gene and LmEcR plays an essential role in locust growth and development, which could be a good potential target for RNAi-based pest control.

  4. A NADP-glutamate dehydrogenase mutant of the petit-negative yeast Kluyveromyces lactis uses the glutamine synthetase-glutamate synthase pathway for glutamate biosynthesis.

    PubMed

    Valenzuela, L; Guzmán-León, S; Coria, R; Ramírez, J; Aranda, C; González, A

    1995-10-01

    The activities of the enzymes involved in ammonium assimilation and glutamate biosynthesis were determined in wild-type and NADP-glutamate dehydrogenase (GDH) null mutant strains of Kluyveromyces lactis. The specific NADP-GDH activity from K. lactis was fivefold lower than that found in Saccharomyces cerevisiae. The glutamine synthetase (GS) and glutamate synthase (GOGAT) activities were similar to those reported in S. cerevisiae. The NADP-GDH null mutant was obtained by transforming the uraA strain MD2/1 with a linearized integrative yeast vector harbouring a 390 bp fragment of the NADP-GDH structural gene. This mutant grew as well as the parent strain on ammonium, but showed GS and GOGAT activities higher that those found in the wild-type strain, implying that the GS-GOGAT pathway could play a leading role in glutamate biosynthesis in K. lactis. Southern blotting analysis of K. lactis chromosomes separated by contour-clamped homogeneous electric field electrophoresis, indicated that the NADP-GDH structural gene is localized on chromosome VI.

  5. Assessment of Metabolic Changes in Mycobacterium smegmatis Wild-Type and alr Mutant Strains: Evidence of a New Pathway of d-Alanine Biosynthesis.

    PubMed

    Marshall, Darrell D; Halouska, Steven; Zinniel, Denise K; Fenton, Robert J; Kenealy, Katie; Chahal, Harpreet K; Rathnaiah, Govardhan; Barletta, Raúl G; Powers, Robert

    2017-03-03

    In mycobacteria, d-alanine is an essential precursor for peptidoglycan biosynthesis. The only confirmed enzymatic pathway to form d-alanine is through the racemization of l-alanine by alanine racemase (Alr, EC 5.1.1.1). Nevertheless, the essentiality of Alr in Mycobacterium tuberculosis and Mycobacterium smegmatis for cell survivability in the absence of d-alanine has been a point of controversy with contradictory results reported in the literature. To address this issue, we examined the effects of alr inactivation on the cellular metabolism of M. smegmatis. The M. smegmatis alr insertion mutant TAM23 exhibited essentially identical growth to wild-type mc(2)155 in the absence of d-alanine. NMR metabolomics revealed drastically distinct phenotypes between mc(2)155 and TAM23. A metabolic switch was observed for TAM23 as a function of supplemented d-alanine. In the absence of d-alanine, the metabolic response directed carbon through an unidentified transaminase to provide the essential d-alanine required for survival. The process is reversed when d-alanine is available, in which the d-alanine is directed to peptidoglycan biosynthesis. Our results provide further support for the hypothesis that Alr is not an essential function of M. smegmatis and that specific Alr inhibitors will have no bactericidal action.

  6. Potential of a Saccharomyces cerevisiae recombinant strain lacking ethanol and glycerol biosynthesis pathways in efficient anaerobic bioproduction

    PubMed Central

    Hirasawa, Takashi; Ida, Yoshihiro; Furuasawa, Chikara; Shimizu, Hiroshi

    2014-01-01

    Saccharomyces cerevisiae shows high growth activity under low pH conditions and can be used for producing acidic chemicals such as organic acids as well as fuel ethanol. However, ethanol can also be a problematic by-product in the production of chemicals except for ethanol. We have reported that a stable low-ethanol production phenotype was achieved by disrupting 6 NADH-dependent alcohol dehydrogenase genes of S. cerevisiae. Moreover, the genes encoding the NADH-dependent glycerol biosynthesis enzymes were further disrupted because the ADH-disrupted recombinant strain showed high glycerol production to maintain intracellular redox balance. The recombinant strain incapable producing ethanol and glycerol could have the potential to be a host for producing metabolite(s) whose biosynthesis is coupled with NADH oxidation. Indeed, we successfully achieved almost 100% yield for L-lactate production using this recombinant strain as a host. In addition, the potential of our constructed recombinant strain for efficient bioproduction, particularly under anaerobic conditions, is also discussed. PMID:24247205

  7. Enhanced astaxanthin production from Haematococcus pluvialis using butylated hydroxyanisole.

    PubMed

    Shang, Minmin; Ding, Wei; Zhao, Yongteng; Xu, Jun-Wei; Zhao, Peng; Li, Tao; Ma, Huixian; Yu, Xuya

    2016-10-20

    Haematococcus pluvialis is a promising natural source of high-value antioxidant astaxanthin under stress conditions. Biotic or abiotic elicitors are effective strategies for improving astaxanthin production in H. pluvialis. Butylated hydroxyanisole (BHA) was identified as an effective inducer for H. pluvialis LUGU. Under a treatment of 2mgL(-1) BHA (BHA2), astaxanthin content reached a maximum of 29.03mgg(-1) dry weight (DW) (2.03-fold of that in the control) after 12day of the mid-exponential growth phase. Subsequently, H. pluvialis LUGU was subjected to BHA2 at different growth phases because an appropriate time node for adding elicitors is vital for the entire production to succeed. As a result, the highest astaxanthin content (29.3mgg(-1) DW) was obtained in cells on day 14 (BHA2 14) of the late-exponential growth phase. Furthermore, the samples treated with BHA2 14 and the control group were compared in terms of the transcriptional expression of seven carotenogenesis genes, fatty acid composition, and total accumulated astaxanthin. All selected genes exhibited up-regulated expression profiles, with chy, crtO, and bkt exhibiting higher maximum transcriptional levels than the rest. Oleic acid content increased 33.15-fold, with acp, fad, and kas expression being enhanced on the day when astaxanthin was produced rapidly.

  8. Evaluation of hepatoprotective and antioxidant activity of astaxanthin and astaxanthin esters from microalga-Haematococcus pluvialis.

    PubMed

    Rao, A Ranga; Sarada, R; Shylaja, M D; Ravishankar, G A

    2015-10-01

    Effect of isolated astaxanthin (ASX) and astaxanthin esters (ASXEs) from green microalga-Haematococcus pluvialis on hepatotoxicity and antioxidant activity against carbon tetrachloride (CCl4) induced toxicity in rats was compared with synthetic astaxanthin (SASX). ASX, ASXEs, and SASX, all dissolved in olive oil, fed to rats with 100 and 250 μg/kg b.w for 14 days. They were evaluated for their hepatoprotective and antioxidant activity by measuring appropriate enzymes. Among the treated groups, the SGPT, SGOT and ALP levels were decreased by 2, 2.4, and 1.5 fold in ASXEs treated group at 250 μg/Kg b.w. when compared to toxin group. Further, antioxidant enzymes catalase, glutathione, superoxide dismutase and lipid peroxidase levels were estimated in treated groups, their levels were reduced by 30-50 % in the toxin group, however these levels restored by 136.95 and 238.48 % in ASXEs treated group at 250 μg/kg. The lipid peroxidation was restored by 5.2 and 2.8 fold in ASXEs and ASX treated groups at 250 μg/kg. The total protein, albumin and bilirubin contents were decreased in toxin group, whereas normalized in ASXEs treated group. These results indicates that ASX and ASXEs have better hepatoprotection and antioxidant activity, therefore can be used in pharmaceutical and nutraceutical applications and also extended to use as food colorant.

  9. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis.

    PubMed

    Li, Jian; Zhu, Daling; Niu, Jianfeng; Shen, Songdong; Wang, Guangce

    2011-01-01

    Although natural sources have long been exploited for astaxanthin production, it is still uncertain if natural astaxanthin can be produced at lower cost than that of synthetic astaxanthin or not. In order to give a comprehensive cost analysis of astaxanthin production from Haematococcus, a pilot plant with two large scale outdoor photobioreactors and a raceway pond was established and operated for 2 years to develop processes for astaxanthin production from Haematococcus. The developed processes were scaled up to a hypothetical plant with a production capacity about 900 kg astaxanthin per year, and the process economics was preliminarily assessed. Based on the analysis, the production cost of astaxanthin and microalgae biomass can be as low as $718/kg and $18/kg respectively. The results are very encouraging because the estimated cost might be lower than that of chemically synthesized astaxanthin.

  10. THE E2/FRB PATHWAY REGULATION OF DNA REPLICATION AND PROTEIN BIOSYNTHESIS

    EPA Science Inventory

    The E2F/Rb pathway plays a pivotal role in the control of cell cycle progression and regulates the expression of genes required for Gl/S transition. Our study examines the genomic response in Drosophila embryos after overexpression and mutation of E2F/Rb pathway molecules. Hierar...

  11. Multiple Mechanisms of Anti-Cancer Effects Exerted by Astaxanthin

    PubMed Central

    Zhang, Li; Wang, Handong

    2015-01-01

    Astaxanthin (ATX) is a xanthophyll carotenoid which has been approved by the United States Food and Drug Administration (USFDA) as food colorant in animal and fish feed. It is widely found in algae and aquatic animals and has powerful anti-oxidative activity. Previous studies have revealed that ATX, with its anti-oxidative property, is beneficial as a therapeutic agent for various diseases without any side effects or toxicity. In addition, ATX also shows preclinical anti-tumor efficacy both in vivo and in vitro in various cancer models. Several researches have deciphered that ATX exerts its anti-proliferative, anti-apoptosis and anti-invasion influence via different molecules and pathways including signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptor gamma (PPARγ). Hence, ATX shows great promise as chemotherapeutic agents in cancer. Here, we review the rapidly advancing field of ATX in cancer therapy as well as some molecular targets of ATX. PMID:26184238

  12. A Decade of Molecular Understanding of Withanolide Biosynthesis and In vitro Studies in Withania somnifera (L.) Dunal: Prospects and Perspectives for Pathway Engineering

    PubMed Central

    Dhar, Niha; Razdan, Sumeer; Rana, Satiander; Bhat, Wajid W.; Vishwakarma, Ram; Lattoo, Surrinder K.

    2015-01-01

    Withania somnifera, a multipurpose medicinal plant is a rich reservoir of pharmaceutically active triterpenoids that are steroidal lactones known as withanolides. Though the plant has been well-characterized in terms of phytochemical profiles as well as pharmaceutical activities, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. This scenario limits biotechnological interventions for enhanced production of bioactive compounds. Nevertheless, recent emergent trends vis-à-vis, the exploration of genomic, transcriptomic, proteomic, metabolomics, and in vitro studies have opened new vistas regarding pathway engineering of withanolide production. During recent years, various strategic pathway genes have been characterized with significant amount of regulatory studies which allude toward development of molecular circuitries for production of key intermediates or end products in heterologous hosts. Another pivotal aspect covering redirection of metabolic flux for channelizing the precursor pool toward enhanced withanolide production has also been attained by deciphering decisive branch point(s) as robust targets for pathway modulation. With these perspectives, the current review provides a detailed overview of various studies undertaken by the authors and collated literature related to molecular and in vitro approaches employed in W. somnifera for understanding various molecular network interactions in entirety. PMID:26640469

  13. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis.

    PubMed

    Piek, Susannah; Kahler, Charlene M

    2012-01-01

    The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism.

  14. Functional and Structural Characterization of Polysaccharide Co-polymerase Proteins Required for Polymer Export in ATP-binding Cassette Transporter-dependent Capsule Biosynthesis Pathways*

    PubMed Central

    Larue, Kane; Ford, Robert C.; Willis, Lisa M.; Whitfield, Chris

    2011-01-01

    Neisseria meningitidis serogroup B and Escherichia coli K1 bacteria produce a capsular polysaccharide (CPS) that is composed of α2,8-linked polysialic acid (PSA). Biosynthesis of PSA in these bacteria occurs via an ABC (ATP-binding cassette) transporter-dependent pathway. In N. meningitidis, export of PSA to the surface of the bacterium requires two proteins that form an ABC transporter (CtrC and CtrD) and two additional proteins, CtrA and CtrB, that are proposed to form a cell envelope-spanning export complex. CtrA is a member of the outer membrane polysaccharide export (OPX) family of proteins, which are proposed to form a pore to mediate export of CPSs across the outer membrane. CtrB is an inner membrane protein belonging to the polysaccharide co-polymerase (PCP) family. PCP proteins involved in other bacterial polysaccharide assembly systems form structures that extend into the periplasm from the inner membrane. There is currently no structural information available for PCP or OPX proteins involved in an ABC transporter-dependent CPS biosynthesis pathway to support their proposed roles in polysaccharide export. Here, we report cryo-EM images of purified CtrB reconstituted into lipid bilayers. These images contained molecular top and side views of CtrB and showed that it formed a conical oligomer that extended ∼125 Å from the membrane. This structure is consistent with CtrB functioning as a component of an envelope-spanning complex. Cross-complementation of CtrA and CtrB in E. coli mutants with defects in genes encoding the corresponding PCP and OPX proteins show that PCP-OPX pairs require interactions with their cognate partners to export polysaccharide. These experiments add further support for the model of an ABC transporter-PCP-OPX multiprotein complex that functions to export CPS across the cell envelope. PMID:21454677

  15. Over-expression of DXS gene enhances terpenoidal secondary metabolite accumulation in rose-scented geranium and Withania somnifera: active involvement of plastid isoprenogenic pathway in their biosynthesis.

    PubMed

    Jadaun, Jyoti Singh; Sangwan, Neelam S; Narnoliya, Lokesh K; Singh, Neha; Bansal, Shilpi; Mishra, Bhawana; Sangwan, Rajender Singh

    2017-04-01

    Rose-scented geranium (Pelargonium spp.) is one of the most important aromatic plants and is well known for its diverse perfumery uses. Its economic importance is due to presence of fragrance rich essential oil in its foliage. The essential oil is a mixture of various volatile phytochemicals which are mainly terpenes (isoprenoids) in nature. In this study, on the geranium foliage genes related to isoprenoid biosynthesis (DXS, DXR and HMGR) were isolated, cloned and confirmed by sequencing. Further, the first gene of 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, 1-deoxy-d-xylulose-5-phosphate synthase (GrDXS), was made full length by using rapid amplification of cDNA ends strategy. GrDXS contained a 2157 bp open reading frame that encoded a polypeptide of 792 amino acids having calculated molecular weight 77.5 kDa. This study is first report on heterologous expression and kinetic characterization of any gene from this economically important plant. Expression analysis of these genes was performed in different tissues as well as at different developmental stages of leaves. In response to external elicitors, such as methyl jasmonate, salicylic acid, light and wounding, all the three genes showed differential expression profiles. Further GrDXS was over expressed in the homologous (rose-scented geranium) as well as in heterologous (Withania somnifera) plant systems through genetic transformation approach. The over-expression of GrDXS led to enhanced secondary metabolites production (i.e. essential oil in rose-scented geranium and withanolides in W. somnifera). To the best of our knowledge, this is the first report showing the expression profile of the three genes related to isoprenoid biosynthesis pathways operated in rose-scented geranium as well as functional characterization study of any gene from rose-scented geranium through a genetic transformation system.

  16. Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L.

    PubMed

    Bose, Subir K; Yadav, Ritesh Kumar; Mishra, Smrati; Sangwan, Rajender S; Singh, A K; Mishra, B; Srivastava, A K; Sangwan, Neelam S

    2013-05-01

    Extensive research is going on throughout the world to find out new molecules from natural sources to be used as plant growth promoter. Mentha arvensis L. is the main source of menthol rich essential oil used commercially in various food, pharmaceutical and other preparations. Experiments were conducted on field grown plants for understanding the effect of calliterpenone (CA), a stereo-isomer of abbeokutone, in comparison to gibberellic acid (GA3) on growth attributes, trichomes, essential oil biosynthesis and expression of some oil biosynthetic pathway genes. The exogenous application of CA (1 μM, 10 μM and 100 μM) was found to be better in improving plant biomass and stolon yield, leaf area, branching and leaf stem ratio than with counterpart GA3 at the same concentrations. CA treated plants showed higher glandular trichome number, density and diameter and also correlated with enhanced oil biogenetic capacity as revealed by feeding labeled (14)C-sucrose for 72 h to excised shoots. Semi-quantitative PCR analysis of key pathway genes revealed differential up regulation under CA treatments. Transcript level of menthol dehydrogenase/menthone reductase was found highly up regulated in CA treated plants with increased content of menthone and menthol in oil. These findings demonstrate that CA positively regulated the yields by enhanced branching and higher density of trichomes resulting into higher accumulation of essential oil. The results suggest CA as a novel plant derived diterpenoid with growth promoting action and opens up new possibilities for improving the crop yields and essential oil biosynthesis in qualitative and quantitative manner.

  17. De Novo Transcriptome Analysis of an Aerial Microalga Trentepohlia jolithus: Pathway Description and Gene Discovery for Carbon Fixation and Carotenoid Biosynthesis

    PubMed Central

    Li, Qianqian; Liu, Jianguo; Zhang, Litao; Liu, Qian

    2014-01-01

    Background Algae in the order Trentepohliales have a broad geographic distribution and are generally characterized by the presence of abundant β-carotene. The many monographs published to date have mainly focused on their morphology, taxonomy, phylogeny, distribution and reproduction; molecular studies of this order are still rare. High-throughput RNA sequencing (RNA-Seq) technology provides a powerful and efficient method for transcript analysis and gene discovery in Trentepohlia jolithus. Methods/Principal Findings Illumina HiSeq 2000 sequencing generated 55,007,830 Illumina PE raw reads, which were assembled into 41,328 assembled unigenes. Based on NR annotation, 53.28% of the unigenes (22,018) could be assigned to gene ontology classes with 54 subcategories and 161,451 functional terms. A total of 26,217 (63.44%) assembled unigenes were mapped to 128 KEGG pathways. Furthermore, a set of 5,798 SSRs in 5,206 unigenes and 131,478 putative SNPs were identified. Moreover, the fact that all of the C4 photosynthesis genes exist in T. jolithus suggests a complex carbon acquisition and fixation system. Similarities and differences between T. jolithus and other algae in carotenoid biosynthesis are also described in depth. Conclusions/Significance This is the first broad transcriptome survey for T. jolithus, increasing the amount of molecular data available for the class Ulvophyceae. As well as providing resources for functional genomics studies, the functional genes and putative pathways identified here will contribute to a better understanding of carbon fixation and fatty acid and carotenoid biosynthesis in T. jolithus. PMID:25254555

  18. BIOCHEMICAL AND GENETIC CHARACTERIZATION OF AN EARLY STEP IN A NOVEL PATHWAY FOR THE BIOSYNTHESIS OF AROMATIC AMINO ACIDS AND P-AMINOBENZOIC ACID IN THE ARCHAEON METHANOCOCCUS MARIPALUDIS

    EPA Science Inventory

    Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon and facultative autotroph capable of biosynthesizing all the amino acids and vitamins required for growth. In this work, the novel 6-deoxy-5-ketofructose-1-phosphate (DKFP) pathway for the biosynthesis ...

  19. Genome-enabled determination of amino acid biosynthesis in Xanthomonas campestris pv. campestris and identification of biosynthetic pathways for alanine, glycine, and isoleucine by 13C-isotopologue profiling.

    PubMed

    Schatschneider, Sarah; Vorhölter, Frank-Jörg; Rückert, Christian; Becker, Anke; Eisenreich, Wolfgang; Pühler, Alfred; Niehaus, Karsten

    2011-10-01

    To elucidate the biosynthetic pathways for all proteinogenic amino acids in Xanthomonas campestris pv. campestris, this study combines results obtained by in silico genome analysis and by (13)C-NMR-based isotopologue profiling to provide a panoramic view on a substantial section of bacterial metabolism. Initially, biosynthesis pathways were reconstructed from an improved annotation of the complete genome of X. campestris pv. campestris B100. This metabolic reconstruction resulted in the unequivocal identification of biosynthesis routes for 17 amino acids in total: arginine, asparagine, aspartate, cysteine, glutamate, glutamine, histidine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. Ambiguous pathways were reconstructed from the genome data for alanine, glycine, and isoleucine biosynthesis. (13)C-NMR analyses supported the identification of the metabolically active pathways. The biosynthetic routes for these amino acids were derived from the precursor molecules pyruvate, serine, and pyruvate, respectively. By combining genome analysis and isotopologue profiling, a comprehensive set of biosynthetic pathways covering all proteinogenic amino acids was unraveled for this plant pathogenic bacterium, which plays an important role in biotechnology as a producer of the exopolysaccharide xanthan. The data obtained lay ground for subsequent functional analyses in post-genomics and biotechnology, while the innovative combination of in silico and wet lab technology described here is promising as a general approach to elucidate metabolic pathways.

  20. Genes of the de novo and Salvage Biosynthesis Pathways of Vitamin B6 are Regulated under Oxidative Stress in the Plant Pathogen Rhizoctonia solani

    PubMed Central

    Samsatly, Jamil; Chamoun, Rony; Gluck-Thaler, Emile; Jabaji, Suha

    2016-01-01

    Vitamin B6 is recognized as an important cofactor required for numerous metabolic enzymes, and has been shown to act as an antioxidant and play a role in stress responses. It can be synthesized through two different routes: salvage and de novo pathways. However, little is known about the possible function of the vitamin B6 pathways in the fungal plant pathogen Rhizoctonia solani. Using genome walking, the de novo biosynthetic pathway genes; RsolPDX1 and RsolPDX2 and the salvage biosynthetic pathway gene, RsolPLR were sequenced. The predicted amino acid sequences of the three genes had high degrees of similarity to other fungal PDX1, PDX2, and PLR proteins and are closely related to other R. solani anastomosis groups. We also examined their regulation when subjected to reactive oxygen species (ROS) stress inducers, the superoxide generator paraquat, or H2O2, and compared it to the well-known antioxidant genes, catalase and glutathione-S-transferase (GST). The genes were differentially regulated with transcript levels as high as 33 fold depending on the gene and type of stress reflecting differences in the type of damage induced by ROS. Exogenous addition of the vitamers PN or PLP in culture medium significantly induced the transcription of the vitamin B6 de novo encoding genes as early as 0.5 hour post treatment (HPT). On the other hand, transcription of RsolPLR was vitamer-specific; a down regulation upon supplementation of PN and upregulation with PLP. Our results suggest that accumulation of ROS in R. solani mycelia is linked to transcriptional regulation of the three genes and implicate the vitamin B6 biosynthesis machinery in R. solani, similar to catalases and GST, as an antioxidant stress protector against oxidative stress. PMID:26779127

  1. Divergent Isoprenoid Biosynthesis Pathways in Staphylococcus Species Constitute a Drug Target for Treating Infections in Companion Animals

    PubMed Central

    Cain, Christine L.; Morris, Daniel O.; Rankin, Shelley C.

    2016-01-01

    ABSTRACT Staphylococcus species are a leading cause of skin and soft tissue infections in humans and animals, and the antibiotics used to treat these infections are often the same. Methicillin- and multidrug-resistant staphylococcal infections are becoming more common in human and veterinary medicine. From a “One Health” perspective, this overlap in antibiotic use and resistance raises concerns over the potential spread of antibiotic resistance genes. Whole-genome sequencing and comparative genomics analysis revealed that Staphylococcus species use divergent pathways to synthesize isoprenoids. Species frequently associated with skin and soft tissue infections in companion animals, including S. schleiferi and S. pseudintermedius, use the nonmevalonate pathway. In contrast, S. aureus, S. epidermidis, and S. lugdunensis use the mevalonate pathway. The antibiotic fosmidomycin, an inhibitor of the nonmevalonate pathway, was effective in killing canine clinical staphylococcal isolates but had no effect on the growth or survival of S. aureus and S. epidermidis. These data identify an essential metabolic pathway in Staphylococcus that differs among members of this genus and suggest that drugs such as fosmidomycin, which targets enzymes in the nonmevalonate pathway, may be an effective treatment for certain staphylococcal infections. IMPORTANCE Drug-resistant Staphylococcus species are a major concern in human and veterinary medicine. There is a need for new antibiotics that exhibit a selective effect in treating infections in companion and livestock animals and that would not be used to treat human bacterial infections. We have identified fosmidomycin as an antibiotic that selectively targets certain Staphylococcus species that are often encountered in skin infections in cats and dogs. These findings expand our understanding of Staphylococcus evolution and may have direct implications for treating staphylococcal infections in veterinary medicine. PMID:27704053

  2. Molecular characterization and expression analysis of GlHMGS, a gene encoding hydroxymethylglutaryl-CoA synthase from Ganoderma lucidum (Ling-zhi) in ganoderic acid biosynthesis pathway.

    PubMed

    Ren, Ang; Ouyang, Xiang; Shi, Liang; Jiang, Ai-Liang; Mu, Da-Shuai; Li, Meng-Jiao; Han, Qin; Zhao, Ming-Wen

    2013-03-01

    A hydroxymethylglutaryl-CoA synthase gene, designated as GlHMGS (GenBank accession No. JN391469) involved in ganoderic acid (GA) biosynthesis pathway was cloned from Ganoderma lucidum. The full-length cDNA of GlHMGS (GenBank accession No. JN391468) was found to contain an open reading frame of 1,413 bp encoding a polypeptide of 471 amino acid residues. The deduced amino acid sequence of GlHMGS shared high homology with other known hydroxymethylglutaryl-CoA synthase (HMGS) enzymes. In addition, functional complementation of GlHMGS in a mutant yeast strain YSC1021 lacking HMGS activity demonstrated that the cloned cDNA encodes a functional HMGS. A 1,561 bp promoter sequence was isolated and its putative regulatory elements and potential specific transcription factor binding sites were analyzed. GlHMGS expression profile analysis revealed that salicylic acid, abscisic acid and methyl jasmonate up-regulated GlHMGS transcript levels over the control. Further expression analysis revealed that the developmental stage and carbon source had significant effects on GlHMGS transcript levels. GlHMGS expression peaked on day 16 before decreasing with prolonged culture time. The highest mRNA level was observed when the carbon source was maltose. Overexpression of GlHMGS enhanced GA content in G. lucidum. This study provides useful information for further studying this gene and on its function in the ganoderic acid biosynthetic pathway in G. lucidum.

  3. Studies on the nonmevalonate pathway of terpene biosynthesis. The role of 2C-methyl-D-erythritol 2,4-cyclodiphosphate in plants.

    PubMed

    Fellermeier, M; Raschke, M; Sagner, S; Wungsintaweekul, J; Schuhr, C A; Hecht, S; Kis, K; Radykewicz, T; Adam, P; Rohdich, F; Eisenreich, W; Bacher, A; Arigoni, D; Zenk, M H

    2001-12-01

    2C-methyl-D-erythritol 2,4-cyclodiphosphate was recently shown to be formed from 2C-methyl-D-erythritol 4-phosphate by the consecutive action of IspD, IspE, and IspF proteins in the nonmevalonate pathway of terpenoid biosynthesis. To complement previous work with radiolabelled precursors, we have now demonstrated that [U-13C5]2C-methyl-D-erythritol 4-phosphate affords [U-13C5]2C-methyl-D-erythritol 2,4-cyclodiphosphate in isolated chromoplasts of Capsicum annuum and Narcissus pseudonarcissus. Moreover, chromoplasts are shown to efficiently convert 2C-methyl-D-erythritol 4-phosphate as well as 2C-methyl-D-erythritol 2,4-cyclodiphosphate into the carotene precursor phytoene. The bulk of the kinetic data collected in competition experiments with radiolabeled substrates is consistent with the notion that the cyclodiphosphate is an obligatory intermediate in the nonmevalonate pathway to terpenes. Studies with [2,2'-13C2]2C-methyl-D-erythritol 2,4-cyclodiphosphate afforded phytoene characterized by pairs of jointly transferred 13C atoms in the positions 17/1, 18/5, 19/9, and 20/13 and, at a lower abundance, in positions 16/1, 4/5, 8/9, and 12/13. A detailed scheme is presented for correlating the observed partial scrambling of label with the known lack of fidelity of the isopentenyl diphosphate/dimethylethyl diphosphate isomerase.

  4. Characterization of LnmO as a pathway-specific Crp/Fnr-type positive regulator for leinamycin biosynthesis in Streptomyces atroolivaceus and its application for titer improvement.

    PubMed

    Huang, Yong; Yang, Dong; Pan, Guohui; Tang, Gong-Li; Shen, Ben

    2016-12-01

    The cyclic adenosine monophosphate (cAMP) receptor protein/fumarate and nitrate reductase regulatory protein (Crp/Fnr) family of transcriptional regulators are pleiotropic transcriptional regulators that control a broad range of cellular functions. Leinamycin (LNM) is a potent antitumor antibiotic produced by Streptomyces atroolivaceus S-140. We previously cloned and characterized the lnm biosynthetic gene cluster from S. atroolivaceus S-140. We here report inactivation of lnmO in S. atroolivaceus S-140 and overexpression of lnmO in the S. atroolivaceus S-140 wild-type and ∆lnmE mutant SB3033 to investigate its role in LNM biosynthesis. Bioinformatics analysis revealed LnmO as the only regulator within the lnm gene cluster, exhibiting high sequence similarity to known Crp/Fnr family regulators. The inactivation of lnmO in S. atroolivaceus S-140 completely abolished LNM production but caused no apparent morphological changes, supporting that LnmO is indispensable and specific to LNM biosynthesis. Overexpression of lnmO in S. atroolivaceus S-140 and SB3033 resulted in three- and fourfold increase in LNM and LNM E1 production, respectively, supporting that LnmO acts as a positive regulator. While all of the Crp/Fnr family regulators studied to date appeared to be pleiotropic, our results support LnmO as the first Crp/Fnr family regulator that is pathway-specific. LnmO joins the growing list of regulators that could be exploited to improve secondary metabolite production in Streptomyces. Engineered strains overproducing LNM and LNM E1 will facilitate further mechanistic studies and clinical evaluation of LNM and LNM E1 as novel anticancer drugs.

  5. An antagonist treatment in combination with tracer experiments revealed isocitrate pathway dominant to oxalate biosynthesis in Rumex obtusifolius L

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxalate accumulates in leaves of certain plants such as Rumex species (Polygonaceae). Oxalate plays important roles in defense to predator, detoxification of metallic ions, and in hydroxyl peroxide formation upon wounding/senescence. However, biosynthetic pathways of soluble oxalate are largely unkn...

  6. Innovative Target Therapies Are Able to Block the Inflammation Associated with Dysfunction of the Cholesterol Biosynthesis Pathway.

    PubMed

    Marcuzzi, Annalisa; Piscianz, Elisa; Loganes, Claudia; Vecchi Brumatti, Liza; Knowles, Alessandra; Bilel, Sabrine; Tommasini, Alberto; Bortul, Roberta; Zweyer, Marina

    2015-12-30

    The cholesterol pathway is an essential biochemical process aimed at the synthesis of bioactive molecules involved in multiple crucial cellular functions. The end products of this pathway are sterols, such as cholesterol, which are essential components of cell membranes, precursors of steroid hormones, bile acids and other molecules such as ubiquinone. Several diseases are caused by defects in this metabolic pathway: the most severe forms of which cause neurological involvement (psychomotor retardation and cerebellar ataxia) as a result of a variety of cellular impairments, including mitochondrial dysfunction. These pathologies are induced by convergent mechanisms in which the mitochondrial unit plays a pivotal role contributing to defective apoptosis, autophagy and mitophagy processes. Unraveling these mechanisms would contribute to the development of effective drug treatments for these disorders. In addition, the development of biochemical models could have a substantial impact on the understanding of the mechanism of action of drugs that act on this pathway in multifactor disorders. In this review we will focus in particular on inhibitors of cholesterol synthesis, mitochondria-targeted drugs and inhibitors of the inflammasome.

  7. Innovative Target Therapies Are Able to Block the Inflammation Associated with Dysfunction of the Cholesterol Biosynthesis Pathway

    PubMed Central

    Marcuzzi, Annalisa; Piscianz, Elisa; Loganes, Claudia; Vecchi Brumatti, Liza; Knowles, Alessandra; Bilel, Sabrine; Tommasini, Alberto; Bortul, Roberta; Zweyer, Marina

    2015-01-01

    The cholesterol pathway is an essential biochemical process aimed at the synthesis of bioactive molecules involved in multiple crucial cellular functions. The end products of this pathway are sterols, such as cholesterol, which are essential components of cell membranes, precursors of steroid hormones, bile acids and other molecules such as ubiquinone. Several diseases are caused by defects in this metabolic pathway: the most severe forms of which cause neurological involvement (psychomotor retardation and cerebellar ataxia) as a result of a variety of cellular impairments, including mitochondrial dysfunction. These pathologies are induced by convergent mechanisms in which the mitochondrial unit plays a pivotal role contributing to defective apoptosis, autophagy and mitophagy processes. Unraveling these mechanisms would contribute to the development of effective drug treatments for these disorders. In addition, the development of biochemical models could have a substantial impact on the understanding of the mechanism of action of drugs that act on this pathway in multifactor disorders. In this review we will focus in particular on inhibitors of cholesterol synthesis, mitochondria-targeted drugs and inhibitors of the inflammasome. PMID:26729102

  8. The Mitochondrial Translocator Protein, TSPO, Inhibits HIV-1 Envelope Glycoprotein Biosynthesis via the Endoplasmic Reticulum-Associated Protein Degradation Pathway

    PubMed Central

    Zhou, Tao; Dang, Ying

    2014-01-01

    ABSTRACT The HIV-1 Env glycoprotein is folded in the endoplasmic reticulum (ER), which is necessary for viral entry and replication. Currently, it is still unclear how this process is regulated. The glycoprotein folding in the ER is controlled by the ER-associated protein degradation (ERAD) pathway, which specifically targets misfolded proteins for degradation. Previously, we reported that HIV-1 replication is restricted in the human CD4+ T cell line CEM.NKR (NKR). To understand this mechanism, we first analyzed cellular protein expression in NKR cells and discovered that levels of the mitochondrial translocator protein TSPO were upregulated by ∼64-fold. Notably, when NKR cells were treated with TSPO antagonist PK-11195, Ro5-4864, or diazepam, HIV restriction was completely disrupted, and TSPO knockdown by short hairpin RNAs (shRNAs) achieved a similar effect. We next analyzed viral protein expression, and, interestingly, we discovered that Env expression was specifically inhibited. Both TSPO knockdown and treatment with TSPO antagonist could restore Env expression in NKR cells. We further discovered that Env proteins were rapidly degraded and that kifunensine, an ERAD pathway inhibitor, could restore Env expression and viral replication, indicating that Env proteins were misfolded and degraded through the ERAD pathway in NKR cells. We also knocked out the TSPO gene in 293T cells using CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat [CRISPR]/CRISPR-associated-9) technology and found that TSPO could similarly inhibit Env expression in these cells. Taken together, these results demonstrate that TSPO inhibits Env protein expression through the ERAD pathway and suggest that mitochondria play an important role in regulating the Env folding process. IMPORTANCE The HIV-1 Env glycoprotein is absolutely required for viral infection, and an understanding of its expression pathway in infected cells will identify new targets for antiretroviral

  9. Preparation of astaxanthin nanodispersions using gelatin-based stabilizer systems.

    PubMed

    Anarjan, Navideh; Nehdi, Imededdine Arbi; Sbihi, Hassen Mohamed; Al-Resayes, Saud Ibrahim; Malmiri, Hoda Jafarizadeh; Tan, Chin Ping

    2014-09-10

    The incorporation of lipophilic nutrients, such as astaxanthin (a fat soluble carotenoid) in nanodispersion systems can either increase the water solubility, stability and bioavailability or widen their applications in aqueous food and pharmaceutical formulations. In this research, gelatin and its combinations with sucrose oleate as a small molecular emulsifier, sodium caseinate (SC) as a protein and gum Arabic as a polysaccharide were used as stabilizer systems in the formation of astaxanthin nanodispersions via an emulsification-evaporation process. The results indicated that the addition of SC to gelatin in the stabilizer system could increase the chemical stability of astaxanthin nanodispersions significantly, while using a mixture of gelatin and sucrose oleate as a stabilizer led to production of nanodispersions with the smallest particle size (121.4±8.6 nm). It was also shown that a combination of gelatin and gum Arabic could produce optimal astaxanthin nanodispersions in terms of physical stability (minimum polydispersity index (PDI) and maximum zeta-potential). This study demonstrated that the mixture of surface active compounds showed higher emulsifying and stabilizing functionality compared to using them individually in the preparation of astaxanthin nanodispersions.

  10. Effects of astaxanthin on antioxidation in human aqueous humor

    PubMed Central

    Hashimoto, Hirotaka; Arai, Kiyomi; Hayashi, Shimmin; Okamoto, Hiroyuki; Takahashi, Jiro; Chikuda, Makoto; Obara, Yoshitaka

    2013-01-01

    We evaluated the antioxidative effects of astaxanthin through the changes in superoxide scavenging activity, levels of hydrogen peroxide and total hydroperoxides in human aqueous humor. The study subjects were 35 patients who underwent bilateral cataract surgery on one side before and the other side after intake of astaxanthin (6 mg/day for 2 weeks). Their aqueous humor was taken during the surgery and subjected to measurements of the three parameters. After astaxanthin intake, the superoxide scavenging activity was significantly (p<0.05) elevated, while the level of total hydroperoxides was significantly (p<0.05) lowered. There was a significant negative correlation between the superoxide scavenging activity and the level of total hydroperoxides (r = −0.485, p<0.01), but no correlations between the hydrogen peroxide level and the other two parameters. Astaxanthin intake clearly enhanced the superoxide scavenging activity and suppressed the total hydroperoxides production in human aqueous humor, indicating the possibility that astaxanthin has suppressive effects on various oxidative stress-related diseases. PMID:23874063

  11. Engineered maize as a source of astaxanthin: processing and application as fish feed.

    PubMed

    Breitenbach, Jürgen; Nogueira, Marilise; Farré, Gemma; Zhu, Changfu; Capell, Teresa; Christou, Paul; Fleck, Gunther; Focken, Ulfert; Fraser, Paul D; Sandmann, Gerhard

    2016-12-01

    Astaxanthin from a transgenic maize line was evaluated as feed supplement source conferring effective pigmentation of rainbow trout flesh. An extraction procedure using ethanol together with the addition of vegetal oil was established. This resulted in an oily astaxanthin preparation which was not sufficiently concentrated for direct application to the feed. Therefore, a concentration process involving multiple phase partitioning steps was implemented to remove 90 % of the oil. The resulting astaxanthin raw material contained non-esterified astaxanthin with 12 % 4-keto zeaxanthin and 2 % zeaxanthin as additional carotenoids. Isomeric analysis confirmed the exclusive presence of the 3S, 3'S astaxanthin enantiomer. The geometrical isomers were 89 % all-E, 8 % 13-Z and 3 % 9-Z. The incorporation of the oily astaxanthin preparation into trout feed was performed to deliver 7 mg/kg astaxanthin in the final feed formulation for the first 3.5 weeks and 72 mg/kg for the final 3.5 weeks of the feeding trial. The resulting pigmentation of the trout fillets was determined by hue values with a colour meter and further confirmed by astaxanthin quantification. Pigmentation properties of the maize-produced natural astaxanthin incorporated to 3.5 µg/g dw in the trout fillet resembles that of chemically synthesized astaxanthin. By comparing the relative carotenoid compositions in feed, flesh and feces, a preferential uptake of zeaxanthin and 4-keto zeaxanthin over astaxanthin was observed.

  12. Identification of a gene involved in the biosynthesis pathway of the terminal sugar of the archaellin N-linked tetrasaccharide in Methanococcus maripaludis.

    PubMed

    Ding, Yan; Jones, Gareth M; Brimacombe, Cedric; Uchida, Kaoru; Aizawa, Shin-Ichi; Logan, Susan M; Kelly, John F; Jarrell, Ken F

    2016-01-01

    In Methanococcus maripaludis, the three archaellins which comprise the archaellum are modified at multiple sites with an N-linked tetrasaccharide with the structure of Sug-4-β-ManNAc3NAmA6Thr-4-β-GlcNAc3NAcA-3-β-GalNAc, where Sug is a unique sugar (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-L-erythro-hexos-5-ulo-1,5-pyranose, so far found exclusively in this species. In this study, a six-gene cluster mmp1089-1094, neighboring one of the genomic regions already known to contain genes involved with the archaellin N-glycosylation pathway, was examined for its potential involvement in the archaellin N-glycosylation or sugar biosynthesis pathway. The co-transcription of these six genes was demonstrated by RT-PCR. Mutants carrying an in-frame deletion in mmp1090, mmp1091 or mmp1092 were successfully generated. The Δmmp1090 deletion mutant was archaellated when examined by electron microscopy and mass spectrometry analysis of purified archaella showed that the archaellins were modified with a truncated N-glycan in which the terminal sugar residue and the threonine linked to the third sugar residue were missing. Both gene annotation and bioinformatic analyses indicate that MMP1090 is a UDP-glucose 4-epimerase, suggesting that the unique terminal sugar of the archaellin N-glycan might be synthesised from UDP-glucose or UDP-N-acetylglucosamine with an essential early step in synthesis catalysed by MMP1090. In contrast, no detectable phenotype related to archaellin glycosylation was observed in mutants deleted for either mmp1091 or mmp1092 while attempts to delete mmp1089, mmp1093 and mmp1094 were unsuccessful. Based on its demonstrated involvement in the archaellin N-glycosylation pathway, we designated mmp1090 as aglW.

  13. De novo transcriptome assembly and characterization of nine tissues of Lonicera japonica to identify potential candidate genes involved in chlorogenic acid, luteolosides, and secoiridoid biosynthesis pathways.

    PubMed

    Rai, Amit; Kamochi, Hidetaka; Suzuki, Hideyuki; Nakamura, Michimi; Takahashi, Hiroki; Hatada, Tomoki; Saito, Kazuki; Yamazaki, Mami

    2017-01-01

    Lonicera japonica is one of the most important medicinal plants with applications in traditional Chinese and Japanese medicine for thousands of years. Extensive studies on the constituents of L. japonica extracts have revealed an accumulation of pharmaceutically active metabolite classes, such as chlorogenic acid, luteolin and other flavonoids, and secoiridoids, which impart characteristic medicinal properties. Despite being a rich source of pharmaceutically active metabolites, little is known about the biosynthetic enzymes involved, and their expression profile across different tissues of L. japonica. In this study, we performed de novo transcriptome assembly for L. japonica, representing transcripts from nine different tissues. A total of 22 Gbps clean RNA-seq reads from nine tissues of L. japonica were used, resulting in 243,185 unigenes, with 99,938 unigenes annotated based on a homology search using blastx against the NCBI-nr protein database. Unsupervised principal component analysis and correlation studies using transcript expression data from all nine tissues of L. japonica showed relationships between tissues, explaining their association at different developmental stages. Homologs for all genes associated with chlorogenic acid, luteolin, and secoiridoid biosynthesis pathways were identified in the L. japonica transcriptome assembly. Expression of unigenes associated with chlorogenic acid was enriched in stems and leaf-2, unigenes from luteolin were enriched in stems and flowers, while unigenes from secoiridoid metabolic pathways were enriched in leaf-1 and shoot apex. Our results showed that different tissues of L. japonica are enriched with sets of unigenes associated with specific pharmaceutically important metabolic pathways and, therefore, possess unique medicinal properties. The present study will serve as a resource for future attempts for functional characterization of enzyme coding genes within key metabolic processes.

  14. Synthesis and characterization of cytidine derivatives that inhibit the kinase IspE of the non-mevalonate pathway for isoprenoid biosynthesis.

    PubMed

    Crane, Christine M; Hirsch, Anna K H; Alphey, Magnus S; Sgraja, Tanja; Lauw, Susan; Illarionova, Victoria; Rohdich, Felix; Eisenreich, Wolfgang; Hunter, William N; Bacher, Adelbert; Diederich, François

    2008-01-01

    The enzymes of the non-mevalonate pathway for isoprenoid biosynthesis are attractive targets for the development of novel drugs against malaria and tuberculosis. This pathway is used exclusively by the corresponding pathogens, but not by humans. A series of water-soluble, cytidine-based inhibitors that were originally designed for the fourth enzyme in the pathway, IspD, were shown to inhibit the subsequent enzyme, the kinase IspE (from Escherichia coli). The binding mode of the inhibitors was verified by co-crystal structure analysis, using Aquifex aeolicus IspE. The crystal structures represent the first reported example of a co-crystal structure of IspE with a synthetic ligand and confirmed that ligand binding affinity originates mainly from the interactions of the nucleobase moiety in the cytidine binding pocket of the enzyme. In contrast, the appended benzimidazole moieties of the ligands adopt various orientations in the active site and establish only poor intermolecular contacts with the protein. Defined binding sites for sulfate ions and glycerol molecules, components in the crystallization buffer, near the well-conserved ATP-binding Gly-rich loop of IspE were observed. The crystal structures of A. aeolicus IspE nicely complement the one from E. coli IspE for use in structure-based design, namely by providing invaluable structural information for the design of inhibitors targeting IspE from Mycobacterium tuberculosis and Plasmodium falciparum. Similar to the enzymes from these pathogens, A. aeolicus IspE directs the OH group of a tyrosine residue into a pocket in the active site. In the E. coli enzyme, on the other hand, this pocket is lined by phenylalanine and has a more pronounced hydrophobic character.

  15. Improving the Stability of Astaxanthin by Microencapsulation in Calcium Alginate Beads

    PubMed Central

    Lin, Shen-Fu; Chen, Ying-Chen; Chen, Ray-Neng; Chen, Ling-Chun; Ho, Hsiu-O; Tsung, Yu-Han; Sheu, Ming-Thau; Liu, Der-Zen

    2016-01-01

    There has been considerable interest in the biological functions of astaxanthin and its potential applications in the nutraceutical, cosmetics, food, and feed industries in recent years. However, the unstable structure of astaxanthin considerably limits its application. Therefore, this study reports the encapsulation of astaxanthin in calcium alginate beads using the extrusion method to improve its stability. This study also evaluates the stability of the encapsulated astaxanthin under different storage conditions. The evaluation of astaxanthin stability under various environmental factors reveals that temperature is the most influential environmental factor in astaxanthin degradation. Stability analysis shows that, regardless of the formulation used, the content of astaxanthin encapsulated in alginate beads remains above 90% of the original amount after 21 days of storage at 25°C. These results suggest that the proposed technique is a promising way to enhance the stability of other sensitive compounds. PMID:27093175

  16. The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation.

    PubMed

    Wan, Minxi; Hou, Dongmei; Li, Yuanguang; Fan, Jianhua; Huang, Jianke; Liang, Songtao; Wang, Weiliang; Pan, Ronghua; Wang, Jun; Li, Shulan

    2014-07-01

    As the optimal source of astaxanthin, Haematococcus pluvialis was cultured for commercial production of astaxanthin through two continuous phases: cell growth and astaxanthin induction. In this study, the efficiency of an attached system for producing astaxanthin from H. pluvialis was investigated and compared to that of the suspended system (bubble column bioreactor) under various conditions. Results showed that this attached system is more suitable for photoinduction of H. pluvialis than the suspended bioreactor. Under the optimal conditions, the astaxanthin productivity of the attached system was 65.8 mg m(-2)d(-1) and 2.4-fold of that in the suspended system. This attached approach also offers other advantages over suspended systems, such as, producing astaxanthin under a wide range of light intensities and temperatures, saving water, ease to harvest cells, resisting contamination. Therefore, the attached approach can be considered an economical, environmentally friendly and highly-efficient technology for producing astaxanthin from H. pluvialis.

  17. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis.

    PubMed

    Morrison, Erin N; Knowles, Sarah; Hayward, Allison; Thorn, R Greg; Saville, Barry J; Emery, R J N

    2015-01-01

    The phytohormones, abscisic acid and cytokinin, once were thought to be present uniquely in plants, but increasing evidence suggests that these hormones are present in a wide variety of organisms. Few studies have examined fungi for the presence of these "plant" hormones or addressed whether their levels differ based on the nutrition mode of the fungus. This study examined 20 temperate forest fungi of differing nutritional modes (ectomycorrhizal, wood-rotting, saprotrophic). Abscisic acid and cytokinin were present in all fungi sampled; this indicated that the sampled fungi have the capacity to synthesize these two classes of phytohormones. Of the 27 cytokinins analyzed by HPLC-ESI MS/MS, seven were present in all fungi sampled. This suggested the existence of a common cytokinin metabolic pathway in fungi that does not vary among different nutritional modes. Predictions regarding the source of isopentenyl, cis-zeatin and methylthiol CK production stemming from the tRNA degradation pathway among fungi are discussed.

  18. Phosphoethanolamine N-methyltransferase (PMT-1) catalyses the first reaction of a new pathway for phosphocholine biosynthesis in Caenorhabditis elegans.

    PubMed

    Brendza, Katherine M; Haakenson, William; Cahoon, Rebecca E; Hicks, Leslie M; Palavalli, Lavanya H; Chiapelli, Brandi J; McLaird, Merry; McCarter, James P; Williams, D Jeremy; Hresko, Michelle C; Jez, Joseph M

    2007-06-15

    The development of nematicides targeting parasitic nematodes of animals and plants requires the identification of biochemical targets not found in host organisms. Recent studies suggest that Caenorhabditis elegans synthesizes phosphocholine through the action of PEAMT (S-adenosyl-L-methionine:phosphoethanolamine N-methyltransferases) that convert phosphoethanolamine into phosphocholine. Here, we examine the function of a PEAMT from C. elegans (gene: pmt-1; protein: PMT-1). Our analysis shows that PMT-1 only catalyses the conversion of phosphoethanolamine into phospho-monomethylethanolamine, which is the first step in the PEAMT pathway. This is in contrast with the multifunctional PEAMT from plants and Plasmodium that perform multiple methylations in the pathway using a single enzyme. Initial velocity and product inhibition studies indicate that PMT-1 uses a random sequential kinetic mechanism and is feedback inhibited by phosphocholine. To examine the effect of abrogating PMT-1 activity in C. elegans, RNAi (RNA interference) experiments demonstrate that pmt-1 is required for worm growth and development and validate PMT-1 as a potential target for inhibition. Moreover, providing pathway metabolites downstream of PMT-1 reverses the RNAi phenotype of pmt-1. Because PMT-1 is not found in mammals, is only distantly related to the plant PEAMT and is conserved in multiple parasitic nematodes of humans, animals and crop plants, inhibitors targeting it may prove valuable in human and veterinary medicine and agriculture.

  19. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava

    PubMed Central

    Han, Bingying; Fu, Lili; Zhang, Dan; He, Xiuquan; Chen, Qiang; Peng, Ming; Zhang, Jiaming

    2016-01-01

    Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz) is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis). All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g−1 fresh weight (FW), and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3–5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS), 10 trehalose-6-phosphate phosphatases (TPP), and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1–4) that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1) in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose under

  20. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava.

    PubMed

    Han, Bingying; Fu, Lili; Zhang, Dan; He, Xiuquan; Chen, Qiang; Peng, Ming; Zhang, Jiaming

    2016-07-13

    Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz) is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis). All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g(-1) fresh weight (FW), and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3-5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS), 10 trehalose-6-phosphate phosphatases (TPP), and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1-4) that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1) in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose under normal

  1. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    PubMed

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the

  2. Attached cultivation of Haematococcus pluvialis for astaxanthin production.

    PubMed

    Zhang, Wenduo; Wang, Junfeng; Wang, Jialin; Liu, Tianzhong

    2014-04-01

    Haematococcus pluvialis, the best natural source for astaxanthin, was cultivated with an immobilized biofilm method, viz. "attached cultivation", which was high in photosynthetic efficiency. A practical operational protocol for this "attached cultivation" method was investigated by studying the effects of inoculum density, light intensity, nitrogen quantity as well as medium volume on growth and astaxanthin accumulation. Results indicated the optimized inoculum density and light intensity were 10 g m(-2) and 100 μmol m(-2)s(-1), respectively. The optimized nitrogen supply strategy was circulating ca. 30 L of BG-11 medium with initial sodium nitrate concentration of ca. 1.8mM for 1m(2) of cultivation surface. With this strategy, the maximum astaxanthin productivity reached ca. 160 mg m(-2)d(-1) which is much higher than many other indoor researches. Both of the red and green cells were found in the biofilm with red cells on the top.

  3. Gene Expression Profiling of Lymphoblasts from Autistic and Nonaffected Sib Pairs: Altered Pathways in Neuronal Development and Steroid Biosynthesis

    PubMed Central

    Hu, Valerie W.; Nguyen, AnhThu; Kim, Kyung Soon; Steinberg, Mara E.; Sarachana, Tewarit; Scully, Michele A.; Soldin, Steven J.; Luu, Truong; Lee, Norman H.

    2009-01-01

    Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present “case-control” study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects ∼4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism. PMID:19492049

  4. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella

    PubMed Central

    Schmidt, Eric W.; Nelson, James T.; Rasko, David A.; Sudek, Sebastian; Eisen, Jonathan A.; Haygood, Margo G.; Ravel, Jacques

    2005-01-01

    Prochloron spp. are obligate cyanobacterial symbionts of many didemnid family ascidians. It has been proposed that the cyclic peptides of the patellamide class found in didemnid extracts are synthesized by Prochloron spp., but studies in which host and symbiont cells are separated and chemically analyzed to identify the biosynthetic source have yielded inconclusive results. As part of the Prochloron didemni sequencing project, we identified patellamide biosynthetic genes and confirmed their function by heterologous expression of the whole pathway in Escherichia coli. The primary sequence of patellamides A and C is encoded on a single ORF that resembles a precursor peptide. We propose that this prepatellamide is heterocyclized to form thiazole and oxazoline rings, and the peptide is cleaved to yield the two cyclic patellamides, A and C. This work represents the full sequencing and functional expression of a marine natural-product pathway from an obligate symbiont. In addition, a related cluster was identified in Trichodesmium erythraeum IMS101, an important bloom-forming cyanobacterium. PMID:15883371

  5. Ethylene modulates development and toxin biosynthesis in aspergillus possibly via an ethylene sensor-mediated signaling pathway.

    PubMed

    Roze, L V; Calvo, A M; Gunterus, A; Beaudry, R; Kall, M; Linz, J E

    2004-03-01

    Ethylene, a biologically active natural compound, inhibited aflatoxin accumulation by Aspergillus parasiticus on a solid growth medium in a dose-dependent manner at concentrations of 0.1 to 150 ppm. The activity of the nor-1 promoter (an early aflatoxin gene) was reduced to nondetectable levels by similar quantities of ethylene, suggesting that the inhibitory effect on toxin synthesis occurred, at least in part, at the level of transcription. The inhibitory effect of ethylene on aflatoxin accumulation was also observed when A. parasiticus was grown on raw peanuts. Under similar growth conditions and doses, ethylene strongly inhibited development of asci and ascospores in Aspergillus nidulans, with no detectable effect on Hülle cell formation, conidiation, or sterigmatocystin accumulation. During early growth, A. parasiticus and A. nidulans produced ethylene with approximately twofold higher quantities measured in continuous light than in the dark. 1-Methylcyclopropene (an inhibitor of ethylene receptors in plants), light, CO2, temperature, and growth medium composition altered the effect of ethylene on A. nidulans and A. parasiticus. These observations are consistent with the existence of an ethylene sensor molecule that mediates the function of an ethylene-responsive signaling pathway(s) in Aspergillus.

  6. Gene expression profiling of lymphoblasts from autistic and nonaffected sib pairs: altered pathways in neuronal development and steroid biosynthesis.

    PubMed

    Hu, Valerie W; Nguyen, AnhThu; Kim, Kyung Soon; Steinberg, Mara E; Sarachana, Tewarit; Scully, Michele A; Soldin, Steven J; Luu, Truong; Lee, Norman H

    2009-06-03

    Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present "case-control" study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects approximately 4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism.

  7. FR-900098, an antimalarial development candidate that inhibits the non-mevalonate isoprenoid biosynthesis pathway, shows no evidence of acute toxicity and genotoxicity

    PubMed Central

    Wiesner, Jochen; Ziemann, Christina; Hintz, Martin; Reichenberg, Armin; Ortmann, Regina; Schlitzer, Martin; Fuhst, Rainer; Timmesfeld, Nina; Vilcinskas, Andreas; Jomaa, Hassan

    2016-01-01

    ABSTRACT FR-900098 is an inhibitor of 1-deoxy-d-xylulose-5-phosphate (DXP) reductoisomerase, the second enzyme in the non-mevalonate isoprenoid biosynthesis pathway. In previous studies, FR-900098 was shown to possess potent antimalarial activity in vitro and in a murine malaria model. In order to provide a basis for further preclinical and clinical development, we studied the acute toxicity and genotoxicity of FR-900098. We observed no acute toxicity in rats, i.e. there were no clinical signs of toxicity and no substance-related deaths after the administration of a single dose of 3000 mg/kg body weight orally or 400 mg/kg body weight intravenously. No mutagenic potential was detected in the Salmonella typhimurium reverse mutation assay (Ames test) or an in vitro mammalian cell gene mutation test using mouse lymphoma L5178Y/TK+/− cells (clone 3.7.2C), both with and without metabolic activation. In addition, FR-900098 demonstrated no clastogenic or aneugenic capability or significant adverse effects on blood formation in an in vivo micronucleus test with bone marrow erythrocytes from NMRI mice. We conclude that FR-900098 lacks acute toxicity and genotoxicity, supporting its further development as an antimalarial drug. PMID:27260413

  8. Comparative 2D-DIGE proteomic analysis of ovarian carcinoma cells: toward a reorientation of biosynthesis pathways associated with acquired platinum resistance.

    PubMed

    Lincet, Hubert; Guével, Blandine; Pineau, Charles; Allouche, Stéphane; Lemoisson, Edwige; Poulain, Laurent; Gauduchon, Pascal

    2012-02-02

    Ovarian cancer is the fifth most frequent cause of cancer death in women. Emergence of chemoresistance in the course of treatments with platinum drugs is in part responsible for therapeutic failures. In order to improve the understanding of the complex mechanisms involved in acquired platinum chemoresistance, we decided to compare the basal protein expression profile of the platinum-sensitive cell line OAW42 and that of its resistant counterpart OAW42-R by a proteomic approach. Reversed-phase HPLC pre-fractionated extracts from both cell lines were subjected to 2D-DIGE coupled to mass spectrometry (MS). Forty eight differentially expressed proteins were identified, 39 being up-regulated and 19 down-regulated in OAW42-R versus OAW42 cells. From the current knowledge on biological activities of most differentially expressed proteins, it can be inferred that the acquisition of resistance was associated with a global reorganization of biochemical pathways favoring the production of precursors for biosynthesis, and with the mobilization of macromolecule quality control mechanisms, preserving RNA and protein integrity under damage-inducing conditions.

  9. Salicylic acid-induced changes in physiological parameters and genes of the flavonoid biosynthesis pathway in Artemisia vulgaris and Dendranthema nankingense during aphid feeding.

    PubMed

    Sun, Y; Xia, X L; Jiang, J F; Chen, S M; Chen, F D; Lv, G S

    2016-02-19

    Phloem-feeding aphids cause serious damage to plants. The mechanisms of plant-aphid interactions are only partially understood and involve multiple pathways, including phytohormones. In order to investigate whether salicylic acid (SA) is involved and how it plays a part in the defense response to the aphid Macrosiphoniella sanbourni, physiological changes and gene expression profiles in response to aphid inoculation with or without SA pretreatment were compared between the aphid-resistant Artemisia vulgaris 'Variegata' and the susceptible chrysanthemum, Dendranthema nankingense. Changes in levels of reactive oxygen species, malondialdehyde (MDA), and flavonoids, and in the expression of genes involved in flavonoid biosynthesis, including PAL (phenylalanine ammonia-lyase), CHS (chalcone synthase), CHI (chalcone isomerase), F3H (flavanone 3-hydroxylase), F3'H (flavanone 3'-hydroxylase), and DFR (dihydroflavonol reductase), were investigated. Levels of hydrogen peroxide, superoxide anions, MDA, and flavonoids, and their related gene expression, increased after aphid infestation and SA pretreatment followed by aphid infestation; the aphid-resistant A. vulgaris exhibited a more rapid response than the aphid-susceptible D. nankingense to SA treatment and aphid infestation. Taken together, our results suggest that SA could be used to increase aphid resistance in the chrysanthemum.

  10. Glutamine-induced protection of isolated rat heart from ischemia/reperfusion injury is mediated via the hexosamine biosynthesis pathway and increased protein O-GlcNAc levels

    PubMed Central

    Liu, Jia; Marchase, Richard B.; Chatham, John C.

    2007-01-01

    It has been shown that glutamine protects the heart from ischemia/reperfusion (I/R) injury; however, the mechanisms underlying this protection have not been identfied. Glutamine: fructose-6-phosphate amidotransferase (GFAT) regulates the entry of glucose into the hexosamine biosynthesis pathway (HBP) and activation of this pathway has been shown to be cardioprotective. Glutamine is required for metabolism of glucose via GFAT; therefore, the goal of this study was to determine whether glutamine cardioprotection could be attributed to increased flux through the HBP and elevated levels of O-linked N-acetyl-glucosamine (O-GlcNAc) on proteins. Hearts from male rats were isolated and perfused with Krebs-Henseliet buffer containing 5mM glucose, and global, no-flow ischemia was induced for 20 minutes followed by 60 minutes of reperfusion. 30 minute pre-treatment with 2.5 mM glutamine significantly improved functional recovery (RPP: 15.6±5.7% Vs. 59.4±6.1%; p<0.05) and decreased cardiac Troponin I release (25.4±3.0 Vs. 4.7±1.9; p<0.05) during reperfusion. This protection was associated with a significant increase in the levels of protein O-GlcNAc and ATP. Pre-treatment with 80 μM azaserine, an inhibitor of GFAT, completely reversed the protection seen with glutamine and prevented the increase in protein O-GlcNAc. O-GlcNAc transferase (OGT) catalyzes the formation of O-GlcNAc, and inhibition of OGT with 5mM alloxan also reversed the protection associated with glutamine. These data support the hypothesis that in the ex vivo perfused heart glutamine cardioprotection is due, at least in part, to enhanced flux through the HBP and increased protein O-GlcNAc levels. PMID:17069847

  11. Chromatographic, NMR and vibrational spectroscopic investigations of astaxanthin esters: application to "Astaxanthin-rich shrimp oil" obtained from processing of Nordic shrimps.

    PubMed

    Subramanian, B; Thibault, M-H; Djaoued, Y; Pelletier, C; Touaibia, M; Tchoukanova, N

    2015-11-07

    Astaxanthin (ASTX) is a keto carotenoid, which possesses a non-polar linear central conjugated chain and polar β-ionone rings with ketone and hydroxyl groups at the extreme ends. It is well known as a super anti-oxidant, and recent clinical studies have established its nutritional benefits. Although it occurs in several forms, including free molecule, crystalline, aggregates and various geometrical isomers, in nature it exists primarily in the form of esters. Marine animals accumulate ASTX from primary sources such as algae. Nordic shrimps (P. borealis), which are harvested widely in the Atlantic Ocean, form a major source of astaxanthin esters. "Astaxanthin-rich shrimp oil" was developed as a novel product in a shrimp processing plant in Eastern Canada. A compositional analysis of the shrimp oil was performed, with a view to possibly use it as a nutraceutical product for humans and animals. Astaxanthin-rich shrimp oil contains 50% MUFAs and 22% PUFAs, of which 20% are omega-3. In addition, the shrimp oil contains interesting amounts of EPA and DHA, with 10%/w and 8%/w, respectively. Astaxanthin concentrations varied between 400 and 1000 ppm, depending on the harvesting season of the shrimp. Astaxanthin and its esters were isolated from the oil and analysed by NMR, FTIR and Micro-Raman spectroscopy. Astaxanthin mono- and diesters were synthesized and used as standards for the analysis of astaxanthin-rich shrimp oil. NMR and vibrational spectroscopy techniques were successfully used for the rapid characterization of monoesters and diesters of astaxanthin. Raman spectroscopy provided important intermolecular interactions present in the esterified forms of astaxanthin molecules. Also discussed in this paper is the use of NMR, FTIR and Micro-Raman spectroscopy for the detection of astaxanthin esters in shrimp oil.

  12. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    PubMed Central

    Ambati, Ranga Rao; Siew Moi, Phang; Ravi, Sarada; Aswathanarayana, Ravishankar Gokare

    2014-01-01

    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications. PMID:24402174

  13. Synergistic antioxidative effect of astaxanthin and tocotrienol by co-encapsulated in liposomes

    PubMed Central

    Kamezaki, Chihiro; Nakashima, Ami; Yamada, Asako; Uenishi, Sachiko; Ishibashi, Hiroshi; Shibuya, Natsumi; Hama, Susumu; Hosoi, Shinzo; Yamashita, Eiji; Kogure, Kentaro

    2016-01-01

    Astaxanthin and vitamin E are both effective antioxidants that are frequently used in cosmetics, as food additives, and in to prevent oxidative damage. A combination of astaxanthin and vitamin E would be expected to show an additive anntioxidative effect. In this study, liposomes co-encapsulating astaxanthin and the vitamin E derivatives α-tocopherol (α-T) or tocotrienols (T3) were prepared, and the antioxidative activity of these liposomes toward singlet oxygen and hydroxyl radical was evaluated in vitro. Liposomes co-encapsulating astaxanthin and α-T showed no additive anntioxidative effect, while the actual scavenging activity of liposomes co-encapsulating astaxanthin and T3 was higher than the calculated additive activity. To clarify why this synergistic effect occurs, the most stable structure of astaxanthin in the presence of α-T or α-T3 was calculated. Only α-T3 was predicted to form hydrogen bonding with astaxanthin, and the astaxanthin polyene chain would partially interact with the α-T3 triene chain, which could explain why there was a synergistic effect between astaxanthin and T3 but not α-T. In conclusion, co-encapsulation of astaxanthin and T3 induces synergistic scavenging activity by intermolecular interactions between the two antioxidants. PMID:27698536

  14. Genomic and Biochemical Analysis of the Diaminopimelate and Lysine Biosynthesis Pathway in Verrucomicrobium spinosum: Identification and Partial Characterization of L,L-Diaminopimelate Aminotransferase and UDP-N-Acetylmuramoylalanyl-D-glutamyl-2,6-meso-Diaminopimelate Ligase.

    PubMed

    Nachar, Victoria R; Savka, Francisco C; McGroty, Sean E; Donovan, Katherine A; North, Rachel A; Dobson, Renwick C J; Buckley, Larry J; Hudson, André O

    2012-01-01

    The Gram-negative bacterium Verrucomicrobium spinosum has attracted interest in recent years following the sequencing and annotation of its genome. Comparative genomic analysis of V. spinosum using diaminopimelate/lysine metabolic genes from Chlamydia trachomatis suggests that V. spinosum employs the L,L-diaminopimelate aminotransferase (DapL) pathway for diaminopimelate/lysine biosynthesis. The open reading frame corresponding to the putative dapL ortholog was cloned and the recombinant enzyme was shown to possess L,L-diaminopimelate aminotransferase activity in vitro. In vivo analysis using functional complementation confirmed that the dapL ortholog was able to functionally complement an E. coli mutant that confers auxotrophy for diaminopimelate and lysine. In addition to its role in lysine biosynthesis, the intermediate diaminopimelate has an integral role in peptidoglycan biosynthesis. To this end, the UDP-N-acetylmuramoylalanyl-d-glutamyl-2,6-meso-diaminopimelate ligase ortholog was also identified, cloned, and was shown to possess meso-diaminopimelate ligase activity in vivo. The L,L-diaminopimelate aminotransferase pathway has been experimentally confirmed in several bacteria, some of which are deemed pathogenic to animals. Since animals, and particularly humans, lack the genetic machinery for the synthesis of diaminopimelate/lysine de novo, the enzymes involved in this pathway are attractive targets for development of antibiotics. Whether dapL is an essential gene in any bacteria is currently not known. V. spinosum is an excellent candidate to investigate the essentiality of dapL, since the bacterium employs the DapL pathway for lysine and cell wall biosynthesis, is non-pathogenic to humans, facile to grow, and can be genetically manipulated.

  15. Genomic and Biochemical Analysis of the Diaminopimelate and Lysine Biosynthesis Pathway in Verrucomicrobium spinosum: Identification and Partial Characterization of L,L-Diaminopimelate Aminotransferase and UDP-N-Acetylmuramoylalanyl-D-glutamyl-2,6-meso-Diaminopimelate Ligase

    PubMed Central

    Nachar, Victoria R.; Savka, Francisco C.; McGroty, Sean E.; Donovan, Katherine A.; North, Rachel A.; Dobson, Renwick C. J.; Buckley, Larry J.; Hudson, André O.

    2012-01-01

    The Gram-negative bacterium Verrucomicrobium spinosum has attracted interest in recent years following the sequencing and annotation of its genome. Comparative genomic analysis of V. spinosum using diaminopimelate/lysine metabolic genes from Chlamydia trachomatis suggests that V. spinosum employs the L,L-diaminopimelate aminotransferase (DapL) pathway for diaminopimelate/lysine biosynthesis. The open reading frame corresponding to the putative dapL ortholog was cloned and the recombinant enzyme was shown to possess L,L-diaminopimelate aminotransferase activity in vitro. In vivo analysis using functional complementation confirmed that the dapL ortholog was able to functionally complement an E. coli mutant that confers auxotrophy for diaminopimelate and lysine. In addition to its role in lysine biosynthesis, the intermediate diaminopimelate has an integral role in peptidoglycan biosynthesis. To this end, the UDP-N-acetylmuramoylalanyl-d-glutamyl-2,6-meso-diaminopimelate ligase ortholog was also identified, cloned, and was shown to possess meso-diaminopimelate ligase activity in vivo. The L,L-diaminopimelate aminotransferase pathway has been experimentally confirmed in several bacteria, some of which are deemed pathogenic to animals. Since animals, and particularly humans, lack the genetic machinery for the synthesis of diaminopimelate/lysine de novo, the enzymes involved in this pathway are attractive targets for development of antibiotics. Whether dapL is an essential gene in any bacteria is currently not known. V. spinosum is an excellent candidate to investigate the essentiality of dapL, since the bacterium employs the DapL pathway for lysine and cell wall biosynthesis, is non-pathogenic to humans, facile to grow, and can be genetically manipulated. PMID:22783236

  16. Golden Rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency.

    PubMed

    Beyer, Peter; Al-Babili, Salim; Ye, Xudong; Lucca, Paola; Schaub, Patrick; Welsch, Ralf; Potrykus, Ingo

    2002-03-01

    To obtain a functioning provitamin A (beta-carotene) biosynthetic pathway in rice endosperm, we introduced in a single, combined transformation effort the cDNA coding for phytoene synthase (psy) and lycopene beta-cyclase (beta-lcy) both from Narcissus pseudonarcissus and both under the control of the endosperm-specific glutelin promoter together with a bacterial phytoene desaturase (crtI, from Erwinia uredovora under constitutive 35S promoter control). This combination covers the requirements for beta-carotene synthesis and, as hoped, yellow beta-carotene-bearing rice endosperm was obtained in the T(0)-generation. Additional experiments revealed that the presence of beta-lcy was not necessary, because psy and crtI alone were able to drive beta-carotene synthesis as well as the formation of further downstream xanthophylls. Plausible explanations for this finding are that these downstream enzymes are constitutively expressed in rice endosperm or are induced by the transformation, e.g., by enzymatically formed products. Results using N. pseudonarcissus as a model system led to the development of a hypothesis, our present working model, that trans-lycopene or a trans-lycopene derivative acts as an inductor in a kind of feedback mechanism stimulating endogenous carotenogenic genes. Various institutional arrangements for disseminating Golden Rice to research institutes in developing countries also are discussed.

  17. PI3K/AKT, JNK, and ERK pathways are not crucial for the induction of cholesterol biosynthesis gene transcription in intestinal epithelial cells following treatment with the potato glycoalkaloid alpha-chaconine.

    PubMed

    Mandimika, Tafadzwa; Baykus, Hakan; Poortman, Jenneke; Garza, Cutberto; Kuiper, Harry; Peijnenburg, Ad

    2008-09-24

    We previously reported that exposure of the intestinal epithelial Caco-2 cell line to noncytotoxic concentrations of potato glycoalkaloids resulted in increased expression of cholesterol biosynthesis genes. Genes involved in mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (AKT) pathways and their downstream effectors such as Jun, c-Myc, and Fos also were induced. MAPK and PI3K/AKT pathways have been described to regulate the activity of sterol regulatory element binding transcription factors (SREBPs) and consequently the expression of cholesterol biosynthesis genes. In this study, to understand the mechanism of induction of cholesterol biosynthesis upon alpha-chaconine treatment, its effect on SREBP-2 protein levels was investigated. We also examined whether MAPK and PI3K/AKT pathways are required for the observed induction of these genes following exposure of cells to alpha-chaconine. Differentiated Caco-2 cells were pretreated with LY294002 (PI3K inhibitor), PD98059 (MEK1 inhibitor), or SP600125 (JNK inhibitor) or a combination of all inhibitors for 24 h prior to coincubation with 10 microM alpha-chaconine for 6 h. Significant increases in precursor and mature protein levels of SREBP-2 were observed after alpha-chaconine exposure. We also observed that alpha-chaconine treatment resulted in significant phosphorylation of AKT, extracellular signal related protein kinase (ERK), and c-jun N terminal protein kinase (JNK) but not that of p38. In general, the kinase inhibitor experiments revealed that phosphorylation of kinases of PI3K/AKT, ERK, and JNK pathways was not crucial for the induction of expression of cholesterol biosynthesis genes, with the exception of SC5DL. The transcription of this later gene was reduced when all three pathways were inhibited. On the basis of these results, it can be postulated that other mechanisms, which may be independent of the MAPK and PI3K/AKT pathways

  18. Upstream regulation of mycotoxin biosynthesis.

    PubMed

    Alkhayyat, Fahad; Yu, Jae-Hyuk

    2014-01-01

    Mycotoxins are natural contaminants of food and feed products, posing a substantial health risk to humans and animals throughout the world. A plethora of filamentous fungi has been identified as mycotoxin producers and most of these fungal species belong to the genera Aspergillus, Fusarium, and Penicillium. A number of studies have been conducted to better understand the molecular mechanisms of biosynthesis of key mycotoxins and the regulatory cascades controlling toxigenesis. In many cases, the mycotoxin biosynthetic genes are clustered and regulated by one or more pathway-specific transcription factor(s). In addition, as biosynthesis of many secondary metabolites is coordinated with fungal growth and development, there are a number of upstream regulators affecting biosynthesis of mycotoxins in fungi. This review presents a concise summary of the regulation of mycotoxin biosynthesis, focusing on the roles of the upstream regulatory elements governing biosynthesis of aflatoxin and sterigmatocystin in Aspergillus.

  19. Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures

    PubMed Central

    Lijavetzky, Diego; Almagro, Lorena; Belchi-Navarro, Sarai; Martínez-Zapater, José M; Bru, Roque; Pedreño, Maria A

    2008-01-01

    Background Plant cell cultures have been shown as feasible systems for the production of secondary metabolites, being the elicitation with biotic or abiotic stimuli the most efficient strategy to increase the production of those metabolites. Vitaceae phytoalexins constitute a group of molecules belonging to the stilbene family which are derivatives of the trans-resveratrol structure and are produced by plants and cell cultures as a response to biotic and abiotic stresses. The potential benefits of resveratrol on human health have made it one of the most thoroughly studied phytochemical molecules. The aim of this study was to evaluate the elicitor effect of both cyclodextrin (CD) and methyljasmonate (MeJA) on grapevine cell cultures by carrying out a quantitative analysis of their role on resveratrol production and on the expression of stilbene biosynthetic genes in Vitis vinifera cv Monastrell albino cell suspension cultures. Findings MeJA and CD significantly but transiently induced the expression of stilbene biosynthetic genes when independently used to treat grapevine cells. This expression correlated with resveratrol production in CD-treated cells but not in MeJA-treated cells, which growth was drastically affected. In the combined treatment of CD and MeJA cell growth was similarly affected, however resveratrol production was almost one order of magnitude higher, in correlation with maximum expression values for stilbene biosynthetic genes. Conclusion The effect of MeJA on cell division combined with a true and strong elicitor like CD could be responsible for the observed synergistic effect of both compounds on resveratrol production and on the expression of genes in the stilbene pathway. PMID:19102745

  20. 21 CFR 73.37 - Astaxanthin dimethyl-disuccinate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... million). (8) Mercury, not more than 1 mg/kg (1 part per million). (9) Heavy metals, not more than 10 mg... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Astaxanthin dimethyl-disuccinate. 73.37 Section 73.37 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  1. 21 CFR 73.37 - Astaxanthin dimethyl-disuccinate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... million). (8) Mercury, not more than 1 mg/kg (1 part per million). (9) Heavy metals, not more than 10 mg... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Astaxanthin dimethyl-disuccinate. 73.37 Section 73.37 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  2. 21 CFR 73.37 - Astaxanthin dimethyl-disuccinate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... million). (8) Mercury, not more than 1 mg/kg (1 part per million). (9) Heavy metals, not more than 10 mg... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Astaxanthin dimethyl-disuccinate. 73.37 Section 73.37 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  3. 21 CFR 73.37 - Astaxanthin dimethyl-disuccinate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... million). (8) Mercury, not more than 1 mg/kg (1 part per million). (9) Heavy metals, not more than 10 mg... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Astaxanthin dimethyl-disuccinate. 73.37 Section 73.37 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  4. 21 CFR 73.37 - Astaxanthin dimethyl-disuccinate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... million). (8) Mercury, not more than 1 mg/kg (1 part per million). (9) Heavy metals, not more than 10 mg... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Astaxanthin dimethyl-disuccinate. 73.37 Section 73.37 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  5. Kinetic model for astaxanthin aggregation in water-methanol mixtures

    NASA Astrophysics Data System (ADS)

    Giovannetti, Rita; Alibabaei, Leila; Pucciarelli, Filippo

    2009-07-01

    The aggregation of astaxanthin in hydrated methanol was kinetically studied in the temperature range from 10 °C to 50 °C, at different astaxanthin concentrations and solvent composition. A kinetic model for the formation and transformation of astaxanthin aggregated has been proposed. Spectrophotometric studies showed that monomeric astaxanthin decayed to H-aggregates that after-wards formed J-aggregates when water content was 50% and the temperature lower than 20 °C; at higher temperatures, very stable J-aggregates were formed directly. Monomer formed very stable H-aggregates when the water content was greater than 60%; in these conditions H-aggregates decayed into J-aggregates only when the temperature was at least 50 °C. Through these findings it was possible to establish that the aggregation reactions took place through a two steps consecutive reaction with first order kinetic constants and that the values of these depended on the solvent composition and temperature.

  6. BIOSYNTHESIS OF YEAST CAROTENOIDS

    PubMed Central

    Simpson, Kenneth L.; Nakayama, T. O. M.; Chichester, C. O.

    1964-01-01

    Simpson, Kenneth L. (University of California, Davis), T. O. M. Nakayama, and C. O. Chichester. Biosynthesis of yeast carotenoids. J. Bacteriol. 88:1688–1694. 1964.—The biosynthesis of carotenoids was followed in Rhodotorula glutinis and in a new strain, 62-506. The treatment of the growing cultures by methylheptenone, or ionone, vapors permitted observations of the intermediates in the biosynthetic pathway. On the basis of concentration changes and accumulation in blocked pathways, the sequence of carotenoid formation is postulated as phytoene, phytofluene, ζ-carotene, neurosporene, β-zeacarotene, γ-carotene, torulin, a C40 aldehyde, and torularhodin. Torulin and torularhodin were established as the main carotenoids of 62-506. PMID:14240958

  7. Histidine biosynthesis in plants.

    PubMed

    Stepansky, A; Leustek, T

    2006-03-01

    The study of histidine metabolism has never been at the forefront of interest in plant systems despite the significant role that the analysis of this pathway has played in development of the field of molecular genetics in microbes. With the advent of methods to analyze plant gene function by complementation of microbial auxotrophic mutants and the complete analysis of plant genome sequences, strides have been made in deciphering the histidine pathway in plants. The studies point to a complex evolutionary origin of genes for histidine biosynthesis. Gene regulation studies have indicated novel regulatory networks involving histidine. In addition, physiological studies have indicated novel functions for histidine in plants as chelators and transporters of metal ions. Recent investigations have revealed intriguing connections of histidine in plant reproduction. The exciting new information suggests that the study of plant histidine biosynthesis has finally begun to flower.

  8. The regulation of ascorbate biosynthesis.

    PubMed

    Bulley, Sean; Laing, William

    2016-10-01

    We review the regulation of ascorbate (vitamin C) biosynthesis, focusing on the l-galactose pathway. We discuss the regulation of ascorbate biosynthesis at the level of gene transcription (both repression and enhancement) and translation (feedback inhibition of translation by ascorbate concentration) and discuss the eight proteins that have been demonstrated to date to affect ascorbate concentration in plant tissues. GDP-galactose phosphorylase (GGP) and GDP-mannose epimerase are critical steps that regulate ascorbate biosynthesis. These and other biosynthetic genes are controlled at the transcriptional level, while GGP is also controlled at the translational level. Ascorbate feedback on enzyme activity has not been observed unequivocally.

  9. Lipopolysaccharide regulates biosynthesis of cystathionine γ-lyase and hydrogen sulfide through Toll-like receptor-4/p38 and Toll-like receptor-4/NF-κB pathways in macrophages.

    PubMed

    Zheng, Yijie; Luo, Naixiang; Mu, Dongzhen; Jiang, Pei; Liu, Ronghua; Sun, Haozhe; Xiong, Shudao; Liu, Xiaoming; Wang, Luman; Chu, Yiwei

    2013-10-01

    Hydrogen sulfide (H2S), formed mainly by the enzyme cystathionine γ-lyase (CSE) in macrophages, is emerging as a novel regulator in inflammation. Although elevated production of H2S has been shown in inflammatory processes, the underlying molecular mechanism remains to be further elucidated. In this study, we compared parallel TLR4 knockout (TLR4(-/-)) mice with their wild-type counterparts following lipopolysaccharide (LPS) treatment. It showed that LPS increased the expressions of CSE and biosynthesis of H2S in C57BL/6 mice both in vivo and in vitro. However, the effects of LPS were not present in TLR4(-/-) mice, indicating the crucial role of TLR4 in LPS-induced expression of CSE and biosynthesis of H2S. We subsequently used JNK inhibitor, P38 inhibitor, and ERK inhibitor to block the downstream MAPK pathways of TLR4 in macrophages, and found that LPS-induced CSE expression and H2S synthesizing activity were inhibited by pretreatment with the p38 inhibitor. Similarly, the NF-κB inhibitor (BAY 11-7082) reversed the effects of LPS. These results suggest that LPS increases the biosynthesis of CSE and H2S in macrophages mainly in a TLR4-p38-dependent and TLR-4-NF-κB-dependent manner. These findings expand our knowledge of H2S biosynthesis during inflammation and provide a foundation for the development of novel H2S-based therapies.

  10. Expression of key glycosphingolipid biosynthesis-globo series pathway genes in Escherichia coli F18-resistant and Escherichia coli F18-sensitive piglets.

    PubMed

    Dong, W H; Dai, C H; Sun, L; Wang, J; Sun, S Y; Zhu, G Q; Wu, S L; Bao, W B

    2016-08-01

    A pioneering study showed that the glycosphingolipid biosynthesis-globo series pathway genes (FUT1, FUT2, ST3GAL1, HEXA, HEXB, B3GALNT1 and NAGA) may play an important regulatory role in resistance to Escherichia coli F18 in piglets. Therefore, we analysed differential gene expression in 11 tissues of two populations of piglets sensitive and resistant respectively to E. coli F18 and the correlation of differential gene expression in duodenal and jejunal tissues. We found that the mRNA expression of the seven genes was relatively high in spleen, liver, lung, kidney, stomach and intestinal tract; the levels in thymus and lymph nodes were lower, with the lowest levels in heart and muscle. FUT2 gene expression in the duodenum and jejunum of the resistant population was significantly lower than that in the sensitive group (P < 0.01). ST3GAL1 gene expression was also significantly lower in the duodenum of the resistant population than in the sensitive group (P < 0.05). No significant differences were observed among the remaining genes. The expression level of FUT1 was extremely significantly positively correlated with FUT2 and B3GALNT1 expression (P < 0.01) and also had a significant positive correlation with NAGA expression (P < 0.05). The expression level of FUT2 had extremely significant positive correlations with FUT1, ST3GAL1 and B3GALNT1 (P < 0.01). These results suggest that FUT2 plays an important role in E. coli F18 resistance in piglets. FUT1, ST3GAL1, B3GALNT1 and NAGA may also participate in the mechanism of resistance to E. coli F18.

  11. Towards Elucidating Carnosic Acid Biosynthesis in Lamiaceae: Functional Characterization of the Three First Steps of the Pathway in Salvia fruticosa and Rosmarinus officinalis.

    PubMed

    Božić, Dragana; Papaefthimiou, Dimitra; Brückner, Kathleen; de Vos, Ric C H; Tsoleridis, Constantinos A; Katsarou, Dimitra; Papanikolaou, Antigoni; Pateraki, Irini; Chatzopoulou, Fani M; Dimitriadou, Eleni; Kostas, Stefanos; Manzano, David; Scheler, Ulschan; Ferrer, Albert; Tissier, Alain; Makris, Antonios M; Kampranis, Sotirios C; Kanellis, Angelos K

    2015-01-01

    Carnosic acid (CA) is a phenolic diterpene with anti-tumour, anti-diabetic, antibacterial and neuroprotective properties that is produced by a number of species from several genera of the Lamiaceae family, including Salvia fruticosa (Cretan sage) and Rosmarinus officinalis (Rosemary). To elucidate CA biosynthesis, glandular trichome transcriptome data of S. fruticosa were mined for terpene synthase genes. Two putative diterpene synthase genes, namely SfCPS and SfKSL, showing similarities to copalyl diphosphate synthase and kaurene synthase-like genes, respectively, were isolated and functionally characterized. Recombinant expression in Escherichia coli followed by in vitro enzyme activity assays confirmed that SfCPS is a copalyl diphosphate synthase. Coupling of SfCPS with SfKSL, both in vitro and in yeast, resulted in the synthesis miltiradiene, as confirmed by 1D and 2D NMR analyses (1H, 13C, DEPT, COSY H-H, HMQC and HMBC). Coupled transient in vivo assays of SfCPS and SfKSL in Nicotiana benthamiana further confirmed production of miltiradiene in planta. To elucidate the subsequent biosynthetic step, RNA-Seq data of S. fruticosa and R. officinalis were searched for cytochrome P450 (CYP) encoding genes potentially involved in the synthesis of the first phenolic compound in the CA pathway, ferruginol. Three candidate genes were selected, SfFS, RoFS1 and RoFS2. Using yeast and N. benthamiana expression systems, all three where confirmed to be coding for ferruginol synthases, thus revealing the enzymatic activities responsible for the first three steps leading to CA in two Lamiaceae genera.

  12. Simultaneous determination of 13 carotenoids by a simple C18 column-based ultra-high-pressure liquid chromatography method for carotenoid profiling in the astaxanthin-accumulating Haematococcus pluvialis.

    PubMed

    Jin, Hui; Lao, Yong Min; Zhou, Jin; Zhang, Huai Jin; Cai, Zhong Hua

    2017-03-10

    A simple ultra-high-pressure liquid chromatography (UHPLC) method for rapidly and simultaneously identifying thirteen carotenoids in Haematococcus pluvialis was developed in this study. The method is capable of effectively separating two astaxanthin isomers, two ζ-carotene isomers, and three phytoene isomers on two simple C18 columns within 9 and 12min only by using methanol and acetonitrile, respectively. To our best knowledge, this is the rapidest method for these carotenoid isomers, currently. Using this method, carotenoid profiling in the astaxanthin-accumulating H. pluvialis under environmental stresses was successfully carried out. Results indicated that carotenoid biosynthesis was differentially perturbed by environmental stresses, indicating that this simple and rapid method is suitable to not only bacterial but also algal samples, with potential applications for a wide range of samples from plant to animal. Finally, possible reasons for the elution order of carotenoids were studied.

  13. Enhancing Photon Utilization Efficiency for Astaxanthin Production from Haematococcus lacustris Using a Split-Column Photobioreactor.

    PubMed

    Kim, Z-Hun; Park, Hanwool; Lee, Ho-Sang; Lee, Choul-Gyun

    2016-07-28

    A split-column photobioreactor (SC-PBR), consisting of two bubble columns with different sizes, was developed to enhance the photon utilization efficiency in an astaxanthin production process from Haematococcus lacustris. Among the two columns, only the smaller column of SC-PBR was illuminated. Astaxanthin productivities and photon efficiencies of the SC-PBRs were compared with a standard bubble-column PBR (BC-PBR). Astaxanthin productivity of SC-PBR was improved by 28%, and the photon utilization efficiencies were 28-366% higher than the original BC-PBR. The results clearly show that the effective light regime of SC-PBR could enhance the production of astaxanthin.

  14. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus.

    PubMed

    Schwender, J; Seemann, M; Lichtenthaler, H K; Rohmer, M

    1996-05-15

    Isoprenoid biosynthesis was investigated in the green alga Scenedesmus obliquus grown heterotrophically on 13C-labelled glucose and acetate. Several isoprenoid compounds were isolated and investigated by 13C-NMR spectroscopy. According to the 13C-labelling pattern indicated by the 13C-NMR spectra, the biosynthesis of all plastidic isoprenoids investigated (prenyl side-chains of chlorophylls and plastoquinone-9, and the carotenoids beta-carotene and lutein), as well as of the non-plastidic cytoplasmic sterols, does not proceed via the classical acetate/mevalonate pathway (which leads from acetyl-CoA via mevalonate to isopentenyl diphosphate), but via the novel glyceraldehyde 3-phosphate/pyruvate route recently detected in eubacteria. Formation of isopentenyl diphosphate involves the condensation of a C2 unit derived from pyruvate decarboxylation with glyceraldehyde 3-phosphate and a transposition yielding the branched C5 skeleton of isoprenic units.

  15. Targeting mycotoxin biosynthesis pathway genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical detoxification and physical destruction of aflatoxins in foods and feed commodities is mostly unattainable in a way that preserves the edibility of the food. Therefore, preventing mycotoxins in general and aflatoxins in particular from entering the food chain is a better approach. This requ...

  16. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans

    PubMed Central

    2010-01-01

    Background Astaxanthin modulates immune response, inhibits cancer cell growth, reduces bacterial load and gastric inflammation, and protects against UVA-induced oxidative stress in in vitro and rodent models. Similar clinical studies in humans are unavailable. Our objective is to study the action of dietary astaxanthin in modulating immune response, oxidative status and inflammation in young healthy adult female human subjects. Methods Participants (averaged 21.5 yr) received 0, 2, or 8 mg astaxanthin (n = 14/diet) daily for 8 wk in a randomized double-blind, placebo-controlled study. Immune response was assessed on wk 0, 4 and 8, and tuberculin test performed on wk 8. Results Plasma astaxanthin increased (P < 0.01) dose-dependently after 4 or 8 wk of supplementation. Astaxanthin decreased a DNA damage biomarker after 4 wk but did not affect lipid peroxidation. Plasma C-reactive protein concentration was lower (P < 0.05) on wk 8 in subjects given 2 mg astaxanthin. Dietary astaxanthin stimulated mitogen-induced lymphoproliferation, increased natural killer cell cytotoxic activity, and increased total T and B cell subpopulations, but did not influence populations of Thelper, Tcytotoxic or natural killer cells. A higher percentage of leukocytes expressed the LFA-1 marker in subjects given 2 mg astaxanthin on wk 8. Subjects fed 2 mg astaxanthin had a higher tuberculin response than unsupplemented subjects. There was no difference in TNF and IL-2 concentrations, but plasma IFN-γ and IL-6 increased on wk 8 in subjects given 8 mg astaxanthin. Conclusion Therefore, dietary astaxanthin decreases a DNA damage biomarker and acute phase protein, and enhances immune response in young healthy females. PMID:20205737

  17. Biosynthesis of Hemes.

    PubMed

    Beale, Samuel I

    2007-04-01

    This review is concerned specifically with the structures and biosynthesis of hemes in E. coli and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to E. coli and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of H2O. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.

  18. Functional redundancy of CDP-ethanolamine and CDP-choline pathway enzymes in phospholipid biosynthesis: ethanolamine-dependent effects on steady-state membrane phospholipid composition in Saccharomyces cerevisiae.

    PubMed Central

    McGee, T P; Skinner, H B; Bankaitis, V A

    1994-01-01

    It has been established that yeast membrane phospholipid content is responsive to the inositol and choline content of the growth medium. Alterations in the levels of transcription of phospholipid biosynthetic enzymes contribute significantly to this response. We now describe conditions under which ethanolamine can exert significant influence on yeast membrane phospholipid composition. We demonstrate that mutations which block a defined subset of the reactions required for the biosynthesis of phosphatidylcholine (PC) via the CDP-choline pathway cause ethanolamine-dependent effects on the steady-state levels of bulk PC in yeast membranes. Such an ethanolamine-dependent reduction in bulk membrane PC content was observed for both choline kinase (cki) and choline phosphotransferase (cpt1) mutants, but it was not observed for mutants defective in cholinephosphate cytidylyltransferase, the enzyme that catalyzes the penultimate reaction of the CDP-choline pathway for PC biosynthesis. Moreover, the ethanolamine effect observed for cki and cpt1 mutants was independent of the choline content of the growth medium. Finally, we found that haploid yeast strains defective in the activity of both the choline and ethanolamine phosphotransferases experienced an ethanolamine-insensitive reduction in steady-state PC content, an effect which was not observed in strains defective in either one of these activities alone. The collective data indicate that specific enzymes of the CDP-ethanolamine pathway for phosphatidylethanolamine biosynthesis, while able to contribute to PC synthesis when yeast cells are grown under conditions of ethanolamine deprivation, do not do so when yeast cells are presented with this phospholipid headgroup precursor. Images PMID:7961445

  19. 75 FR 5887 - Listing of Color Additives Exempt From Certification; Astaxanthin Dimethyldisuccinate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... Color Additives Exempt From Certification; Astaxanthin Dimethyldisuccinate; Confirmation of Effective... color additive regulations to provide for the safe use of astaxanthin dimethyldisuccinate as a color additive in the feed of salmonid fish to enhance the color of their flesh. DATES: The effective date...

  20. Production of astaxanthin from cellulosic biomass sugars by mutants of the yeast Phaffia rhodozyma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Astaxanthin is a carotenoid of high value to the aquaculture, nutraceutical, and pharmaceutical industries. Three mutant strains of the astaxanthin-producing yeast Phaffia rhodozyma, which were derived from the parent strain ATCC 24202 (UCD 67-210) and designated JTM166, JTM185, and SSM19, were test...

  1. [Repeated batch and fed-batch process for astaxanthin production by Phaffia rhodozyma].

    PubMed

    Xiao, Anfeng; Ni, Hui; Li, Lijun; Cai, Huinong

    2011-04-01

    A comparative study of batch and repeated batch process was carried out for astaxanthin fermentation of Phaffia rhodozyma to develop a more economical method for astaxanthin industrial production. In shaking flask fermentation, the change of biomass and astaxanthin production was studied to compare the five-day cycle with four-day cycle of repeated batch culture of P. rhodozyma. Astaxanthin production increased at first and then decreased subsequently in seven cycles, yet the yield of astaxanthin in the next six cycles remains higher than that of the first cycle. Comparing the average production of astaxanthin in the seven cycles, four-day cycle performed even better than five-day cycle. Subsequently, a repeated fed-batch process was used in a 5-1 bioreactor. The experimental data showed that biomass and astaxanthin production of the second batch could reach the level of the first batch, no matter that the carbon source was glucose or hydrolysis sugar of starch. This result showed that this strain had good stability, and thus repeated batch and fed-batch process could be applied in astaxanthin fermentation for economical purpose.

  2. Effects of spray-drying and storage on astaxanthin content of Haematococcus pluvialis biomass.

    PubMed

    Raposo, Maria Filomena J; Morais, Alcina M M B; Morais, Rui M S C

    2012-03-01

    The main objective of this study was to evaluate the stability of astaxanthin after drying and storage at different conditions during a 9-week period. Recovery of astaxanthin was evaluated by extracting pigments from the dried powders and analysing extracts by HPLC. The powders obtained were stored under different conditions of temperature and oxygen level and the effects on the degradation of astaxanthin were examined. Under the experimental conditions conducted in this study, the drying temperature that yielded the highest content of astaxanthin was 220°C, as the inlet, and 120°C, as the outlet temperature of the drying chamber. The best results were obtained for biomass dried at 180/110°C and stored at -21°C under nitrogen, with astaxanthin degradation lower than 10% after 9 weeks of storage. A reasonable preservation of astaxanthin can be achieved by conditions 180/80°C, -21°C nitrogen, 180/110°C, 21°C nitrogen, and 220/80°C, 21°C vacuum: the ratio of astaxanthin degradation is equal or inferior to 40%. In order to prevent astaxanthin degradation of Haematococcus pluvialis biomass, it is recommended the storage of the spray dried carotenized cells (180/110ºC) under nitrogen and -21°C.

  3. Propiconazole enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras famesylation

    EPA Science Inventory

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic ...

  4. Chirality and protein biosynthesis.

    PubMed

    Banik, Sindrila Dutta; Nandi, Nilashis

    2013-01-01

    Chirality is present at all levels of structural hierarchy of protein and plays a significant role in protein biosynthesis. The macromolecules involved in protein biosynthesis such as aminoacyl tRNA synthetase and ribosome have chiral subunits. Despite the omnipresence of chirality in the biosynthetic pathway, its origin, role in current pathway, and importance is far from understood. In this review we first present an introduction to biochirality and its relevance to protein biosynthesis. Major propositions about the prebiotic origin of biomolecules are presented with particular reference to proteins and nucleic acids. The problem of the origin of homochirality is unresolved at present. The chiral discrimination by enzymes involved in protein synthesis is essential for keeping the life process going. However, questions remained pertaining to the mechanism of chiral discrimination and concomitant retention of biochirality. We discuss the experimental evidence which shows that it is virtually impossible to incorporate D-amino acids in protein structures in present biosynthetic pathways via any of the two major steps of protein synthesis, namely aminoacylation and peptide bond formation reactions. Molecular level explanations of the stringent chiral specificity in each step are extended based on computational analysis. A detailed account of the current state of understanding of the mechanism of chiral discrimination during aminoacylation in the active site of aminoacyl tRNA synthetase and peptide bond formation in ribosomal peptidyl transferase center is presented. Finally, it is pointed out that the understanding of the mechanism of retention of enantiopurity has implications in developing novel enzyme mimetic systems and biocatalysts and might be useful in chiral drug design.

  5. Evidence that Biosynthesis of the Second and Third Sugars of the Archaellin Tetrasaccharide in the Archaeon Methanococcus maripaludis Occurs by the Same Pathway Used by Pseudomonas aeruginosa To Make a Di-N-Acetylated Sugar

    PubMed Central

    Siu, Sarah; Robotham, Anna; Logan, Susan M.; Kelly, John F.; Uchida, Kaoru; Aizawa, Shin-Ichi

    2015-01-01

    ABSTRACT Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-l-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354 and mmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions in mmp0350, mmp0351, mmp0352, or mmp0353 were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352 strain confirmed a glycan with only GalNAc, suggesting mmp0350 to mmp0353 were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357 mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr). M. maripaludis mmp0350, mmp0351, mmp0352, mmp0353, and mmp0357 are proposed to be functionally equivalent to Pseudomonas aeruginosa wbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of the P. aeruginosa pathway with mmp0357 supports this hypothesis. IMPORTANCE This work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins of Methanococcus maripaludis. This posttranslational modification of archaellins is important, as it is

  6. From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin

    PubMed Central

    Gómez, Patricia I.; Inostroza, Ingrid; Pizarro, Mario; Pérez, Jorge

    2013-01-01

    Astaxanthin is a red ketocarotenoid, widely used as a natural red colourant in marine fish aquaculture and poultry and, recently, as an antioxidant supplement for humans and animals. The green microalga Haematococcus pluvialis is one of the richest natural sources of this pigment. However, its slow growth rate and complex life cycle make mass culture difficult for commercial purposes. The aims of this research were (i) to standardize and apply a genetic improvement programme to a Chilean strain of H. pluvialis in order to improve its carotenogenic capacity and (ii) to evaluate the performance of a selected mutant strain in commercial-sized (125 000 L) open ponds in the north of Chile. Haematococcus pluvialis strain 114 was mutated by ethyl methanesulfonate. The level of mutagen dose (exposure time and concentration) was one that induced at least 90 % mortality. Surviving colonies were screened for resistance to the carotenoid biosynthesis inhibitor diphenylamine (25 µM). Resistant mutants were grown in a 30-mL volume for 30 days, after which the total carotenoid content was determined by spectrophotometry. Tens of mutants with improved carotenogenic capacity compared with the wild-type strain were isolated by the application of these standardized protocols. Some mutants exhibited curious morphological features such as spontaneous release of astaxanthin and loss of flagella. One of the mutants was grown outdoors in commercial-sized open ponds of 125 000 L in the north of Chile. Grown under similar conditions, the mutant strain accumulated 30 % more astaxanthin than the wild-type strain on a per dry weight basis and 72 % more on a per culture volume basis. We show that random mutagenesis/selection is an effective strategy for genetically improving strains of H. pluvialis and that improved carotenogenic capacity is maintained when the volume of the cultures is scaled up to a commercial size. PMID:23789055

  7. From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin.

    PubMed

    Gómez, Patricia I; Inostroza, Ingrid; Pizarro, Mario; Pérez, Jorge

    2013-01-01

    Astaxanthin is a red ketocarotenoid, widely used as a natural red colourant in marine fish aquaculture and poultry and, recently, as an antioxidant supplement for humans and animals. The green microalga Haematococcus pluvialis is one of the richest natural sources of this pigment. However, its slow growth rate and complex life cycle make mass culture difficult for commercial purposes. The aims of this research were (i) to standardize and apply a genetic improvement programme to a Chilean strain of H. pluvialis in order to improve its carotenogenic capacity and (ii) to evaluate the performance of a selected mutant strain in commercial-sized (125 000 L) open ponds in the north of Chile. Haematococcus pluvialis strain 114 was mutated by ethyl methanesulfonate. The level of mutagen dose (exposure time and concentration) was one that induced at least 90 % mortality. Surviving colonies were screened for resistance to the carotenoid biosynthesis inhibitor diphenylamine (25 µM). Resistant mutants were grown in a 30-mL volume for 30 days, after which the total carotenoid content was determined by spectrophotometry. Tens of mutants with improved carotenogenic capacity compared with the wild-type strain were isolated by the application of these standardized protocols. Some mutants exhibited curious morphological features such as spontaneous release of astaxanthin and loss of flagella. One of the mutants was grown outdoors in commercial-sized open ponds of 125 000 L in the north of Chile. Grown under similar conditions, the mutant strain accumulated 30 % more astaxanthin than the wild-type strain on a per dry weight basis and 72 % more on a per culture volume basis. We show that random mutagenesis/selection is an effective strategy for genetically improving strains of H. pluvialis and that improved carotenogenic capacity is maintained when the volume of the cultures is scaled up to a commercial size.

  8. Inhibition of Abscisic Acid Biosynthesis in Cercospora rosicola by Inhibitors of Gibberellin Biosynthesis and Plant Growth Retardants

    PubMed Central

    Norman, Shirley M.; Poling, Stephen M.; Maier, Vincent P.; Orme, Edward D.

    1983-01-01

    The fungus Cercospora rosicola produces abscisic acid (ABA) as a secondary metabolite. We developed a convenient system using this fungus to determine the effects of compounds on the biosynthesis of ABA. Inasmuch as ABA and the gibberellins (GAs) both arise via the isoprenoid pathway, it was of interest to determine if inhibitors of GA biosynthesis affect ABA biosynthesis. All five putative inhibitors of GA biosynthesis tested inhibited ABA biosynthesis. Several plant growth retardants with poorly understood actions in plants were also tested; of these, six inhibited ABA biosynthesis to varying degrees and two had no effect. Effects of plant growth retardants on various branches of the isoprenoid biosynthetic pathway may help to explain some of the diverse and unexpected results reported for these compounds. Knowledge that certain inhibitors of GA biosynthesis also have the ability to inhibit ABA biosynthesis in C. rosicola indicates the need for further studies in plants on the mode of action of these compounds. PMID:16662775

  9. Sesamol decreases melanin biosynthesis in melanocyte cells and zebrafish: Possible involvement of MITF via the intracellular cAMP and p38/JNK signalling pathways.

    PubMed

    Baek, Seung-hwa; Lee, Sang-Han

    2015-10-01

    The development of antimelanogenic agents is important for the prevention of serious aesthetic problems such as melasma, freckles, age spots and chloasma. The aim of this study was to investigate the antimelanogenic effect of sesamol, an active lignan isolated from Sesamum indicum, in melan-a cells. Sesamol strongly inhibited melanin biosynthesis and the activity of intracellular tyrosinase by decreasing cyclic adenosine monophosphate (cAMP) accumulation. Sesamol significantly decreased the expression of melanogenesis-related genes, such as tyrosinase, tyrosinase-related protein-1,2 (TRP-1,2), microphthalmia-associated transcription factor (MITF) and melanocortin 1 receptor (MC1R). In addition, sesamol also induces phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK). Moreover, sesamol dose-dependently decreased zebrafish pigment formation, tyrosinase activity and expression of melanogenesis-related genes. These findings indicate that sesamol inhibited melanin biosynthesis by down-regulating tyrosinase activity and melanin production via regulation of gene expression of melanogenesis-related proteins through modulation of MITF activity, which promoted phosphorylation of p38 and JNK in melan-a cells. Together, these results suggest that sesamol strongly inhibits melanin biosynthesis, and therefore, sesamol represents a new skin-whitening agent for use in cosmetics.

  10. Chlorella zofingiensis as an Alternative Microalgal Producer of Astaxanthin: Biology and Industrial Potential

    PubMed Central

    Liu, Jin; Sun, Zheng; Gerken, Henri; Liu, Zheng; Jiang, Yue; Chen, Feng

    2014-01-01

    Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione), a high-value ketocarotenoid with a broad range of applications in food, feed, nutraceutical, and pharmaceutical industries, has been gaining great attention from science and the public in recent years. The green microalgae Haematococcus pluvialis and Chlorella zofingiensis represent the most promising producers of natural astaxanthin. Although H. pluvialis possesses the highest intracellular astaxanthin content and is now believed to be a good producer of astaxanthin, it has intrinsic shortcomings such as slow growth rate, low biomass yield, and a high light requirement. In contrast, C. zofingiensis grows fast phototrophically, heterotrophically and mixtrophically, is easy to be cultured and scaled up both indoors and outdoors, and can achieve ultrahigh cell densities. These robust biotechnological traits provide C. zofingiensis with high potential to be a better organism than H. pluvialis for mass astaxanthin production. This review aims to provide an overview of the biology and industrial potential of C. zofingiensis as an alternative astaxanthin producer. The path forward for further expansion of the astaxanthin production from C. zofingiensis with respect to both challenges and opportunities is also discussed. PMID:24918452

  11. Production of stable food-grade microencapsulated astaxanthin by vibrating nozzle technology.

    PubMed

    Vakarelova, Martina; Zanoni, Francesca; Lardo, Piergiovanni; Rossin, Giacomo; Mainente, Federica; Chignola, Roberto; Menin, Alessia; Rizzi, Corrado; Zoccatelli, Gianni

    2017-04-15

    Astaxanthin is a carotenoid known for its strong antioxidant and health-promoting characteristics, but it is also highly degradable and thus unsuited for several applications. We developed a sustainable method for the extraction and the production of stable astaxanthin microencapsulates. Nearly 2% astaxanthin was extracted by high-pressure homogenization of dried Haematococcus pluvialis cells in soybean oil. Astaxanthin-enriched oil was encapsulated in alginate and low-methoxyl pectin by Ca(2+)-mediated vibrating-nozzle extrusion technology. The 3% pectin microbeads resulted the best compromise between sphericity and oil retention upon drying. We monitored the stability of these astaxanthin beads under four different conditions of light, temperature and oxygen exposition. After 52weeks, the microbeads showed a total-astaxanthin retention of 94.1±4.1% (+4°C/-light/+O2), 83.1±3.2% (RT/-light/-O2), 38.3±2.2% (RT/-light/+O2), and 57.0±0.4% (RT/+light/+O2), with different degradation kinetics. Refrigeration, therefore, resulted the optimal storage condition to preserve astaxanthin stability.

  12. Preventive effect of dietary astaxanthin on UVA-induced skin photoaging in hairless mice

    PubMed Central

    Komatsu, Toshiyuki; Sasaki, Suguru; Manabe, Yuki; Hirata, Takashi

    2017-01-01

    Astaxanthin, a carotenoid found mainly in seafood, has potential clinical applications due to its antioxidant activity. In this study, we evaluated the effect of dietary astaxanthin derived from Haematococcus pluvialis on skin photoaging in UVA-irradiated hairless mice by assessing various parameters of photoaging. After chronic ultraviolet A (UVA) exposure, a significant increase in transepidermal water loss (TEWL) and wrinkle formation in the dorsal skin caused by UVA was observed, and dietary astaxanthin significantly suppressed these photoaging features. We found that the mRNA expression of lympho-epithelial Kazal-type-related inhibitor, steroid sulfatase, and aquaporin 3 in the epidermis was significantly increased by UVA irradiation for 70 days, and dietary astaxanthin significantly suppressed these increases in mRNA expression to be comparable to control levels. In the dermis, the mRNA expression of matrix metalloprotease 13 was increased by UVA irradiation and significantly suppressed by dietary astaxanthin. In addition, HPLC-PDA analysis confirmed that dietary astaxanthin reached not only the dermis but also the epidermis. Our results indicate that dietary astaxanthin accumulates in the skin and appears to prevent the effects of UVA irradiation on filaggrin metabolism and desquamation in the epidermis and the extracellular matrix in the dermis. PMID:28170435

  13. Assessment and comparison of in vitro immunoregulatory activity of three astaxanthin stereoisomers

    NASA Astrophysics Data System (ADS)

    Sun, Weihong; Xing, Lihong; Lin, Hong; Leng, Kailiang; Zhai, Yuxiu; Liu, Xiaofang

    2016-04-01

    In recent years, the immune-modulatory role of all- trans astaxanthin from different pigment sources has been studied. It was reported that all- trans astaxanthin might exist as three stereoisomers, and the composition of all- trans stereoisomers in natural materials differs from that of synthetic products. However, the different biological effects of various all- trans stereoisomers still remain unclear. In the present study, we evaluated the bioactivity of three astaxanthin stereoisomers, ( 3S, 3'S)- trans-, ( 3R,3'R)- trans-and meso-trans-astaxanthin, in regulating cell-mediated immune response using mice lymphocytes and peritoneal exudates cells (PECs) systems. After the treatment with three astaxanthin stereoisomers (20 μmol L-1), the lymphocyte proliferation capacity, neutral red phagocytosis of PECs and natural killer (NK) cell cytotoxic activity were comparatively assessed. The results showed that all three astaxanthin stereoisomers significantly promoted lymphocyte proliferation, phagocytic capacity of PECs, and cytotoxic activity of NK cells. Moreover, the ( 3S,3'S)-trans-astaxanthin exhibited a much higher response than others.

  14. The protective effect of astaxanthin on fetal alcohol spectrum disorder in mice.

    PubMed

    Zheng, Dong; Li, Yi; He, Lei; Tang, Yamei; Li, Xiangpen; Shen, Qingyu; Yin, Deling; Peng, Ying

    2014-09-01

    Astaxanthin is a strong antioxidant with the ability of reducing the markers of inflammation. To explore the protective effect of astaxanthin on maternal ethanol induced embryonic deficiency, and to investigate the underlying mechanisms, we detected the morphology, expression of neural marker genes, oxidative stress indexes, and inflammatory factors in mice model of fetal alcohol spectrum disorder with or without astaxanthin pretreatment. Our results showed that astaxanthin blocked maternal ethanol induced retardation of embryonic growth, and the down-regulation of neural marker genes, Otx1 and Sox2. Moreover, astaxanthin also reversed the increases of malondialdehyde (MDA), hydrogen peroxide (H2O2), and the decrease of glutathione peroxidase (GPx) in fetal alcohol spectrum disorder. In addition, maternal ethanol induced up-regulation of toll-like receptor 4 (TLR4), and the down-streaming myeloid differentiation factor 88 (MyD88), NF-κB, TNF-α, and IL-1β in embryos, and this was inhibited by astaxanthin pretreatment. These results demonstrated a protective effect of astaxanthin on fetal alcohol spectrum disorder, and suggested that oxidative stress and TLR4 signaling associated inflammatory reaction are involved in this process.

  15. Astaxanthin from Haematococcus pluvialis Prevents Oxidative Stress on Human Endothelial Cells without Toxicity.

    PubMed

    Régnier, Philippe; Bastias, Jorge; Rodriguez-Ruiz, Violeta; Caballero-Casero, Noelia; Caballo, Carmen; Sicilia, Dolores; Fuentes, Axelle; Maire, Murielle; Crepin, Michel; Letourneur, Didier; Gueguen, Virginie; Rubio, Soledad; Pavon-Djavid, Graciela

    2015-05-07

    Astaxanthin, a powerful antioxidant, is a good candidate for the prevention of intracellular oxidative stress. The aim of the study was to compare the antioxidant activity of astaxanthin present in two natural extracts from Haematococcus pluvialis, a microalgae strain, with that of synthetic astaxanthin. Natural extracts were obtained either by solvent or supercritical extraction methods. UV, HPLC-DAD and (HPLC-(atmospheric pressure chemical ionization (APCI)+)/ion trap-MS) characterizations of both natural extracts showed similar compositions of carotenoids, but different percentages in free astaxanthin and its ester derivatives. The Trolox equivalent antioxidant capacity (TEAC) assay showed that natural extracts containing esters displayed stronger antioxidant activities than free astaxanthin. Their antioxidant capacities to inhibit intracellular oxidative stress were then evaluated on HUVEC cells. The intracellular antioxidant activity in natural extracts was approximately 90-times higher than synthetic astaxanthin (5 µM). No modification, neither in the morphology nor in the viability, of vascular human cells was observed by in vitro biocompatibility study up to 10 µM astaxanthin concentrations. Therefore, these results revealed the therapeutic potential of the natural extracts in vascular human cell protection against oxidative stress without toxicity, which could be exploited in prevention and/or treatment of cardiovascular diseases.

  16. Astaxanthin from Haematococcus pluvialis Prevents Oxidative Stress on Human Endothelial Cells without Toxicity

    PubMed Central

    Régnier, Philippe; Bastias, Jorge; Rodriguez-Ruiz, Violeta; Caballero-Casero, Noelia; Caballo, Carmen; Sicilia, Dolores; Fuentes, Axelle; Maire, Murielle; Crepin, Michel; Letourneur, Didier; Gueguen, Virginie; Rubio, Soledad; Pavon-Djavid, Graciela

    2015-01-01

    Astaxanthin, a powerful antioxidant, is a good candidate for the prevention of intracellular oxidative stress. The aim of the study was to compare the antioxidant activity of astaxanthin present in two natural extracts from Haematococcus pluvialis, a microalgae strain, with that of synthetic astaxanthin. Natural extracts were obtained either by solvent or supercritical extraction methods. UV, HPLC-DAD and (HPLC-(atmospheric pressure chemical ionization (APCI)+)/ion trap-MS) characterizations of both natural extracts showed similar compositions of carotenoids, but different percentages in free astaxanthin and its ester derivatives. The Trolox equivalent antioxidant capacity (TEAC) assay showed that natural extracts containing esters displayed stronger antioxidant activities than free astaxanthin. Their antioxidant capacities to inhibit intracellular oxidative stress were then evaluated on HUVEC cells. The intracellular antioxidant activity in natural extracts was approximately 90-times higher than synthetic astaxanthin (5 µM). No modification, neither in the morphology nor in the viability, of vascular human cells was observed by in vitro biocompatibility study up to 10 µM astaxanthin concentrations. Therefore, these results revealed the therapeutic potential of the natural extracts in vascular human cell protection against oxidative stress without toxicity, which could be exploited in prevention and/or treatment of cardiovascular diseases. PMID:25962124

  17. Auxin biosynthesis and storage forms.

    PubMed

    Korasick, David A; Enders, Tara A; Strader, Lucia C

    2013-06-01

    The plant hormone auxin drives plant growth and morphogenesis. The levels and distribution of the active auxin indole-3-acetic acid (IAA) are tightly controlled through synthesis, inactivation, and transport. Many auxin precursors and modified auxin forms, used to regulate auxin homeostasis, have been identified; however, very little is known about the integration of multiple auxin biosynthesis and inactivation pathways. This review discusses the many ways auxin levels are regulated through biosynthesis, storage forms, and inactivation, and the potential roles modified auxins play in regulating the bioactive pool of auxin to affect plant growth and development.

  18. Auxin biosynthesis and storage forms

    PubMed Central

    Strader, Lucia C.

    2013-01-01

    The plant hormone auxin drives plant growth and morphogenesis. The levels and distribution of the active auxin indole-3-acetic acid (IAA) are tightly controlled through synthesis, inactivation, and transport. Many auxin precursors and modified auxin forms, used to regulate auxin homeostasis, have been identified; however, very little is known about the integration of multiple auxin biosynthesis and inactivation pathways. This review discusses the many ways auxin levels are regulated through biosynthesis, storage forms, and inactivation, and the potential roles modified auxins play in regulating the bioactive pool of auxin to affect plant growth and development. PMID:23580748

  19. Microbial biosynthesis of alkanes.

    PubMed

    Schirmer, Andreas; Rude, Mathew A; Li, Xuezhi; Popova, Emanuela; del Cardayre, Stephen B

    2010-07-30

    Alkanes, the major constituents of gasoline, diesel, and jet fuel, are naturally produced by diverse species; however, the genetics and biochemistry behind this biology have remained elusive. Here we describe the discovery of an alkane biosynthesis pathway from cyanobacteria. The pathway consists of an acyl-acyl carrier protein reductase and an aldehyde decarbonylase, which together convert intermediates of fatty acid metabolism to alkanes and alkenes. The aldehyde decarbonylase is related to the broadly functional nonheme diiron enzymes. Heterologous expression of the alkane operon in Escherichia coli leads to the production and secretion of C13 to C17 mixtures of alkanes and alkenes. These genes and enzymes can now be leveraged for the simple and direct conversion of renewable raw materials to fungible hydrocarbon fuels.

  20. Nicotiana attenuata SIPK, WIPK, NPR1, and Fatty Acid-Amino Acid Conjugates Participate in the Induction of Jasmonic Acid Biosynthesis by Affecting Early Enzymatic Steps in the Pathway1[W][OA

    PubMed Central

    Kallenbach, Mario; Alagna, Fiammetta; Baldwin, Ian Thomas; Bonaventure, Gustavo

    2010-01-01

    Wounding and herbivore attack elicit the rapid (within minutes) accumulation of jasmonic acid (JA) that results from the activation of previously synthesized biosynthetic enzymes. Recently, several regulatory factors that affect JA production have been identified; however, how these regulators affect JA biosynthesis remains at present unknown. Here we demonstrate that Nicotiana attenuata salicylate-induced protein kinase (SIPK), wound-induced protein kinase (WIPK), nonexpressor of PR-1 (NPR1), and the insect elicitor N-linolenoyl-glucose (18:3-Glu) participate in mechanisms affecting early enzymatic steps of the JA biosynthesis pathway. Plants silenced in the expression of SIPK and NPR1 were affected in the initial accumulation of 13-hydroperoxy-linolenic acid (13-OOH-18:3) after wounding and 18:3-Glu elicitation by mechanisms independent of changes in 13-lipoxygenase activity. Moreover, 18:3-Glu elicited an enhanced and rapid accumulation of 13-OOH-18:3 that depended partially on SIPK and NPR1 but was independent of increased 13-lipoxygenase activity. Together, the results suggested that substrate supply for JA production was altered by 18:3-Glu elicitation and SIPK- and NPR1-mediated mechanisms. Consistent with a regulation at the level of substrate supply, we demonstrated by virus-induced gene silencing that a wound-repressed plastidial glycerolipase (NaGLA1) plays an essential role in the induction of de novo JA biosynthesis. In contrast to SIPK and NPR1, mechanisms mediated by WIPK did not affect the production of 13-OOH-18:3 but were critical to control the conversion of this precursor into 12-oxo-phytodienoic acid. These differences could be partially accounted for by reduced allene oxide synthase activity in WIPK-silenced plants. PMID:19897603

  1. Completion of Tricin Biosynthesis Pathway in Rice: Cytochrome P450 75B4 Is a Unique Chrysoeriol 5′-Hydroxylase1

    PubMed Central

    2015-01-01

    Flavones are ubiquitously accumulated in land plants, but their biosynthesis in monocots remained largely elusive until recent years. Recently, we demonstrated that the rice (Oryza sativa) cytochrome P450 enzymes CYP93G1 and CYP93G2 channel flavanones en route to flavone O-linked conjugates and C-glycosides, respectively. In tricin, the 3′,5′-dimethoxyflavone nucleus is formed before O-linked conjugations. Previously, flavonoid 3′,5′-hydroxylases belonging to the CYP75A subfamily were believed to generate tricetin from apigenin for 3′,5′-O-methylation to form tricin. However, we report here that CYP75B4 a unique flavonoid B-ring hydroxylase indispensable for tricin formation in rice. A CYP75B4 knockout mutant is tricin deficient, with unusual accumulation of chrysoeriol (a 3′-methoxylated flavone). CYP75B4 functions as a bona fide flavonoid 3′-hydroxylase by restoring the accumulation of 3′-hydroxylated flavonoids in Arabidopsis (Arabidopsis thaliana) transparent testa7 mutants and catalyzing in vitro 3′-hydroxylation of different flavonoids. In addition, overexpression of both CYP75B4 and CYP93G1 (a flavone synthase II) in Arabidopsis resulted in tricin accumulation. Specific 5′-hydroxylation of chrysoeriol to selgin by CYP75B4 was further demonstrated in vitro. The reaction steps leading to tricin biosynthesis are then reconstructed as naringenin → apigenin → luteolin → chrysoeriol → selgin → tricin. Hence, chrysoeriol, instead of tricetin, is an intermediate in tricin biosynthesis. CYP75B4 homologous sequences are highly conserved in Poaceae, and they are phylogenetically distinct from the canonical CYP75B flavonoid 3′-hydroxylase sequences. Recruitment of chrysoeriol-specific 5′-hydroxylase activity by an ancestral CYP75B sequence may represent a key event leading to the prevalence of tricin-derived metabolites in grasses and other monocots today. PMID:26082402

  2. Ectopic Expression of a Basic Helix-Loop-Helix Gene Transactivates Parallel Pathways of Proanthocyanidin Biosynthesis. Structure, Expression Analysis, and Genetic Control of Leucoanthocyanidin 4-Reductase and Anthocyanidin Reductase Genes in Lotus corniculatus1[W

    PubMed Central

    Paolocci, Francesco; Robbins, Mark P.; Madeo, Laura; Arcioni, Sergio; Martens, Stefan; Damiani, Francesco

    2007-01-01

    Proanthocyanidins (PAs) are plant secondary metabolites and are composed primarily of catechin and epicatechin units in higher plant species. Due to the ability of PAs to bind reversibly with plant proteins to improve digestion and reduce bloat, engineering this pathway in leaves is a major goal for forage breeders. Here, we report the cloning and expression analysis of anthocyanidin reductase (ANR) and leucoanthocyanidin 4-reductase (LAR), two genes encoding enzymes committed to epicatechin and catechin biosynthesis, respectively, in Lotus corniculatus. We show the presence of two LAR gene families (LAR1 and LAR2) and that the steady-state levels of ANR and LAR1 genes correlate with the levels of PAs in leaves of wild-type and transgenic plants. Interestingly, ANR and LAR1, but not LAR2, genes produced active proteins following heterologous expression in Escherichia coli and are affected by the same basic helix-loop-helix transcription factor that promotes PA accumulation in cells of palisade and spongy mesophyll. This study provides direct evidence that the same subclass of transcription factors can mediate the expression of the structural genes of both branches of PA biosynthesis. PMID:17098849

  3. Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus.

    PubMed

    Paolocci, Francesco; Robbins, Mark P; Madeo, Laura; Arcioni, Sergio; Martens, Stefan; Damiani, Francesco

    2007-01-01

    Proanthocyanidins (PAs) are plant secondary metabolites and are composed primarily of catechin and epicatechin units in higher plant species. Due to the ability of PAs to bind reversibly with plant proteins to improve digestion and reduce bloat, engineering this pathway in leaves is a major goal for forage breeders. Here, we report the cloning and expression analysis of anthocyanidin reductase (ANR) and leucoanthocyanidin 4-reductase (LAR), two genes encoding enzymes committed to epicatechin and catechin biosynthesis, respectively, in Lotus corniculatus. We show the presence of two LAR gene families (LAR1 and LAR2) and that the steady-state levels of ANR and LAR1 genes correlate with the levels of PAs in leaves of wild-type and transgenic plants. Interestingly, ANR and LAR1, but not LAR2, genes produced active proteins following heterologous expression in Escherichia coli and are affected by the same basic helix-loop-helix transcription factor that promotes PA accumulation in cells of palisade and spongy mesophyll. This study provides direct evidence that the same subclass of transcription factors can mediate the expression of the structural genes of both branches of PA biosynthesis.

  4. The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light-dark cyclic cultivation.

    PubMed

    Wan, Minxi; Zhang, Jingkui; Hou, Dongmei; Fan, Jianhua; Li, Yuanguang; Huang, Jianke; Wang, Jun

    2014-09-01

    Haematococcus pluvialis is the best source of natural astaxanthin known as "the king of antioxidants". The mass outdoor culture is the most workable strategy for astaxanthin production, but the effects of daytime and night temperatures on the biomass concentration and astaxanthin content of H. pluvialis have received little attention. This study indicated that, raising the daytime or night temperature could stimulate night accumulation of astaxanthin until temperature up to 28°C; the night biomass loss increased firstly and then decreased along with the daytime temperature reducing; decreasing the night temperature can lessen night biomass loss; the daytime temperature of 28°C and the night temperature below 28°C were optimal for achieving high biomass and astaxanthin content. Subsequently, the outdoor culture strategy has been improved and can increase the net biomass and astaxanthin productivities by 5 and 2.9-fold as compared to the former strategy.

  5. The zinc cluster proteins Upc2 and Ecm22 promote filamentation in Saccharomyces cerevisiae by sterol biosynthesis-dependent and -independent pathways.

    PubMed

    Woods, Kelly; Höfken, Thomas

    2016-02-01

    The transition between a unicellular yeast form to multicellular filaments is crucial for budding yeast foraging and the pathogenesis of many fungal pathogens such as Candida albicans. Here, we examine the role of the related transcription factors Ecm22 and Upc2 in Saccharomyces cerevisiae filamentation. Overexpression of either ECM22 or UPC2 leads to increased filamentation, whereas cells lacking both ECM22 and UPC2 do not exhibit filamentous growth. Ecm22 and Upc2 positively control the expression of FHN1, NPR1, PRR2 and sterol biosynthesis genes. These genes all play a positive role in filamentous growth, and their expression is upregulated during filamentation in an Ecm22/Upc2-dependent manner. Furthermore, ergosterol content increases during filamentous growth. UPC2 expression also increases during filamentation and is inhibited by the transcription factors Sut1 and Sut2. The expression of SUT1 and SUT2 in turn is under negative control of the transcription factor Ste12. We suggest that during filamentation Ste12 becomes activated and reduces SUT1/SUT2 expression levels. This would result in increased UPC2 levels and as a consequence to transcriptional activation of FHN1, NPR1, PRR2 and sterol biosynthesis genes. Higher ergosterol levels in combination with the proteins Fhn1, Npr1 and Prr2 would then mediate the transition to filamentous growth.

  6. Effect of sucrose on ascorbate level and expression of genes involved in the ascorbate biosynthesis and recycling pathway in harvested broccoli florets.

    PubMed

    Nishikawa, Fumie; Kato, Masaya; Hyodo, Hiroshi; Ikoma, Yoshinori; Sugiura, Minoru; Yano, Masamichi

    2005-01-01

    The relationship between sucrose (Suc) and ascorbate (AA) metabolism was investigated in harvested broccoli (Brassica oleracea L. var. italica) florets. Decreases in both Suc and AA content were observed in broccoli florets 48 h after all the leaves were excised, but none were observed when the plants were kept intact or with leaves attached in a room at 20 degrees C. In harvested broccoli plants without leaves and roots, continuous absorption of a 10% (w/v) Suc solution from the cut surface of the stem suppressed the degreening of sepals and the loss of AA content in florets. The expression of the genes related to AA metabolism in chloroplasts and its biosynthesis were up-regulated by Suc feeding in broccoli florets. These data suggest that a decline in Suc leads to considerable damage not only to AA biosynthesis but also to the hydrogen peroxide-scavenging system in chloroplasts. In addition, the cessation of the Suc supply from leaves can be the main factor of AA degradation in harvested broccoli florets.

  7. Production, extraction, and quantification of astaxanthin by Xanthophyllomyces dendrorhous or Haematococcus pluvialis: standardized techniques.

    PubMed

    Domínguez-Bocanegra, Alma Rosa

    2012-01-01

    For many years, benefits and disadvantages of pigments production either by microalgae or yeasts have been under analysis. In this contribution we shall deal with Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma) and Haematococcus pluvialis, which are known as major prominent microorganisms able to synthesize astaxanthin pigment. Then, the usual trend is to look for optimal conditions to conduct astaxanthin synthesis. From one side, pigment production by H. pluvialis is promoted under cellular stress conditions like nutrient deprivation, exposition to high light intensity, aeration. On the other side, X. dendrorhous is able to show significant increase in astaxanthin synthesis when grown in natural carbon sources like coconut milk, grape juice. The main aim of this chapter is to describe optimal environmental conditions for astaxanthin production by X. dendrorhous or H. pluvialis.

  8. Sequential Heterotrophy-Dilution-Photoinduction Cultivation of Haematococcus pluvialis for efficient production of astaxanthin.

    PubMed

    Wan, Minxi; Zhang, Zhen; Wang, Jun; Huang, Jianke; Fan, Jianhua; Yu, Anquan; Wang, Weiliang; Li, Yuanguang

    2015-12-01

    A novel cultivation strategy called "Sequential Heterotrophy-Dilution-Photoinduction" was successfully applied in the cultivation of Haematococcus pluvialis to produce astaxanthin effectively. Cells were first cultivated heterotrophically to achieve a high cell density, then were diluted to a suitable concentration and switched to a favorable environment for cells acclimation. Finally, the culture was transferred to high light environment for astaxanthin accumulation. By this strategy, the dry cell weight of 26 g/L and biomass productivity of 64.1mg/L/h were obtained in heterotrophy stage which surpassed ever before reported in literatures. Meanwhile, the cells could accumulate considerable astaxanthin up to 4.6% of dry cell weight after 10 days of photoinduction. Furthermore, the application prospects of the strategy were confirmed further by outdoor experiments. Therefore, this novel strategy provided a promising approach for high-efficient production of natural astaxanthin from H. pluvialis to meet the huge demand of this high value product.

  9. Analysis of the Staphylococcus aureus capsule biosynthesis pathway in vitro: characterization of the UDP-GlcNAc C6 dehydratases CapD and CapE and identification of enzyme inhibitors.

    PubMed

    Li, Wenjin; Ulm, Hannah; Rausch, Marvin; Li, Xue; O'Riordan, Katie; Lee, Jean C; Schneider, Tanja; Müller, Christa E

    2014-11-01

    Polysaccharide capsules significantly contribute to virulence of invasive pathogens, and inhibition of capsule biosynthesis may offer a valuable strategy for novel anti-infective treatment. We purified and characterized the enzymes CapD and CapE of the Staphylococcus aureus serotype 5 biosynthesis cluster, which catalyze the first steps in the synthesis of the soluble capsule precursors UDP-D-FucNAc and UDP-L-FucNAc, respectively. CapD is an integral membrane protein and was obtained for the first time in a purified, active form. A capillary electrophoresis (CE)-based method applying micellar electrokinetic chromatography (MEKC) coupled with UV detection at 260 nm was developed for functional characterization of the enzymes using a fused-silica capillary, electrokinetic injection, and dynamic coating with polybrene at pH 12.4. The limits of detection for the CapD and CapE products UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex-4-ulose and UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose, respectively, were below 1 μM. Using this new, robust and sensitive method we performed kinetic studies for CapD and CapE and screened a compound library in search for enzyme inhibitors. Several active compounds were identified and characterized, including suramin (IC50 at CapE 1.82 μM) and ampicillin (IC50 at CapD 40.1 μM). Furthermore, the cell wall precursors UDP-D-MurNAc-pentapeptide and lipid II appear to function as inhibitors of CapD enzymatic activity, suggesting an integrated mechanism of regulation for cell envelope biosynthesis pathways in S. aureus. Corroborating the in vitro findings, staphylococcal cells grown in the presence of subinhibitory concentrations of ampicillin displayed drastically reduced CP production. Our studies contribute to a profound understanding of the capsule biosynthesis in pathogenic bacteria. This approach may lead to the identification of novel anti-virulence and antibiotic drugs.

  10. Biosynthesis of methanopterin

    SciTech Connect

    White, R.H. )

    1990-06-05

    The biosynthetic pathway for the generation of the methylated pterin in methanopterins was determined for the methanogenic bacteria Methanococcus volta and Methanobacterium formicicum. Extracts of M. volta were found to readily cleave L-7,8-dihydroneopterin to 7,8-dihydro-6-(hydroxymethyl)pterin, which was confirmed to be a precursor of the pterin portion of the methanopterin. (methylene{sup 2}H)-6-(hydroxymethyl)pterin was incorporated into methanopterin by growing cells of M. volta to an extent of 30%. Both the C-11 and C-12 methyl groups of methanopterin originate from (methyl-{sup 2}H{sub 3})methionine. Cells grown in the presence of (methylene-{sup 2}H)-6-(hydroxymethyl)pterin, (ethyl-{sup 2}H{sub 4})-6-(1 (RS)-hydroxyethyl)pterin, (methyl-{sup 2}H{sub 3})-6-(hydroxymethyl)-7-methylpterin, (ethyl-{sup 2}H{sub 4}, methyl-{sup 2}H{sub 3})-6-(1 (RS)-hydroxyethyl)-7-methylpterin, and (1-ethyl-{sup 3}H)-6-(1 (RS)-hydroxyethyl)-7-methylpterin showed that only the non-7-methylated pterins were incorporated into methanopterin. Cells extracts of M. formicicum readily condensed synthetic (methylene-{sup 3}H)-7,8-H{sub 2}-6-(hydroxymethyl)pterin-PP with methaniline to generate demethylated methanopterin, which is then methylated to methanopterin by the cell extract in the presence of S-adenosylmethionine. These observations indicate that the pterin portion of methanopterin is biosynthetically derived from 7,8-H{sub 2}-6-(hydroxymethyl)pterin, which is coupled to methaniline by a pathway analogous to the biosynthesis of folic acid. This pathway for the biosynthesis of methanopterin represents the first example of the modification of the specificity of a coenzyme through a methylation reaction.

  11. Transcription factors in alkaloid biosynthesis.

    PubMed

    Yamada, Yasuyuki; Sato, Fumihiko

    2013-01-01

    Higher plants produce a large variety of low-molecular weight secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used pharmaceutically. Whereas alkaloid chemistry has been intensively investigated, alkaloid biosynthesis, including the relevant biosynthetic enzymes, genes and their regulation, and especially transcription factors, is largely unknown, as only a limited number of plant species produce certain types of alkaloids and they are difficult to study. Recently, however, several groups have succeeded in isolating the transcription factors that are involved in the biosynthesis of several types of alkaloids, including bHLH, ERF, and WRKY. Most of them show Jasmonate (JA) responsiveness, which suggests that the JA signaling cascade plays an important role in alkaloid biosynthesis. Here, we summarize the types and functions of transcription factors that have been isolated in alkaloid biosynthesis, and characterize their similarities and differences compared to those in other secondary metabolite pathways, such as phenylpropanoid and terpenoid biosyntheses. The evolution of this biosynthetic pathway and regulatory network, as well as the application of these transcription factors to metabolic engineering, is discussed.

  12. Anti-inflammatory Effect of Astaxanthin on the Sickness Behavior Induced by Diabetes Mellitus.

    PubMed

    Ying, Chang-jiang; Zhang, Fang; Zhou, Xiao-yan; Hu, Xiao-tong; Chen, Jing; Wen, Xiang-ru; Sun, Ying; Zheng, Kui-yang; Tang, Ren-xian; Song, Yuan-jian

    2015-10-01

    Chronic inflammation appears to play a critical role in sickness behavior caused by diabetes mellitus. Astaxanthin has been used in treating diabetes mellitus and diabetic complications because of its neuroprotective and anti-inflammatory actions. However, whether astaxanthin can improve sickness behavior induced by diabetes and its potential mechanisms are still unknown. The aim of this study was to investigate the effects of astaxanthin on diabetes-elicited abnormal behavior in mice and its corresponding mechanisms. An experimental diabetic model was induced by streptozotocin (150 mg/kg) and astaxanthin (25 mg/kg/day) was provided orally for 10 weeks. Body weight and water consumption were measured, and the sickness behavior was evaluated by the open field test (OFT) and closed field test (CFT). The expression of glial fibrillary acidic protein (GFAP) was measured, and the frontal cortical cleaved caspase-3 positive cells, interleukin-6 (IL-6), and interleukin-1β (IL-1β) expression levels were also investigated. Furthermore, cystathionine β-synthase (CBS) in the frontal cortex was detected to determine whether the protective effect of astaxanthin on sickness behavior in diabetic mice is closely related to CBS. As expected, we observed that astaxanthin improved general symptoms and significantly increase horizontal distance and the number of crossings in the OFT and CFT. Furthermore, data showed that astaxanthin could decrease GFAP-positive cells in the brain and down-regulate the cleaved caspase-3, IL-6, and IL-1β, and up-regulate CBS in the frontal cortex. These results suggest that astaxanthin provides neuroprotection against diabetes-induced sickness behavior through inhibiting inflammation, and the protective effects may involve CBS expression in the brain.

  13. Determination of astaxanthin in Haematococcus pluvialis by first-order derivative spectrophotometry.

    PubMed

    Liu, Xiao Juan; Juan, Liu Xiao; Wu, Ying Hua; Hua, Wu Ying; Zhao, Li Chao; Chao, Zhao Li; Xiao, Su Yao; Yao, Xiao Su; Zhou, Ai Mei; Mei, Zhou Ai; Liu, Xin; Xin, Liu

    2011-01-01

    A highly selective, convenient, and precise method, first-order derivative spectrophotometry, was applied for the determination of astaxanthin in Haematococcus pluvialis. Ethyl acetate and ethanol (1:1, v/v) were found to be the best extraction solvent tested due to their high efficiency and low toxicity compared with nine other organic solvents. Astaxanthin coexisting with chlorophyll and beta-carotene was analyzed by first-order derivative spectrophotometry in order to optimize the conditions for the determination of astaxanthin. The results show that when detected at 432 nm, the interfering substances could be eliminated. The dynamic linear range was 2.0-8.0 microg/mL, with a correlation coefficient of 0.9916. The detection threshold was 0.41 microg/mL. The RSD for the determination of astaxanthin was in the range of 0.01-0.06%; the results of recovery test were 98.1-108.0%. The statistical analysis between first-order derivative spectrophotometry and HPLC by T-testing did not exceed their critical values, revealing no significant differences between these two methods. It was proved that first-order derivative spectrophotometry is a rapid and convenient method for the determination of astaxanthin in H. pluvialis that can eliminate the negative effect resulting from the coexistence of astaxanthin with chlorophyll and beta-carotene.

  14. Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region.

    PubMed

    Belfaiza, J; Parsot, C; Martel, A; de la Tour, C B; Margarita, D; Cohen, G N; Saint-Girons, I

    1986-02-01

    The metC gene of Escherichia coli K-12 was cloned and the nucleotide sequence of the metC gene and its flanking regions was determined. The translation initiation codon was identified by sequencing the NH2-terminal part of beta-cystathionase, the MetC gene product. The metC gene (1185 nucleotides) encodes a protein having 395 amino acid residues. The 5' noncoding region was found to contain a "Met box" homologous to sequences suggestive of operator structures upstream from other methionine genes that are controlled by the product of the pleiotropic regulatory metJ gene. The deduced amino acid sequence of beta-cystathionase showed extensive homology with that of the MetB protein (cystathionine gamma-synthase) that catalyzes the preceding step in methionine biosynthesis. The homology strongly suggests that the structural genes for the MetB and MetC proteins evolved from a common ancestral gene.

  15. Functional differentiation of two analogous coproporphyrinogen III oxidases for heme and chlorophyll biosynthesis pathways in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Goto, Takeaki; Aoki, Rina; Minamizaki, Kei; Fujita, Yuichi

    2010-04-01

    Coproporphyrinogen III oxidase (CPO) catalyzes the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX in heme biosynthesis and is shared in chlorophyll biosynthesis in photosynthetic organisms. There are two analogous CPOs, oxygen-dependent (HemF) and oxygen-independent (HemN) CPOs, in various organisms. Little information on cyanobacterial CPOs has been available to date. In the genome of the cyanobacterium Synechocystis sp. PCC 6803 there is one hemF-like gene, sll1185, and two hemN-like genes, sll1876 and sll1917. The three genes were overexpressed in Escherichia coli and purified to homogeneity. Sll1185 showed CPO activity under both aerobic and anaerobic conditions. While Sll1876 and Sll1917 showed absorbance spectra indicative of Fe-S proteins, only Sll1876 showed CPO activity under anaerobic conditions. Three mutants lacking one of these genes were isolated. The Deltasll1185 mutant failed to grow under aerobic conditions, with accumulation of coproporphyrin III. This growth defect was restored by cultivation under micro-oxic conditions. The growth of the Deltasll1876 mutant was significantly slower than that of the wild type under micro-oxic conditions, while it grew normally under aerobic conditions. Coproporphyrin III was accumulated at a low but significant level in the Deltasll1876 mutant grown under micro-oxic conditions. There was no detectable phenotype in Deltasll1917 under the conditions we examined. These results suggested that sll1185 encodes HemF as the sole CPO under aerobic conditions and that sll1876 encodes HemN operating under micro-oxic conditions, together with HemF. Such a differential operation of CPOs would ensure the stable supply of tetrapyrrole pigments under environments where oxygen levels fluctuate greatly.

  16. A Novel Type Pathway-Specific Regulator and Dynamic Genome Environments of a Solanapyrone Biosynthesis Gene Cluster in the Fungus Ascochyta rabiei

    PubMed Central

    Kim, Wonyong; Park, Jeong-Jin; Gang, David R.; Peever, Tobin L.

    2015-01-01

    Secondary metabolite genes are often clustered together and situated in particular genomic regions, like the subtelomere, that can facilitate niche adaptation in fungi. Solanapyrones are toxic secondary metabolites produced by fungi occupying different ecological niches. Full-genome sequencing of the ascomycete Ascochyta rabiei revealed a solanapyrone biosynthesis gene cluster embedded in an AT-rich region proximal to a telomere end and surrounded by Tc1/Mariner-type transposable elements. The highly AT-rich environment of the solanapyrone cluster is likely the product of repeat-induced point mutations. Several secondary metabolism-related genes were found in the flanking regions of the solanapyrone cluster. Although the solanapyrone cluster appears to be resistant to repeat-induced point mutations, a P450 monooxygenase gene adjacent to the cluster has been degraded by such mutations. Among the six solanapyrone cluster genes (sol1 to sol6), sol4 encodes a novel type of Zn(II)2Cys6 zinc cluster transcription factor. Deletion of sol4 resulted in the complete loss of solanapyrone production but did not compromise growth, sporulation, or virulence. Gene expression studies with the sol4 deletion and sol4-overexpressing mutants delimited the boundaries of the solanapyrone gene cluster and revealed that sol4 is likely a specific regulator of solanapyrone biosynthesis and appears to be necessary and sufficient for induction of the solanapyrone cluster genes. Despite the dynamic surrounding genomic regions, the solanapyrone gene cluster has maintained its integrity, suggesting important roles of solanapyrones in fungal biology. PMID:26342019

  17. Sulforaphane, a cancer chemopreventive agent, induces pathways associated with membrane biosynthesis in response to tissue damage by aflatoxin B{sub 1}

    SciTech Connect

    Techapiesancharoenkij, Nirachara; Fiala, Jeannette L.A.; Navasumrit, Panida; Croy, Robert G.; Wogan, Gerald N.; Groopman, John D.; Ruchirawat, Mathuros; Essigmann, John M.

    2015-01-01

    Aflatoxin B{sub 1} (AFB{sub 1}) is one of the major risk factors for liver cancer globally. A recent study showed that sulforaphane (SF), a potent inducer of phase II enzymes that occurs naturally in widely consumed vegetables, effectively induces hepatic glutathione S-transferases (GSTs) and reduces levels of hepatic AFB{sub 1}-DNA adducts in AFB{sub 1}-exposed Sprague Dawley rats. The present study characterized the effects of SF pre-treatment on global gene expression in the livers of similarly treated male rats. Combined treatment with AFB{sub 1} and SF caused reprogramming of a network of genes involved in signal transduction and transcription. Changes in gene regulation were observable 4 h after AFB{sub 1} administration in SF-pretreated animals and may reflect regeneration of cells in the wake of AFB{sub 1}-induced hepatotoxicity. At 24 h after AFB{sub 1} administration, significant induction of genes that play roles in cellular lipid metabolism and acetyl-CoA biosynthesis was detected in SF-pretreated AFB{sub 1}-dosed rats. Induction of this group of genes may indicate a metabolic shift toward glycolysis and fatty acid synthesis to generate and maintain pools of intermediate molecules required for tissue repair, cell growth and compensatory hepatic cell proliferation. Collectively, gene expression data from this study provide insights into molecular mechanisms underlying the protective effects of SF against AFB{sub 1} hepatotoxicity and hepatocarcinogenicity, in addition to the chemopreventive activity of this compound as a GST inducer. - Highlights: • This study revealed sulforaphane (SF)-deregulated gene sets in aflatoxin B{sub 1} (AFB{sub 1})-treated rat livers. • SF redirects biochemical networks toward lipid biosynthesis in AFB{sub 1}-dosed rats. • SF enhanced gene sets that would be expected to favor cell repair and regeneration.

  18. Genetic characterization of the Neurospora crassa molybdenum cofactor biosynthesis.

    PubMed

    Probst, Corinna; Ringel, Phillip; Boysen, Verena; Wirsing, Lisette; Alexander, Mariko Matsuda; Mendel, Ralf R; Kruse, Tobias

    2014-05-01

    Molybdenum (Mo) is a trace element that is essential for important cellular processes. To gain biological activity, Mo must be complexed in the molybdenum cofactor (Moco), a pterin derivative of low molecular weight. Moco synthesis is a multi-step pathway that involves a variable number of genes in eukaryotes, which are assigned to four steps of eukaryotic Moco biosynthesis. Moco biosynthesis mutants lack any Moco-dependent enzymatic activities, including assimilation of nitrate (plants and fungi), detoxification of sulfite (humans and plants) and utilization of hypoxanthine as sole N-source (fungi). We report the first comprehensive genetic characterization of the Neurospora crassa (N. crassa) Moco biosynthesis pathway, annotating five genes which encode all pathway enzymes, and compare it with the characterized Aspergillus nidulans pathway. Biochemical characterization of the corresponding knock-out mutants confirms our annotation model, documenting the N. crassa/A. nidulans (fungal) Moco biosynthesis as unique, combining the organizational structure of both plant and human Moco biosynthesis genes.

  19. Designer microbes for biosynthesis

    PubMed Central

    Quin, Maureen B.; Schmidt-Dannert, Claudia

    2014-01-01

    Microbes have long been adapted for the biosynthetic production of useful compounds. There is increasing demand for the rapid and cheap microbial production of diverse molecules in an industrial setting. Microbes can now be designed and engineered for a particular biosynthetic purpose, thanks to recent developments in genome sequencing, metabolic engineering, and synthetic biology. Advanced tools exist for the genetic manipulation of microbes to create novel metabolic circuits, making new products accessible. Metabolic processes can be optimized to increase yield and balance pathway flux. Progress is being made towards the design and creation of fully synthetic microbes for biosynthetic purposes. Together, these emerging technologies will facilitate the production of designer microbes for biosynthesis. PMID:24646570

  20. Terpenoid biosynthesis in prokaryotes.

    PubMed

    Boronat, Albert; Rodríguez-Concepción, Manuel

    2015-01-01

    Prokaryotic organisms (archaea and eubacteria) are found in all habitats where life exists on our planet. This would not be possible without the astounding biochemical plasticity developed by such organisms. Part of the metabolic diversity of prokaryotes was transferred to eukaryotic cells when endosymbiotic prokaryotes became mitochondria and plastids but also in a large number of horizontal gene transfer episodes. A group of metabolites produced by all free-living organisms is terpenoids (also known as isoprenoids). In prokaryotes, terpenoids play an indispensable role in cell-wall and membrane biosynthesis (bactoprenol, hopanoids), electron transport (ubiquinone, menaquinone), or conversion of light into chemical energy (chlorophylls, bacteriochlorophylls, rhodopsins, carotenoids), among other processes. But despite their remarkable structural and functional diversity, they all derive from the same metabolic precursors. Here we describe the metabolic pathways producing these universal terpenoid units and provide a complete picture of the main terpenoid compounds found in prokaryotic organisms.

  1. (-)-Menthol biosynthesis and molecular genetics

    NASA Astrophysics Data System (ADS)

    Croteau, Rodney B.; Davis, Edward M.; Ringer, Kerry L.; Wildung, Mark R.

    2005-12-01

    (-)-Menthol is the most familiar of the monoterpenes as both a pure natural product and as the principal and characteristic constituent of the essential oil of peppermint ( Mentha x piperita). In this paper, we review the biosynthesis and molecular genetics of (-)-menthol production in peppermint. In Mentha species, essential oil biosynthesis and storage is restricted to the peltate glandular trichomes (oil glands) on the aerial surfaces of the plant. A mechanical method for the isolation of metabolically functional oil glands, has provided a system for precursor feeding studies to elucidate pathway steps, as well as a highly enriched source of the relevant biosynthetic enzymes and of their corresponding transcripts with which cDNA libraries have been constructed to permit cloning and characterization of key structural genes. The biosynthesis of (-)-menthol from primary metabolism requires eight enzymatic steps, and involves the formation and subsequent cyclization of the universal monoterpene precursor geranyl diphosphate to the parent olefin (-)-(4 S)-limonene as the first committed reaction of the sequence. Following hydroxylation at C3, a series of four redox transformations and an isomerization occur in a general “allylic oxidation-conjugate reduction” scheme that installs three chiral centers on the substituted cyclohexanoid ring to yield (-)-(1 R, 3 R, 4 S)-menthol. The properties of each enzyme and gene of menthol biosynthesis are described, as are their probable evolutionary origins in primary metabolism. The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression. Genetic engineering to up-regulate a flux-limiting step and down-regulate a side route reaction has led to improvement in the composition and yield of peppermint oil.

  2. Expression of bacterial tyrosine ammonia-lyase creates a novel p-coumaric acid pathway in the biosynthesis of phenylpropanoids in Arabidopsis.

    PubMed

    Nishiyama, Yasutaka; Yun, Choong-Soo; Matsuda, Fumio; Sasaki, Tadamasa; Saito, Kazuki; Tozawa, Yuzuru

    2010-06-01

    Some flavonoids are considered as beneficial compounds because they exhibit anticancer or antioxidant activity. In higher plants, flavonoids are secondary metabolites that are derived from phenylpropanoid biosynthetic pathway. A large number of phenylpropanoids are generated from p-coumaric acid, which is a derivative of the primary metabolite, phenylalanine. The first two steps in the phenylpropanoid biosynthetic pathway are catalyzed by phenylalanine ammonia-lyase and cinnamate 4-hydroxylase, and the coupling of these two enzymes forms a rate-limiting step in the pathway. For the generation of p-coumaric acid, the conversion from phenylalanine to p-coumaric acid that is catalyzed by two enzymes can be theoretically performed by a single enzyme, tyrosine ammonia-lyase (TAL) that catalyzes the conversion of tyrosine to p-coumaric acid in certain bacteria. To modify the p-coumaric acid pathway in plants, we isolated a gene encoding TAL from a photosynthetic bacterium, Rhodobacter sphaeroides, and introduced the gene (RsTAL) in Arabidopsis thaliana. Analysis of metabolites revealed that the ectopic over-expression of RsTAL leads to higher accumulation of anthocyanins in transgenic 5-day-old seedlings. On the other hand, 21-day-old seedlings of plants expressing RsTAL showed accumulation of higher amount of quercetin glycosides, sinapoyl and p-coumaroyl derivatives than control. These results indicate that ectopic expression of the RsTAL gene in Arabidopsis enhanced the metabolic flux into the phenylpropanoid pathway and resulted in increased accumulation of flavonoids and phenylpropanoids.

  3. The effect of various antioxidants on the degradation of O/W microemulsions containing esterified astaxanthins from Haematococcus pluvialis.

    PubMed

    Zhou, Qingxin; Xu, Jie; Yang, Shu; Xue, Yong; Zhang, Ting; Wang, Jingfeng; Xue, Changhu

    2015-01-01

    Esterified astaxanthins are used as functional nutraceuticals and pigments in many food products. Unfortunately, the utilization is currently limited due to their chemical instability and poor water-solubility. In this study, esterified astaxanthins were quantified and purified from Haematococcus pluvialis using a novel and precise approach. By HPLC-(+)APCI-MS/MS, twenty esterified astaxanthin molecular species were identified, of which classified into eight monoester forms (approximately 85%, w/w) and twelve diester forms (approximately 15%, w/w), depending on the number of fatty acids that bind thereto. The MS data showed that the predominant fatty acids in astaxanthin esters of H. pluvialis are usually a long chain fatty acid with 16~18 carbon atoms, such as C18:1, C18:2, C18:3, C18:4, C16:0, C16:1. The purity of the esterified astaxanthins was determined to be 96.8±1.2% after purification. A well water-dispersible microemulsion was fabricated using high purity esterified astaxanthins, ethyl butyrate, Tween 80 and ethanol; and that emulsion exhibited a mean particle radius around 60 nm. The chemical degradation of esterified astaxanthins was monitored under accelerated stress storage conditions. After storage for 20 days, the results indicated that the degradation of esterified astaxanthins was effectively slowed by the addition of antioxidants to the microemulsions. By investigating the dependence of the chemical degradation of the esterified astaxanthins in O/W microemulsions on the concentration of the additives, it was concluded that the effectiveness of the additives at inhibiting the degradation of the esterified astaxanthins decreased in the following order: EDTA > ascorbic acid > vitamin E acetate. The utilization of antioxidants in combination was less effective than using them individually. These results provide information for designing effective delivery systems, thereby delaying the chemical degradation of esterified astaxanthins in foods

  4. Root cap-dependent gravitropic U-turn of maize root requires light-induced auxin biosynthesis via the YUC pathway in the root apex

    PubMed Central

    Suzuki, Hiromi; Yokawa, Ken; Nakano, Sayuri; Yoshida, Yuriko; Fabrissin, Isabelle; Okamoto, Takashi; Baluška, František; Koshiba, Tomokazu

    2016-01-01

    Gravitropism refers to the growth or movement of plants that is influenced by gravity. Roots exhibit positive gravitropism, and the root cap is thought to be the gravity-sensing site. In some plants, the root cap requires light irradiation for positive gravitropic responses. However, the mechanisms regulating this phenomenon are unknown. We herein report that maize roots exposed to white light continuously for ≥1–2h show increased indole-3-acetic acid (IAA) levels in the root tips, especially in the transition zone (1–3mm from the tip). Treatment with IAA biosynthesis inhibitors yucasin and l-kynurenine prevented any increases in IAA content and root curvature under light conditions. Analyses of the incorporation of a stable isotope label from tryptophan into IAA revealed that some of the IAA in roots was synthesized in the root apex. Furthermore, Zmvt2 and Zmyuc gene transcripts were detected in the root apex. One of the Zmyuc genes (ZM2G141383) was up-regulated by light irradiation in the 0–1mm tip region. Our findings suggest that IAA accumulation in the transition zone is due to light-induced activation of Zmyuc gene expression in the 0–1mm root apex region. Light-induced changes in IAA levels and distributions mediate the maize root gravitropic U-turn. PMID:27307546

  5. Signal transducer and oxidative stress mediated modulation of phenylpropanoid pathway to enhance rosmarinic acid biosynthesis in fungi elicited whole plant culture of Solenostemon scutellarioides.

    PubMed

    Dewanjee, Saikat; Gangopadhyay, Moumita; Das, Urmi; Sahu, Ranabir; Samanta, Amalesh; Banerjee, Pamela

    2014-11-01

    This study aimed to improve rosmarinic acid (RA) production in the whole plant culture of Solenostemon scutellarioides through elicitation with phytopathogenic fungi. Amongst selected fungi, Aternaria alternata caused significant elevation (p<0.05-0.01) in RA accumulation (∼1.3-1.6-fold) between 25 and 100 μg l(-1). However, elicitation at the dose of 50 μg l(-1) has been found to be most effective and intracellular RA content reached almost ∼1.6-fold (p<0.01) higher in day 7. Therefore, A. alternata (50 μg l(-1)) was selected for mechanism evaluation. A significant elevation of intercellular jasmonic acid was observed up to day 6 after elicitation with A. alternata (50 μg l(-1)). A significant increase in tissue H2O2 and lipid peroxidation coupled with depletion of antioxidant enzymes superoxide dismutase and catalase indicated augmented oxidative stress associated with biotic interaction. Preceding the elicitor-induced RA accumulation, a notable alteration in the specific activities of biosynthetic enzymes namely PAL and TAT was recorded, while, no significant change in the activities of RAS was observed. HPPR activity was slightly improved in elicited plant. Therefore, it could be concluded that A. alternata elicited the biosynthesis of rosmarinic acid via signal transduction through jasmonic acid coupled with elicitor induced oxidative stress and associated mechanism.

  6. Unconventional membrane lipid biosynthesis in Xanthomonas campestris.

    PubMed

    Aktas, Meriyem; Narberhaus, Franz

    2015-09-01

    All bacteria are surrounded by at least one bilayer membrane mainly composed of phospholipids (PLs). Biosynthesis of the most abundant PLs phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL) is well understood in model bacteria such as Escherichia coli. It recently emerged, however, that the diversity of bacterial membrane lipids is huge and that not yet explored biosynthesis pathways exist, even for the common PLs. A good example is the plant pathogen Xanthomonas campestris pv. campestris. It contains PE, PG and CL as major lipids and small amounts of the N-methylated PE derivatives monomethyl PE and phosphatidylcholine (PC = trimethylated PE). Xanthomonas campestris uses a repertoire of canonical and non-canonical enzymes for the synthesis of its membrane lipids. In this minireview, we briefly recapitulate standard pathways and integrate three recently discovered pathways into the overall picture of bacterial membrane biosynthesis.

  7. Effects of iron electrovalence and species on growth and astaxanthin production of Haematococcus pluvialis

    NASA Astrophysics Data System (ADS)

    Cai, Minggang; Li, Zhe; Qi, Anxiang

    2009-05-01

    To increase the cell concentration and the accumulation of astaxanthin in the cultivation of Haematococcus pluvialis, effects of different iron electrovalencies (Fe2+-EDTA and Fe3+-EDTA) and species (Fe-EDTA, Fe(OH){x/32x} and FeC6H5O7) addition on cell growth and accumulation of astaxanthin were studied. Results show that different iron electrovalencies have various effects on cell growth and astaxanthin accumulation of H. pluvialis. Compared with Fe3+-EDTA, Fe2+-EDTA stimulate more effectively the formation of astaxanthin. The maximum astaxanthin content (30.70 mg/g biomass cell) was obtained under conditions of 18 μmol/L Fe2+-EDTA, despite the lower cell density (2.3×105 cell/ml) in such condition. Fe3+-EDTA is more effective than Fe2+-EDTA in improving the cell growth. Especially, the maximal steady-state cell density, 2.9×105 cell/ml was obtained at 18 μmol/L Fe3+-EDTA addition. On the other hand, all the various species of iron (EDTA-Fe, Fe(OH){x/32x}, FeC6H5O7) are capable to improve the growth of the algae and astaxanthin production. Among the three iron species, FeC6H5O7 performed the best. Under the condition of a higher concentration (36 μmol/L) of FeC6H5O7, the cell density and astaxanthin production is 2 and 7 times higher than those of iron-limited group, respectively. The present study demonstrates that the effects of the stimulation with different iron species increased in the order of FeC6H5O7, Fe(OH){x/32x} and EDTA-Fe.

  8. Novel bioassay for the discovery of inhibitors of the 2-C-Methyl-D-Erythritol 4-Phosphate (MEP) and terpenoid pathways leading to carotenoid biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the synthesis of isopentenyl-phosphate (IPP) in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisi...

  9. Differential Contribution of the First Two Enzymes of the MEP Pathway to the Supply of Metabolic Precursors for Carotenoid and Chlorophyll Biosynthesis in Carrot (Daucus carota)

    PubMed Central

    Simpson, Kevin; Quiroz, Luis F.; Rodriguez-Concepción, Manuel; Stange, Claudia R.

    2016-01-01

    Carotenoids and chlorophylls are photosynthetic pigments synthesized in plastids from metabolic precursors provided by the methylerythritol 4-phosphate (MEP) pathway. The first two steps in the MEP pathway are catalyzed by the deoxyxylulose 5-phosphate synthase (DXS) and reductoisomerase (DXR) enzymes. While DXS has been recently shown to be the main flux-controlling step of the MEP pathway, both DXS and DXR enzymes have been proven to be able to promote an increase in MEP-derived products when overproduced in diverse plant systems. Carrot (Daucus carota) produces photosynthetic pigments (carotenoids and chlorophylls) in leaves and in light-exposed roots, whereas only carotenoids (mainly α- and β-carotene) accumulate in the storage root in darkness. To evaluate whether DXS and DXR activities influence the production of carotenoids and chlorophylls in carrot leaves and roots, the corresponding Arabidopsis thaliana genes were constitutively expressed in transgenic carrot plants. Our results suggest that DXS is limiting for the production of both carotenoids and chlorophylls in roots and leaves, whereas the regulatory role of DXR appeared to be minor. Interestingly, increased levels of DXS (but not of DXR) resulted in higher transcript abundance of endogenous carrot genes encoding phytoene synthase, the main rate-determining enzyme of the carotenoid pathway. These results support a central role for DXS on modulating the production of MEP-derived precursors to synthesize carotenoids and chlorophylls in carrot, confirming the pivotal relevance of this enzyme to engineer healthier, carotenoid-enriched products. PMID:27630663

  10. Organization of astaxanthin within oil bodies of Haematococcus pluvialis studied with polarization-dependent harmonic generation microscopy.

    PubMed

    Tokarz, Danielle; Cisek, Richard; El-Ansari, Omar; Espie, George S; Fekl, Ulrich; Barzda, Virginijus

    2014-01-01

    Nonlinear optical microscopy was used to image the localization of astaxanthin accumulation in the green alga, Haematococcus pluvialis. Polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and third harmonic generation (THG) microscopy was applied to study the crystalline organization of astaxanthin molecules in light-stressed H. pluvialis in vivo. Since astaxanthin readily forms H- and J-aggregates in aqueous solutions, PIPO THG studies of astaxanthin aggregates contained in red aplanospores were compared to PIPO THG of in vitro self-assembled H- and J-aggregates of astaxanthin. The PIPO THG data clearly showed an isotropic organization of astaxanthin in red aplanospores of H. pluvialis. This is in contrast to the highly anisotropic organization of astaxanthin in synthetic H- and J-aggregates, which showed to be uniaxial. Since carotenoids in vitro preferentially form H- and J-aggregates, but in vivo form a randomly organized structure, this implies that astaxanthin undergoes a different way of packing in biological organisms, which is either due to the unique physical environment of the alga or is controlled enzymatically.

  11. Cloning and Characterization of 1-Deoxy-d-Xylulose 5-Phosphate Synthase from Streptomyces sp. Strain CL190, Which Uses both the Mevalonate and Nonmevalonate Pathways for Isopentenyl Diphosphate Biosynthesis

    PubMed Central

    Kuzuyama, Tomohisa; Takagi, Motoki; Takahashi, Shunji; Seto, Haruo

    2000-01-01

    In addition to the ubiquitous mevalonate pathway, Streptomyces sp. strain CL190 utilizes the nonmevalonate pathway for isopentenyl diphosphate biosynthesis. The initial step of this nonmevalonate pathway is the formation of 1-deoxy-d-xylulose 5-phosphate (DXP) by condensation of pyruvate and glyceraldehyde 3-phosphate catalyzed by DXP synthase. The corresponding gene, dxs, was cloned from CL190 by using PCR with two oligonucleotide primers synthesized on the basis of two highly conserved regions among dxs homologs from six genera. The dxs gene of CL190 encodes 631 amino acid residues with a predicted molecular mass of 68 kDa. The recombinant enzyme overexpressed in Escherichia coli was purified as a soluble protein and characterized. The molecular mass of the enzyme was estimated to be 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 130 kDa by gel filtration chromatography, suggesting that the enzyme is most likely to be a dimer. The enzyme showed a pH optimum of 9.0, with a Vmax of 370 U per mg of protein and Kms of 65 μM for pyruvate and 120 μM for d-glyceraldehyde 3-phosphate. The purified enzyme catalyzed the formation of 1-deoxyxylulose by condensation of pyruvate and glyceraldehyde as well, with a Km value of 35 mM for d-glyceraldehyde. To compare the enzymatic properties of CL190 and E. coli DXP synthases, the latter enzyme was also overexpressed and purified. Although these two enzymes had different origins, they showed the same enzymatic properties. PMID:10648511

  12. The Ternary Complex of PrnB (the Second Enzyme in the Pyrrolnitrin Biosynthesis Pathway), Tryptophan, and Cyanide Yields New Mechanistic Insights into the Indolamine Dioxygenase Superfamily*

    PubMed Central

    Zhu, Xiaofeng; van Pée, Karl-Heinz; Naismith, James H.

    2010-01-01

    Pyrrolnitrin (3-chloro-4-(2′-nitro-3′-chlorophenyl)pyrrole) is a broad-spectrum antifungal compound isolated from Pseudomonas pyrrocinia. Four enzymes (PrnA, PrnB, PrnC, and PrnD) are required for pyrrolnitrin biosynthesis from tryptophan. PrnB rearranges the indole ring of 7-Cl-l-tryptophan and eliminates the carboxylate group. PrnB shows robust activity in vivo, but in vitro activity for PrnB under defined conditions remains undetected. The structure of PrnB establishes that the enzyme belongs to the heme b-dependent indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) family. We report the cyanide complex of PrnB and two ternary complexes with both l-tryptophan or 7-Cl-l-tryptophan and cyanide. The latter two complexes are essentially identical and mimic the likely catalytic ternary complex that occurs during turnover. In the cyanide ternary complexes, a loop previously disordered becomes ordered, contributing to the binding of substrates. The conformations of the bound tryptophan substrates are changed from that seen previously in the binary complexes. In l-tryptophan ternary complex, the indole ring now adopts the same orientation as seen in the PrnB binary complexes with other tryptophan substrates. The amide and carboxylate group of the substrate are orientated in a new conformation. Tyr321 and Ser332 play a key role in binding these groups. The structures suggest that catalysis requires an l-configured substrate. Isothermal titration calorimetry data suggest d-tryptophan does not bind after cyanide (or oxygen) coordinates with the distal (or sixth) site of heme. This is the first ternary complex with a tryptophan substrate of a member of the tryptophan dioxygenase superfamily and has mechanistic implications. PMID:20421301

  13. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi Tomita, Shuhei; Ohsaki, Yusuke; Haketa, Keiichi; Tooi, Osamu; Santo, Noriaki; Tohkin, Masahiro; Furukawa, Yuji; Gonzalez, Frank J.; Komai, Michio

    2008-05-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a common environmental contaminant. TCDD binds and activates the transcription factor aryl hydrocarbon receptor (AHR), leading to adverse biological responses via the alteration of the expression of various AHR target genes. Although small amounts of TCDD are consumed via contaminated daily foodstuffs and environmental exposures, the effects of low-dose TCDD on gene expression in animal tissues have not been clarified, while a number of genes affected by high-dose TCDD were reported. In this study, we comprehensively analyzed gene expression profiles in livers of C57BL/6N mice that were orally administered relatively low doses of TCDD (5, 50, or 500 ng/kg body weight (bw) day{sup -1}) for 18 days. The hepatic TCDD concentrations, measured by gas chromatography-mass spectrometry, were 1.2, 17, and 1063 pg toxicity equivalent quantity (TEQ)/g, respectively. The mRNA level of the cytochrome P450 CYP1A1 was significantly increased by treatment with only TCDD 500 ng/kg bw day{sup -1}. DNA microarray and quantitative RT-PCR analyses revealed changes in the expression of genes involved in the circadian rhythm, cholesterol biosynthesis, fatty acid synthesis, and glucose metabolism in the liver with at all doses of TCDD employed. However, repression of expression of genes involved in energy metabolism was not observed in the livers of Ahr-null mice that were administered the same dose of TCDD. These results indicate that changes in gene expression by TCDD are mediated by AHR and that exposure to low-dose TCDD could affect energy metabolism via alterations of gene expression.

  14. Cloning, expression, and purification of UDP-3-O-acyl-GlcNAc deacetylase from Pseudomonas aeruginosa: a metalloamidase of the lipid A biosynthesis pathway.

    PubMed Central

    Hyland, S A; Eveland, S S; Anderson, M S

    1997-01-01

    The lpxC (envA) gene of Escherichia coli encodes UDP-3-O-acyl-GlcNAc deacetylase, the second and committed step of lipopolysaccharide biosynthesis. Although present in all gram-negative bacteria examined, the deacetylase from E. coli is the only example of this enzyme that has been expressed and purified. In order to examine other variants of this protein, we cloned the Pseudomonas aeruginosa deacetylase structural gene from a lambda library as a 5.1-kb EcoRI fragment. The LpxC reading frame encodes an inferred protein of 33,435 Da that is highly homologous to the E. coli protein and that possesses a nearly identical hydropathy profile. In order to verify function, we subcloned the P. aeruginosa lpxC gene into the T7-based expression vector pET11a. Upon induction at 30 degrees C, this construct yielded active protein to approximately 18% of the soluble fraction. We devised a novel, rapid, and reproducible assay for the deacetylase which facilitated purification of the enzyme in three steps. The purified recombinant protein was found to be highly sensitive to EDTA yet was reactivated by the addition of excess heavy metal, as was the case for crude extracts of P. aeruginosa. In contrast, deacetylase activity in crude extracts of E. coli was insensitive to EDTA, and the extracts of the envA1 mutant were sensitive in a time-dependent manner. The lpxC gene has no significant homology with amidase signature sequences. Therefore, we assign this protein to the metalloamidase family as a member with a novel structure. PMID:9068651

  15. Farnesol production in Escherichia coli through the construction of a farnesol biosynthesis pathway - application of PgpB and YbjG phosphatases.

    PubMed

    Wang, Chonglong; Park, Ju-Eon; Choi, Eui-Sung; Kim, Seon-Won

    2016-10-01

    Farnesol is a sesquiterpenoid alcohol that has important industrial and medical potential. It is usually synthesized from farnesyl diphosphate (FPP) by farnesol synthase in plants. FPP accumulation can cause up-regulation of phosphatases capable of FPP hydrolysis, resulting in farnesol production in Escherichia coli. We found that PgpB and YbjG, two integral membrane phosphatases, can hydrolyze FPP into farnesol. Overexpression of FPP synthase (IspA) and PgpB, along with a heterologous mevalonate pathway, enabled recombinant E. coli to produce 526.1 mg/L of farnesol. This result indicates that the phosphatases PgpB and YbjG can be used to construct a novel farnesol synthesis pathway for mass production in E. coli.

  16. Estimating P-coverage of biosynthetic pathways in DNA libraries and screening by genetic selection: biotin biosynthesis in the marine microorganism Chromohalobacter.

    PubMed

    Kim, Eun Jin; Angell, Scott; Janes, Jeff; Watanabe, Coran M H

    2008-06-01

    Traditional approaches to natural product discovery involve cell-based screening of natural product extracts followed by compound isolation and characterization. Their importance notwithstanding, continued mining leads to depletion of natural resources and the reisolation of previously identified metabolites. Metagenomic strategies aimed at localizing the biosynthetic cluster genes and expressing them in surrogate hosts offers one possible alternative. A fundamental question that naturally arises when pursuing such a strategy is, how large must the genomic library be to effectively represent the genome of an organism(s) and the biosynthetic gene clusters they harbor? Such an issue is certainly augmented in the absence of expensive robotics to expedite colony picking and/or screening of clones. We have developed an algorism, named BPC (biosynthetic pathway coverage), supported by molecular simulations to deduce the number of BAC clones required to achieve proper coverage of the genome and their respective biosynthetic pathways. The strategy has been applied to the construction of a large-insert BAC library from a marine microorganism, Hon6 (isolated from Honokohau, Maui) thought to represent a new species. The genomic library is constructed with a BAC yeast shuttle vector pClasper lacZ paving the way for the culturing of libraries in both prokaryotic and eukaryotic hosts. Flow cytometric methods are utilized to estimate the genome size of the organism and BPC implemented to assess P-coverage or percent coverage. A genetic selection strategy is illustrated, applications of which could expedite screening efforts in the identification and localization of biosynthetic pathways from marine microbial consortia, offering a powerful complement to genome sequencing and degenerate probe strategies. Implementing this approach, we report on the biotin biosynthetic pathway from the marine microorganism Hon6.

  17. Regulation of flavanone 3-hydroxylase gene involved in the flavonoid biosynthesis pathway in response to UV-B radiation and drought stress in the desert plant, Reaumuria soongorica.

    PubMed

    Liu, Meiling; Li, Xinrong; Liu, Yubing; Cao, Bo

    2013-12-01

    Flavonoid are known to have various functions in growth, development, reproduction, and also involved in diverse stress responses in plants. However, little is known about the roles of the key enzymes in the flavonoid biosynthetic pathway in response to environmental stress, such as UV-B radiation and drought. To understand this problem, we investigated the participation of flavanone 3-hydroxylase gene (F3H), a key enzyme in flavonoid biosynthetic pathway under UV-B radiation and drought stress in the desert plant Reaumuria soongorica. A novel cDNA sequence, named as RsF3H, was isolated from R. soongorica. The deduced amino acids showed high identities to other F3Hs. A phylogenetic analysis indicated that RsF3H appeared to be most homologous to F3H from Malus domestica (MdF3H). RsF3H protein structure contained all five conserved motifs for 2-oxoglutarate-dependent dioxygenases (2-ODDs) and an Arg-X-Ser motif, all of which were also found in other F3Hs. Quantitative real-time RT-PCR analysis showed that there was a rapid increase in gene expression of RsF3H under stress. Both UV-B radiation and drought stress induced an increase in RsF3H enzyme activity and the accumulation of the products in the flavonoid biosynthetic pathway (total flavonoid and anthocyanin). The antioxidant ability (inhibition of lipid oxidation) of total flavonoid was enhanced during this study. The results suggested that one explanation of the stress tolerance of R. soongorica may be a combination of an increase in RsF3H gene expression, RsF3H enzyme activity and the anti-oxidative ability of the metabolic end products in the flavonoid biosynthetic pathway in response to UV-B radiation and drought.

  18. Auxin biosynthesis and its role in plant development

    PubMed Central

    Zhao, Yunde

    2011-01-01

    Indole-3-acetic acid (IAA), the main auxin in higher plants, has profound effects on plant growth and development. Both plants and some plant pathogens can produce IAA to modulate plant growth. While the genes and biochemical reactions for auxin biosynthesis in some plant pathogens are well understood, elucidation of the mechanisms by which plants produce auxin has proven to be difficult. So far, no complete pathway of de novo auxin biosynthesis in plants has been firmly established. However, recent studies have led to the discoveries of several genes in tryptophan dependent auxin biosynthesis pathways. Recent findings have also revealed that local auxin biosynthesis plays essential roles in many developmental processes including gametogenesis, embryogenesis, seedling growth, vascular patterning, and flower development. In this review, I summarize the recent advances in dissecting auxin biosynthetic pathways and how the understanding of auxin biosynthesis provides a different angle for analyzing the mechanisms of plant development. PMID:20192736

  19. Identification and Function of the pdxY Gene, Which Encodes a Novel Pyridoxal Kinase Involved in the Salvage Pathway of Pyridoxal 5′-Phosphate Biosynthesis in Escherichia coli K-12

    PubMed Central

    Yang, Yong; Tsui, Ho-Ching Tiffany; Man, Tsz-Kwong; Winkler, Malcolm E.

    1998-01-01

    pdxK encodes a pyridoxine (PN)/pyridoxal (PL)/pyridoxamine (PM) kinase thought to function in the salvage pathway of pyridoxal 5′-phosphate (PLP) coenzyme biosynthesis. The observation that pdxK null mutants still contain PL kinase activity led to the hypothesis that Escherichia coli K-12 contains at least one other B6-vitamer kinase. Here we support this hypothesis by identifying the pdxY gene (formally, open reading frame f287b) at 36.92 min, which encodes a novel PL kinase. PdxY was first identified by its homology to PdxK in searches of the complete E. coli genome. Minimal clones of pdxY+ overexpressed PL kinase specific activity about 10-fold. We inserted an omega cassette into pdxY and crossed the resulting pdxY::ΩKanr mutation into the bacterial chromosome of a pdxB mutant, in which de novo PLP biosynthesis is blocked. We then determined the growth characteristics and PL and PN kinase specific activities in extracts of pdxK and pdxY single and double mutants. Significantly, the requirement of the pdxB pdxK pdxY triple mutant for PLP was not satisfied by PL and PN, and the triple mutant had negligible PL and PN kinase specific activities. Our combined results suggest that the PL kinase PdxY and the PN/PL/PM kinase PdxK are the only physiologically important B6 vitamer kinases in E. coli and that their function is confined to the PLP salvage pathway. Last, we show that pdxY is located downstream from pdxH (encoding PNP/PMP oxidase) and essential tyrS (encoding aminoacyl-tRNATyr synthetase) in a multifunctional operon. pdxY is completely cotranscribed with tyrS, but about 92% of tyrS transcripts terminate at a putative Rho-factor-dependent attenuator located in the tyrS-pdxY intercistronic region. PMID:9537380

  20. Separation of astaxanthin from cells of Phaffia rhodozyma using colloidal gas aphrons in a flotation column.

    PubMed

    Dermiki, Maria; Bourquin, Anne Lise; Jauregi, Paula

    2010-01-01

    The aim of this study is to investigate the separation of astaxanthin from the cells of Phaffia rhodozyma using colloidal gas aphrons (CGA), which are surfactant stabilized microbubbles, in a flotation column. It was reported in previous studies that optimum recoveries are achieved at conditions that favor electrostatic interactions. Therefore, in this study, CGA generated from the cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) were applied to suspensions of cells pretreated with NaOH. The different operation modes (batch or continuous) and the effect of volumetric ratio of CGA to feed, initial concentration of feed, operating height, and flow rate of CGA on the separation of astaxanthin were investigated. The volumetric ratio was found to have a significant effect on the separation of astaxanthin for both batch and continuous experiments. Additionally, the effect of homogenization of the cells on the purity of the recovered fractions was investigated, showing that the homogenization resulted in increased purity. Moreover, different concentrations of surfactant were used for the generation of CGA for the recovery of astaxanthin on batch mode; it was found that recoveries up to 98% could be achieved using CGA generated from a CTAB solution 0.8 mM, which is below the CTAB critical micellar concentration (CMC). These results offer important information for the scale-up of the separation of astaxanthin from the cells of P. rhodozyma using CGA.

  1. Production of the Marine Carotenoid Astaxanthin by Metabolically Engineered Corynebacterium glutamicum.

    PubMed

    Henke, Nadja A; Heider, Sabine A E; Peters-Wendisch, Petra; Wendisch, Volker F

    2016-06-30

    Astaxanthin, a red C40 carotenoid, is one of the most abundant marine carotenoids. It is currently used as a food and feed additive in a hundred-ton scale and is furthermore an attractive component for pharmaceutical and cosmetic applications with antioxidant activities. Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin, is an industrially relevant microorganism used in the million-ton amino acid production. In this work, engineering of a genome-reduced C. glutamicum with optimized precursor supply for astaxanthin production is described. This involved expression of heterologous genes encoding for lycopene cyclase CrtY, β-carotene ketolase CrtW, and hydroxylase CrtZ. For balanced expression of crtW and crtZ their translation initiation rates were varied in a systematic approach using different ribosome binding sites, spacing, and translational start codons. Furthermore, β-carotene ketolases and hydroxylases from different marine bacteria were tested with regard to efficient astaxanthin production in C. glutamicum. In shaking flasks, the C. glutamicum strains developed here overproduced astaxanthin with volumetric productivities up to 0.4 mg·L(-1)·h(-1) which are competitive with current algae-based production. Since C. glutamicum can grow to high cell densities of up to 100 g cell dry weight (CDW)·L(-1), the recombinant strains developed here are a starting point for astaxanthin production by C. glutamicum.

  2. Production of the Marine Carotenoid Astaxanthin by Metabolically Engineered Corynebacterium glutamicum

    PubMed Central

    Henke, Nadja A.; Heider, Sabine A. E.; Peters-Wendisch, Petra; Wendisch, Volker F.

    2016-01-01

    Astaxanthin, a red C40 carotenoid, is one of the most abundant marine carotenoids. It is currently used as a food and feed additive in a hundred-ton scale and is furthermore an attractive component for pharmaceutical and cosmetic applications with antioxidant activities. Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin, is an industrially relevant microorganism used in the million-ton amino acid production. In this work, engineering of a genome-reduced C. glutamicum with optimized precursor supply for astaxanthin production is described. This involved expression of heterologous genes encoding for lycopene cyclase CrtY, β-carotene ketolase CrtW, and hydroxylase CrtZ. For balanced expression of crtW and crtZ their translation initiation rates were varied in a systematic approach using different ribosome binding sites, spacing, and translational start codons. Furthermore, β-carotene ketolases and hydroxylases from different marine bacteria were tested with regard to efficient astaxanthin production in C. glutamicum. In shaking flasks, the C. glutamicum strains developed here overproduced astaxanthin with volumetric productivities up to 0.4 mg·L−1·h−1 which are competitive with current algae-based production. Since C. glutamicum can grow to high cell densities of up to 100 g cell dry weight (CDW)·L−1, the recombinant strains developed here are a starting point for astaxanthin production by C. glutamicum. PMID:27376307

  3. Four different methods comparison for extraction of astaxanthin from green alga Haematococcus pluvialis.

    PubMed

    Dong, Shengzhao; Huang, Yi; Zhang, Rui; Wang, Shihui; Liu, Yun

    2014-01-01

    Haematococcus pluvialis is one of the potent organisms for production of astaxanthin. Up to now, no efficient method has been achieved due to its thick cell wall hindering solvent extraction of astaxanthin. In this study, four different methods, hydrochloric acid pretreatment followed by acetone extraction (HCl-ACE), hexane/isopropanol (6:4, v/v) mixture solvents extraction (HEX-IPA), methanol extraction followed by acetone extraction (MET-ACE, 2-step extraction), and soy-oil extraction, were intensively evaluated for extraction of astaxanthin from H. pluvialis. Results showed that HCl-ACE method could obtain the highest oil yield (33.3±1.1%) and astaxanthin content (19.8±1.1%). Quantitative NMR analysis provided the fatty acid chain profiles of total lipid extracts. In all cases, oleyl chains were predominant, and high amounts of polyunsaturated fatty acid chains were observed and the major fatty acid components were oleic acid (13-35%), linoleic acid (37-43%), linolenic acid (20-31%), and total saturated acid (17-28%). DPPH radical scavenging activity of extract obtained by HCl-ACE was 73.2±1.0%, which is the highest amongst the four methods. The reducing power of extract obtained by four extraction methods was also examined. It was concluded that the proposed extraction method of HCl-ACE in this work allowed efficient astaxanthin extractability with high antioxidant properties.

  4. Astaxanthin Normalizes Epigenetic Modifications of Bovine Somatic Cell Cloned Embryos and Decreases the Generation of Lipid Peroxidation.

    PubMed

    Li, R; Wu, H; Zhuo, W W; Mao, Q F; Lan, H; Zhang, Y; Hua, S

    2015-10-01

    Astaxanthin is an extremely common antioxidant scavenging reactive oxygen species (ROS) and blocking lipid peroxidation. This study was conducted to investigate the effects of astaxanthin supplementation on oocyte maturation, and development of bovine somatic cell nuclear transfer (SCNT) embryos. Cumulus-oocyte complexes were cultured in maturation medium with astaxanthin (0, 0.5, 1.0, or 1.5 mg/l), respectively. We found that 0.5 mg/l astaxanthin supplementation significantly increased the proportion of oocyte maturation. Oocytes cultured in 0.5 mg/l astaxanthin supplementation were used to construct SCNT embryos and further cultured with 0, 0.5, 1.0 or 1.5 mg/l astaxanthin. The results showed that the supplementation of 0.5 mg/l astaxanthin significantly improved the proportions of cleavage and blastulation, as well as the total cell number in blastocysts compared with the control group, yet this influence was not concentration dependent. Chromosomal analyses revealed that more blastomeres showed a normal chromosomal complement in 0.5 mg/l astaxanthin treatment group, which was similar to that in IVF embryos. The methylation levels located on the exon 1 of the imprinted gene H19 and IGF2, pluripotent gene OCT4 were normalized, and global DNA methylation, H3K9 and H4K12 acetylation were also improved significantly, which was comparable to that in vitro fertilization (IVF) embryos. Moreover, we also found that astaxanthin supplementation significantly decreased the level of lipid peroxidation. Our findings showed that the supplementation of 0.5 mg/l astaxanthin to oocyte maturation medium and embryo culture medium improved oocyte maturation, SCNT embryo development, increased chromosomal stability and normalized the epigenetic modifications, as well as inhibited overproduction of lipid peroxidation.

  5. Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway

    PubMed Central

    Mormann, Sascha; Lömker, Alexander; Rückert, Christian; Gaigalat, Lars; Tauch, Andreas; Pühler, Alfred; Kalinowski, Jörn

    2006-01-01

    Background Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC 13032 would significantly advance functional genome analysis in this bacterium. Results A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts, revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910 showed high sequence similarities to inositol-1(or 4)-monophosphatases (EC 3.1.3.25). Subsequent genetic deletion of cg0910 delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by histidinol suggests that cg0910 encodes the hitherto unknown essential L

  6. Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways.

    PubMed

    Slater, Holly; Crow, Matthew; Everson, Lee; Salmond, George P C

    2003-01-01

    Serratia sp. ATCC 39006 produces two secondary metabolite antibiotics, 1-carbapen-2-em-3-carboxylic acid (Car) and the red pigment, prodigiosin (Pig). We have previously reported that production of Pig and Car is controlled by N-acyl homoserine lactone (N-AHL) quorum sensing, with synthesis of N-AHLs directed by the LuxI homologue SmaI, and is also regulated by Rap, a member of the SlyA family. We now describe further characterization of the SmaI quorum-sensing system and its connection with other regulatory mechanisms. We show that the genes responsible for biosynthesis of Pig, pigA-O, are transcribed as a single polycistronic message in an N-AHL-dependent manner. The smaR gene, transcribed convergently with smaI and predicted to encode the LuxR homologue partner of SmaI, was shown to possess a negative regulatory function, which is uncommon among the LuxR-type transcriptional regulators. SmaR represses transcription of both the pig and car gene clusters in the absence of N-AHLs. Specifically, we show that SmaIR exerts its effect on car gene expression via transcriptional control of carR, encoding a pheromone-independent LuxR homologue. Transcriptional activation of the pig and car gene clusters also requires a functional Rap protein, but Rap dependency can be bypassed by secondary mutations. Transduction of these suppressor mutations into wild-type backgrounds confers a hyper-Pig phenotype. Multiple mutations cluster in a region upstream of the pigA gene, suggesting this region may represent a repressor target site. Two mutations mapped to genes encoding pstS and pstA homologues, which are parts of a high-affinity phosphate transport system (Pst) in Escherichia coli. Disruption of pstS mimicked phosphate limitation and caused concomitant hyper-production of Pig and Car, which was mediated, in part, through increased transcription of the smaI gene. The Pst and SmaIR systems define distinct, yet overlapping, regulatory circuits which form part of a complex

  7. Methionine Biosynthesis in Lemna

    PubMed Central

    Thompson, Gregory A.; Datko, Anne H.; Mudd, S. Harvey; Giovanelli, John

    1982-01-01

    O-acetylserine sulfhydrylase provides an explanation in molecular terms for transsulfuration, and not direct sulfhydration, being the dominant pathway for homocysteine biosynthesis. Images PMID:16662348

  8. Gibberellin biosynthesis in Gibberlla fujikuroi

    SciTech Connect

    Johnson, S.W.; Coolbaugh, R.C. )

    1989-04-01

    Gibberellins (GAs) are a group of plant growth hormones which were first isolated from the fungus Gibberella fujikuori. We have examined the biosynthesis of GAs in this fungus in liquid cultures using HPLC followed by GC-MS. Furthermore we have used cell-free enzyme extracts with {sup 14}C-labeled intermediates to examine the regulation of specific parts of the biosynthetic pathway. GA{sub 3} is the predominant GA in well aerated cultures. GA{sub 4} and GA{sub 7}, intermediates in GA{sub 3} biosynthesis, accumulate in cultures with low levels of dissolved oxygen, but are not detectable in more aerated cultures. Light stimulates GA production in G. fujikuroi cultures grown from young stock. Cell-free enzyme studies indicate that light has no effect on incorporation of mevalonic acid into kaurene, but does significantly stimulate the oxidation of kaurenoic acid.

  9. Strategies for strain improvement in Fusarium fujikuroi: overexpression and localization of key enzymes of the isoprenoid pathway and their impact on gibberellin biosynthesis.

    PubMed

    Albermann, Sabine; Linnemannstöns, Pia; Tudzynski, Bettina

    2013-04-01

    The rice pathogen Fusarium fujikuroi is known to produce a wide range of secondary metabolites, such as the pigments bikaverin and fusarubins, the mycotoxins fusarins and fusaric acid, and the phytohormones gibberellic acids (GAs), which are applied as plant growth regulators in agri- and horticulture. The development of high-producing strains is a prerequisite for the efficient biotechnological production of GAs. In this work, we used different molecular approaches for strain improvement to directly affect expression of early isoprenoid genes as well as GA biosynthetic genes. Overexpression of the first GA pathway gene ggs2, encoding geranylgeranyl diphosphate synthase 2, or additional integration of ggs2 and cps/ks, the latter encoding the bifunctional ent-copalyldiphosphate synthase/ent-kaurene synthase, revealed an enhanced production level of 150%. However, overexpression of hmgR and fppS, encoding the key enzymes of the mevalonate pathway, hydroxymethylglutaryl coenzyme A reductase, and farnesyldiphosphate synthase, resulted in a reduced production level probably due to a negative feedback regulation of HmgR. Subsequent deletion of the transmembrane domains of HmgR and overexpression of the remaining catalytic domain led to an increased GA content (250%). Using green fluorescent protein and mCherry fusion constructs, we localized Cps/Ks in the cytosol, Ggs2 in small point-like structures, which are not the peroxisomes, and HmgR at the endoplasmatic reticulum. In summary, it was shown for the first time that amplification or truncation of key enzymes of the isoprenoid and GA pathway results in elevated production levels (2.5-fold). Fluorescence microscopy revealed localization of the key enzymes in different compartments.

  10. Phytochrome-mediated Carotenoids Biosynthesis in Ripening Tomatoes.

    PubMed

    Thomas, R L; Jen, J J

    1975-09-01

    Red light induced and far red light inhibited carotenoid biosynthesis in ripening tomatoes (Lycopersicon esculentum Mill.) when compared to controls kept in the dark. Red illumination following far red illumination reversed the inhibitory action of far red light on carotenoid biosynthesis, suggesting a phytochrome-mediated process. Quantitation of individual carotenoids favored the hypothesis of two separate carotenoid biosynthetic pathways in tomatoes.

  11. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14 α-demethylase (ERG11) gene of Moniliophthora perniciosa

    PubMed Central

    de Oliveira Ceita, Geruza; Vilas-Boas, Laurival Antônio; Castilho, Marcelo Santos; Carazzolle, Marcelo Falsarella; Pirovani, Carlos Priminho; Selbach-Schnadelbach, Alessandra; Gramacho, Karina Peres; Ramos, Pablo Ivan Pereira; Barbosa, Luciana Veiga; Pereira, Gonçalo Amarante Guimarães; Góes-Neto, Aristóteles

    2014-01-01

    The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches’ broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea. PMID:25505843

  12. Cytotoxic Induction and Photoacoustic Imaging of Breast Cancer Cells Using Astaxanthin-Reduced Gold Nanoparticles

    PubMed Central

    Bharathiraja, Subramaniyan; Manivasagan, Panchanathan; Quang Bui, Nhat; Oh, Yun-Ok; Lim, In Gweon; Park, Suhyun; Oh, Junghwan

    2016-01-01

    Astaxanthin, a kind of photosynthetic pigment, was employed for gold nanoparticle formation. Nanoparticles were characterized using Ulteraviolet-Visible (UV-Vis) spectroscopy, transmission electron microscopy, and X-ray diffraction, and the possible presence of astaxanthin functional groups were analyzed by Fourier transform infrared spectroscopy (FTIR). The cytotoxic effect of synthesized nanoparticles was evaluated against MDA-MB-231 (human breast cancer cells) using a tetrazolium-based assay, and synthesized nanoparticles exhibited dose-dependent toxicity. The morphology upon cell death was differentiated through fluorescent microscopy using different stains that predicted apoptosis. The synthesized nanoparticles were applied in ultrasound-coupled photoacoustic imaging to obtain good images of treated cells. Astaxanthin-reduced gold nanoparticle has the potential to act as a promising agent in the field of photo-based diagnosis and therapy. PMID:28335206

  13. Enhancement of astaxanthin production from Haematococcus pluvialis mutants by three-stage mutagenesis breeding.

    PubMed

    Wang, Ni; Guan, Bin; Kong, Qing; Sun, Han; Geng, Zhaoyan; Duan, Liangfei

    2016-10-20

    Haematococcus pluvialis was modified for higher astaxanthin production compatible with the superiorities of high biomass and high activity by three-stage mutagenesis breeding. UV irradiation mutants named UV11-4 made an increase on cell dry weight, but showed a longer growth circle than the wild type. On the basis of UV mutants, ethyl methane sulphonate (EMS) mutants E2-5 cut down the latent phase, brought forward and extended the logarithmic phase. The inhibitor diphenylamine (DPA) was employed to screen high-yield astaxanthin producer by the color change of colonies from green to red on solid medium. Via the contravariant cultivation, proliferation and transformation, the mutant DPA12-2 possessed an 1.7-fold astaxanthin production compared to the wild type, reaching 47.21±3.30mg/g dry cells.

  14. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus.

    PubMed

    Kim, Dong-Yeon; Vijayan, Durairaj; Praveenkumar, Ramasamy; Han, Jong-In; Lee, Kyubock; Park, Ji-Yeon; Chang, Won-Seok; Lee, Jin-Suk; Oh, You-Kwan

    2016-01-01

    Recently, biofuels and nutraceuticals produced from microalgae have emerged as major interests, resulting in intensive research of the microalgal biorefinery process. In this paper, recent developments in cell-wall disruption and extraction methods are reviewed, focusing on lipid and astaxanthin production from the biotechnologically important microalgae Chlorella and Haematococcus, respectively. As a common, critical bottleneck for recovery of intracellular components such as lipid and astaxanthin from these microalgae, the composition and structure of rigid, thick cell-walls were analyzed. Various chemical, physical, physico-chemical, and biological methods applied for cell-wall breakage and lipid/astaxanthin extraction from Chlorella and Haematococcus are discussed in detail and compared based on efficiency, energy consumption, type and dosage of solvent, biomass concentration and status (wet/dried), toxicity, scalability, and synergistic combinations. This report could serve as a useful guide to the implementation of practical downstream processes for recovery of valuable products from microalgae including Chlorella and Haematococcus.

  15. Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana.

    PubMed

    Strand, A; Zrenner, R; Trevanion, S; Stitt, M; Gustafsson, P; Gardeström, P

    2000-09-01

    Photosynthetic carbon metabolism was investigated in antisense Arabidopsis lines with decreased expression of sucrose phosphate synthase (SPS) and cytosolic fructose-1,6-bisphosphatase (cFBPase). In the light, triose phosphates are exported from the chloroplast and converted to sucrose via cFBPase and SPS. At night, starch is degraded to glucose, exported and converted to sucrose via SPS. cFBPase therefore lies upstream and SPS downstream of the point at which the pathways for sucrose synthesis in the day and night converge. Decreased cFBPase expression led to inhibition of sucrose synthesis; accumulation of phosphorylated intermediates; Pi-limitation of photosynthesis; and stimulation of starch synthesis. The starch was degraded to maintain higher levels of sugars and a higher rate of sucrose export during the night. This resembles the response in other species when expression of enzymes in the upper part of the sucrose biosynthesis pathway is reduced. Decreased expression of SPS inhibited sucrose synthesis, but phosphorylated intermediates did not accumulate and carbon partitioning was not redirected towards starch. Sugar levels and sucrose export was decreased during the night as well as during the day. Although ribulose-1,5-bisphosphate regeneration and photosynthesis were inhibited, the PGA/triose-P ratio remained low and the ATP/ADP ratio high, showing that photosynthesis was not limited by the rate at which Pi was recycled during end-product synthesis. Two novel responses counteracted the decrease in SPS expression and explain why phosphorylated intermediates did not accumulate, and why allocation was not altered in the antisense SPS lines. Firstly, a threefold decrease of PPi and a shift of the UDP-glucose/hexose phosphate ratio favoured sucrose synthesis and prevented the accumulation of phosphorylated intermediates. Secondly, there was no increase of AGPase activity relative to cFBPase activity, which would prevent a shift in carbon allocation towards

  16. Biosynthesis and metabolism of salicylic acid.

    PubMed Central

    Lee, H I; León, J; Raskin, I

    1995-01-01

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-beta-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. PMID:11607533

  17. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  18. Biotin biosynthesis, transport and utilization in rhizobia.

    PubMed

    Guillén-Navarro, Karina; Encarnación, Sergio; Dunn, Michael F

    2005-05-15

    Biotin, a B-group vitamin, performs an essential metabolic function in all organisms. Rhizobia are alpha-proteobacteria with the remarkable ability to form a nitrogen-fixing symbiosis in combination with a compatible legume host, a process in which the importance of biotin biosynthesis and/or transport has been demonstrated for some rhizobia-legume combinations. Rhizobia have also been used to delimit the biosynthesis, metabolic effects and, more recently, transport of biotin. Molecular genetic analysis shows that an orthodox biotin biosynthesis pathway occurs in some rhizobia while others appear to synthesize the vitamin using alternative pathways. In addition to its well established function as a prosthetic group for biotin-dependent carboxylases, we are beginning to delineate a role for biotin as a metabolic regulator in rhizobia.

  19. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris.

    PubMed

    Lee, Ho-Sang; Kim, Z-Hun; Park, Hanwool; Lee, Choul-Gyun

    2016-05-01

    Lumostatic operation was applied for efficient astaxanthin production in autotrophic Haematococcus lacustris cultures using 0.4-L bubble column photobioreactors. The lumostatic operation in this study was performed with three different specific light uptake rates (q(e)) based on cell concentration, cell projection area, and fresh weight as one-, two- and three-dimensional characteristics values, respectively. The q(e) value from the cell concentration (q(e1D)) obtained was 13.5 × 10⁻⁸ μE cell⁻¹ s⁻¹, and the maximum astaxanthin concentration was increased to 150 % compared to that of a control with constant light intensity. The other optimum q e values by cell projection area (q(e2D)) and fresh weight (q( e3D)) were determined to be 195 μE m⁻² s⁻¹ and 10.5 μE g⁻¹ s⁻¹ for astaxanthin production, respectively. The maximum astaxanthin production from the lumostatic cultures using the parameters controlled by cell projection area (2D) and fresh weight (3D) also increased by 36 and 22% over that of the controls, respectively. When comparing the optimal q e values among the three different types, the lumostatic cultures using q(e) based on fresh weight showed the highest astaxanthin productivity (22.8 mg L⁻¹ day⁻¹), which was a higher level than previously reported. The lumostatic operations reported here demonstrated that more efficient and effective astaxanthin production was obtained by H. lacustris than providing a constant light intensity, regardless of which parameter is used to calculate the specific light uptake rate.

  20. Depression can be prevented by astaxanthin through inhibition of hippocampal inflammation in diabetic mice.

    PubMed

    Zhou, Xiao-Yan; Zhang, Fang; Hu, Xiao-Tong; Chen, Jing; Tang, Ren-Xian; Zheng, Kui-Yang; Song, Yuan-Jian

    2017-02-15

    The critical factor considered in a depression induced by diabetes is the inflammation eliciting hippocampal, amygdala and thalamic neuronal injury. Therefore, inhibiting inflammatory reactions in the brain and reducing neuronal injury can alleviate depression in rodents suffering from diabetes mellitus. The oral administration of astaxanthin has been employed in emotional disorders and diabetic complications due to its anti-depressant, anti-inflammatory and anti-apoptotic functions. However, it has not been reported whether astaxanthin can improve diabetes-related depression-like behavior, and its potential mechanisms have not been elucidated. The objective of the present study is to elucidate the effect of astaxanthin on depression in diabetic mice and to understand the underlying molecular mechanisms. In this study, experimental diabetic mice were given a single intraperitoneal injection of streptozotocin (STZ, 150mg/kg, dissolved in citrate buffer) after fasting for 12h. The diabetic model was assessed 72h after STZ injection, and mice with a fasting blood glucose level more than or equal to 16.7mmol/L were used in this study, and oral astaxanthin (25mg/kg) was provided uninterrupted for ten weeks. Depression-like behavior was evaluated by the tail suspension test (TST) and forced swimming test (FST). The glial fibrillary acidic protein (GFAP) and cleaved caspase-3-positive cells were measured by immunohistochemistry, and the western blotting was used to test the protein levels of interleukin-6 (IL-6), interleukin-1β (IL-1β) and cyclooxygenase (COX-2). The results showed that astaxanthin had an anti-depressant effect on diabetic mice. Furthermore, we observed that astaxanthin significantly reduced the number of GFAP-positive cells in the hippocampus and hypothalamus, and also the expression of cleaved caspase-3 in the hippocampus, amygdala and hypothalamus was decreased as well. Moreover, astaxanthin could down-regulate the expression of IL-6, IL-1β and COX

  1. Cyclopiazonic acid biosynthesis by Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclopiazonic acid (CPA) is an indole-tetramic acid mycotoxin produced by some strains of Aspergillus flavus. Characterization of the CPA biosynthesis gene cluster confirmed that formation of CPA is via a three-enzyme pathway. This review examines the structure and organization of the CPA genes, elu...

  2. Hepatic Transcriptome Profiles of Mice with Diet-Induced Nonalcoholic Steatohepatitis Treated with Astaxanthin and Vitamin E

    PubMed Central

    Kobori, Masuko; Takahashi, Yumiko; Sakurai, Mutsumi; Ni, Yinhua; Chen, Guanliang; Nagashimada, Mayumi; Kaneko, Shuichi; Ota, Tsuguhito

    2017-01-01

    Astaxanthin alleviates hepatic lipid accumulation and peroxidation, inflammation, and fibrosis in mice with high-cholesterol, high-cholate, and high-fat (CL) diet-induced nonalcoholic steatohepatitis (NASH). It has been proposed as a potential new treatment to inhibit the progression of NASH in humans. In this study, we compared hepatic gene expression profiles after treatment with astaxanthin or the antioxidant vitamin E in mice with CL diet-induced NASH. Comprehensive gene expression analyses of the livers of mice fed a standard, CL, or CL diet containing astaxanthin or vitamin E for 12 weeks were performed using a DNA microarray. Both astaxanthin and vitamin E effectively improved gene expression associated with eukaryotic initiation factor-2 (EIF2) signaling, which is suppressed in NASH by endoplasmic reticulum (ER) stress in the liver. However, astaxanthin did not improve the expression of genes associated with mitochondrial dysfunction. Astaxanthin, but not vitamin E, was predicted to suppress the actions of ligand-dependent nuclear receptors peroxisome proliferator-activated receptors, (PPAR) α (PPARA) and PPARδ (PPARD), and to affect related molecules. Establishing a new therapy using astaxanthin will require elucidation of astaxanthin’s molecular action on the functions of PPARα and related molecules in the livers of mice with diet-induced NASH. PMID:28282876

  3. Effects of astaxanthin-rich Haematococcus pluvialis extract on cognitive function: a randomised, double-blind, placebo-controlled study.

    PubMed

    Katagiri, Mikiyuki; Satoh, Akira; Tsuji, Shinji; Shirasawa, Takuji

    2012-09-01

    In this study we tried to confirm the effect of an astaxanthin-rich Haematococcus pluvialis extract on cognitive function in 96 subjects by a randomised double-blind placebo-controlled study. Healthy middle-aged and elderly subjects who complained of age-related forgetfulness were recruited. Ninety-six subjects were selected from the initial screen, and ingested a capsule containing astaxanthin-rich Haematococcus pluvialis extract, or a placebo capsule for 12 weeks. Somatometry, haematology, urine screens, and CogHealth and Groton Maze Learning Test were performed before and after every 4 weeks of administration. Changes in cognitive performance and the safety of astaxanthin-rich Haematococcus pluvialis extract administration were evaluated. CogHealth battery scores improved in the high-dosage group (12 mg astaxanthin/day) after 12 weeks. Groton Maze Learning Test scores improved earlier in the low-dosage (6 mg astaxanthin/day) and high-dosage groups than in the placebo group. The sample size, however, was small to show a significant difference in cognitive function between the astaxanthin-rich Haematococcus pluvialis extract and placebo groups. No adverse effect on the subjects was observed throughout this study. In conclusion, the results suggested that astaxanthin-rich Haematococcus pluvialis extract improves cognitive function in the healthy aged individuals.

  4. Production of astaxanthin from corn fiber as a value-added co-product of fuel ethanol fermentation.

    PubMed

    Nghiem, Nhuan P; Montanti, Justin; Johnston, David

    2009-05-01

    Five strains of the yeast Phaffia rhodozyma, NRRL Y-17268, NRRL Y-17270, ATCC 96594 (CBS 6938), ATCC 24202 (UCD 67-210), and ATCC 74219 (UBV-AX2) were tested for astaxanthin production using the major sugars derived from corn fiber. The sugars tested included glucose, xylose, and arabinose. All five strains were able to utilize the three sugars for astaxanthin production. Among them, ATCC 74219 was the best astaxanthin producer. Kinetics of sugar utilization of this strain was studied, both with the individual sugars and with their mixtures. Arabinose was found to give the highest astaxanthin yield. It also was observed that glucose at high concentrations suppressed utilization of the other two sugars. Corn fiber hydrolysate obtained by dilute sulfuric acid pretreatment and subse