Science.gov

Sample records for astd remote deployment

  1. Project implementation plan: ASTD remote deployment

    SciTech Connect

    CRASS, D.W.

    1999-08-18

    This Project Implementation Plan (PIP) shall be the controlling document for the Accelerated Site Technology Deployment (ASTD) supported project to procure and qualify a remote/robotic work platform for large hot cell deactivation in the 324 Building B-Cell. This plan will be integrated into the 324/327 Buildings Stabilization/Deactivation Project, Project Management Plan, (HNF-IP-1289, Rev. 1) and shall comply with the base requirements established in that document. This PIP establishes the baseline and defines the scope, schedule, budget, organizational responsibilities, reporting requirements, deliverables, and end points for the implementation of new technology into B-Cell. This shall include procurement, safety, quality assurance, training, documentation, record management, and facility modifications applicable to this project. Specifically this plan controls and executes the procurement and acceptance, qualification, and turnover of a remote/robotic work platform for 324 Building B-Cell. This includes the development of functional parameters, performance requirements, evaluation criteria, procurement specifications, acceptance and qualification test procedures, training requirements, and turnover responsibilities. The 324/237 Buildings Stabilization/Deactivation Project is currently in its second year of a nine-year project to complete deactivation and closure of the facility for long-term surveillance and maintenance. A major obstacles for the project is the inability to effectively perform deactivation tasks within high radioactively contaminated hot cells. The current strategies utilize inefficient and resource intensive technologies that significantly impact the cost and schedule for stabilization and deactivation. The ASTD Remote Deployment Project shall identify, procure, and turnover, to the B-Cell project, a remote/robot work platform to improve B-Cell cleanup productivity and enhance worker safety and health.

  2. Remote Systems Design & Deployment

    SciTech Connect

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  3. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    SciTech Connect

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-02-27

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money.

  4. Remotely deployable aerial inspection using tactile sensors

    SciTech Connect

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Dobie, G.; Summan, R.; Sullivan, J. C.; Pipe, A. G.

    2014-02-18

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  5. Structures for remotely deployable precision antennas

    NASA Technical Reports Server (NTRS)

    Hedgepeth, John M.

    1989-01-01

    There is a need for completely deployable large antenna reflectors capable of efficiently handling millimeter-wave electromagnetic radiation. The structural concepts and technologies that are appropriate to fully automated deployment of dish-type antennas with solid reflector surfaces were studied. First, the structural requirements are discussed. Then, existing concepts for fully deployable antennas are described and assessed relative to the requirements. Finally, several analyses are presented that evaluate the effects of beam steering and segmented reflector design on the accuracy of the antenna.

  6. Structures for remotely deployable precision antennas

    NASA Astrophysics Data System (ADS)

    Hedgepeth, J. M.

    1989-07-01

    Future space missions such as the Earth Science Geostationary Platform (ESGP) will require highly accurate antennas with apertures that cannot be launched fully formed. The operational orbits are often inaccessible to manned flight and will involve expendable launch vehicles such as the Delta or Titan. There is therefore a need for completely deployable antenna reflectors of large size capable of efficiently handling millimeter wave electromagnetic radiation. The parameters for the type of mission are illustrated. The logarithmic plot of frequency versus aperture diameter shows the regions of interest for a large variety of space antenna applications, ranging from a 1500-meter-diameter radio telescope for low frequencies to a 20-meter-diameter infrared telescope. For the ESGP, a major application is the microwave radiometry at high frequencies for atmospheric sounding. Almost all existing large antenna reflectors for space employ a mesh-type reflecting surface. Examples are shown and discussed which deal with the various structural concepts for mesh antennas. Fortunately, those concepts are appropriate for creating the very large apertures required at the lower frequencies for good resolution. The emphasis is on the structural concepts and technologies that are appropriate to fully automated deployment of dish-type antennas with solid reflector surfaces. First the structural requirements are discussed. Existing concepts for fully deployable antennas are then described and assessed relative to the requirements. Finally, several analyses are presented that evaluate the effects of beam steering and segmented reflector design on the accuracy of the antenna.

  7. Structures for remotely deployable precision antennas

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1989-01-01

    Future space missions such as the Earth Science Geostationary Platform (ESGP) will require highly accurate antennas with apertures that cannot be launched fully formed. The operational orbits are often inaccessible to manned flight and will involve expendable launch vehicles such as the Delta or Titan. There is therefore a need for completely deployable antenna reflectors of large size capable of efficiently handling millimeter wave electromagnetic radiation. The parameters for the type of mission are illustrated. The logarithmic plot of frequency versus aperture diameter shows the regions of interest for a large variety of space antenna applications, ranging from a 1500-meter-diameter radio telescope for low frequencies to a 20-meter-diameter infrared telescope. For the ESGP, a major application is the microwave radiometry at high frequencies for atmospheric sounding. Almost all existing large antenna reflectors for space employ a mesh-type reflecting surface. Examples are shown and discussed which deal with the various structural concepts for mesh antennas. Fortunately, those concepts are appropriate for creating the very large apertures required at the lower frequencies for good resolution. The emphasis is on the structural concepts and technologies that are appropriate to fully automated deployment of dish-type antennas with solid reflector surfaces. First the structural requirements are discussed. Existing concepts for fully deployable antennas are then described and assessed relative to the requirements. Finally, several analyses are presented that evaluate the effects of beam steering and segmented reflector design on the accuracy of the antenna.

  8. Field Deployable Tritium Assay System Remote Control Software

    1998-05-12

    The FDTASREM software is a command control based application for the Field Deployable Tritium Assay System (FDTAS-Invention Disclosure SRS-96-091 has been submitted). The program runs on the Remote computer which is located at the field site with the FDTAS sampling and analysis components. The application executes commands received over the connected phone line from the operator via the FDTAS Host GUI running in the laboratory some distance away. The FDTASREM controls interface with the FDTASmore » auto sampler and the analysis systems. It tells the sampler to take a sample from a specified location and send it to the analyzer. Once the sample is sent to the analyzer, FDTASREM sequences the internal valves and pumps to deliver the sample and cocktail to the counting chamber. Once the analysis is complete, the program can execute the clean command and prepare the system for the next sample.« less

  9. A Remotely Deployed Laser System for Viewing/Metrology

    SciTech Connect

    Barry, R.E.; Herndon, J.N.; Menon, M.M.; Spampinato, P.T.

    1999-04-25

    A metrology system is being developed for in-vessel inspection of present day experimental, and next generation fusion reactors. It requires accurate measuring capability to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy for next generation reactors must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system that is capable of correcting for environmental vibration meets these requirements. The metrologyhiewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units, that are located outside of the harsh environment. The deployment mechanism configured for a next generation reactor was telescopic-mast positioning system. This paper identifies the requirements for the metrology/viewing system having precision ranging and surface mapping capability, and discusses the results of various environmental tests.

  10. Deployment of remote dismantlement systems at the CP-5 reactor

    SciTech Connect

    Black, D.B.; Ditch, R.W.; Henley, D.R.; Seifert, L.S.

    1997-06-01

    The Chicago Pile 5 (CP-5) Reactor Facility is currently undergoing decontamination and decommissioning (D&D) at the Argonne National Laboratory (ANL) Illinois site. CP-5 was the principal nuclear reactor used to produce neutrons for scientific research at Argonne from 1954 to 1979. The CP-5 reactor was a heavy-water moderated, enriched uranium-fueled reactor with a graphite reflector. The CP-5 D&D project includes the disassembly and removal of all radioactive components, equipment, and structures associated with the CP-5 facility. The Department of Energy`s Robotics Technology Development Program along with the Federal Energy Technology Center, Morgantown Office, have provided teleoperated, remote systems for use in the dismantlement of the CP-5 reactor structure for tasks requiring remote dismantlement. These systems include the dual-arm work platform, the Rosie mobile D&D vehicle, the swing-reduced crane control system, and a remotely-operated crane control system. The dual-arm work platform is a robotic dismantlement system that includes a pair of Schilling Titan III hydraulic manipulators mounted on a special platform, a hydraulic power unit and an operator console. The Rosie mobile D&D work system developed by RedZone Robotics, Inc. is an electro-hydraulic omni-directional locomotor platform with a heavy manipulator mounted on its deck. The Rosie vehicle moves about the floor around the CP-5 reactor block and is operated from a console in the control room. The swing-reduced crane control system has been installed on the CP-5 polar crane, and allows a load suspended from the crane hook to be moved while reducing the induced swing in the load. A remote control system and a rotating crane hook have also been added to the CP-5 polar crane. This paper discusses the status of these remote systems at CP-5 and the facility changes made to allow for their use in the dismantlement of the reactor structure internals. 4 refs., 3 figs.

  11. Deployable large aperture optics system for remote sensing applications.

    SciTech Connect

    Sumali, Anton Hartono; Martin, Jeffrey W.; Main, John A.; Macke, Benjamin T.; Massad, Jordan Elias; Chaplya, Pavel Mikhail

    2004-04-01

    This report summarizes research into effects of electron gun control on piezoelectric polyvinylidene fluoride (PVDF) structures. The experimental apparatus specific to the electron gun control of this structure is detailed, and the equipment developed for the remote examination of the bimorph surface profile is outlined. Experiments conducted to determine the optimum electron beam characteristics for control are summarized. Clearer boundaries on the bimorphs control output capabilities were determined, as was the closed loop response. Further controllability analysis of the bimorph is outlined, and the results are examined. In this research, the bimorph response was tested through a matrix of control inputs of varying current, frequency, and amplitude. Experiments also studied the response to electron gun actuation of piezoelectric bimorph thin film covered with multiple spatial regions of control. Parameter ranges that yielded predictable control under certain circumstances were determined. Research has shown that electron gun control can be used to make macrocontrol and nanocontrol adjustments for PVDF structures. The control response and hysteresis are more linear for a small range of energy levels. Current levels needed for optimum control are established, and the generalized controllability of a PVDF bimorph structure is shown.

  12. Scarab III Remote Vehicle Deployment for Waste Retrieval and Tank Inspection

    SciTech Connect

    Burks, B.L.; Falter, D.D.; Noakes, M.; Vesco, D.

    1999-04-25

    The Robotics Technology Development Program now known as the Robotics Crosscut Program, funded the development and deployment of a small remotely operated vehicle for inspection and cleanout of small horizontal waste storage tanks that have limited access. Besides the advantage of access through tank risers as small as 18-in. diameter, the small robotic system is also significantly less expensive to procure and to operate than larger remotely operated vehicle (ROV) systems. The vehicle specified to support this activity was the ROV Technologies, Inc., Scarab. The Scarab is a tracked vehicle with an independently actuated front and rear ''toe'' degree-of-freedom which allows the stand-off and angle of the vehicle platform with respect to the floor to be changed. The Scarab is a flexible remote tool that can be used for a variety of tasks with its primary uses targeted for inspection and small scale waste retrieval. The vehicle and any necessary process equipment are mounted in a deployment and containment enclosure to simplify deployment and movement of the system from tank to tank. This paper outlines the technical issues related to the Scarab vehicle and its deployment for use in tank inspection and waste retrieval operation

  13. The Installation of Satellite Modems on SEIS-UK Supported Remote Seismic Deployments

    NASA Astrophysics Data System (ADS)

    Horleston, A. C.; Brisbourne, A.; Hawthorn, D.

    2006-12-01

    SEIS-UK, as the UK's NERC funded national seismic equipment facility, is frequently involved in large, often remote, temporary seismic networks (running for up to 2 years). Up till now all these deployments have been managed solely by on-site maintenance but now SEIS-UK is investing in a number of satellite modems. The Michrosat 2400 OEM Modems, provided by Wireless Innovations Ltd, will be integrated within Guralp DCM data-logger units and will be used to provide regular state-of-health reports from remote networks. They will also provide the user the facility to communicate with the deployed systems, apply configuration changes and request system re-boots. This should lead to less instrument down-time and allow for more focussed site visits and thus, hopefully, reduce the cost (and servicing time) of remote installations. The Michrosat Modems are relatively low-powered and draw a maximum current of 2.5A (at 4.4v) for a few microseconds when initialising a call, dropping to bursts of approximately 1A when transmitting. This makes them ideally suited to temporary deployments relying on solar charged battery power. We will present examples of the configuration and typical deployment of the modems and the types of data transmitted.

  14. The accelerated site technology deployment program presents the segmented gate system

    SciTech Connect

    PATTESON,RAYMOND; MAYNOR,DOUG; CALLAN,CONNIE

    2000-02-24

    The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. The paper uses the example of the Segmented Gate System (SGS) to illustrate how the ASTD program works. The SGS was used to cost effectively separate clean and contaminated soil for four different radionuclides: plutonium, uranium, thorium, and cesium. Based on those results, it has been proposed to use the SGS at seven other DOE sites across the country.

  15. Assessing competencies: an evaluation of ASTD's Certified Professional in Learning and Performance (CPLP) designation.

    PubMed

    Kwon, Seolim; Wadholm, Robert R; Carmody, Laurie E

    2014-06-01

    The American Society of Training and Development's (ASTD) Certified Professional in Learning and Performance (CPLP) program is purported to be based on the ASTD's competency model, a model which outlines foundational competencies, roles, and areas of expertise in the field of training and performance improvement. This study seeks to uncover the relationship between the competency model and the CPLP knowledge exam questions and work product submissions (two of the major instruments used to test for competency of CPLP applicants). A mixed qualitative-quantitative approach is used to identify themes, quantify relationships, and assess questions and guidelines. Multiple raters independently analyzed the data and identified key themes, and Fleiss' Kappa coefficient was used in measuring inter-rater agreement. The study concludes that several discrepancies exist between the competency model and the knowledge exam and work product submission guidelines. Recommendations are given for possible improvement of the CPLP program. PMID:24565949

  16. Assessing competencies: an evaluation of ASTD's Certified Professional in Learning and Performance (CPLP) designation.

    PubMed

    Kwon, Seolim; Wadholm, Robert R; Carmody, Laurie E

    2014-06-01

    The American Society of Training and Development's (ASTD) Certified Professional in Learning and Performance (CPLP) program is purported to be based on the ASTD's competency model, a model which outlines foundational competencies, roles, and areas of expertise in the field of training and performance improvement. This study seeks to uncover the relationship between the competency model and the CPLP knowledge exam questions and work product submissions (two of the major instruments used to test for competency of CPLP applicants). A mixed qualitative-quantitative approach is used to identify themes, quantify relationships, and assess questions and guidelines. Multiple raters independently analyzed the data and identified key themes, and Fleiss' Kappa coefficient was used in measuring inter-rater agreement. The study concludes that several discrepancies exist between the competency model and the knowledge exam and work product submission guidelines. Recommendations are given for possible improvement of the CPLP program.

  17. Payload installation and deployment aid for space shuttle orbiter spacecraft remote manipulator system

    NASA Technical Reports Server (NTRS)

    Ross, T. O.

    1982-01-01

    An aid concept known as the PIDA (Payload Installation and Deployment Aid) is presented as a way to assist the Remote Manipulator System (RMS) by relaxing the accuracy required during payload handling in the payload bay. The aid concept was designed and developed to move payloads through a prescribed path between the confined quarters of the payload bay and a position outside the critical maneuvering area of the Orbiter. An androgynous docking mechanism is used at the payload/PIDA interfaces for normal docking functions that also serves as the structural connection between the payload and the Orbiter, that is capable of being loosened to prevent transfer of loads between a stowed payload and the PIDA structure. A gearmotor driven drum/cable system is used in the docking mechanism in a unique manner to center the attenuator assembly, align the ring and guide assembly (docking interface) in roll, pitch, and yaw, and rigidize the mechanism at a nominal position. A description of the design requirements and the modes of operation of the various functions of the deployment and the docking mechanisms are covered.

  18. A remotely operated, field deployable tritium analysis system for surface and groundwater measurement

    SciTech Connect

    Cable, P.R.; Hofstetter, K.J.; Beals, D.M.; Jones, J.D.; Collins, S.L.; Noakes, J.E.; Spaulding, J.D.; Neary, M.P.; Peterson, R.

    1996-12-31

    A prototype system for the remote, in situ analysis of tritium in surface and ground waters has been developed at the Savannah River Site through the combined efforts of university, private industry, and government laboratory personnel under a project funded by the DOE/OTD. Using automated liquid scintillation counting techniques, the Field Deployable Tritium Analysis System (FDTAS) has been shown in laboratory and limited field tests to have sufficient sensitivity to measure tritium in water samples at environmental levels (10 Bq/L [{approximately}300 pCi/L] for a 100-minute count) on a near-real time basis. These limits are well below the EPA drinking water standard for tritium at 740 Bq/L (1) and lower than the normal upstream Savannah River tritium concentration of {approximately}40 Bq/L (2). The FDTAS consists of a fixed volume sampler (50 mL), an on-line water purification system, and a stop-flow liquid scintillation counter for detecting tritium in the purified sample. All operations are controlled and monitored by a remote computer using standard telephone line modem communications. The FDTAS offers a cost-effective alternative to the expensive and time-consuming methods of field sample collection and laboratory analyses for tritium in contaminated groundwater.

  19. Building and Deploying Remotely Operated Vehicles in the First-Year Experience

    NASA Astrophysics Data System (ADS)

    O'Brien-Gayes, A.; Fuss, K.; Gayes, P.

    2007-12-01

    Coastal Carolina University has committed to improving student retention and success in Mathematics and Science through a pilot program to engage first-year students in an applied and investigative project as part of the University's First-Year Experience (FYE). During the fall 2007 semester, five pilot sections of FYE classes, consisting of students from the College of Natural and Applied Sciences are building and deploying Remotely Operated Vehicles (ROVs). These ROV-based classes are designed to: accelerate exploration of the broad fields of science and mathematics; enlist interest in technology by engaging students in a multi-stepped, interdisciplinary problem solving experience; explore science and mathematical concepts; institute experiential learning; and build a culture of active learners to benefit student success across traditional departmental boundaries. Teams of three students (forty teams total) will build, based on the MIT Sea Perch design, and test ROVs in addition to collecting data with their ROVs. Various accessories attached to the vehicles for data collection will include temperature and light sensors, plankton nets and underwater cameras. The first-year students will then analyze the data, and the results will be documented as part of their capstone projects. Additionally, two launch days will take place on two campus ponds. Local middle and high school teachers and their students will be invited to observe this event. The teams of students with the most capable and successful ROVs will participate in a workshop held in November 2007 for regional elementary, middle and high school teachers. These students will give a presentation on the building of the ROVs and also provide a hands-on demonstration for the workshop participants. These activities will ensure an incorporation of service learning into the first semester of the freshmen experience. The desired outcomes of the ROV-based FYE classes are: increased retention at the postsecondary

  20. The deployment and training of teachers for remote rural schools in less-developed countries

    NASA Astrophysics Data System (ADS)

    Ankrah-Dove, Linda

    1982-03-01

    In less-developed countries schools in remote rural areas are likely to be poor in quality. One important aspect of this in certain contexts is the comparatively low quality of teachers and the high rate of teacher turnover in rural schools in these areas. It is likely that contributory factors are the ways in which posting and transfer procedures operate, inadequate preparation and support for teachers, and their own characteristics, values and interests. For purposes of analysis, two models are suggested which illuminate the policy assumptions behind different strategies used to try to remedy the situation. The rural deficit model tends to encourage the use of compulsory posting and incentives while the rural challenge model searches for better ways of preparing teachers for service in remote rural schools. From analysis of the literature, the author suggests that there are four inter-related features of contemporary teacher-education programmes which have potential and should be developed if good teachers are to be attracted to and retained in remote rural schools. These are field-based preparation, teamwork in training, community support of training and the recruitment and preparation of local teachers. A few examples of schemes employing these principles are described briefly.

  1. Experience with procuring, deploying and maintaining hardware at remote co-location centre

    NASA Astrophysics Data System (ADS)

    Bärring, O.; Bonfillou, E.; Clement, B.; Coelho Dos Santos, M.; Dore, V.; Gentit, A.; Grossir, A.; Salter, W.; Valsan, L.; Xafi, A.

    2014-05-01

    In May 2012 CERN signed a contract with the Wigner Data Centre in Budapest for an extension to CERN's central computing facility beyond its current boundaries set by electrical power and cooling available for computing. The centre is operated as a remote co-location site providing rack-space, electrical power and cooling for server, storage and networking equipment acquired by CERN. The contract includes a 'remote-hands' services for physical handling of hardware (rack mounting, cabling, pushing power buttons, ...) and maintenance repairs (swapping disks, memory modules, ...). However, only CERN personnel have network and console access to the equipment for system administration. This report gives an insight to adaptations of hardware architecture, procurement and delivery procedures undertaken enabling remote physical handling of the hardware. We will also describe tools and procedures developed for automating the registration, burn-in testing, acceptance and maintenance of the equipment as well as an independent but important change to the IT assets management (ITAM) developed in parallel as part of the CERN IT Agile Infrastructure project. Finally, we will report on experience from the first large delivery of 400 servers and 80 SAS JBOD expansion units (24 drive bays) to Wigner in March 2013. Changes were made to the abstract file on 13/06/2014 to correct errors, the pdf file was unchanged.

  2. STS-41 ISAC deployed on remote manipulator system (RMS) lower arm boom

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 International Telecommunications Satellite Organization (INTELSAT) Solar Array Coupon (ISAC) witness plates are mounted on remote manipulator system (RMS) lower arm boom and are exposed to space environment conditions. The RMS with the ISAC material samples is extended above Discovery's, Orbiter Vehicle (OV) 103's, payload bay (PLB) and over the Earth's surface. One witness plate contains an 8.5 x 12-inch solar array coupon and three 5 x 8-inch aluminum plates painted to provide three different temperatures. The second witness plate contains one 8.5 x 12-inch solar array coupon and a 46-position sample holder. This JSC-designed experiment is in preparation for the possible 1992 rescue of INTELSAT-VI, stranded in low orbit earlier this year. Quantitative data on the interaction of atomic oxygen with the solar array silver interconnects and other INTELSAT materials will be obtained.

  3. Remote Interrogation of WDM Fiber-Optic Intensity Sensors Deploying Delay Lines in the Virtual Domain

    PubMed Central

    Montero, David Sánchez; Vázquez, Carmen

    2013-01-01

    In this work a radio-frequency self-referencing WDM intensity-based fiber-optic sensor operating in reflective configuration and using virtual instrumentation is presented. The use of virtual delay lines at the reception stage, along with novel flexible self-referencing techniques, and using a single frequency, avoids all-optical or electrical-based delay lines approaches. This solution preserves the self-referencing and performance characteristics of the proposed WDM-based optical sensing topology, and leads to a more compact solution with higher flexibility for the multiple interrogation of remote sensing points in a sensor network. Results are presented for a displacement sensor demonstrating the concept feasibility. PMID:23653054

  4. Seismic-monitoring changes and the remote deployment of seismic stations (seismic spider) at Mount St. Helens, 2004-2005: Chapter 7 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    McChesney, Patrick J.; Couchman, Marvin R.; Moran, Seth C.; Lockhart, Andrew B.; Swinford, Kelly J.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The instruments in place at the start of volcanic unrest at Mount St. Helens in 2004 were inadequate to record the large earthquakes and monitor the explosions that occurred as the eruption developed. To remedy this, new instruments were deployed and the short-period seismic network was modified. A new method of establishing near-field seismic monitoring was developed, using remote deployment by helicopter. The remotely deployed seismic sensor was a piezoelectric accelerometer mounted on a surface-coupled platform. Remote deployment enabled placement of stations within 250 m of the active vent.

  5. TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN

    SciTech Connect

    RAYMOND RE

    2011-12-27

    In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is

  6. DEPLOYMENT OF INNOVATIVE CHARACTERIZATION TECHNOLOGIES AND IMPLEMENTATION OF THE MARSSIM PROCESS AT RADIOLOGICALLY CONTAMINATED SITES.

    SciTech Connect

    KALB,P.D.; MILIAN,L.; LUCKETT,L.; WATTERS,D.; MILLER,K.M.; GOGOLAK,C.

    2001-05-01

    The success of this Accelerated Site Technology Deployment (ASTD) project is measured on several levels. First, the deployment of this innovative approach using in situ characterization, portable field laboratory measurements, and implementation of MARSSIM was successfully established for all three phases of D and D characterization, i.e., pre-job scoping, on-going disposition of waste, and final status surveys upon completion of the activity. Unlike traditional D and D projects, since the Brookhaven Graphite Research Reactor Decommissioning Project (BGRR-DP) is operating on an accelerated schedule, much of the work is being carried out simultaneously. Rather than complete a full characterization of the facility before D and D work begins, specific removal actions require characterization as the activity progresses. Thus, the need for rapid and cost-effective techniques for characterization is heightened. Secondly, since the approach used for this ASTD project was not thoroughly proven prior to deployment, a large effort was devoted to demonstrating technical comparability to project managers, regulators and stakeholders. During the initial phases, large numbers of replicate samples were taken and analyzed by conventional baseline techniques to ensure that BGRR-DP quality assurance standards were met. ASTD project staff prepared comparisons of data gathered using ISOCS and BetaScint with traditional laboratory methods and presented this information to BGRR-DP staff and regulators from EPA Region II, NYS Department of Environmental Conservation, and the Suffolk County Board of Health. As the results of comparability evaluations became available, approval for these methods was received and the techniques associated with in situ characterization, portable field laboratory measurements, and implementation of MARSSIM were gradually integrated into BGRR-DP procedures.

  7. Ground-Based Fabry-Perot Interferometry of the Terrestrial Nightglow with a Bare Charge-Coupled Device: Remote Field Site Deployment

    NASA Technical Reports Server (NTRS)

    Niciejewski, Rick; Killeen, Timothy L.; Turnbull, Matthew

    1994-01-01

    The application of Fabry-Perot interferometers (FPIs) to the study of upper atmosphere thermodynamics has largely been restricted by the very low light levels in the terrestrial airglow as well as the limited range in wavelength of photomultiplier tube (PMT) technology. During the past decade, the development of the scientific grade charge-coupled device (CCD) has progressed to the stage in which this detector has become the logical replacement for the PMT. Small fast microcomputers have made it possible to "upgrade" our remote field sites with bare CCDs and not only retain the previous capabilities of the existing FPls but expand the data coverage in both temporal and wavelength domains. The problems encountered and the solutions applied to the deployment of a bare CCD, with data acquisition and image reduction techniques, are discussed. Sample geophysical data determined from the FPI fringe profiles are shown for our stations at Peach Mountain, Michigan, and Watson Lake, Yukon Territory.

  8. THE BNL ASTD FIELD LAB - NEAR - REAL - TIME CHARACTERIZATION OF BNL STOCKPILED SOILS TO ACCELERATE COMPLETION OF THE EM CHEMICAL HOLES PROJECT.

    SciTech Connect

    BOWERMAN,B.S.; ADAMS,J.W.; HEISER,J.; KALB,P.D.; LOCKWOOD,A.

    2003-04-01

    As of October 2001, approximately 7,000 yd{sup 3} of stockpiled soil remained at Brookhaven National Laboratory (BNL) after the remediation of the BNL Chemical/Animal/Glass Pits disposal area. The soils were originally contaminated with radioactive materials and heavy metals, depending on what materials had been interred in the pits, and how the pits were excavated. During the 1997 removal action, the more hazardous/radioactive materials were segregated, along with, chemical liquids and solids, animal carcasses, intact gas cylinders, and a large quantity of metal and glass debris. Nearly all of these materials have been disposed of. In order to ensure that all debris was removed and to characterize the large quantity of heterogeneous soil, BNL initiated an extended sorting, segregation, and characterization project directed at the remaining soil stockpiles. The project was co-funded by the Department of Energy Environmental Management Office (DOE EM) through the BNL Environmental Restoration program and through the DOE EM Office of Science and Technology Accelerated Site Technology Deployment (ASTD) program. The focus was to remove any non-conforming items, and to assure that mercury and radioactive contaminant levels were within acceptable limits for disposal as low-level radioactive waste. Soils with mercury concentrations above allowable levels would be separated for disposal as mixed waste. Sorting and segregation were conducted simultaneously. Large stockpiles (ranging from 150 to 1,200 yd{sup 3}) were subdivided into manageable 20 yd{sup 3} units after powered vibratory screening. The 1/2-inch screen removed almost all non-conforming items (plus some gravel). Non-conforming items were separated for further characterization. Soil that passed through the screen was also visually inspected before being moved to a 20 yd{sup 3} ''subpile.'' Eight samples from each subpile were collected after establishing a grid of four quadrants: north, east, south and west, and

  9. Large, Easily Deployable Structures

    NASA Technical Reports Server (NTRS)

    Agan, W. E.

    1983-01-01

    Study of concepts for large space structures will interest those designing scaffolding, radio towers, rescue equipment, and prefabricated shelters. Double-fold, double-cell module was selected for further design and for zero gravity testing. Concept is viable for deployment by humans outside space vehicle as well as by remotely operated manipulator.

  10. Deployable antenna

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Scully, Robert C. (Inventor)

    2006-01-01

    A deployable antenna and method for using wherein the deployable antenna comprises a collapsible membrane having at least one radiating element for transmitting electromagnetic waves, receiving electromagnetic waves, or both.

  11. Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project

    SciTech Connect

    A. M Smith; G. E. Matthern; R. H. Meservey

    1998-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

  12. Report on Development of Concepts for the Advanced Casting System in Support of the Deployment of a Remotely Operable Research Scale Fuel Fabrication Facility for Metal Fuel

    SciTech Connect

    Ken Marsden

    2007-03-01

    Demonstration of recycle processes with low transuranic losses is key to the successful implementation of the Global Nuclear Energy Partnership strategy to manage spent fuel. It is probable that these recycle processes will include remote fuel fabrication. This report outlines the strategy to develop and implement a remote metal fuel casting process with minimal transuranic losses. The approach includes a bench-scale casting system to develop materials, methods, and perform tests with transuranics, and an engineering-scale casting system to demonstrate scalability and remote operability. These systems will be built as flexible test beds allowing exploration of multiple fuel casting approaches. The final component of the remote fuel fabrication demonstration culminates in the installation of an advanced casting system in a hot cell to provide integrated remote operation experience with low transuranic loss. Design efforts and technology planning have begun for the bench-scale casting system, and this will become operational in fiscal year 2008, assuming appropriate funding. Installation of the engineering-scale system will follow in late fiscal year 2008, and utilize materials and process knowledge gained in the bench-scale system. Assuming appropriate funding, the advanced casting system will be installed in a remote hot cell at the end of fiscal year 2009.

  13. Cost and Performance Report for the ASTD Reuse of Concrete Within DOE from D&D Projects

    SciTech Connect

    Kamboj, S.; Arnish, J.; Chen, S. Y.; Phillips, Ann Marie; Meservey, Richard Harlan; Tripp, Julia Lynn

    2000-09-01

    This cost and performance report describes the Accelerated Site Technology Deployment project that developed the Protocol for Development of Authorized Release Limits for Concrete at U.S. DOE Sites, which identifies the steps for obtaining approval to reuse concrete from Deactivation and Decommissioning of facilities. This protocol compares the risk and cost of various disposition paths for the concrete and follows the authorized release approach described in the DOE's draft handbook, Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material. This approach provides for the development of authorized release limits through a series of prescribed steps before approval for release is granted. A case study was also completed on a previously decommissioned facility.

  14. Rapid deployable global sensing hazard alert system

    DOEpatents

    Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M

    2015-04-28

    A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.

  15. Remote Decommissioning Experiences at Sellafield

    SciTech Connect

    Brownridge, M.

    2006-07-01

    British Nuclear Group has demonstrated through delivery of significant decommissioning projects the ability to effectively deploy innovative remote decommissioning technologies and deliver cost effective solutions. This has been achieved through deployment and development of off-the-shelf technologies and design of bespoke equipment. For example, the worlds first fully remotely operated Brokk was successfully deployed to enable fully remote dismantling, packaging and export of waste during the decommissioning of a pilot reprocessing facility. British Nuclear Group has also successfully implemented remote decommissioning systems to enable the decommissioning of significant challenges, including dismantling of a Caesium Extraction Facility, Windscale Pile Chimney and retrieval of Plutonium Contaminated Material (PCM) from storage cells. The challenge for the future is to continue to innovate through utilization of the supply chain and deploy off-the-shelf technologies which have been demonstrated in other industry sectors, thus reducing implementation schedules, cost and maintenance. (authors)

  16. Synchronously Deployable Truss Structures

    NASA Technical Reports Server (NTRS)

    Rhodes, M. D.; Hedgepeth, J. M.

    1986-01-01

    Structure lightweight, readily deployed, and has reliable joints. New truss concept, designated as "pac truss," developed. Features easy deployment without need for complex mechanisms. Structures of this type deployed in free flight by controlled release of stored energy in torsional springs at selected hinges located throughout structure. Double-folding technique used in beam model applicable to flat planar trusses, allowing structures of large expanse to fold into compact packages and be deployed for space-platform applications.

  17. Solar array deployment mechanism

    NASA Astrophysics Data System (ADS)

    Calassa, Mark C.; Kackley, Russell

    1995-05-01

    This paper describes a Solar Array Deployment Mechanism (SADM) used to deploy a rigid solar array panel on a commercial spacecraft. The application required a deployment mechanism design that was not only lightweight, but also could be produced and installed at the lowest possible cost. This paper covers design, test, and analysis of a mechanism that meets these requirements.

  18. Solar array deployment mechanism

    NASA Technical Reports Server (NTRS)

    Calassa, Mark C.; Kackley, Russell

    1995-01-01

    This paper describes a Solar Array Deployment Mechanism (SADM) used to deploy a rigid solar array panel on a commercial spacecraft. The application required a deployment mechanism design that was not only lightweight, but also could be produced and installed at the lowest possible cost. This paper covers design, test, and analysis of a mechanism that meets these requirements.

  19. Remote System Technologies for Deactivating Hanford Hot Cells (for WM'03 - abstract included)

    SciTech Connect

    BERLIN, G.T.

    2003-01-28

    Remote system technologies are being deployed by Fluor Hanford to help accelerate the deactivation of highly-radioactive hot cell facilities. This paper highlights the application of several remotely deployed technologies enabling the deactivation tasks.

  20. Deployment of Smart 3D Subsurface Contaminant Characterization at the Brookhaven Graphite Research Reactor

    SciTech Connect

    Sullivan, T.; Heiser, J.; Kalb, P.; Milian, L.; Newson, C.; Lilimpakas, M.; Daniels, T.

    2002-02-26

    The Brookhaven Graphite Research Reactor (BGRR) Historical Site Assessment (BNL 1999) identified contamination inside the Below Grade Ducts (BGD) resulting from the deposition of fission and activation products from the pile on the inner carbon steel liner during reactor operations. Due to partial flooding of the BGD since shutdown, some of this contamination may have leaked out of the ducts into the surrounding soils. The baseline remediation plan for cleanup of contaminated soils beneath the BGD involves complete removal of the ducts, followed by surveying the underlying and surrounding soils, then removing soil that has been contaminated above cleanup goals. Alternatively, if soil contamination around and beneath the BGD is either non-existent/minimal (below cleanup goals) or is very localized and can be ''surgically removed'' at a reasonable cost, the BGD can be decontaminated and left in place. The focus of this Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project was to determine the extent (location, type, and level) of soil contamination surrounding the BGD and to present this data to the stakeholders as part of the Engineering Evaluation/Cost Analysis (EE/CA) process. A suite of innovative characterization tools was used to complete the characterization of the soil surrounding the BGD in a cost-effective and timely fashion and in a manner acceptable to the stakeholders. The tools consisted of a tracer gas leak detection system that was used to define the gaseous leak paths out of the BGD and guide soil characterization studies, a small-footprint Geoprobe to reach areas surrounding the BGD that were difficult to access, two novel, field-deployed, radiological analysis systems (ISOCS and BetaScint) and a three-dimensional (3D) visualization system to facilitate data analysis/interpretation. All of the technologies performed as well or better than expected and the characterization could not have been completed in the same time or at

  1. Tether Deployer And Brake

    NASA Technical Reports Server (NTRS)

    Carroll, Joseph A.; Alexander, Charles M.

    1993-01-01

    Design concept promises speed, control, and reliability. Scheme for deploying tether provides for fast, free, and snagless payout and fast, dependable braking. Developed for small, expendable tethers in outer space, scheme also useful in laying transoceanic cables, deploying guidance wires to torpedoes and missiles, paying out rescue lines from ship to ship via rockets, deploying antenna wires, releasing communication and power cables to sonobuoys and expendable bathythermographs, and in reeling out lines from fishing rods.

  2. ROBODEXS: multi-robot deployment and extraction system

    NASA Astrophysics Data System (ADS)

    Gray, Jeremy P.; Mason, James R.; Patterson, Michael S.; Skalny, Matthew W.

    2012-06-01

    The importance of Unmanned Ground Vehicles (UGV's) in the Military's operations is continually increasing. All Military branches now rely on advanced robotic technologies to aid in their missions' operations. The integration of these technologies has not only enhanced capabilities, but has increased personnel safety by generating larger standoff distances. Currently most UGV's are deployed by an exposed dismounted Warfighter because the Military possess a limited capability to do so remotely and can only deploy a single UGV. This paper explains the conceptual development of a novel approach to remotely deploy and extract multiple robots from a single host platform. The Robotic Deployment & Extraction System (ROBODEXS) is a result of our development research to improve marsupial robotic deployment at safe standoff distances. The presented solution is modular and scalable, having the ability to deploy anywhere from two to twenty robots from a single deployment mechanism. For larger carrier platforms, multiple sets of ROBODEXS modules may be integrated for deployment and extraction of even greater numbers of robots. Such a system allows mass deployment and extraction from a single manned/unmanned vehicle, which is not currently possible with other deployment systems.

  3. Deployable geodesic truss structure

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr. (Inventor); Rhodes, Marvin D. (Inventor); Simonton, J. Wayne (Inventor)

    1987-01-01

    A deployable geodesic truss structure which can be deployed from a stowed state to an erected state is described. The truss structure includes a series of bays, each bay having sets of battens connected by longitudinal cross members which give the bay its axial and torsional stiffness. The cross members are hinged at their mid point by a joint so that the cross members are foldable for deployment or collapsing. The bays are deployed and stabilized by actuator means connected between the mid point joints of the cross members. Hinged longerons may be provided to also connect the sets of battens and to collapse for stowing with the rest of the truss structure.

  4. Modeling EERE Deployment Programs

    SciTech Connect

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.; Livingston, O. V.

    2007-11-01

    This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.

  5. Deployable Soft Composite Structures.

    PubMed

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-01-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel. PMID:26892762

  6. Deployable Soft Composite Structures

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-02-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.

  7. Deployable Soft Composite Structures

    PubMed Central

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-01-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel. PMID:26892762

  8. Deployable Soft Composite Structures.

    PubMed

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-02-19

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.

  9. Modeling EERE deployment programs

    SciTech Connect

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.; Livingston, O. V.

    2007-11-01

    The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.

  10. Self-deploying boom

    NASA Technical Reports Server (NTRS)

    Tumulty, W. T.; Sours, W. P.

    1972-01-01

    Development and operation of metal ribbon which acts like self deploying boom are described. Metal ribbon is retained on two rollers for storage and extends into nonretractable tubular structure upon release. Illustration of equipment is provided.

  11. Glory Solar Array Deployment

    NASA Video Gallery

    The Glory spacecraft uses Orbital Sciences Corporation Space Systems Group's LEOStar-1 bus design, with deployable, four-panel solar arrays. This conceptual animation reveals Glory's unique solar a...

  12. Investigation of technical problems related to deployment and retrieval of spinning satellites

    NASA Technical Reports Server (NTRS)

    Kaplan, M. H.

    1973-01-01

    Results of a three-year research effort on retrieval and deployment problems associated with orbiting payloads are summarized. Answers to several basic questions about rendezvous, docking, and deployment dynamics and controls were obtained. A basic retrieval mission profile was formulated in order to develop relevant technology. A remotely controlled retrieval package was conceived. Special deployment dynamics problems associated with high altitude deployment were investigated, and new knowledge of payload spin reorientation was obtained.

  13. The Propulsive Small Expendable Deployer System (ProSEDS)

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.; Cosmo, Mario L.; Curtis, Leslie (Technical Monitor)

    2003-01-01

    The summary of activity during this reporting period, most of which was covered by a no-cost extension of the grant, is as follows: 1) Participation in remote and in-situ (at MSFC EDAC facility) mission operation simulations; 2) Analysis of the decay rate of ProSEDS when starting the mission at a lower altitude; 3) Analysis of the deployment control law performance when deploying at a lower altitude.

  14. Remote Sensing of the Arctic Seas.

    ERIC Educational Resources Information Center

    Weeks, W. F.; And Others

    1986-01-01

    Examines remote sensing of the arctic seas by discussing: (1) passive microwave sensors; (2) active microwave sensors; (3) other types of sensors; (4) the future deployment of sensors; (5) data buoys; and (6) future endeavors. (JN)

  15. Remote Sensing Laboratory - RSL

    SciTech Connect

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  16. Remote Sensing Laboratory - RSL

    ScienceCinema

    None

    2016-07-12

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  17. Modeling EERE Deployment Programs

    SciTech Connect

    Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.; Livingston, Olga V.

    2007-11-08

    The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, “Modeling EERE Deployment Programs,” sponsored by the Planning, Analysis, and Evaluation office within the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.

  18. Deployment & Market Transformation (Brochure)

    SciTech Connect

    Not Available

    2012-04-01

    NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

  19. Parametric Cost Deployment

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1995-01-01

    Parametric cost analysis is a mathematical approach to estimating cost. Parametric cost analysis uses non-cost parameters, such as quality characteristics, to estimate the cost to bring forth, sustain, and retire a product. This paper reviews parametric cost analysis and shows how it can be used within the cost deployment process.

  20. Deployable video conference table

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Inventor); Lissol, Peter (Inventor)

    1993-01-01

    A deployable table is presented. The table is stowed in and deployed from a storage compartment based upon a non-self rigidizing, 4-hinge, arch support structure that folds upon itself to stow and that expands to deploy. The work surfaces bypass each other above and below to allow the deployment mechanism to operate. This assembly includes the following: first and second primary pivot hinges placed at the opposite ends of the storage compartment; first and second lateral frame members with proximal ends connected to the first and second pivot hinges; a medial frame member offset from and pivotally connected to distal ends of the first and second members through third and fourth medial pivot hinges; and left-side, right-side, and middle trays connected respectively to the first, second, and third frame members and being foldable into and out of the storage compartment by articulation of the first, second, third, and fourth joints. At least one of the third and fourth joints are locked to set the first, second, and third frame members in a desired angular orientation with respect to each other.

  1. Field Deployable Tritium Assay System Host Graphical User Interface Software

    1998-05-12

    The FDTASHOST software is a Graphical User Interface for the Field Deployable Tritium Assay System (FDTAS - Invention Disclosure SRS-96-09-091 has been submitted). The program runs on the Host computer which is located in the Laboratory and connected to the FDTAS remote field system via a modem over a phone line. The operator receives status information and messages from the Remote system. The operator can enter in commands to be executed by the remote systemmore » using the mouse and a pull down menu.« less

  2. Dedicated Deployable Aerobraking Structure

    NASA Technical Reports Server (NTRS)

    Giersch, Louis R.; Knarr, Kevin

    2010-01-01

    A dedicated deployable aerobraking structure concept was developed that significantly increases the effective area of a spacecraft during aerobraking by up to a factor of 5 or more (depending on spacecraft size) without substantially increasing total spacecraft mass. Increasing the effective aerobraking area of a spacecraft (without significantly increasing spacecraft mass) results in a corresponding reduction in the time required for aerobraking. For example, if the effective area of a spacecraft is doubled, the time required for aerobraking is roughly reduced to half the previous value. The dedicated deployable aerobraking structure thus enables significantly shorter aerobraking phases, which results in reduced mission cost, risk, and allows science operations to begin earlier in the mission.

  3. Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Alff, W. H.

    1980-01-01

    The feasibility and costs were determined for a 1 m to 30 m diameter ambient temperature, infrared to submillimeter orbiting astronomical telescope which is to be shuttle-deployed, free-flying, and have a 10 year orbital life. Baseline concepts, constraints on delivery and deployment, and the sunshield required are examined. Reflector concepts, the optical configuration, alignment and pointing, and materials are also discussed. Technology studies show that a 10 m to 30 m diameter system which is background and diffraction limited at 30 micron m is feasible within the stated time frame. A 10 m system is feasible with current mirror technology, while a 30 m system requires technology still in development.

  4. Deployable tensegrity towers

    NASA Astrophysics Data System (ADS)

    Pinaud, Jean-Paul

    The design of a complete tensegrity system involves the analysis of static equilibria, the mechanical properties of the configuration, the deployment of the structure, and the regulation and dynamics of the system. This dissertation will explore these steps for two different types of structures. The first structure is the traditional Snelson Tower, where struts are disjointed, and is referred to as a Class 1 tensegrity. The second structure of interest is referred to as a Class 2 structure, where two struts come in contact at a joint. The first part of the thesis involves the dynamics of these tensegrity structures. Two complete nonlinear formulations for the dynamics of tensegrity systems are derived. In addition, a general formulation for the statics for an arbitrary tensegrity structure resulted from one of the dynamic formulations and is presented with symmetric and nonsymmetric tensegrity configurations. The second part of the thesis involves statics. The analysis of static equilibria and the implementation of this analysis into an open loop control law that will deploy the tensegrity structures along an equilibrium manifold are derived. The analysis of small stable tensegrity units allow for a modular design, where a collection of these units can be assembled into a larger structure that obeys the same control laws for deployment concepts. In addition, a loaded structure is analyzed to determine the optimal number of units required to obtain a minimal mass configuration. The third part of the thesis involves laboratory hardware that demonstrates the practical use of the methodology presented. A Class 2 symmetric structure is constructed, deployed, and stowed using the analysis from part two. In addition, the static equilibria of a Class 1 structure is computed to obtain nonsymmetric reconfigurations. The final part of the thesis involves the attenuation of white noise disturbances acting on nodes of both structures. The structures are simulated using linear

  5. Treatment Deployment Evaluation Tool

    SciTech Connect

    Rynearson, Michael Ardel; Plum, Martin Michael

    1999-08-01

    The U.S. Department of Energy (DOE) is responsible for the final disposition of legacy spent nuclear fuel (SNF). As a response, DOE's National Spent Nuclear Fuel Program (NSNFP) has been given the responsibility for the disposition of DOE -owned SNF. Many treatment technologies have been identified to treat some forms of SNF so that the resulting treated product is acceptable by the disposition site. One of these promising treatment processes is the electrometallurgical treatment (EMT) currently in development; a second is an Acid Wash Decladding process. The NSNFP has been tasked with identifying possible strategies for the deployment of these treatment processes in the event that the treatment path is deemed necessary. To support the siting studies of these strategies, economic evaluations are being performed to identify the least-cost deployment path. This model (tool) was developed to consider the full scope of costs, technical feasibility, process material disposition, and schedule attributes over the life of each deployment alternative. Using standard personal computer (PC) software, the model was developed as a comprehensive technology economic assessment tool using a Life-Cycle Cost (LCC) analysis methodology. Model development was planned as a systematic, iterative process of identifying and bounding the required activities to dispose of SNF. To support the evaluation process, activities are decomposed into lower level, easier to estimate activities. Sensitivity studies can then be performed on these activities, defining cost issues and testing results against the originally stated problem.

  6. Treatment Deployment Evaluation Tool

    SciTech Connect

    M. A. Rynearson; M. M. Plum

    1999-08-01

    The U.S. Department of Energy (DOE) is responsible for the final disposition of legacy spent nuclear fuel (SNF). As a response, DOE's National Spent Nuclear Fuel Program (NSNFP) has been given the responsibility for the disposition of DOE-owned SNF. Many treatment technologies have been identified to treat some forms of SNF so that the resulting treated product is acceptable by the disposition site. One of these promising treatment processes is the electrometallurgical treatment (EMT) currently in development; a second is an Acid Wash Decladding process. The NSNFP has been tasked with identifying possible strategies for the deployment of these treatment processes in the event that a treatment path is deemed necessary. To support the siting studies of these strategies, economic evaluations are being performed to identify the least-cost deployment path. This model (tool) was developed to consider the full scope of costs, technical feasibility, process material disposition, and schedule attributes over the life of each deployment alternative. Using standard personal computer (PC) software, the model was developed as a comprehensive technology economic assessment tool using a Life-Cycle Cost (LCC) analysis methodology. Model development was planned as a systematic, iterative process of identifying and bounding the required activities to dispose of SNF. To support the evaluation process, activities are decomposed into lower level, easier to estimate activities. Sensitivity studies can then be performed on these activities, defining cost issues and testing results against the originally stated problem.

  7. Deployable Crew Quarters

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    The deployable crew quarters (DCQ) have been designed for the International Space Station (ISS). Each DCQ would be a relatively inexpensive, deployable boxlike structure that is designed to fit in a rack bay. It is to be occupied by one crewmember to provide privacy and sleeping functions for the crew. A DCQ comprises mostly hard panels, made of a lightweight honeycomb or matrix/fiber material, attached to each other by cloth hinges. Both faces of each panel are covered with a layer of Nomex cloth and noise-suppression material to provide noise isolation from ISS. On Earth, the unit is folded flat and attached to a rigid pallet for transport to the ISS. On the ISS, crewmembers unfold the unit and install it in place, attaching it to ISS structural members by use of soft cords (which also help to isolate noise and vibration). A few hard pieces of equipment (principally, a ventilator and a smoke detector) are shipped separately and installed in the DCQ unit by use of a system of holes, slots, and quarter-turn fasteners. Full-scale tests showed that the time required to install a DCQ unit amounts to tens of minutes. The basic DCQ design could be adapted to terrestrial applications to satisfy requirements for rapid deployable emergency shelters that would be lightweight, portable, and quickly erected. The Temporary Early Sleep Station (TeSS) currently on-orbit is a spin-off of the DCQ.

  8. Automatic payload deployment system

    NASA Astrophysics Data System (ADS)

    Pezeshkian, Narek; Nguyen, Hoa G.; Burmeister, Aaron; Holz, Kevin; Hart, Abraham

    2010-04-01

    The ability to precisely emplace stand-alone payloads in hostile territory has long been on the wish list of US warfighters. This type of activity is one of the main functions of special operation forces, often conducted at great danger. Such risk can be mitigated by transitioning the manual placement of payloads over to an automated placement mechanism by the use of the Automatic Payload Deployment System (APDS). Based on the Automatically Deployed Communication Relays (ADCR) system, which provides non-line-of-sight operation for unmanned ground vehicles by automatically dropping radio relays when needed, the APDS takes this concept a step further and allows for the delivery of a mixed variety of payloads. For example, payloads equipped with a camera and gas sensor in addition to a radio repeater, can be deployed in support of rescue operations of trapped miners. Battlefield applications may include delivering food, ammunition, and medical supplies to the warfighter. Covert operations may require the unmanned emplacement of a network of sensors for human-presence detection, before undertaking the mission. The APDS is well suited for these tasks. Demonstrations have been conducted using an iRobot PackBot EOD in delivering a variety of payloads, for which the performance and results will be discussed in this paper.

  9. Newly Deployed Sojourner Rover

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This 8-image mosaic was acquired during the late afternoon (near 5pm LST, note the long shadows) on Sol 2 as part of the predeploy 'insurance panorama' and shows the newly deployed rover sitting on the Martian surface. This color image was generated from images acquired at 530,600, and 750 nm. The insurance panorama was designed as 'insurance' against camera failure upon deployment. Had the camera failed, the losslessly-compressed, multispectral insurance panorama would have been the main source of image data from the IMP.

    However, the camera deployment was successful, leaving the insurance panorama to be downlinked to Earth several weeks later. Ironically enough, the insurance panorama contains some of the best quality image data because of the lossless data compression and relatively dust-free state of the camera and associated lander/rover hardware on Sol 2.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal investigator.

  10. Astronaut Story Musgrave deploys HST solar array panel

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut F. Story Musgrave, anchored to a foot restraint on the Space Shuttle Endeavour's Remote Manipulator System (RMS) arm, aids the deployment of one of the solar array panels on the Hubble Space Telescope (HST). The action came during the final of five STS-61 space walks.

  11. ASTD Technical and Skills Training Handbook.

    ERIC Educational Resources Information Center

    Kelly, Leslie, Ed.

    This handbook is intended to serve as a hands-on reference for technical trainers, many of whom are resident experts in corporations who have been recruited from within the organization rather than individuals with training background. It contains 23 chapters by experts in the field: (1) The History of Technical Training (Richard A. Swanson and…

  12. Collaborating with McGregor and ASTD.

    ERIC Educational Resources Information Center

    Franklin, Joan E.; Freeland, D. Kim

    A descriptive study using survey research techniques investigated the degree to which managerial philosophy was related to training and development professionals' acceptance and practice of those adult learning principles that support the collaborative teaching-learning mode. Data were collected from a random sample of 400 members of the American…

  13. Deployable Reflector for Solar Cells

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.

    1982-01-01

    Unfoldable-membrane-reflector concept leads to mobile photovoltaic generators. Hinged containers swing open for deployment, and counterbalance beam swings into position. Folded reflector membranes are unfolded as deployment mast is extended, until stretched out flat.

  14. Deployable robotic woven wire structures and joints for space applications

    NASA Technical Reports Server (NTRS)

    Shahinpoor, MO; Smith, Bradford

    1991-01-01

    Deployable robotic structures are basically expandable and contractable structures that may be transported or launched to space in a compact form. These structures may then be intelligently deployed by suitable actuators. The deployment may also be done by means of either airbag or spring-loaded typed mechanisms. The actuators may be pneumatic, hydraulic, ball-screw type, or electromagnetic. The means to trigger actuation may be on-board EPROMS, programmable logic controllers (PLCs) that trigger actuation based on some input caused by the placement of the structure in the space environment. The actuation may also be performed remotely by suitable remote triggering devices. Several deployable woven wire structures are examined. These woven wire structures possess a unique form of joint, the woven wire joint, which is capable of moving and changing its position and orientation with respect to the structure itself. Due to the highly dynamic and articulate nature of these joints the 3-D structures built using them are uniquely and highly expandable, deployable, and dynamic. The 3-D structure naturally gives rise to a new generation of deployable three-dimensional spatial structures.

  15. Deployment of a Curved Truss

    NASA Technical Reports Server (NTRS)

    Giersch, Louis R.; Knarr, Kevin

    2010-01-01

    Structures capable of deployment into complex, three-dimensional trusses have well known space technology applications such as the support of spacecraft payloads, communications antennas, radar reflectors, and solar concentrators. Such deployable trusses could also be useful in terrestrial applications such as the rapid establishment of structures in military and emergency service situations, in particular with regard to the deployment of enclosures for habitat or storage. To minimize the time required to deploy such an enclosure, a single arch-shaped truss is preferable to multiple straight trusses arranged vertically and horizontally. To further minimize the time required to deploy such an enclosure, a synchronous deployment with a single degree of freedom is also preferable. One method of synchronizing deployment of a truss is the use of a series of gears; this makes the deployment sequence predictable and testable, allows the truss to have a minimal stowage volume, and the deployed structure exhibits the excellent stiffness-to-mass and strength-to-mass ratios characteristic of a truss. A concept for using gears with varying ratios to deploy a truss into a curved shape has been developed and appears to be compatible with both space technology applications as well as potential use in terrestrial applications such as enclosure deployment. As is the case with other deployable trusses, this truss is formed using rigid elements (e.g., composite tubes) along the edges, one set of diagonal elements composed of either cables or folding/hinged rigid members, and the other set of diagonal elements formed by a continuous cable that is tightened by a motor or hand crank in order to deploy the truss. Gears of varying ratios are used to constrain the deployment to a single degree of freedom, making the deployment synchronous, predictable, and repeatable. The relative sizes of the gears and the relative dimensions of the diagonal elements determine the deployed geometry (e

  16. When Loved Ones Get Deployed

    MedlinePlus

    ... I Help a Friend Who Cuts? When Loved Ones Get Deployed KidsHealth > For Teens > When Loved Ones Get Deployed Print A A A Text Size ... for you and your family while your loved one is away. If your parent is deployed, you ...

  17. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Papasin, Richard; Gawdiak, Yuri; Maluf, David A.; Leidich, Christopher; Tran, Peter B.

    2001-01-01

    Remote Tower Sensor Systems (RTSS) are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA (Federal Aviation Administration) and NOAA (National Oceanic Atmospheric Administration). RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to realtime airport conditions and aircraft status.

  18. Self-Deployable Membrane Structures

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M.; Willis, Paul B.; Tan, Seng C.

    2010-01-01

    Currently existing approaches for deployment of large, ultra-lightweight gossamer structures in space rely typically upon electromechanical mechanisms and mechanically expandable or inflatable booms for deployment and to maintain them in a fully deployed, operational configuration. These support structures, with the associated deployment mechanisms, launch restraints, inflation systems, and controls, can comprise more than 90 percent of the total mass budget. In addition, they significantly increase the stowage volume, cost, and complexity. A CHEM (cold hibernated elastic memory) membrane structure without any deployable mechanism and support booms/structure is deployed by using shape memory and elastic recovery. The use of CHEM micro-foams reinforced with carbon nanotubes is considered for thin-membrane structure applications. In this advanced structural concept, the CHEM membrane structure is warmed up to allow packaging and stowing prior to launch, and then cooled to induce hibernation of the internal restoring forces. In space, the membrane remembers its original shape and size when warmed up. After the internal restoring forces deploy the structure, it is then cooled to achieve rigidization. For this type of structure, the solar radiation could be utilized as the heat energy used for deployment and space ambient temperature for rigidization. The overall simplicity of the CHEM self-deployable membrane is one of its greatest assets. In present approaches to space-deployable structures, the stow age and deployment are difficult and challenging, and introduce a significant risk, heavy mass, and high cost. Simple procedures provided by CHEM membrane greatly simplify the overall end-to-end process for designing, fabricating, deploying, and rigidizing large structures. The CHEM membrane avoids the complexities associated with other methods for deploying and rigidizing structures by eliminating deployable booms, deployment mechanisms, and inflation and control systems

  19. Field Deployable DNA analyzer

    SciTech Connect

    Wheeler, E; Christian, A; Marion, J; Sorensen, K; Arroyo, E; Vrankovich, G; Hara, C; Nguyen, C

    2005-02-09

    This report details the feasibility of a field deployable DNA analyzer. Steps for swabbing cells from surfaces and extracting DNA in an automatable way are presented. Since enzymatic amplification reactions are highly sensitive to environmental contamination, sample preparation is a crucial step to make an autonomous deployable instrument. We perform sample clean up and concentration in a flow through packed bed. For small initial samples, whole genome amplification is performed in the packed bed resulting in enough product for subsequent PCR amplification. In addition to DNA, which can be used to identify a subject, protein is also left behind, the analysis of which can be used to determine exposure to certain substances, such as radionuclides. Our preparative step for DNA analysis left behind the protein complement as a waste stream; we determined to learn if the proteins themselves could be analyzed in a fieldable device. We successfully developed a two-step lateral flow assay for protein analysis and demonstrate a proof of principle assay.

  20. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin

    2006-01-01

    Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.

  1. Deployable Wireless Camera Penetrators

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  2. Deploying the Mental Eye.

    PubMed

    Koenderink, Jan; van Doorn, Andrea; Wagemans, Johan

    2015-10-01

    Three observers performed a task designed to quantify their "pictorial relief" in visual awareness for a photograph of a piece of sculpture. In separate sessions, they were instructed to assume one of two "mental viewpoints." The main objective was to investigate whether human observers have such command. All three observers could redirect their "mental view direction" by up to 20°. These observers experience "paradoxical monocular" stereopsis, whereas a sizable fraction of the population does not. Moreover, they had some experience in assuming various "viewing modes." Whereas one cannot generalize to the population at large, these findings at least prove that it is possible to direct the mental viewpoint actively. This is of importance to the visual arts. For instance, academic drawings require one to be simultaneously aware of a "viewing" (for the drawing) and an "illumination direction" (for the shading). Being able to mentally deploy various vantage points is a crucial step from the "visual field" to the "visual space." PMID:27648221

  3. Deployable Heat Pipe Radiator

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    A 1.2- by 1.8-m variable conductance heat pipe radiator was designed, built, and tested. The radiator has deployment capability and can passively control Freon-21 fluid loop temperatures under varying loads and environments. It consists of six grooved variable conductance heat pipes attached to a 0.032-in. aluminum panel. Heat is supplied to the radiator via a fluid header or a single-fluid flexible heat pipe header. The heat pipe header is an artery design that has a flexible section capable of bending up to 90 degrees. Radiator loads as high as 850 watts were successfully tested. Over a load variation of 200 watts, the outlet temperature of the Freon-21 fluid varied by 7 F. An alternate control system was also investigated which used a variable conductance heat pipe header attached to the heat pipe radiator panel.

  4. Complex Deployed Responsive Service

    NASA Astrophysics Data System (ADS)

    Parry, Glenn; McLening, Marc; Caldwell, Nigel; Thompson, Rob

    A pizza restaurant must provide product, in the form of the food and drink, and service in the way this is delivered to the customer. Providing this has distinct operational challenges, but what if the restaurant also provides a home delivery service? The service becomes deployed as the customer is no-longer co-located with the production area. The business challenge is complicated as service needs to be delivered within a geographic region, to time or the pizza will be cold, and within a cost that is not ­prohibitive. It must also be responsive to short term demand; needing to balance the number of staff it has available to undertake deliveries against a forecast of demand.

  5. Deployable Pipe-Z

    NASA Astrophysics Data System (ADS)

    Zawidzki, Machi

    2016-10-01

    This paper presents a concept of deployable Pipe-Z (dPZ): a modular structural system which takes advantage of the robustness of rigid-panel mechanism and allows to create free-form links which are also reconfigurable and deployable. The concept presented can be applied for building habitats and infrastructures for human exploration of oceans and outer space. dPZ structures can adapt to changing requirements e.g. mission objectives, crew condition and technological developments. Furthermore, such lightweight and adaptable structural concept can assist in sustainable exploration development. After brief introduction, the concept of Pipe-Z (PZ) is presented. Next, the reconfigurability of PZ is explained and illustrated with continuous and collision-free transition from a PZ forming a Trefoil knot to a Figure-eight knot. The following sections introduce, explain and illustrate the folding mechanism of a single foldable Pipe-Z module (fPZM) and entire dPZ structure. The latter is illustrated with asynchronous (delayed) unfolding of a relatively complex Unknot. Several applications of PZ are suggested, namely for underwater and deep-space and surface habitats, for permanent, but in particular, temporary or emergency passages. As an example, a scenario of a failure of one of the modules of the International Space Station is presented where a rigid structure of 40 fPZMs bypasses the "dead link". A low-fidelity prototype of a 6-module octagonal dPZ is presented; several folding schemes including concentric toric rings are demonstrated. Practical issues of pressurization and packing are briefly discussed.

  6. Remote robotic countermine systems

    NASA Astrophysics Data System (ADS)

    Wells, Peter

    2010-04-01

    QinetiQ North America (QNA) has approximately 27 years experience in the mine/countermine mission area. Our expertise covers mine development, detection, and neutralization and has always been intertwined with deployment of remote robotic systems. Our countermine payload systems have been used to detect limpet mines on ship hulls, antiassault mines in shallow water and littoral zones and currently for clearance and render safe of land-based routes. In our talk, we will address the challenges encountered in addressing the ongoing countermine mission over a diverse range of operational scenarios, environmental conditions and strategic priorities.

  7. Introduction to deployable recovery systems

    SciTech Connect

    Meyer, J.

    1985-08-01

    This report provides an introduction to deployable recovery systems for persons with little or no background in parachutes but who are knowledgeable in aerodynamics. A historical review of parachute development is given along with a description of the basic components of most deployable recovery systems. Descriptions are given of the function of each component and of problems that occur if a component fails to perform adequately. Models are presented for deployable recovery systems. Possible directions for future work are suggested in the summary.

  8. Deployable Fresnel Rings

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.

    2014-01-01

    Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the

  9. Brazil's remote sensing activities in the Eighties

    NASA Technical Reports Server (NTRS)

    Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.

    1985-01-01

    Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.

  10. Deploying the Mental Eye

    PubMed Central

    Koenderink, Jan; van Doorn, Andrea

    2015-01-01

    Three observers performed a task designed to quantify their “pictorial relief” in visual awareness for a photograph of a piece of sculpture. In separate sessions, they were instructed to assume one of two “mental viewpoints.” The main objective was to investigate whether human observers have such command. All three observers could redirect their “mental view direction” by up to 20°. These observers experience “paradoxical monocular” stereopsis, whereas a sizable fraction of the population does not. Moreover, they had some experience in assuming various “viewing modes.” Whereas one cannot generalize to the population at large, these findings at least prove that it is possible to direct the mental viewpoint actively. This is of importance to the visual arts. For instance, academic drawings require one to be simultaneously aware of a “viewing” (for the drawing) and an “illumination direction” (for the shading). Being able to mentally deploy various vantage points is a crucial step from the “visual field” to the “visual space.” PMID:27648221

  11. Deploying the Mental Eye

    PubMed Central

    Koenderink, Jan; van Doorn, Andrea

    2015-01-01

    Three observers performed a task designed to quantify their “pictorial relief” in visual awareness for a photograph of a piece of sculpture. In separate sessions, they were instructed to assume one of two “mental viewpoints.” The main objective was to investigate whether human observers have such command. All three observers could redirect their “mental view direction” by up to 20°. These observers experience “paradoxical monocular” stereopsis, whereas a sizable fraction of the population does not. Moreover, they had some experience in assuming various “viewing modes.” Whereas one cannot generalize to the population at large, these findings at least prove that it is possible to direct the mental viewpoint actively. This is of importance to the visual arts. For instance, academic drawings require one to be simultaneously aware of a “viewing” (for the drawing) and an “illumination direction” (for the shading). Being able to mentally deploy various vantage points is a crucial step from the “visual field” to the “visual space.”

  12. Two Concepts for Deployable Trusses

    NASA Technical Reports Server (NTRS)

    Renfro, John W.

    2010-01-01

    Two concepts that could be applied separately or together have been suggested to enhance the utility of deployable truss structures. The concepts were intended originally for application to a truss structure to be folded for compact stowage during transport and subsequently deployed in outer space. The concepts may also be applicable, with some limitations, to deployable truss structures designed to be used on Earth. The first concept involves a combination of features that would help to maximize reliability of a structure while minimizing its overall mass, the complexity of its deployment system, and the expenditure of energy for deployment. The deployment system would be integrated into the truss: some of the truss members would contain folding/unfolding-detent mechanisms similar to those in umbrellas; other truss members would contain shape-memory-alloy (SMA) coil actuators (see Figure 1). Upon exposure to sunlight, the SMA actuators would be heated above their transition temperature, causing them to extend to their deployment lengths. The extension of the actuators would cause the structure to unfold and, upon completion of unfolding, the umbrellalike mechanisms would lock the unfolded truss in the fully deployed configuration. The use of solar heating to drive deployment would eliminate the need to carry a deployment power source. The actuation scheme would offer high reliability in that the truss geometry would be such that deployment could be completed even if all actuators were not functioning. Of course, in designing for operation in normal Earth gravitation, it would be necessary to ensure that the SMA actuators could apply forces large enough to overcome the deploymentresisting forces attributable to the weights of the members. The second concept is that of an improved design for the joints in folding members. Before describing this design,

  13. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  14. Field deployable pushbroom hyperspectral imagining polarimeter

    NASA Astrophysics Data System (ADS)

    Lowenstern, Mariano; Kudenov, Michael W.

    2016-05-01

    Hyperspectral polarimetry is demonstrated to measure the spectrum and polarization state of a scene. This information is important to identify material properties for applications such as remote sensing and agricultural monitoring, among others. We report the design and performance of a ruggedized, field deployable Hyperspectral Polarimeter Imaging (HPI) system over the VIS to NIR range (450-800 nm). An entrance slit was used to sample a scene in a pushbroom scanning mode, sampling over a 30 degree vertical by 110 degree horizontal field of view. Furthermore, athermalized achromatic retarders were implemented in a channel spectrum generator to measure the linear Stoke vectors. This paper reports the mechanical and optical layout of the system and its peripherals. We present preliminary spectral and polarimetry calibration techniques as well as testing results in field environments.

  15. Deployment simulation of a deployable reflector for earth science application

    NASA Astrophysics Data System (ADS)

    Wang, Xiaokai; Fang, Houfei; Cai, Bei; Ma, Xiaofei

    2015-10-01

    A novel mission concept namely NEXRAD-In-Space (NIS) has been developed for monitoring hurricanes, cyclones and other severe storms from a geostationary orbit. It requires a space deployable 35-meter diameter Ka-band (35 GHz) reflector. NIS can measure hurricane precipitation intensity, dynamics and its life cycle. These information is necessary for predicting the track, intensity, rain rate and hurricane-induced floods. To meet the requirements of the radar system, a Membrane Shell Reflector Segment (MSRS) reflector technology has been developed and several technologies have been evaluated. However, the deployment analysis of this large size and high-precision reflector has not been investigated. For a pre-studies, a scaled tetrahedral truss reflector with spring driving deployment system has been made and tested, deployment dynamics analysis of this scaled reflector has been performed using ADAMS to understand its deployment dynamic behaviors. Eliminating the redundant constraints in the reflector system with a large number of moving parts is a challenging issue. A primitive joint and flexible struts were introduced to the analytical model and they can effectively eliminate over constraints of the model. By using a high-speed camera and a force transducer, a deployment experiment of a single-bay tetrahedral module has been conducted. With the tested results, an optimization process has been performed by using the parameter optimization module of ADAMS to obtain the parameters of the analytical model. These parameters were incorporated to the analytical model of the whole reflector. It is observed from the analysis results that the deployment process of the reflector with a fixed boundary experiences three stages. These stages are rapid deployment stage, slow deployment stage and impact stage. The insight of the force peak distributions of the reflector can help the optimization design of the structure.

  16. Modular VO oriented Java EE service deployer

    NASA Astrophysics Data System (ADS)

    Molinaro, Marco; Cepparo, Francesco; De Marco, Marco; Knapic, Cristina; Apollo, Pietro; Smareglia, Riccardo

    2014-07-01

    development of the new system using Java Enterprise technologies can better benefit from existing libraries to build up the single tokens implementing the IVOA standards. Each component can be built from single standards and each deployed service (i.e. service components instantiations) can consume the other components' exposed methods and services without the need of homogenizing them in dedicated libraries. Scalability can be achieved in an easier way by deploying components or sets of services on a distributed environment and using JNDI (Java Naming and Directory Interface) and RMI (Remote Method Invocation) technologies. Single service configuration will not be significantly different from the VO-Dance solution given that Java class instantiation that benefited from Java Reflection will only be moved to Java EJB pooling (and not, e.g. embedded in bundles for subsequent deployment).

  17. Surface Accuracy Measurement Sensor for Deployable Reflector Antennas (SAMS DRA)

    NASA Technical Reports Server (NTRS)

    Neiswander, R. S.

    1980-01-01

    Specifications, system configurations, and concept tests for surface measurement sensors for deployable reflector antennas are presented. Two approaches toward the optical measurement of remote target displacements are discussed: optical ranging, in which the basic measurement is target-to-sensor range; and in particular, optical angular sensing, in which the principle measurements are of target angular displacements lateral to the line of sight. Four representative space antennas are examined.

  18. Remote Sensing.

    ERIC Educational Resources Information Center

    Williams, Richard S., Jr.; Southworth, C. Scott

    1983-01-01

    The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)

  19. High acceleration cable deployment system

    NASA Technical Reports Server (NTRS)

    Canning, T. N.; Barns, C. E.; Murphy, J. P.; Gin, B.; King, R. W. (Inventor)

    1981-01-01

    A deployment system that will safely pay one cable from a ballistic forebody when the forebody is separated from an afterbody (to which the cable is secured and when the separation is marked by high acceleration and velocity) is described.

  20. SMAP Launch and Deployment Sequence

    NASA Video Gallery

    This video combines file footage of a Delta II rocket and computer animation to depict the launch and deployment of NASA's Soil Moisture Active Passive satellite. SMAP is scheduled to launch on Nov...

  1. Rapid deployment intrusion detection system

    SciTech Connect

    Graham, R.H.

    1997-08-01

    A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs.

  2. Deployable antenna phase A study

    NASA Technical Reports Server (NTRS)

    Schultz, J.; Bernstein, J.; Fischer, G.; Jacobson, G.; Kadar, I.; Marshall, R.; Pflugel, G.; Valentine, J.

    1979-01-01

    Applications for large deployable antennas were re-examined, flight demonstration objectives were defined, the flight article (antenna) was preliminarily designed, and the flight program and ground development program, including the support equipment, were defined for a proposed space transportation system flight experiment to demonstrate a large (50 to 200 meter) deployable antenna system. Tasks described include: (1) performance requirements analysis; (2) system design and definition; (3) orbital operations analysis; and (4) programmatic analysis.

  3. The THOSE remote interface

    NASA Astrophysics Data System (ADS)

    Klawon, Kevin; Gold, Josh; Bachman, Kristen

    2013-05-01

    The DIA, in conjunction with the Army Research Lab (ARL), wants to create an Unmanned Ground Sensor (UGS) controller that is (a) interoperable across all controller platforms, (b) capable of easily adding new sensors, radios, and processes and (c) backward compatible with existing UGS systems. To achieve this, a Terra Harvest controller was created that used Java JRE 1.6 and an Open Services Gateway initiative (OSGi) platform, named Terra Harvest Open Software Environment (THOSE). OSGi is an extensible framework that provides a modularized environment for deploying functionality in "bundles". These bundles can publish, discover, and share services available from other external bundles or bundles provided by the controller core. With the addition of a web GUI used for interacting with THOSE, a natural step was then to create a common remote interface that allows 3rd party real-time interaction with the controller. This paper provides an overview of the THOSE system and its components as well as a description of the architectural structure of the remote interface, highlighting the interactions occurring between the controller and the remote interface and its role in providing a positive user experience for managing UGSS functions.

  4. Deployment-related Respiratory Issues.

    PubMed

    Morris, Michael J; Rawlins, Frederic A; Forbes, Damon A; Skabelund, Andrew J; Lucero, Pedro F

    2016-01-01

    Military deployment to Southwest Asia since 2003 in support of Operations Enduring Freedom/Iraqi Freedom/New Dawn has presented unique challenges from a pulmonary perspective. Various airborne hazards in the deployed environment include suspended geologic dusts, burn pit smoke, vehicle exhaust emissions, industrial air pollution, and isolated exposure incidents. These exposures may give rise to both acute respiratory symptoms and in some instances development of chronic lung disease. While increased respiratory symptoms during deployment are well documented, there is limited data on whether inhalation of airborne particulate matter is causally related to an increase in either common or unique pulmonary diseases. While disease processes such as acute eosinophilic pneumonia and exacerbation of preexisting asthma have been adequately documented, there is significant controversy surrounding the potential effects of deployment exposures and development of rare pulmonary disorders such as constrictive bronchiolitis. The role of smoking and related disorders has yet to be defined. This article presents the current evidence for deployment-related respiratory symptoms and ongoing Department of Defense studies. Further, it also provides general recommendations for evaluating pulmonary health in the deployed military population. PMID:27215888

  5. Deployment-related Respiratory Issues.

    PubMed

    Morris, Michael J; Rawlins, Frederic A; Forbes, Damon A; Skabelund, Andrew J; Lucero, Pedro F

    2016-01-01

    Military deployment to Southwest Asia since 2003 in support of Operations Enduring Freedom/Iraqi Freedom/New Dawn has presented unique challenges from a pulmonary perspective. Various airborne hazards in the deployed environment include suspended geologic dusts, burn pit smoke, vehicle exhaust emissions, industrial air pollution, and isolated exposure incidents. These exposures may give rise to both acute respiratory symptoms and in some instances development of chronic lung disease. While increased respiratory symptoms during deployment are well documented, there is limited data on whether inhalation of airborne particulate matter is causally related to an increase in either common or unique pulmonary diseases. While disease processes such as acute eosinophilic pneumonia and exacerbation of preexisting asthma have been adequately documented, there is significant controversy surrounding the potential effects of deployment exposures and development of rare pulmonary disorders such as constrictive bronchiolitis. The role of smoking and related disorders has yet to be defined. This article presents the current evidence for deployment-related respiratory symptoms and ongoing Department of Defense studies. Further, it also provides general recommendations for evaluating pulmonary health in the deployed military population.

  6. Deployment of an Alternative Closure Cover and Monitoring System at the Mixed Waste Disposal Unit U-3ax/bl at the Nevada Test Site

    SciTech Connect

    Levitt, D.G.; Fitzmaurice, T.M.

    2001-02-01

    In October 2000, final closure was initiated of U-3ax/bl, a mixed waste disposal unit at the Nevada Test Site (NTS). The application of approximately 30 cm of topsoil, composed of compacted native alluvium onto an operational cover, seeding of the topsoil, installation of soil water content sensors within the cover, and deployment of a drainage lysimeter facility immediately adjacent to the disposal unit initiated closure. This closure is unique in that it required the involvement of several U.S. Department of Energy (DOE) Environmental Management (EM) groups: Waste Management (WM), Environmental Restoration (ER), and Technology Development (TD). Initial site characterization of the disposal unit was conducted by WM. Regulatory approval for closure of the disposal unit was obtained by ER, closure of the disposal unit was conducted by ER, and deployment of the drainage lysimeter facility was conducted by WM and ER, with funding provided by the Accelerated Site Technology Deployment ( ASTD) program, administered under TD. In addition, this closure is unique in that a monolayer closure cover, also known as an evapotranspiration (ET) cover, consisting of native alluvium, received regulatory approval instead of a traditional Resource Conservation and Recovery Act (RCRA) multi-layered cover. Recent studies indicate that in the arid southwestern United States, monolayer covers may be more effective at isolating waste than layered covers because of the tendency of clay layers to desiccate and crack, and subsequently develop preferential pathways. The lysimeter facility deployed immediately adjacent to the closure cover consists of eight drainage lysimeters with three surface treatments: two were left bare; two were revegetated with native species; two were allowed to revegetate with invader species; and two are reserved for future studies. The lysimeters are constructed such that any drainage through the bottoms of the lysimeters can be measured. Sensors installed in the

  7. Adaptable Deployable Entry and Placement Technology (ADEPT)

    NASA Video Gallery

    The Adaptable, Deployable Entry Placement Technology (ADEPT) Project will test and demonstrate a deployable aeroshell concept as a viable thermal protection system for entry, descent, and landing o...

  8. Centrifugal regulator for control of deployment rates of deployable elements

    NASA Technical Reports Server (NTRS)

    Vermalle, J. C.

    1980-01-01

    The requirements, design, and performance of a centrifugal regulator aimed at limiting deployment rates of deployable elements are discussed. The overall mechanism is comprised of four distinct functional parts in a machined housing: (1) the centrifugal brake device, which checks the payout of a deployment cable; (2) the reducing gear, which produces the spin rate necesary for the braking device; (3) the payout device, which allows the unwinding of the cable; and (4) the locking device, which prevents untimely unwinding. The centrifugal regulator is set into operation by a threshold tension of the cable which unlocks the mechanism and allows unwinding. The pulley of the windout device drives the centrifugal brake with the help of the reducing gear. The centrifugal force pushes aside weights that produce friction of the studs in a cylindrical housing. The mechanism behaved well at qualification temperature and vibrations.

  9. Newberry Seismic Deployment Fieldwork Report

    SciTech Connect

    Wang, J; Templeton, D C

    2012-03-21

    This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquake detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.

  10. View of the Palapa-B and the Shuttle Challenger after deployment

    NASA Technical Reports Server (NTRS)

    1984-01-01

    View of the Palapa-B and the Shuttle Challenger begining their separation after deployment of the communications satellite. This view is from the aft windows on the flight deck. The Shuttle pallet satellite (SPAS-01A) is partly visible at lower center. The Canadian-built remote manipulator system (RMS) arm is in its stowed position at lower right. Both shields for the Palapa and the Westar VI satellite were opened for the deployment.

  11. Remote Control

    ERIC Educational Resources Information Center

    Bolch, Matt

    2008-01-01

    Imagine school district staff inputting school data and sharing it in real time, managing teacher absences and arranging substitutes from the comfort of home, or deploying IT personnel to the right site at the right time to tackle the highest-priority jobs first. The concept of managing applications from anywhere with a network connection, known…

  12. Sample acquisition and instrument deployment

    NASA Technical Reports Server (NTRS)

    Boyd, Robert C.

    1995-01-01

    Progress is reported in developing the Sample Acquisition and Instrument Deployment (SAID) system, a robotic system for deploying science instruments and acquiring samples for analysis. The system is a conventional four degree of freedom manipulator 2 meters in length. A baseline design has been achieved through analysis and trade studies. The design considers environmental operating conditions on the surface of Mars, as well as volume constraints on proposed Mars landers. Control issues have also been studied, and simulations of joint and tip movements have been performed. The systems have been fabricated and tested in environmental chambers, as well as soil testing and robotic control testing.

  13. Remote viewing.

    PubMed

    Scott, C

    1988-04-15

    Remote viewing is the supposed faculty which enables a percipient, sited in a closed room, to describe the perceptions of a remote agent visiting an unknown target site. To provide convincing demonstration of such a faculty poses a range of experimental and practical problems, especially if feedback to the percipient is allowed after each trial. The precautions needed are elaborate and troublesome; many potential loopholes have to be plugged and there will be strong temptations to relax standards, requiring exceptional discipline and dedication by the experimenters. Most reports of remote viewing experiments are rather superficial and do not permit assessment of the experimental procedures with confidence; in many cases there is clear evidence of particular loopholes left unclosed. Any serious appraisal of the evidence would have to go beyond the reports. Meanwhile the published evidence is far from compelling, and certainly insufficient to justify overthrow of well-established scientific principles.

  14. Digface characterization test plan (remote testing)

    SciTech Connect

    Croft, K.; Hyde, R.; Allen, S.

    1993-08-01

    The objective of the Digface Characterization (DFC) Remote Testing project is to remotely deploy a sensor head (Mini-Lab) across a digface to determine if it can characterize the contents below the surface. The purpose of this project is to provide a robotics technology that allows removal of workers from hazards, increases speed of operations, and reduces life cycle costs compared to alternate methods and technologies. The Buried Waste Integrated Demonstration (BWID) is funding the demonstration, testing, and evaluation of DFC. This document describes the test plan for the DFC remote deployment demonstration for the BWID. The purposes of the test plan are to establish test parameters so that the demonstration results are deemed useful and usable and perform the demonstration in a safe manner and within all regulatory requirements.

  15. SATWG networked quality function deployment

    NASA Technical Reports Server (NTRS)

    Brown, Don

    1992-01-01

    The initiative of this work is to develop a cooperative process for continual evolution of an integrated, time phased avionics technology plan that involves customers, technologists, developers, and managers. This will be accomplished by demonstrating a computer network technology to augment the Quality Function Deployment (QFD). All results are presented in viewgraph format.

  16. Lightweight, Self-Deployable Wheels

    NASA Technical Reports Server (NTRS)

    Chmielewski, Artur; Sokolowski, Witold; Rand, Peter

    2003-01-01

    Ultra-lightweight, self-deployable wheels made of polymer foams have been demonstrated. These wheels are an addition to the roster of cold hibernated elastic memory (CHEM) structural applications. Intended originally for use on nanorovers (very small planetary-exploration robotic vehicles), CHEM wheels could also be used for many commercial applications, such as in toys. The CHEM concept was reported in "Cold Hibernated Elastic Memory (CHEM) Expandable Structures" (NPO-20394), NASA Tech Briefs, Vol. 23, No. 2 (February 1999), page 56. To recapitulate: A CHEM structure is fabricated from a shape-memory polymer (SMP) foam. The structure is compressed to a very small volume while in its rubbery state above its glass-transition temperature (Tg). Once compressed, the structure can be cooled below Tg to its glassy state. As long as the temperature remains deploy) to its original size and shape. Once thus deployed, the CHEM structure can be rigidified by cooling below Tg to the glassy state. The structure could be subsequently reheated above Tg and recompacted. The compaction/deployment/rigidification cycle could be repeated as many times as needed.

  17. Optimal deployment of solar index

    SciTech Connect

    Croucher, Matt

    2010-11-15

    There is a growing trend, generally caused by state-specific renewable portfolio standards, to increase the importance of renewable electricity generation within generation portfolios. While RPS assist with determining the composition of generation they do not, for the most part, dictate the location of generation. Using data from various public sources, the authors create an optimal index for solar deployment. (author)

  18. Military Deployments: Evaluating Teacher Knowledge

    ERIC Educational Resources Information Center

    Thomas, Richard M.

    2011-01-01

    This mixed method study examined the possible influence of a military deployment online tutorial on teacher knowledge. DoDEA and public school teachers were the two groups used for the study. From this exploratory study, the researcher also wanted to explore if teachers would find professional development provided in an online tutorial relevant…

  19. Geometrical deployment for braided stent.

    PubMed

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Yilmaz, Hasan; Farhat, Mohamed; Erceg, Gorislav; Lovblad, Karl-Olof; Vargas, Maria Isabel; Kulcsar, Zsolt; Pereira, Vitor Mendes

    2016-05-01

    The prediction of flow diverter stent (FDS) implantation for the treatment of intracranial aneurysms (IAs) is being increasingly required for hemodynamic simulations and procedural planning. In this paper, a deployment model was developed based on geometrical properties of braided stents. The proposed mathematical description is first applied on idealized toroidal vessels demonstrating the stent shortening in curved vessels. It is subsequently generalized to patient specific vasculature predicting the position of the filaments along with the length and local porosity of the stent. In parallel, in-vitro and in-vivo FDS deployments were measured by contrast-enhanced cone beam CT (CBCT) in idealized and patient-specific geometries. These measurements showed a very good qualitative and quantitative agreement with the virtual deployments and provided experimental validations of the underlying geometrical assumptions. In particular, they highlighted the importance of the stent radius assessment in the accuracy of the deployment prediction. Thanks to its low computational cost, the proposed model is potentially implementable in clinical practice providing critical information for patient safety and treatment outcome assessment. PMID:26891065

  20. Packaging, deployment, and panel design concepts for a truss-stiffened 7-panel precision deployable reflector with feed boom

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.

    1993-01-01

    A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.

  1. Remote Sensing

    ERIC Educational Resources Information Center

    Williams, Richard S., Jr.; Kover, Allan W.

    1978-01-01

    The steady growth of the Landsat image data base continues to make this kind of remotely sensed data second only to aerial photographs in use by geoscientists who employ image data in their research. Article reviews data uses, meetings and symposia, publications, problems, and future trends. (Author/MA)

  2. SMA applications in an innovative multishot deployment mechanism

    NASA Technical Reports Server (NTRS)

    Stella, D.; Pedrazzoli, G.; Secci, G.; Portelli, C.

    1991-01-01

    An innovative Deployment and Retraction hinge Mechanism (DARM) in the frame of a technological program is examined. The mechanism includes two restraint/release devices, which enable it to be stable in its stowed or deployed position while sustaining all associated loads, and to carry its payload by remote command. The main characteristics of the DARM are as follows: deployment and retraction movements are spring actuated; the available amount of functional sequences is almost unlimited; and no use of electrical motors is made. These features were accomplished by: the application of a special kinematic scheme to the mechanical connection between the spring motor and the swivel head arm; and the use of shape memory alloys (SMA) actuators for both release and spring recharge functions. DARM is thus a mechanism which can find many applications in the general space scenario of in-orbit maintenance and servicing. In such a frame, the DARM typical concept, which has a design close to very simple one-shot deployment mechanisms, has a good chance to replace existing analog machines. Potential items that could be moved by DARM are: booms for satellite instruments; antenna reflector tips; entire antenna reflectors; and solar panels.

  3. Deployment of the Syncom IV (Leasat-2) satellite

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Deployment of the Syncom IV (Leasat-2) satellite by the STS 41-D crew. From the extreme aft portion of Discovery's cargo bay the Syncom IV satellite begins to separate, like a frisbee, from the shuttle orbiter. Other payloads and/or their support hardware in the payload bay (foreground to aft) are the OAST-1 package and the protective shield for the now vacated SBS-4 satellite. The Canadian-built remote manipulator system (RMS) arm rests at right. The earth's horizon can be seen at the top of the frame.

  4. Arusha Rover Deployable Medical Workstation

    NASA Technical Reports Server (NTRS)

    Boswell, Tyrone; Hopson, Sonya; Marzette, Russell; Monroe, Gilena; Mustafa, Ruqayyah

    2014-01-01

    The NSBE Arusha rover concept offers a means of human transport and habitation during long-term exploration missions on the moon. This conceptual rover calls for the availability of medical supplies and equipment for crew members in order to aid in mission success. This paper addresses the need for a dedicated medical work station aboard the Arusha rover. The project team investigated multiple options for implementing a feasible deployable station to address both the medical and workstation layout needs of the rover and crew. Based on layout specifications and medical workstation requirements, the team has proposed a deployable workstation concept that can be accommodated within the volumetric constraints of the Arusha rover spacecraft

  5. Rapidly deployable emergency communication system

    DOEpatents

    Gladden, Charles A.; Parelman, Martin H.

    1979-01-01

    A highly versatile, highly portable emergency communication system which permits deployment in a very short time to cover both wide areas and distant isolated areas depending upon mission requirements. The system employs a plurality of lightweight, fully self-contained repeaters which are deployed within the mission area to provide communication between field teams, and between each field team and a mobile communication control center. Each repeater contains a microcomputer controller, the program for which may be changed from the control center by the transmission of digital data within the audible range (300-3,000 Hz). Repeaters are accessed by portable/mobile transceivers, other repeaters, and the control center through the transmission and recognition of digital data code words in the subaudible range.

  6. Deploying expert systems in Ada

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel; Allen, Bradley P.

    1989-01-01

    As the Department of Defense Ada mandate begins to be enforced actively, interest in deploying expert systems in Ada has increased. A prototype Ada based expert system tool is introduced called ART/Ada. This prototype was built to support research into the language and operational issues of expert systems in Ada. ART/Ada allows applications of a conventional expert system tool called ART-IM (Automated Reasoning Tool for Information Management) to be deployed in various Ada environments with efficient use of time and space. ART-IM, a C-based expert system tool, is used to generate Ada source code which is compiled and linked with an Ada base inference engine to produce an Ada executable image. ART/Ada will be used to implement several prototype expert systems for the Space Station Freedom Program testbeds.

  7. Expected Deployment Dynamics of Proseds

    NASA Technical Reports Server (NTRS)

    Lorenzini, E. C.; Cosmo, M. L.; Welzyn, K.

    2003-01-01

    The control law for The Propulsive Small Expendable Deployment System (ProSEDS) deployment is a modification of the control routine that was successfully used in the flight of SEDS-II. Unlike SEDS, the tether of ProSEDS consists of different sections with different mechanical characteristics. A non-linear control trajectory in phase-space (i.e., the reference profile) is fed forward to the controller to guide the satellite, at the tether tip, to the desired final state under nominal conditions and no external perturbations. A linear feedback control is applied by the brake to keep the actual trajectory as close as possible to the reference. The paper also shows the results of simulations of deployment dynamics with and without noise. The control law has thus far been developed and tested on the ground for the original ProSEDS tether configuration of 15 km. A new reference will have to be designed and tested for other tether configurations.

  8. RSG Deployment Case Testing Results

    SciTech Connect

    Owsley, Stanley L.; Dodson, Michael G.; Hatchell, Brian K.; Seim, Thomas A.; Alexander, David L.; Hawthorne, Woodrow T.

    2005-09-01

    The RSG deployment case design is centered on taking the RSG system and producing a transport case that houses the RSG in a safe and controlled manner for transport. The transport case was driven by two conflicting constraints, first that the case be as light as possible, and second that it meet a stringent list of Military Specified requirements. The design team worked to extract every bit of weight from the design while striving to meet the rigorous Mil-Spec constraints. In the end compromises were made primarily on the specification side to control the overall weight of the transport case. This report outlines the case testing results.

  9. Disposable telemetry cable deployment system

    DOEpatents

    Holcomb, David Joseph

    2000-01-01

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  10. Deployable Molecular Detection of Arboviruses in the Australian Outback.

    PubMed

    Inglis, Timothy J J; Bradbury, Richard S; McInnes, Russell L; Frances, Stephen P; Merritt, Adam J; Levy, Avram; Nicholson, Jay; Neville, Peter J; Lindsay, Michael; Smith, David W

    2016-09-01

    The most common causes of human infection from the arboviruses that are endemic in Australia are the arthritogenic alphaviruses: Ross River virus (RRV) and Barmah Forest virus (BFV). The most serious infections are caused by the neurotropic flaviviruses, Murray Valley encephalitis virus (MVEV) and the Kunjin subtype of West Nile virus. The greatest individual risk of arbovirus infection occurs in tropical/subtropical northern Australia because of the warm, wet summer conditions from December to June, where conventional arbovirus surveillance is difficult due to a combination of low population density, large distances between population centers, poor roads, and seasonal flooding. Furthermore, virus detection requires samples to be sent to Perth up to 2,000 km away for definitive analysis, causing delays of days to weeks before test results are available and public health interventions can be started. We deployed a portable molecular biology laboratory for remote field detection of endemic arboviruses in northern Queensland, then in tropical Western Australia and detected BFV, MVEV, and RRV RNA by polymerase chain reaction (PCR) assays of extracts from mosquitoes trapped in Queensland. We then used a field-portable compact real-time thermocycler for the samples collected in the Kimberley region of Western Australia. Real-time field PCR assays enabled concurrent endemic arbovirus distribution mapping in outback Queensland and Western Australia. Our deployable laboratory method provides a concept of operations for future remote area arbovirus surveillance. PMID:27402516

  11. Deployable Molecular Detection of Arboviruses in the Australian Outback.

    PubMed

    Inglis, Timothy J J; Bradbury, Richard S; McInnes, Russell L; Frances, Stephen P; Merritt, Adam J; Levy, Avram; Nicholson, Jay; Neville, Peter J; Lindsay, Michael; Smith, David W

    2016-09-01

    The most common causes of human infection from the arboviruses that are endemic in Australia are the arthritogenic alphaviruses: Ross River virus (RRV) and Barmah Forest virus (BFV). The most serious infections are caused by the neurotropic flaviviruses, Murray Valley encephalitis virus (MVEV) and the Kunjin subtype of West Nile virus. The greatest individual risk of arbovirus infection occurs in tropical/subtropical northern Australia because of the warm, wet summer conditions from December to June, where conventional arbovirus surveillance is difficult due to a combination of low population density, large distances between population centers, poor roads, and seasonal flooding. Furthermore, virus detection requires samples to be sent to Perth up to 2,000 km away for definitive analysis, causing delays of days to weeks before test results are available and public health interventions can be started. We deployed a portable molecular biology laboratory for remote field detection of endemic arboviruses in northern Queensland, then in tropical Western Australia and detected BFV, MVEV, and RRV RNA by polymerase chain reaction (PCR) assays of extracts from mosquitoes trapped in Queensland. We then used a field-portable compact real-time thermocycler for the samples collected in the Kimberley region of Western Australia. Real-time field PCR assays enabled concurrent endemic arbovirus distribution mapping in outback Queensland and Western Australia. Our deployable laboratory method provides a concept of operations for future remote area arbovirus surveillance.

  12. Deployment Mechanism for Thermal Pointing System

    NASA Technical Reports Server (NTRS)

    Koski, Kraig

    2014-01-01

    The Deployment Mechanism for the Total and Spectral Solar Irradiance Sensor (TSIS) is responsible for bringing the Thermal Pointing System (TPS) from its stowed, launch locked position to the on-orbit deployed, operational position. The Deployment Mechanism also provides structural support for the TSIS optical bench and two-axis gimbal. An engineering model of the Deployment Mechanism has been environmentally qualified and life tested. This paper will give an overview of the TSIS mission and then describe the development, design, and testing of the Deployment Mechanism.

  13. CHEM-Based Self-Deploying Planetary Storage Tanks

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold; Bhattacharya, Kaushik

    2007-01-01

    A document proposes self-deploying storage tanks, based on the cold elastic hibernated memory (CHEM) concept, to be used on remote planets. The CHEM concept, described in previous NASA Tech Briefs articles, involves the use of open-cell shape-memory-polymer (SMP) foam sandwich structures to make lightweight, space-deployable structures that can be compressed for storage and can later be expanded, then rigidified for use. A tank according to the proposal would be made of multiple SMP layers (of which at least one could be an SMP foam). The tank would be fabricated at full size in the rigid, deployed condition at ambient temperature, the SMP material(s) having been chosen so that ambient temperature would be below the SMP glass-transition temperature (T(sub g)). The tank would then be warmed to a temperature above T(sub g), where it would be compacted and packaged, then cooled to below T(sub g) and kept there during launch and transport to a distant planet. At the assigned position on the planet, the compacted tank would be heated above T(sub g) by the solar radiation making it rebound to its original size and shape. Finally, the tank would be rigidified through natural cooling to below T(sub g) in the planetary ambient environment.

  14. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being positioned for release from the Space Shuttle orbiter by the Remote Manipulator System (RMS). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. Pediatric diseases and operational deployments.

    PubMed

    Pearn, J

    2000-04-01

    Many nations now export military health as a proactive arm of the nation's contribution to the maintenance of international peace in trouble regions of the world; and all nations are called upon from time to time in emergency and disaster situations to help out in their regions of interest. Children and young teenagers constitute some 50% of war-stricken populations. This paper explores this increasingly important role of military medicine from the point of view of a practicing pediatrician and career doctor-soldier. Many international operational deployments undertaken in the last 5 years have required the insertion of pediatric clinical and preventive health resources. Deployments to Rwanda, the countries of the former Yugoslavia, Somalia, Bougainville (in Papua New Guinea), Irian Jaya (in Indonesia), and the Aitape tsunami disaster response (the Sepik region of Papua New Guinea) have all necessitated major pediatric interventions. In some operational deployments, in excess of one-third of patient and clinical contacts have involved the care of children, including clinical treatments ranging from life-saving resuscitation to the care of children with both tropical and subtropical illnesses. They have also involved mass immunization campaigns (e.g., in Rwanda) to prevent measles and meningococcal septicemia. In developing countries, at any time approximately 1 to 4 teenage and adult women is pregnant; and of these, 1 in 15 is suffering a miscarriage during any 2-week period. The implications of this audit are that service members must be multi-skilled not only in the traditional aspects of military medicine and nursing but also in (a) the developmental aspects of childhood; (b) the prevention of infectious childhood diseases by immunization and other means; (c) the recognition and management of diseases of childhood; and (d) the management of the normal neonate and infant, especially those orphaned in refugee disaster and other emergency situations. Doctor

  16. Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas

    2008-01-01

    Remote sensing is measuring something without touching it. Most methods measure a portion of the electro-magnetic spectrum using energy reflected from or emitted by a material. Moving the instrument away makes it easier to see more at one time. Airplanes are good but satellites are much better. Many things can not be easily measured on the scale of an individual person. Example - measuring all the vegetation growing at one time in even the smallest country. A satellite can see things over large areas repeatedly and in a consistent way. Data from the detector is reported as digital values for a grid that covers some portion of the Earth. Because it is digital and consistent a computer can extract information or enhance the data for a specific purpose.

  17. Visual Analysis in a Deployable Antenna Experiment

    NASA Astrophysics Data System (ADS)

    Kimura, S.; Takeuchi, M.; Fukase, Y.; Harima, K.; Sato, H.; Yoshida, T.

    2002-01-01

    in space under the size constraints of available delivery vehicles. A large space antenna should make it possible to improve the telecommunication bandwidth and reduce the size of ground terminals. reliable and precise deployment. Since the antenna is a highly complex structure, monitoring the deployment process and the detection of anomalies are also important. The deployed antenna should be collimated to achieve its optimal performance. such as tension and acceleration sensors. With a visual analysis, we can acquire information at many locations without complex wiring, which can increase the complexity of the system. Therefore, visual analysis should be used in conjunction with other methods for monitoring large deployable antennas. combination of cross-correlations between images and approximation at sub-pixel precision enables us to detect shifts in images with a precision of up to 0.01 pixels. This method is effective for monitoring and collimation of a deployable antenna. broadcast technologies which was developed by the National Space Development Agency of Japan (NASDA) under the cooperation with Communications Research Lab. and NTT Network Innovation Lab.. One of the most important missions of ETS-VIII is to construct a large deployable antenna for S-band telecommunication. In December 2001, the LDREX mission, which was a preliminary experiment for the large deployable antenna of ETS-VIII , was performed as an Ariane-5 auxiliary payload (ASAP). A 6m scale model of the ETS-VIII deployable antenna was launched and deployed in geo-transfer orbit (GTO). During this experiment, anomalies occurred in the deployable antenna, and deployment was aborted. analysis method. Using this analysis, we detected vibrating features of the deployable antenna , which were useful for explaining the anomalies deployable antenna.

  18. High accuracy deployable antenna for communications satellite

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Misawa, M.; Minomo, M.; Yasaka, T.

    High frequency multi-beam satellite antennas have been studied to realize increased communication capacity, simplified earth stations, and multiple frequency reuse. The satellite antenna needs a highly accurate and large reflector. To overcome the launching vehicle's constraints in size and weight, a solid deployable antenna is under development. A petal antenna (PETAL), composed of solid shell elements, has been studied as a high frequency use deployable antenna. It is an axi-symmetric antenna composed of a fixed central shell and deployable triangular and square shells. During the launch phase, a restraining cable is bound around the periphery of deployable elements stowed in a hexagonal configuration. Deployment is initiated by pyrotechnic cable cutters, and the shells are deployed by spring action.

  19. Relatchable launch restraint mechanism for deployable booms

    NASA Technical Reports Server (NTRS)

    Warden, Robert M.

    1990-01-01

    A new Relatchable Launch Mechanism was developed which enables a deployable system to be restrained and released repeatedly rather than the normal one shot release systems of the past. The deployable systems are of the self extending type which rely on a lanyard attached to a drive motor to control the deployment and retraction. The Relatch Mechanism uses the existing drive motor to also actuate the latch. The design and kinematics of the Relatch Mechanism as used on two flight programs are described.

  20. Ultrasonic inspection and deployment apparatus

    DOEpatents

    Michaels, Jennifer E.; Michaels, Thomas E.; Mech, Jr., Stephen J.

    1984-01-01

    An ultrasonic inspection apparatus for the inspection of metal structures, especially installed pipes. The apparatus combines a specimen inspection element, an acoustical velocity sensing element, and a surface profiling element, all in one scanning head. A scanning head bellows contains a volume of oil above the pipe surface, serving as acoustical couplant between the scanning head and the pipe. The scanning head is mounted on a scanning truck which is mobile around a circular track surrounding the pipe. The scanning truck has sufficient motors, gears, and position encoders to allow the scanning head six degrees of motion freedom. A computer system continually monitors acoustical velocity, and uses that parameter to process surface profiling and inspection data. The profiling data is used to automatically control scanning head position and alignment and to define a coordinate system used to identify and interpret inspection data. The apparatus is suitable for highly automated, remote application in hostile environments, particularly high temperature and radiation areas.

  1. Smart Cards and remote entrusting

    NASA Astrophysics Data System (ADS)

    Aussel, Jean-Daniel; D'Annoville, Jerome; Castillo, Laurent; Durand, Stephane; Fabre, Thierry; Lu, Karen; Ali, Asad

    Smart cards are widely used to provide security in end-to-end communication involving servers and a variety of terminals, including mobile handsets or payment terminals. Sometime, end-to-end server to smart card security is not applicable, and smart cards must communicate directly with an application executing on a terminal, like a personal computer, without communicating with a server. In this case, the smart card must somehow trust the terminal application before performing some secure operation it was designed for. This paper presents a novel method to remotely trust a terminal application from the smart card. For terminals such as personal computers, this method is based on an advanced secure device connected through the USB and consisting of a smart card bundled with flash memory. This device, or USB dongle, can be used in the context of remote untrusting to secure portable applications conveyed in the dongle flash memory. White-box cryptography is used to set the secure channel and a mechanism based on thumbprint is described to provide external authentication when session keys need to be renewed. Although not as secure as end-to-end server to smart card security, remote entrusting with smart cards is easy to deploy for mass-market applications and can provide a reasonable level of security.

  2. OV-104's RMS grapples EURECA-1L and holds it in deployment position above PLB

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The European Retrievable Carrier 1L (EURECA-1L), grappled by the remote manipulator system (RMS) end effector, is positioned over the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, prior to deployment. EURECA-1L's solar array panels are deployed. Below EURECA-1L, in the PLB, is the Tethered Satellite System 1 (TSS-1) with the TSS-1 satellite stowed in the satellite support assembly (SSA) mounted on a unpressurized spacelab (SL) pallet. The vertical tail and the orbital maneuvering system (OMS) pods are visible. The entire scene is backdropped by a land mass and ocean on the Earth's surface below.

  3. VisPortal: Deploying grid-enabled visualization tools through a web-portal interface

    SciTech Connect

    Bethel, Wes; Siegerist, Cristina; Shalf, John; Shetty, Praveenkumar; Jankun-Kelly, T.J.; Kreylos, Oliver; Ma, Kwan-Liu

    2003-06-09

    The LBNL/NERSC Visportal effort explores ways to deliver advanced Remote/Distributed Visualization (RDV) capabilities through a Grid-enabled web-portal interface. The effort focuses on latency tolerant distributed visualization algorithms, GUI designs that are more appropriate for the capabilities of web interfaces, and refactoring parallel-distributed applications to work in a N-tiered component deployment strategy. Most importantly, our aim is to leverage commercially-supported technology as much as possible in order to create a deployable, supportable, and hence viable platform for delivering grid-based visualization services to collaboratory users.

  4. Module composition and deployment method on deployable modular-mesh antenna structures

    NASA Astrophysics Data System (ADS)

    Watanabe, Mitsunobu; Meguro, Akira; Mitsugi, Jin; Tsunoda, Hiroaki

    1996-10-01

    A deployable modular-mesh antenna is the concept behind a large space antenna. To ensure reliable deployment, a synchronously deployable truss structure forming a curved reflector surface has been developed. The proposed antenna's main reflector formed by two types of modules using mesh and cable network maintains a sufficient level of rigidity at deployment and deploys with high reliability. Importance has also been placed on the numerical analyses of cables, the mesh, and the truss structures. The truss structure analysis is based on a non-linear finite element method, rather than on multi-body dynamics, so that elastic motions of all truss members during the deployment can easily be handled.

  5. GPM Solar Array Gravity Negated Deployment Testing

    NASA Technical Reports Server (NTRS)

    Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso

    2014-01-01

    NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.

  6. Development of modular cable mesh deployable antenna

    NASA Astrophysics Data System (ADS)

    Meguro, Akira; Mitsugi, Jin; Andou, Kazuhide

    1993-03-01

    This report describes a concept and key technologies for the modular mesh deployable antenna. The antenna reflector composed of independently manufactured and tested modules is presented. Each module consists of a mesh surface, a cable network, and a deployable truss structure. The cable network comprises three kinds of cables, surface, tie, and back cables. Adjustment of tie cable lengths improves the surface accuracy. Synchronous deployment truss structures are considered as a supporting structure. Their design method, BBM's (Bread Board Model) and deployment analysis are also explained.

  7. Multiple node remote messaging

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Ohmacht, Martin; Salapura, Valentina; Steinmacher-Burow, Burkhard; Vranas, Pavlos

    2010-08-31

    A method for passing remote messages in a parallel computer system formed as a network of interconnected compute nodes includes that a first compute node (A) sends a single remote message to a remote second compute node (B) in order to control the remote second compute node (B) to send at least one remote message. The method includes various steps including controlling a DMA engine at first compute node (A) to prepare the single remote message to include a first message descriptor and at least one remote message descriptor for controlling the remote second compute node (B) to send at least one remote message, including putting the first message descriptor into an injection FIFO at the first compute node (A) and sending the single remote message and the at least one remote message descriptor to the second compute node (B).

  8. Family adjustment of deployed and non-deployed mothers in families with a parent deployed to Iraq or Afghanistan

    PubMed Central

    Gewirtz, Abigail H.; McMorris, Barbara J.; Hanson, Sheila; Davis, Laurel

    2014-01-01

    Almost nothing is known about the family and individual adjustment of military mothers who have deployed to the conflicts in Iraq or Afghanistan (Operations Iraqi and Enduring Freedom, and Operation New Dawn; OIF, OEF, OND), constituting a gap in psychologists’ knowledge about how best to help this population. We report baseline data on maternal, child, parenting, and couple adjustment for mothers in 181 families in which a parent deployed to OIF/OEF/OND. Among this sample, 34 mothers had deployed at least once, and 147 mothers had experienced the deployment of a male spouse/partner. Mothers completed self-report questionnaires assessing past year adverse life events, war experiences (for deployed mothers only), posttraumatic stress disorder (PTSD) and depression symptoms, difficulties in emotion regulation, parenting, couple adjustment, and child functioning. Mothers who had deployed reported greater distress than non-deployed mothers (higher scores on measures of PTSD and depression symptoms), and slightly more past year adverse events. A moderate number of war experiences (combat and post-battle aftermath events) were reported, consistent with previous studies of women in current and prior conflicts. However, no differences were found between the two groups on measures of couple adjustment, parenting, or child functioning. Results are discussed in terms of the dearth of knowledge about deployed mothers, and implications for psychologists serving military families. PMID:25663739

  9. Gripper deploying and inverting linkage

    DOEpatents

    Minichan, Richard L.; Killian, Mark A.

    1993-01-01

    An end effector deploying and inverting linkage. The linkage comprises an air cylinder mounted in a frame or tube, a sliding bracket next to the air cylinder, a stopping bracket depending from the frame and three, pivotally-attached links that are attached to the end effector and to each other in such a way as to be capable of inverting the end effector and translating it laterally. The first of the three links is a straight element that is moved up and down by the shaft of the air cylinder. The second link is attached at one end to the stopping bracket and to the side of the end effector at the other end. The first link is attached near the middle of the second, sharply angled link so that, as the shaft of the air cylinder moves up and down, the second link rotates about an axis perpendicular to the frame and inverts and translates the end effector. The rotation of the second link is stopped at both ends when the link engages stops on the stopping bracket. The third link, slightly angled, is attached to the sliding bracket at one end and to the end of the end effector at the other. The third helps to control the end effector in its motion.

  10. Gripper deploying and inverting linkage

    DOEpatents

    Minichan, R.L.; Killian, M.A.

    1993-03-02

    An end effector deploying and inverting linkage. The linkage comprises an air cylinder mounted in a frame or tube, a sliding bracket next to the air cylinder, a stopping bracket depending from the frame and three, pivotally-attached links that are attached to the end effector and to each other in such a way as to be capable of inverting the end effector and translating it laterally. The first of the three links is a straight element that is moved up and down by the shaft of the air cylinder. The second link is attached at one end to the stopping bracket and to the side of the end effector at the other end. The first link is attached near the middle of the second, sharply angled link so that, as the shaft of the air cylinder moves up and down, the second link rotates about an axis perpendicular to the frame and inverts and translates the end effector. The rotation of the second link is stopped at both ends when the link engages stops on the stopping bracket. The third link, slightly angled, is attached to the sliding bracket at one end and to the end of the end effector at the other. The third helps to control the end effector in its motion.

  11. Mechanically scanned deployable antenna study

    NASA Astrophysics Data System (ADS)

    1983-03-01

    The conceptual design of a Mechanically Scanned Deployable Antenna which is launched by the STS (Space Shuttle) to provide radiometric brightness temperature maps of the Earth and oceans at selected frequency bands in the frequency range of 1.4 GHz to 11 GHz is presented. Unlike previous scanning radiometric systems, multiple radiometers for each frequency are required in order to fill in the resolution cells across the swath created by the 15 meter diameter spin stabilized system. This multiple beam radiometric system is sometimes designated as a ""whiskbroom'' system in that it combines the techniques of the scanning and ""pushbroom'' type systems. The definition of the feed system including possible feed elements and location, determination of the fundamental reflector feed offset geometry including offset angles and f/D ratio, preliminary estimates of the beam efficiency of the feed reflector system, a summary of reflector mesh losses at the proposed radiometric frequency bands, an overall conceptual configuration design and preliminary structural and thermal analyses are included.

  12. Arthroscopically confirmed femoral button deployment.

    PubMed

    Sonnery-Cottet, Bertrand; Rezende, Fernando C; Martins Neto, Ayrton; Fayard, Jean M; Thaunat, Mathieu; Kader, Deiary F

    2014-06-01

    The anterior cruciate ligament TightRope RT (Arthrex, Naples, FL) is a graft suspension device for cruciate ligament reconstruction. It is an adjustable-length graft loop cortical fixation device designed to eliminate the requirement for loop length calculation and to facilitate complete graft fill of short femoral sockets that are common with anatomic anterior cruciate ligament placement. The adjustable loop length means "one size fits all," thus removing the need for multiple implant sizes and allowing graft tensioning even after fixation. However, the device has been associated with the same complications that have been described with EndoButton (Smith & Nephew Endoscopy, Andover, MA) fixation. The button of the TightRope RT may remain in the femoral tunnel rather than flipping outside of the tunnel to rest on the lateral femoral cortex, or it may become jammed inside the femoral canal. Conversely, the button may be pulled too far off the femoral cortex into the overlying soft tissue and flip in the substance of the vastus lateralis. We describe a new and simple arthroscopic technique to directly visualize the deployment and seating of the TightRope button on the lateral cortex of the femur to avoid all the aforementioned complications. PMID:25126492

  13. Arthroscopically confirmed femoral button deployment.

    PubMed

    Sonnery-Cottet, Bertrand; Rezende, Fernando C; Martins Neto, Ayrton; Fayard, Jean M; Thaunat, Mathieu; Kader, Deiary F

    2014-06-01

    The anterior cruciate ligament TightRope RT (Arthrex, Naples, FL) is a graft suspension device for cruciate ligament reconstruction. It is an adjustable-length graft loop cortical fixation device designed to eliminate the requirement for loop length calculation and to facilitate complete graft fill of short femoral sockets that are common with anatomic anterior cruciate ligament placement. The adjustable loop length means "one size fits all," thus removing the need for multiple implant sizes and allowing graft tensioning even after fixation. However, the device has been associated with the same complications that have been described with EndoButton (Smith & Nephew Endoscopy, Andover, MA) fixation. The button of the TightRope RT may remain in the femoral tunnel rather than flipping outside of the tunnel to rest on the lateral femoral cortex, or it may become jammed inside the femoral canal. Conversely, the button may be pulled too far off the femoral cortex into the overlying soft tissue and flip in the substance of the vastus lateralis. We describe a new and simple arthroscopic technique to directly visualize the deployment and seating of the TightRope button on the lateral cortex of the femur to avoid all the aforementioned complications.

  14. Mechanically scanned deployable antenna study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The conceptual design of a Mechanically Scanned Deployable Antenna which is launched by the STS (Space Shuttle) to provide radiometric brightness temperature maps of the Earth and oceans at selected frequency bands in the frequency range of 1.4 GHz to 11 GHz is presented. Unlike previous scanning radiometric systems, multiple radiometers for each frequency are required in order to fill in the resolution cells across the swath created by the 15 meter diameter spin stabilized system. This multiple beam radiometric system is sometimes designated as a ""whiskbroom'' system in that it combines the techniques of the scanning and ""pushbroom'' type systems. The definition of the feed system including possible feed elements and location, determination of the fundamental reflector feed offset geometry including offset angles and f/D ratio, preliminary estimates of the beam efficiency of the feed reflector system, a summary of reflector mesh losses at the proposed radiometric frequency bands, an overall conceptual configuration design and preliminary structural and thermal analyses are included.

  15. The Lab Without Walls: A Deployable Approach to Tropical Infectious Diseases

    PubMed Central

    Inglis, Timothy J. J.

    2013-01-01

    The Laboratory Without Walls is a modular field application of molecular biology that provides clinical laboratory support in resource-limited, remote locations. The current repertoire arose from early attempts to deliver clinical pathology and public health investigative services in remote parts of tropical Australia, to address the shortcomings of conventional methods when faced with emerging infectious diseases. Advances in equipment platforms and reagent chemistry have enabling rapid progress, but also ensure the Laboratory Without Walls is subject to continual improvement. Although new molecular biology methods may lead to more easily deployable clinical laboratory capability, logistic and technical governance issues continue to act as important constraints on wider implementation. PMID:23553225

  16. [Thematic Issue: Remote Sensing.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1978-01-01

    Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…

  17. Multispectral remote sensing from unmanned aircraft: image processing workflows and applications for rangeland environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using unmanned aircraft systems (UAS) as remote sensing platforms offers the unique ability for repeated deployment for acquisition of high temporal resolution data at very high spatial resolution. Most image acquisitions from UAS have been in the visible bands, while multispectral remote sensing ap...

  18. Deployable System for Crash-Load Attenuation

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.

    2007-01-01

    An externally deployable honeycomb structure is investigated with respect to crash energy management for light aircraft. The new concept utilizes an expandable honeycomb-like structure to absorb impact energy by crushing. Distinguished by flexible hinges between cell wall junctions that enable effortless deployment, the new energy absorber offers most of the desirable features of an external airbag system without the limitations of poor shear stability, system complexity, and timing sensitivity. Like conventional honeycomb, once expanded, the energy absorber is transformed into a crush efficient and stable cellular structure. Other advantages, afforded by the flexible hinge feature, include a variety of deployment options such as linear, radial, and/or hybrid deployment methods. Radial deployment is utilized when omnidirectional cushioning is required. Linear deployment offers better efficiency, which is preferred when the impact orientation is known in advance. Several energy absorbers utilizing different deployment modes could also be combined to optimize overall performance and/or improve system reliability as outlined in the paper. Results from a series of component and full scale demonstration tests are presented as well as typical deployment techniques and mechanisms. LS-DYNA analytical simulations of selected tests are also presented.

  19. Military Children: When Parents Are Deployed Overseas

    ERIC Educational Resources Information Center

    Fitzsimons, Virginia M.; Krause-Parello, Cheryl A.

    2009-01-01

    Members of the Armed Services and Reserve Unit Members, both male and female, are being deployed to distant lands for long periods of time, disrupting family life and causing stressful times for the adults and children in the family. Traditionally, the mother of the military family was left to be the caregiver after the deployment of the…

  20. Self-deploying photovoltaic power system

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J. (Inventor)

    1993-01-01

    A lightweight flexible photovoltaic (PV) blanket is attached to a support structure of initially stowed telescoping members. The deployment mechanism comprises a series of extendable and rotatable columns. As these columns are extended the PV blanket is deployed to its proper configuration.

  1. A deployable telescope imaging system with coilable tensegrity structure for microsatellite application

    NASA Astrophysics Data System (ADS)

    Zhao, Chao; Li, Chuang; Zhou, Nan

    2013-08-01

    Microsatellites will be widely applied as an earth-observing platform in coming future for their low costs. Such satellite missions require optical payloads with low cost, low mass and small volume. In order to meet these requirements, one way is to develop deployable telescopes. They not only maintain the capabilities of the traditional non-deployable telescopes, but also have compacter launch volume and lighter weight. We investigate a telescope with precise deployable structure based on coilable tensegrity. Before launch, the secondary mirror support structure is coiled, and when the satellite is in orbit, the secondary mirror is deployed with the elastic strain energy from the coiled longerons. There are mainly three parts in this paper. Firstly, the telescope optics is presented. A Ritchey-Chretien (RC) type optical system with 150mm aperture is designed. Secondly, the deployable telescope structure is designed for the RC system. The deployable structure mainly consists of coilable longerons, batten rings, and diagonal stringers. The finite element method (FEM) is used to analyze the dynamics of the unfolded telescope structure. Thirdly, the adjusting mechanism for secondary mirror is discussed. Piezoelectric actuators can be used to achieve remote alignment to improve the performance of the imaging system.

  2. Light duty utility arm deployment in Hanford tank T-106

    SciTech Connect

    Kiebel, G.R.

    1997-07-01

    An existing gap in the technology for the remediation of underground waste storage tanks filled by the Light Duty Utility Arm (LDUA) System. On September 27 and 30, 1996, the LDUA System was deployed in underground storage tank T-106 at Hanford. The system performed successfully, satisfying all objectives of the in-tank operational test (hot test); performing close-up video inspection of features of tank dome, risers, and wall; and grasping and repositioning in-tank debris. The successful completion of hot testing at Hanford means that areas of tank structure and waste surface that were previously inaccessible are now within reach of remote tools for inspection, waste analysis, and small-scale retrieval. The LDUA System has become a new addition to the arsenal of technologies being applied to solve tank waste remediation challenges.

  3. AIRSAR South American deployment: Operation plan, version 3.0

    NASA Technical Reports Server (NTRS)

    Kobrick, M.

    1993-01-01

    The United States National Aeronautics and Space Administration (NASA) and the Brazilian Commission for Space Activities (COBAE) are undertaking a joint experiment involving NASA's DC-8 research aircraft and the Airborne Synthetic Aperture Radar (AIRSAR) system during late May and June 1993. The research areas motivating these activities are: (1) fundamental research in the role of soils, vegetation, and hydrology in the global carbon cycle; and (2) in cooperation with South American scientists, airborne remote sensing research for the upcoming NASA Spaceborne Imaging Radar (SIR)-C/X-SAR flights on the Space Shuttle. A flight schedule and plans for the deployment that were developed are included. Maps of the site locations and schematic indications of flight routes and dates, plots showing swath locations derived from the flight requests and generated by flight planning software, and, most importantly, a calendar showing which sites will be imaged each day are included.

  4. Rocket experiment on microwave power transmission with Furoshiki deployment

    NASA Astrophysics Data System (ADS)

    Kaya, Nobuyuki; Iwashita, Masashi; Tanaka, Kohei; Nakasuka, Shinichi; Summerer, Leopold

    2009-07-01

    Huge antennas has many useful applications in space as well as on the ground, for example, Solar Power Satellite to provide electricity to the ground, telecommunication for cellular phones, radars for remote sensing, navigation and observation, and so on. The S-310-36 sounding rocket was successfully launched on 22 January 2006 to verify our newly proposed scheme to construct huge antennas under microgravity condition in space. The rocket experiment has three main objectives, the first objective of which is to verify the Furoshiki deployment system [S. Nakasuka, R. Funase, K. Nakada, N. Kaya, J. Mankins, Large membrane "FUROSHIKI Satellite" applied to phased array antenna and its sounding rocket experiment, in: Proceedings of the 54th International Astronautical Congress, 2003. [1

  5. High Speed Lunar Navigation for Crewed and Remotely Piloted Vehicles

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Allan, M.; To, V.; Utz, H.; Wojcikiewicz, W.; Chautems, C.

    2010-01-01

    Increased navigation speed is desirable for lunar rovers, whether autonomous, crewed or remotely operated, but is hampered by the low gravity, high contrast lighting and rough terrain. We describe lidar based navigation system deployed on NASA's K10 autonomous rover and to increase the terrain hazard situational awareness of the Lunar Electric Rover crew.

  6. Remote-handling challenges in fusion research and beyond

    NASA Astrophysics Data System (ADS)

    Buckingham, Rob; Loving, Antony

    2016-05-01

    Energy-producing nuclear fusion reactions taking place in tokamaks cause radiation damage and radioactivity. Remote-handling technology for repairing and replacing in-vessel components has evolved enormously over the past two decades -- and is now being deployed elsewhere too.

  7. Open Path Trace Gas Laser Sensors for UAV Deployment

    NASA Astrophysics Data System (ADS)

    Shadman, S.; Mchale, L.; Rose, C.; Yalin, A.

    2015-12-01

    Novel trace gas sensors based on open-path Cavity Ring-down Spectroscopy (CRDS) are being developed to enable remote and mobile deployments including on small unmanned aerial systems (UAS). Relative to established closed-path CRDS instruments, the use of open-path configurations allows removal of the bulky and power hungry vacuum and flow system, potentially enabling lightweight and low power instruments with high sensitivity. However, open path operation introduces new challenges including the need to maintain mirror cleanliness, mitigation of particle optical effects, and the need to measure spectral features that are relatively broad. The present submission details open-path CRDS instruments for ammonia and methane and their planned use in UAS studies. The ammonia sensor uses a quantum cascade laser at 10.3 mm in a configuration in which the laser frequency is continuously swept and a trigger circuit and acousto-optic modulator (AOM) extinguish the light when the laser is resonant with the cavity. Ring-down signals are measured with a two-stage thermoelectrically cooled MCT photodetector. The cavity mirrors have reflectivity of 0.9995 and a noise equivalent absorption of 1.5 ppb Hz-1/2 was demonstrated. A first version of the methane sensor operated at 1.7um with a telecom diode laser while the current version operates at 3.6 um with an interband cascade laser (stronger absorption). We have performed validation measurements against known standards for both sensors. Compact optical assemblies are being developed for UAS deployment. For example, the methane sensor head will have target mass of <4 kg and power draw <40 W. A compact single board computer and DAQ system is being designed for sensor control and signal processing with target mass <1 kg and power draw <10 W. The sensor size and power parameters are suitable for UAS deployment on both fixed wing and rotor style UAS. We plan to deploy the methane sensor to measure leakage and emission of methane from

  8. STS-31 Hubble Space Telescope (HST) (SA and HGA deployed) is grappled by RMS

    NASA Technical Reports Server (NTRS)

    1990-01-01

    With the starboard solar array (SA) wing and the two high gain antennae (HGA) fully extended, the Hubble Space Telescope (HST) is grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS) during STS-31 predeployment checkout operations. SA bistem cassette and secondary deployment mechanism (SDM) detail is clearly visible. The scene is backdropped against the Earth's limb and cloud-covered surface.

  9. STS-46 MS-PLC Hoffman monitors EURECA deploy from OV-104's aft flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Mission Specialist (MS) and Payload Commander (PLC) Jeffrey A. Hoffman, wearing polarized goggles (sunglasses), monitors the European Retrievable Carrier 1L (EURECA-1L) satellite deploy from the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. The remote manipulator system arm's 'Canada' insignia is visible in aft flight deck viewing window W10. Hoffman's left hand is positioned at overhead window W8.

  10. ROI, Pitfalls and Best Practices with an Enterprise Smart Card Deployment

    NASA Astrophysics Data System (ADS)

    Hoyer, Philip

    This paper will describe the highlights of the ActivIdentity sponsored Datamonitor study into Return On Investment (ROI) when implementing smart cards in the enterprise in the following areas: physical and logical access convergence, remote access when replacing OTP tokens and Enterprise Single Sign-On. It also provides additional information about the pitfalls to avoid when implementing smart cards and describes best practices for deployment.

  11. Overview of Deployed EDS Technologies

    SciTech Connect

    Martz, H E; Crawford, C

    2009-09-24

    The term explosive detection system (EDS) is used by the TSA to describe equipment that is certified to detect explosives in checked bags. The EDS, as certified, by the TSL must consist of device for interrogating a bag and an automated detection algorithm (ATD) for evaluating the results of the interrogation. We only consider CT as the interrogation device in this report. A schematic drawing of a CT-based EDS is shown in Figure 2. The output of the ATD is the binary decision of alarm or non-alarm. Alarms may true- or false-positives. Non-alarms may be true- or false-negatives. False positives are also denoted false alarms. The true detection means that the ATD reports an alarm when a threat is present in the scanned bag. The probability of detecting a threat given that a threat is present is denoted the probability of detection (PD). The probability of false alarm (PFA) is the case when an alarm is reported when a threat is not present in a bag. Certification in this context means passing tests for PD and PFA at the TSL. The results of the EDS include CT cross-sectional images of the bag and specifics about the alarmed objects generated by ATD. These results are presented on a display so that a person may override the decision of ATD and declare the alarm to be a non-alarm. This process is denoted clearing. Bags that are not cleared by the person are sent to a secondary inspection process. Here the bags may be opened or assessed with explosive trace detection (ETD) in order to clear the bags. Bags that are not cleared at this point are evaluated by an ordinance disposal team. The CT scanner along with ATD is denoted Level 1 screening. The process of clearing on a display is denoted Level 2 screening. Secondary inspection is denoted Level 3 screening. Vendors of the deployed EDSs supply the TSA with equipment for all three levels. Therefore, the term EDS may include the equipment provided for Levels 1, 2 and 3. A schematic diagram of an EDS and the levels of

  12. Miniature field deployable terahertz source

    NASA Astrophysics Data System (ADS)

    Mayes, Mark G.

    2006-05-01

    Developments in terahertz sources include compacted electron beam systems, optical mixing techniques, and multiplication of microwave frequencies. Although significant advances in THz science have been achieved, efforts continue to obtain source technologies that are more mobile and suitable for field deployment. Strategies in source development have approached generation from either end of the THz spectrum, from up-conversion of high-frequency microwave to down-conversion of optical frequencies. In this paper, we present the design of a THz source which employs an up-conversion method in an assembly that integrates power supply, electronics, and radiative component into a man-portable unit for situations in which a lab system is not feasible. This unit will ultimately evolve into a ruggedized package suitable for use in extreme conditions, e.g. temporary security check points or emergency response teams, in conditions where THz diagnostics are needed with minimal planning or logistical support. In order to meet design goals of reduced size and complexity, the inner workings of the unit ideally would be condensed into a monolithic active element, with ancillary systems, e.g. user interface and power, coupled to the element. To attain these goals, the fundamental component of our design is a THz source and lens array that may be fabricated with either printed circuit board or wafer substrate. To reduce the volume occupied by the source array, the design employs a metamaterial composed of a periodic lattice of resonant elements. Each resonant element is an LC oscillator, or tank circuit, with inductance, capacitance, and center frequency determined by dimensioning and material parameters. The source array and supporting electronics are designed so that the radiative elements are driven in-phase to yield THz radiation with a high degree of partial coherence. Simulation indicates that the spectral width of operation may be controlled by detuning of critical dimensions

  13. Mojave remote sensing field experiment

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.; Petroy, S. B.; Plaut, J. J.; Shepard, Michael K.; Evans, D.; Farr, T.; Greeley, Ronald; Gaddis, L.; Lancaster, N.

    1991-01-01

    The Mojave Remote Sensing Field Experiment (MFE), conducted in June 1988, involved acquisition of Thermal Infrared Multispectral Scanner (TIMS); C, L, and P-band polarimetric radar (AIRSAR) data; and simultaneous field observations at the Pisgah and Cima volcanic fields, and Lavic and Silver Lake Playas, Mojave Desert, California. A LANDSAT Thematic Mapper (TM) scene is also included in the MFE archive. TM-based reflectance and TIMS-based emissivity surface spectra were extracted for selected surfaces. Radiative transfer procedures were used to model the atmosphere and surface simultaneously, with the constraint that the spectra must be consistent with field-based spectral observations. AIRSAR data were calibrated to backscatter cross sections using corner reflectors deployed at target sites. Analyses of MFE data focus on extraction of reflectance, emissivity, and cross section for lava flows of various ages and degradation states. Results have relevance for the evolution of volcanic plains on Venus and Mars.

  14. Development of Test Article Building Block (TABB) for deployable platform systems

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.; Barbour, R. T.

    1984-01-01

    The concept of a Test Article Building Block (TABB) is described. The TABB is a ground test article that is representative of a future building block that can be used to construct LEO and GEO deployable space platforms for communications and scientific payloads. This building block contains a main housing within which the entire structure, utilities, and deployment/retraction mechanism are stowed during launch. The end adapter secures the foregoing components to the housing during launch. The main housing and adapter provide the necessary building-block-to-building-block attachments for automatically deployable platforms. Removal from the shuttle cargo bay can be accomplished with the remote manipulator system (RMS) and/or the handling and positioning aid (HAPA). In this concept, all the electrical connections are in place prior to launch with automatic latches for payload attachment provided on either the end adapters or housings. The housings also can contain orbiter docking ports for payload installation and maintenance.

  15. Large deployable antenna program. Phase 1: Technology assessment and mission architecture

    NASA Technical Reports Server (NTRS)

    Rogers, Craig A.; Stutzman, Warren L.

    1991-01-01

    The program was initiated to investigate the availability of critical large deployable antenna technologies which would enable microwave remote sensing missions from geostationary orbits as required for Mission to Planet Earth. Program goals for the large antenna were: 40-meter diameter, offset-fed paraboloid, and surface precision of 0.1 mm rms. Phase 1 goals were: to review the state-of-the-art for large, precise, wide-scanning radiometers up to 60 GHz; to assess critical technologies necessary for selected concepts; to develop mission architecture for these concepts; and to evaluate generic technologies to support the large deployable reflectors necessary for these missions. Selected results of the study show that deployable reflectors using furlable segments are limited by surface precision goals to 12 meters in diameter, current launch vehicles can place in geostationary only a 20-meter class antenna, and conceptual designs using stiff reflectors are possible with areal densities of 2.4 deg/sq m.

  16. Solar Thermal Vacuum Test of Deployable Astromesh Reflector

    NASA Technical Reports Server (NTRS)

    Stegman, Matthew D.

    2009-01-01

    On September 10, 2008, a 36-hour Solar Thermal Vacuum Test of a 5m deployable mesh reflector was completed in JPL's 25' Space Simulator by the Advanced Deployable Structures Group at JPL. The testing was performed under NASA's Innovative Partnership Program (IPP) as a risk reduction effort for two JPL Decadal Survey Missions: DESDynI and SMAP. The 5.0 m aperture Astromesh reflector was provided by Northrop Grumman Aerospace Systems (NGAS) Astro Aerospace, our IPP industry partner. The testing utilized a state-of-the-art photogrammetry system to measure deformation of the reflector under LN2 cold soak, 0.25 Earth sun, 0.5 sun and 1.0 sun. An intricate network of thermocouples (approximately 200 in total) was used to determine the localized temperature across the mesh as well as on the perimeter truss of the reflector. Half of the reflector was in a fixed shadow to maximize thermal gradients. A mobility system was built for remotely actuating the cryo-vacuum capable photogrammetry camera around the circumference of the Solar Simulator. Photogrammetric resolution of 0.025 mm RMS (0.001") was achieved over the entire 5 meter aperture for each test case. The data will be used for thermo-elastic model correlation and validation, which will benefit the planned Earth Science Missions.

  17. A Rover Deployed Ground Penetrating Radar on Mars

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Campbell, B. A.; Schutz, A. E.

    2001-01-01

    Radar is a fundamental tool capable of addressing a variety of geological problems on Mars via collection of data suitable for interpreting variations in surface morphology and reflectivity. Surface-deployed ground penetrating radar (GPR) can help further constrain the geology and structure of the near surface of Mars by directly measuring the range and character of in situ radar properties. In recognition of this potential, a miniaturized, easily modified GPR is being developed for possible deployment on a future Mars rover and will enable definition of radar stratigraphy at high spatial resolution to depths of 10-20 meters. Ongoing development of a Mars impulse GPR with industry partners at Geophysical Survey Systems, Inc., focuses on design and testing of a prototype transducer array (with both high frequency bistatic and low frequency monostatic components) in parallel with fabrication of a low power, mass, and volume control unit. The operational depth of 10-20 meters is geared towards definition of stratigraphy, subsurface blocks, and structure at the decimeter to meter scale that is critical for establishing the geologic setting of the rover. GPR data can also be used to infer the degree of any post-depositional pedogenic alteration or weathering that has subsequently taken place, thereby enabling assessment of pristine versus secondary morphology at the landing site. As is the case for most remote sensing instruments, a GPR may not detect water unambiguously. Nevertheless, any local, near-surface occurrence of liquid water will lead to large, easily detected dielectric contrasts. Moreover, definition of stratigraphy and setting will help in evaluating the history of aqueous activity and where any water might occur and be accessible. Most importantly perhaps, GPR can provide critical context for other rover and orbital instruments/data sets. Hence, GPR deployment along well positioned transects in the vicinity of a lander should enable 3-D mapping of

  18. Middleware Automated Deployment Utilities - MRW Suite

    SciTech Connect

    Anderson, Mathew; Bowen, Brian; Coles, Dwight; Cleal, Thomas; Quarles, Elliott; Gurule, Kaitlyn; Kagie, Matthew

    2014-09-18

    The Middleware Automated Deployment Utilities consists the these three components: MAD: Utility designed to automate the deployment of java applications to multiple java application servers. The product contains a front end web utility and backend deployment scripts. MAR: Web front end to maintain and update the components inside database. MWR-Encrypt: Web utility to convert a text string to an encrypted string that is used by the Oracle Weblogic application server. The encryption is done using the built in functions if the Oracle Weblogic product and is mainly used to create an encrypted version of a database password.

  19. Middleware Automated Deployment Utilities - MRW Suite

    2014-09-18

    The Middleware Automated Deployment Utilities consists the these three components: MAD: Utility designed to automate the deployment of java applications to multiple java application servers. The product contains a front end web utility and backend deployment scripts. MAR: Web front end to maintain and update the components inside database. MWR-Encrypt: Web utility to convert a text string to an encrypted string that is used by the Oracle Weblogic application server. The encryption is done usingmore » the built in functions if the Oracle Weblogic product and is mainly used to create an encrypted version of a database password.« less

  20. COSTAR Dob Deploy & WFPC2 Initial Decon

    NASA Astrophysics Data System (ADS)

    Bacinski, John

    1997-07-01

    This proposal describes the activities needed to deploy the Deployable OpticalBench (DOB) from its stowed position back to FOC best focus position and verifythat the deployment will not cause damage to the other instruments. Thedeployment of the DOB is done in three stages. Stage one will removeapproximately 25 steps of slack in the DOB mechanism that was introduced as partof the SM DOB retraction activities. Stage two will command the DOB to thecenter of its nominal range. Stage three will position the DOB back to the FOCpre-servicing mission best focus position. This proposal will be done entirelyusing real-time commands.

  1. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (Light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror.

  2. Demonstration and Deployment Strategy Workshop: Summary

    SciTech Connect

    none,

    2014-05-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 12–13, 2014, at Argonne National Laboratory.

  3. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55-m-diameter, proof-of-concept mirror.

  4. Technical and architectural issues in deploying electronic health records (EHRs) over the WWW.

    PubMed

    Armstrong, Brian; Kushniruk, Andre; Joe, Ron; Borycki, Elizabeth

    2009-01-01

    In this paper technical and architectural issues are described in deploying electronic health records (EHRs) over the WWW. The project described involved deployment of EHRs that have been designed to serve in the education of health professionals and health/biomedical informaticians. In order to allow for ubiquitous access to a range of EHRs remotely an architecture was designed with three layers: (a) the "Internet" or remote user access layer (2) the "Perimeter Network", or middle firewall security and authentication layer (3) the "HINF EHR Network", consisting of the internal servers hosting EHR applications and databases. The approaches allow for a large number of remote users running a range of operating systems to access the educational EHRs from any location remotely. Virtual machine (VM) technology is employed to allow multiple versions and platforms of operating systems to be installed side-by-side on a single server. Security, technical and budgetary considerations are described as well as past and current applications of the architecture for a number of projects for the education of health professionals in the area of electronic health records. PMID:19380921

  5. State perspectives on clean coal technology deployment

    SciTech Connect

    Moreland, T.

    1997-12-31

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  6. Deployable radiator with flexible line loop

    NASA Technical Reports Server (NTRS)

    Keeler, Bryan V. (Inventor); Lehtinen, Arthur Mathias (Inventor); McGee, Billy W. (Inventor)

    2003-01-01

    Radiator assembly (10) for use on a spacecraft (12) is provided including at least one radiator panel assembly (26) repeatably movable between a panel stowed position (28) and a panel deployed position (36), at least two flexible lines (40) in fluid communication with the at least one radiator panel assembly (26) and repeatably movable between a stowage loop (42) and a flattened deployed loop (44).

  7. DRAGON - 8U Nanosatellite Orbital Deployer

    NASA Technical Reports Server (NTRS)

    Dobrowolski, Marcin; Grygorczuk, Jerzy; Kedziora, Bartosz; Tokarz, Marta; Borys, Maciej

    2014-01-01

    The Space Research Centre of the Polish Academy of Sciences (SRC PAS) together with Astronika company have developed an Orbital Deployer called DRAGON for ejection of the Polish scientific nanosatellite BRITE-PL Heweliusz (Fig. 1). The device has three unique mechanisms including an adopted and scaled lock and release mechanism from the ESA Rosetta mission MUPUS instrument. This paper discusses major design restrictions of the deployer, unique design features, and lessons learned from development through testing.

  8. The Galileo high gain antenna deployment anomaly

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.

    1994-01-01

    On April 11, 1991, the Galileo spacecraft executed a sequence that would open the spacecraft's High Gain Antenna. The Antenna's launch restraint had been released just after deployment sequence, the antenna, which opens like an umbrella, never reached the fully deployed position. The analyses and tests that followed allowed a conclusive determination of the likely failure mechanisms and pointed to some strategies to use for recovery of the high gain antenna.

  9. Remote Laser Diffraction PSD Analyzer

    SciTech Connect

    T. A. Batcheller; G. M. Huestis; S. M. Bolton

    2000-06-01

    Particle size distribution (PSD) analysis of radioactive slurry samples were obtained using a modified off-the-shelf classical laser light scattering particle size analyzer. A Horiba Instruments Inc. Model La-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a hot cell (gamma radiation) environment. The general details of the modifications to this analyzer are presented in this paper. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not achievable - making this technology far superior than the traditional methods used previously. Remote deployment and utilization of this technology is in an exploratory stage. The risk of malfunction in this radiation environment is countered by gaining of this tremendously useful fundamental engineering data. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  10. Remote Laser Diffraction PSD Analyzer

    SciTech Connect

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2000-06-01

    Particle size distribution (PSD) analysis of radioactive slurry samples were obtained using a modified "off-the-shelf" classical laser light scattering particle size analyzer. A Horiba Instruments Inc. Model La-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a "hot cell" (gamma radiation) environment. The general details of the modifications to this analyzer are presented in this paper. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not achievable - making this technology far superior than the traditional methods used previously. Remote deployment and utilization of this technology is in an exploratory stage. The risk of malfunction in this radiation environment is countered by gaining of this tremendously useful fundamental engineering data. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  11. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  12. Remote Agent Demonstration

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Kurien, James; Rajan, Kanna

    1999-01-01

    We describe the computer demonstration of the Remote Agent Experiment (RAX). The Remote Agent is a high-level, model-based, autonomous control agent being validated on the NASA Deep Space 1 spacecraft.

  13. New Antenna Deployment, Pointing and Supporting Mechanism

    NASA Technical Reports Server (NTRS)

    Costabile, V.; Lumaca, F.; Marsili, P.; Noni, G.; Portelli, C.

    1996-01-01

    On ITALSAT Flight 2, the Italian telecommunications satellite, the two L-Ka antennas (Tx and Rx) use two large deployable reflectors (2000-mm diameter), whose deployment and fine pointing functions are accomplished by means of an innovative mechanism concept. The Antenna Deployment & Pointing Mechanism and Supporting Structure (ADPMSS) is based on a new configuration solution, where the reflector and mechanisms are conceived as an integrated, self-contained assembly. This approach is different from the traditional configuration solution. Typically, a rigid arm is used to deploy and then support the reflector in the operating position, and an Antenna Pointing Mechanism (APM) is normally interposed between the reflector and the arm for steering operation. The main characteristics of the ADPMSS are: combined implementation of deployment, pointing, and reflector support; optimum integration of active components and interface matching with the satellite platform; structural link distribution to avoid hyperstatic connections; very light weight and; high performance in terms of deployment torque margin and pointing range/accuracy. After having successfully been subjected to all component-level qualification and system-level acceptance tests, two flight ADPMSS mechanisms (one for each antenna) are now integrated on ITALSAT F2 and are ready for launch. This paper deals with the design concept, development, and testing program performed to qualify the ADPMSS mechanism.

  14. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction a nd ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror. Keywords: precision deployment, hinge joint, latch joint, deployable structures, fabrication, space telescopes, optical instruments, microdynamics.

  15. 78 FR 77550 - Integrated Corridor Management Deployment Planning Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... Federal Highway Administration Integrated Corridor Management Deployment Planning Grants AGENCY: Federal... is extending the application period for the Integrated Corridor Management Deployment Planning Grants... Integrated Corridor Management Deployment Planning Grants. The purpose of this notice was to invite...

  16. A module concept for a cable-mesh deployable antenna

    NASA Technical Reports Server (NTRS)

    Meguro, Akira

    1993-01-01

    This paper describes the design, manufacture, and deployment tests of a modular mesh deployable antenna. Reaction forces and moments created by a mesh and cable network are estimated using CASA. Deployment analysis is carried out using DADS. Three types of deployable antenna modules are developed and fabricated. Their design approach and deployment characteristics are also presented. Ground deployment tests are performed to verify design criteria.

  17. Remote Viewing End Effectors for Light Duty Utility Arm Robot (U)

    SciTech Connect

    Heckendorn, F.M.; Robinson, C.W.; Haynes, H.B.; Anderosn, E.K.; Pardini, A.F.

    1996-11-04

    The Robotics Development Groups at the Savannah River Site (SRS) and at the Hanford site have developed remote video and photography systems for deployment in underground radioactive-waste storage tanks at the Department of Energy (DOE) sites as a part of the Office of Science and Technology (OST) program within DOE. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and out of the tank, with all viewing functions remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Only the remote video systems are discussed in this paper.

  18. Hybrid Deployable Foam Antennas and Reflectors

    NASA Technical Reports Server (NTRS)

    Rivellini, Tommaso; Willis, Paul; Hodges, Richard; Spitz, Suzanne

    2006-01-01

    Hybrid deployable radio antennas and reflectors of a proposed type would feature rigid narrower apertures plus wider adjoining apertures comprising reflective surfaces supported by open-cell polymeric foam structures (see figure). The open-cell foam structure of such an antenna would be compressed for compact stowage during transport. To initiate deployment of the antenna, the foam structure would simply be released from its stowage mechanical restraint. The elasticity of the foam would drive the expansion of the foam structure to its full size and shape. There are several alternatives for fabricating a reflective surface supported by a polymeric foam structure. One approach would be to coat the foam with a metal. Another approach would be to attach a metal film or a metal-coated polymeric membrane to the foam. Yet another approach would be to attach a metal mesh to the foam. The hybrid antenna design and deployment concept as proposed offers significant advantages over other concepts for deployable antennas: 1) In the unlikely event of failure to deploy, the rigid narrow portion of the antenna would still function, providing a minimum level of assured performance. In contrast, most other concepts for deploying a large antenna from compact stowage are of an "all or nothing" nature: the antenna is not useful at all until and unless it is fully deployed. 2) Stowage and deployment would not depend on complex mechanisms or actuators, nor would it involve the use of inflatable structures. Therefore, relative to antennas deployed by use of mechanisms, actuators, or inflation systems, this antenna could be lighter, cheaper, amenable to stowage in a smaller volume, and more reliable. An open-cell polymeric (e.g., polyurethane) foam offers several advantages for use as a compressible/expandable structural material to support a large antenna or reflector aperture. A few of these advantages are the following: 3) The open cellular structure is amenable to compression to a very

  19. Large inflatable deployable antenna flight experiment results

    NASA Astrophysics Data System (ADS)

    Freeland, R. E.; Bilyeu, G. D.; Veal, G. R.; Steiner, M. D.; Carson, D. E.

    Large space-based deployable antenna structures are needed for a variety of applications. However, recent reductions of antenna user resources have resulted in a real need for low-cost, large-size, light-weight, and reliable deployable space antenna structures. Fortunately, a new class of deployable space structures, called "inflatable space structures" is under development at L'Garde, Inc. The potential of this new concept was recognized by NASA who selected it for a flight experiment. The objective of the experiment was to develop a large, low-cost inflatable antenna structure and demonstrate its mechanical performance in the space environment. The carrier for this free-flying experiment was the STS-launched and recovered Spartan spacecraft. The experiment hardware consisted of a 14-meter diameter off-set parabolic reflector structure. The Spartan 207/IAE was successfully flown on STS 77, deployed on May 20, 1996 with Spartan recovery on May 21,1996. The basic antenna structure deployed successfully, but in an uncontrolled manner, that clearly demonstrated the robustness of this new type of space structure. The low cost of the flight antenna structure hardware and the outstanding mechanical packaging demonstrated on orbit clearly validated the potential of this new class of space structure for enabling new, low-cost missions.

  20. Environmental issues affecting clean coal technology deployment

    SciTech Connect

    Miller, M.J.

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  1. Mesh deployable antenna mechanics testing method

    NASA Astrophysics Data System (ADS)

    Jiang, Li

    Rapid development in spatial technologies and continuous expansion of astronautics applications require stricter and stricter standards in spatial structure. Deployable space structure as a newly invented structural form is being extensively adopted because of its characteristic (i.e. deployability). Deployable mesh reflector antenna is a kind of common deployable antennas. Its reflector consists in a kind of metal mesh. Its electrical properties are highly dependent on its mechanics parameters (including surface accuracy, angle, and position). Therefore, these mechanics parameters have to be calibrated. This paper presents a mesh antenna mechanics testing method that employs both an electronic theodolite and a laser tracker. The laser tracker is firstly used to measure the shape of radial rib deployable antenna. The measurement data are then fitted to a paraboloid by means of error compensation. Accordingly, the focus and the focal axis of the paraboloid are obtained. The following step is to synchronize the coordinate systems of the electronic theodolite and the measured antenna. Finally, in a microwave anechoic chamber environment, the electromechanical axis is calibrated. Testing results verify the effectiveness of the presented method.

  2. Multifunctional Deployment Hinges Rigidified by Ultraviolet

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Simburger, Edward J.; Matusmoto, James; Giants, Thomas W.; Garcia, Alexander; Perry, Alan; Rawal, Suraj; Marshall, Craig; Lin, John Kun Hung; Day, Jonathan Robert; Scarborough, Stephen Emerson

    2005-01-01

    Multifunctional hinges have been developed for deploying and electrically connecting panels comprising planar arrays of thin-film solar photovoltaic cells. In the original intended application of these hinges, the panels would be facets of a 32-sided (and approximately spherical) polyhedral microsatellite (see figure), denoted a PowerSphere, that would be delivered to orbit in a compact folded configuration, then deployed by expansion of gas in inflation bladders. Once deployment was complete, the hinges would be rigidified to provide structural connections that would hold the panels in their assigned relative positions without backlash. Such hinges could also be used on Earth for electrically connecting and structurally supporting solar panels that are similarly shipped in compact form and deployed at their destinations. As shown in section A-A in the figure, a hinge of this type is partly integrated with an inflation bladder and partly integrated with the frame of a solar panel. During assembly of the hinge, strip extensions from a flexible circuit harness on the bladder are connected to corresponding thin-film conductors on the solar panel by use of laser welding and wrap-around contacts. The main structural component of the hinge is a layer of glass fiber impregnated with an ultraviolet-curable resin. After deployment, exposure to ultraviolet light from the Sun cures the resin, thereby rigidifying the hinge.

  3. Characterization of Vegetation using the UC Davis Remote Sensing Testbed

    NASA Astrophysics Data System (ADS)

    Falk, M.; Hart, Q. J.; Bowen, K. S.; Ustin, S. L.

    2006-12-01

    Remote sensing provides information about the dynamics of the terrestrial biosphere with continuous spatial and temporal coverage on many different scales. We present the design and construction of a suite of instrument modules and network infrastructure with size, weight and power constraints suitable for small scale vehicles, anticipating vigorous growth in unmanned aerial vehicles (UAV) and other mobile platforms. Our approach provides the rapid deployment and low cost acquisition of high aerial imagery for applications requiring high spatial resolution and revisits. The testbed supports a wide range of applications, encourages remote sensing solutions in new disciplines and demonstrates the complete range of engineering knowledge required for the successful deployment of remote sensing instruments. The initial testbed is deployed on a Sig Kadet Senior remote controlled plane. It includes an onboard computer with wireless radio, GPS, inertia measurement unit, 3-axis electronic compass and digital cameras. The onboard camera is either a RGB digital camera or a modified digital camera with red and NIR channels. Cameras were calibrated using selective light sources, an integrating spheres and a spectrometer, allowing for the computation of vegetation indices such as the NDVI. Field tests to date have investigated technical challenges in wireless communication bandwidth limits, automated image geolocation, and user interfaces; as well as image applications such as environmental landscape mapping focusing on Sudden Oak Death and invasive species detection, studies on the impact of bird colonies on tree canopies, and precision agriculture.

  4. Symmetry properties in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.; Li, F. K.

    1992-01-01

    This paper presents the relations among polarimetric backscattering coefficients from the viewpoint of symmetry groups. Symmetry of geophysical media encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered for both reciprocal and nonreciprocal cases. On the basis of the invariance under symmetry transformations in the linear polarization basis, the scattering coefficients are related by a set of equations which restrict the number of independent parameters in the polarimetric covariance matrix. The properties derived under these transformations are general and apply to all scattering mechanisms in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the derived symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is discussed. As a practical application, the results from this paper provide new methods for the external calibration of polarimetric radars without the deployment of man-made calibration targets.

  5. Analyses of a new simplified large deployable reflector structure

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Chen, Mei; He, Jie

    New large deployable mesh reflectors are frequently used recently. Here we propose a new simplified large deployable reflector structure, with lower surface density and better package ratio both in radial direction and in height direction. Its surface modeling manner is fairly simple. Conceptual design of such a new simplified large deployable reflector structure is described. Deploying ability analyses of the structure with 30m diameter show that the structure can be deployed successfully. Surface precision analyses of the deployed structure show that it has potential to reach surface precision demand. A deploying test of a small deployable model with 3m diameter shows the deploying ability of the backbone. Such a new simplified large deployable reflector structure has potential to be used in future large deployable reflectors in space applications.

  6. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, Allan M.

    1997-01-01

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.

  7. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, A.M.

    1997-12-09

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user`s local host, thereby providing ease of use and minimal software maintenance for users of that remote service. 16 figs.

  8. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, Allan M.

    1996-01-01

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.

  9. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, Allan M.

    1999-01-01

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.

  10. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, A.M.

    1996-08-06

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user`s local host, thereby providing ease of use and minimal software maintenance for users of that remote service. 16 figs.

  11. Deployment of human-machine dialogue systems.

    PubMed Central

    Roe, D B

    1995-01-01

    The deployment of systems for human-to-machine communication by voice requires overcoming a variety of obstacles that affect the speech-processing technologies. Problems encountered in the field might include variation in speaking style, acoustic noise, ambiguity of language, or confusion on the part of the speaker. The diversity of these practical problems encountered in the "real world" leads to the perceived gap between laboratory and "real-world" performance. To answer the question "What applications can speech technology support today?" the concept of the "degree of difficulty" of an application is introduced. The degree of difficulty depends not only on the demands placed on the speech recognition and speech synthesis technologies but also on the expectations of the user of the system. Experience has shown that deployment of effective speech communication systems requires an iterative process. This paper discusses general deployment principles, which are illustrated by several examples of human-machine communication systems. Images Fig. 1 PMID:7479719

  12. Deployment Instabilities of Lobed-Pumpkin Balloon

    NASA Astrophysics Data System (ADS)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  13. Thermal static bending of deployable interlocked booms

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L.; Predmore, R. E.

    1973-01-01

    Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.

  14. Deployment of Galileo and the IUS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Galileo spacecraft and its Inertial Upper Stage (IUS) booster were deployed from the cargo bay of STS-34 Atlantis. Deployment occurred at 7:15 P.M. EDT on October 18, 1989. Beginning an hour after deployment, two rocket stages of the IUS fired in succession. Galileo separated from the IUS' second stage at 9:05 P.M. and began its ballistic flight to Venus for the first of three gravity-assisted flybys, which will take Galileo to Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA'is Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  15. Deploying Darter A Cray XC30 System

    SciTech Connect

    Fahey, Mark R; Budiardja, Reuben D; Crosby, Lonnie D; McNally, Stephen T

    2014-01-01

    TheUniversityofTennessee,KnoxvilleacquiredaCrayXC30 supercomputer, called Darter, with a peak performance of 248.9 Ter- aflops. Darter was deployed in late March of 2013 with a very aggressive production timeline - the system was deployed, accepted, and placed into production in only 2 weeks. The Spring Experiment for the Center for Analysis and Prediction of Storms (CAPS) largely drove the accelerated timeline, as the experiment was scheduled to start in mid-April. The Consortium for Advanced Simulation of Light Water Reactors (CASL) project also needed access and was able to meet their tight deadlines on the newly acquired XC30. Darter s accelerated deployment and op- erations schedule resulted in substantial scientific impacts within the re- search community as well as immediate real-world impacts such as early severe tornado warnings

  16. Deployment dynamics and control of large-scale flexible solar array system with deployable mast

    NASA Astrophysics Data System (ADS)

    Li, Hai-Quan; Liu, Xiao-Feng; Guo, Shao-Jing; Cai, Guo-Ping

    2016-10-01

    In this paper, deployment dynamics and control of large-scale flexible solar array system with deployable mast are investigated. The adopted solar array system is introduced firstly, including system configuration, deployable mast and solar arrays with several mechanisms. Then dynamic equation of the solar array system is established by the Jourdain velocity variation principle and a method for dynamics with topology changes is introduced. In addition, a PD controller with disturbance estimation is designed to eliminate the drift of spacecraft mainbody. Finally the validity of the dynamic model is verified through a comparison with ADAMS software and the deployment process and dynamic behavior of the system are studied in detail. Simulation results indicate that the proposed model is effective to describe the deployment dynamics of the large-scale flexible solar arrays and the proposed controller is practical to eliminate the drift of spacecraft mainbody.

  17. Implementation of IP Telemetry in Support of Portable Deployments for Earthquake Response

    NASA Astrophysics Data System (ADS)

    Edwards, N.; Torrisi, J.; Austin, W.; Smith, K. D.; Biasi, G.; Anooshehpoor, R.; Slater, D.

    2008-12-01

    IP spread spectrum radios have revolutionized the operation of remote seismic networks. In two separate deployments this year, the Nevada Seismological Laboratory implemented 900 MHz point-to-multipoint IP radio systems for portable seismographs in response to two important Nevada earthquake sequences: the Mw 6.0 event that struck Wells on February 21, 2008; and an energetic earthquake swarm in urban Reno that began in mid-February (mainshock Mw 5.0, April 26, 2008, 06:40 UTC). In cooperation with the USGS, ten portable stations were deployed in the Wells area response. Also, 10 IRIS RAMP instruments were included in the urban Reno deployment. These instruments were outfitted with Motorola Canopy radios and integrated with the regional telemetry infrastructure. As configured, these radios will support a large deployment, high sample rate dataloggers, and a flexible network topology with a working range of at least 30 miles. Real time IP telemetry can improve portable network performance in the following areas: 1. Simplified data flow- Real-time data from portable deployments is integrated with the regional and national networks. Portable instrument data does not have to be retrieved from the field, extracted from mass storage, and separately incorporated into data archives. The need to reanalyze events as locally-recorded portable data becomes available is eliminated. 2. Improved real-time products- Real-time data from portable stations can be used to improve the precision and timeliness of data products (e.g., ShakeMap) for the public, the local and national media, and emergency managers. 3. State-of-health monitoring- Systems (power, memory, etc.) can be monitored, allowing for less frequent and better targeted maintenance visits. The monitoring of these parameters can then be assumed by software packages such as Nagios or SeisNetWatch. 4. Remote management- Datalogger parameters can be managed remotely. The radios can also be remotely managed, allowing for

  18. Clevis joint for deployable space structures

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D. (Inventor)

    1990-01-01

    This invention relates generally to pin clevis joints, and more particularly, to zero play pin clevis joints for connecting structural members of a deployable space structure. A joint includes a pin, a tang, and a shackle. The pin is tapered at the same angle as the bores extending through the projections of the shackle and the tang. A spring washer biases the tang onto the tapered sidewall of the pin. The invention solves the free play problem associated with deployable space structures by using a tapered pin which is held in tapered holes by the spring washers.

  19. Carousel deployment mechanism for coilable lattice truss

    NASA Technical Reports Server (NTRS)

    Warden, Robert M.; Jones, P. Alan

    1989-01-01

    The development of a mechanism for instrumentation and solar-array deployment is discussed. One part of the technology consists of a smart motor which can operate in either an analog mode to provide high speed and torque, or in the stepper mode to provide accurate positioning. The second technology consists of a coilable lattice mast which is deployed and rotated about its axis with a common drive system. A review of the design and function of the system is presented. Structural and thermal test data are included.

  20. Magnetometer deployment mechanism for Pioneer Venus

    NASA Technical Reports Server (NTRS)

    Townsend, W. L.

    1977-01-01

    A three segment, 15-foot boom mechanism was developed to deploy magnetometers from the Pioneer Venus orbiter spinning shelf. The stowage mechanism is designed to contain the magnetometers during launch and to deploy these instruments by centrifugal force upon pyrotechnic release. Unique graphite-epoxy boom segments are used for a lightweight design with sufficient strength to withstand a 7.5 g orbit insertion force while extended. The detailed design is described along with the test methods developed for qualification in a one-g field.

  1. Magnetometer deployment mechanism for Pioneer Venus

    NASA Technical Reports Server (NTRS)

    Townsend, W. L.

    1977-01-01

    A three segment, 15-foot boom mechanism was developed to deploy magnetometers from the Pioneer Venus orbiter spinning shelf. The stowage mechanism is designed to contain the magnetometers during launch and to deploy these instruments by centrifugal force upon pyrotechnic release. Unique graphite-epoxy boom segments are used for a lightweight design with sufficient strength to withstand a 7.5 g orbit insertion force while extended. The detailed design is described, along with the test methods developed for qualification in a one-g field.

  2. Proposal of honeycomb-based deployable breakwater

    NASA Astrophysics Data System (ADS)

    Asanuma, H.; Okabe, S.

    2016-04-01

    This paper describes development of a smart breakwater or river bank using honeycomb-like structure to be adaptive to change of water level. A designed cell is deformed using a tensile test machine, and the results show that the honeycomb cell can deploy up to double of is original height without plastic deformation and the deformation is reproducible. It is stacked up to twelve layers and similar performance can be found. In addition, a six-layer and double-row deployable model is prepared and it became clear that the model can change its height in proportion to the water height in the experimental range and successfully block the water.

  3. Exploring the Martian Highlands using a Rover-Deployed Ground Penetrating Radar

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schutz, A. E.; Campbell, B. A.

    2001-01-01

    The Martian highlands record a long and often complex history of geologic activity that has shaped the planet over time. Results of geologic mapping and new data from the Mars Global Surveyor spacecraft reveal layered surfaces created by multiple processes that are often mantled by eolian deposits. Knowledge of the near-surface stratigraphy as it relates to evolution of surface morphology will provide critical context for interpreting rover/lander remote sensing data and for defining the geologic setting of a highland lander. Rover-deployed ground penetrating radar (GPR) can directly measure the range and character of in situ radar properties, thereby helping to constrain near-surface geology and structure. As is the case for most remote sensing instruments, a GPR may not detect water unambiguously on Mars. Nevertheless, any local, near-surface occurrence of liquid water will lead to large, easily detected dielectric contrasts. Moreover, definition of stratigraphy and setting will help in evaluating the history of aqueous activity and where any water might occur and be accessible. GPR data can also be used to infer the degree of any post-depositional pedogenic alteration or weathering, thereby enabling assessment of pristine versus secondary morphology. Most importantly perhaps, GPR can provide critical context for other rover and orbital instruments/data sets. Hence, rover-deployment of a GPR deployment should enable 3-D mapping of local stratigraphy and could guide subsurface sampling.

  4. Computer Based Training: Field Deployable Trainer and Shared Virtual Reality

    NASA Technical Reports Server (NTRS)

    Mullen, Terence J.

    1997-01-01

    Astronaut training has traditionally been conducted at specific sites with specialized facilities. Because of its size and nature the training equipment is generally not portable. Efforts are now under way to develop training tools that can be taken to remote locations, including into orbit. Two of these efforts are the Field Deployable Trainer and Shared Virtual Reality projects. Field Deployable Trainer NASA has used the recent shuttle mission by astronaut Shannon Lucid to the Russian space station, Mir, as an opportunity to develop and test a prototype of an on-orbit computer training system. A laptop computer with a customized user interface, a set of specially prepared CD's, and video tapes were taken to the Mir by Ms. Lucid. Based upon the feedback following the launch of the Lucid flight, our team prepared materials for the next Mir visitor. Astronaut John Blaha will fly on NASA/MIR Long Duration Mission 3, set to launch in mid September. He will take with him a customized hard disk drive and a package of compact disks containing training videos, references and maps. The FDT team continues to explore and develop new and innovative ways to conduct offsite astronaut training using personal computers. Shared Virtual Reality Training NASA's Space Flight Training Division has been investigating the use of virtual reality environments for astronaut training. Recent efforts have focused on activities requiring interaction by two or more people, called shared VR. Dr. Bowen Loftin, from the University of Houston, directs a virtual reality laboratory that conducts much of the NASA sponsored research. I worked on a project involving the development of a virtual environment that can be used to train astronauts and others to operate a science unit called a Biological Technology Facility (BTF). Facilities like this will be used to house and control microgravity experiments on the space station. It is hoped that astronauts and instructors will ultimately be able to share

  5. Field-Deployable Acoustic Digital Systems for Noise Measurement

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  6. Remote reset circuit

    DOEpatents

    Gritzo, Russell E.

    1987-01-01

    A remote reset circuit acts as a stand-alone monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients.

  7. Remote reset circuit

    DOEpatents

    Gritzo, R.E.

    1985-09-12

    A remote reset circuit acts as a stand-along monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients. 4 figs.

  8. A remote laboratory for USRP-based software defined radio

    NASA Astrophysics Data System (ADS)

    Gandhinagar Ekanthappa, Rudresh; Escobar, Rodrigo; Matevossian, Achot; Akopian, David

    2014-02-01

    Electrical and computer engineering graduates need practical working skills with real-world electronic devices, which are addressed to some extent by hands-on laboratories. Deployment capacity of hands-on laboratories is typically constrained due to insufficient equipment availability, facility shortages, and lack of human resources for in-class support and maintenance. At the same time, at many sites, existing experimental systems are usually underutilized due to class scheduling bottlenecks. Nowadays, online education gains popularity and remote laboratories have been suggested to broaden access to experimentation resources. Remote laboratories resolve many problems as various costs can be shared, and student access to instrumentation is facilitated in terms of access time and locations. Labs are converted to homeworks that can be done without physical presence in laboratories. Even though they are not providing full sense of hands-on experimentation, remote labs are a viable alternatives for underserved educational sites. This paper studies remote modality of USRP-based radio-communication labs offered by National Instruments (NI). The labs are offered to graduate and undergraduate students and tentative assessments support feasibility of remote deployments.

  9. Design, Implementation and Deployment of PAIRwise

    ERIC Educational Resources Information Center

    Knight, Allan; Almeroth, Kevin; Bimber, Bruce

    2008-01-01

    Increased access to the Internet has dramatically increased the sources from which students can deliberately or accidentally copy information. This article discusses our motivation to design, implement, and deploy an Internet based plagiarism detection system, called PAIRwise, to address this growing problem. We give details as to how we detect…

  10. Military Deployment and Elementary Student Achievement

    ERIC Educational Resources Information Center

    Phelps, Terri; Dunham, Mardis; Lyons, Robert

    2010-01-01

    This study investigated the impact that military deployment has upon academic achievement of elementary school students. TerraNova test scores of 137 fourth and fifth grade students in two elementary schools with a high proportion of military dependent children were examined for two consecutive years. Although the academic test performance fell…

  11. Perception for a large deployable reflector telescope

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. M.; Swanson, P. N.; Meinel, A. B.; Meinel, M. P.

    1984-01-01

    Optical science and technology concepts for a large deployable reflector for far-infrared and submillimeter astronomy from above the earth's atmosphere are discussed. Requirements given at the Asilomar Conference are reviewed. The technical challenges of this large-aperture (about 20-meter) telescope, which will be diffraction limited in the infrared, are highlighted in a brief discussion of one particular configuration.

  12. Diogenes, Dogfaced Soldiers, and Deployment Music Videos

    ERIC Educational Resources Information Center

    Carter, Geoffrey; Williamson, Bill

    2010-01-01

    This webtext explores the cynical/kynical humor of soldier videos, suggesting that amateur videos paradoxically both undercut authority and honor effective leaders, both make light of and also publicly reveal deployment hardships, both distance the performers from military groupthink and celebrate unit camaraderie.

  13. Educational Decentralization and Deployment of Physician's Assistants.

    ERIC Educational Resources Information Center

    Fowkes, Virginia Kliner; And Others

    1983-01-01

    A community-based educational network was established to improve the deployment of physicians's assistants away from the original site of training in California's San Francisco Bay Area. The graduates' practice locations for a 7-year period was compared before and after the decentralization of the program. (Author/MLW)

  14. Dispensing system eliminates torsion in deployed hoses

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Dispensing system uses a rotating drum, transfer arm, and stationary drum to deploy, reel in, and store an attached hose. This system which eliminates torsion and minimizes strain and wear of flexible hoses, is used for handling flexible cables that have one end permanently attached to an outlet or connector.

  15. Specific traces in stun gun deployment.

    PubMed

    Schmiederer, Bert; Du Chesne, Alfred; Schmidt, Peter Fritz; Brinkmann, Bernd

    2005-07-01

    Stun guns are electric shocking devices that can be deployed as defensive or offensive weapons. The aim of this study was the identification of several types of trace evidence for corroborating deployment and providing clues to the weapon actually used. In a series of some 250 tests, the after-effects of firing a stun gun were studied under the differential influence of factors, such as time duration, distance from target, and bare skin vs clothing as target surface. Examination with scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDS) demonstrated the presence of metallic deposits corresponding to the electrodes of the device used. The observed differences in the number of these pellets were related to the length of deployment in seconds and to the distance of the weapon from the target surface. Longer duration of firing was consistently associated with a larger number of metallic deposits. Elemental composition of the latter provided clues to the type of device used and its current status in terms of wear and tear. Further trace evidence we examined included craters on the target surface and their pattern of dissemination on human skin, textiles, and leather. It is concluded that the use of carbon tabs for examination with SEM/EDS offers a practicable method for collecting trace material following stun gun deployment. Important groups of trace evidence do exist, and their collection and examination appear feasible.

  16. Laser remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1987-01-01

    The properties and advantages of remote sensing lasers are discussed. The theory of nonresonant techniques, which is based on the lidar equation and elastic backscatter, and their applications to aerosol and meteorological parameters are examined. The characteristics and applications of the differential absorption lidar technique, the fluorescence technique, and Raman scattering are described. The use of a laser heterodyne radiometer and fiber optics for remote sensing is studied. Future developments in the field of remote sensing, in particular the improvement of laser sources, the fabrication of compact remote sensing instruments, and space-borne applications for lidar, are considered.

  17. Remote measurement of pollution

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A summary of the major conclusions and recommendations developed by the panels on gaseous air pollution, water pollution, and particulate air pollution is presented. It becomes evident that many of the trace gases are amenable to remote sensing; that certain water pollutants can be measured by remote techniques, but their number is limited; and that a similar approach to the remote measurement of specific particulate pollutants will follow only after understanding of their physical, chemical, and radiative properties is improved. It is also clear that remote sensing can provide essential information in all three categories that can not be obtained by any other means.

  18. Advanced Remote Sensing Research

    USGS Publications Warehouse

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  19. Very Low Head Turbine Deployment in Canada

    NASA Astrophysics Data System (ADS)

    Kemp, P.; Williams, C.; Sasseville, Remi; Anderson, N.

    2014-03-01

    The Very Low Head (VLH) turbine is a recent turbine technology developed in Europe for low head sites in the 1.4 - 4.2 m range. The VLH turbine is primarily targeted for installation at existing hydraulic structures to provide a low impact, low cost, yet highly efficient solution. Over 35 VLH turbines have been successfully installed in Europe and the first VLH deployment for North America is underway at Wasdell Falls in Ontario, Canada. Deployment opportunities abound in Canada with an estimated 80,000 existing structures within North America for possible low-head hydro development. There are several new considerations and challenges for the deployment of the VLH turbine technology in Canada in adapting to the hydraulic, environmental, electrical and social requirements. Several studies were completed to determine suitable approaches and design modifications to mitigate risk and confirm turbine performance. Diverse types of existing weirs and spillways pose certain hydraulic design challenges. Physical and numerical modelling of the VLH deployment alternatives provided for performance optimization. For this application, studies characterizing the influence of upstream obstacles using water tunnel model testing as well as full-scale prototype flow dynamics testing were completed. A Cold Climate Adaptation Package (CCA) was developed to allow year-round turbine operation in ice covered rivers. The CCA package facilitates turbine extraction and accommodates ice forces, frazil ice, ad-freezing and cold temperatures that are not present at the European sites. The Permanent Magnet Generator (PMG) presents some unique challenges in meeting Canadian utility interconnection requirements. Specific attention to the frequency driver control and protection requirements resulted in a driver design with greater over-voltage capability for the PMG as well as other key attributes. Environmental studies in Europe included fish friendliness testing comprised of multiple in

  20. Telemedicine deployments within NATO military forces: a data analysis of current and projected capabilities.

    PubMed

    Lam, David M; Poropatich, Ronald K

    2008-11-01

    Since the creation of the NATO Telemedicine Expert Panel (now renamed the TMED Expert Team) in 2000, when few nations had deployed telemedicine systems to support military field operations, this group has been encouraging the nations to deploy telemedicine (TMED) in support of their forces, and to write the use of TMED into NATO doctrine. This has been a relatively successful effort, and TMED is increasingly being used within the military medical structures of some NATO and Partnership for Peace nations to provide medical care to deployed military personnel. We report the results of a multinational survey of current and projected availability of various telemedicine modalities within the NATO medical services that are participating in the work of the TMED expert team (ET). Though only a "snapshot in time," and not representing all NATO nations, this is the first attempt to identify both current and planned TMED utilization within the multinational military medical community. Participating nations report that communication systems now in place at the lowest levels of medical support increasingly enable the routine use of Web-based teleconsultation modalities. Teleradiology is now being seen as the de facto standard for imaging support. While a number of nations report they have deployed capabilities for obtaining clinical consultations at a distance, most responding nations do not have a formal organizational structure to control and manage remote consultation and rely on informal clinical relationships (e.g., requesting consults from the deployed clinician's home hospital or from friends). Military electronic health records are in use by only a minority of nations and fewer still are capable of civilian interface. Less common TMED capabilities (e.g., tele-microbiology, tele-pathology, tele-medical maintenance) are being increasingly used, but are still rarely deployed. As a result of the findings of this survey, specific recommendations for expanding the use of

  1. Report on the acoustic network arctic deployment

    NASA Astrophysics Data System (ADS)

    Johnson, Mark; Herold, David; Catipovic, Josko

    1995-03-01

    This report describes the March 1994 Arctic deployment undertaken by the Acoustic Telemetry Group of WHOI. The deployment was a part of the 1994 Sea Ice Mechanics Initiative (SIMI) project and was based at the west SIMI camp, approximately 150 Nautical miles north-east of Prudhoe Bay, Alaska. The goal of the deployment was to install a network of six high-performance acoustic modems, developed at WHOI, and to obtain a data set demonstrating the communications and acoustic monitoring capabilities of the network. The six modems in the network were deployed over an area of 22 square km and communicated via radio Ethernet with a computer at the SIMI camp. Each modem had a global positioning system, an acoustic source and an 8 element receiving array. The network was operated in a round-robin broadcast mode (i.e., each modern in turn transmitted a packet of data while the others received). The transmissions were 5000 bits-per-second QPSK with a 15kHz carrier. An extensive data set including raw acoustic data, source localization information, and modem position was collected during the deployment. An additional function of the acoustic network was to communicate with, and track, the Odyssey, an autonomous underwater vehicle operated by the Mff group at the SIMI camp. To this end, the Odyssey was equipped with a Datasonics modem configured for periodic QPSK transmission to the network. A data set was obtained from which both the up-link communication and localization capabilities of the network can be determined.

  2. A concept study of a remotely piloted vehicle for Mars exploration

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Candidate configurations are discussed for shuttle-transported, spacecraft-deployed remotely piloted vehicles having individual aeroshells, parachutes, and scientific payloads for Mars exploration. Topics covered include aerodynamics; powerplants; structural materials; deployment and descent interface systems; payloads; secondary power; thermal control; navigation, guidance and control, communications, weight and center of gravity; performance; and flight testing. The advantages of the recommended electric-powered cruiser/lander configuration are summarized.

  3. FIRRE Remote Sensor Station (RSS)

    NASA Astrophysics Data System (ADS)

    Cruickshanks, J. R.; Wickstrand, E. L.; Kramer, T. A.; Laird, R. T.; Barngrover, C. M.; Gardner, C. W.

    2006-05-01

    The Family of Integrated Rapid Response Equipment (FIRRE) is an advanced technology demonstration program intended to develop a family of affordable, scalable, modular, and logistically supportable unmanned systems to meet urgent operational force protection needs and requirements worldwide. The near-term goal is to provide the best available unmanned ground systems to the warfighter in Iraq and Afghanistan. The overarching long-term goal is to develop a fully-integrated, layered force protection system of systems for our forward deployed forces that is networked with the future force C4ISR systems architecture. The intent of the FIRRE program is to reduce manpower requirements, enhance force protection capabilities, and reduce casualties through the use of unmanned systems. FIRRE is sponsored by the Office of the Under Secretary of Defense, Acquisitions, Technology and Logistics (OUSD AT&L), and is managed by the Product Manager, Force Protection Systems (PM-FPS). The Remote Sensor Station (RSS) provides FIRRE with the ability to remote (or extend the range of) manned/unmanned sensors. The RSS consists of three primary components: (1) an actively cooled and hermetically sealed (NEMA-4X) electronics enclosure, (2) a 22' telescoping tower, (3) and the PM-MEP 531A 2KW GENSET. The current configuration supports a Digital Imaging Infrared (DII) DI-5000 thermal imaging system/visual imaging system (TIS/VIS), a Syracuse Research Corporation (SRC) PPS-5D ground surveillance radar (GSR), an AN/PRS-9 (BAIS) unmanned ground sensor (UGS) receiver, an Intuicom Military Navigator II (MILNAVII) data link radio, and a DTC Communications Palladium 12000 audio/video (A/V) radio. The electronics box is insulated with a radiant barrier and fitted with a EIC Solutions 1500 BTU solid state thermoelectric cooler (TEC) capable of maintaining a safe operating temperature in extreme conditions (<120° Fahrenheit).

  4. NASA Remote Sensing Research as Applied to Archaeology

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.; Thomas, Michael R.

    2002-01-01

    The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.

  5. Deployment of the National Transparent Optical Network around the San Francisco Bay Area

    SciTech Connect

    McCammon, K.; Haigh, R.; Armstrong, G.

    1996-06-01

    We report on the deployment and initial operation of the National Transparent Optical Network, an experimental WDM network testbed around the San Francisco Bay Area, during the Optical Fiber Conference (OFC`96) held in San Jose, CA. The deployment aspects of the physical plant, optical and SONET layers are examined along with a discussion of broadband applications which utilized the network during the OFC`96 demonstration. The network features dense WDM technology, transparent optical routing technology using acousto- optic tunable filter based switches, and network modules with add/drop, multicast, and wavelength translation capabilities. The physical layer consisted of over 300 km of Sprint and Pacific Bell conventional single mode fiber which was amplified with I I optical amplifiers deployed in pre-amp, post-amp, and line amp configurations. An out-of-band control network provided datacom channels from remote equipment sites to the SONET network manager deployed at the San Jose Convention Center for the conference. Data transport over five wavelengths was achieved in the 1550 nm window using a variety of signal formats including analog and digital signal transmission on different wavelengths on the same fiber. The network operated throughout the week of OFC`96 and is still in operation today.

  6. EDITORIAL Wireless sensor networks: design for real-life deployment and deployment experiences Wireless sensor networks: design for real-life deployment and deployment experiences

    NASA Astrophysics Data System (ADS)

    Gaura, Elena; Roedig, Utz; Brusey, James

    2010-12-01

    Wireless sensor networks (WSNs) are among the most promising technologies of the new millennium. The opportunities afforded by being able to program networks of small, lightweight, low-power, computation- and bandwidth-limited nodes have attracted a large community of researchers and developers. However, the unique set of capabilities offered by the technology produces an exciting but complex design space, which is often difficult to negotiate in an application context. Deploying sensing physical environments produces its own set of challenges, and can push systems into failure modes, thus revealing problems that can be difficult to discover or reproduce in simulation or the laboratory. Sustained efforts in the area of wireless networked sensing over the last 15 years have resulted in a large number of theoretical developments, substantial practical achievements, and a wealth of lessons for the future. It is clear that in order to bridge the gap between (on the one hand) visions of very large scale, autonomous, randomly deployed networks and (on the other) the actual performance of fielded systems, we need to view deployment as an essential component in the process of developing sensor networks: a process that includes hardware and software solutions that serve specific applications and end-user needs. Incorporating deployment into the design process reveals a new and different set of requirements and considerations, whose solutions require innovative thinking, multidisciplinary teams and strong involvement from end-user communities. This special feature uncovers and documents some of the hurdles encountered and solutions offered by experimental scientists when deploying and evaluating wireless sensor networks in situ, in a variety of well specified application scenarios. The papers specifically address issues of generic importance for WSN system designers: (i) data quality, (ii) communications availability and quality, (iii) alternative, low-energy sensing

  7. Juneau Airport Doppler Lidar Deployment: Extraction of Accurate Turbulent Wind Statistics

    NASA Technical Reports Server (NTRS)

    Hannon, Stephen M.; Frehlich, Rod; Cornman, Larry; Goodrich, Robert; Norris, Douglas; Williams, John

    1999-01-01

    A 2 micrometer pulsed Doppler lidar was deployed to the Juneau Airport in 1998 to measure turbulence and wind shear in and around the departure and arrival corridors. The primary objective of the measurement program was to demonstrate and evaluate the capability of a pulsed coherent lidar to remotely and unambiguously measure wind turbulence. Lidar measurements were coordinated with flights of an instrumented research aircraft operated by representatives of the University of North Dakota (UND) under the direction of the National Center for Atmospheric Research (NCAR). The data collected is expected to aid both turbulence characterization as well as airborne turbulence detection algorithm development activities within NASA and the FAA. This paper presents a summary of the deployment and results of analysis and simulation which address important issues regarding the measurement requirements for accurate turbulent wind statistics extraction.

  8. STS-48 ESC closeup of UARS solar array (SA) and SA mechanism, pre-deploy

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An extremely closeup view shows the Upper Atmosphere Research Satellite (UARS) solar array (SA) and SA mechanism prior to deploy of the satellite. UARS, grappled by the remote manipulator system (RMS) end effector (out of frame), is undergoing STS-48 pre-deployment checkout above the payload bay (PLB) of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. OV-103's vertical stabilizer can be seen in between the UARS hardware. This view demonstrates the capabilities of the Electronic Still Camera (ESC) to provide high resolution views of hardware for review by ground controllers. This ESC image was documented as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission.

  9. Satellite Sensornet Gateway Technology Infusion Through Rapid Deployments for Environmental Sensing

    NASA Astrophysics Data System (ADS)

    Benzel, T.; Silva, F.; Deschon, A.; Ye, W.; Cho, Y.

    2008-12-01

    The Satellite Sensornet Gateway (SSG) is an ongoing ESTO Advanced Information Systems Technology project, at the University of Southern California. The major goal of SSG is to develop a turnkey solution for building environmental observation systems based on sensor networks. Our system has been developed through an iterative series of deployment-driven design, build, test, and revise which maximizes technology infusion to the earth scientist. We have designed a robust and flexible sensor network called Sensor Processing and Acquisition Network (SPAN). Our SPAN architecture emphasizes a modular and extensible design, such that core building blocks can be reused to develop different scientific observation systems. To support rapid deployment at remote locations, we employ satellite communications as the backhaul to relay in-situ sensor data to a central database. To easily support various science applications, we have developed a unified sensor integration framework that allows streamlined integration of different sensors to the system. Our system supports heterogeneous sets of sensors, from industry-grade products to research- specific prototypes. To ensure robust operation in harsh environments, we have developed mechanisms to monitor system status and recover from potential failures along with additional remote configuration and QA/QC functions. Here we briefly describe the deployments, the key science missions of the deployments and the role that the SSG technology played in each mission. We first deployed our SSG technology at the James Reserve in February 2007. In a joint deployment with the NEON project, SDSC, and UC Riverside, we set up a meteorological station, using a diverse set of sensors, with the objective of validating our basic technology components in the field. This system is still operational and streaming live sensor data. At Stunt Ranch, a UC Reserve near Malibu, CA, we partnered with UCLA biologist Phillip Rundel in order to study the drought

  10. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.; Ericson, Milton Nance; Baba, Justin S.; Wilgen, John B.; Evans, Boyd Mccutchen

    2016-05-10

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  11. Land Remote Sensing Overview

    NASA Technical Reports Server (NTRS)

    Byrnes, Ray

    2007-01-01

    A general overview of the USGS land remote sensing program is presented. The contents include: 1) Brief overview of USGS land remote sensing program; 2) Highlights of JACIE work at USGS; 3) Update on NASA/USGS Landsat Data Continuity Mission; and 4) Notes on alternative data sources.

  12. Remote sensing applications program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The activities of the Mississippi Remote Sensing Center are described in addition to technology transfer and information dissemination, remote sensing topics such as timber identification, water quality, flood prevention, land use, erosion control, animal habitats, and environmental impact studies are also discussed.

  13. Demystifying Remote Access

    ERIC Educational Resources Information Center

    Howe, Grant

    2009-01-01

    With money tight, more and more districts are considering remote access as a way to reduce expenses and budget information technology costs more effectively. Remote access allows staff members to work with a hosted software application from any school campus without being tied to a specific physical location. Each school can access critical…

  14. Remote Learning: Technologies & Opportunities.

    ERIC Educational Resources Information Center

    Turoff, Murray; Hiltz, Starr, Roxanne

    This discussion of the potential for computerized conferencing as the first cost effective technology for the delivery of a classroom environment in a remote learning situation begins by comparing remote learning modes and reviewing various educational experiments that have used the Electronic Information Exchange System (EIES) during the…

  15. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  16. APPLIED REMOTE SENSING

    EPA Science Inventory

    Remote Sensing is a scientific discipline of non-contact monitoring. It includes a range of technologies that span from aerial photography to advanced spectral imaging and analytical methods. This Session is designed to demonstrate contemporary practical applications of remote se...

  17. Simple models for the shuttle remote manipulator system

    NASA Technical Reports Server (NTRS)

    Fowler, W. T.; Tapley, B. D.; Schutz, B. E.

    1978-01-01

    The investigation is aimed at establishing a series of simple models which can be used to study the forces and moments which occur due to the reaction control system (RCS) jet plume firings during a deployment or retrieval of an IUS type payload. The models considered in this investigation are primarily planar in nature. In this study primary attention is given to the roles the payload play in determining the overall moments on the remote manipulator system arm.

  18. Remote sensing of wetlands

    NASA Technical Reports Server (NTRS)

    Roller, N. E. G.

    1977-01-01

    The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.

  19. Remote vehicle survey tool

    SciTech Connect

    Armstrong, G.A.; Burks, B.L.; Kress, R.L.; Wagner, D.G.; Ward, C.R.

    1993-05-01

    The Remote Vehicle Survey Tool (RVS7) is a color graphical display tool for viewing remotely acquired scientific data. The RVST displays the data in the form of a color two-dimensional world model map. The world model map allows movement of the remote vehicle to be tracked by the operator and the data from sensors to be graphically depicted in the interface. Linear and logarithmic meters, dual channel oscilloscopes, and directional compasses are used to display sensor information. The RVST is user-configurable by the use of ASCII text files. The operator can configure the RVST to work with any remote data acquisition system and teleoperated or autonomous vehicle. The modular design of the RVST and its ability to be quickly configured for varying system requirements make the RVST ideal for remote scientific data display in all environmental restoration and waste management programs.

  20. Remote vehicle survey tool

    SciTech Connect

    Armstrong, G.A.; Burks, B.L.; Kress, R.L. ); Wagner, D.G.; Ward, C.R. )

    1993-01-01

    The Remote Vehicle Survey Tool (RVS7) is a color graphical display tool for viewing remotely acquired scientific data. The RVST displays the data in the form of a color two-dimensional world model map. The world model map allows movement of the remote vehicle to be tracked by the operator and the data from sensors to be graphically depicted in the interface. Linear and logarithmic meters, dual channel oscilloscopes, and directional compasses are used to display sensor information. The RVST is user-configurable by the use of ASCII text files. The operator can configure the RVST to work with any remote data acquisition system and teleoperated or autonomous vehicle. The modular design of the RVST and its ability to be quickly configured for varying system requirements make the RVST ideal for remote scientific data display in all environmental restoration and waste management programs.

  1. Remote Monitor Alarm System

    NASA Technical Reports Server (NTRS)

    Stute, Robert A. (Inventor); Galloway, F. Houston (Inventor); Medelius, Pedro J. (Inventor); Swindle, Robert W. (Inventor); Bierman, Tracy A. (Inventor)

    1996-01-01

    A remote monitor alarm system monitors discrete alarm and analog power supply voltage conditions at remotely located communications terminal equipment. A central monitoring unit (CMU) is connected via serial data links to each of a plurality of remote terminal units (RTUS) that monitor the alarm and power supply conditions of the remote terminal equipment. Each RTU can monitor and store condition information of both discrete alarm points and analog power supply voltage points in its associated communications terminal equipment. The stored alarm information is periodically transmitted to the CMU in response to sequential polling of the RTUS. The number of monitored alarm inputs and permissible voltage ranges for the analog inputs can be remotely configured at the CMU and downloaded into programmable memory at each RTU. The CMU includes a video display, a hard disk memory, a line printer and an audio alarm for communicating and storing the alarm information received from each RTU.

  2. In-orbit deployment characteristics of large deployable antenna reflector onboard Engineering Test Satellite VIII

    NASA Astrophysics Data System (ADS)

    Meguro, Akira; Shintate, Kyoji; Usui, Motofumi; Tsujihata, Akio

    2009-11-01

    This paper describes design, ground testing, an in-orbit experiment, and a novel in-orbit operation for large deployable antenna reflectors (LDRs). Two LDRs (TX-LDR for transmitting and RX-LDR for receiving) are installed on Engineering Test Satellite VIII (ETS-VIII). The reflector design features that the antenna reflector whose aperture is 13 m in diameter (the mechanical dimension is 19m×17m) consists of 14 basic modules, and each basic module consists of a gold-plated molybdenum mesh, a system of cables, and a deployable frame structures. Several ground tests had been performed using a modular nature to advantage. Prior to the launch of ETS-VIII, we performed an in-orbit deployment experiment using LDREX-2 which consists of seven half-scale modules of LDR, to confirm evaluation accuracy. The LDREX-2 was launched by ARIANE 5 launch vehicle as a piggy-back payload. Deployment characteristics were measured to evaluate the accuracy of analytical prediction obtained by ground deployment testing. ETS-VIII was launched by H-IIA launch vehicle on 18 December 2006. After the successful injection into Geo Synchronous Orbit, the RX-LDR and the TX-LDR were successfully deployed on December 25th and 26th, respectively. We confirmed adequacy of the proposed design and ground verification methodology.

  3. OV-104's RMS releases Gamma Ray Observatory (GRO) during STS-37 deployment

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Atlantis', Orbiter Vehicle (OV) 104's, remote manipulator system (RMS) releases Gamma Ray Observatory (GRO) during STS-37 deployment. Visible on the GRO as it drifts away from the RMS end effector are the four complement instruments: the Energetic Gamma Ray Experiment (bottom); Imaging Compton Telescope (COMPTEL) (center); Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (at four corners). GRO's solar array (SA) panels are extended and are in orbit configuration. View was taken through aft flight deck window which reflects some of the crew compartment interior.

  4. OV-104's RMS releases Gamma Ray Observatory (GRO) during STS-37 deployment

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Atlantis', Orbiter Vehicle (OV) 104's, remote manipulator system (RMS) releases Gamma Ray Observatory (GRO) during STS-37 deployment. Visible on the GRO as it drifts away from the RMS end effector are the four complement instruments: the Energetic Gamma Ray Experiment (bottom); Imaging Compton Telescope (COMPTEL) (center); Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (at four corners). GRO's solar array (SA) panels are extended and are in orbit configuration. View was taken through aft flight deck overhead window W8 which reflects some of the crew compartment interior. A small section of the Earth's limb is visible in the corner of the window.

  5. STS-39 Commander Coats on OV-103's flight deck watches SPAS-II/IBSS deploy

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-39 Commander Michael L. Coats smiles as he watches the Shuttle Pallet Satellite II (SPAS-II) / Infrared Background Signature Survey (IBSS) spacecraft deployment through the aft flight deck windows while aboard Discovery, Orbiter Vehicle (OV) 103. The SPAS-II/IBSS spacecraft is visible through the overhead window W7 after its release from the remote manipulator system (RMS) end effector. The crewman optical alignment sight (COAS) is fastened to the sill of window W7. SPAS-II is a Strategic Defense Initiative Organization (SDIO).

  6. ROBOTICS IN HAZARDOUS ENVIRONMENTS - REAL DEPLOYMENTS BY THE SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Kriikku, E.; Tibrea, S.; Nance, T.

    2010-09-27

    The Research & Development Engineering (R&DE) section in the Savannah River National Laboratory (SRNL) engineers, integrates, tests, and supports deployment of custom robotics, systems, and tools for use in radioactive, hazardous, or inaccessible environments. Mechanical and electrical engineers, computer control professionals, specialists, machinists, welders, electricians, and mechanics adapt and integrate commercially available technology with in-house designs, to meet the needs of Savannah River Site (SRS), Department of Energy (DOE), and other governmental agency customers. This paper discusses five R&DE robotic and remote system projects.

  7. Capability 9.3 Assembly and Deployment

    NASA Technical Reports Server (NTRS)

    Dorsey, John

    2005-01-01

    Large space systems are required for a range of operational, commercial and scientific missions objectives however, current launch vehicle capacities substantially limit the size of space systems (on-orbit or planetary). Assembly and Deployment is the process of constructing a spacecraft or system from modules which may in turn have been constructed from sub-modules in a hierarchical fashion. In-situ assembly of space exploration vehicles and systems will require a broad range of operational capabilities, including: Component transfer and storage, fluid handling, construction and assembly, test and verification. Efficient execution of these functions will require supporting infrastructure, that can: Receive, store and protect (materials, components, etc.); hold and secure; position, align and control; deploy; connect/disconnect; construct; join; assemble/disassemble; dock/undock; and mate/demate.

  8. PEP Deployment and Bandwidth Management Issues

    NASA Astrophysics Data System (ADS)

    Younghusband, Charles; Slade, Peter; Weaver, Jeff

    This paper will discuss current deployment scenarios for Performance Enhancement Proxies (PEP) technologies in broadband satellite access systems from the perspective of one PEP technology provider. Recent improvements such as DVB-S2 can provide substantial gains at the link layer. In order to achieve further efficiency gains, the satellite industry is now forced to look elsewhere - namely other layers in the data communications network stack. Satellite terminal manufacturers are now moving beyond basic TCP acceleration techniques to more comprehensive optimization techniques that incorporate advances in data compression and flexibility for more deployment scenarios. Some of the advances for PEP technology are in part due to CPU and memory technology advances, resulting in increasingly affordable access to computing power, allowing PEP manufacturers deliver substantial performance and bandwidth savings gains.

  9. In Brief: Profiling floats fully deployed

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-11-01

    The Argo network of sensor-bearing profiling floats, which allows scientists to observe the basic physical state of the world's oceans, reached its full deployment of 3000 units on 1 November, according to the Argo steering committee. With the full deployment of these floats-which measure ocean water temperature, salinity, and velocity-data from every ocean region are available with an average coverage of one sensor per 3 degrees of latitude and longitude. The floats drift on ocean currents for 10 days, descend to up to 2000 meters in depth, and return to the surface to beam results to passing satellites. ``The climate science objectives that drive the Argo array require that we observe the global oceans indefinitely, so achieving the global array is merely the beginning of the observation period,'' said Dean Roemmich, cochairman of the Argo program steering committee and a physical oceanographer at the Scripps Institution of Oceanography.

  10. Advanced deployable reflectors for communications satellites

    NASA Astrophysics Data System (ADS)

    Lowe, Elvin; Josephs, Michael; Hedgepeth, John

    1993-02-01

    This paper discusses a concept for a deployable mesh reflector for large spacecraft antennas and the processes used in design, fabrication and testing. A set of overall reflector requirements such as stowed volume, deployed diameter and RF loss derived from system specifications are presented. The development of design and analysis tools to allow parametric studies such as facet size, number of ribs and number of rib segments is discussed. CATIA (a commercially available three-dimensional design and analysis tool) is used to perform kinematic analyses as well as to establish the database to be used by the several groups participating in the development is examined. Results of trade studies performed to reduce cost with minimum risk to product delivery are included. A thirty foot reflector has been built and tested.

  11. Deployable reflector configurations. [for space telescope

    NASA Technical Reports Server (NTRS)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    1983-01-01

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  12. Average deployments versus missile and defender parameters

    SciTech Connect

    Canavan, G.H.

    1991-03-01

    This report evaluates the average number of reentry vehicles (RVs) that could be deployed successfully as a function of missile burn time, RV deployment times, and the number of space-based interceptors (SBIs) in defensive constellations. Leakage estimates of boost-phase kinetic-energy defenses as functions of launch parameters and defensive constellation size agree with integral predictions of near-exact calculations for constellation sizing. The calculations discussed here test more detailed aspects of the interaction. They indicate that SBIs can efficiently remove about 50% of the RVs from a heavy missile attack. The next 30% can removed with two-fold less effectiveness. The next 10% could double constellation sizes. 5 refs., 7 figs.

  13. COSTAR GHRS m2 Mirror Arm Deployment

    NASA Astrophysics Data System (ADS)

    Troeltzsch, John

    1994-01-01

    The following activities will take place during this proposal. 1. Deploy the GHRS M2 Mirror Arm. This test requires a mix of real-time activities performed by the STOCC and stored command activities performed by the STSCI via SMS commanding. The activities in this proposal involve many COSTAR CARD items. This proposal requires careful attention during proposal implementation and execution to ensure the CARD is correctly implemented.

  14. Quality Function Deployment for Large Systems

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1992-01-01

    Quality Function Deployment (QFD) is typically applied to small subsystems. This paper describes efforts to extend QFD to large scale systems. It links QFD to the system engineering process, the concurrent engineering process, the robust design process, and the costing process. The effect is to generate a tightly linked project management process of high dimensionality which flushes out issues early to provide a high quality, low cost, and, hence, competitive product. A pre-QFD matrix linking customers to customer desires is described.

  15. The electron Echo 6 mechanical deployment systems

    NASA Technical Reports Server (NTRS)

    Meyers, S. C.; Steffen, J. E.; Malcolm, P. R.; Winckler, J. R.

    1984-01-01

    The Echo 6 sounding rocket payload was flown on a Terrier boosted Black Brant vehicle on March 30, 1983. The experiment requirements resulted in the new design of a rocket propelled Throw Away Detector System (TADS) with onboard Doppler radar, a free-flyer forward experiment designated the Plasma Diagnostic Package (PDP), and numerous other basic systems. The design, developmental testing, and flight preparations of the payload and the mechanical deployment systems are described.

  16. Reactor power system deployment and startup

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.; Nelin, C. J.; Britt, E. J.; Klein, G.

    1985-01-01

    This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.

  17. Intelligent transportation infrastructure deployment analysis system

    SciTech Connect

    Rathi, A.K.; Harding, J.A.

    1997-02-01

    Much of the work on Intelligent Transportation Systems (ITS) to date has emphasized technologies, standards/protocols, architecture, user services, core infrastructure requirements, and various other technical and institutional issues. ITS implementations in the United States and elsewhere in the world have demonstrated benefits in the areas of safety, productivity, efficiency, and environmental impact. However, quantitative benefits and satisfactory cost estimates are not available or cannot be derived for many components of the ITS, whether deployed individually or in some integrated fashion. The limitations of existing analysis and evaluation capabilities coupled with the lack of strong empirical evidence presents a major knowledge and data gap for infrastructure investment decisions involving ITS alternatives. This paper describes the over-arching issues and requirements associated with the analysis capabilities required for a systematic, faithful, and rigorous evaluation of the impacts of deploying ITS in a metropolitan area. It then describes the conceptual framework of a modeling system that will provide a preliminary analysis capability to support ITS deployment analysis and evaluation.

  18. Regional Effort to Deploy Clean Coal Technologies

    SciTech Connect

    Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

    2009-01-31

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

  19. Workforce deployment--a critical organizational competency.

    PubMed

    Harms, Roxanne

    2009-01-01

    Staff scheduling has historically been embedded within hospital operations, often defined by each new manager of a unit or program, and notably absent from the organization's practice and standards infrastructure and accountabilities of the executive team. Silvestro and Silvestro contend that "there is a need to recognize that hospital performance relies critically on the competence and effectiveness of roster planning activities, and that these activities are therefore of strategic importance." This article highlights the importance of including staff scheduling--or workforce deployment--in health care organizations' long-term strategic solutions to cope with the deepening workforce shortage (which is likely to hit harder than ever as the economy begins to recover). Viewing workforce deployment as a key organizational competency is a critical success factor for health care in the next decade, and the Workforce Deployment Maturity Model is discussed as a framework to enable organizations to measure their current capabilities, identify priorities and set goals for increasing organizational competency using a methodical and deliberate approach. PMID:19999370

  20. Hybrid deployable support truss designs for LDR

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J.

    1988-01-01

    Concepts for a 20-meter diameter Large Deployable Reflector (LDR) deployable truss backup structure, and analytical predictions of its structural characteristics are discussed. The concept shown is referred to as the SIXPAC; It is a combination of the PACTRUSS concept and a single-fold beam, which would make up the desired backup structure. One advantage of retaining the PACTRUSS concept is its packaging density and its capability for synchronous deployment. Various 2-meter hexagonal panel arrangements are possible for this Hybrid PACTRUSS structure depending on the panel-to-structure attachment strategies used. Static analyses of the SIXPAC using various assumptions for truss designs and panel masses of 10 kg sq meters were performed to predict the tip displacement of the structure when supported at the center. The tip displacement ranged from 0.20 to 0.44 mm without the panel mass, and from 0.9 to 3.9 mm with the panel mass (in a 1-g field). The data indicate that the structure can be adequately ground tested to validate its required performance in space, assuming the required performance in space is approximately 100 microns. The static displacement at the tip of the structure when subjected to an angular acceleration of 0.001 rad/sec squared were estimated to range from 0.8 to 7.5 microns, depending on the type of truss elements.

  1. Sample Acquisition and Instrument Deployment (SAID)

    NASA Technical Reports Server (NTRS)

    Boyd, Robert C.

    1994-01-01

    This report details the interim progress for contract NASW-4818, Sample Acquisition and Instrument Deployment (SAID), a robotic system for deploying science instruments and acquiring samples for analysis. The system is a conventional four degree of freedom manipulator 2 meters in length. A baseline design has been achieved through analysis and trade studies. The design considers environmental operating conditions on the surface of Mars, as well as volume constraints on proposed Mars landers. Control issues have also been studied, and simulations of joint and tip movements have been performed. A passively braked shape memory actuator with the ability to measure load has been developed. The wrist also contains a mechanism which locks the lid output to the bucket so that objects can be grasped and released for instrument deployment. The wrist actuator has been tested for operational power and mechanical functionality at Mars environmental conditions. The torque which the actuator can produce has been measured. Also, testing in Mars analogous soils has been performed.

  2. Tether deployment monitoring system, phase 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An operational Tether Deployment Monitoring System (TEDEMS) was constructed that would show system functionality in a terrestrial environment. The principle function of the TEDEMS system is the launching and attachment of reflective targets onto the tether during its deployment. These targets would be tracked with a radar antenna that was pointed towards the targets by a positioning system. A spring powered launcher for the targets was designed and fabricated. An instrumentation platform and launcher were also developed. These modules are relatively heavy and will influence tether deployment scenarios, unless they are released with a velocity and trajectory closely matching that of the tether. Owing to the tracking range limitations encountered during field trails of the Radar system, final TEDEMS system integration was not completed. The major module not finished was the system control computer. The lack of this device prevented any subsystem testing or field trials to be conducted. Other items only partially complete were the instrumentation platform launcher and modules and the radar target launcher. The work completed and the tests performed suggest that the proposed system continues to be a feasible approach to tether monitoring, although additional effort is still necessary to increase the range at which modules can be detected. The equipment completed and tested, to the extent stated, is available to NASA for use on any future program that requires tether tracking capability.

  3. Burn injuries caused by air bag deployment.

    PubMed

    Ulrich, D; Noah, E M; Fuchs, P; Pallua, N

    2001-03-01

    Automobile air bags have gained acceptance as an effective measure to reduce the morbidity and mortality associated with motor vehicle accidents. As more cars have become equipped with them, new problems have been encountered that are directly attributable to the deployment of the bag itself. An increasing variety of associated injuries has been reported, including minor burns. We present two automobile drivers who were involved in front-impact crashes with air bag inflation. They sustained superficial and partial-thickness burns related to the deployment. The evaluation of these cases shows mechanisms involved in burn injuries caused by the air bag system. Most of the burns are chemical and usually attributed to sodium hydroxide in the aerosol created during deployment. Also direct thermal burns from high-temperature gases or indirect injuries due to the melting of clothing, as well as friction burns from physical contact are possible. However, the inherent risks of air bag-related burns are still outweighed by the benefits of preventing potentially life-threatening injuries. PMID:11226663

  4. Sample Acquisition and Instrument Deployment (SAID)

    NASA Astrophysics Data System (ADS)

    Boyd, Robert C.

    1994-11-01

    This report details the interim progress for contract NASW-4818, Sample Acquisition and Instrument Deployment (SAID), a robotic system for deploying science instruments and acquiring samples for analysis. The system is a conventional four degree of freedom manipulator 2 meters in length. A baseline design has been achieved through analysis and trade studies. The design considers environmental operating conditions on the surface of Mars, as well as volume constraints on proposed Mars landers. Control issues have also been studied, and simulations of joint and tip movements have been performed. A passively braked shape memory actuator with the ability to measure load has been developed. The wrist also contains a mechanism which locks the lid output to the bucket so that objects can be grasped and released for instrument deployment. The wrist actuator has been tested for operational power and mechanical functionality at Mars environmental conditions. The torque which the actuator can produce has been measured. Also, testing in Mars analogous soils has been performed.

  5. Deployable Wide-Aperture Array Antennas

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Chu, Andrew; Scully, Robert C.

    2005-01-01

    Inexpensive, lightweight array antennas on flexible substrates are under development to satisfy a need for large-aperture antennas that can be stored compactly during transport and deployed to full size in the field. Conceived for use aboard spacecraft, antennas of this type also have potential terrestrial uses . most likely, as means to extend the ranges of cellular telephones in rural settings. Several simple deployment mechanisms are envisioned. One example is shown in the figure, where the deployment mechanism, a springlike material contained in a sleeve around the perimeter of a flexible membrane, is based on a common automobile window shade. The array can be formed of antenna elements that are printed on small sections of semi-flexible laminates, or preferably, elements that are constructed of conducting fabric. Likewise, a distribution network connecting the elements can be created from conventional technologies such as lightweight, flexible coaxial cable and a surface mount power divider, or preferably, from elements formed from conductive fabrics. Conventional technologies may be stitched onto a supporting flexible membrane or contained within pockets that are stitched onto a flexible membrane. Components created from conductive fabrics may be attached by stitching conductive strips to a nonconductive membrane, embroidering conductive threads into a nonconductive membrane, or weaving predetermined patterns directly into the membrane. The deployable antenna may comprise multiple types of antenna elements. For example, thin profile antenna elements above a ground plane, both attached to the supporting flexible membrane, can be used to create a unidirectional boresight radiation pattern. Or, antenna elements without a ground plane, such as bow-tie dipoles, can be attached to the membrane to create a bidirectional array such as that shown in the figure. For either type of antenna element, the dual configuration, i.e., elements formed of slots in a conductive

  6. Deployable Aeroshell Flexible Thermal Protection System Testing

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Ware, Joanne S.; DelCorso, Joseph A.; Lugo, Rafael A.

    2009-01-01

    Deployable aeroshells offer the promise of achieving larger aeroshell surface areas for entry vehicles than otherwise attainable without deployment. With the larger surface area comes the ability to decelerate high-mass entry vehicles at relatively low ballistic coefficients. However, for an aeroshell to perform even at the low ballistic coefficients attainable with deployable aeroshells, a flexible thermal protection system (TPS) is required that is capable of surviving reasonably high heat flux and durable enough to survive the rigors of construction handling, high density packing, deployment, aerodynamic loading and aerothermal heating. The Program for the Advancement of Inflatable Decelerators for Atmospheric Entry (PAIDAE) is tasked with developing the technologies required to increase the technology readiness level (TRL) of inflatable deployable aeroshells, and one of several of the technologies PAIDAE is developing for use on inflatable aeroshells is flexible TPS. Several flexible TPS layups were designed, based on commercially available materials, and tested in NASA Langley Research Center's 8 Foot High Temperature Tunnel (8ft HTT). The TPS layups were designed for, and tested at three different conditions that are representative of conditions seen in entry simulation analyses of inflatable aeroshell concepts. Two conditions were produced in a single run with a sting-mounted dual wedge test fixture. The dual wedge test fixture had one row of sample mounting locations (forward) at about half the running length of the top surface of the wedge. At about two thirds of the running length of the wedge, a second test surface drafted up at five degrees relative to the first test surface established the remaining running length of the wedge test fixture. A second row of sample mounting locations (aft) was positioned in the middle of the running length of the second test surface. Once the desired flow conditions were established in the test section the dual wedge

  7. Local and remote infrasound from explosive volcanism

    NASA Astrophysics Data System (ADS)

    Matoza, R. S.; Fee, D.; LE Pichon, A.

    2014-12-01

    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  8. Deployment Effects of Marin Renewable Energy Technologies

    SciTech Connect

    Brian Polagye; Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for

  9. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Philipson, W. R. (Principal Investigator)

    1983-01-01

    Built on Cornell's thirty years of experience in aerial photographic studies, the NASA-sponsored remote sensing program strengthened instruction and research in remote sensing, established communication links within and beyond the university community, and conducted research projects for or with town, county, state, federal, and private organizations in New York State. The 43 completed applied research projects are listed as well as 13 spinoff grants/contracts. The curriculum offered, consultations provided, and data processing facilities available are described. Publications engendered are listed including the thesis of graduates in the remote sensing program.

  10. Remote Raman measurement techniques

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.

    1981-01-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  11. WE WISH Deploys From the International Space Station

    NASA Video Gallery

    JAXA astronaut Aki Hoshide commanded the first deployment from the station, with the second commanded from the ground control team. This video shows footage of the satellite WE WISH, as it deploys ...

  12. STEP flight experiments Large Deployable Reflector (LDR) telescope

    NASA Technical Reports Server (NTRS)

    Runge, F. C.

    1984-01-01

    Flight testing plans for a large deployable infrared reflector telescope to be tested on a space platform are discussed. Subsystem parts, subassemblies, and whole assemblies are discussed. Assurance of operational deployability, rigidization, alignment, and serviceability will be sought.

  13. Deployable Landing Leg Concept for Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Solano, Paul; Bartos, Karen

    2007-01-01

    The NASA Exploration program is investigating the merits of land landing concepts for the Crew Exploration Vehicle (CEV). Four options are under investigation: retro-rockets which fire and slow the vehicle before contact with the landing surface, deployable crushable material which deploys just before landing and crushes during land contact, airbags which deploy just before landing and deflate during land contact, and deployable legs which deploy before landing and contain material that absorbs energy during land contact. The purpose of the present work is to determine the effectiveness of the deployable leg concept. To accomplish this goal, structural models of the deployable leg concept are integrated with the Crew Model (CM) and computational simulations are performed to determine vehicle and component loadings and acceleration levels. Details of the modeling approach, deployable leg design, and resulting accelerations are provided.

  14. Design, development, and field demonstration of a remotely deployable water quality monitoring system

    NASA Technical Reports Server (NTRS)

    Wallace, J. W.; Lovelady, R. W.; Ferguson, R. L.

    1981-01-01

    A prototype water quality monitoring system is described which offers almost continuous in situ monitoring. The two-man portable system features: (1) a microprocessor controlled central processing unit which allows preprogrammed sampling schedules and reprogramming in situ; (2) a subsurface unit for multiple depth capability and security from vandalism; (3) an acoustic data link for communications between the subsurface unit and the surface control unit; (4) eight water quality parameter sensors; (5) a nonvolatile magnetic bubble memory which prevents data loss in the event of power interruption; (6) a rechargeable power supply sufficient for 2 weeks of unattended operation; (7) a water sampler which can collect samples for laboratory analysis; (8) data output in direct engineering units on printed tape or through a computer compatible link; (9) internal electronic calibration eliminating external sensor adjustment; and (10) acoustic location and recovery systems. Data obtained in Saginaw Bay, Lake Huron are tabulated.

  15. Combining Remote Sensing with in situ Measurements for Riverine Characterization

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Palmsten, M. L.; Simeonov, J.; Dobson, D. W.; Zarske, K.; Puleo, J. A.; Holland, K. T.

    2014-12-01

    At the U.S. Naval Research Laboratory we are employing a wide variety of novel remote sensing techniques combined with traditional in situ sampling to characterize riverine hydrodynamics and morphodynamics. Surface currents were estimated from particle image velocimetry (PIV) using imagery from visible to infrared bands, from both fixed and airborne platforms. Terrestrial LIDAR has been used for subaerial mapping from a fixed platform. Additionally, LIDAR has been combined with hydrographic surveying (multibeam) in mobile scanning mode using a small boat. Hydrographic surveying (side scan) has also been performed using underwater autonomous vehicles. Surface drifters have been deployed in combination with a remotely operated, floating acoustic Doppler current profiler. Other fixed platform, in situ sensors, such as pencil beam and sector scanning sonars, acoustic Doppler velocimeters, and water level sensors have been deployed. We will present an overview of a variety of measurements from different rivers around the world focusing on validation examples of remotely sensed quantities with more traditional in situ measurements. Finally, we will discuss long-term goals to use remotely sensed data within an integrated environmental modeling framework.

  16. Deployment and Drop Test of Inflatable Aeroshell for Atmospheric Entry Capsule with using Large Scientific Balloon

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Suzuki, Kojiro; Honma, Naohiko; Abe, Daisuke; Makino, Hitoshi; Nagata, Yasunori; Kimura, Yusuke; Koyama, Masashi; Akita, Daisuke; Hayashi, Koichi; Abe, Takashi

    A deployable and flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system in the near future, because the large-area, low-mass aeroshell dramatically reduces aerodynamic heating and achieves a soft landing without a conventional parachute system thanks to its low ballistic coefficient. Various concepts of flexible aeroshell have been proposed in the past. Our group are researching and developing a flare-type membrane aeroshell sustained by inflatable torus. As a part of the development, a deployment and drop test of a capsule-type experimental vehicle with a 1.264-m-diameter flare-type membrane aeroshell sustained by inflatable torus was carried out using a large scientific balloon in August, 2009. The objectives of this experiment are 1) to demonstrate the remote inflation system of inflatable aeroshell, 2) to acquire aerodynamic performance of a low ballistic coefficient vehicle including an inflatable structure in subsonic region, and 3) to observe behavior and deformation of the flexible aeroshell during free flight. In this test, the inflatable aeroshell was deployed at an altitude 24.6km by radio command from ground station. After deployment, the experimental vehicle was dropped from the balloon and underwent free flight. The flight data and images of the aeroshell collected using onboard sensors were transmitted successfully during the flight by the telemetry system. The data showed that the vehicle was almost stable in free flight condition and the inflatable aeroshell was collapsed at expected altitude. This deployment and drop test was very successful and useful data for design of actual atmospheric-entry vehicles with inflatable structure was acquired as planned.

  17. EDITORIAL Wireless sensor networks: design for real-life deployment and deployment experiences Wireless sensor networks: design for real-life deployment and deployment experiences

    NASA Astrophysics Data System (ADS)

    Gaura, Elena; Roedig, Utz; Brusey, James

    2010-12-01

    Wireless sensor networks (WSNs) are among the most promising technologies of the new millennium. The opportunities afforded by being able to program networks of small, lightweight, low-power, computation- and bandwidth-limited nodes have attracted a large community of researchers and developers. However, the unique set of capabilities offered by the technology produces an exciting but complex design space, which is often difficult to negotiate in an application context. Deploying sensing physical environments produces its own set of challenges, and can push systems into failure modes, thus revealing problems that can be difficult to discover or reproduce in simulation or the laboratory. Sustained efforts in the area of wireless networked sensing over the last 15 years have resulted in a large number of theoretical developments, substantial practical achievements, and a wealth of lessons for the future. It is clear that in order to bridge the gap between (on the one hand) visions of very large scale, autonomous, randomly deployed networks and (on the other) the actual performance of fielded systems, we need to view deployment as an essential component in the process of developing sensor networks: a process that includes hardware and software solutions that serve specific applications and end-user needs. Incorporating deployment into the design process reveals a new and different set of requirements and considerations, whose solutions require innovative thinking, multidisciplinary teams and strong involvement from end-user communities. This special feature uncovers and documents some of the hurdles encountered and solutions offered by experimental scientists when deploying and evaluating wireless sensor networks in situ, in a variety of well specified application scenarios. The papers specifically address issues of generic importance for WSN system designers: (i) data quality, (ii) communications availability and quality, (iii) alternative, low-energy sensing

  18. Psychiatric Effects of Military Deployment on Children and Families

    PubMed Central

    James, Trenton

    2012-01-01

    Deployments in the United States military have increased greatly in the past 10 years. Families and children are psychiatrically affected by these deployments, and recent studies are clarifying these effects. This article focuses on the psychiatric effects of deployment on children and uses a composite case example to review the use of play therapy to treat children who are having psychiatric issues related to the deployment of one or both parents. PMID:22468239

  19. Remote hydrogen sensing techniques

    NASA Technical Reports Server (NTRS)

    Perry, Cortes L.

    1992-01-01

    The objective of this project is to evaluate remote hydrogen sensing methodologies utilizing metal oxide semi-conductor field effect transistors (MOS-FET) and mass spectrometric (MS) technologies and combinations thereof.

  20. Remote Sensing Methods

    NASA Technical Reports Server (NTRS)

    Sever, Thomas L.

    1998-01-01

    Remotely sensed data allows archeologists and historic preservationists the ability to non-destructively detect phenomena previously unobservable to them. Archeologists have successfully used aerial photography since the turn of the century and it continues to be an important research tool today. Multispectral scanners and computer-implemented analysis techniques extend the range of human vision and provides the investigator with innovative research designs at scales previously unimaginable. Pioneering efforts in the use of remote sensing technology have demonstrated its potential, but it is the recent technological developments in remote sensing instrumentation and computer capability that provide for unlimited, cost-effective applications in the future. The combination of remote sensing, Global Positioning System (GPS) technology, and Geographic Information Systems (GIS) are radically altering survey, inventory, and modelling approaches.

  1. Remote Sensing Center

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The applications are reported of new remote sensing techniques for earth resources surveys and environmental monitoring. Applications discussed include: vegetation systems, environmental monitoring, and plant protection. Data processing systems are described.

  2. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  3. Remote Sensing Information Classification

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.

    2008-01-01

    This viewgraph presentation reviews the classification of Remote Sensing data in relation to epidemiology. Classification is a way to reduce the dimensionality and precision to something a human can understand. Classification changes SCALAR data into NOMINAL data.

  4. Remote Access Astronomy.

    ERIC Educational Resources Information Center

    O'Connor, Erin

    1994-01-01

    Describes the Remote Access Astronomy Project, a computerized optical telescope and dial-in data distribution system that places high-quality images and image processing techniques into computer workstations in junior and high school classrooms. (PR)

  5. Topex high-gain antenna system deployment actuator mechanism

    NASA Technical Reports Server (NTRS)

    Jones, Stephen R.

    1991-01-01

    A deployment actuator mechanism was developed to drive a two-axis gimbal assembly and a high-gain antenna to a deployed and locked position on the Jet Propulsion Laboratory Ocean Topography Experiment (TOPEX) satellite. The Deployment Actuator Mechanism requirements, design, test, and associated problems and their solutions are discussed.

  6. Energy and remote sensing

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1977-01-01

    Effective implementation of the President's National Energy Plan and the Nuclear Power Policy Statement require application of the best remote sensing tools available. The potential contributions of remote sensing, particularly LANDSAT data, have yet to be clearly identified and exploited. These contributions investigated fall into the following categories: (1) exploration; (2) exploitation; (3) power plant siting; (4) environmental assessment and monitoring; and (5) transportation infrastructure.

  7. Thermal Remote Anemometer Device

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Heath, D. Michele; Winfree, William P.; Miller, William E.; Welch, Christopher S.

    1988-01-01

    Thermal Remote Anemometer Device developed for remote, noncontacting, passive measurement of thermal properties of sample. Model heated locally by scanning laser beam and cooled by wind in tunnel. Thermal image of model analyzed to deduce pattern of airflow around model. For materials applications, system used for evaluation of thin films and determination of thermal diffusivity and adhesive-layer contact. For medical applications, measures perfusion through skin to characterize blood flow and used to determine viabilities of grafts and to characterize tissues.

  8. Remote electrochemical sensor

    DOEpatents

    Wang, Joseph; Olsen, Khris; Larson, David

    1997-01-01

    An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

  9. Formal evaluation of the ADVANCE targeted deployment

    SciTech Connect

    Saricks, C.L.; Belella, P.A.; Koppelman, F.S.; Schofer, J.L.; Sen, A.K.

    1996-04-01

    The Advanced Driver and Vehicle Advisory Navigation Concept (ADVANCE) advanced traveler information system (ATIS) demonstration project in northeastern Illinois was re-scoped in late 1994 from its originally-planned deployment of 3,000--5,000 in-vehicle navigation units to a so-called ``targeted`` deployment in which up to 75 vehicles were equipped with devices enabling them to receive real-time traffic information. These devices included (1) global positioning system (GPS) transmitters/receivers that enabled the vehicles while in the ADVANCE study area to serve as dynamic traffic probes as well as recipients of location data; and (2) navigation units that employed a comprehensive map data base and average (static) link travel times by time of day, stored on CD-ROM, which together computed efficient (least duration) routes between any origin and destination in the northwest portion of the Chicago metropolitan area. Experiments were designed to dispatch these equipped vehicles along links at headways or frequencies comparable to what would have been observed had full deployment actually occurred. Thus, within the limitations of this controlled environment, valuative experiments were conducted to assess the quality of several of the key sub-systems of ADVANCE in the context of structured performance hypotheses. Focused on-road tests began on June 1 and continued through December 14, 1995, followed by a period of data evaluation, documentation of results, and development of conclusions about the findings and usefulness of the project. This paper describes the tests, discusses development of the overall evaluation plan and the evaluation management concept which guided them, and reports on issuses and results of data analysis known at time of writing.

  10. Project ADIOS: Aircraft Deployable Ice Observation System

    NASA Astrophysics Data System (ADS)

    Gudmundsson, G. H.

    2013-12-01

    Regions of the Antarctic that are of scientific interest are often too heavily crevassed to enable a plane to land, or permit safe access from a field camp. We have developed an alternative strategy for instrumenting these regions: a sensor that can be dropped from an overflying aircraft. Existing aircraft deployable sensors are not suitable for long term operations in areas where snow accumulates, as they are quickly buried. We have overcome this problem by shaping the sensor like an aerodynamic mast with fins and a small parachute. After being released from the aircraft, the sensor accelerates to 42m/s and stabilizes during a 10s descent. On impact with the snow surface the sensor package buries itself to a depth of 1m then uses the large surface area of the fins to stop it burying further. This leaves a 1.5m mast protruding high above the snow surface to ensure a long operating life. The high impact kinetic energy and robust fin braking mechanism ensure that the design works in both soft and hard snow. Over the past two years we have developed and tested our design with a series of aircraft and wind tunnel tests. Last season we used this deployment strategy to successfully install a network of 31 single band GPS sensors in regions where crevassing has previously prevented science operations: Pine Island Glacier, West Antarctica, and Scar Inlet, Antarctic Peninsula. This season we intend to expand on this network by deploying a further 25 single and dual band GPS sensors on Thwaites Glacier, West Antarctica.

  11. Online Remote Sensing Interface

    NASA Technical Reports Server (NTRS)

    Lawhead, Joel

    2007-01-01

    BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.

  12. A deployable .015 inch diameter wire antenna

    NASA Technical Reports Server (NTRS)

    Dibiasi, L.

    1979-01-01

    This mechanism was developed to dispense a small diameter wire which serves as a receiving antenna for electric field measurements on an Earth orbiting satellite. The antenna is deployed radially from a spinning satellite. A brushless dc motor drives a storage spool to dispense the wire at a controlled rate. Centrifugal force, acting on a mass attached to the end of the wire, keeps the wire in the radial position. The mechanism design, testing, and performance characteristics are discussed. Finally, operational data of the mechanism while in orbit are presented.

  13. Sepsis management in the deployed field hospital.

    PubMed

    Johnston, Andrew McD; Easby, D; Ewington, I

    2013-09-01

    Sepsis, a syndrome caused by severe infection, affects a small proportion of military casualties but has a significant effect in increasing morbidity and mortality, including causing some preventable deaths. Casualties with abdominal trauma and those with significant tissue loss appear to be at a greater risk of sepsis. In this article, the diagnosis and management of sepsis in military casualties with reference to the Surviving Sepsis Campaign guidelines are examined. We discuss the management considerations specific to military casualties in the deployed setting and also discuss factors affecting evacuation by the UK Royal Air Force Critical Care Air Support Team. PMID:24109139

  14. Quality function deployment: application to rehabilitation services.

    PubMed

    Einspruch, E M; Omachonu, V K; Einspruch, N G

    1996-01-01

    Describes how the challenge of providing rehabilitative services at reasonable costs is beginning to mount. The management of quality in rehabilitative services is therefore gaining increasing attention in the health care arena. States that if a link is implied between the above stated goal and customer satisfaction, it is imperative to evaluate quality or customer satisfaction in the context of the patient's experience. Describes the quality function deployment (QFD) system and how it leads to a better understanding of the customer's needs and wants. Explores the process of applying the concept of QFD to physical therapy.

  15. Quality function deployment: application to rehabilitation services.

    PubMed

    Einspruch, E M; Omachonu, V K; Einspruch, N G

    1996-01-01

    Describes how the challenge of providing rehabilitative services at reasonable costs is beginning to mount. The management of quality in rehabilitative services is therefore gaining increasing attention in the health care arena. States that if a link is implied between the above stated goal and customer satisfaction, it is imperative to evaluate quality or customer satisfaction in the context of the patient's experience. Describes the quality function deployment (QFD) system and how it leads to a better understanding of the customer's needs and wants. Explores the process of applying the concept of QFD to physical therapy. PMID:10158426

  16. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1990-01-01

    A crystal growth apparatus is presented. It utilizes a vapor diffusion method for growing protein crystals, and particularly such an apparatus wherein a ball mixer is used to mix the fluids that form a drop within which crystals are grown. Particular novelty of this invention lies in utilizing a ball mixer to completely mix the precipitate and protein solutions prior to forming the drop. Additional novelty lies in details of construction of the vials, the fluid deployment system, and the fluid storage system of the preferred embodiment.

  17. Deployable antenna kinematics using tensegrity structure design

    NASA Astrophysics Data System (ADS)

    Knight, Byron Franklin

    With vast changes in spacecraft development over the last decade, a new, cheaper approach was needed for deployable kinematic systems such as parabolic antenna reflectors. Historically, these mesh-surface reflectors have resembled folded umbrellas, with incremental redesigns utilized to save packaging size. These systems are typically over-constrained designs, the assumption being that high reliability necessary for space operations requires this level of conservatism. But with the rapid commercialization of space, smaller launch platforms and satellite buses have demanded much higher efficiency from all space equipment than can be achieved through this incremental approach. This work applies an approach called tensegrity to deployable antenna development. Kenneth Snelson, a student of R. Buckminster Fuller, invented Tensegrity structures in 1948. Such structures use a minimum number of compression members (struts); stability is maintain using tension members (ties). The novelty introduced in this work is that the ties are elastic, allowing the struts to extend or contract, and in this way changing the surface of the antenna. Previously, the University of Florida developed an approach to quantify the stability and motion of parallel manipulators. This approach was applied to deployable, tensegrity, antenna structures. Based on the kinematic analyses for the 3-3 (octahedron) and 4-4 (square anti-prism) structures, the 6-6 (hexagonal anti-prism) analysis was completed which establishes usable structural parameters. The primary objective for this work was to prove the stability of this class of deployable structures, and their potential application to space structures. The secondary objective is to define special motions for tensegrity antennas, to meet the subsystem design requirements, such as addressing multiple antenna-feed locations. This work combines the historical experiences of the artist (Snelson), the mathematician (Ball), and the space systems engineer

  18. Diffraction analysis of mesh deployable reflector antennas

    NASA Astrophysics Data System (ADS)

    Rahmat-Samii, Y.

    1985-04-01

    A formulation and many representative numerical results for mesh reflector antennas are presented. The reflection coefficient matrix for the prescribed mesh configuration was determined and the local coordinate system of the mesh cells at each point on the curved reflector surface was accentuated. A novel strip aperture model was used to formulate the transmission coefficient matrix for a variety of mesh cell configurations. Numerical data are tailored to the dimensions of a conceptually designed land mobile satellite system (LMSS) which employs a large mesh deployable offset parabolic antenna. Results are shown for an offset parabolic reflector with mesh surfaces similar to the mesh surface of tracking and data relay satellite system (TDRSS).

  19. Diffraction Analysis of Mesh Deployable Reflector Antennas

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1985-01-01

    A formulation and many representative numerical results for mesh reflector antennas are presented. The reflection coefficient matrix for the prescribed mesh configuration was determined and the local coordinate system of the mesh cells at each point on the curved reflector surface was accentuated. A novel strip aperture model was used to formulate the transmission coefficient matrix for a variety of mesh cell configurations. Numerical data are tailored to the dimensions of a conceptually designed land mobile satellite system (LMSS) which employs a large mesh deployable offset parabolic antenna. Results are shown for an offset parabolic reflector with mesh surfaces similar to the mesh surface of tracking and data relay satellite system (TDRSS).

  20. Large Deployable Reflector (LDR) feasibility study update

    NASA Technical Reports Server (NTRS)

    Alff, W. H.; Banderman, L. W.

    1983-01-01

    In 1982 a workshop was held to refine the science rationale for large deployable reflectors (LDR) and develop technology requirements that support the science rationale. At the end of the workshop, a set of LDR consensus systems requirements was established. The subject study was undertaken to update the initial LDR study using the new systems requirements. The study included mirror materials selection and configuration, thermal analysis, structural concept definition and analysis, dynamic control analysis and recommendations for further study. The primary emphasis was on the dynamic controls requirements and the sophistication of the controls system needed to meet LDR performance goals.

  1. Therapeutic antibodies: Discovery, design and deployment.

    PubMed

    Ramsland, Paul A; Hutchinson, Andrew T; Carter, Paul J

    2015-10-01

    Therapeutic antibodies have come of age with major progress being made in cancer, autoimmunity and chronic inflammation, as well as a wide range of other human diseases. Antibody engineering is further driving development of novel antibody formats and genetically modified cell-based therapies that harness the power of the immune system to progress cures in otherwise intractable human diseases. Nevertheless, there are still significant challenges ahead for basic and applied research relating to therapeutic antibodies. This special issue of the journal provides reviews and opinions that relate to the discovery, design and deployment of antibodies as therapeutics.

  2. IRIS - Progressing Toward a Worldwide Deployment

    SciTech Connect

    Carelli, Mario D.; Petrovic, Bojan

    2006-07-01

    The International Reactor Innovative and Secure (IRIS) is an advanced, integral, light-water cooled, pressurized reactor of smaller generating capacity (1000 MWt, or about 335 MWe). It is being developed through a strong international partnership for near term deployment (within the next decade) to offer a simple nuclear plant with outstanding safety, attractive economics and enhanced proliferation resistance characteristics. IRIS provides a viable bridge to Generation IV reactors and has excellent capability to satisfy in the near/mid-term time frame the Global Nuclear Energy Partnership (GNEP) requirements for small-scale reactors. This paper provides a top-level overview of the project status. (authors)

  3. Extendable retractable telescopic mast for deployable structures

    NASA Technical Reports Server (NTRS)

    Schmid, M.; Aguirre, M.

    1986-01-01

    The Extendable and Retractable Mast (ERM) which is presently developed by Dornier in the frame of an ESA-contract, will be used to deploy and retract large foldable structures. The design is based on a telescopic carbon-fiber structure with high stiffness, strength and pointing accuracy. To verify the chosen design, a breadboard model of an ERM was built and tested under thermal vacuum (TV)-conditions. It is planned as a follow-on development to manufacture and test an Engineering Model Mast. The Engineering Model will be used to establish the basis for an ERM-family covering a wide range of requirements.

  4. Alignment and phasing of deployable telescopes

    NASA Technical Reports Server (NTRS)

    Woolf, N. J.; Ulich, B. L.

    1983-01-01

    The experiences in coaligning and phasing the Multi-Mirror Telescope (MMT), together with studies in setting up radio telescopes, are presented. These experiences are discussed, and on the basis they furnish, schemes are suggested for coaligning and phasing four large future telescopes with complex primary mirror systems. These telescopes are MT2, a 15-m-equivalent MMT, the University of California Ten Meter Telescope, the 10 m sub-mm wave telescope of the University of Arizona and the Max Planck Institute for Radioastronomy, and the Large Deployable Reflector, a future space telescope for far-IR and sub-mm waves.

  5. Sepsis management in the deployed field hospital.

    PubMed

    Johnston, Andrew McD; Easby, D; Ewington, I

    2013-09-01

    Sepsis, a syndrome caused by severe infection, affects a small proportion of military casualties but has a significant effect in increasing morbidity and mortality, including causing some preventable deaths. Casualties with abdominal trauma and those with significant tissue loss appear to be at a greater risk of sepsis. In this article, the diagnosis and management of sepsis in military casualties with reference to the Surviving Sepsis Campaign guidelines are examined. We discuss the management considerations specific to military casualties in the deployed setting and also discuss factors affecting evacuation by the UK Royal Air Force Critical Care Air Support Team.

  6. Modal identification of a deployable space truss

    NASA Technical Reports Server (NTRS)

    Schenk, Axel; Pappa, Richard S.

    1990-01-01

    Work performed under a collaborative research effort between NASA and the German Aerospace Research Establishment (DLR) is summarized. The objective is to develop and demonstrate advanced technology for system identification of future large space structures. Recent experiences using the eigensystem realization algorithm (ERA) for modal identification of Mini-Mast are reported. Mini-Mast is a 20-meter-long deployable space truss used for structural dynamics and active-vibration control research at the NASA Langley Research Center. Due to nonlinearities and numerous local modes, modal identification of Mini-Mast proved to be surprisingly difficult. Methods available with ERA for obtaining detailed, high-confidence results are illustrated.

  7. Sensor deployment mechanism for Surfer satellite

    NASA Technical Reports Server (NTRS)

    Dill, Robert; Flom, James; Gibbons, Donald

    1988-01-01

    A design is presented for a sensor-deployment mechanism to be used aboard the Surfer satellite, from which scientific instruments will be extended to study the earth ionosphere during the Space Shuttle Tether Experiment. The design discussed uses four folding arms to extend the radial sensors, as well as two storable tubular extendible members or spirally wound self-extending tube booms to project the axial sensors outward. The design solution chosen, a folding arm, is discussed in detail with attention to mechanical operation and component functions. Test program results are presented.

  8. Reservists in a postconflict zone: deployment stressors and the deployment experience.

    PubMed

    Orme, Geoffrey J; Kehoe, E James

    2014-02-01

    In postconflict zones, both aid and military personnel face chronic stress, including boredom, isolation, family separation, and difficult living conditions, plus the intra-organizational and interpersonal frictions found in all work settings. Australian Army reservists (N = 350) were surveyed during and after peacekeeping in the Solomon Islands. Most respondents reported having a positive experience (66%) and fewer reported their experience was neutral (16%) or negative (17%). The stressors reported by reservists predominately emanated from work-related sources rather than from separation or the operational environment. The discussion considers leadership factors, especially the role of organizational justice in deployed organizations, that may influence the deployment experience. PMID:24491608

  9. Reservists in a postconflict zone: deployment stressors and the deployment experience.

    PubMed

    Orme, Geoffrey J; Kehoe, E James

    2014-02-01

    In postconflict zones, both aid and military personnel face chronic stress, including boredom, isolation, family separation, and difficult living conditions, plus the intra-organizational and interpersonal frictions found in all work settings. Australian Army reservists (N = 350) were surveyed during and after peacekeeping in the Solomon Islands. Most respondents reported having a positive experience (66%) and fewer reported their experience was neutral (16%) or negative (17%). The stressors reported by reservists predominately emanated from work-related sources rather than from separation or the operational environment. The discussion considers leadership factors, especially the role of organizational justice in deployed organizations, that may influence the deployment experience.

  10. Use of control umbilicals as a deployment mode for free flying telerobotic work systems

    NASA Technical Reports Server (NTRS)

    Kuehn, J. S.; Selle, E. D.

    1987-01-01

    Work to date on telerobotic work systems for use in space generally consider two deployment modes, free flying, or fixed within a limited work envelope. Control tethers may be employed to obtain a number of operational advantages and added flexibility in the basing and deployment of telerobotic work systems. Use of a tether allows the work system to be separated into two major modules, the remote work package and the control module. The Remote Work Package (RWP) comprises the free flying portion of the work system while the Control Module (CM) remains at the work system base. The chief advantage of this configuration is that only the components required for completion of the work task must be located at the work site. Reaction mass used in free flight is stored at the Control module and supplied to the RWP through the tether, eliminating the need for the RWP to carry it. The RWP can be made less massive than a self contained free flying work system. As a result, reaction mass required for free flight is lower than for a self contained free flyer.

  11. 100G Deployment@(DE-KIT)

    NASA Astrophysics Data System (ADS)

    Hoeft, Bruno; Petzold, Andreas

    2015-12-01

    The Steinbuch Centre for Computing (SCC) at Karlsruhe Institute of Technology (KIT) has been involved fairly early in 100GE network technology. Initiated by DFN1 (the German NREN), a first 100GE wide area network testbed over a distance of approx. 450 km was deployed between the national research organizations KIT and FZ-Jülich in 2010. Three years later in 2013. KIT joined the Caltech SuperComputing 2013 (SC132) 100GE "show floor" initiative using the transatlantic ANA-100GE link to transfer LHC data from a storage at DE-KIT (GridKa) in Europe to hard disks at the show floor of SC13 in Denver (USA). The network infrastructure of KIT as well as of the German Tier-1 installation DE-KIT (GridKa). however. is still based on 10Gbps. As highlighted in the contribution "Status and Trends in Networking at LHC Tier1 Facilities" to CHEP 2012. proactive investment is required at the Tier-1 sites. Bandwidth requirements will grow beyond current capacity and the required upgrades are expected in 2015. In close cooperation with DFN. KIT drives the upgrade from 10GE to 100GE. The process is divided into several phases. due to upgrade costs and differing requirements in different parts of the network infrastructure. The requirements of the different phases as well as the planned topology will be described. Some of the obstacles we discovered during the deployment will be discussed and solutions or workarounds presented.

  12. SMUD Community Renewable Energy Deployment Final Report

    SciTech Connect

    Sison-Lebrilla, Elaine; Tiangco, Valentino; Lemes, Marco; Ave, Kathleen

    2015-06-08

    This report summarizes the completion of four renewable energy installations supported by California Energy Commission (CEC) grant number CEC Grant PIR-11-005, the US Department of Energy (DOE) Assistance Agreement, DE-EE0003070, and the Sacramento Municipal Utility District (SMUD) Community Renewable Energy Deployment (CRED) program. The funding from the DOE, combined with funding from the CEC, supported the construction of a solar power system, biogas generation from waste systems, and anaerobic digestion systems at dairy facilities, all for electricity generation and delivery to SMUD’s distribution system. The deployment of CRED projects shows that solar projects and anaerobic digesters can be successfully implemented under favorable economic conditions and business models and through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region. In addition to reducing GHG emissions, the projects also demonstrate that solar projects and anaerobic digesters can be readily implemented through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region.

  13. Deployment experiences of Army nurse practitioners.

    PubMed

    Lewis, Paul C; Stewart, Della; Brown, William

    2012-08-01

    Army Nurse Practitioners (NPs) provide immediate and lifesaving care during combat operations. The most recent conflicts of Operation Iraqi Freedom and Operation Enduring Freedom have seen an increasing number of NP deployments. The uniqueness of these conflicts has also seen NPs being used in nontraditional roles. This study surveyed 50 Army NPs with deployment experience to explore and elucidate their clinical practices in a combat environment. Over 70% reported seeing greater than 11 patients a day with the top three diagnoses of musculoskeletal/soft tissue (noncombat), spinal pain (mechanical, sciatica), and gastrointestinal complaints. Over 74% reported having a physician available for collaboration, but 50% reported providing independent emergency care and 58% treating life-threatening injuries. The NPs in this study report standard credentialing privileges with most care falling within this realm. However, a few report nontraditional roles such as hospital admitting privileges. This study adds to the growing body of knowledge on NP practice in a combat environment, which shows increased decision making and advanced clinical skills. NPs are battlefield multipliers who bring additional skills and abilities to the combat environment. PMID:22934365

  14. Probabilistic deployment for multiple sensor systems

    NASA Astrophysics Data System (ADS)

    Qian, Ming; Ferrari, Silvia

    2005-05-01

    The performance of many multi-sensor systems can be significantly improved by using a priori environmental information and sensor data to plan the movements of sensor platforms that are later deployed with the purpose of improving the quality of the final detection and classification results. However, existing path planning algorithms and ad-hoc data processing (e.g., fusion) techniques do not allow for the systematic treatment of multiple and heterogeneous sensors and their platforms. This paper presents a method that combines Bayesian network inference with probabilistic roadmap (PRM) planners to utilize the information obtained by different sensors and their level of uncertainty. The uncertainty of prior sensed information is represented by entropy values obtained from the Bayesian network (BN) models of the respective sensor measurement processes. The PRM algorithm is modified to utilize the entropy distribution in optimizing the path of posterior sensor platforms that have the following objectives: (1) improve the quality of the sensed information, i.e., through fusion, (2) minimize the distance traveled by the platforms, and (3) avoid obstacles. This so-called Probabilistic Deployment (PD) method is applied to a demining system comprised of ground-penetrating radars (GPR), electromagnetic (EMI), and infrared sensors (IR) installed on ground platforms, to detect and classify buried mines. Numerical simulations show that PD is more efficient than path planning techniques that do not utilize a priori information, such as complete coverage, random coverage method, or PRM methods that do not utilize Bayesian inference.

  15. Regional Energy Deployment System (ReEDS)

    SciTech Connect

    Short, W.; Sullivan, P.; Mai, T.; Mowers, M.; Uriarte, C.; Blair, N.; Heimiller, D.; Martinez, A.

    2011-12-01

    The Regional Energy Deployment System (ReEDS) is a deterministic optimization model of the deployment of electric power generation technologies and transmission infrastructure throughout the contiguous United States into the future. The model, developed by the National Renewable Energy Laboratory's Strategic Energy Analysis Center, is designed to analyze the critical energy issues in the electric sector, especially with respect to potential energy policies, such as clean energy and renewable energy standards or carbon restrictions. ReEDS provides a detailed treatment of electricity-generating and electrical storage technologies and specifically addresses a variety of issues related to renewable energy technologies, including accessibility and cost of transmission, regional quality of renewable resources, seasonal and diurnal generation profiles, variability of wind and solar power, and the influence of variability on the reliability of the electrical grid. ReEDS addresses these issues through a highly discretized regional structure, explicit statistical treatment of the variability in wind and solar output over time, and consideration of ancillary services' requirements and costs.

  16. Infrastructure for deployment of power systems

    NASA Technical Reports Server (NTRS)

    Sprouse, Kenneth M.

    1991-01-01

    A preliminary effort in characterizing the types of stationary lunar power systems which may be considered for emplacement on the lunar surface from the proposed initial 100-kW unit in 2003 to later units ranging in power from 25 to 825 kW is presented. Associated with these power systems are their related infrastructure hardware including: (1) electrical cable, wiring, switchgear, and converters; (2) deployable radiator panels; (3) deployable photovoltaic (PV) panels; (4) heat transfer fluid piping and connection joints; (5) power system instrumentation and control equipment; and (6) interface hardware between lunar surface construction/maintenance equipment and power system. This report: (1) presents estimates of the mass and volumes associated with these power systems and their related infrastructure hardware; (2) provides task breakdown description for emplacing this equipment; (3) gives estimated heat, forces, torques, and alignment tolerances for equipment assembly; and (4) provides other important equipment/machinery requirements where applicable. Packaging options for this equipment will be discussed along with necessary site preparation requirements. Design and analysis issues associated with the final emplacement of this power system hardware are also described.

  17. Infection Prevention in the Deployed Environment.

    PubMed

    Yun, Heather C; Murray, Clinton K

    2016-01-01

    Up to 50% of combat injured patients from recent conflicts have suffered infectious complications, predominantly with multidrug-resistant (MDR) bacteria acquired nosocomially in the chain of tactical combat casualty care. These bacteria have ranged from MDR Acinetobacter baumannii-calcoaceticus associated with Operation Iraqi Freedom (OIF), to extended spectrum beta-lactamase producing Enterobacteriaceae from operations in Afghanistan. Experience from interventions at Level III facilities demonstrate that basic infection control (IC) procedures, such as improvements in hand hygiene, use of ventilator associated pneumonia bundles, and antimicrobial stewardship, can improve outcomes even in austere environments. While some systematic interventions have been implemented to mitigate this risk, including development of the Deployed Infection Control Course, the Multidrug-Resistance Surveillance Network, and the Trauma Infectious Disease Outcomes Study, ongoing vulnerabilities remain. Deployed microbiology capabilities should be strengthened, theater-level IC standard operating procedures should be implemented, and a joint, theater-level expert IC consultant should be appointed to be responsible for directing IC activities from Levels I to IV. PMID:27215877

  18. Integrated assessment of dispersed energy resources deployment

    SciTech Connect

    Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

    2000-06-01

    The goal of this work is to create an integrated framework for forecasting the adoption of distributed energy resources (DER), both by electricity customers and by the various institutions within the industry itself, and for evaluating the effect of this adoption on the power system, particularly on the overall reliability and quality of electrical service to the end user. This effort and follow on contributions are intended to anticipate and explore possible patterns of DER deployment, thereby guiding technical work on microgrids towards the key technical problems. An early example of this process addressed is the question of possible DER adopting customer disconnection. A deployment scenario in which many customers disconnect from their distribution company (disco) entirely leads to a quite different set of technical problems than a scenario in which customers self generate a significant share or all of their on-site electricity requirements and additionally buy and sell energy and ancillary services (AS) locally and/or into wider markets. The exploratory work in this study suggests that the economics under which customers disconnect entirely are unlikely.

  19. Dynamic analysis of the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Calleson, Robert E.; Scott, A. Don

    1987-01-01

    The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations.

  20. Surface accuracy analysis of large deployable antennas

    NASA Astrophysics Data System (ADS)

    Tang, Yaqiong; Li, Tuanjie; Wang, Zuowei; Deng, Hanqing

    2014-11-01

    This paper performs an analysis to the systematic surface figure error influenced by three factors including errors of faceted paraboloids, fabrication imperfection and random thermal strains in orbit. Firstly, the computational formulas for root-mean-square surface deviations caused by these factors are presented respectively. The stochastic finite element method is applied to derive the computational formulas of fabrication imperfection and random thermal strains, by which the sensitivity of surface accuracy to component imperfection can be revealed. Then the Monte Carlo simulation method is introduced to obtain the surface figure by sampling test on random errors. Finally, the analytical method is applied to the research on the surface figure error of AstroMesh deployable reflector. The results show that the deviations between the root-mean-square surface errors calculated by the proposed formulas with less consuming time and those by the Monte Carlo simulation method are less than 2%, which indicates that the proposed method is efficient and receivable enough to analyze systematic surface figure error of a large deployable antenna. Moreover, further investigations on the relationship between surface RMS deviation and the antenna parameters including aperture and the number of subdivisions are presented in the end.

  1. Open architecture for rapid deployment of capability

    NASA Astrophysics Data System (ADS)

    Glassman, Jacob

    2016-05-01

    Modern warfare has drastically changed from conventional to non-conventional and from fixed threats to dynamic ones over the past several decades. This unprecedented fundamental shift has now made our adversaries and their weapons more nebulous and ever changing. Our current acquisition system however is not suited to develop, test and deploy essential capability to counter these dynamic threats in time to combat them. This environment requires a new infrastructure in our system design to rapidly adopt capabilities that we do not currently plan for or even know about. The key to enabling this rapid implementation is Open Architecture in acquisition. The DoD has shown it can rapidly prototype capabilities such as unmanned vehicles but has severely struggled in moving from the prototyping to deployment. A major driver of this disconnect is the lack of established infrastructure to employ said capability such as launch and recovery systems and command and control. If we are to be successful in transitioning our rapid capability to the warfighter we must implement established well defined interfaces and enabling technologies to facilitate the rapid adoption of capability so the warfighter has the tools to effectively counter the threat.

  2. Unmanned aerial vehicles for hyperspatial remote sensing of rangelands: object-based classification and field validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    UAVs are ideally suited for monitoring and assessing vegetation conditions in remote rangelands due to the relatively low operating costs, ability for fast deployment, and greater flexibility than piloted aircraft. The likelihood of obtaining FAA permission for operating a UAV is also greater in rem...

  3. Deployment Simulation of Ultra-Lightweight Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Johnson, Arthur R.

    2002-01-01

    Dynamic deployment analyses of folded inflatable tubes are conducted to investigate modeling issues related to the deployment of solar sail booms. The analyses are necessary because ground tests include gravity effects and may poorly represent deployment in space. A control volume approach, available in the LS-DYNA nonlinear dynamic finite element code, and the ideal gas law are used to simulate the dynamic inflation deployment process. Three deployment issues are investigated for a tube packaged in a Z-fold configuration. The issues are the effect of the rate of inflation, the effect of residual air, and the effect of gravity. The results of the deployment analyses reveal that the time and amount of inflation gas required to achieve a full deployment are related to these issues.

  4. Telesurgery via Unmanned Aerial Vehicle (UAV) with a field deployable surgical robot.

    PubMed

    Lum, Mitchell J H; Rosen, Jacob; King, Hawkeye; Friedman, Diana C W; Donlin, Gina; Sankaranarayanan, Ganesh; Harnett, Brett; Huffman, Lynn; Doarn, Charles; Broderick, Timothy; Hannaford, Blake

    2007-01-01

    Robotically assisted surgery stands to further revolutionize the medical field and provide patients with more effective healthcare. Most robotically assisted surgeries are teleoperated from the surgeon console to the patient where both ends of the system are located in the operating room. The challenge of surgical teleoperation across a long distance was already demonstrated through a wired communication network in 2001. New development has shifted towards deploying a surgical robot system in mobile settings and/or extreme environments such as the battlefield or natural disaster areas with surgeons operating wirelessly. As a collaborator in the HAPs/MRT (High Altitude Platform/Mobile Robotic Telesurgery) project, The University of Washington surgical robot was deployed in the desert of Simi Valley, CA for telesurgery experiments on an inanimate model via wireless communication through an Unmanned Aerial Vehicle (UAV). The surgical tasks were performed telerobotically with a maximum time delay between the surgeon's console (master) and the surgical robot (slave) of 20 ms for the robotic control signals and 200 ms for the video stream. This was our first experiment in the area of Mobile Robotic Telesurgery (MRT). The creation and initial testing of a deployable surgical robot system will facilitate growth in this area eventually leading to future systems saving human lives in disaster areas, on the battlefield or in other remote environments.

  5. Ethernet access network based on free-space optic deployment technology

    NASA Astrophysics Data System (ADS)

    Gebhart, Michael; Leitgeb, Erich; Birnbacher, Ulla; Schrotter, Peter

    2004-06-01

    The satisfaction of all communication needs from single households and business companies over a single access infrastructure is probably the most challenging topic in communications technology today. But even though the so-called "Last Mile Access Bottleneck" is well known since more than ten years and many distribution technologies have been tried out, the optimal solution has not yet been found and paying commercial access networks offering all service classes are still rare today. Conventional services like telephone, radio and TV, as well as new and emerging services like email, web browsing, online-gaming, video conferences, business data transfer or external data storage can all be transmitted over the well known and cost effective Ethernet networking protocol standard. Key requirements for the deployment technology driven by the different services are high data rates to the single customer, security, moderate deployment costs and good scalability to number and density of users, quick and flexible deployment without legal impediments and high availability, referring to the properties of optical and wireless communication. We demonstrate all elements of an Ethernet Access Network based on Free Space Optic distribution technology. Main physical parts are Central Office, Distribution Network and Customer Equipment. Transmission of different services, as well as configuration, service upgrades and remote control of the network are handled by networking features over one FSO connection. All parts of the network are proven, the latest commercially available technology. The set up is flexible and can be adapted to any more specific need if required.

  6. Multi-Instrument Intercalibration (MIIC) Framework: Extensions and Deployment

    NASA Astrophysics Data System (ADS)

    Currey, J. C.; Bartle, A.

    2014-12-01

    MIIC started as a NASA funded ACCESS proposal in 2011 to demonstrate the feasibility of developing a web-based tool to support LEO-GEO and LEO-LEO GSICS backed intercalibration studies. The initial effort demonstrated the benefits of using OPeNDAP and user developed server-side functions to provide efficient access to L1 SCIAMACHY, GOES-13, and MODIS data. Matched data in viewing geometry from instruments on separate spacecraft are subset, filtered, and transformed on remote servers prior to network download. The follow-on MIIC proposal will extend features for intercomparison of derived geophysical variables and data mining validation studies; as well as, demonstrate a significant reduction in data transfer to support climate model vs. observational data comparisons using OSSE data. Deployed MIIC services will provide access to L1 and L2 datasets from instruments such as CERES, CALIPSO, VIIRS, CrIS, ATMS, and GOES housed at the NASA ASDC and NOAA NCDC data centers. Data products must be in the HDF or netCDF file format. Server-side functions include 2DHistogram, N-Tuple, spatial and spectral convolution for data matching and synthesis. MIIC services accessible via a web page or RESTful API include event prediction, data acquisition, and analysis. Event prediction determines when satellite instruments meet viewing conditions over surface sites and orbit crossings. Matched data are automatically acquired and filtered using a combination of server-side and client-side functions. MIIC services advance interoperability of data located at the NASA ASDC and NOAA NCDC and reduce data required for analysis by several orders of magnitude.

  7. Testing the Deployment Repeatability of a Precision Deployable Boom Prototype for the Proposed SWOT Karin Instrument

    NASA Technical Reports Server (NTRS)

    Agnes, Gregory S.; Waldman, Jeff; Hughes, Richard; Peterson, Lee D.

    2015-01-01

    NASA's proposed Surface Water Ocean Topography (SWOT) mission, scheduled to launch in 2020, would provide critical information about Earth's oceans, ocean circulation, fresh water storage, and river discharge. The mission concept calls for a dual-antenna Ka-band radar interferometer instrument, known as KaRIn, that would map the height of water globally along two 50 km wide swaths. The KaRIn antennas, which would be separated by 10 meters on either side of the spacecraft, would need to be precisely deployable in order to meet demanding pointing requirements. Consequently, an effort was undertaken to design build and prototype a precision deployable Mast for the KaRIn instrument. Each mast was 4.5-m long with a required dilitation stability of 2.5 microns over 3 minutes. It required a minimum first mode of 7 Hz. Deployment repeatability was less than +/- 7 arcsec in all three rotation directions. Overall mass could not exceed 41.5 Kg including any actuators and thermal blanketing. This set of requirements meant the boom had to be three times lighter and two orders of magnitude more precise than the existing state of the art for deployable booms.

  8. A Conceptual Design for a Small Deployer Satellite

    NASA Astrophysics Data System (ADS)

    Zumbo, S.

    2002-01-01

    In the last few years, the space scientific and industrial communities have demonstrated a renewed interest for small missions based on new categories of space platforms: micro &nano satellites. The cost reduction w.r.t. larger satellite missions, the shorter time from concept to launch, the risk distribution and the possibility to use this kind of bus both for stand-alone projects and as complementary to larger programs, are key factors that make this new kind of technology suitable for a wide range of space related activities. In particular it is now possible to conceive new mission philosophy implying the realisation of micro satellite constellations, with S/C flying in close formation to form a network of distributed sensors either for near-real time telecommunication or Earth remote sensing and disaster monitoring systems or physics and astronomical researches for Earth-Sun dynamics and high energy radiation studies. At the same time micro satellite are becoming important test- beds for new technologies that will eventually be used on larger missions, with relevant spin-offs potentialities towards other industrial fields. The foreseen social and economical direct benefits, the reduced mission costs and the possibility even for a small skilled team to manage all the project, represent very attractive arguments for universities and research institutes to invest funds and human resources to get first order technical and theoretical skills in the field of micro satellite design, with important influences on the training programs of motivated students that are directly involved in all the project's phases. In consideration of these space market important new trends and of the academic benefits that could be guaranteed by undertaking a micro satellite mission project, basing on its long space activities heritage, University of Rome "La Sapienza" - Aerospace and Astronautics Department, with the support of the Italian Space Agency, Alenia Spazio and of important

  9. Sandia Multispectral Airborne Lidar for UAV Deployment

    SciTech Connect

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  10. Remote radiation dosimetry

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang; Hegland, Joel E.; Jones, Scott C.

    1991-01-01

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission.

  11. Remote radiation dosimetry

    DOEpatents

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  12. Remote actuation system speeds deepwater well completions

    SciTech Connect

    Bussear, T.

    1996-10-07

    Substantial savings in rig time, operating expenses, and overall completion costs, particularly in extended-reach and deepwater wells, can be realized with advanced wireless communication techniques and electronically enhanced pulse-actuation systems for completing wells. With drilling and completion costs climbing steadily, especially offshore, operators need to minimize rig time without sacrificing reliability, safety, or ultimate well productivity. During the past several months, Baker Oil Tools` EDGE remote actuation system, a surface-controlled communications system that relies on pressure-wave pulses to actuate electronics-equipped downhole completion tools, has been deployed commercially in a number of deep, high-pressure, high-temperature wells in the Gulf of Mexico. The paper discusses the system basics, the Mars installation, benefits and limitations, a simulator that was developed, time improvements, tangible savings, and further tools being manufactured for other jobs.

  13. Model Checking the Remote Agent Planner

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Muscettola, Nicola; Havelund, Klaus; Norvig, Peter (Technical Monitor)

    2001-01-01

    This work tackles the problem of using Model Checking for the purpose of verifying the HSTS (Scheduling Testbed System) planning system. HSTS is the planner and scheduler of the remote agent autonomous control system deployed in Deep Space One (DS1). Model Checking allows for the verification of domain models as well as planning entries. We have chosen the real-time model checker UPPAAL for this work. We start by motivating our work in the introduction. Then we give a brief description of HSTS and UPPAAL. After that, we give a sketch for the mapping of HSTS models into UPPAAL and we present samples of plan model properties one may want to verify.

  14. A novel tape spring hinge mechanism for quasi-static deployment of a satellite deployable using shape memory alloy.

    PubMed

    Jeong, Ju Won; Yoo, Young Ik; Shin, Dong Kil; Lim, Jae Hyuk; Kim, Kyung Won; Lee, Jung Ju

    2014-02-01

    A tape spring hinge (TSH) is a typical flexible deployment device for a satellite and becomes frequently used due to its simplicity, lightweight, low cost, and high deployment reliability. However, the performance of a TSH is quite limited due to trade-offs among deployed stiffness, deployment torque, and latch-up shock despite its many advantages. In this study, a novel conceptual design that circumvents the trade-offs among functional requirements (FRs) is proposed. The trade-offs are obviated by a newly proposed shape memory alloy damper that converts the deployment behavior of a conventional TSH from unstable dynamic to stable quasi-static. This makes it possible to maximize the deployment stiffness and deployment torque of a conventional TSH, which are larger-the-better FR, without any increase in the latch-up shock. Therefore, in view of conceptual design, it is possible to design a highly improved TSH that has much higher deployed stiffness and deployment torque compared to a conventional TSH while minimizing latch-up shock and deployment unstableness. Detailed design was performed through response surface method and finite element analysis. Finally, a prototype was manufactured and tested in order to verify its performance (four point, deployment torque, and latch-up shock tests). The test results confirm the feasibility of the proposed TSH mechanism. PMID:24593388

  15. Remote metrology system (RMS) design concept

    SciTech Connect

    1995-10-19

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR`s fiber optic implementation allows a 3D scanner to operate remotely from the RMS system`s vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm{sup 2} density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner.

  16. Remote water monitoring system

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Haynes, D. P. (Inventor)

    1978-01-01

    A remote water monitoring system is described that integrates the functions of sampling, sample preservation, sample analysis, data transmission and remote operation. The system employs a floating buoy carrying an antenna connected by lines to one or more sampling units containing several sample chambers. Receipt of a command signal actuates a solenoid to open an intake valve outward from the sampling unit and communicates the water sample to an identifiable sample chamber. Such response to each signal receipt is repeated until all sample chambers are filled in a sample unit. Each sample taken is analyzed by an electrochemical sensor for a specific property and the data obtained is transmitted to a remote sending and receiving station. Thereafter, the samples remain isolated in the sample chambers until the sampling unit is recovered and the samples removed for further laboratory analysis.

  17. Remote connector development study

    SciTech Connect

    Parazin, R.J.

    1995-05-01

    Plutonium-uranium extraction (PUREX) connectors, the most common connectors used at the Hanford site, offer a certain level of flexibility in pipe routing, process system configuration, and remote equipment/instrument replacement. However, these desirable features have inherent shortcomings like leakage, high pressure drop through the right angle bends, and a limited range of available pipe diameters that can be connect by them. Costs for construction, maintenance, and operation of PUREX connectors seem to be very high. The PUREX connector designs include a 90{degree} bend in each connector. This increases the pressure drop and erosion effects. Thus, each jumper requires at least two 90{degree} bends. PUREX connectors have not been practically used beyond 100 (4 in.) inner diameter. This study represents the results of a survey on the use of remote pipe-connection systems in US and foreign plants. This study also describes the interdependence between connectors, remote handling equipment, and the necessary skills of the operators.

  18. Clean energy deployment: addressing financing cost

    NASA Astrophysics Data System (ADS)

    Ameli, Nadia; Kammen, Daniel M.

    2012-09-01

    New methods are needed to accelerate clean energy policy adoption. To that end, this study proposes an innovative financing scheme for renewable and energy efficiency deployment. Financing barriers represent a notable obstacle for energy improvements and this is particularly the case for low income households. Implementing a policy such as PACE—property assessed clean energy—allows for the provision of upfront funds for residential property owners to install electric and thermal solar systems and make energy efficiency improvements to their buildings. This paper will inform the design of better policies tailored to the creation of the appropriate conditions for such investments to occur, especially in those countries where most of the population belongs to the low-middle income range facing financial constraints.

  19. Lunar Roving Vehicle Initial Deployment Sequence

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This artist's concept illustrates the deployment sequence of the Lunar Roving Vehicle (LRV) on the Moon. The LRV was designed to transport astronauts and materials on the Moon. It was a collapsible open-space vehicle about 10 feet long with large mesh wheels, anterna, appendages, tool caddies, and cameras. Powered by two 36-volt batteries, it has four 1/4-hp drive motors, one for each wheel. The vehicle was designed to travel in forward or reverse, negotiate obstacles about 1 foot high, cross crevasses about 2 feet wide, and climb or descend moderate slopes. Its speed limit was about 9 miles (14 kilometers) per hour. An LRV was used on each of the last three Apollo missions (Apollo 15, Apollo 16, and Apollo 17) and permitted the crew to travel several miles from the Lunar Module. The LRV was designed, developed, and tested by the Marshall Space Flight Center, and built by the Boeing Plant in Kent, Washington.

  20. Stochastic Optimization for Nuclear Facility Deployment Scenarios

    NASA Astrophysics Data System (ADS)

    Hays, Ross Daniel

    Single-use, low-enriched uranium oxide fuel, consumed through several cycles in a light-water reactor (LWR) before being disposed, has become the dominant source of commercial-scale nuclear electric generation in the United States and throughout the world. However, it is not without its drawbacks and is not the only potential nuclear fuel cycle available. Numerous alternative fuel cycles have been proposed at various times which, through the use of different reactor and recycling technologies, offer to counteract many of the perceived shortcomings with regards to waste management, resource utilization, and proliferation resistance. However, due to the varying maturity levels of these technologies, the complicated material flow feedback interactions their use would require, and the large capital investments in the current technology, one should not deploy these advanced designs without first investigating the potential costs and benefits of so doing. As the interactions among these systems can be complicated, and the ways in which they may be deployed are many, the application of automated numerical optimization to the simulation of the fuel cycle could potentially be of great benefit to researchers and interested policy planners. To investigate the potential of these methods, a computational program has been developed that applies a parallel, multi-objective simulated annealing algorithm to a computational optimization problem defined by a library of relevant objective functions applied to the Ver ifiable Fuel Cycle Simulati on Model (VISION, developed at the Idaho National Laboratory). The VISION model, when given a specified fuel cycle deployment scenario, computes the numbers and types of, and construction, operation, and utilization schedules for, the nuclear facilities required to meet a predetermined electric power demand function. Additionally, it calculates the location and composition of the nuclear fuels within the fuel cycle, from initial mining through

  1. Development of a precision large deployable antenna

    NASA Astrophysics Data System (ADS)

    Iwata, Yoji; Yamamoto, Kazuo; Noda, Takahiko; Tamai, Yasuo; Ebisui, Takashi; Miura, Koryo; Takano, Tadashi

    This paper describes the results of a study of a precision large deployable antenna for the space VLBI satellite 'MUSES-B'. An antenna with high gain and pointing accuracy is required for the mission objective. The frequency bands required are 22, 5 and 1.6 GHz. The required aperture diameter of the reflector is 10 meters. A displaced axis Cassegrain antenna is adopted with a mesh reflector formed in a tension truss concept. Analysis shows the possibility to achieve aperture efficiency of 60 percent at 22.15 GHz and surface accuracy of 0.5 mm rms. A one-fourth scale model of the reflector has been assembled in order to verify the design and clarify problems in manufacturing and assembly processes.

  2. Deployment of a class 2 tensegrity boom

    NASA Astrophysics Data System (ADS)

    Pinaud, Jean-Paul; Solari, Soren; Skelton, Robert E.

    2004-07-01

    Tensegrity structures are special truss structures composed of bars in compression and cables in tension. Most tensegrity structures under investigation, to date, have been of Class 1, where bars do not touch. In this article, however, we demonstrate the hardware implementation of a 2 stage symmetric Class 2 tensegrity structure, where bars do connect to each other at a pivot. The open loop control law for tendon lengths to accomplish the desired geometric reconfiguration are computed analytically. The velocity of the structure's height is chosen and reconfiguration is accomplished in a quasi-static manner, ignoring dynamic effects. The main goal of this research was to design, build, and test the capabilities of the Class 2 structure for deployment concepts and to further explore the possibilities of multiple stage structures using the same design and components.

  3. Nanomechanics of Actively Controlled Deployable Optics

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.

    2000-01-01

    This document is the interim, annual report for the research grant entitled "Nanomechanics of Actively Controlled Deployed Optics." It is supported by NASA Langley Research Center Cooperative Agreement NCC-1 -281. Dr. Mark S. Lake is the technical monitor of the research program. This document reports activities for the year 1998, beginning 3/11/1998, and for the year 1999. The objective of this report is to summarize the results and the status of this research. This summary appears in Section 2.0. Complete details of the results of this research have been reported in several papers, publications and theses. Section 3.0 lists these publications and, when available, presents their abstracts. Each publication is available in electronic form from a web site identified in Section 3.0.

  4. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope after being released into orbit, with the high gain anternas and solar arrays deployed and the aperture doors opened. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  5. COSTAR Dob/fos m2 Mirror Arm Deployment

    NASA Astrophysics Data System (ADS)

    Troeltzsch, John

    1994-01-01

    This proposal describes the activities needed to deploy the Deployable Optical Bench (DOB) from its stowed position to its operational position and verify that the deployment will not cause damage to the other instruments. The deployment of the DOB is done in two stages in order to prevent contact between the FOS M2 mirror arm and the other structures within the Hub region. If the DOB was deployed directly to the operational position, the FOS M2 mirror could not be deployed safely. An intermediate position is used to allow the arm to clear both the COSTAR enclosure and the other structures within the Hub region. As it is critical that the arm be completely deployed before moving the DOB to the operational position, a set of check images are taken with the FOS just before and after the arm deployment. If the deployment was successful, the FOS will show no signal in the after image. This proposal requires a mix of real-time activities performed by the STOCC and stored command activities performed by the STScI SMS. The implementation of this proposal requires careful attention to the implementation details as deployment of the FOS M2 mirror could result in physical damage to the HST instruments as defined in the CARD.

  6. Regulated deployment mechanism for a panel like appendage

    NASA Astrophysics Data System (ADS)

    Bueno, José Ignacio; Vázquez, Javier; Gavira, José Manuel; Migliorero, Gerard

    2001-09-01

    The definition of a cost effective deployment mechanism to deploy 180° panel like appendages in a safe way and with minimum end stroke deployment shock has been a challenge that led the design to achieve a low cost, light, compact, simple, flexible, modular, and low power demanding configuration. This mechanism is composed of an active hinge, that includes an optimised helical torsion spring with a deployment regulator in parallel, and a passive hinge, that includes the end stop and the monitorisation. The main functions of the mechanisms are decoupled in order to make the mechanism as flexible as possible to be adapted to very different needs such as different deployment torque, deployment angle, stiffness, interfaces, monitorisation, etc. The deployment mechanism is provided with a very compact novel deployment regulator based on the progressive melting of a band made of a low melting temperature metal alloy, that is cylindrically disposed. The deployment mechanism has been subject to a qualification test campaign including an extensive characterisation of the deployment regulator.

  7. Application of remote power-by-light switching in a simplified BOTDA sensor network.

    PubMed

    Bravo, Mikel; Ullan, Angel; Zornoza, Ander; Loayssa, Alayn; Lopez-Amo, Manuel; Lopez-Higuera, Jose Miguel

    2013-01-01

    We propose and demonstrate the use of spatial multiplexing as a means to reduce the costs of distributed sensing networks. We propose a new scheme in which remote power-by-light switching is deployed to scan multiple branches of a distributed sensing network based on Brillouin Optical Time Domain Analysis (BOTDA) sensors. A proof-of-concept system is assembled with two 5-km sensor fiber branches that are alternatively monitored using a fast remotely controlled and optically powered optical switch. The multiplexed distributed sensor fibers were located 10 km away from the interrogation unit and a Raman pump is used to remotely power the switch. Furthermore, the deployed BOTDA unit uses an alternative configuration that can lead to simplified setups. PMID:24351644

  8. Application of Remote Power-by-Light Switching in a Simplified BOTDA Sensor Network

    PubMed Central

    Bravo, Mikel; Ullan, Angel; Zornoza, Ander; Loayssa, Alayn; Lopez-Amo, Manuel; Lopez-Higuera, Jose Miguel

    2013-01-01

    We propose and demonstrate the use of spatial multiplexing as a means to reduce the costs of distributed sensing networks. We propose a new scheme in which remote power-by-light switching is deployed to scan multiple branches of a distributed sensing network based on Brillouin Optical Time Domain Analysis (BOTDA) sensors. A proof-of-concept system is assembled with two 5-km sensor fiber branches that are alternatively monitored using a fast remotely controlled and optically powered optical switch. The multiplexed distributed sensor fibers were located 10 km away from the interrogation unit and a Raman pump is used to remotely power the switch. Furthermore, the deployed BOTDA unit uses an alternative configuration that can lead to simplified setups. PMID:24351644

  9. Deployer Performance Results for the TSS-1 Mission

    NASA Technical Reports Server (NTRS)

    Marshall, Leland S.; Geiger, Ronald V.

    1995-01-01

    Performance of the Tethered Satellite System (TSS) Deployer during the STS-46 mission (July and August 1992) is analyzed in terms of hardware operation at the component and system level. Although only a limited deployment of the satellite was achieved (256 meters vs 20 kilometers planned), the mission served to verify the basic capability of the Deployer to release, control and retrieve a tethered satellite. - Deployer operational flexibility that was demonstrated during the flight is also addressed. Martin Marietta was the prime contractor for the development of the Deployer, under management of the NASA George C. Marshall Space Flight Center (MSFC). The satellite was provided by Alenia, Torino, Italy under contract to the Agencia Spaziale Italiana (ASI). Proper operation of the avionics components and the majority of mechanisms was observed during the flight. System operations driven by control laws for the deployment and retrieval of the satellite were also successful for the limited deployment distance. Anomalies included separation problems for one of the two umbilical connectors between the Deployer and satellite, tether jamming (at initial Satellite fly-away and at a deployment distance of 224 meters), and a mechanical interference which prevented tether deployment beyond 256 meters. The Deployer was used in several off-nominal conditions to respond to these anomalies, which ultimately enabled a successful satellite retrieval and preservation of hardware integrity for a future re-flight. The paper begins with an introduction defining the significance of the TSS-1 mission. The body of the paper is divided into four major sections: (1) Description of Deployer System and Components, (2) Deployer Components/Systems Demonstrating Successful Operation, (3) Hardware Anomalies and Operational Responses, and (4) Design Modifications for the TSS-1R Re-flight Mission. Conclusions from the TSS-1 mission, including lessons learned are presented at the end of the

  10. Understanding the elevated suicide risk of female soldiers during deployments

    PubMed Central

    Street, A. E.; Gilman, S. E.; Rosellini, A. J.; Stein, M. B.; Bromet, E. J.; Cox, K. L.; Colpe, L. J.; Fullerton, C. S.; Gruber, M. J.; Heeringa, S. G.; Lewandowski-Romps, L.; Little, R. J. A.; Naifeh, J. A.; Nock, M. K.; Sampson, N. A.; Schoenbaum, M.; Ursano, R. J.; Zaslavsky, A. M.; Kessler, R. C.

    2016-01-01

    Background The Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS) has found that the proportional elevation in the US Army enlisted soldier suicide rate during deployment (compared with the never-deployed or previously deployed) is significantly higher among women than men, raising the possibility of gender differences in the adverse psychological effects of deployment. Method Person-month survival models based on a consolidated administrative database for active duty enlisted Regular Army soldiers in 2004–2009 (n = 975 057) were used to characterize the gender × deployment interaction predicting suicide. Four explanatory hypotheses were explored involving the proportion of females in each soldier’s occupation, the proportion of same-gender soldiers in each soldier’s unit, whether the soldier reported sexual assault victimization in the previous 12 months, and the soldier’s pre-deployment history of treated mental/behavioral disorders. Results The suicide rate of currently deployed women (14.0/100 000 person-years) was 3.1–3.5 times the rates of other (i.e. never-deployed/previously deployed) women. The suicide rate of currently deployed men (22.6/100 000 person-years) was 0.9–1.2 times the rates of other men. The adjusted (for time trends, sociodemographics, and Army career variables) female:male odds ratio comparing the suicide rates of currently deployed v. other women v. men was 2.8 (95% confidence interval 1.1–6.8), became 2.4 after excluding soldiers with Direct Combat Arms occupations, and remained elevated (in the range 1.9–2.8) after adjusting for the hypothesized explanatory variables. Conclusions These results are valuable in excluding otherwise plausible hypotheses for the elevated suicide rate of deployed women and point to the importance of expanding future research on the psychological challenges of deployment for women. PMID:25359554

  11. Remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1975-01-01

    This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.

  12. Aerosol Remote Sensing

    NASA Technical Reports Server (NTRS)

    Lenoble, Jacqueline (Editor); Remer, Lorraine (Editor); Tanre, Didier (Editor)

    2012-01-01

    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified.

  13. Remote electrochemical sensor

    DOEpatents

    Wang, J.; Olsen, K.; Larson, D.

    1997-10-14

    An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

  14. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  15. Instrumentation for optical ocean remote sensing

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1991-01-01

    Instruments used in ocean color remote sensing algorithm development, validation, and data acquisition which have the potential for further commercial development and marketing are discussed. The Ocean Data Acquisition System (ODAS) is an aircraft-borne radiometer system suitable for light aircraft, which has applications for rapid measurement of chlorophyll pigment concentrations along the flight line. The instrument package includes a three channel radiometer system for upwelling radiance, an infrared temperature sensor, a three-channel downwelling irradiance sensor, and Loran-C navigation. Data are stored on a PC and processed to transects or interpolated 'images' on the ground. The instrument has been in operational use for two and one half years. The accuracy of pigment concentrations from the instrument is quite good, even in complex Chesapeake Bay waters. To help meet the requirement for validation of future satellite missions, a prototype air-deployable drifting buoy for measurement of near-surface upwelled radiance in multiple channnels is undergoing test deployment. The optical drifter burst samples radiance, stores and processes the data, and uses the Argos system as a data link. Studies are underway to explore the limits to useful lifetime with respect to power and fouling.

  16. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: An ARM Mobile Facility Deployment

    NASA Technical Reports Server (NTRS)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, J. Christine; Mann, Julian A. L.; O'Connor, Ewan J.; Hogan, Robin J.; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palikonda, Rabindra; Albrecht, Bruce; Luke, Ed; Hannay, Cecile; Lin, Yanluan

    2015-01-01

    Capsule: A 21-month deployment to Graciosa Island in the northeastern Atlantic Ocean is providing an unprecedented record of the clouds, aerosols and meteorology in a poorly-sampled remote marine environment The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21 month (April 2009- December 2010) comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1- 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from at Graciosa are being compared with short-range forecasts made a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a

  17. A new high-precision and low-power GNSS receiver for long-term installations in remote areas

    NASA Astrophysics Data System (ADS)

    Jones, David H.; Robinson, Carl; Hilmar Gudmundsson, G.

    2016-03-01

    We have developed a new high-precision GNSS receiver specifically designed for long-term unattended deployments in remote areas. The receiver reports its status, and can be reprogrammed remotely, through an integrated satellite data link. It uses less power than commercially available alternatives while being equally, if not more, accurate. Data are saved locally on dual SD card slots for increased reliability. Deployments of a number of those receivers in several different locations on the Antarctic ice sheet have shown them to be robust and able to operate flawlessly at low temperatures down to -40 °C.

  18. Suicidal Ideation among Florida National Guard Members: Combat Deployment and Non-Deployment Risk and Protective Factors.

    PubMed

    Vanderploeg, Rodney D; Nazem, Sarra; Brenner, Lisa A; Belanger, Heather G; Donnell, Alison J; Scott, Steven G

    2015-01-01

    This study examined relationships among risk/protective factors and suicidal ideation (SI) in deployed and non-deployed National Guard members, particularly examining for possible differential effects of deployment on SI. A total of 3,098 Florida National Guard members completed an anonymous online survey that assessed variables associated with SI including demographics, current psychiatric diagnoses, and pre-, during, and post-deployment experiences. Those deployed had significantly higher rates of SI (5.5%) than those not deployed (3.0%; p < .001). In multivariate analyses, among those not deployed, SI was significantly associated with major depressive disorder (p < .001), posttraumatic stress disorder (PTSD) (p < .001), prior psychological trauma (p < .01), and heavy/hazardous alcohol consumption (p < .05). In contrast, in the deployed, only PTSD (p < .001) and deployment-related mild traumatic brain injury (p < .05) were independently associated with SI. Risk and protective factors differed by deployment status in National Guard members suggesting the possible need for cohort-specific treatment targets to minimize SI. PMID:25517207

  19. Bearing the burden: deployment stress among army national guard chaplains.

    PubMed

    Besterman-Dahan, Karen; Barnett, Scott; Hickling, Edward; Elnitsky, Christine; Lind, Jason; Skvoretz, John; Antinori, Nicole

    2012-01-01

    Military Chaplains are a critical component of behavioral health and spiritual support in combat operations. Support of combat operations has taken a toll on these caregivers. The purpose of this study was to explore the impact of deployment on the psychosocial and health characteristics and reintegration of Army National Guard (ARNG) chaplains. Seventy-four ARNG chaplains participated in an anonymous, online survey. Results were categorized into two mutually exclusive groups, combat deployed and non-combat deployed. Although both groups tended to present similar results, Combat deployed group chaplains were significantly more likely to be of higher rank, have served in a pastoral role in the ARNG longer, and present with higher scores for combat exposure, resilience, and alcohol use. Further, five and seven participants, respectively, the majority of whom were from the combat deployed group, endorsed "frequently" or "a great deal" to negative religious coping. These endorsements of abandonment may relate back to Reserve component specific deployment concerns.

  20. The Propulsive Small Expendable Deployer System (ProSEDS)

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.; Cosmo, Mario L.; Estes, Robert D.; Sanmartin, Juan; Pelaez, Jesus; Ruiz, Manuel

    2003-01-01

    This Final Report covers the following main topics: 1) Brief Description of ProSEDS; 2) Mission Analysis; 3) Dynamics Reference Mission; 4) Dynamics Stability; 5) Deployment Control; 6) Updated System Performance; 7) Updated Mission Analysis; 8) Updated Dynamics Reference Mission; 9) Updated Deployment Control Profiles and Simulations; 10) Updated Reference Mission; 11) Evaluation of Power Delivered by the Tether; 12) Deployment Control Profile Ref. #78 and Simulations; 13) Kalman Filters for Mission Estimation; 14) Analysis/Estimation of Deployment Flight Data; 15) Comparison of ED Tethers and Electrical Thrusters; 16) Dynamics Analysis for Mission Starting at a Lower Altitude; 17) Deployment Performance at a Lower Altitude; 18) Satellite Orbit after a Tether Cut; 19) Deployment with Shorter Dyneema Tether Length; 20) Interactive Software for ED Tethers.

  1. NN-SITE: A remote monitoring testbed facility

    SciTech Connect

    Kadner, S.; White, R.; Roman, W.; Sheely, K.; Puckett, J.; Ystesund, K.

    1997-08-01

    DOE, Aquila Technologies, LANL and SNL recently launched collaborative efforts to create a Non-Proliferation Network Systems Integration and Test (NN-Site, pronounced N-Site) facility. NN-Site will focus on wide area, local area, and local operating level network connectivity including Internet access. This facility will provide thorough and cost-effective integration, testing and development of information connectivity among diverse operating systems and network topologies prior to full-scale deployment. In concentrating on instrument interconnectivity, tamper indication, and data collection and review, NN-Site will facilitate efforts of equipment providers and system integrators in deploying systems that will meet nuclear non-proliferation and safeguards objectives. The following will discuss the objectives of ongoing remote monitoring efforts, as well as the prevalent policy concerns. An in-depth discussion of the Non-Proliferation Network Systems Integration and Test facility (NN-Site) will illuminate the role that this testbed facility can perform in meeting the objectives of remote monitoring efforts, and its potential contribution in promoting eventual acceptance of remote monitoring systems in facilities worldwide.

  2. EPA REMOTE SENSING RESEARCH

    EPA Science Inventory

    The 2006 transgenic corn imaging research campaign has been greatly assisted through a cooperative effort with several Illinois growers who provided planting area and crop composition. This research effort was designed to evaluate the effectiveness of remote sensed imagery of var...

  3. Remote Access Astronomy

    ERIC Educational Resources Information Center

    Beare, Richard; Bowdley, David; Newsam, Andrew; Roche, Paul

    2003-01-01

    There is still nothing to beat the excitement and fulfilment that you can get from observing celestial bodies on a clear dark night, in a remote location away from the seemingly ever increasing light pollution from cities. However, it is also the specific requirements for good observing that can sometimes prevent teachers from offering this…

  4. Remote systems development

    NASA Technical Reports Server (NTRS)

    Olsen, R.; Schaefer, O.; Hussey, J.

    1992-01-01

    Potential space missions of the nineties and the next century require that we look at the broad category of remote systems as an important means to achieve cost-effective operations, exploration and colonization objectives. This paper addresses such missions, which can use remote systems technology as the basis for identifying required capabilities which must be provided. The relationship of the space-based tasks to similar tasks required for terrestrial applications is discussed. The development status of the required technology is assessed and major issues which must be addressed to meet future requirements are identified. This includes the proper mix of humans and machines, from pure teleoperation to full autonomy; the degree of worksite compatibility for a robotic system; and the required design parameters, such as degrees-of-freedom. Methods for resolution are discussed including analysis, graphical simulation and the use of laboratory test beds. Grumman experience in the application of these techniques to a variety of design issues are presented utilizing the Telerobotics Development Laboratory which includes a 17-DOF robot system, a variety of sensing elements, Deneb/IRIS graphics workstations and control stations. The use of task/worksite mockups, remote system development test beds and graphical analysis are discussed with examples of typical results such as estimates of task times, task feasibility and resulting recommendations for design changes. The relationship of this experience and lessons-learned to future development of remote systems is also discussed.

  5. Remotely controlled spray gun

    NASA Technical Reports Server (NTRS)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  6. Solar System Remote Sensing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the symposium on Solar System Remote Sensing, September 20-21, 2002, in Pittsburgh, Pennsylvania. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.

  7. Remote Inspection Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2013-01-01

    The ability to remotely inspect equipment of an aging infrastructure is becoming of major interest to many industries. Often the ability to just get a look at a piece of critical equipment can yield very important information. With millions of miles of piping installed throughout the United States, this vast network is critical to oil, natural…

  8. Remote Agent Experiment

    NASA Technical Reports Server (NTRS)

    Benard, Doug; Dorais, Gregory A.; Gamble, Ed; Kanefsky, Bob; Kurien, James; Millar, William; Muscettola, Nicola; Nayak, Pandu; Rouquette, Nicolas; Rajan, Kanna; Norvig, Peter (Technical Monitor)

    2000-01-01

    Remote Agent (RA) is a model-based, reusable artificial intelligence (At) software system that enables goal-based spacecraft commanding and robust fault recovery. RA was flight validated during an experiment on board of DS1 between May 17th and May 21th, 1999.

  9. Application of remote sensing

    NASA Technical Reports Server (NTRS)

    Graff, W. J. (Compiler)

    1973-01-01

    Remote sensing and aerial photographic interpretation are discussed along with the specific imagery techniques used for this research. The method used to select sites, the results of data analyses for the Houston metropolitan area, and the location of dredging sites along the Houston Ship Channel are presented. The work proposed for the second year of the project is described.

  10. Remote Services, Inc.

    ERIC Educational Resources Information Center

    Morris, Steven A.

    2008-01-01

    The Remote Services, Inc. (RSI) case is designed as an extensible, database design and implementation project. The case is designed in two primary components: design and implementation. The design component of the case allows students to evaluate a scenario that is similar to a real-world business situation and create an appropriate design…

  11. Martian environmental simulation for a deployable lattice mast

    NASA Technical Reports Server (NTRS)

    Warden, Robert M.

    1994-01-01

    The Mars Pathfinder mission (formerly Mars Environmental Survey or MESUR) is scheduled for launch in December 1996 and is designed to place a small lander on the surface of Mars. After impact, the lander unfolds to expose its solar panels and release a miniature rover. Also on board is the Imager for Mars Pathfinder (IMP) binocular camera which is elevated by a deployable mast to obtain a panoramic view of the landing area. The design of this deployable mast is based on similar designs which have a long and successful flight history. In the past when this type of self-deployable mast has been used, a rate limiter has been incorporated to control the speed of deployment. In this application, to reduce weight and complexity, it was proposed to eliminate the rate limiter so that the mast would deploy without restraint. Preliminary tests showed that this type of deployment was possible especially if the deployed length was relatively short, as in this application. Compounding the problem, however, was the requirement to deploy the mast at an angle of up to 30 degrees from vertical. The deployment process was difficult to completely analyze due to the effects of gravitational and inertial loads on the mast and camera during rapid extension. Testing in a realistic manner was imperative to verify the system performance. A deployment test was therefore performed to determine the maximum tilt angle at which the mast could reliably extend and support the camera on Mars. The testing of the deployable mast requires partial gravity compensation to simulate the smaller force of Martian gravity. During the test, mass properties were maintained while weight properties were reduced. This paper describes the testing of a deployable mast in a simulated Martian environment as well as the results of the tests.

  12. Missile launch pad: an unusual consequence of airbag deployment.

    PubMed

    Ronnie, Davies; Emecheta, Ikechukwu E; Kevin, Hancock

    2011-02-17

    Vehicle airbags significantly reduce vehicle occupant injuries and fatalities in road accidents. However, a number of injuries are recognised as being directly attributable to airbag deployment. The majority of these are blunt injuries due to the high force of airbag deployment and include ocular injuries, burns, chest trauma and, rarely, fatalities. The authors describe a case of mixed blunt ocular and penetrating facial trauma as a result of airbag deployment.

  13. Lessons Learned from Pit Viper System Deployment

    SciTech Connect

    Catalan, Michael A.; Bailey, Sharon A.; Alzheimer, James M.; Baker, Carl P.; Valdez, Patrick L.

    2002-08-08

    The Pit Viper is a tele-operated system intended to enhance worker safety while simultaneously improving the efficiency of pit operations at the Hanford Site. Commercial off-the-shelf (COTS) components were used in an attempt to increase system reliability and reduce integration difficulties. The Pit Viper, as is, provides significant improvement over the current baseline approach. During integration, multiple areas where technology development would enhance the effectiveness of the system were identified. Most notable of these areas were the manipulator control system, tool design, and tool handling. Various issues were identified regarding the interfacing of the Pit Viper with the Tank Farm environment and the maturity of remote/ robotic systems for unstructured environments.

  14. Remote Sensing and the Earth

    NASA Technical Reports Server (NTRS)

    Brosius, C. A.; Gervin, J. C.; Ragusa, J. M.

    1977-01-01

    A text book on remote sensing, as part of the earth resources Skylab programs, is presented. The fundamentals of remote sensing and its application to agriculture, land use, geology, water and marine resources, and environmental monitoring are summarized.

  15. Structural design of hexa-link truss deployable antenna

    NASA Astrophysics Data System (ADS)

    Ebisui, Takashi; Okamoto, Teruki; Ookawa, Yoshiyuki; Tanizawa, Kazuo; Tabata, Masaki; Taniai, Hitoshi

    1993-03-01

    Structure of a 6 m deployable antenna mirror surface for communications satellite is designed paying attention to the following sections: the back structure section composed of 19 basic modules of hexagonal trapezoid shape, mirror mesh section composed of a cable net made from Al amide fiber with gold plated molybdenum mesh hung on it, and a deployment mechanism (sliding type and flexible type) of the deployable section for the offset parabolic antenna scale model of 6 m in aperture diameter. Deployment motion analysis was conducted with a hexagonal trapezoidal model of one module using the ADAMS (Automatic Dynamic Analysis of Mechanical System).

  16. Mechanism Design Principle for Optical-Precision, Deployable Instruments

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Hachkowski, M. Roman

    2000-01-01

    The present paper is intended to be a guide for the design of 'microdynamically quiet' deployment mechanisms for optical-precision structures, such as deployable telescope mirrors and optical benches. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are neither newly developed guidelines nor are they uniquely applicable to high-precision deployment mechanisms. However, the application of these guidelines to the design of deployment mechanisms is a rather new practice, so efforts are made herein to illustrate the process through the discussion of specific examples. The present paper summarizes a more extensive set of design guidelines for optical-precision mechanisms that are under development.

  17. Deployable radiators for waste heat dissipation from Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Cox, R. L.; Dietz, J. B.; Leach, J. W.

    1976-01-01

    Prototypes of two types of modularized, deployable radiator systems with a high degree of configuration and component commonality to minimize design, development and fabrication costs are currently under development for Shuttle payloads with high waste heat: a rigid radiator system which utilizes aluminum honeycomb panels that are deployed by a scissors mechanism; and two 'flexible' radiator systems which use panels constructed from flexible metal/dielectric composite materials that are deployed by 'unrolling' or 'extending' in orbit. Detail descriptions of these deployable radiator systems along with design and performance features are presented.

  18. Design of deployable-truss masts for Space Station

    NASA Technical Reports Server (NTRS)

    Bowden, Mary; Benton, Max

    1993-01-01

    This paper presents an overview of three deployable-truss designs that were considered for use on Space Station Freedom to deploy the solar array wings. The first design chosen early in the program was a nut-deployed coilable longeron mast which has the advantage of being lightweight and reliable, with considerable flight history. Subsequently, because of the restructure of Space Station, a second design was chosen: a lanyard-deployed FASTMast (Folding Articulated Square Truss Mast), which has improved strength and redundancy characteristics for a given stowed volume. After further definition of the load requirements during deployment, however, it became necessary to modify the deployment system, resulting in the third mast design for space station solar arrays: a nut-deployed FASTMast, which was ultimately selected to provide increased stiffness and strength during deployment. This paper presents a brief review of these mast designs and their associated deployment systems, emphasizing the trade-offs involved in selecting between them. In addition, some innovative features of the FASTMast design as it stands currently for Space Station are described, and a brief review of the test program that is underway to qualify this design for flight is included.

  19. Technology Deployment Annual Report 2014 December

    SciTech Connect

    Arterburn, George K.

    2014-12-01

    This report is a summary of key Technology Deployment activities and achievements for 2014, including intellectual property, granted copyrights, royalties, license agreements, CRADAs, WFOs and Technology-Based Economic Development. Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In our multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational instiutitons throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically

  20. Lightweight Deployable Mirrors with Tensegrity Supports

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W.; Bradford, Larry J.; Cleve, Richard C.

    2004-01-01

    The upper part of Figure 1 shows a small-scale prototype of a developmental class of lightweight, deployable structures that would support panels in precise alignments. In this case, the panel is hexagonal and supports disks that represent segments of a primary mirror of a large telescope. The lower part of Figure 1 shows a complete conceptual structure containing multiple hexagonal panels that hold mirror segments. The structures of this class are of the tensegrity type, which was invented five decades ago by artist Kenneth Snelson. A tensegrity structure consists of momentfree compression members (struts) and tension members (cables). The structures of this particular developmental class are intended primarily as means to erect large segmented primary mirrors of astronomical telescopes or large radio antennas in outer space. Other classes of tensegrity structures could also be designed for terrestrial use as towers, masts, and supports for general structural panels. An important product of the present development effort is the engineering practice of building a lightweight, deployable structure as an assembly of tensegrity modules like the one shown in Figure 2. This module comprises two octahedral tensegrity subunits that are mirror images of each other joined at their plane of mirror symmetry. In this case, the plane of mirror symmetry is both the upper plane of the lower subunit and the lower plane of the upper subunit, and is delineated by the midheight triangle in Figure 2. In the configuration assumed by the module to balance static forces under mild loading, the upper and lower planes of each sub-unit are rotated about 30 , relative to each other, about the long (vertical) axis of the structure. Larger structures can be assembled by joining multiple modules like this one at their sides or ends. When the module is compressed axially (vertically), the first-order effect is an increase in the rotation angle, but by virtue of the mirror arrangement, the net

  1. Remote Sensing and the Earth.

    ERIC Educational Resources Information Center

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  2. Remote Sensing: A Film Review.

    ERIC Educational Resources Information Center

    Carter, David J.

    1986-01-01

    Reviews the content of 19 films on remote sensing published between 1973 and 1980. Concludes that they are overly simplistic, notably outdated, and generally too optimistic about the potential of remote sensing from space for resource exploration and environmental problem-solving. Provides names and addresses of more current remote sensing…

  3. Remote sensing and image interpretation

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)

    1979-01-01

    A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

  4. THE EPA REMOTE SENSING ARCHIVE

    EPA Science Inventory

    What would you do if you were faced with organizing 30 years of remote sensing projects that had been haphazardly stored at two separate locations for years then combined? The EPA Remote Sensing Archive, currently located in Las Vegas, Nevada. contains the remote sensing data and...

  5. Transportation Deployment; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    Automakers, commercial fleet operators, component manufacturers, and government agencies all turn to the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) to help put more green vehicles on the road. The lab’s independent analysis and evaluation pinpoint fuel-efficient and low-emission strategies to support economic and operational goals, while breaking down barriers to widespread adoption. Customized assessment of existing equipment and practices, energy-saving alternatives, operational considerations, and marketplace realities factor in the multitude of variables needed to ensure meaningful performance, financial, and environmental benefits. NREL provides integrated, unbiased, 360-degree sustainable transportation deployment expertise encompassing alternative fuels, advanced vehicles, and related infrastructure. Hands-on support comes from technical experts experienced in advanced vehicle technologies, fleet operations, and field data collection coupled with extensive modeling and analysis capabilities. The lab’s research team works closely with automakers and vehicle equipment manufacturers to test, analyze, develop, and evaluate high-performance fuel-efficient technologies that meet marketplace needs.

  6. Issues concerning centralized versus decentralized power deployment

    NASA Technical Reports Server (NTRS)

    Metcalf, Kenneth J.; Harty, Richard B.; Robin, James F.

    1991-01-01

    The results of a study of proposed lunar base architectures to identify issues concerning centralized and decentralized power system deployment options are presented. The power system consists of the energy producing system (power plant), the power conditioning components used to convert the generated power into the form desired for transmission, the transmission lines that conduct this power from the power sources to the loads, and the primary power conditioning hardware located at the user end. Three power system architectures, centralized, hybrid, and decentralized, were evaluated during the course of this study. Candidate power sources were characterized with respect to mass and radiator area. Two electrical models were created for each architecture to identify the preferred method of power transmission, dc or ac. Each model allowed the transmission voltage level to be varied at assess the impact on power system mass. The ac power system models also permitted the transmission line configurations and placements to determine the best conductor construction and installation location. Key parameters used to evaluate each configuration were power source and power conditioning component efficiencies, masses, and radiator areas; transmission line masses and operating temperatures; and total system mass.

  7. Rapid Deployment of Rich Catalytic Combustion

    SciTech Connect

    Richard S. Tuthill

    2004-06-10

    The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

  8. Collapsible antennae deployed by electrostatic forces

    NASA Astrophysics Data System (ADS)

    Gvamichava, A. S.; Kotik, A. N.; Koshelev, V. A.; Nefedov, S. S.; Patsaeva, V. A.; Rogachev, A. S.; Sokolov, A. G.

    1981-09-01

    Conventional space mirror antennas occupy a substantial volume when folded; the dimensions of antennas, automatically extendable at orbit, may be reduced to magnitudes of about 100-200 m. These large mirror antennas are designed by means of thin films or mesh structures forming a reflecting surface, which are deployed by electrostatic forces. The interaction of charges applied to reflecting and subsidiary surfaces creates the electrostatic forces sustaining the structural form of the antenna. By varying the distribution of charges at the subsidiary shell, it is possible to change the structural form. Electrostatic forces in the shell must exceed outer influences, and the antenna should have a paraboloidal or spherical form and be made of soft materials, which can be extended by the forces of electrostatic charge interaction. Mirrors of considerable dimensions may be formed by combining a shell with stiffness rings; these rings are important factors defining the efficiency of the antenna, since they contribute to both the mass and the dimension of the antenna when packed.

  9. Experimental characterization of deployable trusses and joints

    NASA Technical Reports Server (NTRS)

    Ikegami, R.; Church, S. M.; Keinholz, D. A.; Fowler, B. L.

    1987-01-01

    The structural dynamic properties of trusses are strongly affected by the characteristics of joints connecting the individual beam elements. Joints are particularly significant in that they are often the source of nonlinearities and energy dissipation. While the joints themselves may be physically simple, direct measurement is often necessary to obtain a mathematical description suitable for inclusion in a system model. Force state mapping is a flexible, practical test method for obtaining such a description, particularly when significant nonlinear effects are present. It involves measurement of the relationship, nonlinear or linear, between force transmitted through a joint and the relative displacement and velocity across it. An apparatus and procedure for force state mapping are described. Results are presented from tests of joints used in a lightweight, composite, deployable truss built by the Boeing Aerospace Company. The results from the joint tests are used to develop a model of a full 4-bay truss segment. The truss segment was statically and dynamically tested. The results of the truss tests are presented and compared with the analytical predictions from the model.

  10. Quality function deployment in launch operations

    NASA Astrophysics Data System (ADS)

    Portanova, P. L.; Tomei, E. J., Jr.

    1990-11-01

    The goal of the Advanced Launch System (ALS) is a more efficient launch capability that provides a highly reliable and operable system at substantially lower cost than current launch systems. Total Quality Management (TQM) principles are being emphasized throughout the ALS program. A continuous improvement philosophy is directed toward satisfying users' and customer's requirements in terms of quality, performance, schedule, and cost. Quality Function Deployment (QFD) is interpreted as the voice of the customer (or user), and it is an important planning tool in translating these requirements throughout the whole process of design, development, manufacture, and operations. This report explores the application of QFD methodology to launch operations, including the modification and addition of events (operations planning) in the engineering development cycle, and presents an informal status of study results to date. QFD is a technique for systematically analyzing the customer's (Space Command) perceptions of what constitutes a highly reliable and operable system and functionally breaking down those attributes to identify the critical characteristics that determine an efficient launch system capability. In applying the principle of QFD, a series of matrices or charts are developed with emphasis on the one commonly known as the House of Quality (because of its roof-like format), which identifies and translates the most critical information.

  11. Use of direct digital radiography at remote dental facilities.

    PubMed

    Bartoloni, J A

    2000-12-01

    Digital radiography is changing the practice of dentistry today. This technology offers many advantages compared with conventional radiographic techniques. These advantages include faster imaging times, elimination of conventional dental film/chemicals and processing equipment, reduced radiation exposure, the ability to enhance images, and digitization of images for storage and electronic transfer. The U.S. Air Force Dental Corps completed an evaluation of digital radiography to assess its potential use by deployed units in the field. The Schick Computed Dental Radiography Kit was selected for testing and sent to two remote sites in Saudi Arabia for analysis. After completion of a 6-month evaluation, this system was rated favorably by the evaluators and was determined to be an excellent alternative for field-use radiography. As a result of this study, digital radiography is now being integrated in all expeditionary medical support units for future field deployments.

  12. The use of deployable telehealth centers by military beneficiaries to access behavioral healthcare: an exploratory evaluation in American Samoa.

    PubMed

    Mishkind, Matthew C; Martin, Suzanne; Husky, George; Miyahira, Sarah D; Gahm, Gregory A

    2012-12-01

    Some U.S. Military Health System (MHS) beneficiaries face unique challenges accessing available behavioral healthcare because of the nature of their occupations, deployments to and permanent duty stations in isolated geographies, and discontinuity of services. The use of deployable telehealth centers such as modified shipping containers offers promise as an innovative solution to increase access to behavioral healthcare in remote and otherwise austere environments. The first telehealth modified 20-foot shipping container, known as a relocatable telehealth center (RTeC), was deployed to increase access to care for MHS beneficiaries on American Samoa. The goal of this study was to conduct an exploratory evaluation of patient satisfaction with and usability perceptions of this solution as a place to receive behavioral healthcare services. Twenty-eight beneficiaries participated in this evaluation. Results suggest that the RTeC is safe and private and ultimately an appropriate telebehavioral-originating site. These data provide insight into usability considerations and inform future research and deployable telehealth center development. Additionally, a brief discussion about potential cost offset is provided as cost efficiencies impact RTeC viability. PMID:23078182

  13. The use of deployable telehealth centers by military beneficiaries to access behavioral healthcare: an exploratory evaluation in American Samoa.

    PubMed

    Mishkind, Matthew C; Martin, Suzanne; Husky, George; Miyahira, Sarah D; Gahm, Gregory A

    2012-12-01

    Some U.S. Military Health System (MHS) beneficiaries face unique challenges accessing available behavioral healthcare because of the nature of their occupations, deployments to and permanent duty stations in isolated geographies, and discontinuity of services. The use of deployable telehealth centers such as modified shipping containers offers promise as an innovative solution to increase access to behavioral healthcare in remote and otherwise austere environments. The first telehealth modified 20-foot shipping container, known as a relocatable telehealth center (RTeC), was deployed to increase access to care for MHS beneficiaries on American Samoa. The goal of this study was to conduct an exploratory evaluation of patient satisfaction with and usability perceptions of this solution as a place to receive behavioral healthcare services. Twenty-eight beneficiaries participated in this evaluation. Results suggest that the RTeC is safe and private and ultimately an appropriate telebehavioral-originating site. These data provide insight into usability considerations and inform future research and deployable telehealth center development. Additionally, a brief discussion about potential cost offset is provided as cost efficiencies impact RTeC viability.

  14. Remote Ischemic Conditioning

    PubMed Central

    Heusch, Gerd; Bøtker, Hans Erik; Przyklenk, Karin; Redington, Andrew; Yellon, Derek

    2014-01-01

    In remote ischemic conditioning (RIC) brief, reversible episodes of ischemia with reperfusion in one vascular bed, tissue or organ confer a global protective phenotype and render remote tissues and organs resistant to ischemia/reperfusion injury. The peripheral stimulus can be chemical, mechanical or electrical and involves activation of peripheral sensory nerves. The signal transfer to the heart or other organs is through neuronal and humoral communications. Protection can be transferred, even across species, with plasma-derived dialysate and involves nitric oxide, stromal derived factor-1α, microRNA-144, but also other, not yet identified factors. Intracardiac signal transduction involves: adenosine, bradykinin, cytokines, and chemokines, which activate specific receptors; intracellular kinases; and mitochondrial function. RIC by repeated brief inflation/deflation of a blood pressure cuff protects against endothelial dysfunction and myocardial injury in percutaneous coronary interventions, coronary artery bypass grafting and reperfused acute myocardial infarction. RIC is safe and effective, noninvasive, easily feasible and inexpensive. PMID:25593060

  15. Remote surface inspection system

    NASA Technical Reports Server (NTRS)

    Hayati, S.; Balaram, J.; Seraji, H.; Kim, W. S.; Tso, K.; Prasad, V.

    1993-01-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  16. Evapotranspiration and remote sensing

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Gurney, R.

    1982-01-01

    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.

  17. Appendange deployment mechanism for the Hubble Space Telescope program

    NASA Technical Reports Server (NTRS)

    Greenfield, H. T.

    1985-01-01

    The key requirements, a design overview, development testing (qualification levels), and two problems and their solutions resolved during the mechanism development testing phase are presented. The mechanism described herein has demonstrated its capability to deploy/restow two large Hubble Space Telescope deployable appendages in a varying but controlled manner.

  18. The Propulsive Small Expendable Deployer System (ProSEDS)

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.

    2002-01-01

    This Annual Report covers the following main topics: 1) Updated Reference Mission. The reference ProSEDS (Propulsive Small Expendable Deployer System) mission is evaluated for an updated launch date in the Summer of 2002 and for the new 80-s current operating cycle. Simulations are run for nominal solar activity condition at the time of launch and for extreme conditions of dynamic forcing. Simulations include the dynamics of the system, the electrodynamics of the bare tether, the neutral atmosphere and the thermal response of the tether. 2) Evaluation of power delivered by the tether system. The power delivered by the tethered system during the battery charging mode is computed under the assumption of minimum solar activity for the new launch date. 3) Updated Deployment Control Profiles and Simulations. A number of new deployment profiles were derived based on the latest results of the deployment ground tests. The flight profile is then derived based on the friction characteristics obtained from the deployment tests of the F-1 tether. 4) Analysis/estimation of deployment flight data. A process was developed to estimate the deployment trajectory of the endmass with respect to the Delta and the final libration amplitude from the data of the deployer turn counters. This software was tested successfully during the ProSEDS mission simulation at MSFC (Marshall Space Flight Center) EDAC (Environments Data Analysis Center).

  19. The Impact of Deployment on U.S. Military Families

    ERIC Educational Resources Information Center

    Sheppard, Sean C.; Malatras, Jennifer Weil; Israel, Allen C.

    2010-01-01

    Several recent articles have explored the effects of military deployment on U.S. service members' mental health outcomes. Although increased attention has also begun to focus on the effects of deployment on military families, providing a conceptualization for the mechanisms of this process can help organize existing information and inform future…

  20. Study of advanced sunflower precision deployable antenna. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Giebler, M. M.; Palmer, W. B.

    1979-01-01

    The maximum deployed diameter stowable in shuttle was determined for the original concept and for new more efficient concepts. Estimates of weight, surface accuracy and cost were made for the various configurations. Five critical technologies were identified which would be required to manufacture large solid deployable reflectors. These technologies are concerned with surface accuracy improvement and verification.

  1. Fan rib type deployable mesh antenna for satellite use

    NASA Astrophysics Data System (ADS)

    Itanami, T.; Minomo, M.; Ohtomo, I.

    This paper presents a design for satellite-borne 3.5 m deployable mesh reflector for the Japanese maritime satellite communication system. The features of this antenna are compactness, lightness and high deployment reliability. The measured characteristics for the engineering model are also given.

  2. Daddy's Days Away. A Deployment Activity Book for Parents & Children.

    ERIC Educational Resources Information Center

    Marine Corps, Washington, DC.

    This booklet grew from an idea that the children of Marines might appreciate some special discussion of their family's separation during deployment. Information is provided for parents to help them express their feelings with their children about the deployment. Outlines of activities to do before leaving are included. Suggestions are given for…

  3. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1993-01-01

    Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  4. REMOTELY RECHARGEABLE EPD

    SciTech Connect

    Vrettos, N; Athneal Marzolf, A; Scott Bowser, S

    2007-11-13

    Radiation measurements inside the Contact Decon Maintenance Cell (CDMC) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) are required to determine stay times for personnel. A system to remotely recharge the transmitter of an Electronic Personnel Dosimeter (EPD) and bail assembly to transport the EPD within the CDMC was developed by the Savannah River National Laboratory (SRNL) to address this need.

  5. Remote Maintenance Monitoring

    NASA Technical Reports Server (NTRS)

    Owens, Richard C.; Simkins, Lorenz; Rochette, Donn

    1990-01-01

    Automated system gives new life to aging network of computers. Remote maintenance monitoring system developed to diagnose problems in large distributed computer network. Consists of data links, displays, controls, software, and more than 200 computers. Uses sensors to collect data on failures and expert system to examine data, diagnose causes of failures, and recommend cures. Designed to be retrofitted into launch processing system at Kennedy Space Center. Reduces downtime, lowers workload and expense of maintenance, and makes network less dependent on human expertise.

  6. Remote terminal system evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, T. L.; Grams, H. L.; Lindenlaub, J. C.; Schwingendorf, S. K.; Swain, P. H.; Simmons, W. R.

    1975-01-01

    An Earth Resources Data Processing System was developed to evaluate the system for training, technology transfer, and data processing. In addition to the five sites included in this project two other sites were connected to the system under separate agreements. The experience of these two sites is discussed. The results of the remote terminal project are documented in seven reports: one from each of the five project sites, Purdue University, and an overview report summarizing the other six reports.

  7. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Liang, T.

    1973-01-01

    Research projects concerning the development and application of remote sensors are discussed. Some of the research projects conducted are as follows: (1) aerial photographic inventory of natural resources, (2) detection of buried river channels, (3) delineation of interconnected waterways, (4) plant indicators of atmospheric pollution, and (5) techniques for data transfer from photographs to base maps. On-going projects involving earth resources analyses are described.

  8. Internet Based Remote Operations

    NASA Technical Reports Server (NTRS)

    Chamberlain, James

    1999-01-01

    This is the Final Report for the Internet Based Remote Operations Contract, has performed payload operations research support tasks March 1999 through September 1999. These tasks support the GSD goal of developing a secure, inexpensive data, voice, and video mission communications capability between remote payload investigators and the NASA payload operations team in the International Space Station (ISS) era. AZTek has provided feedback from the NASA payload community by utilizing its extensive payload development and operations experience to test and evaluate remote payload operations systems. AZTek has focused on use of the "public Internet" and inexpensive, Commercial-off-the-shelf (COTS) Internet-based tools that would most benefit "small" (e.g., $2 Million or less) payloads and small developers without permanent remote operations facilities. Such projects have limited budgets to support installation and development of high-speed dedicated communications links and high-end, custom ground support equipment and software. The primary conclusions of the study are as follows: (1) The trend of using Internet technology for "live" collaborative applications such as telescience will continue. The GSD-developed data and voice capabilities continued to work well over the "public" Internet during this period. 2. Transmitting multiple voice streams from a voice-conferencing server to a client PC to be mixed and played on the PC is feasible. 3. There are two classes of voice vendors in the market: - Large traditional phone equipment vendors pursuing integration of PSTN with Internet, and Small Internet startups.The key to selecting a vendor will be to find a company sufficiently large and established to provide a base voice-conferencing software product line for the next several years.

  9. Technology Deployment Annual Report 2013 December

    SciTech Connect

    N /A

    2014-01-01

    available to the INL’s Office of Technology Deployment. However, the accomplishments cataloged in the report reflect the achievements and creativity of the researchers, technicians, support staff, and operators of the INL workforce.

  10. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being raised to a vertical position in the cargo bay of the Space Shuttle orbiter. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  11. Cryogenic systems for the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Mason, Peter V.

    1988-01-01

    There are five technologies which may have application for Large Deployable Reflector (LDR), one passive and four active. In order of maturity, they are passive stored cryogen systems, and mechanical, sorption, magnetic, and pulse-tube refrigerators. In addition, deep space radiators will be required to reject the heat of the active systems, and may be useful as auxiliary coolers for the stored cryogen systems. Hybrid combinations of these technologies may well be more efficient than any one alone, and extensive system studies will be required to determine the best trade-offs. Stored cryogen systems were flown on a number of missions. The systems are capable of meeting the temperature requirements of LDR. The size and weight of stored cryogen systems are proportional to heat load and, as a result, are applicable only if the low-temperature heat load can be kept small. Systems using chemisorption and physical adsorption for compressors and pumps have received considerable attention in the past few years. Systems based on adiabatic demagnetization of paramagnetic salts were used for refrigeration for many years. Pulse-tube refrigerators were recently proposed which show relatively high efficiency for temperatures in the 60 to 80 K range. The instrument heat loads and operating temperatures are critical to the selection and design of the cryogenic system. Every effort should be made to minimize heat loads, raise operating temperatures, and to define these precisely. No one technology is now ready for application to LDR. Substantial development efforts are underway in all of the technologies and should be monitored and advocated. Magnetic and pulse-tube refrigerators have high potential.

  12. Deployment-related mental disorders among Canadian Forces personnel deployed in support of the mission in Afghanistan, 2001–2008

    PubMed Central

    Boulos, David; Zamorski, Mark A.

    2013-01-01

    Background: The conflict in Afghanistan has exposed more Canadian Forces personnel to a greater degree of adversity than at any time in recent memory. We determined the incidence of Afghanistan deployment–related mental disorders and associated risk factors among personnel previously deployed in support of this mission. Methods: The study population consisted of 30 513 Canadian Forces personnel who began a deployment in support of the mission in Afghanistan before Jan. 1, 2009. The primary outcome was a mental disorder perceived by a Canadian Forces clinician to be related to the Afghanistan deployment. Data on diagnoses and perceptions were abstracted from medical records of a stratified random sample of 2014 personnel. Sample design weights were used in all analyses to generate descriptive statistics for the entire study population. Results: Over a median follow-up of 1364 days, 13.5% (95% confidence interval [CI] 12.1%–14.8%) of the study population had a mental disorder that was attributed to the Afghanistan deployment. Posttraumatic stress disorder was the most common diagnosis (in 8.0%, 95% CI 7.0%–9.0%, of personnel). Deployment to higher-threat locations, service in the Canadian Army and lower rank were independent risk factors associated with an Afghanistan-related diagnosis (e.g., hazard ratio for deployment to Kandahar Province 5.6, 95% CI 2.6–12.5, relative to deployment to the United Arab Emirates). In contrast, sex, Reserve Forces status, multiple deployments and deployment length were not independent risk factors. Interpretation: An important minority of Canadian Forces personnel deployed in support of the Afghanistan mission had a diagnosis of a mental disorder perceived to be related to the deployment. Determining long-term outcomes is an important next step. PMID:23820441

  13. Advanced laser remote sensing

    SciTech Connect

    Schultz, J.; Czuchlewski, S.; Karl, R.

    1996-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Remote measurement of wind velocities is critical to a wide variety of applications such as environmental studies, weather prediction, aircraft safety, the accuracy of projectiles, bombs, parachute drops, prediction of the dispersal of chemical and biological warfare agents, and the debris from nuclear explosions. Major programs to develop remote sensors for these applications currently exist in the DoD and NASA. At present, however, there are no real-time, three-dimensional wind measurement techniques that are practical for many of these applications and we report on two new promising techniques. The first new technique uses an elastic backscatter lidar to track aerosol patterns in the atmosphere and to calculate three dimensional wind velocities from changes in the positions of the aerosol patterns. This was first done by Professor Ed Eloranta of the University of Wisconsin using post processing techniques and we are adapting Professor Eloranta`s algorithms to a real-time data processor and installing it in an existing elastic backscatter lidar system at Los Alamos (the XM94 helicopter lidar), which has a compatible data processing and control system. The second novel wind sensing technique is based on radio-frequency (RF) modulation and spatial filtering of elastic backscatter lidars. Because of their compactness and reliability, solid state lasers are the lasers of choice for many remote sensing applications, including wind sensing.

  14. Remote repair appliance

    DOEpatents

    Heumann, Frederick K.; Wilkinson, Jay C.; Wooding, David R.

    1997-01-01

    A remote appliance for supporting a tool for performing work at a worksite on a substantially circular bore of a workpiece and for providing video signals of the worksite to a remote monitor comprising: a baseplate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the baseplate and positioned to roll against the bore of the workpiece when the baseplate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the baseplate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the baseplate such that the working end of the tool is positioned on the inner face side of the baseplate; a camera for providing video signals of the worksite to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the baseplate, the camera holding means being adjustably attached to the outer face of the baseplate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris.

  15. Remote repair appliance

    DOEpatents

    Heumann, F.K.; Wilkinson, J.C.; Wooding, D.R.

    1997-12-16

    A remote appliance for supporting a tool for performing work at a work site on a substantially circular bore of a work piece and for providing video signals of the work site to a remote monitor comprises: a base plate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the base plate and positioned to roll against the bore of the work piece when the base plate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the base plate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the base plate such that the working end of the tool is positioned on the inner face side of the base plate; a camera for providing video signals of the work site to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the base plate, the camera holding means being adjustably attached to the outer face of the base plate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris. 5 figs.

  16. Remote access thyroid surgery

    PubMed Central

    Bhatia, Parisha; Mohamed, Hossam Eldin; Kadi, Abida; Walvekar, Rohan R.

    2015-01-01

    Robot assisted thyroid surgery has been the latest advance in the evolution of thyroid surgery after endoscopy assisted procedures. The advantage of a superior field vision and technical advancements of robotic technology have permitted novel remote access (trans-axillary and retro-auricular) surgical approaches. Interestingly, several remote access surgical ports using robot surgical system and endoscopic technique have been customized to avoid the social stigma of a visible scar. Current literature has displayed their various advantages in terms of post-operative outcomes; however, the associated financial burden and also additional training and expertise necessary hinder its widespread adoption into endocrine surgery practices. These approaches offer excellent cosmesis, with a shorter learning curve and reduce discomfort to surgeons operating ergonomically through a robotic console. This review aims to provide details of various remote access techniques that are being offered for thyroid resection. Though these have been reported to be safe and feasible approaches for thyroid surgery, further evaluation for their efficacy still remains. PMID:26425450

  17. Remote instrument telemaintenance.

    PubMed

    Laugier, A; Allahwerdi, N; Baudin, J; Gaffney, P; Grimson, W; Groth, T; Schilders, L

    1996-07-01

    In the past decade, great technological progress has been made in telemaintenance of mainframe and mini computers. As hardware technology is now available at an acceptable cost, computer aided trouble-shooting can be adapted to laboratory instrumentation in order to significantly improve repair time, avoid instrument downtime by taking advantage of predictive methods, and provide general diagnostic assistance. Depending on the size of the instrument, the telemaintenance facility can be dedicated to a single instrument or alternatively a telemaintenance server can manage multiple distributed small instruments through a Local Area Network. As complex failures can occur, the local diagnosis capabilities may be exceeded and automatic dialing for connection to computerized Remote Maintenance Centers is needed. The main advantages of such a centre, as compared to local diagnosis systems, are the increased access to more information and experience of failures from instrument installations, and consequently the provision of training data updates for Artificial Neural Networks and Knowledge Based Systems in general. When an abnormal situation is detected or anticipated by a diagnosis module, an automatic alert is given to the user, local diagnosis is activated, and for simple solutions, instructions are given to the operator. In the last resort, a human expert can be alerted who, with remote control tools, can attend to the failures. For both local and remote trouble-shooting, the data provided by the instrument and connected workstation is of paramount importance for the efficiency and accuracy of the diagnosis. Equally, the importance of standardization of telemaintenance communication protocols is addressed.

  18. Solar array deployment qualification for the LMX of buses

    NASA Astrophysics Data System (ADS)

    Lee, Kathy

    2005-07-01

    The solar array deployment system for the LMX line of buses deploys rigid Solar Array Wing Assemblies (SAWAs). Each SAWA has a set of Solar Array Deployment Mechanisms (SADM), which consists of two hinges, a strut, and two Hold Down Release Mechanisms (HDRMs). To qualify the SADM for flight, each mechanism component was qualified individually, then assembled to a qualification SAWA on Special Test Equipment (STE) and deployed in a thermal vacuum chamber at ambient, hot, and cold temperatures. These mechanisms were designed, built, and tested by the Power and Mechanisms part of the Power, Thermal, Structures & Mechanisms Product Center, which develops products for both internal and external customers. This paper will discuss the qualification effort for the LMX Solar Array deployment, including qualification hardware and STE. It will focus on unique challenges presented by each aspect of the qualification, and lessons learned from the hardware integration and the qualification testing.

  19. Chronic Left Lower Lobe Pulmonary Infiltrates During Military Deployment.

    PubMed

    Hunninghake, John C; Skabelund, Andrew J; Morris, Michael J

    2016-08-01

    Deployment to Southwest Asia is associated with increased airborne hazards such as geologic dusts, burn pit smoke, vehicle exhaust, or air pollution. There are numerous ongoing studies to evaluate the potential effects of inhaled particulate matter on reported increases in acute and chronic respiratory symptoms. Providers need to be aware of potential causes of pulmonary disease such as acute eosinophilic pneumonia, asthma, and vocal cord dysfunction that have been associated with deployment. Other pulmonary disorders such as interstitial lung disease are infrequently reported. Not all deployment-related respiratory complaints may result from deployment airborne hazards and a broad differential should be considered. We present the case of a military member with a prolonged deployment found to have lobar infiltrates secondary to pulmonary vein stenosis from treatment for atrial fibrillation. PMID:27483542

  20. Deployable radiators for waste heat dissipation from Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Cox, R. L.; Dietz, J. B.; Leach, J. W.

    1976-01-01

    Thermal control of Shuttle instruments will require the use of a pumped fluid space radiator system to reject large quantities of waste heat. Many payloads, however, will have insufficient vehicle surface area available for radiators to reject this waste heat and will, therefore, require the use of deployed panels. It is desirable to utilize modularized, deployable radiator systems which have a high degree of configuration and component commonality to minimize the design, development, and fabrication costs. Prototypes of two radiator systems which meet these criteria are currently under development for Shuttle payload utilization: a 'rigid' radiator system which utilizes aluminum honeycomb panels of the Shuttle Orbiter configuration that are deployed by an Apollo Telescope Mount type scissors mechanism; and two 'flexible' radiator systems which use panels constructed from flexible metal/dielectric composite materials that are deployed by 'unrolling' or 'extending' in orbit. Detailed descriptions of these deployable radiator systems, along with design and performance features, are presented.

  1. Clinical Predictive Modeling Development and Deployment through FHIR Web Services

    PubMed Central

    Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng

    2015-01-01

    Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction. PMID:26958207

  2. An autonomous expendable data collection device for remote environmental sensing

    SciTech Connect

    DeRoos, B.G.; Downing, J.P.

    1992-06-01

    An Autonomous Expendable Conductivity-Temperature-Depth Profiler (AXCTD) for profiling temperature, conductivity, pressure, and other parameters in remote oceanic regions was developed. The AXCTD is a microcomputer-controlled sensor package that can be deployed by unskilled operators from ships or aircraft. The AXCID records two CID profiles (one during descent and another during ascent) and CTD times series while on the bottom and adrift at the surface. Recorded data are transmitted to an ARGOS satellite with ground-positioning capabilities. Successful sea tests of a prototype AXCI7D, completed in 1989, are reported in this paper. The AXCTD can provide ``sea truth`` for remote sensing, perform environmental and military surveillance missions, and acquire time-series and synoptic data for computer models.

  3. An autonomous expendable data collection device for remote environmental sensing

    SciTech Connect

    DeRoos, B.G. ); Downing, J.P. ); McCoy, K.O. )

    1992-06-01

    An Autonomous Expendable Conductivity-Temperature-Depth Profiler (AXCTD) for profiling temperature, conductivity, pressure, and other parameters in remote oceanic regions was developed. The AXCTD is a microcomputer-controlled sensor package that can be deployed by unskilled operators from ships or aircraft. The AXCID records two CID profiles (one during descent and another during ascent) and CTD times series while on the bottom and adrift at the surface. Recorded data are transmitted to an ARGOS satellite with ground-positioning capabilities. Successful sea tests of a prototype AXCI7D, completed in 1989, are reported in this paper. The AXCTD can provide sea truth'' for remote sensing, perform environmental and military surveillance missions, and acquire time-series and synoptic data for computer models.

  4. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    PubMed Central

    Fay, Cormac; Doherty, Aiden R.; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M.; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O’Connor, Noel E.; Smeaton, Alan F.; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  5. Remote System Technologies for Deactivating Hanford Hot Cells

    SciTech Connect

    Berlin, G.; Walton, T.

    2003-02-25

    Remote system technologies are being deployed by Fluor Hanford to help accelerate the deactivation of highly-radioactive hot cell facilities. These technologies offer improved methods for accessing difficult-to-reach spaces and performing tasks such as visual inspection, radiological characterization, decontamination, waste handling, and size reduction. This paper is focused on the application of remote systems in support of deactivation work being performed in several legacy facilities at Hanford (i.e., the 324 and 327 Buildings). These facilities were previously used for fuel fabrication, materials examination, and the development of waste treatment processes. The technologies described in this paper represent significant improvements to Hanford's baseline methods, and may offer benefits to other U.S. Department of Energy (DOE) sites and commercial operations.

  6. Remote real-time monitoring of subsurface landfill gas migration.

    PubMed

    Fay, Cormac; Doherty, Aiden R; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O'Connor, Noel E; Smeaton, Alan F; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  7. Where culture takes hold: "overimitation" and its flexible deployment in Western, Aboriginal, and Bushmen children.

    PubMed

    Nielsen, Mark; Mushin, Ilana; Tomaselli, Keyan; Whiten, Andrew

    2014-01-01

    Children often "overimitate," comprehensively copying others' actions despite manifest perceptual cues to their causal ineffectuality. The inflexibility of this behavior renders its adaptive significance difficult to apprehend. This study explored the boundaries of overimitation in 3- to 6-year-old children of three distinct cultures: Westernized, urban Australians (N = 64 in Experiment 1; N = 19 in Experiment 2) and remote communities of South African Bushmen (N = 64) and Australian Aborigines (N = 19). Children overimitated at high frequency in all communities and generalized what they had learned about techniques and object affordances from one object to another. Overimitation thus provides a powerful means of acquiring and flexibly deploying cultural knowledge. The potency of such social learning was also documented compared to opportunities for exploration and practice. PMID:25040582

  8. STS-52 deployment of LAGEOS / IRIS spacecraft from OV-102's payload bay (PLB)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    During STS-52 deployment activities, the Italian Research Interim Stage (IRIS), a spinning solid fuel rocket, lifts the Laser Geodynamic Satellite II (LAGEOS II) out of its support cradle and above the thermal shield aboard Columbia, Orbiter Vehicle (OV) 102. The remote manipulator system (RMS) arm, with Material Exposure in Low Earth Orbit (MELEO), is positioned above the port side sill longeron. On the mission-peculiar equipment support structure (MPESS) carriers in the center foreground is the United States (U.S.) Microgravity Payload 1 (USMP-1) with Space Acceleration Measurement System (SAMS), MEPHISTO (its French abbreviation), Lambda Point Experiment (LPE) cryostat assembly (identified by JPL insignia), and LPE vacuum maintenance assembly. Other payload bay (PLB) experiments visible in this image include: (on the starboard wall (left)) the Canadian Experiments 2 (CANEX-2) Space Vision System (SVS) Canadian Target Assembly (CTA) (foreground) and the Attitude Sensor Package (ASP);

  9. Thermal Deformation and RF Performance Analyses for the SWOT Large Deployable Ka-Band Reflectarray

    NASA Technical Reports Server (NTRS)

    Fang, H.; Sunada, E.; Chaubell, J.; Esteban-Fernandez, D.; Thomson, M.; Nicaise, F.

    2010-01-01

    A large deployable antenna technology for the NASA Surface Water and Ocean Topography (SWOT) Mission is currently being developed by JPL in response to NRC Earth Science Tier 2 Decadal Survey recommendations. This technology is required to enable the SWOT mission due to the fact that no currently available antenna is capable of meeting SWOT's demanding Ka-Band remote sensing requirements. One of the key aspects of this antenna development is to minimize the effect of the on-orbit thermal distortion to the antenna RF performance. An analysis process which includes: 1) the on-orbit thermal analysis to obtain the temperature distribution; 2) structural deformation analysis to get the geometry of the antenna surface; and 3) the RF performance with the given deformed antenna surface has been developed to accommodate the development of this antenna technology. The detailed analysis process and some analysis results will be presented and discussed by this paper.

  10. Where culture takes hold: "overimitation" and its flexible deployment in Western, Aboriginal, and Bushmen children.

    PubMed

    Nielsen, Mark; Mushin, Ilana; Tomaselli, Keyan; Whiten, Andrew

    2014-01-01

    Children often "overimitate," comprehensively copying others' actions despite manifest perceptual cues to their causal ineffectuality. The inflexibility of this behavior renders its adaptive significance difficult to apprehend. This study explored the boundaries of overimitation in 3- to 6-year-old children of three distinct cultures: Westernized, urban Australians (N = 64 in Experiment 1; N = 19 in Experiment 2) and remote communities of South African Bushmen (N = 64) and Australian Aborigines (N = 19). Children overimitated at high frequency in all communities and generalized what they had learned about techniques and object affordances from one object to another. Overimitation thus provides a powerful means of acquiring and flexibly deploying cultural knowledge. The potency of such social learning was also documented compared to opportunities for exploration and practice.

  11. Noise calibration and the development of remote receiver stations for TARA

    NASA Astrophysics Data System (ADS)

    Kunwar, Samridha

    2013-04-01

    The Telescope Array RAdar (TARA) detector is based on a remote sensing technique known as bi-static radar that aims to achieve remote coverage over large portions of the Earth's surface in search of cosmic ray induced radio echoes. In conjunction with North America's largest cosmic ray observatory (The Telescope Array) in radio quiet western Utah, the radar project's pilot receiver and transmitter stations have been functional for just over a year and a half, giving insight into the detect-ability of air shower radar echoes. Currently the receiver stations comprise an array of Log Periodic Dipole Antennas with an oscilloscope-based data acquisition system implemented for noise calibration including tracking galactic noise as the galactic plane migrates through the sky. Our experiences thus far have given impetus for upgrades, including the deployment of additional remote receiver stations. We discuss some of the results of this oscilloscope-based DAQ system and the development of these remote stations.

  12. Designs for remote inspection of the ALMR Reactor Vessel Auxiliary Cooling System (RVACS)

    SciTech Connect

    Sweeney, F.J. ); Carroll, D.G. ); Chen, C. ); Crane, C.; Dalton, R. ); Taylor, J.R. ); Tosunoglu, S. )

    1993-01-01

    One of the most important safety systems in General Electric's (GI) Advanced Liquid Metal Reactor (ALMR) is the Reactor Vessel Auxiliary Cooling System (RVACS). Because of high temperature, radiation, and restricted space conditions, GI desired methods to remotely inspect the RVACS, emissive coatings, and reactor vessel welds during normal refueling operations. The DOE/NE Robotics for Advanced Reactors program formed a team to evaluate the ALMR design for remote inspection of the RVACS. Conceptual designs for robots to perform the required inspection tasks were developed by the team. Design criteria for these remote systems included robot deployment, power supply, navigation, environmental hardening of components, tether management, communication with an operator, sensing, and failure recovery. The operation of the remote inspection concepts were tested using 3-D simulation models of the ALMR. In addition, the team performed an extensive technology review of robot components that could survive the environmental conditions in the RVACS.

  13. Airborne remote sensing for Deepwater Horizon oil spill emergency response

    NASA Astrophysics Data System (ADS)

    Kroutil, Robert T.; Shen, Sylvia S.; Lewis, Paul E.; Miller, David P.; Cardarelli, John; Thomas, Mark; Curry, Timothy; Kudaraskus, Paul

    2010-08-01

    On April 28, 2010, the Environmental Protection Agency's (EPA) Airborne Spectral Photometric Environmental Collection Technology (ASPECT) aircraft was deployed to Gulfport, Mississippi to provide airborne remotely sensed air monitoring and situational awareness data and products in response to the Deepwater Horizon oil rig disaster. The ASPECT aircraft was released from service on August 9, 2010 after having flown over 75 missions that included over 250 hours of flight operation. ASPECT's initial mission responsibility was to provide air quality monitoring (i.e., identification of vapor species) during various oil burning operations. The ASPECT airborne wide-area infrared remote sensing spectral data was used to evaluate the hazard potential of vapors being produced from open water oil burns near the Deepwater Horizon rig site. Other significant remote sensing data products and innovations included the development of an advanced capability to correctly identify, locate, characterize, and quantify surface oil that could reach beaches and wetland areas. This advanced identification product provided the Incident Command an improved capability to locate surface oil in order to improve the effectiveness of oil skimmer vessel recovery efforts directed by the US Coast Guard. This paper discusses the application of infrared spectroscopy and multispectral infrared imagery to address significant issues associated with this national crisis. More specifically, this paper addresses the airborne remote sensing capabilities, technology, and data analysis products developed specifically to optimize the resources and capabilities of the Deepwater Horizon Incident Command structure personnel and their remediation efforts.

  14. Support and development for remote collaboration in fusion research

    SciTech Connect

    Casper, T A; Jong, R A; Meyer, W H; Moller, J M

    1999-07-15

    Major fusion experiments and modeling efforts rely on joint research of scientists from several locations around the world. A variety of software tools are in use to provide remote interactive access to facilities and data are routinely available over wide-area-network connections to researchers. Audio and video communications, monitoring of control room information and synchronization of remote sites with experimental operations all enhance participation during experiments. Remote distributed computing capabilities allow utilization of off-site computers that now help support the demands of control room analyses and plasma modeling. A collaborative software development project is currently using object technologies with CORBA-based communications to build a network executable transport code that further demonstrates the ability to utilize geographically dispersed resources. Development to extend these concepts with security and naming services and possible applications to instrumentation systems has been initiated. An Information Technology Initiative is deploying communication systems, ISDN (telephone) and IP (network) audio/video (A/V) and web browser-based, to build the infrastructure needed to support remote physics meetings, seminars and interactive discussions.

  15. High-quality remote interactive imaging in the operating theatre

    NASA Astrophysics Data System (ADS)

    Grimstead, Ian J.; Avis, Nick J.; Evans, Peter L.; Bocca, Alan

    2009-02-01

    We present a high-quality display system that enables the remote access within an operating theatre of high-end medical imaging and surgical planning software. Currently, surgeons often use printouts from such software for reference during surgery; our system enables surgeons to access and review patient data in a sterile environment, viewing real-time renderings of MRI & CT data as required. Once calibrated, our system displays shades of grey in Operating Room lighting conditions (removing any gamma correction artefacts). Our system does not require any expensive display hardware, is unobtrusive to the remote workstation and works with any application without requiring additional software licenses. To extend the native 256 levels of grey supported by a standard LCD monitor, we have used the concept of "PseudoGrey" where slightly off-white shades of grey are used to extend the intensity range from 256 to 1,785 shades of grey. Remote access is facilitated by a customized version of UltraVNC, which corrects remote shades of grey for display in the Operating Room. The system is successfully deployed at Morriston Hospital, Swansea, UK, and is in daily use during Maxillofacial surgery. More formal user trials and quantitative assessments are being planned for the future.

  16. Characterization and airborne deployment of a new counterflow virtual impactor inlet

    NASA Astrophysics Data System (ADS)

    Shingler, T.; Dey, S.; Sorooshian, A.; Brechtel, F. J.; Wang, Z.; Metcalf, A.; Coggon, M.; Mülmenstädt, J.; Russell, L. M.; Jonsson, H. H.; Seinfeld, J. H.

    2012-02-01

    A new counterflow virtual impactor (CVI) inlet is introduced with details of its design, laboratory characterization tests, and deployment on an aircraft during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). The CVI inlet addresses three key issues in previous designs; in particular, the inlet operates with: (i) negligible organic contamination; (ii) a significant sample flow rate to downstream instruments (~15 l min-1) that reduces the need for dilution; and (iii) a high level of accessibility to the probe interior for cleaning. Wind tunnel experiments characterized the cut size of sampled droplets and the particle size-dependent transmission efficiency in various parts of the probe. For a range of counter-flow rates and air velocities, the measured cut size was between 8.7-13.1 μm. The percentage error between cut size measurements and predictions from aerodynamic drag theory are less than 13%. The CVI was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter for thirty flights during E-PEACE to study aerosol-cloud-radiation interactions off the central coast of California between July and August 2011. Results are reported to assess the performance of the inlet including comparisons of particle number concentration downstream of the CVI and cloud drop number concentration measured by two independent aircraft probes. Measurements downstream the CVI are also examined from one representative case flight coordinated with shipboard-emitted smoke that was intercepted in cloud by the Twin Otter.

  17. Characterisation and airborne deployment of a new counterflow virtual impactor inlet

    NASA Astrophysics Data System (ADS)

    Shingler, T.; Dey, S.; Sorooshian, A.; Brechtel, F. J.; Wang, Z.; Metcalf, A.; Coggon, M.; Mülmenstädt, J.; Russell, L. M.; Jonsson, H. H.; Seinfeld, J. H.

    2012-06-01

    A new counterflow virtual impactor (CVI) inlet is introduced with details of its design, laboratory characterisation tests and deployment on an aircraft during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). The CVI inlet addresses three key issues in previous designs; in particular, the inlet operates with: (i) negligible organic contamination; (ii) a significant sample flow rate to downstream instruments (∼15 l min-1) that reduces the need for dilution; and (iii) a high level of accessibility to the probe interior for cleaning. Wind tunnel experiments characterised the cut size of sampled droplets and the particle size-dependent transmission efficiency in various parts of the probe. For a range of counter-flow rates and air velocities, the measured cut size was between 8.7-13.1 μm. The mean percentage error between cut size measurements and predictions from aerodynamic drag theory is 1.7%. The CVI was deployed on the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter for thirty flights during E-PEACE to study aerosol-cloud-radiation interactions off the central coast of California in July and August 2011. Results are reported to assess the performance of the inlet including comparisons of particle number concentration downstream of the CVI and cloud drop number concentration measured by two independent aircraft probes. Measurements downstream of the CVI are also examined from one representative case flight coordinated with shipboard-emitted smoke that was intercepted in cloud by the Twin Otter.

  18. Large Deployable Reflector Technologies for Future European Telecom and Earth Observation Missions

    NASA Astrophysics Data System (ADS)

    Ihle, A.; Breunig, E.; Dadashvili, L.; Migliorelli, M.; Scialino, L.; van't Klosters, K.; Santiago-Prowald, J.

    2012-07-01

    This paper presents requirements, analysis and design results for European large deployable reflectors (LDR) for space applications. For telecommunications, the foreseeable use of large reflectors is associated to the continuous demand for improved performance of mobile services. On the other hand, several earth observation (EO) missions can be identified carrying either active or passive remote sensing instruments (or both), in which a large effective aperture is needed e.g. BIOMASS. From the European point of view there is a total dependence of USA industry as such LDRs are not available from European suppliers. The RESTEO study is part of a number of ESA led activities to facilitate European LDR development. This paper is focused on the structural-mechanical aspects of this study. We identify the general requirements for LDRs with special emphasis on launcher accommodation for EO mission. In the next step, optimal concepts for the LDR structure and the RF-Surface are reviewed. Regarding the RF surface, both, a knitted metal mesh and a shell membrane based on carbon fibre reinforced silicon (CFRS) are considered. In terms of the backing structure, the peripheral ring concept is identified as most promising and a large number of options for the deployment kinematics are discussed. Of those, pantographic kinematics and a conical peripheral ring are selected. A preliminary design for these two most promising LDR concepts is performed which includes static, modal and kinematic simulation and also techniques to generate the reflector nets.

  19. Letter to the Editor : Rapidly-deployed small tent hospitals: lessons from the earthquake in Haiti.

    SciTech Connect

    Rosen, Y.; Gurman , P.; Verna, E.; Elman , N.; Labor, E.

    2012-06-01

    The damage to medical facilities resulting form the January 2010 earthquake in haiti necessitated the establishment of field tent hospitals. Much of the local medical infrastructure was destroyed or limited operationally when the Fast Israel Rescue and Search Team (FIRST) arrived in Haiti shortly after the January 2010 earthquake. The FIRST deployed small tent hospitals in Port-au-Prince and in 11 remote areas outside of the city. Each tent was set up in less than a half hour. The tents were staffed with an orthopedic surgeon, gynecologists, primary care and emergency care physicians, a physician with previous experience in tropical medicine, nurses, paramedics, medics, and psychologists. The rapidly deployable and temporary nature of the effort allowed the team to treat and educate, as well as provide supplies for, thousands of refugees throughout Haiti. In addition, a local Haitian physician and his team created a small tent hospital to serve the Petion Refugee Camp and its environs. FIRST personnel also took shifts at this hospital.

  20. Deployment of a WLCG network monitoring infrastructure based on the perfSONAR-PS technology

    NASA Astrophysics Data System (ADS)

    Campana, S.; Brown, A.; Bonacorsi, D.; Capone, V.; De Girolamo, D.; Casani, A. F.; Flix, J.; Forti, A.; Gable, I.; Gutsche, O.; Hesnaux, A.; Liu, S.; Lopez Munoz, F.; Magini, N.; McKee, S.; Mohammed, K.; Rand, D.; Reale, M.; Roiser, S.; Zielinski, M.; Zurawski, J.

    2014-06-01

    The WLCG infrastructure moved from a very rigid network topology, based on the MONARC model, to a more relaxed system, where data movement between regions or countries does not necessarily need to involve T1 centres. While this evolution brought obvious advantages, especially in terms of flexibility for the LHC experiment's data management systems, it also opened the question of how to monitor the increasing number of possible network paths, in order to provide a global reliable network service. The perfSONAR network monitoring system has been evaluated and agreed as a proper solution to cover the WLCG network monitoring use cases: it allows WLCG to plan and execute latency and bandwidth tests between any instrumented endpoint through a central scheduling configuration, it allows archiving of the metrics in a local database, it provides a programmatic and a web based interface exposing the tests results; it also provides a graphical interface for remote management operations. In this contribution we will present our activity to deploy a perfSONAR based network monitoring infrastructure, in the scope of the WLCG Operations Coordination initiative: we will motivate the main choices we agreed in terms of configuration and management, describe the additional tools we developed to complement the standard packages and present the status of the deployment, together with the possible future evolution.

  1. Field deployable microcantilever based chemical sensing: discrimination between H2O, DMMP and Toluene

    NASA Astrophysics Data System (ADS)

    Thoreson, E. J.; Stievater, T. H.; Rabinovich, W. S.; Ferraro, M. S.; Papanicolaou, N. A.; Bass, R.; Boos, J. B.; Stepnowski, J. L.; McGill, R. A.

    2008-10-01

    Low cost passive detection of Chemical Warfare Agents (CWA) and being able to distinguish them from interferents is of great interest in the protection of human capital. If CWA sensors could be made cheaply enough, they could be deployed profusely throughout the environment intended for protection. NRL (Naval Research Labs) has demonstrated a small sensor with potentially very low unit cost and compatible with high volume production which has the ability to distinguish between H2O, DMMP, and Toluene. Additionally, they have measured concentrations as low as 17 ppb passively in a package the size of a quarter. Using the latest MEMS technology coupled with advanced chemical identification algorithms we propose a development path for a low cost, highly integrated chemical sensor capable of detecting CWA's, Explosives, VOC's (Volatile Organic Chemicals), and TIC's (Toxic Industrial Chemicals). ITT AES (Advanced Engineering & Sciences) has partnered with NRL (Naval Research Labs) to develop this ``microharp'' technology into a field deployable sensor that will be capable of remote communication with a central server.

  2. An autonomous adaptive low-power instrument platform (AAL-PIP) for remote high-latitude geospace data collection

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.

    2014-10-01

    We present the development considerations and design for ground-based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space-weather-related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as a dual-frequency GPS receiver and a high-frequency (HF) radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.

  3. Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) for remote high latitude geospace data collection

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.

    2014-06-01

    We present the development considerations and design for ground based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space weather related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as dual-frequency gps receiver and an HF radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.

  4. Long Cable Deployments During Martian Touchdown: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Shafer, Michael W.; Sell, Steven W.

    2009-01-01

    The launch of NASA/JPL's next generation Mars rover is planned for the fall of 2011. The landing scheme chosen for this rover represents a step forward in unmanned payload delivery. The rover will be lowered from a rocket powered descent stage and then placed onto the surface while hanging from three bridles. During this touchdown event, the communication between the rover and descent stage is maintained by an electrical umbilical cable which is deployed in parallel with the structural bridles. During the development of the deployment device for the electrical umbilical, many obstacles were identified and overcome. Many of these challenges were due in large part to the helical nature of the packing geometry of the umbilical cable. And although none of these issues resulted in the failure of the design, they increased both development and assembly time. Many of the issues and some of the benefits of a helical deployment were not immediately apparent during the trade studies carried out during the deployment selection process. Tests were conducted upon completion of the device in order to characterize both the deployment and separation characteristics of the cable. Extraction loads were needed for inputs to touchdown models and separation dynamics were required to assess cable-rover recontact risk. Understanding the pros and cons surrounding the deployment of a helically packed cable would most certainly influence the outcome of future trade studies surrounding the selection of cable deployment options.

  5. Intertemporal cumulative radiative forcing effects of photovoltaic deployments.

    PubMed

    Ravikumar, Dwarakanath; Seager, Thomas P; Chester, Mikhail V; Fraser, Matthew P

    2014-09-01

    Current policies accelerating photovoltaics (PV) deployments are motivated by environmental goals, including reducing greenhouse gas (GHG) emissions by displacing electricity generated from fossil-fuels. Existing practice assesses environmental benefits on a net life-cycle basis, where displaced GHG emissions offset those generated during PV production. However, this approach does not consider that the environmental costs of GHG release during production are incurred early, while environmental benefits accrue later. Thus, where policy targets suggest meeting GHG reduction goals established by a certain date, rapid PV deployment may have counterintuitive, albeit temporary, undesired consequences. On a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood, particularly when PV manufacturing utilizes GHG-intensive energy sources (e.g., coal), but deployment occurs in areas with less GHG-intensive electricity sources (e.g., hydroelectric). This paper details a dynamic CRF model to examine the intertemporal warming impacts of PV deployments in California and Wyoming. CRF payback times are longer than GHG payback times by 6-12 years in California and 6-11 years in Wyoming depending on the PV technology mix and deployment strategy. For the same PV capacity being deployed, early installations yield greater CRF benefits (calculated over 10 and 25 years) than installations occurring later in time. Further, CRF benefits are maximized when PV technologies with the lowest manufacturing GHG footprint (cadmium telluride) are deployed in locations with the most GHG-intensive grids (i.e., Wyoming).

  6. Effects of Deployment on Musculoskeletal and Physiological Characteristics and Balance.

    PubMed

    Nagai, Takashi; Abt, John P; Sell, Timothy C; Keenan, Karen A; McGrail, Mark A; Smalley, Brian W; Lephart, Scott M

    2016-09-01

    Despite many nonbattle injuries reported during deployment, few studies have been conducted to evaluate the effects of deployment on musculoskeletal and physiological characteristics and balance. A total of 35 active duty U.S. Army Soldiers participated in laboratory testing before and after deployment to Afghanistan. The following measures were obtained for each Soldier: shoulder, trunk, hip, knee, and ankle strength and range of motion (ROM), balance, body composition, aerobic capacity, and anaerobic power/capacity. Additionally, Soldiers were asked about their physical activity and load carriage. Paired t tests or Wilcoxon tests with an α = 0.05 set a priori were used for statistical analyses. Shoulder external rotation ROM, torso rotation ROM, ankle dorsiflexion ROM, torso rotation strength, and anaerobic power significantly increased following deployment (p < 0.05). Shoulder extension ROM, shoulder external rotation strength, and eyes-closed balance (p < 0.05) were significantly worse following deployment. The majority of Soldiers (85%) engaged in physical activity. In addition, 58% of Soldiers reported regularly carrying a load (22 kg average). The deployment-related changes in musculoskeletal and physiological characteristics and balance as well as physical activity and load carriage during deployment may assist with proper preparation with the intent to optimize tactical readiness and mitigate injury risk. PMID:27612352

  7. IPY Data Management - How one can deploy a virtual observatory in cyberspace?

    NASA Astrophysics Data System (ADS)

    Papitashvili, V. O.

    2006-12-01

    Proliferation of global observing systems and distributed scientific and operational databases challenges human abilities to comprehend effectively ever increasing volume of information about the Earth and geospace. At the same time, better communication and advent of the Internet and World Wide Web provide effective means for development of sophisticated search engines capable of identifying discipline-specific data on the Web and then retrieving requested intervals for scientific analyses or practical applications. By analogy with physical observatories deployed over the Globe and in Geospace, a concept of "Virtual Observatory" has been introduced where a personal computer can serve as an "observing" instrument that retrieves specific data from remote Internet servers and data provider nodes. Thus, collecting astronomical data from many telescopes located elsewhere in the World (and even in space) via the Internet, one can turn his/her computer to a great telescope equivalent to Hubble or Mauna Kea world-class instruments. Similar approach can turn personal computers into global magnetic, atmospheric, oceanographic, ecological (you name it!) observatories if the data from corresponding disciplines are available from the World Wide Web. Thus, we postulate here that a "Virtual Observatory" can only be deployed in cyberspace if a discipline-specific data structure (primitive or sophisticated) becomes available electronically - that is, if the appropriate "data fabric" is created in cyberspace, making itself available for search and retrieval by any software (or middleware) packages developed and installed at a single (i.e., portal-based) Internet server or at a number of personal computers (nodes) with open FTP or HTTP (or SSL and S-HTTP) ports through which specific scientific data are provided. (Generally speaking, these data may not be necessarily "scientific"; the proposed concept is applicable for "Virtual Corporation" or "Virtual Retailer" networks as well

  8. Integrated care services: lessons learned from the deployment of the NEXES project

    PubMed Central

    Hernández, Carme; Alonso, Albert; Garcia-Aymerich, Judith; Grimsmo, Anders; Vontetsianos, Theodore; García Cuyàs, Francesc; Altes, Anna Garcia; Vogiatzis, Ioannis; Garåsen, Helge; Pellise, Laura; Wienhofen, Leendert; Cano, Isaac; Meya, Montserrat; Moharra, Montserrat; Martinez, Joan Ignasi; Escarrabill, Juan; Roca, Josep

    2015-01-01

    Objectives To identify barriers to deployment of four articulated Integrated Care Services supported by Information Technologies in three European sites. The four services covered the entire spectrum of severity of illness. The project targeted chronic patients with obstructive pulmonary disease, cardiac failure and/or type II diabetes mellitus. Setting One health care sector in Spain (Barcelona) (n = 11.382); six municipalities in Norway (Trondheim) (n = 450); and one hospital in Greece (Athens) (n = 388). Method The four services were: (i) Home-based long-term maintenance of rehabilitation effects (n = 337); (ii) Enhanced Care for frail patients, n = 1340); (iii) Home Hospitalization and Early Discharge (n = 2404); and Support for remote diagnosis (forced spirometry testing) in primary care (Support) (n = 8139). Both randomized controlled trials and pragmatic study designs were combined. Two technological approaches were compared. The Model for Assessment of Telemedicine applications was adopted. Results The project demonstrated: (i) Sustainability of training effects over time in chronic patients with obstructive pulmonary disease (p < 0.01); (ii) Enhanced care and fewer hospitalizations in chronic respiratory patients (p < 0.05); (iii) Reduced in-hospital days for all types of patients (p < 0.001) in Home Hospitalization/Early Discharge; and (iv) Increased quality of testing (p < 0.01) for patients with respiratory symptoms in Support, with marked differences among sites. Conclusions The four integrated care services showed high potential to enhance health outcomes with cost-containment. Change management, technological approach and legal issues were major factors modulating the success of the deployment. The project generated a business plan to foster service sustainability and health innovation. Deployment strategies require site-specific adaptations. PMID:26034465

  9. A Robust Wireless Sensor Network Architecture for the Large-scale Deployment of the Soil Moisture Sensing Controller and Optimal Estimator (SoilSCaPE)

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A.; Entekhabi, D.; Castillo, A. E.; Liu, M.; Burgin, M.; Goykhman, Y.

    2011-12-01

    We develop energy-efficient wireless sensor network technologies and data analysis techniques for dynamic and near-real-time validation of space-borne soil moisture measurements, in particular those from the Soil Moisture Active and Passive (SMAP) mission. Soil moisture fields are functions of variables that change over time across the range of scales from a few meters to several kilometers, necessitating the deployment of an extensive in-situ network for validation of coarse-resolution retrievals of soil moisture from SMAP and other remote sensing data. Previously we have reported on the scheduling and placement strategies for achieving optimal spatial and temporal sampling by the network. This work focuses on the latest developments of the large-scale wireless sensor network architecture that we have termed the Ripple architecture, and in particular, its latest version Ripple-2. The new network architecture solves many of the previous problems encountered during field deployments of the SoilSCAPE network, including reliability and scalability. The new architecture will be described, along with the results of the latest field deployments at the University of Michigan Matthaei botanical gardens and at the representative field site in Canton, Oklahoma. The status of the large-scale deployment at the Tonzi Ranch in central California will also be given. Additionally, the latest results of hydrologic and radar landscape simulators will also be presented, highlighting the connection between the SoilSCAPE network data, remote sensing retrievals, and the target science application of SMAP validation.

  10. Cell-tower deployment of counter-sniper sensors

    NASA Astrophysics Data System (ADS)

    Storch, Michael T.

    2004-09-01

    Cellular telephone antenna towers are evaluated as sites for rapid, effective & efficient deployment of counter-sniper sensors, especially in urban environments. They are expected to offer a suitable density, excellent LOS, and a generally limited variety of known or readily-characterized mechanical interfaces. Their precise locations are easily mapped in advance of deployment, are easily accessible by ground and air, and are easily spotted by deployment teams in real-time. We survey issues of EMI & RFI, susceptibility to denial & ambush in military scenarios, and the impact of trends in cell tower design & construction.

  11. COSTAR FOC M1/M2 Mirror Arm Deployment

    NASA Astrophysics Data System (ADS)

    Bacinski, John

    1997-07-01

    The COSTAR's FOC M1/M2 arms will be returned to their pre-servicing mission positions. WFPC-2's shutter is required to remain closed during and for 30 minutes after the deployment of the FOC COSTAR arms. The FOC arm deployment activities will be executed with a combinations of R/T and SPC commanding. FOC M1/M2 arm deployments will not be executed until FOC baseline observations have been performed. The activities in this proposal involve many COSTAR CARD items. This proposal requires careful attention during proposal implementation and execution to ensure the CARD is correctly implemented.

  12. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Whitmore, R. A., Jr. (Principal Investigator)

    1980-01-01

    A syllabus and training materials prepared and used in a series of one-day workshops to introduce modern remote sensing technology to selected groups of professional personnel in Vermont are described. Success in using computer compatible tapes, LANDSAT imagery and aerial photographs is reported for the following applications: (1) mapping defoliation of hardwood forests by tent caterpillar and gypsy moth; (2) differentiating conifer species; (3) mapping ground cover of major lake and pond watersheds; (4) inventorying and locating artificially regenerated conifer forest stands; (5) mapping water quality; (6) ascertaining the boat population to quantify recreational activity on lakes and waterways; and (7) identifying potential aquaculture sites.

  13. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  14. Applications of Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jacha, Charlene

    2015-04-01

    Remote sensing is one of the best ways to be able to monitor and see changes in the Earth. The use of satellite images in the classroom can be a practical way to help students understand the importance and use of remote sensing and Geographic Information Systems (GIS). It is essential in helping students to understand that underlying individual data points are converted to a broad spatial form. The use of actual remote sensing data makes this more understandable to the students e.g. an online map of recent earthquake events, geologic maps, satellite imagery. For change detection, images of years ten or twenty years apart of the same area can be compared and observations recorded. Satellite images of different places can be available on the Internet or from the local space agency. In groups of mixed abilities, students can observe changes in land use over time and also give possible reasons and explanations to those changes. Students should answer essential questions like, how does satellite imagery offer valuable information to different faculties e.g. military, weather, environmental departments and others. Before and after images on disasters for example, volcanoes, floods and earthquakes should be obtained and observed. Key questions would be; how can scientists use these images to predict, or to change the future outcomes over time. How to manage disasters and how the archived images can assist developers in planning land use around that area in the future. Other material that would be useful includes maps and aerial photographs of the area. A flight should be organized over the area for students to acquire aerial photographs of their own; this further enhances their understanding of the concept "remote sensing". Environmental issues such as air, water and land pollution can also be identified on satellite images. Key questions for students would include causes, effects and possible solutions to the problem. Conducting a fieldwork exercise around the area would

  15. REMOTE CONTROLLED SWITCHING DEVICE

    DOEpatents

    Hobbs, J.C.

    1959-02-01

    An electrical switching device which can be remotely controlled and in which one or more switches may be accurately operated at predetermined times or with predetermined intervening time intervals is described. The switching device consists essentially of a deck, a post projecting from the deck at right angles thereto, cam means mounted for rotation around said posts and a switch connected to said deck and actuated by said cam means. Means is provided for rotating the cam means at a constant speed and the switching apparatus is enclosed in a sealed container with external adjusting means and electrical connection elements.

  16. Remote Data Access with IDL

    NASA Technical Reports Server (NTRS)

    Galloy, Michael

    2013-01-01

    A tool based on IDL (Interactive Data Language) and DAP (Data Access Protocol) has been developed for user-friendly remote data access. A difficulty for many NASA researchers using IDL is that often the data to analyze are located remotely and are too large to transfer for local analysis. Researchers have developed a protocol for accessing remote data, DAP, which is used for both SOHO and STEREO data sets. Server-side side analysis via IDL routine is available through DAP.

  17. Water Quality Vocabulary Development and Deployment

    NASA Astrophysics Data System (ADS)

    Simons, B. A.; Yu, J.; Cox, S. J.

    2013-12-01

    Semantic descriptions of observed properties and associated units of measure are fundamental to understanding of environmental observations, including groundwater, surface water and marine water quality. Semantic descriptions can be captured in machine-readable ontologies and vocabularies, thus providing support for the annotation of observation values from the disparate data sources with appropriate and accurate metadata, which is critical for achieving semantic interoperability. However, current stand-alone water quality vocabularies provide limited support for cross-system comparisons or data fusion. To enhance semantic interoperability, the alignment of water-quality properties with definitions of chemical entities and units of measure in existing widely-used vocabularies is required. Modern ontologies and vocabularies are expressed, organized and deployed using Semantic Web technologies. We developed an ontology for observed properties (i.e. a model for expressing appropriate controlled vocabularies) which extends the NASA/TopQuadrant QUDT ontology for Unit and QuantityKind with two additional classes and two properties (see accompanying paper by Cox, Simons and Yu). We use our ontology to populate the Water Quality vocabulary with a set of individuals of each of the four key classes (and their subclasses), and add appropriate relationships between these individuals. This ontology is aligned with other relevant stand-alone Water Quality vocabularies and domain ontologies. Developing the Water Quality vocabulary involved two main steps. First, the Water Quality vocabulary was populated with individuals of the ObservedProperty class, which was determined from a census of existing datasets and services. Each ObservedProperty individual relates to other individuals of Unit and QuantityKind (taken from QUDT where possible), and to IdentifiedObject individuals. As a large fraction of observed water quality data are classified by the chemical substance involved, the

  18. Building Diagnostic Market Deployment - Final Report

    SciTech Connect

    Katipamula, S.; Gayeski, N.

    2012-04-30

    Operational faults are pervasive across the commercial buildings sector, wasting energy and increasing energy costs by up to about 30% (Mills 2009, Liu et al. 2003, Claridge et al. 2000, Katipamula and Brambley 2008, and Brambley and Katipamula 2009). Automated fault detection and diagnostic (AFDD) tools provide capabilities essential for detecting and correcting these problems and eliminating the associated energy waste and costs. The U.S. Department of Energy's (DOE) Building Technology Program (BTP) has previously invested in developing and testing of such diagnostic tools for whole-building (and major system) energy use, air handlers, chillers, cooling towers, chilled-water distribution systems, and boilers. These diagnostic processes can be used to make the commercial buildings more energy efficient. The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of AFDD tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: (1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, (2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and (3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations. PNNL has previously developed two diagnostic tools: (1) whole building energy (WBE) diagnostician and (2) outdoor air/economizer (OAE) diagnostician. WBE diagnostician is currently licensed non-exclusively to one company. As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite, Clockworks. PNNL also

  19. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.

    1976-01-01

    The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.

  20. A remote condition monitoring system for wind-turbine based DG systems

    NASA Astrophysics Data System (ADS)

    Ma, X.; Wang, G.; Cross, P.; Zhang, X.

    2012-05-01

    In this paper, a remote condition monitoring system is proposed, which fundamentally consists of real-time monitoring modules on the plant side, a remote support centre and the communications between them. The paper addresses some of the key issues related on the monitoring system, including i) the implementation and configuration of a VPN connection, ii) an effective database system to be able to handle huge amount of monitoring data, and iii) efficient data mining techniques to convert raw data into useful information for plant assessment. The preliminary results have demonstrated that the proposed system is practically feasible and can be deployed to monitor the emerging new energy generation systems.

  1. Remote manipulator system flexibility analysis program: Mission planning, mission analysis, and software formulation

    NASA Technical Reports Server (NTRS)

    Kumar, L.

    1978-01-01

    A computer program is described for calculating the flexibility coefficients as arm design changes are made for the remote manipulator system. The coefficients obtained are required as input for a second program which reduces the number of payload deployment and retrieval system simulation runs required to simulate the various remote manipulator system maneuvers. The second program calculates end effector flexibility and joint flexibility terms for the torque model of each joint for any arbitrary configurations. The listing of both programs is included in the appendix.

  2. Managing Meetings...Remotely

    NASA Technical Reports Server (NTRS)

    Woodward, Hugh

    2005-01-01

    Remote meetings are best for updates and information sharing, but it is possible to effectively facilitate decisions with a little planning. Generally, the meeting leader needs to clearly state the proposed decision and then separately poll each participant for concurrence. Normally, there will be a range of responses, requiring the facilitator to restate the proposal and repeat the process. Several iterations may be required before a consensus is achieved. I usually confirm decisions by restating the conclusion as it will appear in the meeting notes and asking the participants to express any objections. Gaining commitment to follow-up actions is never easy, of course, but tends to be particularly tricky in remote meetings. The ideal solution is to use collaboration software with a whiteboard as a means of recording the follow-up actions and responsibilities. (A Word or Excel document viewed through NetMeeting works equally well.) But if the meeting is being conducted without collaboration software, the leader must review each follow-up action explicitly, even painstakingly. I generally note follow-up actions throughout the meeting and use the last few minutes to confirm and finalize. I read each action and name the person I think owns the responsibility. When the person accepts, I validate by asking for a completion date. All the normal rules for assigning follow-up actions apply, of course. One, and only one, person must be responsible for each action, and assigning an action to somebody not present is akin to assigning it to nobody.

  3. Remotely operated pipe connector

    DOEpatents

    Josefiak, Leonard J.; Cramer, Charles E.

    1988-01-01

    An apparatus for remotely assembling and disassembling a Graylock type coctor between a pipe and a closure for the pipe includes a base and a receptacle on the base for the closure. The pipe is moved into position vertically above the closure by a suitable positioning device such that the flange on the pipe is immediately adjacent and concentric with the flange on the closure. A moving device then moves two semicircular collars from a position free of the closure to a position such that the interior cam groove of each collar contacts the two flanges. Finally, a tensioning device automatically allows remote tightening and loosening of a nut and bolt assembly on each side of the collar to cause a seal ring located between the flanges to be compressed and to seal the closure. Release of the pipe and the connector is accomplished in the reverse order. Preferably, the nut and bolt assembly includes an elongate shaft portion on which a removable sleeve is located.

  4. Information Analysis Methodology for Border Security Deployment Prioritization and Post Deployment Evaluation

    SciTech Connect

    Booker, Paul M.; Maple, Scott A.

    2010-06-08

    Due to international commerce, cross-border conflicts, and corruption, a holistic, information driven, approach to border security is required to best understand how resources should be applied to affect sustainable improvements in border security. The ability to transport goods and people by land, sea, and air across international borders with relative ease for legitimate commercial purposes creates a challenging environment to detect illicit smuggling activities that destabilize national level border security. Smuggling activities operated for profit or smuggling operations driven by cross border conflicts where militant or terrorist organizations facilitate the transport of materials and or extremists to advance a cause add complexity to smuggling interdiction efforts. Border security efforts are further hampered when corruption thwarts interdiction efforts or reduces the effectiveness of technology deployed to enhance border security. These issues necessitate the implementation of a holistic approach to border security that leverages all available data. Large amounts of information found in hundreds of thousands of documents can be compiled to assess national or regional borders to identify variables that influence border security. Location data associated with border topics of interest may be extracted and plotted to better characterize the current border security environment for a given country or region. This baseline assessment enables further analysis, but also documents the initial state of border security that can be used to evaluate progress after border security improvements are made. Then, border security threats are prioritized via a systems analysis approach. Mitigation factors to address risks can be developed and evaluated against inhibiting factor such as corruption. This holistic approach to border security helps address the dynamic smuggling interdiction environment where illicit activities divert to a new location that provides less resistance

  5. Creating a Comprehensive Solar Water Heating Deployment Strategy

    SciTech Connect

    Focus Marketing Services

    1999-08-18

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

  6. March 20, 2012 Space Station Briefing: Cubic Satellite Deploy (Narrated)

    NASA Video Gallery

    This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the deploy of small cubic satellites (often ...

  7. Spacecraft dynamics due to elastic ring antenna deployment

    NASA Astrophysics Data System (ADS)

    Makarov, Alexandr L.; Khoroshilov, Viktor S.; Zakrzhevskii, Alexandr E.

    2011-09-01

    In this paper the dynamics of a spacecraft with a system of stabilization out-of-operation is studied. The deployment of the ring flexible antenna is performed after placing the spacecraft into orbit and damping the initially undesired rotations by a special jet-propelled system. Basically the antenna is a pre-stressed tape reeled on a special drum. Deploying from the drum, the tape takes the shape of an elastic ring of 30 m in diameter. The objective of the study is the mechanical and computational modelling of the spacecraft dynamics. The equations of motion are derived in Lagrangian form. Numerical simulations of operational mode of the system are performed. As it is shown in main result, which restrictions must be imposed on parameters of the process of deployment for maintenance of the shape of the deployed design.

  8. Particle Swarm Inspired Underwater Sensor Self-Deployment

    PubMed Central

    Du, Huazheng; Xia, Na; Zheng, Rong

    2014-01-01

    Underwater sensor networks (UWSNs) can be applied in sea resource reconnaissance, pollution monitoring and assistant navigation, etc., and have become a hot research field in wireless sensor networks. In open and complicated underwater environments, targets (events) tend to be highly dynamic and uncertain. It is important to deploy sensors to cover potential events in an optimal manner. In this paper, the underwater sensor deployment problem and its performance evaluation metrics are introduced. Furthermore, a particle swarm inspired sensor self-deployment algorithm is presented. By simulating the flying behavior of particles and introducing crowd control, the proposed algorithm can drive sensors to cover almost all the events, and make the distribution of sensors match that of events. Through extensive simulations, we demonstrate that it can solve the underwater sensor deployment problem effectively, with fast convergence rate, and amiable to distributed implementation. PMID:25195852

  9. Pretraumatic Stress Reactions in Soldiers Deployed to Afghanistan

    PubMed Central

    Berntsen, Dorthe; Rubin, David C.

    2014-01-01

    Posttraumatic Stress Disorder is a diagnosis related to the past. Pre-traumatic stress reactions, as measured by intrusive involuntary images of possible future stressful events and their associated avoidance and increased arousal, have been overlooked in the PTSD literature. Here we introduce a scale that measures pre-traumatic stress reactions providing a clear future-oriented parallel to the posttraumatic stress reactions described in the diagnostic criteria for PTSD. We apply this pre-traumatic stress reactions checklist (PreCL) to Danish soldiers before, during, and after deployment to Afghanistan. The PreCL has good internal consistency and is highly correlated with a standard measure of PTSD symptoms. The PreCL as answered before the soldiers’ deployment significantly predicted level of PTSD symptoms during and after their deployment, while controlling for baseline PTSD symptoms and combat exposure measured during and after deployment. The findings have implications for the conceptualization of PTSD, screening, and treatment. PMID:26366328

  10. Inflation time in stent deployment: How long is enough?

    PubMed

    Pinton, Fábio Augusto; Lemos, Pedro Alves

    2016-01-01

    Coronary stents are commonly deployed using high pressure. However, the duration time of balloon inflation during deployment is still to be determined. Vallurupalli and coworkers, in this issue of CCI, show that the stent system takes an average of 33 sec to "accommodate" its pressure during in vitro deployment. In patients, the mean stent inflation time to achieve pressure stability was 104 seconds, ranging from 30 to 380 sec. These results challenge a rapid inflation/deflation approach for stent deployment. It is suggested that the duration of the inflation might be individualized, in a case-by-case approach. However, the findings must be interpreted with caution, as they cannot be directly extrapolated to more diverse clinical, angiographic, and interventional scenarios.

  11. 4D fibrous materials: characterising the deployment of paper architectures

    NASA Astrophysics Data System (ADS)

    Mulakkal, Manu C.; Seddon, Annela M.; Whittell, George; Manners, Ian; Trask, Richard S.

    2016-09-01

    Deployment of folded paper architecture using a fluid medium as the morphing stimulus presents a simple and inexpensive methodology capable of self-actuation; where the underlying principles can be translated to develop smart fibrous materials capable of programmable actuations. In this study we characterise different paper architectures and their stimuli mechanisms for folded deployment; including the influence of porosity, moisture, surfactant concentration, temperature, and hornification. We observe that actuation time decreases with paper grammage; through the addition of surfactants, and when the temperature is increased at the fluid–vapour interface. There is a clear effect of hydration, water transport and the interaction of hydrogen bonds within the fibrous architecture which drives the deployment of the folded regions. The importance of fibre volume fraction and functional fillers in shape recovery was also observed, as well as the effect of a multilayer composite paper system. The design guidelines shown here will inform the development of synthetic fibrous actuators for repeated deployment.

  12. Morphing structures using soft polymers for active deployment

    NASA Astrophysics Data System (ADS)

    Daynes, Stephen; Grisdale, Amy; Seddon, Annela; Trask, Richard

    2014-01-01

    In this study, we take inspiration from morphing strategies observed in nature, origami design and stiffness tailoring principles in engineering, to develop a thin walled, low cost, bistable cell geometry capable of reversibly unfolding from a flat configuration to a highly textured configuration. Finite element analysis was used to model the cell deployment and capture the experimentally observed bistability of the reinforced silicone elastomer. Through the combination of flexible elastomers with locally reinforced regions enables a highly tailorable and controllable deployment response. These cells are bistable allowing them to maintain their shape when either deployed or retracted without sustained actuation. It is proposed that such deployable cells with reversible surfaces and texture change can be used as a means of adaptive camouflage.

  13. Inflation time in stent deployment: How long is enough?

    PubMed

    Pinton, Fábio Augusto; Lemos, Pedro Alves

    2016-01-01

    Coronary stents are commonly deployed using high pressure. However, the duration time of balloon inflation during deployment is still to be determined. Vallurupalli and coworkers, in this issue of CCI, show that the stent system takes an average of 33 sec to "accommodate" its pressure during in vitro deployment. In patients, the mean stent inflation time to achieve pressure stability was 104 seconds, ranging from 30 to 380 sec. These results challenge a rapid inflation/deflation approach for stent deployment. It is suggested that the duration of the inflation might be individualized, in a case-by-case approach. However, the findings must be interpreted with caution, as they cannot be directly extrapolated to more diverse clinical, angiographic, and interventional scenarios. PMID:27410955

  14. Combat exposure and migraine headache: evidence from exogenous deployment assignment.

    PubMed

    Cesur, Resul; Sabia, Joseph J; Tekin, Erdal

    2015-01-01

    Migraine headache is a growing problem for U.S. servicemembers deployed to Iraq and Afghanistan and has been linked to substantial negative socioeconomic consequences. However, there has been no comprehensive examination of the relationship between combat exposure and migraine headache or its stress-related triggers. Analyzing data drawn from the National Longitudinal Study of Adolescent Health, we use exogenous variation in deployment assignment to estimate the effect of combat exposure on migraine headache. We find that those deployed to a combat zone with enemy firefight are at substantially increased risk for migraine headache relative to those deployed to non-combat zones outside the United States or to combat zones without enemy firefight. We find that combat-induced sleep disorders, stress-related psychological problems, and physical injuries in combat explain approximately 40-45 percent of the relationship between combat exposure and migraine headache.

  15. Development of a Rover Deployed Ground Penetrating Radar

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schutz, A. E.; Campbell, B. A.

    2000-01-01

    Development of a rover deployable Ground Penetrating Radar (GPR) involves: the nearly finished design and testing of a transducer array with high frequency (bistatic) and low frequency (monostatic) components; and design and development of a complete impulse GPR system.

  16. March 20, 2012 Space Station Briefing: Cubic Satellite Deploy

    NASA Video Gallery

    This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the deploy of small cubic satellites (often ...

  17. 4D fibrous materials: characterising the deployment of paper architectures

    NASA Astrophysics Data System (ADS)

    Mulakkal, Manu C.; Seddon, Annela M.; Whittell, George; Manners, Ian; Trask, Richard S.

    2016-09-01

    Deployment of folded paper architecture using a fluid medium as the morphing stimulus presents a simple and inexpensive methodology capable of self-actuation; where the underlying principles can be translated to develop smart fibrous materials capable of programmable actuations. In this study we characterise different paper architectures and their stimuli mechanisms for folded deployment; including the influence of porosity, moisture, surfactant concentration, temperature, and hornification. We observe that actuation time decreases with paper grammage; through the addition of surfactants, and when the temperature is increased at the fluid-vapour interface. There is a clear effect of hydration, water transport and the interaction of hydrogen bonds within the fibrous architecture which drives the deployment of the folded regions. The importance of fibre volume fraction and functional fillers in shape recovery was also observed, as well as the effect of a multilayer composite paper system. The design guidelines shown here will inform the development of synthetic fibrous actuators for repeated deployment.

  18. Operation United Assistance: infectious disease threats to deployed military personnel.

    PubMed

    Murray, Clinton K; Yun, Heather C; Markelz, Ana Elizabeth; Okulicz, Jason F; Vento, Todd J; Burgess, Timothy H; Cardile, Anthony P; Miller, R Scott

    2015-06-01

    As part of the international response to control the recent Ebola outbreak in West Africa, the Department of Defense has deployed military personnel to train Liberians to manage the disease and build treatment units and a hospital for health care volunteers. These steps have assisted in providing a robust medical system and augment Ebola diagnostic capability within the affected nations. In order to prepare for the deployment of U.S. military personnel, the infectious disease risks of the regions must be determined. This evaluation allows for the establishment of appropriate force health protection posture for personnel while deployed, as well as management plans for illnesses presenting after redeployment. Our objective was to detail the epidemiology and infectious disease risks for military personnel in West Africa, particularly for Liberia, along with lessons learned from prior deployments.

  19. The American Satellite Company (ASC) satellite deployed from payload bay

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The American Satellite Company (ASC) communications satellite is deployed from the payload bay of the Shuttle Discovery. A portion of the cloudy surface of the earth can be seen to the left of the frame.

  20. Deployment Mechanism for the Space Technology 5 Micro Satellite

    NASA Technical Reports Server (NTRS)

    Rossoni, Peter; Cooperrider, Caner; Durback, Gerard

    2004-01-01

    Space Technology 5 (ST5) is a technology mission that will send three spin-stabilized, 25-kg satellites into a highly elliptical Earth orbit. Each of these satellites must be deployed separately from the same launch vehicle with a spin rate of 3.4 rads (32.4 rpm). Because of the satellite's small size and the requirement to achieve its mission spin rate on deploy, typical spin table, pyrotechnic deployment devices or spin up thrusters could not be used. Instead, this new mechanism design employs a "Frisbee" spin up strategy with a shape memory alloy actuated Pinpuller to deploy each satellite. The mechanism has undergone several design and test iterations and has been successfully qualified for flight.