Hubbard, B.E.; Crowley, J.K.
2005-01-01
Hyperspectral data coverage from the EO-1 Hyperion sensor was useful for calibrating Advanced Land Imager (ALI) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images of a volcanic terrane area of the Chilean-Bolivian Altiplano. Following calibration, the ALI and ASTER datasets were co-registered and joined to produce a 13-channel reflectance cube spanning the Visible to Short Wave Infrared (0.4-2.4 ??m). Eigen analysis and comparison of the Hyperion data with the ALI + ASTER reflectance data, as well as mapping results using various ALI+ASTER data subsets, provided insights into the information dimensionality of all the data. In particular, high spectral resolution, low signal-to-noise Hyperion data were only marginally better for mineral mapping than the merged 13-channel, low spectral resolution, high signal-to-noise ALI + ASTER dataset. Neither the Hyperion nor the combined ALI + ASTER datasets had sufficient information dimensionality for mapping the diverse range of surface materials exposed on the Altiplano. However, it is possible to optimize the use of the multispectral data for mineral-mapping purposes by careful data subsetting, and by employing other appropriate image-processing strategies.
NASA Astrophysics Data System (ADS)
Ng, Z. F.; Gisen, J. I.; Akbari, A.
2018-03-01
Topography dataset is an important input in performing flood inundation modelling. However, it is always difficult to obtain high resolution topography that provide accurate elevation information. Fortunately, there are some open source topography datasets available with reasonable resolution such as SRTM and ASTER-GDEM. In Malaysia particularly in Kuantan, the modelling research on the floodplain area is still lacking. This research aims to: a) to investigate the suitability of ASTER-GDEM to be applied in the 1D-2D flood inundation modelling for the Kuantan River Basin; b) to generate flood inundation map for Kuantan river basin. The topography dataset used in this study is ASTER-GDEM to generate physical characteristics of watershed in the basin. It is used to perform rainfall runoff modelling for hydrological studies and to delineate flood inundation area in the Flood Modeller. The results obtained have shown that a 30m resolution ASTER-GDEM is applicable as an input for the 1D-2D flood modelling. The simulated water level in 2013 has NSE of 0.644 and RSME of 1.259. As a conclusion, ASTER-GDEM can be used as one alternative topography datasets for flood inundation modelling. However, the flood level obtained from the hydraulic modelling shows low accuracy at flat urban areas.
Cross-Calibration of Earth Observing System Terra Satellite Sensors MODIS and ASTER
NASA Technical Reports Server (NTRS)
McCorkel, J.
2014-01-01
The Advanced Spaceborne Thermal Emissive and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectrometer (MODIS) are two of the five sensors onboard the Earth Observing System's Terra satellite. These sensors share many similar spectral channels while having much different spatial and operational parameters. ASTER is a tasked sensor and sometimes referred to a zoom camera of the MODIS that collects a full-earth image every one to two days. It is important that these sensors have a consistent characterization and calibration for continued development and use of their data products. This work uses a variety of test sites to retrieve and validate intercalibration results. The refined calibration of Collection 6 of the Terra MODIS data set is leveraged to provide the up-to-date reference for trending and validation of ASTER. Special attention is given to spatially matching radiance measurements using prelaunch spatial response characterization of MODIS. Despite differences in spectral band properties and spatial scales, ASTER-MODIS is an ideal case for intercomparison since the sensors have nearly identical views and acquisitions times and therefore can be used as a baseline of intercalibration performance of other satellite sensor pairs.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
NASA Astrophysics Data System (ADS)
Jawak, Shridhar D.; Luis, Alvarinho J.
2016-05-01
Digital elevation model (DEM) is indispensable for analysis such as topographic feature extraction, ice sheet melting, slope stability analysis, landscape analysis and so on. Such analysis requires a highly accurate DEM. Available DEMs of Antarctic region compiled by using radar altimetry and the Antarctic digital database indicate elevation variations of up to hundreds of meters, which necessitates the generation of local improved DEM. An improved DEM of the Schirmacher Oasis, East Antarctica has been generated by synergistically fusing satellite-derived laser altimetry data from Geoscience Laser Altimetry System (GLAS), Radarsat Antarctic Mapping Project (RAMP) elevation data and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global elevation data (GDEM). This is a characteristic attempt to generate a DEM of any part of Antarctica by fusing multiple elevation datasets, which is essential to model the ice elevation change and address the ice mass balance. We analyzed a suite of interpolation techniques for constructing a DEM from GLAS, RAMP and ASTER DEM-based point elevation datasets, in order to determine the level of confidence with which the interpolation techniques can generate a better interpolated continuous surface, and eventually improve the elevation accuracy of DEM from synergistically fused RAMP, GLAS and ASTER point elevation datasets. The DEM presented in this work has a vertical accuracy (≈ 23 m) better than RAMP DEM (≈ 57 m) and ASTER DEM (≈ 64 m) individually. The RAMP DEM and ASTER DEM elevations were corrected using differential GPS elevations as ground reference data, and the accuracy obtained after fusing multitemporal datasets is found to be improved than that of existing DEMs constructed by using RAMP or ASTER alone. This is our second attempt of fusing multitemporal, multisensory and multisource elevation data to generate a DEM of Antarctica, in order to address the ice elevation change and address the ice mass balance. Our approach focuses on the strengths of each elevation data source to produce an accurate elevation model.
NASA Astrophysics Data System (ADS)
Silvestri, M.; Musacchio, M.; Buongiorno, M. F.; Amici, S.; Piscini, A.
2015-12-01
LP DAAC released the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED) datasets on April 2, 2014. The database was developed by the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology. The database includes land surface emissivities derived from ASTER data acquired over the contiguous United States, Africa, Arabian Peninsula, Australia, Europe, and China. In this work we compare ground measurements of emissivity acquired by means of Micro-FTIR (Fourier Thermal Infrared spectrometer) instrument with the ASTER emissivity map extract from ASTER-GED and the emissivity obtained by using single ASTER data. Through this analysis we want to investigate differences existing between the ASTER-GED dataset (average from 2000 to 2008 seasoning independent) and fall in-situ emissivity measurement. Moreover the role of different spatial resolution characterizing ASTER and MODIS, 90mt and 1km respectively, by comparing them with in situ measurements. Possible differences can be due also to the different algorithms used for the emissivity estimation, Temperature and Emissivity Separation algorithm for ASTER TIR band( Gillespie et al, 1998) and the classification-based emissivity method (Snyder and al, 1998) for MODIS. In-situ emissivity measurements have been collected during dedicated fields campaign on Mt. Etna vulcano and Solfatara of Pozzuoli. Gillespie, A. R., Matsunaga, T., Rokugawa, S., & Hook, S. J. (1998). Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113-1125. Snyder, W.C., Wan, Z., Zhang, Y., & Feng, Y.-Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19, 2753-2574.
High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations
NASA Astrophysics Data System (ADS)
Yue, Linwei; Shen, Huanfeng; Zhang, Liangpei; Zheng, Xianwei; Zhang, Fan; Yuan, Qiangqiang
2017-01-01
The absence of a high-quality seamless global digital elevation model (DEM) dataset has been a challenge for the Earth-related research fields. Recently, the 1-arc-second Shuttle Radar Topography Mission (SRTM-1) data have been released globally, covering over 80% of the Earth's land surface (60°N-56°S). However, voids and anomalies still exist in some tiles, which has prevented the SRTM-1 dataset from being directly used without further processing. In this paper, we propose a method to generate a seamless DEM dataset blending SRTM-1, ASTER GDEM v2, and ICESat laser altimetry data. The ASTER GDEM v2 data are used as the elevation source for the SRTM void filling. To get a reliable filling source, ICESat GLAS points are incorporated to enhance the accuracy of the ASTER data within the void regions, using an artificial neural network (ANN) model. After correction, the voids in the SRTM-1 data are filled with the corrected ASTER GDEM values. The triangular irregular network based delta surface fill (DSF) method is then employed to eliminate the vertical bias between them. Finally, an adaptive outlier filter is applied to all the data tiles. The final result is a seamless global DEM dataset. ICESat points collected from 2003 to 2009 were used to validate the effectiveness of the proposed method, and to assess the vertical accuracy of the global DEM products in China. Furthermore, channel networks in the Yangtze River Basin were also extracted for the data assessment.
Comparing Baltimore and Phoenix
NASA Technical Reports Server (NTRS)
2002-01-01
The 'zoom lens' aboard NASA's Terra spacecraft acquired these views of two U.S. cities: Baltimore, Maryland (left), and Phoenix, Arizona (right). Acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), red in these false-colored images indicates vegetation. The turquoise pixels show paved areas while darker greens and browns show bare earth and rock surfaces. The 'true' constructed nature of these cities is not easy to see. Ecologists now accept human beings and our activities as a significant factor in studying the Earth's ecology. ASTER data are being used to better understand urban ecology, in particular how humans build their cities and affect the surrounding environment. At the recent American Geophysical Union (AGU) meeting in Boston, Will Stefanov of Arizona State University presented the first set of ASTER images of the urban 'skeletons' of the amount of built structures in twelve cities around the world. He also discussed the Urban Environmental Monitoring project, in which scientists are examining 100 urban centers to look for common features (or lack of them) in global city structure as well as to monitor their changes over time.
Characterization of ASTER GDEM Elevation Data over Vegetated Area Compared with Lidar Data
NASA Technical Reports Server (NTRS)
Ni, Wenjian; Sun, Guoqing; Ranson, Kenneth J.
2013-01-01
Current researches based on areal or spaceborne stereo images with very high resolutions (less than 1 meter) have demonstrated that it is possible to derive vegetation height from stereo images. The second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) is a state-of-the-art global elevation data-set developed by stereo images. However, the resolution of ASTER stereo images (15 meters) is much coarser than areal stereo images, and the ASTER GDEM is compiled products from stereo images acquired over 10 years. The forest disturbances as well as forest growth are inevitable in 10 years time span. In this study, the features of ASTER GDEM over vegetated areas under both flat and mountainous conditions were investigated by comparisons with lidar data. The factors possibly affecting the extraction of vegetation canopy height considered include (1) co-registration of DEMs; (2) spatial resolution of digital elevation models (DEMs); (3) spatial vegetation structure; and (4) terrain slope. The results show that accurate co-registration between ASTER GDEM and the National Elevation Dataset (NED) is necessary over mountainous areas. The correlation between ASTER GDEM minus NED and vegetation canopy height is improved from 0.328 to 0.43 by degrading resolutions from 1 arc-second to 5 arc-seconds and further improved to 0.6 if only homogenous vegetated areas were considered.
Joint demosaicking and zooming using moderate spectral correlation and consistent edge map
NASA Astrophysics Data System (ADS)
Zhou, Dengwen; Dong, Weiming; Chen, Wengang
2014-07-01
The recently published joint demosaicking and zooming algorithms for single-sensor digital cameras all overfit the popular Kodak test images, which have been found to have higher spectral correlation than typical color images. Their performance perhaps significantly degrades on other datasets, such as the McMaster test images, which have weak spectral correlation. A new joint demosaicking and zooming algorithm is proposed for the Bayer color filter array (CFA) pattern, in which the edge direction information (edge map) extracted from the raw CFA data is consistently used in demosaicking and zooming. It also moderately utilizes the spectral correlation between color planes. The experimental results confirm that the proposed algorithm produces an excellent performance on both the Kodak and McMaster datasets in terms of both subjective and objective measures. Our algorithm also has high computational efficiency. It provides a better tradeoff among adaptability, performance, and computational cost compared to the existing algorithms.
Aster Global dem Version 3, and New Aster Water Body Dataset
NASA Astrophysics Data System (ADS)
Abrams, M.
2016-06-01
In 2016, the US/Japan ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) project released Version 3 of the Global DEM (GDEM). This 30 m DEM covers the earth's surface from 82N to 82S, and improves on two earlier versions by correcting some artefacts and filling in areas of missing DEMs by the acquisition of additional data. The GDEM was produced by stereocorrelation of 2 million ASTER scenes and operation on a pixel-by-pixel basis: cloud screening; stacking data from overlapping scenes; removing outlier values, and averaging elevation values. As previously, the GDEM is packaged in ~ 23,000 1 x 1 degree tiles. Each tile has a DEM file, and a NUM file reporting the number of scenes used for each pixel, and identifying the source for fill-in data (where persistent clouds prevented computation of an elevation value). An additional data set was concurrently produced and released: the ASTER Water Body Dataset (AWBD). This is a 30 m raster product, which encodes every pixel as either lake, river, or ocean; thus providing a global inland and shore-line water body mask. Water was identified through spectral analysis algorithms and manual editing. This product was evaluated against the Shuttle Water Body Dataset (SWBD), and the Landsat-based Global Inland Water (GIW) product. The SWBD only covers the earth between about 60 degrees north and south, so it is not a global product. The GIW only delineates inland water bodies, and does not deal with ocean coastlines. All products are at 30 m postings.
The Status of the NASA MEaSUREs Combined ASTER and MODIS Emissivity Over Land (CAMEL) Products
NASA Astrophysics Data System (ADS)
Borbas, E. E.; Feltz, M.; Hulley, G. C.; Knuteson, R. O.; Hook, S. J.
2017-12-01
As part of a NASA MEaSUREs Land Surface Temperature and Emissivity project, the University of Wisconsin, Space Science and Engineering Center and the NASA's Jet Propulsion Laboratory have developed a global monthly mean emissivity Earth System Data Record (ESDR). The CAMEL ESDR was produced by merging two current state-of-the-art emissivity datasets: the UW-Madison MODIS Infrared emissivity dataset (UWIREMIS), and the JPL ASTER Global Emissivity Dataset v4 (GEDv4). The dataset includes monthly global data records of emissivity, uncertainty at 13 hinge points between 3.6-14.3 µm, and Principal Components Analysis (PCA) coefficients at 5 kilometer resolution for years 2003 to 2015. A high spectral resolution algorithm is also provided for HSR applications. The dataset is currently being tested in sounder retrieval algorithm (e.g. CrIS, IASI) and has already been implemented in RTTOV-12 for immediate use in numerical weather modeling and data assimilation. This poster will present the current status of the dataset.
King, Trude V.V.; Johnson, Michaela R.; Hubbard, Bernard E.; Drenth, Benjamin J.
2011-01-01
During the independent analysis of the geophysical, ASTER, and imaging spectrometer (HyMap) data by USGS scientists, previously unrecognized targets of potential mineralization were identified using evaluation criteria most suitable to the individual dataset. These anomalous zones offer targets of opportunity that warrant additional field verification. This report describes the standards used to define the anomalies, summarizes the results of the evaluations for each type of data, and discusses the importance and implications of regions of anomaly overlap between two or three of the datasets.
Gesch, Dean B.; Oimoen, Michael J.; Evans, Gayla A.
2014-01-01
The National Elevation Dataset (NED) is the primary elevation data product produced and distributed by the U.S. Geological Survey. The NED provides seamless raster elevation data of the conterminous United States, Alaska, Hawaii, U.S. island territories, Mexico, and Canada. The NED is derived from diverse source datasets that are processed to a specification with consistent resolutions, coordinate system, elevation units, and horizontal and vertical datums. The NED serves as the elevation layer of The National Map, and it provides basic elevation information for earth science studies and mapping applications in the United States and most of North America. An important part of supporting scientific and operational use of the NED is provision of thorough dataset documentation including data quality and accuracy metrics. The focus of this report is on the vertical accuracy of the NED and on comparison of the NED with other similar large-area elevation datasets, namely data from the Shuttle Radar Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER).
NASA Astrophysics Data System (ADS)
Abubakar, A. J.; Hashim, M.; Pour, A. B.
2017-10-01
Geothermal systems are essentially associated with hydrothermal alteration mineral assemblages such as iron oxide/hydroxide, clay, sulfate, carbonate and silicate groups. Blind and fossilized geothermal systems are not characterized by obvious surface manifestations like hot springs, geysers and fumaroles, therefore, they could not be easily identifiable using conventional techniques. In this investigation, the applicability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were evaluated in discriminating hydrothermal alteration minerals associated with geothermal systems as a proxy in identifying subtle Geothermal systems at Yankari Park in northeastern Nigeria. The area is characterized by a number of thermal springs such as Wikki and Mawulgo. Feature-oriented Principal Component selection (FPCS) was applied to ASTER data based on spectral characteristics of hydrothermal alteration minerals for a systematic and selective extraction of the information of interest. Application of FPCS analysis to bands 5, 6 and 8 and bands 1, 2, 3 and 4 datasets of ASTER was used for mapping clay and iron oxide/hydroxide minerals in the zones of Wikki and Mawulgo thermal springs in Yankari Park area. Field survey using GPS and laboratory analysis, including X-ray Diffractometer (XRD) and Analytical Spectral Devices (ASD) were carried out to verify the image processing results. The results indicate that ASTER dataset reliably and complementarily be used for reconnaissance stage of targeting subtle alteration mineral assemblages associated with geothermal systems.
NASA Astrophysics Data System (ADS)
Silvestri, Malvina; Musacchio, Massimo; Cammarano, Diego; Fabrizia Buongiorno, Maria; Amici, Stefania; Piscini, Alessandro
2016-04-01
In this work we compare ground measurements of emissivity collected during dedicated fields campaign on Mt. Etna and Solfatara of Pozzuoli volcanoes and acquired by means of Micro-FTIR (Fourier Thermal Infrared spectrometer) instrument with the emissivity obtained by using single ASTER data (Advanced Spaceborne Thermal Emission and Reflection Radiometer, ASTER 05) and the ASTER emissivity map extract from ASTER Global Emissivity Database (GED), released by LP DAAC on April 2, 2014. The database was developed by the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology. The database includes land surface emissivity derived from ASTER data acquired over the contiguous United States, Africa, Arabian Peninsula, Australia, Europe, and China. Through this analysis we want to investigate the differences existing between the ASTER-GED dataset (average from 2000 to 2008 seasoning independent) and fall in-situ emissivity measurement. Moreover the role of different spatial resolution characterizing ASTER and MODIS, 90mt and 1km respectively, by comparing them with in situ measurements, is analyzed. Possible differences can be due also to the different algorithms used for the emissivity estimation, Temperature and Emissivity Separation algorithm for ASTER TIR band( Gillespie et al, 1998) and the classification-based emissivity method (Snyder and al, 1998) for MODIS. Finally land surface temperature products generated using ASTER-GED and ASTER 05 emissivity are also analyzed. Gillespie, A. R., Matsunaga, T., Rokugawa, S., & Hook, S. J. (1998). Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113-1125. Snyder, W.C., Wan, Z., Zhang, Y., & Feng, Y.-Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19, 2753-2574.
Mars, J.C.; Rowan, L.C.
2010-01-01
ASTER reflectance spectra from Cuprite, Nevada, and Mountain Pass, California, were compared to spectra of field samples and to ASTER-resampled AVIRIS reflectance data to determine spectral accuracy and spectroscopic mapping potential of two new ASTER SWIR reflectance datasets: RefL1b and AST_07XT. RefL1b is a new reflectance dataset produced for this study using ASTER Level 1B data, crosstalk correction, radiance correction factors, and concurrently acquired level 2 MODIS water vapor data. The AST_07XT data product, available from EDC and ERSDAC, incorporates crosstalk correction and non-concurrently acquired MODIS water vapor data for atmospheric correction. Spectral accuracy was determined using difference values which were compiled from ASTER band 5/6 and 9/8 ratios of AST_07XT or RefL1b data subtracted from similar ratios calculated for field sample and AVIRIS reflectance data. In addition, Spectral Analyst, a statistical program that utilizes a Spectral Feature Fitting algorithm, was used to quantitatively assess spectral accuracy of AST_07XT and RefL1b data.Spectral Analyst matched more minerals correctly and had higher scores for the RefL1b data than for AST_07XT data. The radiance correction factors used in the RefL1b data corrected a low band 5 reflectance anomaly observed in the AST_07XT and AST_07 data but also produced anomalously high band 5 reflectance in RefL1b spectra with strong band 5 absorption for minerals, such as alunite. Thus, the band 5 anomaly seen in the RefL1b data cannot be corrected using additional gain adjustments. In addition, the use of concurrent MODIS water vapor data in the atmospheric correction of the RefL1b data produced datasets that had lower band 9 reflectance anomalies than the AST_07XT data. Although assessment of spectral data suggests that RefL1b data are more consistent and spectrally more correct than AST_07XT data, the Spectral Analyst results indicate that spectral discrimination between some minerals, such as alunite and kaolinite, are still not possible unless additional spectral calibration using site specific spectral data are performed. ?? 2010.
NASA Astrophysics Data System (ADS)
Ramos, Yuddy; Goïta, Kalifa; Péloquin, Stéphane
2016-04-01
This study evaluates Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion hyperspectral sensor datasets to detect advanced argillic minerals. The spectral signatures of some alteration clay minerals, such as dickite and alunite, have similar absorption features; thus separating them using multispectral satellite images is a complex challenge. However, Hyperion with its fine spectral bands has potential for good separability of features. The Spectral Angle Mapper algorithm was used in this study to map three advanced argillic alteration minerals (alunite, kaolinite, and dickite) in a known alteration zone in the Peruvian Andes. The results from ASTER and Hyperion were analyzed, compared, and validated using a Portable Infrared Mineral Analyzer field spectrometer. The alterations corresponding to kaolinite and alunite were detected with both ASTER and Hyperion (80% to 84% accuracy). However, the dickite mineral was identified only with Hyperion (82% accuracy).
Hubbard, Bernard E.; Sheridan, Michael F.; Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Rodriguez, Sergio R.
2007-01-01
Finally, ASTERs 60 km swath width and 8% duty cycle presents a challenge for mapping lahar inundation hazards at E–W oriented stream valleys in low-latitude areas with persistent cloud cover. However, its continued operations enhances its utility as a means for updating the continuous but one-time coverage of SRTM, and for filling voids in the SRTM dataset such as those that occur along steep-sided valleys prone to hazards from future lahars.
NASA Astrophysics Data System (ADS)
Ramsey, M.; Dehn, J.; Wessels, R.; Byrnes, J.; Duda, K.; Maldonado, L.; Dwyer, J.
2004-12-01
Numerous government agencies and university partnerships are currently utilizing orbital instruments with high-temporal/low-spatial resolution (e.g. MODIS, AVHRR) to monitor hazards. These hazards are varied and include both natural (volcanic eruptions, severe weather, wildfires, earthquake damage) and anthropogenic (environmental damage, urban terrorism). Although monitoring a hazardous situation is critical, a key strategy of NASA's Earth science program is to develop a scientific understanding of the Earth system and its responses to changes, as well as to improve prediction of hazard onset. In order to develop a quantitative scientific basis from which to model transient geological and climatological hazards, much higher spatial/spectral resolution datasets are required. Such datasets are sparse, currently available from certain government (e.g. ASTER, Hyperion) and commercial (e.g. IKONOS, QuickBird) instruments. However, only ASTER has the capability to acquire high spatial resolution data from the visible to thermal infrared (TIR) wavelength region in conjunction with digital elevation models (DEM) generation. These capabilities are particularly useful for numerous aspects of volcanic remote sensing. For example, multispectral TIR data are critical for monitoring low temperature anomalies and mapping both chemical and textural variations on volcanic surfaces. Because ASTER data are scheduled in advance and the raw data are sent to Japan for calibration processing, rapid acquisition of hazards becomes problematic. However, a "rapid response" mode does exist for ASTER data scheduling and processing, but its availability is limited and requires significant human interaction. A newly-funded NASA ASTER science team project seeks to link this ASTER rapid response pathway to larger-scale monitoring alerts, which are already in-place and in-use by other organizations. By refining the initial event detection criteria and improving interfaces between these organizations and the ASTER project, we expect to minimize lag time and use existing monitoring tools as triggers for the emergency response of ASTER. The first phase of this project will be integrated into the Alaska Volcano Observatory's current near-real-time volcanic monitoring system, which relies on high temporal/low spatial resolution orbital data. This synergy will allow small-scale activity to be targeted for science and response, and a calibration baseline between each sensor to be established. If successful, this will be the first time that high spatial resolution, multispectral satellite data will be routinely scheduled, acquired, and analyzed in a "rapid response" mode within an existing hazard monitoring framework. Initial testing of this system is now underway using data from previous eruptions in the north Pacific region, and modifications to the rapid data flow procedure within the ASTER science and support structure has begun.
DownscaleConcept 2.3 User Manual. Downscaled, Spatially Distributed Soil Moisture Calculator
2011-01-01
be first presented with the dataset 28 results to your query. From this page, check the box next to the ASTER GDEM dataset and press the "List...information for verification. No charge will be associated with GDEM data archives. 14. Select "Submit Order Now!" to process your order. 15. Wait for
Vertical Accuracy Evaluation of Aster GDEM2 Over a Mountainous Area Based on Uav Photogrammetry
NASA Astrophysics Data System (ADS)
Liang, Y.; Qu, Y.; Guo, D.; Cui, T.
2018-05-01
Global digital elevation models (GDEM) provide elementary information on heights of the Earth's surface and objects on the ground. GDEMs have become an important data source for a range of applications. The vertical accuracy of a GDEM is critical for its applications. Nowadays UAVs has been widely used for large-scale surveying and mapping. Compared with traditional surveying techniques, UAV photogrammetry are more convenient and more cost-effective. UAV photogrammetry produces the DEM of the survey area with high accuracy and high spatial resolution. As a result, DEMs resulted from UAV photogrammetry can be used for a more detailed and accurate evaluation of the GDEM product. This study investigates the vertical accuracy (in terms of elevation accuracy and systematic errors) of the ASTER GDEM Version 2 dataset over a complex terrain based on UAV photogrammetry. Experimental results show that the elevation errors of ASTER GDEM2 are in normal distribution and the systematic error is quite small. The accuracy of the ASTER GDEM2 coincides well with that reported by the ASTER validation team. The accuracy in the research area is negatively correlated to both the slope of the terrain and the number of stereo observations. This study also evaluates the vertical accuracy of the up-sampled ASTER GDEM2. Experimental results show that the accuracy of the up-sampled ASTER GDEM2 data in the research area is not significantly reduced by the complexity of the terrain. The fine-grained accuracy evaluation of the ASTER GDEM2 is informative for the GDEM-supported UAV photogrammetric applications.
Khalid Hussein
2012-02-01
This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. Note: 'o' is used in this description to represent lowercase sigma
Towards automatic lithological classification from remote sensing data using support vector machines
NASA Astrophysics Data System (ADS)
Yu, Le; Porwal, Alok; Holden, Eun-Jung; Dentith, Michael
2010-05-01
Remote sensing data can be effectively used as a mean to build geological knowledge for poorly mapped terrains. Spectral remote sensing data from space- and air-borne sensors have been widely used to geological mapping, especially in areas of high outcrop density in arid regions. However, spectral remote sensing information by itself cannot be efficiently used for a comprehensive lithological classification of an area due to (1) diagnostic spectral response of a rock within an image pixel is conditioned by several factors including the atmospheric effects, spectral and spatial resolution of the image, sub-pixel level heterogeneity in chemical and mineralogical composition of the rock, presence of soil and vegetation cover; (2) only surface information and is therefore highly sensitive to the noise due to weathering, soil cover, and vegetation. Consequently, for efficient lithological classification, spectral remote sensing data needs to be supplemented with other remote sensing datasets that provide geomorphological and subsurface geological information, such as digital topographic model (DEM) and aeromagnetic data. Each of the datasets contain significant information about geology that, in conjunction, can potentially be used for automated lithological classification using supervised machine learning algorithms. In this study, support vector machine (SVM), which is a kernel-based supervised learning method, was applied to automated lithological classification of a study area in northwestern India using remote sensing data, namely, ASTER, DEM and aeromagnetic data. Several digital image processing techniques were used to produce derivative datasets that contained enhanced information relevant to lithological discrimination. A series of SVMs (trained using k-folder cross-validation with grid search) were tested using various combinations of input datasets selected from among 50 datasets including the original 14 ASTER bands and 36 derivative datasets (including 14 principal component bands, 14 independent component bands, 3 band ratios, 3 DEM derivatives: slope/curvatureroughness and 2 aeromagnetic derivatives: mean and variance of susceptibility) extracted from the ASTER, DEM and aeromagnetic data, in order to determine the optimal inputs that provide the highest classification accuracy. It was found that a combination of ASTER-derived independent components, principal components and band ratios, DEM-derived slope, curvature and roughness, and aeromagnetic-derived mean and variance of magnetic susceptibility provide the highest classification accuracy of 93.4% on independent test samples. A comparison of the classification results of the SVM with those of maximum likelihood (84.9%) and minimum distance (38.4%) classifiers clearly show that the SVM algorithm returns much higher classification accuracy. Therefore, the SVM method can be used to produce quick and reliable geological maps from scarce geological information, which is still the case with many under-developed frontier regions of the world.
NASA Astrophysics Data System (ADS)
Ybanez, R. L.; Lagmay, A. M. A.; David, C. P.
2016-12-01
With climatological hazards increasing globally, the Philippines is listed as one of the most vulnerable countries in the world due to its location in the Western Pacific. Flood hazards mapping and modelling is one of the responses by local government and research institutions to help prepare for and mitigate the effects of flood hazards that constantly threaten towns and cities in floodplains during the 6-month rainy season. Available digital elevation maps, which serve as the most important dataset used in 2D flood modelling, are limited in the Philippines and testing is needed to determine which of the few would work best for flood hazards mapping and modelling. Two-dimensional GIS-based flood modelling with the flood-routing software FLO-2D was conducted using three different available DEMs from the ASTER GDEM, the SRTM GDEM, and the locally available IfSAR DTM. All other parameters kept uniform, such as resolution, soil parameters, rainfall amount, and surface roughness, the three models were run over a 129-sq. kilometer watershed with only the basemap varying. The output flood hazard maps were compared on the basis of their flood distribution, extent, and depth. The ASTER and SRTM GDEMs contained too much error and noise which manifested as dissipated and dissolved hazard areas in the lower watershed where clearly delineated flood hazards should be present. Noise on the two datasets are clearly visible as erratic mounds in the floodplain. The dataset which produced the only feasible flood hazard map is the IfSAR DTM which delineates flood hazard areas clearly and properly. Despite the use of ASTER and SRTM with their published resolution and accuracy, their use in GIS-based flood modelling would be unreliable. Although not as accessible, only IfSAR or better datasets should be used for creating secondary products from these base DEM datasets. For developing countries which are most prone to hazards, but with limited choices for basemaps used in hazards studies, the caution must be taken in the use of globally available GDEMs and higher-resolution DEMs must always be sought.
NASA Astrophysics Data System (ADS)
Purinton, Benjamin; Bookhagen, Bodo
2017-04-01
In this study, we validate and compare elevation accuracy and geomorphic metrics of satellite-derived digital elevation models (DEMs) on the southern Central Andean Plateau. The plateau has an average elevation of 3.7 km and is characterized by diverse topography and relief, lack of vegetation, and clear skies that create ideal conditions for remote sensing. At 30 m resolution, SRTM-C, ASTER GDEM2, stacked ASTER L1A stereopair DEM, ALOS World 3D, and TanDEM-X have been analyzed. The higher-resolution datasets include 12 m TanDEM-X, 10 m single-CoSSC TerraSAR-X/TanDEM-X DEMs, and 5 m ALOS World 3D. These DEMs are state of the art for optical (ASTER and ALOS) and radar (SRTM-C and TanDEM-X) spaceborne sensors. We assessed vertical accuracy by comparing standard deviations of the DEM elevation versus 307 509 differential GPS measurements across 4000 m of elevation. For the 30 m DEMs, the ASTER datasets had the highest vertical standard deviation at > 6.5 m, whereas the SRTM-C, ALOS World 3D, and TanDEM-X were all < 3.5 m. Higher-resolution DEMs generally had lower uncertainty, with both the 12 m TanDEM-X and 5 m ALOS World 3D having < 2 m vertical standard deviation. Analysis of vertical uncertainty with respect to terrain elevation, slope, and aspect revealed the low uncertainty across these attributes for SRTM-C (30 m), TanDEM-X (12-30 m), and ALOS World 3D (5-30 m). Single-CoSSC TerraSAR-X/TanDEM-X 10 m DEMs and the 30 m ASTER GDEM2 displayed slight aspect biases, which were removed in their stacked counterparts (TanDEM-X and ASTER Stack). Based on low vertical standard deviations and visual inspection alongside optical satellite data, we selected the 30 m SRTM-C, 12-30 m TanDEM-X, 10 m single-CoSSC TerraSAR-X/TanDEM-X, and 5 m ALOS World 3D for geomorphic metric comparison in a 66 km2 catchment with a distinct river knickpoint. Consistent m/n values were found using chi plot channel profile analysis, regardless of DEM type and spatial resolution. Slope, curvature, and drainage area were calculated and plotting schemes were used to assess basin-wide differences in the hillslope-to-valley transition related to the knickpoint. While slope and hillslope length measurements vary little between datasets, curvature displays higher magnitude measurements with fining resolution. This is especially true for the optical 5 m ALOS World 3D DEM, which demonstrated high-frequency noise in 2-8 pixel steps through a Fourier frequency analysis. The improvements in accurate space-radar DEMs (e.g., TanDEM-X) for geomorphometry are promising, but airborne or terrestrial data are still necessary for meter-scale analysis.
NASA Astrophysics Data System (ADS)
Ramsey, Michael
2015-04-01
The ASTER-based observational success of active volcanic processes early in the Terra mission later gave rise to a funded NASA program designed to both increase the number of ASTER scenes following an eruption and perform the ground-based science needed to validate that data. The urgent request protocol (URP) system for ASTER grew out of this initial study and has now operated in conjunction with and the support of the Alaska Volcano Observatory, the University of Alaska Fairbanks, the University of Hawaii, the USGS Land Processes DAAC, and the ASTER science team. The University of Pittsburgh oversees this rapid response/sensor-web system, which until 2011 had focused solely on the active volcanoes in the North Pacific region. Since that time, it has been expanded to operate globally with AVHRR and MODIS and now ASTER visible and thermal infrared (TIR) data are being acquired at numerous active volcanoes around the world. This program relies on the increased temporal resolution of AVHRR/MODIS midwave infrared data to trigger the next available ASTER observation, which results in ASTER data as frequently as every 2-5 days. For many new targets such as Mt. Etna, the URP has increased the observational frequency by as much 50%. Examples of these datasets will be presented, which have been used for operational response to new eruptions as well as longer-term scientific studies. These studies include emplacement of new lava flows, detection of endogenous dome growth, and interpretation of hazardous dome collapse events. As a means to validate the ASTER TIR data and capture higher-resolution images, a new ground-based sensor has recently been developed that consists of standard FLIR camera modified with wavelength filters similar to the ASTER bands. Data from this instrument have been acquired of the lava lake at Kilauea and reveal differences in emissivity between molten and cooled surfaces confirming prior laboratory results and providing important constraints on lava flow propagation models. In summary, this operational/scientific program utilizing the unique properties of TIR data from ASTER has shown the potential for providing innovative and integrated synoptic measurements of volcanic science, eruptions and eruption-related hazards globally. Now, this long-term archive of volcanic image data is being mined to provide statistics on the expectations of future high-repeat TIR data such as proposed for the NASA HyspIRI mission.
ASTER-Derived 30-Meter-Resolution Digital Elevation Models of Afghanistan
Chirico, Peter G.; Warner, Michael B.
2007-01-01
INTRODUCTION The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument aboard the Terra satellite, launched on December 19, 1999, as part of the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The ASTER sensor consists of three subsystems: the visible and near infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR), each with a different spatial resolution (VNIR, 15 meters; SWIR, 30 meters, TIR 90 meters). The VNIR system has the capability to generate along-track stereo images that can be used to create digital elevation models (DEMs) at 30-meter resolution. Currently, the only available DEM dataset for Afghanistan is the 90-meter-resolution Shuttle Radar Topography Mission (SRTM) data. This dataset is appropriate for macroscale DEM analysis and mapping. However, ASTER provides a low cost opportunity to generate higher resolution data. For this publication, study areas were identified around populated areas and areas where higher resolution elevation data were desired to assist in natural resource assessments. The higher resolution fidelity of these DEMs can also be used for other terrain analysis including landform classification and geologic structure analysis. For this publication, ASTER scenes were processed and mosaicked to generate 36 DEMs which were created and extracted using PCI Geomatics' OrthoEngine 3D Stereo software. The ASTER images were geographically registered to Landsat data with at least 15 accurate and well distributed ground control points with a root mean square error (RMSE) of less that one pixel (15 meters). An elevation value was then assigned to each ground control point by extracting the elevation from the 90-meter SRTM data. The 36 derived DEMs demonstrate that the software correlated on nearly flat surfaces and smooth slopes accurately. Larger errors occur in cloudy and snow-covered areas, lakes, areas with steep slopes, and southeastern-facing slopes. In these areas, holes, large pits, and spikes were generated by the software during the correlation process and the automatic interpolation method. To eliminate these problems, overlapping DEMs were generated and filtered using a progressive morphologic filter. The quadrangles used to delineate the DEMs in the publication were derived from the Afghan Geodesy and Cartography Head Office's (AGCHO) 1:100,000-scale maps series quadrangles. Each DEM was clipped and assigned a name according to the associated AGCHO quadrangle name. The geospatial data included in this publication are intended to be used with any GIS software packages including, but not limited to, ESRI's ArcGIS and ERDAS IMAGINE.
NASA Astrophysics Data System (ADS)
Crippen, R. E.; Buckley, S.; Agram, P. S.; Belz, J. E.; Gurrola, E. M.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J. M.; Neumann, M.; Nguyen, Q.; Rosen, P. A.; Shimada, J.; Simard, M.; Tung, W.
2016-12-01
NASADEM is a near-global elevation model that is being produced primarily by completely reprocessing the Shuttle Radar Topography Mission (SRTM) radar data and then merging it with refined ASTER GDEM elevations. The new and improved SRTM elevations in NASADEM result from better vertical control of each SRTM data swath via reference to ICESat elevations and from SRTM void reductions using advanced interferometric unwrapping algorithms. Errors in SRTM (due to incorrect interferometric unwrapping) are rare but can be found and removed via a detector that relies upon pattern analysis within synergistic comparisons of SRTM and GDEM. Remnant voids in SRTM are filled primarily by GDEM3, but with removal of GDEM glitches that are mostly related to clouds. GDEM glitch removal uses a measure of curvature and then spatial filtering to detect, isolate, and delete anomalous spikes and pits that are uncharacteristic of natural topography. Water masking uses the original SRTM Water Body Dataset (SWBD), but with errors corrected via a new ASTER Water Body Database. The improved SRTM, GDEM, and water body databases will be made available individually in addition to our merged product, which is particularly important for the SRTM dataset, which stands as a February 2000 baseline for many topographic change studies. New and forthcoming freely available elevation data (at reduced resolutions) from the ALOS PRISM World 3D and TanDEM-X projects will contribute to the critical but not yet reached goal of a complete, high-quality elevation model of Earth, and they are expected to provide additional validation for NASADEM. Indeed, cross validation among all of these datasets is a vital part of reaching that goal. The value of elevation data is difficult to overstate. These data are used in nearly all types of geophysical study conducted at or near Earth's surface.
NASA Astrophysics Data System (ADS)
Pour, Amin Beiranvand; Park, Yongcheol; Park, Tae-Yoon S.; Hong, Jong Kuk; Hashim, Mazlan; Woo, Jusun; Ayoobi, Iman
2018-06-01
Satellite remote sensing imagery is especially useful for geological investigations in Antarctica because of its remoteness and extreme environmental conditions that constrain direct geological survey. The highest percentage of exposed rocks and soils in Antarctica occurs in Northern Victoria Land (NVL). Exposed Rocks in NVL were part of the paleo-Pacific margin of East Gondwana during the Paleozoic time. This investigation provides a satellite-based remote sensing approach for regional geological mapping in the NVL, Antarctica. Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) datasets were used to extract lithological-structural and mineralogical information. Several spectral-band ratio indices were developed using Landsat-8 and ASTER bands and proposed for Antarctic environments to map spectral signatures of snow/ice, iron oxide/hydroxide minerals, Al-OH-bearing and Fe, Mg-OH and CO3 mineral zones, and quartz-rich felsic and mafic-to-ultramafic lithological units. The spectral-band ratio indices were tested and implemented to Level 1 terrain-corrected (L1T) products of Landsat-8 and ASTER datasets covering the NVL. The surface distribution of the mineral assemblages was mapped using the spectral-band ratio indices and verified by geological expeditions and laboratory analysis. Resultant image maps derived from spectral-band ratio indices that developed in this study are fairly accurate and correspond well with existing geological maps of the NVL. The spectral-band ratio indices developed in this study are especially useful for geological investigations in inaccessible locations and poorly exposed lithological units in Antarctica environments.
NASA Astrophysics Data System (ADS)
Ramsey, M. S.; Dehn, J.; Duda, K.; Hughes, C. G.; Lee, R.; Rose, S.; Scheidt, S. P.; Wessels, R. L.
2009-12-01
Soon after its launch in December 1999, the ASTER sensor on the NASA Terra satellite began acquiring infrared data of dynamic surface processes around the world. For the first time in history, well calibrated, relatively high spatial resolution thermal infrared (TIR) data was being collected in more than two spectral bands. These data began a new era in Earth science from space allowing us to examine such diverse topics as the compositional mapping of eolian systems, the accurate detection of subpixel thermal heterogeneities, the relationship between emitted energy from glassy materials and the volcanic processes that formed them, and the thermophysical behavior of the land surface. The TIR subsystem of ASTER has maintained very good radiometric accuracy over the last decade, which is double the original design life. The diligence of the ASTER Science Team to maintain this quality and expand the data through programs such as the night time TIR global map will provide a scientific dataset utilized for many years in the future. For example, one such program started in 2003 was a new collaboration between the ASTER project and the U.S. Geological Survey to help better monitor the explosive volcanoes of the northern Pacific region. The rapid response mode of the instrument has now been automated and linked to a larger-scale and more rapid monitoring alert system operated by the Alaska Volcano Observatory. ASTER TIR data collected under this project are commonly the first detailed views of new activity at these remote volcanoes, with over 1400 TIR images having been acquired for the five most active Kamchatka volcanoes. This presentation will focus on an overview of the science and operational results over the last decade using data from the ASTER TIR sensor. ASTER has the capability to acquire high spatial resolution data from the visible to the TIR wavelength region. Those data, in conjunction with its ability to generate digital elevation models (DEM’s), makes the instrument particularly useful for numerous aspects of volcanic and eolian remote sensing. The lessons learned in applying these data to a wide range of surface science questions are critically important to consider during the planning for the next generation of orbital TIR sensors such as the proposed NASA Hyperspectral Infrared Imager (HyspIRI) mission.
Dem Local Accuracy Patterns in Land-Use/Land-Cover Classification
NASA Astrophysics Data System (ADS)
Katerji, Wassim; Farjas Abadia, Mercedes; Morillo Balsera, Maria del Carmen
2016-01-01
Global and nation-wide DEM do not preserve the same height accuracy throughout the area of study. Instead of assuming a single RMSE value for the whole area, this study proposes a vario-model that divides the area into sub-regions depending on the land-use / landcover (LULC) classification, and assigns a local accuracy per each zone, as these areas share similar terrain formation and roughness, and tend to have similar DEM accuracies. A pilot study over Lebanon using the SRTM and ASTER DEMs, combined with a set of 1,105 randomly distributed ground control points (GCPs) showed that even though the inputDEMs have different spatial and temporal resolution, and were collected using difierent techniques, their accuracy varied similarly when changing over difierent LULC classes. Furthermore, validating the generated vario-models proved that they provide a closer representation of the accuracy to the validating GCPs than the conventional RMSE, by 94% and 86% for the SRTMand ASTER respectively. Geostatistical analysis of the input and output datasets showed that the results have a normal distribution, which support the generalization of the proven hypothesis, making this finding applicable to other input datasets anywhere around the world.
Tools and Services for Working with Multiple Land Remote Sensing Data Products
NASA Astrophysics Data System (ADS)
Krehbiel, C.; Friesz, A.; Harriman, L.; Quenzer, R.; Impecoven, K.; Maiersperger, T.
2016-12-01
The availability of increasingly large and diverse satellite remote sensing datasets provides both an opportunity and a challenge across broad Earth science research communities. On one hand, the extensive assortment of available data offer unprecedented opportunities to improve our understanding of Earth science and enable data use across a multitude of science disciplines. On the other hand, increasingly complex formats, data structures, and metadata can be an obstacle to data use for the broad user community that is interested in incorporating remote sensing Earth science data into their research. NASA's Land Processes Distributed Active Archive Center (LP DAAC) provides easy to use Python notebook tutorials for services such as accessing land remote sensing data from the LP DAAC Data Pool and interpreting data quality information from MODIS. We use examples to demonstrate the capabilities of the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS), such as spatially and spectrally subsetting data, decoding valuable quality information, and exploring initial analysis results within the user interface. We also show data recipes for R and Python scripts that help users process ASTER L1T and ASTER Global Emissivity Datasets.
NASA Astrophysics Data System (ADS)
Snidero, M.; Amilibia, A.; Gratacos, O.; Muñoz, J. A.
2009-04-01
This work presents a methodological workflow for the 3D reconstruction of geological surfaces at regional scale, based on remote sensing data and geological maps. This workflow has been tested on the reconstruction of the Anaran anticline, located in the Zagros Fold and Thrust belt mountain front. The used remote sensing data-set is a combination of Aster and Spot images as well as a high resolution digital elevation model. A consistent spatial positioning of the complete data-set in a 3D environment is necessary to obtain satisfactory results during the reconstruction. The Aster images have been processed by the Optimum Index Factor (OIF) technique, in order to facilitate the geological mapping. By pansharpening of the resulting Aster image with the SPOT panchromatic one we obtain the final high-resolution image used during the 3D mapping. Structural data (dip data) has been acquired through the analysis of the 3D mapped geological traces. Structural analysis of the resulting data-set allows us to divide the structure in different cylindrical domains. Related plunge lines orientation has been used to project data along the structure, covering areas with little or no information. Once a satisfactory dataset has been acquired, we reconstruct a selected horizon following the dip-domain concept. By manual editing, the obtained surfaces have been adjusted to the mapped geological limits as well as to the modeled faults. With the implementation of the Discrete Smooth Interpolation (DSI) algorithm, the final surfaces have been reconstructed along the anticline. Up to date the results demonstrate that the proposed methodology is a powerful tool for 3D reconstruction of geological surfaces when working with remote sensing data, in very inaccessible areas (eg. Iran, China, Africa). It is especially useful in semiarid regions where the structure strongly controls the topography. The reconstructed surfaces clearly show the geometry in the different sectors of the structure: presence of a back thrust affecting the back limb in the southern part of the anticline, the geometry of the grabens located along the anticline crest, the crosscutting relationship in the north-south faulted zone with the main thrust, the northern dome periclinal closure.
Hasan, Emad; Khan, Sadiq Ibrahim; Hong, Yang
2015-10-01
In this study, the future impact of Sea Level Rise (SLR) on the Nile Delta region in Egypt is assessed by evaluating the elevations of two freely available Digital Elevation Models (DEMs): the SRTM and the ASTER-GDEM-V2. The SLR is a significant worldwide dilemma that has been triggered by recent climatic changes. In Egypt, the Nile Delta is projected to face SLR of 1 m by the end of the 21th century. In order to provide a more accurate assessment of the future SLR impact on Nile Delta's land and population, this study corrected the DEM's elevations by using linear regression model with ground elevations from GPS survey. The information for the land cover types and future population numbers were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and the Gridded Population of the Worlds (GPWv3) datasets respectively. The DEM's vertical accuracies were assessed using GPS measurements and the uncertainty analysis revealed that the SRTM-DEM has positive bias of 2.5 m, while the ASTER-GDEM-V2 showed a positive bias of 0.8 m. The future inundated land cover areas and the affected population were illustrated based on two SLR scenarios of 0.5 m and 1 m. The SRTM DEM data indicated that 1 m SLR will affect about 3900 km(2) of cropland, 1280 km(2) of vegetation, 205 km(2) of wetland, 146 km(2) of urban areas and cause more than 6 million people to lose their houses. The overall vulnerability assessment using ASTER-GDEM-V2 indicated that the influence of SLR will be intense and confined along the coastal areas. For instance, the data indicated that 1 m SLR will inundate about 580 Km(2) (6%) of the total land cover areas and approximately 887 thousand people will be relocated. Accordingly, the uncertainty analysis of the DEM's elevations revealed that the ASTER-GDEM-V2 dataset product was considered the best to determine the future impact of SLR on the Nile Delta region.
2002-04-19
The ground near one of the long-dormant Three Sisters volcanoes in the Cascade Mountains of west-central Oregon has risen approximately 10centimeters in a 10-by-20-km parcel since 1996, meaning that magma or underground lava is slowly flowing into the area, according to a research team from the U.S. Geological Survey. The Three Sisters area -- which contains five volcanoes -- is only about 170 miles from Mount St. Helens, which erupted in 1980. Both are part of the Cascades Range, a line of 27volcanoes stretching from British Columbia in Canada to northern California. This perspective view was created by draping a simulated natural color ASTER image over digital topography from the U.S. Geological Survey National Elevation Dataset. This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03492
Fujisada, H.; Bailey, G.B.; Kelly, Glen G.; Hara, S.; Abrams, M.J.
2005-01-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument onboard the National Aeronautics and Space Administration's Terra spacecraft has an along-track stereoscopic capability using its a near-infrared spectral band to acquire the stereo data. ASTER has two telescopes, one for nadir-viewing and another for backward-viewing, with a base-to-height ratio of 0.6. The spatial resolution is 15 m in the horizontal plane. Parameters such as the line-of-sight vectors and the pointing axis were adjusted during the initial operation period to generate Level-1 data products with a high-quality stereo system performance. The evaluation of the digital elevation model (DEM) data was carried out both by Japanese and U.S. science teams separately using different DEM generation software and reference databases. The vertical accuracy of the DEM data generated from the Level-1A data is 20 m with 95% confidence without ground control point (GCP) correction for individual scenes. Geolocation accuracy that is important for the DEM datasets is better than 50 m. This appears to be limited by the spacecraft position accuracy. In addition, a slight increase in accuracy is observed by using GCPs to generate the stereo data.
Dynamic Server-Based KML Code Generator Method for Level-of-Detail Traversal of Geospatial Data
NASA Technical Reports Server (NTRS)
Baxes, Gregory; Mixon, Brian; Linger, TIm
2013-01-01
Web-based geospatial client applications such as Google Earth and NASA World Wind must listen to data requests, access appropriate stored data, and compile a data response to the requesting client application. This process occurs repeatedly to support multiple client requests and application instances. Newer Web-based geospatial clients also provide user-interactive functionality that is dependent on fast and efficient server responses. With massively large datasets, server-client interaction can become severely impeded because the server must determine the best way to assemble data to meet the client applications request. In client applications such as Google Earth, the user interactively wanders through the data using visually guided panning and zooming actions. With these actions, the client application is continually issuing data requests to the server without knowledge of the server s data structure or extraction/assembly paradigm. A method for efficiently controlling the networked access of a Web-based geospatial browser to server-based datasets in particular, massively sized datasets has been developed. The method specifically uses the Keyhole Markup Language (KML), an Open Geospatial Consortium (OGS) standard used by Google Earth and other KML-compliant geospatial client applications. The innovation is based on establishing a dynamic cascading KML strategy that is initiated by a KML launch file provided by a data server host to a Google Earth or similar KMLcompliant geospatial client application user. Upon execution, the launch KML code issues a request for image data covering an initial geographic region. The server responds with the requested data along with subsequent dynamically generated KML code that directs the client application to make follow-on requests for higher level of detail (LOD) imagery to replace the initial imagery as the user navigates into the dataset. The approach provides an efficient data traversal path and mechanism that can be flexibly established for any dataset regardless of size or other characteristics. The method yields significant improvements in userinteractive geospatial client and data server interaction and associated network bandwidth requirements. The innovation uses a C- or PHP-code-like grammar that provides a high degree of processing flexibility. A set of language lexer and parser elements is provided that offers a complete language grammar for writing and executing language directives. A script is wrapped and passed to the geospatial data server by a client application as a component of a standard KML-compliant statement. The approach provides an efficient means for a geospatial client application to request server preprocessing of data prior to client delivery. Data is structured in a quadtree format. As the user zooms into the dataset, geographic regions are subdivided into four child regions. Conversely, as the user zooms out, four child regions collapse into a single, lower-LOD region. The approach provides an efficient data traversal path and mechanism that can be flexibly established for any dataset regardless of size or other characteristics.
ASTER Global DEM contribution to GEOSS demonstrates open data sharing
NASA Astrophysics Data System (ADS)
Sohre, T.; Duda, K. A.; Meyer, D. J.; Behnke, J.; Nasa Esdis Lp Daac
2010-12-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing instrument on the Terra spacecraft has been acquiring images of Earth since launch in 1999. Throughout this time data products have been openly available to the general public through sites in the U.S. and Japan. As the ASTER mission matured, a spatially broad and temporally deep data archive was gradually established. With this extensive accumulation of Earth observations, it became possible to create a new global digital elevation product, the ASTER Global Digital Elevation Model (GDEM), using multi-temporal data, resulting in over 22,000 static 10 X 10 tiles. The ASTER GDEM was contributed by Japan’s Ministry of Economy Trade and Industry (METI) and the U.S. National Aeronautics and Space Administration (NASA) to the Global Earth Observation System of Systems (GEOSS) for distribution at no cost to users. As such, both METI and NASA desired to understand the uses of the ASTER GDEM, expressed as one of the GEOSS applications themes: disasters, health, energy, climate, water, weather, ecosystems, agriculture or biodiversity. This required both the registration of users, and restrictions on redistribution, to capture the intended use in terms of the GEOSS themes. The ASTER GDEM was made available to users worldwide via electronic download from the Earth Remote Sensing Data Analysis Center (ERSDAC) of Japan and from NASA’s Land Processes Distributed Active Archive Center (LP DAAC). During the first three months after product release, over 4 million GDEM tiles were distributed from the LP DAAC and ERSDAC. The ASTER GDEM release generated nearly 20,000 new user registrations in the NASA EOS ClearingHOuse (ECHO)/WIST and the ERSDAC systems. By the end of 2009, over 6.5 Million GDEM tiles were distributed by the LP DAAC and ERSDAC. Users have requested tiles over specific areas of interest as well as the entire dataset for global research. Intense global interest in the GDEM across all the GEOSS Societal Benefit areas was shown. The release of the global tiled research-grade DEM resulted in a significant increase in demand for ASTER elevation models, and increased awareness of related products. No cost access to these data has also promoted new applications of remotely sensed data, increasing their use across the full range of the GEOSS societal benefit areas. In addition, the simplified data access and greatly expanded pool of users resulted in a number of suggestions from researchers in many disciplines for possible enhancements to future versions of the ASTER GDEM. The broad distribution of the product can be directly attributed to the adoption of fundamental GEOSS data sharing principles, which are directed toward expanded access by minimizing time delay and cost, thus facilitating data use for education, research, and a range of other applications. The ASTER GDEM demonstrated the need and user demand for an improved global DEM product as well as the added benefit of not only “full and open” distribution, but “free and open” distribution.
2002-03-12
The Barringer Meteorite Crater (also known as "Meteor Crater") is a gigantic hole in the middle of the arid sandstone of the Arizona desert. A rim of smashed and jumbled boulders, some of them the size of small houses, rises 50 m above the level of the surrounding plain. The crater itself is nearly a 1500 m wide, and 180 m deep. When Europeans first discovered the crater, the plain around it was covered with chunks of meteoritic iron - over 30 tons of it, scattered over an area 12 to 15 km in diameter. Scientists now believe that the crater was created approximately 50,000 years ago. The meteorite which made it was composed almost entirely of nickel-iron, suggesting that it may have originated in the interior of a small planet. It was 50 m across, weighed roughly 300,000 tons, and was traveling at a speed of 65,000 km per hour. This ASTER 3-D perspective view was created by draping an ASTER bands 3-2-1image over a digital elevation model from the US Geological Survey National Elevation Dataset. This image was acquired on May 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03490
NASA Astrophysics Data System (ADS)
Roy, Priyom; Guha, Arindam; Kumar, K. Vinod
2015-07-01
Radiant temperature images from thermal remote sensing sensors are used to delineate surface coal fires, by deriving a cut-off temperature to separate coal-fire from non-fire pixels. Temperature contrast of coal fire and background elements (rocks and vegetation etc.) controls this cut-off temperature. This contrast varies across the coal field, as it is influenced by variability of associated rock types, proportion of vegetation cover and intensity of coal fires etc. We have delineated coal fires from background, based on separation in data clusters in maximum v/s mean radiant temperature (13th band of ASTER and 10th band of Landsat-8) scatter-plot, derived using randomly distributed homogeneous pixel-blocks (9 × 9 pixels for ASTER and 27 × 27 pixels for Landsat-8), covering the entire coal bearing geological formation. It is seen that, for both the datasets, overall temperature variability of background and fires can be addressed using this regional cut-off. However, the summer time ASTER data could not delineate fire pixels for one specific mine (Bhulanbararee) as opposed to the winter time Landsat-8 data. The contrast of radiant temperature of fire and background terrain elements, specific to this mine, is different from the regional contrast of fire and background, during summer. This is due to the higher solar heating of background rocky outcrops, thus, reducing their temperature contrast with fire. The specific cut-off temperature determined for this mine, to extract this fire, differs from the regional cut-off. This is derived by reducing the pixel-block size of the temperature data. It is seen that, summer-time ASTER image is useful for fire detection but required additional processing to determine a local threshold, along with the regional threshold to capture all the fires. However, the winter Landsat-8 data was better for fire detection with a regional threshold.
An Integrated Coastal Observation and Flood Warning System: Rapid Prototype Development
2006-09-01
And Ranging (LIDAR) tiles describing the area of interest are critical to the accuracy of the associated graphical representations of the inundation...Elevation Dataset (NED) with 30-meter resolution for the upper Potomac area and USGS 0.3-meter resolution orthophotos for viewing when zoomed down...on the areas of interest. Using orthophotos is much easier than trying to recreate the landscape with point, line, and polygon features, and it
Comparative mineral mapping in the Colorado Mineral Belt using AVIRIS and ASTER remote sensing data
Rockwell, Barnaby W.
2013-01-01
This report presents results of interpretation of spectral remote sensing data covering the eastern Colorado Mineral Belt in central Colorado, USA, acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors. This study was part of a multidisciplinary mapping and data integration project at the U.S. Geological Survey that focused on long-term resource planning by land-managing entities in Colorado. The map products were designed primarily for the regional mapping and characterization of exposed surface mineralogy, including that related to hydrothermal alteration and supergene weathering of pyritic rocks. Alteration type was modeled from identified minerals based on standard definitions of alteration mineral assemblages. Vegetation was identified using the ASTER data and subdivided based on per-pixel chlorophyll content (depth of 0.68 micrometer absorption band) and dryness (fit and depth of leaf biochemical absorptions in the shortwave infrared spectral region). The vegetation results can be used to estimate the abundance of fire fuels at the time of data acquisition (2002 and 2003). The AVIRIS- and ASTER-derived mineral mapping results can be readily compared using the toggleable layers in the GeoPDF file, and by using the provided GIS-ready raster datasets. The results relating to mineral occurrence and distribution were an important source of data for studies documenting the effects of mining and un-mined, altered rocks on aquatic ecosystems at the watershed level. These studies demonstrated a high correlation between metal concentrations in streams and the presence of hydrothermal alteration and (or) pyritic mine waste as determined by analysis of the map products presented herein. The mineral mapping results were also used to delineate permissive areas for various mineral deposit types.
NASA Astrophysics Data System (ADS)
Cramer, Timothy F.
The Desert National Wildlife Refuge in southern Nevada has been selected for remote sensing analysis as part of a mineral assessment required for renewal of mineral withdrawal. The area of interest is nearly 3,000 km2 and covers portions of 5 different ranges with little to no infrastructure. Assessing such a large area using traditional field methods is very time intensive and expensive. The study described here serves as a pilot study, testing the capability of Landsat ETM+ and ASTER satellite imagery to remotely identify areas of potentially mineralized lithologies. This is done by generating a number of band ratio, band index, and mineral likelihood maps identifying 5 key mineral classes (silica, clay, iron oxide, dolomite and calcite), which commonly have patterned zonation around ore deposits. When compiled with available geologic and geochemical data sets, these intermediate products can provide guidance for targeted field evaluation and exploration. Field observations and spectral data collected in the laboratory can then be integrated with ASTER imagery to guide a Spectral Angle Mapper algorithm to generate a distribution map of the five mineral classes. The methods presented found the ASTER platform to be capable of remotely assessing the distribution of various lithologies and the mineral potential of large, remote areas. Furthermore areas of both high and low potential for ore deposits can be identified and used to guide field evaluation and exploration. Remote sensing studies of this caliber can be performed relatively quickly and inexpensively resulting in datasets, which can result in more accurate mapping and the identification of both lithologic boundaries and previously unidentified alteration associated with mineralization. Future mineral assessments and exploration activity should consider similar studies prior to field work.
NASA MEaSUREs Combined ASTER and MODIS Emissivity over Land (CAMEL) Uncertainty Estimation
NASA Astrophysics Data System (ADS)
Feltz, M.; Borbas, E. E.; Knuteson, R. O.; Hulley, G. C.; Hook, S. J.
2016-12-01
Under the NASA MEASUREs project a new global, land surface emissivity database is being made available as part of the Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record. This new CAMEL emissivity database is created by the merging of the MODIS baseline-fit emissivity database (UWIREMIS) developed at the University of Wisconsin-Madison and the ASTER Global Emissivity Dataset v4 produced at the Jet Propulsion Labratory. The combined CAMEL product leverages the ability of ASTER's 5 bands to more accurately resolve the TIR (8-12 micron) region and the ability of UWIREMIS to provide information throughout the 3.6-12 micron IR region. It will be made available for 2000 through 2017 at monthly mean, 5 km resolution for 13 bands within the 3.6-14.3 micron region, and will also be extended to 417 infrared spectral channels using a principal component regression approach. Uncertainty estimates of the CAMEL will be provided that combine temporal, spatial, and algorithm variability as part of a total uncertainty estimate for the emissivity product. The spatial and temporal uncertainties are calculated as the standard deviation of the surrounding 5x5 pixels and 3 neighboring months respectively while the algorithm uncertainty is calculated using a measure of the difference between the two CAMEL emissivity inputs—the ASTER GED and MODIS baseline-fit products. This work describes these uncertainty estimation methods in detail and shows first results. Global, monthly results for different seasons are shown as well as case study examples at locations with different land surface types. Comparisons of the case studies to both lab values and an independent emissivity climatology derived from IASI measurements (Dan Zhou et al., IEEE Trans., 2011) are included.
Open-Source Digital Elevation Model (DEMs) Evaluation with GPS and LiDAR Data
NASA Astrophysics Data System (ADS)
Khalid, N. F.; Din, A. H. M.; Omar, K. M.; Khanan, M. F. A.; Omar, A. H.; Hamid, A. I. A.; Pa'suya, M. F.
2016-09-01
Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM), Shuttle Radar Topography Mission (SRTM), and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) are freely available Digital Elevation Model (DEM) datasets for environmental modeling and studies. The quality of spatial resolution and vertical accuracy of the DEM data source has a great influence particularly on the accuracy specifically for inundation mapping. Most of the coastal inundation risk studies used the publicly available DEM to estimated the coastal inundation and associated damaged especially to human population based on the increment of sea level. In this study, the comparison between ground truth data from Global Positioning System (GPS) observation and DEM is done to evaluate the accuracy of each DEM. The vertical accuracy of SRTM shows better result against ASTER and GMTED10 with an RMSE of 6.054 m. On top of the accuracy, the correlation of DEM is identified with the high determination of coefficient of 0.912 for SRTM. For coastal zone area, DEMs based on airborne light detection and ranging (LiDAR) dataset was used as ground truth data relating to terrain height. In this case, the LiDAR DEM is compared against the new SRTM DEM after applying the scale factor. From the findings, the accuracy of the new DEM model from SRTM can be improved by applying scale factor. The result clearly shows that the value of RMSE exhibit slightly different when it reached 0.503 m. Hence, this new model is the most suitable and meets the accuracy requirement for coastal inundation risk assessment using open source data. The suitability of these datasets for further analysis on coastal management studies is vital to assess the potentially vulnerable areas caused by coastal inundation.
Das, Sayantan; Patel, Priyank Pravin; Sengupta, Somasis
2016-01-01
With myriad geospatial datasets now available for terrain information extraction and particularly streamline demarcation, there arises questions regarding the scale, accuracy and sensitivity of the initial dataset from which these aspects are derived, as they influence all other parameters computed subsequently. In this study, digital elevation models (DEM) derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER V2), Shuttle Radar Topography Mission (SRTM V4, C-Band, 3 arc-second), Cartosat -1 (CartoDEM 1.0) and topographical maps (R.F. 1:250,000 and 1:50,000), have been used to individually extract and analyze the relief, surface, size, shape and texture properties of a mountainous drainage basin. Nestled inside a mountainous setting, the basin is a semi-elongated one with high relief ratio (>90), steep slopes (25°-30°) and high drainage density (>3.5 km/sq km), as computed from the different DEMs. The basin terrain and stream network is extracted from each DEM, whose morphometric attributes are compared with the surveyed stream networks present in the topographical maps, with resampling of finer DEM datasets to coarser resolutions, to reduce scale-implications during the delineation process. Ground truth verifications for altitudinal accuracy have also been done by a GPS survey. DEMs derived from the 1:50,000 topographical map and ASTER GDEM V2 data are found to be more accurate and consistent in terms of absolute accuracy, than the other generated or available DEM data products, on basis of the morphometric parameters extracted from each. They also exhibit a certain degree of proximity to the surveyed topographical map.
MEaSUReS Land Surface Temperature and Emissivity data records
NASA Astrophysics Data System (ADS)
Cawse-Nicholson, K.; Hook, S. J.; Gulley, G.; Borbas, E. E.; Knuteson, R. O.
2017-12-01
The NASA MEaSUReS program was put into place to produce long-term, well calibrated and validated data records for Earth Science research. As part of this program, we have developed three Earth System Data Records (ESDR) to measure Land Surface Temperature (LST) and emissivity: a high spatial resolution (1km) LST product using Low Earth Orbiting (LEO) satellites; a high temporal resolution (hourly over North America) LST product using Geostationary (GEO) satellites; and a Combined ASTER MODIS Emissivity for Land (CAMEL) ESDR. CAMEL was produced by merging two state-of-the-art emissivity datasets: the UW-Madison MODIS Infrared emissivity dataset (UWIREMIS), and the JPL ASTER Global Emissivity Dataset v4 (GEDv4). The CAMEL ESDR is currently available for download, and is being tested in sounder retrieval schemes (e.g. CrIS, IASI, AIRS) to reduce uncertainties in water vapor retrievals, and has already been implemented in the radiative transfer software RTTOV v12 for immediate use in numerical weather modeling and data assimilation systems. The LEO-LST product combines two existing MODIS products, using an uncertainty analysis approach to optimize accuracy over different landcover classes. Validation of these approaches for retrieving LST have shown that they are complementary, with the split-window approach (MxD11) being more stable over heavily vegetated regions and the physics-based approach (MxD21) demonstrating higher accuracy in semi-arid and arid regions where the largest variations in emissivity exist, both spatially and spectrally. The GEO LST-ESDR product uses CAMEL ESDR for improved temperature-emissivity separation, and the same atmospheric correction as the LEO LST product to ensure consistency across all three data records.
Document similarity measures and document browsing
NASA Astrophysics Data System (ADS)
Ahmadullin, Ildus; Fan, Jian; Damera-Venkata, Niranjan; Lim, Suk Hwan; Lin, Qian; Liu, Jerry; Liu, Sam; O'Brien-Strain, Eamonn; Allebach, Jan
2011-03-01
Managing large document databases is an important task today. Being able to automatically com- pare document layouts and classify and search documents with respect to their visual appearance proves to be desirable in many applications. We measure single page documents' similarity with respect to distance functions between three document components: background, text, and saliency. Each document component is represented as a Gaussian mixture distribution; and distances between dierent documents' components are calculated as probabilistic similarities between corresponding distributions. The similarity measure between documents is represented as a weighted sum of the components' distances. Using this document similarity measure, we propose a browsing mechanism operating on a document dataset. For these purposes, we use a hierarchical browsing environment which we call the document similarity pyramid. It allows the user to browse a large document dataset and to search for documents in the dataset that are similar to the query. The user can browse the dataset on dierent levels of the pyramid, and zoom into the documents that are of interest.
NASA Technical Reports Server (NTRS)
2002-01-01
The Barringer Meteorite Crater (also known as 'Meteor Crater') is a gigantic hole in the middle of the arid sandstone of the Arizona desert. A rim of smashed and jumbled boulders, some of them the size of small houses, rises 50 m above the level of the surrounding plain. The crater itself is nearly a 1500 m wide, and 180 m deep. When Europeans first discovered the crater, the plain around it was covered with chunks of meteoritic iron - over 30 tons of it, scattered over an area 12 to 15 km in diameter. Scientists now believe that the crater was created approximately 50,000 years ago. The meteorite which made it was composed almost entirely of nickel-iron, suggesting that it may have originated in the interior of a small planet. It was 50 m across, weighed roughly 300,000 tons, and was traveling at a speed of 65,000 km per hour. This ASTER 3-D perspective view was created by draping an ASTER bands 3-2-1image over a digital elevation model from the US Geological Survey National Elevation Dataset.
This image was acquired on May 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 15 x 30 km (9 x 18 miles) Location: 35.1 deg. North lat., 111.0 deg. West long. Orientation: Northeast at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 17, 2001NASA Astrophysics Data System (ADS)
Nascetti, A.; Di Rita, M.; Ravanelli, R.; Amicuzi, M.; Esposito, S.; Crespi, M.
2017-05-01
The high-performance cloud-computing platform Google Earth Engine has been developed for global-scale analysis based on the Earth observation data. In particular, in this work, the geometric accuracy of the two most used nearly-global free DSMs (SRTM and ASTER) has been evaluated on the territories of four American States (Colorado, Michigan, Nevada, Utah) and one Italian Region (Trentino Alto- Adige, Northern Italy) exploiting the potentiality of this platform. These are large areas characterized by different terrain morphology, land covers and slopes. The assessment has been performed using two different reference DSMs: the USGS National Elevation Dataset (NED) and a LiDAR acquisition. The DSMs accuracy has been evaluated through computation of standard statistic parameters, both at global scale (considering the whole State/Region) and in function of the terrain morphology using several slope classes. The geometric accuracy in terms of Standard deviation and NMAD, for SRTM range from 2-3 meters in the first slope class to about 45 meters in the last one, whereas for ASTER, the values range from 5-6 to 30 meters. In general, the performed analysis shows a better accuracy for the SRTM in the flat areas whereas the ASTER GDEM is more reliable in the steep areas, where the slopes increase. These preliminary results highlight the GEE potentialities to perform DSM assessment on a global scale.
Accessing, Utilizing and Visualizing NASA Remote Sensing Data for Malaria Modeling and Surveillance
NASA Technical Reports Server (NTRS)
Kiang, Richard K.; Adimi, Farida; Kempler, Steven
2007-01-01
This poster presentation reviews the use of NASA remote sensing data that can be used to extract environmental information for modeling malaria transmission. The authors discuss the remote sensing data from Landsat, Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Tropical Rainfall Measuring Mission (TRMM), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Earth Observing One (EO-1), Advanced Land Imager (ALI) and Seasonal to Interannual Earth Science Information Partner (SIESIP) dataset.
[Parallel virtual reality visualization of extreme large medical datasets].
Tang, Min
2010-04-01
On the basis of a brief description of grid computing, the essence and critical techniques of parallel visualization of extreme large medical datasets are discussed in connection with Intranet and common-configuration computers of hospitals. In this paper are introduced several kernel techniques, including the hardware structure, software framework, load balance and virtual reality visualization. The Maximum Intensity Projection algorithm is realized in parallel using common PC cluster. In virtual reality world, three-dimensional models can be rotated, zoomed, translated and cut interactively and conveniently through the control panel built on virtual reality modeling language (VRML). Experimental results demonstrate that this method provides promising and real-time results for playing the role in of a good assistant in making clinical diagnosis.
Electrically optofluidic zoom system with a large zoom range and high-resolution image.
Li, Lei; Yuan, Rong-Ying; Wang, Jin-Hui; Wang, Qiong-Hua
2017-09-18
We report an electrically controlled optofluidic zoom system which can achieve a large continuous zoom change and high-resolution image. The zoom system consists of an optofluidic zoom objective and a switchable light path which are controlled by two liquid optical shutters. The proposed zoom system can achieve a large tunable focal length range from 36mm to 92mm. And in this tuning range, the zoom system can correct aberrations dynamically, thus the image resolution is high. Due to large zoom range, the proposed imaging system incorporates both camera configuration and telescope configuration into one system. In addition, the whole system is electrically controlled by three electrowetting liquid lenses and two liquid optical shutters, therefore, the proposed system is very compact and free of mechanical moving parts. The proposed zoom system has potential to take place of conventional zoom systems.
Validation of the Aster Global Digital Elevation Model Version 3 Over the Conterminous United States
NASA Astrophysics Data System (ADS)
Gesch, D.; Oimoen, M.; Danielson, J.; Meyer, D.
2016-06-01
The ASTER Global Digital Elevation Model Version 3 (GDEM v3) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009 and GDEM Version 2 (v2) in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of -1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters), the mean error (bias) does appear to be affected by land cover type, ranging from -2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2) and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.
Validation of the ASTER Global Digital Elevation Model version 3 over the conterminous United States
Gesch, Dean B.; Oimoen, Michael J.; Danielson, Jeffrey J.; Meyer, David; Halounova, L; Šafář, V.; Jiang, J.; Olešovská, H.; Dvořáček, P.; Holland, D.; Seredovich, V.A.; Muller, J.P.; Pattabhi Rama Rao, E.; Veenendaal, B.; Mu, L.; Zlatanova, S.; Oberst, J.; Yang, C.P.; Ban, Y.; Stylianidis, S.; Voženílek, V.; Vondráková, A.; Gartner, G.; Remondino, F.; Doytsher, Y.; Percivall, George; Schreier, G.; Dowman, I.; Streilein, A.; Ernst, J.
2016-01-01
The ASTER Global Digital Elevation Model Version 3 (GDEM v3) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009 and GDEM Version 2 (v2) in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of −1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters), the mean error (bias) does appear to be affected by land cover type, ranging from −2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2) and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.
Li, Wei-Ping; Yang, Fu-Sheng; Jivkova, Todorka; Yin, Gen-Shen
2012-01-01
Background and Aims The classification and phylogeny of Eurasian (EA) Aster (Asterinae, Astereae, Asteraceae) remain poorly resolved. Some taxonomists adopt a broad definition of EA Aster, whereas others favour a narrow generic concept. The present study aims to delimit EA Aster sensu stricto (s.s.), elucidate the phylogenetic relationships of EA Aster s.s. and segregate genera. Methods The internal and external transcribed spacers of nuclear ribosomal DNA and the plastid DNA trnL-F region were used to reconstruct the phylogeny of EA Aster through maximum parsimony and Bayesian analyses. Key Results The analyses strongly support an Aster clade including the genera Sheareria, Rhynchospermum, Kalimeris (excluding Kalimeris longipetiolata), Heteropappus, Miyamayomena, Turczaninowia, Rhinactinidia, eastern Asian Doellingeria, Asterothamnus and Arctogeron. Many well-recognized species of Chinese Aster s.s. lie outside of the Aster clade. Conclusions The results reveal that EA Aster s.s. is both paraphyletic and polyphyletic. Sheareria, Rhynchospermum, Kalimeris (excluding K. longipetiolata), Heteropappus, Miyamayomena, Turczaninowia, Rhinactinidia, eastern Asian Doellingeria, Asterothamnus and Arctogeron should be included in Aster, whereas many species of Chinese Aster s.s. should be excluded. The recircumscribed Aster should be divided into two subgenera and nine sections. Kalimeris longipetiolata, Aster batangensis, A. ser. Albescentes, A. series Hersileoides, a two-species group composed of A. senecioides and A. fuscescens, and a six-species group including A. asteroides, should be elevated to generic level. With the Aster clade, they belong to the Australasian lineages. The generic status of Callistephus should be maintained. Whether Galatella (including Crinitina) and Tripolium should remain as genera or be merged into a single genus remains to be determined. In addition, the taxonomic status of A. auriculatus and the A. pycnophyllus–A. panduratus clade remains unresolved, and the systematic position of some segregates of EA Aster requires further study. PMID:22517812
Zoom system without moving element by using two liquid crystal lenses with spherical electrode
NASA Astrophysics Data System (ADS)
Yang, Ren-Kai; Lin, Chia-Ping; Su, Guo-Dung J.
2017-08-01
A traditional zoom system is composed of several elements moving relatively toward other components to achieve zooming. Unlike tradition system, an electrically control zoom system with liquid crystal (LC) lenses is demonstrated in this paper. To achieve zooming, we apply two LC lenses whose optical power is controlled by voltage to replace two moving lenses in traditional zoom system. The mechanism of zoom system is to use two LC lenses to form a simple zoom system. We found that with such spherical electrodes, we could operate LC lens at voltage range from 31V to 53 V for 3X tunability in optical power. For each LC lens, we use concave spherical electrode which provide lower operating voltage and great tunability in optical power, respectively. For such operating voltage and compact size, this zoom system with zoom ratio approximate 3:1 could be applied to mobile phone, camera and other applications.
Juicebox.js Provides a Cloud-Based Visualization System for Hi-C Data.
Robinson, James T; Turner, Douglass; Durand, Neva C; Thorvaldsdóttir, Helga; Mesirov, Jill P; Aiden, Erez Lieberman
2018-02-28
Contact mapping experiments such as Hi-C explore how genomes fold in 3D. Here, we introduce Juicebox.js, a cloud-based web application for exploring the resulting datasets. Like the original Juicebox application, Juicebox.js allows users to zoom in and out of such datasets using an interface similar to Google Earth. Juicebox.js also has many features designed to facilitate data reproducibility and sharing. Furthermore, Juicebox.js encodes the exact state of the browser in a shareable URL. Creating a public browser for a new Hi-C dataset does not require coding and can be accomplished in under a minute. The web app also makes it possible to create interactive figures online that can complement or replace ordinary journal figures. When combined with Juicer, this makes the entire process of data analysis transparent, insofar as every step from raw reads to published figure is publicly available as open source code. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Physical basis of large microtubule aster growth
Ishihara, Keisuke; Korolev, Kirill S; Mitchison, Timothy J
2016-01-01
Microtubule asters - radial arrays of microtubules organized by centrosomes - play a fundamental role in the spatial coordination of animal cells. The standard model of aster growth assumes a fixed number of microtubules originating from the centrosomes. However, aster morphology in this model does not scale with cell size, and we recently found evidence for non-centrosomal microtubule nucleation. Here, we combine autocatalytic nucleation and polymerization dynamics to develop a biophysical model of aster growth. Our model predicts that asters expand as traveling waves and recapitulates all major aspects of aster growth. With increasing nucleation rate, the model predicts an explosive transition from stationary to growing asters with a discontinuous jump of the aster velocity to a nonzero value. Experiments in frog egg extract confirm the main theoretical predictions. Our results suggest that asters observed in large fish and amphibian eggs are a meshwork of short, unstable microtubules maintained by autocatalytic nucleation and provide a paradigm for the assembly of robust and evolvable polymer networks. DOI: http://dx.doi.org/10.7554/eLife.19145.001 PMID:27892852
Eye-gaze control of the computer interface: Discrimination of zoom intent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, J.H.; Schryver, J.C.
1993-10-01
An analysis methodology and associated experiment were developed to assess whether definable and repeatable signatures of eye-gaze characteristics are evident, preceding a decision to zoom-in, zoom-out, or not to zoom at a computer interface. This user intent discrimination procedure can have broad application in disability aids and telerobotic control. Eye-gaze was collected from 10 subjects in a controlled experiment, requiring zoom decisions. The eye-gaze data were clustered, then fed into a multiple discriminant analysis (MDA) for optimal definition of heuristics separating the zoom-in, zoom-out, and no-zoom conditions. Confusion matrix analyses showed that a number of variable combinations classified at amore » statistically significant level, but practical significance was more difficult to establish. Composite contour plots demonstrated the regions in parameter space consistently assigned by the MDA to unique zoom conditions. Peak classification occurred at about 1200--1600 msec. Improvements in the methodology to achieve practical real-time zoom control are considered.« less
NASA Astrophysics Data System (ADS)
Alemu, H.; Senay, G. B.; Velpuri, N.; Asante, K. O.
2008-12-01
The nomadic pastoral communities in East Africa heavily depend on small water bodies and artificial lakes for domestic and livestock uses. The shortage of water in the region has made these water resources of great importance to them and sometimes even the reason for conflicts amongst rival communities in the region. Satellite-based data has significantly transformed the way we track and estimate hydrological processes such as precipitation and evapotranspiration. This approach has been particularly useful in remote places where conventional station-based weather networks are scarce. Tropical Rainfall Measuring Mission (TRMM) satellite data were extracted for the study region. National Oceanic and Atmospheric Administration's (NOAA) Global Data Assimilation System (GDAS) data were used to extract the climatic parameters needed to calculate reference evapotranspiration. The elevation data needed to delineate the watersheds were extracted from the Shuttle Radar Topography Mission (SRTM) with spatial resolution of 90m. The waterholes (most of which have average surface area less than a hectare) were identified using Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) images with a spatial resolution of 15 m. As part of National Aeronautics and Space Administration's (NASA) funded enhancement to a livestock early warning decision support system, a simple hydrologic water balance model was developed to estimate daily waterhole depth variations. The model was run for over 10 years from 1998 till 2008 for 10 representative waterholes in the region. Although there were no independent datasets to validate the results, the temporal patterns captured both the seasonal and inter-annual variations, depicting known drought and flood years. Future research includes the installation of staff-gauges for model calibration and validation. The simple modeling approach demonstrated the effectiveness of integrating dynamic coarse resolution datasets such as TRMM with high resolution static datasets such as ASTER and SRTM DEM (Digital Elevation Model) to monitor water resources for drought early warning applications.
HI and Low Metal Ions at the Intersection of Galaxies and the CGM
NASA Astrophysics Data System (ADS)
Oppenheimer, Benjamin
2017-08-01
Over 1000 COS orbits have revealed a surprisingly complex picture of circumgalactic gas flows surrounding the diversity of galaxies in the evolved Universe. Cosmological hydrodynamic simulations have only begun to confront the vast amount of galaxy formation physics, chemistry, and dynamics revealed in the multi-ion CGM datasets. We propose the next generation of EAGLE zoom simulations, called EAGLE Cosmic Origins, to model HI and low metal ions (C II, Mg II, & Si II) throughout not just the CGM but also within the galaxies themselves. We will employ a novel, new chemistry solver, CHIMES, to follow time-dependent ionization, chemistry, and cooling of 157 ionic and molecular species, and include multiple ionization sources from the extra-galactic background, episodic AGN, and star formation. Our aim is to understand the complete baryon cycle of inflows, outflows, and gas recycling traced over 10 decades of HI column densities as well as the complex kinematic information encoded low ion absorption spectroscopy. This simulation project represents a pilot program for a larger suite of zoom simulations, which will be publicly released and lead to additional publications.
USDA-ARS?s Scientific Manuscript database
The aster yellows (AY) index is used to prescribe insecticide sprays that target Macrosteles quadrilineatus, or aster leafhopper (ALH), the vector of the aster yellows phytoplasma (AYp). The AY index metric is the product of the proportion of infective ALHs and the relative ALH population size at a ...
Potts, Lisa G; Kolb, Kelly A
2014-04-01
Difficulty understanding speech in the presence of background noise is a common report among cochlear implant (CI) recipients. Several speech-processing options designed to improve speech recognition, especially in noise, are currently available in the Cochlear Nucleus CP810 speech processor. These include adaptive dynamic range optimization (ADRO), autosensitivity control (ASC), Beam, and Zoom. The purpose of this study was to evaluate CI recipients' speech-in-noise recognition to determine which currently available processing option or options resulted in best performance in a simulated restaurant environment. Experimental study with one study group. The independent variable was speech-processing option, and the dependent variable was the reception threshold for sentences score. Thirty-two adult CI recipients. Eight processing options were tested: Beam, Beam + ASC, Beam + ADRO, Beam + ASC + ADRO, Zoom, Zoom + ASC, Zoom + ADRO, and Zoom + ASC + ADRO. Participants repeated Hearing in Noise Test sentences presented at a 0° azimuth, with R-Space restaurant noise presented from a 360° eight-loudspeaker array at 70 dB sound pressure level. A one-way repeated-measures analysis of variance was used to analyze differences in Beam options, Zoom options, and Beam versus Zoom options. Among the Beam options, Beam + ADRO was significantly poorer than Beam only, Beam + ASC, and Beam + ASC + ADRO. A 1.6-dB difference was observed between the best (Beam only) and poorest (Beam + ADRO) options. Among the Zoom options, Zoom only and Zoom + ADRO were significantly poorer than Zoom + ASC. A 2.2-dB difference was observed between the best (Zoom + ASC) and poorest (Zoom only) options. The comparison between Beam and Zoom options showed one significant difference, with Zoom only significantly poorer than Beam only. No significant difference was found between the other Beam and Zoom options (Beam + ASC vs Zoom + ASC, Beam + ADRO vs Zoom + ADRO, and Beam + ASC + ADRO vs Zoom + ASC + ADRO). The best processing option varied across subjects, with an almost equal number of participants performing best with a Beam option (n = 15) compared with a Zoom option (n = 17). There were no significant demographic or audiological moderating variables for any option. The results showed no significant differences between adaptive directionality (Beam) and fixed directionality (Zoom) when ASC was active in the R-Space environment. This finding suggests that noise-reduction processing is extremely valuable in loud semidiffuse environments in which the effectiveness of directional filtering might be diminished. However, there was no significant difference between the Beam-only and Beam + ASC options, which is most likely related to the additional noise cancellation performed by the Beam option (i.e., two-stage directional filtering and noise cancellation). In addition, the processing options with ADRO resulted in the poorest performances. This could be related to how the CI recipients were programmed or the loud noise level used in this study. The best processing option varied across subjects, but the majority performed best with directional filtering (Beam or Zoom) in combination with ASC. Therefore in a loud semidiffuse environment, the use of either Beam + ASC or Zoom + ASC is recommended. American Academy of Audiology.
NASA Astrophysics Data System (ADS)
Abrams, Michael; Tsu, Hiroji; Hulley, Glynn; Iwao, Koki; Pieri, David; Cudahy, Tom; Kargel, Jeffrey
2015-06-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 15-channel imaging instrument operating on NASA's Terra satellite. A joint project between the U.S. National Aeronautics and Space Administration and Japan's Ministry of Economy, Trade, and Industry, ASTER has been acquiring data for 15 years, since March 2000. The archive now contains over 2.8 million scenes; for the majority of them, a stereo pair was collected using nadir and backward telescopes imaging in the NIR wavelength. The majority of users require only a few to a few dozen scenes for their work. Studies have ranged over numerous scientific disciplines, and many practical applications have benefited from ASTER's unique data. A few researchers have been able to mine the entire ASTER archive, that is now global in extent due to the long duration of the mission. Six examples of global products are described in this contribution: the ASTER Global Digital Elevation Model (GDEM), the most complete, highest resolution DEM available to all users; the ASTER Emissivity Database (ASTER GED), a global 5-band emissivity map of the land surface; the ASTER Global Urban Area Map (AGURAM), a 15-m resolution database of over 3500 cities; the ASTER Volcano Archive (AVA), an archive of over 1500 active volcanoes; ASTER Geoscience products of the continent of Australia; and the Global Ice Monitoring from Space (GLIMS) project.
Validation of the ASTER Global Digital Elevation Model Version 2 over the conterminous United States
Gesch, Dean B.; Oimoen, Michael J.; Zhang, Zheng; Meyer, David J.; Danielson, Jeffrey J.
2012-01-01
The ASTER Global Digital Elevation Model Version 2 (GDEM v2) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009. The absolute vertical accuracy of GDEM v2 was calculated by comparison with more than 18,000 independent reference geodetic ground control points from the National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v2 is 8.68 meters. This compares with the RMSE of 9.34 meters for GDEM v1. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v2 mean error of -0.20 meters is a significant improvement over the GDEM v1 mean error of -3.69 meters. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover to examine the effects of cover types on measured errors. The GDEM v2 mean errors by land cover class verify that the presence of aboveground features (tree canopies and built structures) cause a positive elevation bias, as would be expected for an imaging system like ASTER. In open ground classes (little or no vegetation with significant aboveground height), GDEM v2 exhibits a negative bias on the order of 1 meter. GDEM v2 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v2 has elevations that are higher in the canopy than SRTM.
Expert system for generating initial layouts of zoom systems with multiple moving lens groups
NASA Astrophysics Data System (ADS)
Cheng, Xuemin; Wang, Yongtian; Hao, Qun; Sasián, José M.
2005-01-01
An expert system is developed for the automatic generation of initial layouts for the design of zoom systems with multiple moving lens groups. The Gaussian parameters of the zoom system are optimized using the damped-least-squares method to achieve smooth zoom cam curves, with the f-number of each lens group in the zoom system constrained to a rational value. Then each lens group is selected automatically from a database according to its range of f-number, field of view, and magnification ratio as it is used in the zoom system. The lens group database is established from the results of analyzing thousands of zoom lens patents. Design examples are given, which show that the scheme is a practical approach to generate starting points for zoom lens design.
NASA Technical Reports Server (NTRS)
Globus, Al; Biegel, Bryan A.; Traugott, Steve
2004-01-01
AsterAnts is a concept calling for a fleet of solar sail powered spacecraft to retrieve large numbers of small (1/2-1 meter diameter) Near Earth Objects (NEOs) for orbital processing. AsterAnts could use the International Space Station (ISS) for NEO processing, solar sail construction, and to test NEO capture hardware. Solar sails constructed on orbit are expected to have substantially better performance than their ground built counterparts [Wright 1992]. Furthermore, solar sails may be used to hold geosynchronous communication satellites out-of-plane [Forward 1981] increasing the total number of slots by at least a factor of three. potentially generating $2 billion worth of orbital real estate over North America alone. NEOs are believed to contain large quantities of water, carbon, other life-support materials and metals. Thus. with proper processing, NEO materials could in principle be used to resupply the ISS, produce rocket propellant, manufacture tools, and build additional ISS working space. Unlike proposals requiring massive facilities, such as lunar bases, before returning any extraterrestrial larger than a typical inter-planetary mission. Furthermore, AsterAnts could be scaled up to deliver large amounts of material by building many copies of the same spacecraft, thereby achieving manufacturing economies of scale. Because AsterAnts would capture NEOs whole, NEO composition details, which are generally poorly characterized, are relatively unimportant and no complex extraction equipment is necessary. In combination with a materials processing facility at the ISS, AsterAnts might inaugurate an era of large-scale orbital construction using extraterrestrial materials.
A web-application for visualizing uncertainty in numerical ensemble models
NASA Astrophysics Data System (ADS)
Alberti, Koko; Hiemstra, Paul; de Jong, Kor; Karssenberg, Derek
2013-04-01
Numerical ensemble models are used in the analysis and forecasting of a wide range of environmental processes. Common use cases include assessing the consequences of nuclear accidents, pollution releases into the ocean or atmosphere, forest fires, volcanic eruptions, or identifying areas at risk from such hazards. In addition to the increased use of scenario analyses and model forecasts, the availability of supplementary data describing errors and model uncertainties is increasingly commonplace. Unfortunately most current visualization routines are not capable of properly representing uncertain information. As a result, uncertainty information is not provided at all, not readily accessible, or it is not communicated effectively to model users such as domain experts, decision makers, policy makers, or even novice users. In an attempt to address these issues a lightweight and interactive web-application has been developed. It makes clear and concise uncertainty visualizations available in a web-based mapping and visualization environment, incorporating aggregation (upscaling) techniques to adjust uncertainty information to the zooming level. The application has been built on a web mapping stack of open source software, and can quantify and visualize uncertainties in numerical ensemble models in such a way that both expert and novice users can investigate uncertainties present in a simple ensemble dataset. As a test case, a dataset was used which forecasts the spread of an airborne tracer across Western Europe. Extrinsic uncertainty representations are used in which dynamic circular glyphs are overlaid on model attribute maps to convey various uncertainty concepts. It supports both basic uncertainty metrics such as standard deviation, standard error, width of the 95% confidence interval and interquartile range, as well as more experimental ones aimed at novice users. Ranges of attribute values can be specified, and the circular glyphs dynamically change size to represent the probability of the attribute value falling within the specified interval. For more advanced users graphs of the cumulative probability density function, histograms, and time series plume charts are available. To avoid risking a cognitive overload and crowding of glyphs on the map pane, the support of the data used for generating the glyphs is linked dynamically to the zoom level. Zooming in and out respectively decreases and increases the underlying support size of data used for generating the glyphs, thereby making uncertainty information of the original data upscaled to the resolution of the visualization accessible to the user. This feature also ensures that the glyphs are neatly spaced in a regular grid regardless of the zoom level. Finally, the web-application has been presented to groups of test users of varying degrees of expertise in order to evaluate the usability of the interface and the effectiveness of uncertainty visualizations based on circular glyphs.
NASA Astrophysics Data System (ADS)
Park, Nam In; Kim, Seon Man; Kim, Hong Kook; Kim, Ji Woon; Kim, Myeong Bo; Yun, Su Won
In this paper, we propose a video-zoom driven audio-zoom algorithm in order to provide audio zooming effects in accordance with the degree of video-zoom. The proposed algorithm is designed based on a super-directive beamformer operating with a 4-channel microphone system, in conjunction with a soft masking process that considers the phase differences between microphones. Thus, the audio-zoom processed signal is obtained by multiplying an audio gain derived from a video-zoom level by the masked signal. After all, a real-time audio-zoom system is implemented on an ARM-CORETEX-A8 having a clock speed of 600 MHz after different levels of optimization are performed such as algorithmic level, C-code, and memory optimizations. To evaluate the complexity of the proposed real-time audio-zoom system, test data whose length is 21.3 seconds long is sampled at 48 kHz. As a result, it is shown from the experiments that the processing time for the proposed audio-zoom system occupies 14.6% or less of the ARM clock cycles. It is also shown from the experimental results performed in a semi-anechoic chamber that the signal with the front direction can be amplified by approximately 10 dB compared to the other directions.
Therans-3-enoic acids ofAster alpinus andArctium minus seed oils.
Morris, L J; Marshall, M O; Hammond, E W
1968-01-01
Thetrans-3-enoic acids ofAster alpinus (dwarf aster, rock aster) andArctium minus (burdock) seed oils have been isolated and characterized.Arctium seed oil containstrans-3,cis-9,cis-12-octadecatrienoic acid (9.9%), andAster oil containstrans-3-hexadecenoic (7.1%),rans-3-octadecenoic (1.9%),trans-3,cis-9-octadecadienoic (3.0%),a ndtrans-3,cis-9,cis-12-octadecatrienoic (13.7%) acids.Aster oil also has an epoxy acid as a minor constituent (ca. 2.0%), which has been identified ascis-9,10-epoxy-cis-12-octadecenoic acid.
EmailTime: visual analytics and statistics for temporal email
NASA Astrophysics Data System (ADS)
Erfani Joorabchi, Minoo; Yim, Ji-Dong; Shaw, Christopher D.
2011-01-01
Although the discovery and analysis of communication patterns in large and complex email datasets are difficult tasks, they can be a valuable source of information. We present EmailTime, a visual analysis tool of email correspondence patterns over the course of time that interactively portrays personal and interpersonal networks using the correspondence in the email dataset. Our approach is to put time as a primary variable of interest, and plot emails along a time line. EmailTime helps email dataset explorers interpret archived messages by providing zooming, panning, filtering and highlighting etc. To support analysis, it also measures and visualizes histograms, graph centrality and frequency on the communication graph that can be induced from the email collection. This paper describes EmailTime's capabilities, along with a large case study with Enron email dataset to explore the behaviors of email users within different organizational positions from January 2000 to December 2001. We defined email behavior as the email activity level of people regarding a series of measured metrics e.g. sent and received emails, numbers of email addresses, etc. These metrics were calculated through EmailTime. Results showed specific patterns in the use email within different organizational positions. We suggest that integrating both statistics and visualizations in order to display information about the email datasets may simplify its evaluation.
Research on surface free energy of electrowetting liquid zoom lens
NASA Astrophysics Data System (ADS)
Zhao, Cunhua; Lu, Gaoqi; Wei, Daling; Hong, Xinhua; Cui, Dongqing; Gao, Changliu
2011-08-01
Zoom imaging systems have the tendencies of miniaturization or complication so the traditional glass / plastic lenses can't meet the needs. Therefore, a new method, liquid lens is put forward which realizes zoom by changing the shape of liquid surface. liquid zoom lenses have many merits such as smaller volume, lighter weight, controlled zoom, faster response, higher transmission, lower energy consumption and so on. Liquid zoom lenses have wide applications in mobile phones, digital cameras and other small imaging system. The electrowetting phenomenon was reviewed firstly and then the influence of the exerted voltage to the contact angle was analysed in electrowetting effect. At last, the surface free energy of cone-type double liquid zoom lens was researched via the energy minimization principle. The research of surface free energy offers important theoretic dependence for designing liquid zoom lens.
Cytoplasmic asters are required for progression past the first cell cycle in cloned mouse embryos.
Miki, Hiromi; Inoue, Kimiko; Ogonuki, Narumi; Mochida, Keiji; Nagashima, Hiroshi; Baba, Tadashi; Ogura, Atsuo
2004-12-01
Unlike the oocytes of most other animal species, unfertilized murine oocytes contain cytoplasmic asters, which act as microtubule-organizing centers following fertilization. This study examined the role of asters during the first cell cycle of mouse nuclear transfer (NT) embryos. NT was performed by intracytoplasmic injection of cumulus cells. Cytoplasmic asters were localized by staining with an anti-alpha-tubulin antibody. Enucleation of MII oocytes caused no significant change in the number of cytoplasmic asters. The number of asters decreased after transfer of the donor nuclei into these enucleated oocytes, probably because some of the asters participated in the formation of the spindle that anchors the donor chromosomes. The cytoplasmic asters became undetectable within 2 h of oocyte activation, irrespective of the presence or absence of the donor chromosomes. After the standard NT protocol, a spindle-like structure persisted between the pseudopronuclei of these oocytes throughout the pronuclear stage. The asters reappeared shortly before the first mitosis and formed the mitotic spindle. When the donor nucleus was transferred into preactivated oocytes (delayed NT) that were devoid of free asters, the microtubules and microfilaments were distributed irregularly in the ooplasm and formed dense bundles within the cytoplasm. Thereafter, all of the delayed NT oocytes underwent fragmentation and arrested development. Treatment of these delayed NT oocytes with Taxol, which is a microtubule-assembling agent, resulted in the formation of several aster-like structures and reduced fragmentation. Some Taxol-treated oocytes completed the first cell cycle and developed further. This study demonstrates that cytoplasmic asters play a crucial role during the first cell cycle of murine NT embryos. Therefore, in mouse NT, the use of MII oocytes as recipients is essential, not only for chromatin reprogramming as previously reported, but also for normal cytoskeletal organization in reconstructed oocytes.
Frost, K E; Esker, P D; Van Haren, R; Kotolski, L; Groves, R L
2013-06-01
In Wisconsin, vegetable crops are threatened annually by the aster yellows phytoplasma (AYp), which is obligately transmitted by the aster leafhopper. Using a multiyear, multilocation data set, seasonal patterns of leafhopper abundance and infectivity were modeled. A seasonal aster yellows index (AYI) was deduced from the model abundance and infectivity predictions to represent the expected seasonal risk of pathogen transmission by infectious aster leafhoppers. The primary goal of this study was to identify periods of time during the growing season when crop protection practices could be targeted to reduce the risk of AYp spread. Based on abundance and infectivity, the annual exposure of the carrot crop to infectious leafhoppers varied by 16- and 70-fold, respectively. Together, this corresponded to an estimated 1,000-fold difference in exposure to infectious leafhoppers. Within a season, exposure of the crop to infectious aster leafhoppers (Macrosteles quadrilineatus Forbes), varied threefold because of abundance and ninefold because of infectivity. Periods of above average aster leafhopper abundance occurred between 11 June and 2 August and above average infectivity occurred between 27 May and 13 July. A more comprehensive description of the temporal trends of aster leafhopper abundance and infectivity provides new information defining when the aster leafhopper moves into susceptible crop fields and when they transmit the pathogen to susceptible crops.
Mars, John L.; Rowan, Lawrence C.
2007-01-01
Introduction: ASTER data and logical operators were successfully used to map phyllic and argillic-altered rocks in the southeastern part of Afghanistan. Hyperion data were used to correct ASTER band 5 and ASTER data were georegistered to orthorectified Landsat TM data. Logical operator algorithms produced argillic and phyllic byte ASTER images that were converted to vector data and overlain on ASTER and Landsat TM images. Alteration and fault patterns indicated that two areas, the Argandab igneous complex, and the Katawaz basin may contain potential polymetallic vein and porphyry copper deposits. ASTER alteration mapping in the Chagai Hills indicates less extensive phyllic and argillic-altered rocks than mapped in the Argandab igneous complex and the Katawaz basin and patterns of alteration are inconclusive to predict potential deposit types.
Three-dimensional transesophageal echocardiography: Principles and clinical applications.
Vegas, Annette
2016-10-01
A basic understanding of evolving 3D technology enables the echocardiographer to master the new skills necessary to acquire, manipulate, and interpret 3D datasets. Single button activation of specific 3D imaging modes for both TEE and transthoracic echocardiography (TTE) matrix array probes include (a) live, (b) zoom, (c) full volume (FV), and (d) color Doppler FV. Evaluation of regional LV wall motion by RT 3D TEE is based on a change in LV chamber subvolume over time from altered segmental myocardial contractility. Unlike standard 2D TEE, there is no direct measurement of myocardial thickening or displacement of individual segments.
NASA Astrophysics Data System (ADS)
Pipaud, Isabel; Loibl, David; Lehmkuhl, Frank
2015-10-01
Digital elevation models (DEMs) are a prerequisite for many different applications in the field of geomorphology. In this context, the two near-global medium resolution DEMs originating from the SRTM and ASTER missions are widely used. For detailed geomorphological studies, particularly in high mountain environments, these datasets are, however, known to have substantial disadvantages beyond their posting, i.e., data gaps and miscellaneous artifacts. The upcoming TanDEM-X DEM is a promising candidate to improve this situation by application of state-of-the-art radar technology, exhibiting a posting of 12 m and less proneness to errors. In this study, we present a DEM processed from a single TanDEM-X CoSSC scene, covering a study area in the extreme relief of the eastern Nyainqêntanglha Range, southeastern Tibet. The potential of the resulting experimental TanDEM-X DEM for geomorphological applications was evaluated by geomorphometric analyses and an assessment of landform cognoscibility and artifacts in comparison to the ASTER GDEM and the recently released SRTM 1″ DEM. Detailed geomorphological mapping was conducted for four selected core study areas in a manual approach, based exclusively on the TanDEM-X DEM and its basic derivates. The results show that the self-processed TanDEM-X DEM yields a detailed and widely consistent landscape representation. It thus fosters geomorphological analysis by visual and quantitative means, allowing delineation of landforms down to footprints of 30 m. Even in this premature state, the TanDEM-X elevation data are widely superior to the ASTER and SRTM datasets, primarily owing to its significantly higher resolution and its lower susceptibility to artifacts that hamper landform interpretation. Conversely, challenges toward interferometric DEM generation were identified, including (i) triangulation facets and missing topographic information resulting from radar layover on steep slopes facing toward the radar sensor, (ii) low coherence values on leeward slopes, (iii) decorrelation effects over water bodies, and (iv) challenges for phase unwrapping in settings of strong topographic contrasts. There is, however, a high probability that these drawbacks can be overcome by applying multiple interferograms exhibiting different perpendicular baselines as planned for the generation of the final TanDEM-X DEM product.
ASTER system operating achievement for 15 years on orbit
NASA Astrophysics Data System (ADS)
Inada, Hitomi; Ito, Yoshiyuki; Kikuchi, Masakuni; Sakuma, Fumihiro; Tatsumi, Kenji; Akagi, Shigeki; Ono, Hidehiko
2015-10-01
ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) System is operating more than 15 years since launched on board of NASA's Terra spacecraft in December 1999. ASTER System is composed of 3 radiometers (VNIR (Visible and Near Infrared Radiometer), SWIR (Short-Wave Infrared Radiometer), and TIR (Thermal Infrared Radiometer)), CSP (Common Signal Processor) and MSP (Master Power Supply). This paper describes the ASTER System operating history and the achievement of ASTER System long term operation since the initial checkout operation, the normal operation, and the continuous operation. Through the 15 years operation, ASTER system had totally checked the all subsystems (MPS, VNIR, TIR, SWIR, and CSP) health and safety check using telemetry data trend evaluation, and executed the necessary action. The watch items are monitored as the life control items. The pointing mechanics for VNIR, SWIR and TIR, and the cooler for SWIR and TIR are all operating with any problem for over 15 years. In 2003, ASTER was successfully operated for the lunar calibration. As the future plan, ASTER team is proposing the 2nd lunar calibration before the end of mission.
To zoom or not to zoom: do we have enough pixels?
NASA Astrophysics Data System (ADS)
Youngworth, Richard N.; Herman, Eric
2015-09-01
Common lexicon in imaging systems includes the frequently used term digital zoom. Of course this term is somewhat of a misnomer as there is no actual zooming in such systems. Instead, digital zoom describes the zoom effect that comes with an image rewriting or reprinting that perhaps can be more accurately described as cropping and enlarging an image (a pixel remapping) for viewing. If done properly, users of the overall hybrid digital-optical system do not know the methodology employed. Hence the essential question, pondered and manipulated since the advent of mature digital image science, really becomes "do we have enough pixels to avoid optical zoom." This paper discusses known imaging factors for hybrid digital-optical systems, most notably resolution considerations. The paper is fundamentally about communication, and thereby includes information useful to the greater consumer, technical, and business community who all have an interest in understanding the key technical details that have driven the amazing technology and development of zoom systems.
Collective behavior of minus-ended motors in mitotic microtubule asters gliding toward DNA
NASA Astrophysics Data System (ADS)
Athale, Chaitanya A.; Dinarina, Ana; Nedelec, Francois; Karsenti, Eric
2014-02-01
Microtubules (MTs) nucleated by centrosomes form star-shaped structures referred to as asters. Aster motility and dynamics is vital for genome stability, cell division, polarization and differentiation. Asters move either toward the cell center or away from it. Here, we focus on the centering mechanism in a membrane independent system of Xenopus cytoplasmic egg extracts. Using live microscopy and single particle tracking, we find that asters move toward chromatinized DNA structures. The velocity and directionality profiles suggest a random-walk with drift directed toward DNA. We have developed a theoretical model that can explain this movement as a result of a gradient of MT length dynamics and MT gliding on immobilized dynein motors. In simulations, the antagonistic action of the motor species on the radial array of MTs leads to a tug-of-war purely due to geometric considerations and aster motility resembles a directed random-walk. Additionally, our model predicts that aster velocities do not change greatly with varying initial distance from DNA. The movement of asymmetric asters becomes increasingly super-diffusive with increasing motor density, but for symmetric asters it becomes less super-diffusive. The transition of symmetric asters from superdiffusive to diffusive mobility is the result of number fluctuations in bound motors in the tug-of-war. Overall, our model is in good agreement with experimental data in Xenopus cytoplasmic extracts and predicts novel features of the collective effects of motor-MT interactions.
Robust feedback zoom tracking for digital video surveillance.
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.
Design study for a 16x zoom lens system for visible surveillance camera
NASA Astrophysics Data System (ADS)
Vella, Anthony; Li, Heng; Zhao, Yang; Trumper, Isaac; Gandara-Montano, Gustavo A.; Xu, Di; Nikolov, Daniel K.; Chen, Changchen; Brown, Nicolas S.; Guevara-Torres, Andres; Jung, Hae Won; Reimers, Jacob; Bentley, Julie
2015-09-01
*avella@ur.rochester.edu Design study for a 16x zoom lens system for visible surveillance camera Anthony Vella*, Heng Li, Yang Zhao, Isaac Trumper, Gustavo A. Gandara-Montano, Di Xu, Daniel K. Nikolov, Changchen Chen, Nicolas S. Brown, Andres Guevara-Torres, Hae Won Jung, Jacob Reimers, Julie Bentley The Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Rd, Rochester, NY, USA 14627-0186 ABSTRACT High zoom ratio zoom lenses have extensive applications in broadcasting, cinema, and surveillance. Here, we present a design study on a 16x zoom lens with 4 groups (including two internal moving groups), designed for, but not limited to, a visible spectrum surveillance camera. Fifteen different solutions were discovered with nearly diffraction limited performance, using PNPX or PNNP design forms with the stop located in either the third or fourth group. Some interesting patterns and trends in the summarized results include the following: (a) in designs with such a large zoom ratio, the potential of locating the aperture stop in the front half of the system is limited, with ray height variations through zoom necessitating a very large lens diameter; (b) in many cases, the lens zoom motion has significant freedom to vary due to near zero total power in the middle two groups; and (c) we discuss the trade-offs between zoom configuration, stop location, packaging factors, and zoom group aberration sensitivity.
USDA-ARS?s Scientific Manuscript database
The native perennial New England aster (Symphyotrichum novae-angliae; syn.=Aster novae-anglicae) is ubiquitous throughout most of the United States, as they self-seed and are well-adapted to many environments. New England asters are valued for their prominent dense clusters of purple flowers that at...
Tsuchida, Satoshi; Thome, Kurtis
2017-01-01
Radiometric cross-calibration between the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) has been partially used to derive the ASTER radiometric calibration coefficient (RCC) curve as a function of date on visible to near-infrared bands. However, cross-calibration is not sufficiently accurate, since the effects of the differences in the sensor’s spectral and spatial responses are not fully mitigated. The present study attempts to evaluate radiometric consistency across two sensors using an improved cross-calibration algorithm to address the spectral and spatial effects and derive cross-calibration-based RCCs, which increases the ASTER calibration accuracy. Overall, radiances measured with ASTER bands 1 and 2 are on averages 3.9% and 3.6% greater than the ones measured on the same scene with their MODIS counterparts and ASTER band 3N (nadir) is 0.6% smaller than its MODIS counterpart in current radiance/reflectance products. The percentage root mean squared errors (%RMSEs) between the radiances of two sensors are 3.7, 4.2, and 2.3 for ASTER band 1, 2, and 3N, respectively, which are slightly greater or smaller than the required ASTER radiometric calibration accuracy (4%). The uncertainty of the cross-calibration is analyzed by elaborating the error budget table to evaluate the International System of Units (SI)-traceability of the results. The use of the derived RCCs will allow further reduction of errors in ASTER radiometric calibration and subsequently improve interoperability across sensors for synergistic applications. PMID:28777329
The taccalonolides and paclitaxel cause distinct effects on microtubule dynamics and aster formation
2014-01-01
Background Microtubule stabilizers suppress microtubule dynamics and, at the lowest antiproliferative concentrations, disrupt the function of mitotic spindles, leading to mitotic arrest and apoptosis. At slightly higher concentrations, these agents cause the formation of multiple mitotic asters with distinct morphologies elicited by different microtubule stabilizers. Results We tested the hypothesis that two classes of microtubule stabilizing drugs, the taxanes and the taccalonolides, cause the formation of distinct aster structures due, in part, to differential effects on microtubule dynamics. Paclitaxel and the taccalonolides suppressed the dynamics of microtubules formed from purified tubulin as well as in live cells. Both agents suppressed microtubule dynamic instability, with the taccalonolides having a more pronounced inhibition of microtubule catastrophe, suggesting that they stabilize the plus ends of microtubules more effectively than paclitaxel. Live cell microscopy was also used to evaluate the formation and resolution of asters after drug treatment. While each drug had similar effects on initial formation, substantial differences were observed in aster resolution. Paclitaxel-induced asters often coalesced over time resulting in fewer, larger asters whereas numerous compact asters persisted once they were formed in the presence of the taccalonolides. Conclusions We conclude that the increased resistance of microtubule plus ends to catastrophe may play a role in the observed inability of taccalonolide-induced asters to coalesce during mitosis, giving rise to the distinct morphologies observed after exposure to these agents. PMID:24576146
1993-09-01
alboranensis Anthemis glabemrma Artemisia granatensis Artemisia laciniata Aster pyrenacus Aster sibiricus Centaurea heldreichii Centaurea horrida Centaurea...kalambakensi s Centaurea lactiflora Centaurea Iinaresii Centaurea megarensis Centaurea niederi Centaurea peucedanifolia Centaurea princeps Crepis...50 Table 448 (continued) COMIPOSrrAE Anthemis glaberrima (Rech. f.) Greuter Artemisia granatensis Boiss. Aster pyrenacus Desf. ex DC. Aster sorrentinil
Designing Computer-Based Learning Contents: Influence of Digital Zoom on Attention
ERIC Educational Resources Information Center
Glaser, Manuela; Lengyel, Dominik; Toulouse, Catherine; Schwan, Stephan
2017-01-01
In the present study, we investigated the role of digital zoom as a tool for directing attention while looking at visual learning material. In particular, we analyzed whether minimal digital zoom functions similarly to a rhetorical device by cueing mental zooming of attention accordingly. Participants were presented either static film clips, film…
Robust Feedback Zoom Tracking for Digital Video Surveillance
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388
NASA Astrophysics Data System (ADS)
Purinton, Benjamin; Bookhagen, Bodo
2017-04-01
Geomorphologists use digital elevation models (DEMs) to quantify changes in topography - often without rigorous accuracy assessments. In this study we validate and compare elevation accuracy and derived geomorphic metrics from the current generation of satellite-derived DEMs on the southern Central Andean Plateau. The average elevation of 3.7 km, diverse topography and relief, lack of vegetation, and clear skies create ideal conditions for remote sensing in this study area. DEMs at resolutions of 5-30 m are sourced from open-access, research agreement, and commercial outlets, with a focus on the 30 m SRTM-C, 30 m ASTER GDEM2, 12 m TanDEM-X, and 5 m ALOS World 3D data. In addition to these edited products, manually generated DEMs included 10 m single-CoSSC TerraSAR-X / TanDEM-X DEMs and a 30 m stacked ASTER L1A stereopair DEM. We assessed vertical accuracy by comparing standard deviations (SD) of the DEM elevation versus 307,509 differential GPS (dGPS) measurements with < 0.5 m vertical accuracy, acquired across 4,000 m of elevation. Vertical SD was 3.33 m, 9.48 m, 6.93 m, 1.97 m, 2.02-3.83 m, and 1.64 m for the 30 m SRTM-C, 30 m ASTER GDEM2, 30 m stacked ASTER, 12 m TanDEM-X, 10 m single-CoSSC TerraSAR-X / TanDEM-X DEMs, and 5 m ALOS World 3D, respectively. Analysis of vertical uncertainty with respect to terrain elevation, slope, and aspect revealed the high performance across these attributes of the 30 m SRTM-C, 12 m TanDEM-X, and 5 m ALOS World 3D DEMs. The 10 m single-CoSSC TerraSAR-X / TanDEM-X DEMs and the 30 m ASTER GDEM2 displayed slight aspect biases, which were removed in their stacked counterparts (TanDEM-X and the stacked ASTER DEMs). We selected the high quality 30 m SRTM-C, 12 m TanDEM-X, and 5 m ALOS World 3D for geomorphic metric comparison in a 66 sqkm catchment with a clear river knickpoint. For trunk channel profiles analyzed with chi plots, consistent m/n values of 0.49-0.57 were found regardless of DEM resolution or SD. Hillslopes were analyzed upstream and downstream of the knickpoint by calculating slope and curvature distributions and plotting slope, curvature, and drainage area to assess the hillslope-to-valley transition. While slope and hillslope length measurements vary little between datasets, curvature displays higher magnitude measurements with fining resolution. To assess DEM noise and periodicity in the landscape we employed a Fourier analysis to identify DEM frequencies and their spectral power. The optical 5 m ALOS World 3D DEM shows high-frequency noise in 2-8 pixel steps, with no corresponding landscape features in this highly diffusive, vegetation-free environment. Finally, we explore the geomorphometric potential of the higher-quality 12 m TanDEM-X DEM through a hillslope length and surface roughness assessment across steep environmental, climatic and topographic gradients in the Quebrada del Toro catchment, west of Salta, Argentina.
Optimization design of periscope type 3X zoom lens design for a five megapixel cellphone camera
NASA Astrophysics Data System (ADS)
Sun, Wen-Shing; Tien, Chuen-Lin; Pan, Jui-Wen; Chao, Yu-Hao; Chu, Pu-Yi
2016-11-01
This paper presents a periscope type 3X zoom lenses design for a five megapixel cellphone camera. The configuration of optical system uses the right angle prism in front of the zoom lenses to change the optical path rotated by a 90° angle resulting in the zoom lenses length of 6 mm. The zoom lenses can be embedded in mobile phone with a thickness of 6 mm. The zoom lenses have three groups with six elements. The half field of view is varied from 30° to 10.89°, the effective focal length is adjusted from 3.142 mm to 9.426 mm, and the F-number is changed from 2.8 to 5.13.
NASA Astrophysics Data System (ADS)
Nowicki, S. A.; Skuse, R. J.
2012-12-01
High-resolution ecological and climate modeling requires quantification of surface characteristics such as rock abundance, soil induration and surface roughness at fine-scale, since these features can affect the micro and macro habitat of a given area and ultimately determine the assemblage of plant and animal species that may occur there. Our objective is to develop quantitative data layers of thermophysical properties of the entire Mojave Desert Ecoregion for applications to habitat modeling being conducted by the USGS Western Ecological Research Center. These research efforts are focused on developing habitat models and a better physical understanding of the Mojave Desert, which have implications the development of solar and wind energy resources, military installation expansion and residential development planned for the Mojave. Thus there is a need to improve our understanding of the mechanical composition and thermal characteristics of natural and modified surfaces in the southwestern US at as high-resolution as possible. Since the Mojave is a sparsely-vegetated, arid landscape with little precipitation, remote sensing-based thermophysical analyses using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) day and nighttime imagery are ideal for determining the physical properties of the surface. New mosaicking techniques for thermal imagery acquired at different dates, seasons and temperatures have allowed for the highest-resolution mosaics yet generated at 100m/pixel for thermal infrared wavelengths. Among our contributions is the development of seamless day and night ASTER mosaics of land surface temperatures that are calibrated to Moderate Resolution Imaging Spectroradiometer (MODIS) coincident observations to produce both a seamless mosaic and quantitative temperatures across the region that varies spectrally and thermophysically over a large number of orbit tracks. Products derived from this dataset include surface rock abundance, apparent thermal inertia, and diurnal/seasonal thermal regime. Additionally, the combination of moderate and high-resolution thermal observations are used to map the spatial and temporal variation of significant rain storms that intermittently increase the surface moisture. The resulting thermally-derived layers are in the process of being combined with composition, vegetation and surface reflectance datasets to map the Mojave at the highest VNIR resolution (20m/pixel) and compared to currently-available lower-resolution datasets.
Generation of the 30 M-Mesh Global Digital Surface Model by Alos Prism
NASA Astrophysics Data System (ADS)
Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H.
2016-06-01
Topographical information is fundamental to many geo-spatial related information and applications on Earth. Remote sensing satellites have the advantage in such fields because they are capable of global observation and repeatedly. Several satellite-based digital elevation datasets were provided to examine global terrains with medium resolutions e.g. the Shuttle Radar Topography Mission (SRTM), the global digital elevation model by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM). A new global digital surface model (DSM) dataset using the archived data of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed "Daichi") has been completed on March 2016 by Japan Aerospace Exploration Agency (JAXA) collaborating with NTT DATA Corp. and Remote Sensing Technology Center, Japan. This project is called "ALOS World 3D" (AW3D), and its dataset consists of the global DSM dataset with 0.15 arcsec. pixel spacing (approx. 5 m mesh) and ortho-rectified PRISM image with 2.5 m resolution. JAXA is also processing the global DSM with 1 arcsec. spacing (approx. 30 m mesh) based on the AW3D DSM dataset, and partially releasing it free of charge, which calls "ALOS World 3D 30 m mesh" (AW3D30). The global AW3D30 dataset will be released on May 2016. This paper describes the processing status, a preliminary validation result of the AW3D30 DSM dataset, and its public release status. As a summary of the preliminary validation of AW3D30 DSM, 4.40 m (RMSE) of the height accuracy of the dataset was confirmed using 5,121 independent check points distributed in the world.
ASTER, a multinational Earth observing concept
NASA Technical Reports Server (NTRS)
Bothwell, Graham W.; Geller, Gary N.; Larson, Steven A.; Morrison, Andrew D.; Nichols, David A.
1993-01-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a facility instrument selected for launch in 1998 on the first in a series of spacecraft for NASA's Earth Observing System (EOS). The ASTER instrument is being sponsored and built in Japan. It is a three telescope, high spatial resolution imaging instrument with 15 spectral bands covering the visible through to the thermal infrared. It will play a significant role within EOS providing geological, biological, land hydrological information necessary for intense study of the Earth. The operational capabilities for ASTER, including the necessary interfaces and operational collaborations between the US and Japanese participants, are under development. EOS operations are the responsibility of the EOS Project at NASA's Goddard Space Flight Center (GSFC). Although the primary EOS control center is at GSFC, the ASTER control facility will be in Japan. Other aspects of ASTER are discussed.
Kanter, Rosabeth Moss
2011-03-01
Zoom buttons on digital devices let us examine images from many viewpoints. They also provide an apt metaphor for modes of strategic thinking. Some people prefer to see things up close, others from afar. Both perspectives have virtues. But they should not be fixed positions, says Harvard Business School's Kanter. To get a complete picture, leaders need to zoom in and zoom out. A close-in perspective is often found in relationship-intensive settings. It brings details into sharp focus and makes opportunities look large and compelling. But it can have significant downsides. Leaders who prefer to zoom in tend to create policies and systems that depend too much on politics and favors. They can focus too closely on personal status and on turf protection. And they often miss the big picture. When leaders zoom out, they can see events in context and as examples of general trends. They are able to make decisions based on principles. Yet a far-out perspective also has traps. Leaders can be so high above the fray that they don't recognize emerging threats. Having zoomed out to examine all possible routes, they may fail to notice when the moment is right for action on one path. They may also seem too remote and aloof to their staffs. The best leaders can zoom in to examine problems and then zoom out to look for patterns and causes. They don't divide the world into extremes-idiosyncratic or structural, situational or strategic, emotional or contextual. The point is not to choose one over the other but to learn to move across a continuum of perspectives.
Aberration design of zoom lens systems using thick lens modules.
Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi
2014-12-20
A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.
Ultrathin zoom telescopic objective.
Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua
2016-08-08
We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced.
NASA Astrophysics Data System (ADS)
Zhao, Cunhua; Liang, Huiqin; Cui, Dongqing; Hong, Xinhua; Wei, Daling; Gao, Changliu
2011-08-01
In the ultralight or ultrathin applied domain of zoom lens, the traditional glass / plastic lens is limited for manufacture technology or cost. Therefore, a liquid lens was put forward to solve the problems. The liquid zoom lens has the merits of lower cost, smaller volume, quicker response, lower energy consumption, continuous zoom and higher accuracy. In liquid zoom lens the precise focal length is obtained by the contact angle changing to affect the curvature radius of interface. In our works, the relations of the exerted voltage, the contact angle, the curvature radius and the focal length were researched and accurately calculated. The calculation of the focal length provides an important theoretical basis for instructing the design of liquid zoom lens.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Ouray, Colorado
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Ouray identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature around south Steamboat Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
The influence of Aster x salignus Willd. Invasion on the diversity of soil yeast communities
NASA Astrophysics Data System (ADS)
Glushakova, A. M.; Kachalkin, A. V.; Chernov, I. Yu.
2016-07-01
The annual dynamics of yeast communities were studied in the soddy-podzolic soil under the thickets of Aster x salignus Willd., one of the widespread invasive plant species in central Russia. Yeast groups in the soils under continuous aster thickets were found to differ greatly from the yeast communities in the soils under the adjacent indigenous meadow vegetation. In both biotopes the same species ( Candida vartiovaarae, Candida sake, and Cryptococcus terreus) are dominants. However, in the soils under indigenous grasses, eurybiontic yeasts Rhodotorula mucilaginosa, which almost never occur in the soil under aster, are widespread. In the soil under aster, the shares of other typical epiphytic and pedobiontic yeast fungi (ascomycetic species Wickerhamomyces aniomalus, Barnettozyma californica and basidiomycetic species Cystofilobasidium macerans, Guehomyces pullulans) significantly increase. Thus, the invasion of Aster x salignus has a clear effect on soil yeast complexes reducing their taxonomic and ecological diversity.
Design, fabrication, and testing of duralumin zoom mirror with variable thickness
NASA Astrophysics Data System (ADS)
Hui, Zhao; Xie, Xiaopeng; Xu, Liang; Ding, Jiaoteng; Shen, Le; Liu, Meiying; Gong, Jie
2016-10-01
Zoom mirror is a kind of active optical component that can change its curvature radius dynamically. Normally, zoom mirror is used to correct the defocus and spherical aberration caused by thermal lens effect to improve the beam quality of high power solid-state laser since that component was invented. Recently, the probable application of zoom mirror in realizing non-moving element optical zoom imaging in visible band has been paid much attention. With the help of optical leveraging effect, the slightly changed local optical power caused by curvature variation of zoom mirror could be amplified to generate a great alteration of system focal length without moving elements involved in, but in this application the shorter working wavelength and higher surface figure accuracy requirement make the design and fabrication of such a zoom mirror more difficult. Therefore, the key to realize non-moving element optical zoom imaging in visible band lies in zoom mirror which could provide a large enough saggitus variation while still maintaining a high enough surface figure. Although the annular force based actuation could deform a super-thin mirror having a constant thickness to generate curvature variation, it is quite difficult to maintain a high enough surface figure accuracy and this phenomenon becomes even worse when the diameter and the radius-thickness ratio become bigger. In this manuscript, by combing the pressurization based actuation with a variable thickness mirror design, the purpose of obtaining large saggitus variation and maintaining quite good surface figure accuracy at the same time could be achieved. A prototype zoom mirror with diameter of 120mm and central thickness of 8mm is designed, fabricated and tested. Experimental results demonstrate that the zoom mirror having an initial surface figure accuracy superior to 1/50λ could provide at least 21um saggitus variation and after finishing the curvature variation its surface figure accuracy could still be superior to 1/20λ, which proves that the effectiveness of the theoretical design.
Fifteen Years of ASTER Data on NASA's Terra Platform
NASA Astrophysics Data System (ADS)
Abrams, M.; Tsu, H.
2014-12-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five instruments operating on NASA's Terra platform. Launched in 1999, ASTER has been acquiring data for 15 years. ASTER is a joint project between Japan's Ministry of Economy, Trade and Industry; and US NASA. Data processing and distribution are done by both organizations; a joint science team helps to define mission priorities. ASTER acquires ~550 images per day, with a 60 km swath width. A daytime acquisition is three visible bands and a backward-looking stereo band with 15 m resolution, six SWIR bands with 30 m resolution, and 5 TIR bands with 90 m resolution. Nighttime TIR-only data are routinely collected. The stereo capability has allowed the ASTER project to produce a global Digital Elevation Model (GDEM) data set, covering the earth's land surfaces from 83 degrees north to 83 degrees south, with 30 m data postings. This is the only (near-) global DEM available to all users at no charge; to date, over 28 million 1-by-1 degree DEM tiles have been distributed. As a general-purpose imaging instrument, ASTER-acquired data are used in numerous scientific disciplines, including: land use/land cover, urban monitoring, urban heat island studies, wetlands studies, agriculture monitoring, forestry, etc. Of particular emphasis has been the acquisition and analysis of data for natural hazard and disaster applications. We have been systematically acquiring images for 15,000 valley glaciers through the USGS Global Land Ice Monitoring from Space Project. The recently published Randolph Glacier Inventory, and the GLIMS book, both relied heavily on ASTER data as the basis for glaciological and climatological studies. The ASTER Volcano Archive is a unique on-line archive of thousands of daytime and nighttime ASTER images of ~1500 active glaciers, along with a growing archive of Landsat images. ASTER was scheduled to target active volcanoes at least 4 times per year, and more frequently for select volcanoes (like Mt. Etna and Hawaii). A separate processing and distribution system is operational in the US to allow rapid scheduling, acquisition, and distribution of ASTER data for natural hazards and disasters, such as forest fires, tornadoes, tsunamis, earthquakes, and floods. We work closely with other government agencies to provide this service.
Raup, B.H.; Kieffer, H.H.; Hare, T.M.; Kargel, J.S.
2000-01-01
The advanced spaceborne thermal emission and reflection radiometer (ASTER) instrument is scheduled to be launched on the EOS Terra platform in 1999. The Global Land Ice Measurements from Space project has planned to acquire ASTER images of most of the world's land ice annually during the six-year ASTER mission. This article describes the process of creating the data acquisition requests needed to cover approximately 170,000 glacier targets.
Archiving, processing, and disseminating ASTER products at the USGS EROS Data Center
Jones, B.; Tolk, B.; ,
2002-01-01
The U.S. Geological Survey EROS Data Center archives, processes, and disseminates Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data products. The ASTER instrument is one of five sensors onboard the Earth Observing System's Terra satellite launched December 18, 1999. ASTER collects broad spectral coverage with high spatial resolution at near infrared, shortwave infrared, and thermal infrared wavelengths with ground resolutions of 15, 30, and 90 meters, respectively. The ASTER data are used in many ways to understand local and regional earth-surface processes. Applications include land-surface climatology, volcanology, hazards monitoring, geology, agronomy, land cover change, and hydrology. The ASTER data are available for purchase from the ASTER Ground Data System in Japan and from the Land Processes Distributed Active Archive Center in the United States, which receives level 1A and level 1B data from Japan on a routine basis. These products are archived and made available to the public within 48 hours of receipt. The level 1A and level 1B data are used to generate higher level products that include routine and on-demand decorrelation stretch, brightness temperature at the sensor, emissivity, surface reflectance, surface kinetic temperature, surface radiance, polar surface and cloud classification, and digital elevation models. This paper describes the processes and procedures used to archive, process, and disseminate standard and on-demand higher level ASTER products at the Land Processes Distributed Active Archive Center.
Optical zoom system realized by lateral shift of Alvarez freeform lenses
NASA Astrophysics Data System (ADS)
Hou, Changlun; Xin, Qing; Zang, Yue
2018-04-01
We present and characterize an optical zoom system with lateral movement of an Alvarez freeform lens for imaging. Mathematical analysis for determining the required freeform surfaces is presented, and optical simulations are performed to confirm and refine the expected zooming behavior. A 3 × optical zoom system that was equivalent to a photographic objective lens with focal length ranging from 34.5 to 103.5 mm and field of view ranging from 60 deg to 22.4 deg is developed by using two pairs of Alvarez lenses and conventional aspheric lenses. The optical performances of the Alvarez zoom system are demonstrated experimentally.
Evaluation of ASTER GDEM with respect to SRTM for Chandra-Bhaga Basin, Indian Himalaya
NASA Astrophysics Data System (ADS)
Pandey, P.
2011-12-01
Evaluation of ASTER GDEM with respect to SRTM for Chandra-Bhaga Basin, Indian Himalaya Pratima Pandey, G. Venkataraman Centre of Studies in Resources Engineering, IIT Bombay, Mumbai, India Abstract A digital elevation model (DEM) is a simple representation of a surface in 3 dimensional way with height as the third dimension along with x and y in rectangular axes. DEM has wide applications in various areas like disaster management, hydrology and water management, geomorphology and in urban development. Valuable information about a terrain can be inferred by exploiting a DEM in proper way. Study of DEM becomes very useful for studying mountainous terrain such as Himalaya which is otherwise hard to access due to harsh weather and inaccessibility. DEM can be generated by aerial photos, stereo images from satellites and toposheet. SRTM and ASTER GDEM are DEM which generated from satellite images and covers maximum parts of the earth. Shuttle Radar Topography Mission (SRTM) is a good quality DEM created in 2000 covering the globe between 600 N and 580 S with 3 arc second (90m) resolution. SRTM is available freely for research. ASTER GDEM is recently released global DEM created using ASTER scenes and made available to the world since June 2009 for carrying out research. ASTER GDEM covers land surfaces between 83°N and 83°S with estimated accuracies of 20 meters vertical data and 30 meters for horizontal data. So ASTER GDEM supposed to be more sophisticated. The present study aims at comparing the ASTER GDEM with the SRTM and ASTER DEM and evaluating its relative characteristics for undulating surface and glaciers of Chandra-Bhaga sub-basin situated in Lahual-Spiti district of Himachal Pradesh, Indian Himalaya. Once the characteristics of ASTER GDEM are evaluated for Himalayan terrain it can be used for various studies involving rugged terrain of Himalaya.
Assembly and control of large microtubule complexes
NASA Astrophysics Data System (ADS)
Korolev, Kirill; Ishihara, Keisuke; Mitchison, Timothy
Motility, division, and other cellular processes require rapid assembly and disassembly of microtubule structures. We report a new mechanism for the formation of asters, radial microtubule complexes found in very large cells. The standard model of aster growth assumes elongation of a fixed number of microtubules originating from the centrosomes. However, aster morphology in this model does not scale with cell size, and we found evidence for microtubule nucleation away from centrosomes. By combining polymerization dynamics and auto-catalytic nucleation of microtubules, we developed a new biophysical model of aster growth. The model predicts an explosive transition from an aster with a steady-state radius to one that expands as a travelling wave. At the transition, microtubule density increases continuously, but aster growth rate discontinuously jumps to a nonzero value. We tested our model with biochemical perturbations in egg extract and confirmed main theoretical predictions including the jump in the growth rate. Our results show that asters can grow even though individual microtubules are short and unstable. The dynamic balance between microtubule collapse and nucleation could be a general framework for the assembly and control of large microtubule complexes. NIH GM39565; Simons Foundation 409704; Honjo International 486 Scholarship Foundation.
The ASTER Global Digital Elevation Model (GDEM) -for societal benefit -
NASA Astrophysics Data System (ADS)
Hato, M.; Tsu, H.; Tachikawa, T.; Abrams, M.; Bailey, B.
2009-12-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) was developed jointly by the Ministry of Economy, Trade and Industry (METI) of Japan and the United States National Aeronautics and Space Administration (NASA) under the agreement of contribution to GEOSS and a public release was started on June 29th. ASTER GDEM can be downloaded to users from the Earth Remote Sensing Data Analysis Center (ERSDAC) of Japan and NASA’s Land Processes Distributed Active Archive Center (LP DAAC) free of charge. The ASTER instrument was built by METI and launched onboard NASA’s Terra spacecraft in December 1999. It has an along-track stereoscopic capability using its near infrared spectral band (NIR) and its nadir-viewing and backward-viewing telescopes to acquire stereo image data with a base-to-height ratio of 0.6. The ASTER GDEM was produced by applying newly-developed automated algorithm to more than 1.2 million NIR data Produced DEMs of all scene data was stacked after cloud masking and finally partitioned into 1° x 1°unit (called ‘tile’) data for convenience of distribution and handling by users. Before start of public distribution, ERSDAC and USGS/NASA together with many volunteers did validation and characterization by using a preliminary product of the ASTER GDEM. As a result of validation, METI and NASA evaluated that Version 1 of the ASTER GDEM has enough quality to be used as “experimental” or “research grade” data and consequently decided to release it. The ASTER GDEM covering almost all land area of from 83N to 83S on the earth represents as an important contribution to the global earth observation community. We will show our effort of development of ASTER GDEM and its accuracy and character.
NASA Astrophysics Data System (ADS)
Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry
2016-12-01
A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTER-specific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in [Zhao and Di Girolamo(2006)]. To validate and evaluate the cloud optical thickness (τ) and cloud effective radius (reff) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000 m resolution as MODIS. Subsequently, τaA and reff,
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
NASA Astrophysics Data System (ADS)
Ghrefat, Habes A.; Goodell, Philip C.
2011-08-01
The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR-SWIR (0.4-2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial-spectral-temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.
IMAGE EXPLORER: Astronomical Image Analysis on an HTML5-based Web Application
NASA Astrophysics Data System (ADS)
Gopu, A.; Hayashi, S.; Young, M. D.
2014-05-01
Large datasets produced by recent astronomical imagers cause the traditional paradigm for basic visual analysis - typically downloading one's entire image dataset and using desktop clients like DS9, Aladin, etc. - to not scale, despite advances in desktop computing power and storage. This paper describes Image Explorer, a web framework that offers several of the basic visualization and analysis functionality commonly provided by tools like DS9, on any HTML5 capable web browser on various platforms. It uses a combination of the modern HTML5 canvas, JavaScript, and several layers of lossless PNG tiles producted from the FITS image data. Astronomers are able to rapidly and simultaneously open up several images on their web-browser, adjust the intensity min/max cutoff or its scaling function, and zoom level, apply color-maps, view position and FITS header information, execute typically used data reduction codes on the corresponding FITS data using the FRIAA framework, and overlay tiles for source catalog objects, etc.
Design of large zoom for visible and infrared optical system in hemisphere space
NASA Astrophysics Data System (ADS)
Xing, Yang-guang; Li, Lin; Zhang, Juan
2018-01-01
In the field of space optical, the application of advanced optical instruments for related target detection and identification has become an advanced technology in modern optics. In order to complete the task of search in wide field of view and detailed investigation in small field of view, it is inevitable to use the structure of the zoom system to achieve a better observation for important targets. The innovation of this paper lies in using the zoom optical system in space detection, which achieve firstly military needs of searched target in the large field of view and recognized target in the small field of view. At the same time, this paper also completes firstly the design of variable focus optical detection system in the range of hemisphere space, the zoom optical system is working in the range of visible and infrared wavelengths, the perspective angle reaches 360 ° and the zoom ratio of the visible system is up to 15. The visible system has a zoom range of 60-900 mm, a detection band of 0.48-0.70μm, and a F-number of 2.0 to 5.0. The infrared system has a zoom range of 150 900mm, a detection band of 8-12μm, and a F-number of 1.2 to 3.0. The MTF of the visible zoom system is above 0.4 at spatial frequency of 45 lp / mm, and the infrared zoom system is above 0.4 at spatial frequency of 11 lp / mm. The design results show that the system has a good image quality.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature around South Canyon Hot Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
NASA Technical Reports Server (NTRS)
1994-01-01
With the growing awareness and debate over the potential changes associated with global climate change, the polar regions are receiving increased attention. Global cloud distributions can be expected to be altered by increased greenhouse forcing. Owing to the similarity of cloud and snow-ice spectral signatures in both the visible and infrared wavelengths, it is difficult to distinguish clouds from surface features in the polar regions. This work is directed towards the development of algorithms for the ASTER and HIRIS science/instrument teams. Special emphasis is placed on a wide variety of cloud optical property retrievals, and especially retrievals of cloud and surface properties in the polar regions.
Electro-optically actuated liquid-lens zoom
NASA Astrophysics Data System (ADS)
Pütsch, O.; Loosen, P.
2012-06-01
Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.
Rastogi, Ravi; Pawluk, Dianne T V
2013-01-01
An increasing amount of information content used in school, work, and everyday living is presented in graphical form. Unfortunately, it is difficult for people who are blind or visually impaired to access this information, especially when many diagrams are needed. One problem is that details, even in relatively simple visual diagrams, can be very difficult to perceive using touch. With manually created tactile diagrams, these details are often presented in separate diagrams which must be selected from among others. Being able to actively zoom in on an area of a single diagram so that the details can be presented at a reasonable size for exploration purposes seems a simpler approach for the user. However, directly using visual zooming methods have some limitations when used haptically. Therefore, a new zooming method is proposed to avoid these pitfalls. A preliminary experiment was performed to examine the usefulness of the algorithm compared to not using zooming. The results showed that the number of correct responses improved with the developed zooming algorithm and participants found it to be more usable than not using zooming for exploration of a floor map.
Optimal power distribution for minimizing pupil walk in a 7.5X afocal zoom lens
NASA Astrophysics Data System (ADS)
Song, Wanyue; Zhao, Yang; Berman, Rebecca; Bodell, S. Yvonne; Fennig, Eryn; Ni, Yunhui; Papa, Jonathan C.; Yang, Tianyi; Yee, Anthony J.; Moore, Duncan T.; Bentley, Julie L.
2017-11-01
An extensive design study was conducted to find the best optimal power distribution and stop location for a 7.5x afocal zoom lens that controls the pupil walk and pupil location through zoom. This afocal zoom lens is one of the three components in a VIS-SWIR high-resolution microscope for inspection of photonic chips. The microscope consists of an afocal zoom, a nine-element objective and a tube lens and has diffraction limited performance with zero vignetting. In this case, the required change in object (sample) size and resolution is achieved by the magnification change of the afocal component. This creates strict requirements for both the entrance and exit pupil locations of the afocal zoom to couple the two sides successfully. The first phase of the design study looked at conventional four group zoom lenses with positive groups in the front and back and the stop at a fixed location outside the lens but resulted in significant pupil walk. The second phase of the design study focused on several promising unconventional four-group power distribution designs with moving stops that minimized pupil walk and had an acceptable pupil location (as determined by the objective and tube lens).
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Drajsajtl, Tomáš; Struk, Petr; Bednárová, Alice
2013-01-01
AsTeRICS - "The Assistive Technology Rapid Integration & Construction Set" is a construction set for assistive technologies which can be adapted to the motor abilities of end-users. AsTeRICS allows access to different devices such as PCs, cell phones and smart home devices, with all of them integrated in a platform adapted as much as possible to each user. People with motor disabilities in the upper limbs, with no cognitive impairment, no perceptual limitations (neither visual nor auditory) and with basic skills in using technologies such as PCs, cell phones, electronic agendas, etc. have available a flexible and adaptable technology which enables them to access the Human-Machine-Interfaces (HMI) on the standard desktop and beyond. AsTeRICS provides graphical model design tools, a middleware and hardware support for the creation of tailored AT-solutions involving bioelectric signal acquisition, Brain-/Neural Computer Interfaces, Computer-Vision techniques and standardized actuator and device controls and allows combining several off-the-shelf AT-devices in every desired combination. Novel, end-user ready solutions can be created and adapted via a graphical editor without additional programming efforts. The AsTeRICS open-source framework provides resources for utilization and extension of the system to developers and researches. AsTeRICS was developed by the AsTeRICS project and was partially funded by EC.
Structural design of off-axis aspheric surface reflective zoom optical system
NASA Astrophysics Data System (ADS)
Zhang, Ke; Chang, Jun; Song, Haiping; Niu, Yajun
2018-01-01
Designed an off-axis aspheric reflective zoom optical system, and produced a prototype. The system consists of three aspheric reflective lens, the zoom range is 30mm { 90mm. This system gave up the traditional structure of zoom cam, the lens moved using linear guide rail driven by motor, the positioning precision of which was 0.01mm. And introduced the design of support frames of each lens. The practice tests verified the rationality of the prototype structure design.
NASA Astrophysics Data System (ADS)
Angénieux, J. P. L.
1987-06-01
Modern objective lenses for cinematography, television or photography, and particularly zoom lenses, are composed of several groups of lenses which are axially displaced during zooming and/or focusing. The number of these groups has increased recently as well as the complexity of their relative movements and functions. In this paper, we give a short history of zooming and focusing techniques ; we discuss the inconvenience of traditional solutions. We then introduce the concept of bidimensional law. We propose a systematic classification of possible lens-types according to the 4 possible types of group. We finally present a few types of lenses in the form of truth tables and parametered diagrams explaining which groups move and how during focusing and/or zooming.
Holographic zoom system based on spatial light modulator and liquid device
NASA Astrophysics Data System (ADS)
Wang, Di; Li, Lei; Liu, Su-Juan; Wang, Qiong-Hua
2018-02-01
In this paper, two holographic zoom systems are proposed based on the programmability of spatial light modulator (SLM) and zoom characteristics of liquid lens. An active optical zoom system is proposed in which the zoom module is composed of a liquid lens and an SLM. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of an image without mechanical moving parts and keep the output plane stationary. Then a color holographic zoom system based on a liquid lens is proposed. The system processes the color separation of the original object for red, green, and blue components and generated three holograms respectively. A new hologram with specific reconstructed distance can be generated by combing the hologram of the digital lens with the hologram of the image. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of the reconstructed image.
USDA-ARS?s Scientific Manuscript database
The aster yellows phytoplasma (AYp) is transmitted by the aster leafhopper (ALH), Macrosteles quadrilineatus Forbes, in a persistent and propagative manner. To study AYp replication and examine the variability of AYp titer in individual ALHs, we developed a quantitative, real-time PCR (qPCR) assay t...
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled"warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
NASA Astrophysics Data System (ADS)
Ninomiya, Yoshiki; Fu, Bihong
2017-07-01
After the authors have proposed the mineralogical indices, e.g., Quartz Index (QI), Carbonate Index (CI), Mafic Index (MI) for ASTER thermal infrared (TIR) data, many articles have been applied the indices for the geological case studies and proved to be robust in extracting geological information at the local scale. The authors also have developed a system for producing the regional map with the indices, which needs mosaicking of many scenes considering the relatively narrow spatial coverage of each ASTER scene. The system executes the procedures very efficiently to find ASTER data covering a wide target area in the vast and expanding ASTER data archive. Then the searched ASTER data are conditioned, prioritized, and the indices are calculated before finally mosaicking the imagery. Here in this paper, we will present two case studies of the regional lithologic and mineralogic mapping of the indices covering very wide regions in and around the Pamir Mountains and the Tarim basin. The characteristic features of the indices related to geology are analysed, interpreted and discussed.
NASA Astrophysics Data System (ADS)
Braucher, R.; Keddadouche, K.; Aumaître, G.; Bourlès, D. L.; Arnold, M.; Pivot, S.; Baroni, M.; Scharf, A.; Rugel, G.; Bard, E.
2018-04-01
After 6 years of 36Cl routine operation, more than 6000 unknown samples have been measured at the 5MV French accelerator mass spectrometry (AMS) national facility ASTER (CEREGE, Aix en Provence). This paper presents the long term behavior of ASTER through the analysis of the measurements of the most used chlorine standards and reference materials, KNSTD1600, SM-Cl-12 and SM-CL-13 over a 46 months' time period. Comparison of measured chlorine concentrations (both 35Cl and 36Cl) from ice samples on two AMS facilities operating at 5MV (ASTER) and 6MV (DREAMS, Helmholtz-Zentrum Dresden-Rossendorf) and normalizing to two different reference materials agree within uncertainties making both reference materials (SM-Cl-12 and KNSTD1600) suitable for 36Cl measurement at ASTER.
Comparison of preliminary results from Airborne Aster Simulator (AAS) with TIMS data
NASA Technical Reports Server (NTRS)
Kannari, Yoshiaki; Mills, Franklin; Watanabe, Hiroshi; Ezaka, Teruya; Narita, Tatsuhiko; Chang, Sheng-Huei
1992-01-01
The Japanese Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), being developed for a NASA EOS-A satellite, will have 3 VNIR, 6 SWIR, and 5 TIR (8-12 micron) bands. An Airborne ASTER Simulator (AAS) was developed for Japan Resources Observation System Organization (JAROS) by the Geophysical Environmental Research Group (GER) Corp. to research surface temperature and emission features in the MWIR/TIR, to simulate ASTER's TIR bands, and to study further possibility of MWIR/TIR bands. ASTER Simulator has 1 VNIR, 3 MWIR (3-5 microns), and 20 (currently 24) TIR bands. Data was collected over 3 sites - Cuprite, Nevada; Long Valley/Mono Lake, California; and Death Valley, California - with simultaneous ground truth measurements. Preliminary data collected by AAS for Cuprite, Nevada is presented and AAS data is compared with Thermal Infrared Multispectral Scanner (TIMS) data.
NASA Technical Reports Server (NTRS)
Montes, Carlo; Jacob, Frederic
2017-01-01
We compared the capabilities of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imageries for mapping daily evapotranspiration (ET) within a Mediterranean vineyard watershed. We used Landsat and ASTER data simultaneously collected on four dates in 2007 and 2008, along with the simplified surface energy balance index (S-SEBI) model. We used previously ground-validated good quality ASTER estimates as reference, and we analyzed the differences with Landsat retrievals in light of the instrumental factors and methodology. Although Landsat and ASTER retrievals of S-SEBI inputs were different, estimates of daily ET from the two imageries were similar. This is ascribed to the S-SEBI spatial differencing in temperature, and opens the path for using historical Landsat time series over vineyards.
NASA Astrophysics Data System (ADS)
Jarihani, B.
2015-12-01
Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modeling of environmental processes. Pre-processing analysis of DEMs and extracting characteristics of the watershed (e.g., stream networks, catchment delineation, surface and subsurface flow paths) is essential for hydrological and geomorphic analysis and sediment transport. This study investigates the status of the current remotely-sensed DEMs in providing advanced morphometric information of drainage basins particularly in data sparse regions. Here we assess the accuracy of three available DEMs: (i) hydrologically corrected "H-DEM" of Geoscience Australia derived from the Shuttle Radar Topography Mission (SRTM) data; (ii) the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) version2 1-arc-second (~30 m) data; and (iii) the 9-arc-second national GEODATA DEM-9S ver3 from Geoscience Australia and the Australian National University. We used ESRI's geospatial data model, Arc Hydro and HEC-GeoHMS, designed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. A coastal catchment in northeast Australia was selected as the study site where very high resolution LiDAR data are available for parts of the area as reference data to assess the accuracy of other lower resolution datasets. This study provides morphometric information for drainage basins as part of the broad research on sediment flux from coastal basins to Great Barrier Reef, Australia. After applying geo-referencing and elevation corrections, stream and sub basins were delineated for each DEM. Then physical characteristics for streams (i.e., length, upstream and downstream elevation, and slope) and sub-basins (i.e., longest flow lengths, area, relief and slopes) were extracted and compared with reference datasets from LiDAR. Results showed that, in the absence of high-precision and high resolution DEM data, ASTER GDEM or SRTM DEM can be used to extract common morphometric relationship which are widely used for hydrological and geomorphological modelling.
NASA Astrophysics Data System (ADS)
Mouratidis, Antonios; Karadimou, Georgia; Ampatzidis, Dimitrios
2017-12-01
The European Union Digital Elevation Model (EU-DEM) is a relatively new, hybrid elevation product, principally based on SRTM DEM and ASTER GDEM data, but also on publically available Russian topographic maps for regions north of 60° N. More specifically, EU-DEM is a Digital Surface Model (DSM) over Europe from the Global Monitoring for Environment and Security (GMES) Reference Data Access (RDA) project - a realisation of the Copernicus (former GMES) programme, managed by the European Commission/DG Enterprise and Industry. Even if EU-DEM is indeed more reliable in terms of elevation accuracy than its constituents, it ought to be noted that it is not representative of the original elevation measurements, but is rather a secondary (mathematical) product. Therefore, for specific applications, such as those of geomorphological interest, artefacts may be induced. To this end, the purpose of this paper is to investigate the performance of EU-DEM for geomorphological applications and compare it against other available datasets, i.e. topographic maps and (almost) global DEMs such as SRTM, ASTER-GDEM and WorldDEM™. This initial investigation is carried out in Central Macedonia, Northern Greece, in the vicinity of the Mygdonia basin, which corresponds to an area of particular interest for several geoscience applications. This area has also been serving as a test site for the systematic validation of DEMs for more than a decade. Consequently, extensive elevation datasets and experience have been accumulated over the years, rendering the evaluation of new elevation products a coherent and useful exercise on a local to regional scale. In this context, relief classification, drainage basin delineation, slope and slope aspect, as well as extraction and classification of drainage network are performed and validated among the aforementioned elevation sources. The achieved results focus on qualitative and quantitative aspects of automatic geomorphological feature extraction from EU-DEM at a water basin level, with the use of Geographical Information Systems (GIS).
The Zoom Lens: A Case Study in Geometrical Optics.
ERIC Educational Resources Information Center
Cheville, Alan; Scepanovic, Misa
2002-01-01
Introduces a case study on a motion picture company considering the purchase of a newly developed zoom lens in which students act as the engineers designing the zoom lens based on the criteria of company's specifications. Focuses on geometrical optics. Includes teaching notes and classroom management strategies. (YDS)
Intuitive tactile zooming for graphics accessed by individuals who are blind and visually impaired.
Rastogi, Ravi; Pawluk, T V Dianne; Ketchum, Jessica
2013-07-01
One possibility of providing access to visual graphics for those who are visually impaired is to present them tactually: unfortunately, details easily available to vision need to be magnified to be accessible through touch. For this, we propose an "intuitive" zooming algorithm to solve potential problems with directly applying visual zooming techniques to haptic displays that sense the current location of a user on a virtual diagram with a position sensor and, then, provide the appropriate local information either through force or tactile feedback. Our technique works by determining and then traversing the levels of an object tree hierarchy of a diagram. In this manner, the zoom steps adjust to the content to be viewed, avoid clipping and do not zoom when no object is present. The algorithm was tested using a small, "mouse-like" display with tactile feedback on pictures representing houses in a community and boats on a lake. We asked the users to answer questions related to details in the pictures. Comparing our technique to linear and logarithmic step zooming, we found a significant increase in the correctness of the responses (odds ratios of 2.64:1 and 2.31:1, respectively) and usability (differences of 36% and 19%, respectively) using our "intuitive" zooming technique.
NASA Technical Reports Server (NTRS)
2000-01-01
The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.NASA Technical Reports Server (NTRS)
Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry
2016-01-01
A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.
ASTER's First Views of Red Sea, Ethiopia - Thermal-Infrared (TIR) Image (monochrome)
NASA Technical Reports Server (NTRS)
2000-01-01
ASTER succeeded in acquiring this image at night, which is something Visible/Near Infrared VNIR) and Shortwave Infrared (SWIR) sensors cannot do. The scene covers the Red Sea coastline to an inland area of Ethiopia. White pixels represent areas with higher temperature material on the surface, while dark pixels indicate lower temperatures. This image shows ASTER's ability as a highly sensitive, temperature-discerning instrument and the first spaceborne TIR multi-band sensor in history.
The size of image: 60 km x 60 km approx., ground resolution 90 m x 90 m approximately.The ASTER instrument was built in Japan for the Ministry of International Trade and Industry. A joint United States/Japan Science Team is responsible for instrument design, calibration, and data validation. ASTER is flying on the Terra satellite, which is managed by NASA's Goddard Space Flight Center, Greenbelt, MD.NASA Astrophysics Data System (ADS)
Ramsey, M. S.
2006-12-01
The use of satellite thermal infrared (TIR) data to rapidly detect and monitor transient thermal events such as volcanic eruptions commonly relies on datasets with coarse spatial resolution (1.0 - 8.0 km) and high temporal resolution (minutes to hours). However, the growing need to extract physical parameters at meter to sub- meter scales requires data with improved spectral and spatial resolution. Current orbital systems such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Landsat Enhanced Thematic Mapper plus (ETM+) can provide TIR data ideal for this type of scientific analysis, assessment of hazard risks, and to perform smaller scale monitoring; but at the expense of rapid repeat observations. A potential solution to this apparent conflict is to combine the spatial and temporal scales of TIR data in order to provide the benefits of rapid detection together with the potential of detailed science return. Such a fusion is now in place using ASTER data collected in the north Pacific region to monitor the Aleutian and Kamchatka arcs. However, this approach of cross-instrument/cross-satellite monitoring is in jeopardy with the lack of planned moderate resolution TIR instruments following ETM+ and ASTER. This data collection program is also being expanded globally, and was used in 2006 to assist in the response and monitoring of the volcanic crisis at Merapi Volcano in Indonesia. Merapi Volcano is one of the most active volcanoes in the country and lies in central Java north of the densely-populated city of Yogyakarta. Pyroclastic flows and lahars are common following the growth and collapse of the summit lava dome. These flows can be fatal and were the major hazard concern during a period of renewed activity beginning in April 2006. Lava at the surface was confirmed on 25 April and ASTER was tasked with an urgent request observation, subsequently collecting data on 26 April (daytime) and 28 April (nighttime). The TIR revealed thermally-elevated pixels (max = 25.9 C) clustered near the summit with a lesser anomaly (max = 15.5 C) approximately 650 m to the southwest and down slope from the summit. Such small-scale and low-grade thermal features confirmed the increased activity state of the volcano and were only made possible with the moderate spatial, spectral, and radiometric resolution of ASTER. ASTER continued to collect data for the next 12 weeks tracking the progress of large scale pyroclastic flows, the growth of the lava dome, and the path of ash-rich plumes. Data from these observations were reported world-wide and used for evacuation and hazard planning purposes. With the pending demise of such TIR data from orbit, research is also focused on the use of handheld TIR instruments such as the forward-looking infrared radiometer (FLIR) camera. These instruments provide the highest spatial resolution in-situ TIR data and have been used to observe numerous volcanic phenomena and quantitatively model others (e.g., the rise of the magma body preceding the eruption of Mt. St. Helens Volcano; the changes on the lava dome at Bezymianny Volcano; the behavior of basalt crusts during pahoehoe flow inflation). Studies such as these confirm the utility and importance of future moderate to high resolution TIR data in order to understand volcanic processes and their accompanying hazards.
Who's Zooming Whom? Attunement to Animation in the Interface.
ERIC Educational Resources Information Center
Chui, Michael; Dillon, Andrew
1997-01-01
Two controlled experiments examined whether the animated zooming effect accompanying the opening or closing of a folder in the Apple Macintosh graphical user interface aids in the user's perception of which window corresponds to which folder. Results suggest users may become attuned to the informational content of the zooming effect with…
Duda, Kenneth A.; Abrams, Michael
2007-01-01
Satellite images have been extremely useful in a variety of emergency response activities, including hurricane disasters. This article discusses the collaborative efforts of the U.S. Geological Survey (USGS), the Joint United States-Japan Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, and the National Aeronautics and Space Administration (NASA) in responding to crisis situations by tasking the ASTER instrument and rapidly providing information to initial responders. Insight is provided on the characteristics of the ASTER systems, and specific details are presented regarding Hurricane Katrina support.
NASA Astrophysics Data System (ADS)
Pournamdari, Mohsen; Hashim, Mazlan; Pour, Amin Beiranvand
2014-08-01
Spectral transformation methods, including correlation coefficient (CC) and Optimum Index Factor (OIF), band ratio (BR) and principal component analysis (PCA) were applied to ASTER and Landsat TM bands for lithological mapping of Soghan ophiolitic complex in south of Iran. The results indicated that the methods used evidently showed superior outputs for detecting lithological units in ophiolitic complexes. CC and OIF methods were used to establish enhanced Red-Green-Blue (RGB) color combination bands for discriminating lithological units. A specialized band ratio (4/1, 4/5, 4/7 in RGB) was developed using ASTER bands to differentiate lithological units in ophiolitic complexes. The band ratio effectively detected serpentinite dunite as host rock of chromite ore deposits from surrounding lithological units in the study area. Principal component images derived from first three bands of ASTER and Landsat TM produced well results for lithological mapping applications. ASTER bands contain improved spectral characteristics and higher spatial resolution for detecting serpentinite dunite in ophiolitic complexes. The developed approach used in this study offers great potential for lithological mapping using ASTER and Landsat TM bands, which contributes in economic geology for prospecting chromite ore deposits associated with ophiolitic complexes.
ASTER VNIR 15 years growth to the standard imaging radiometer in remote sensing
NASA Astrophysics Data System (ADS)
Hiramatsu, Masaru; Inada, Hitomi; Kikuchi, Masakuni; Sakuma, Fumihiro
2015-10-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared Radiometer (VNIR) is the remote sensing equipment which has 3 spectral bands and one along-track stereoscopic band radiometer. ASTER VNIR's planned long life design (more than 5 years) is successfully achieved. ASTER VNIR has been imaging the World-wide Earth surface multiband images and the Global Digital Elevation Model (GDEM). VNIR data create detailed world-wide maps and change-detection of the earth surface as utilization transitions and topographical changes. ASTER VNIR's geometric resolution is 15 meters; it is the highest spatial resolution instrument on NASA's Terra spacecraft. Then, ASTER VNIR was planned for the geometrical basis map makers in Terra instruments. After 15-years VNIR growth to the standard map-maker for space remote-sensing. This paper presents VNIR's feature items during 15-year operation as change-detection images , DEM and calibration result. VNIR observed the World-wide Earth images for biological, climatological, geological, and hydrological study, those successful work shows a way on space remote sensing instruments. Still more, VNIR 15 years observation data trend and onboard calibration trend data show several guide or support to follow-on instruments.
Rowan, L.C.
1998-01-01
The advanced spaceborne thermal emission and reflection (ASTER) radiometer was designed to record reflected energy in nine channels with 15 or 30 m resolution, including stereoscopic images, and emitted energy in five channels with 90 m resolution from the NASA Earth Observing System AM1 platform. A simulated ASTER data set was produced for the Iron Hill, Colorado, study area by resampling calibrated, registered airborne visible/infrared imaging spectrometer (AVIRIS) data, and thermal infrared multispectral scanner (TIMS) data to the appropriate spatial and spectral parameters. A digital elevation model was obtained to simulate ASTER-derived topographic data. The main lithologic units in the area are granitic rocks and felsite into which a carbonatite stock and associated alkalic igneous rocks were intruded; these rocks are locally covered by Jurassic sandstone, Tertiary rhyolitic tuff, and colluvial deposits. Several methods were evaluated for mapping the main lithologic units, including the unsupervised classification and spectral curve-matching techniques. In the five thermal-infrared (TIR) channels, comparison of the results of linear spectral unmixing and unsupervised classification with published geologic maps showed that the main lithologic units were mapped, but large areas with moderate to dense tree cover were not mapped in the TIR data. Compared to TIMS data, simulated ASTER data permitted slightly less discrimination in the mafic alkalic rock series, and carbonatite was not mapped in the TIMS nor in the simulated ASTER TIR data. In the nine visible and near-infrared channels, unsupervised classification did not yield useful results, but both the spectral linear unmixing and the matched filter techniques produced useful results, including mapping calcitic and dolomitic carbonatite exposures, travertine in hot spring deposits, kaolinite in argillized sandstone and tuff, and muscovite in sericitized granite and felsite, as well as commonly occurring illite/muscovite. However, the distinction made in AVIRIS data between calcite and dolomite was not consistently feasible in the simulated ASTER data. Comparison of the lithologic information produced by spectral analysis of the simulated ASTER data to a photogeologic interpretation of a simulated ASTER color image illustrates the high potential of spectral analysis of ASTER data to geologic interpretation. This paper is not subject to U.S. copyright. Published in 1998 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Welch, Ronald M.
1993-01-01
A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.
Design of a zoom lens without motorized optical elements
NASA Astrophysics Data System (ADS)
Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin
2007-05-01
A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.
Design of a zoom lens without motorized optical elements.
Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin
2007-05-28
A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.
The attentional 'zoom-lens' in 8-month-old infants.
Ronconi, Luca; Franchin, Laura; Valenza, Eloisa; Gori, Simone; Facoetti, Andrea
2016-01-01
The spatial attention mechanisms of orienting and zooming cooperate to properly select visual information from the environment and plan eye movements accordingly. Despite the fact that orienting ability has been extensively studied in infancy, the zooming mechanism--namely, the ability to distribute the attentional resources to a small or large portion of the visual field--has never been tested before. The aim of the present study was to evaluate the attentional zooming abilities of 8-month-old infants. An eye-tracker device was employed to measure the saccadic latencies (SLs) at the onset of a visual target displayed at two eccentricities. The size of the more eccentric target was adjusted in order to counteract the effect of cortical magnification. Before the target display, attentional resources were automatically focused (zoom-in) or spread out (zoom-out) by using a small or large cue, respectively. Two different cue-target intervals were also employed to measure the time course of this attentional mechanism. The results showed that infants' SLs varied as a function of the cue size. Moreover, a clear time course emerged, demonstrating that infants can rapidly adjust the attentional focus size during a pre-saccadic temporal window. These findings could serve as an early marker for neurodevelopmental disorders associated with attentional zooming dysfunction such as autism and dyslexia. © 2015 John Wiley & Sons Ltd.
Teaching Shakespeare in the Digital Age: The eZoomBook Approach
ERIC Educational Resources Information Center
Evain, Christine; De Marco, Chris
2016-01-01
What collaborative process can teachers offer in order to stimulate their students' reading of and writing on Shakespeare's plays? How can new technologies contribute to facilitating the classroom experience? The eZoomBook (eZB) template was designed for teachers to create and share multi-level digital books called "eZoomBooks" that…
Alternate Host of Jack Pine Needle rust in Northern Minnesota
Ralph L. Anderson; Neil A. Anderson
1978-01-01
The pine needle rust of jack pine on the Little Sioux Burn in northeastern Minnesota infected large-leaf aster but not goldenrod. The rust was most severe when asters were abundant on the plots. Les than 10 percent of the jack pine were infected over a 3-year period when asters were more than 10 feet (3.05 m) from the mil-acre plots
The ASTER Global Topographic Data Set
NASA Astrophysics Data System (ADS)
Abrams, M.; Bailey, B.; Tsu, H.; Hato, M.
2009-12-01
The availability of an up-to-date, high-resolution global digital elevation model (DEM) has been a priority of the Earth observation community for a long time. Until now, the best publicly available global data set has been the 100 m SRTM topography, covering 60 degrees north to 57 degrees south latitude On June 29 Japan’s Ministry of Economy, Trade, and Industry (METI) and the United States National Aeronautics and Space Administration (NASA) released the ASTER Global (GDEM) created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. ASTER is an imaging instrument built by METI and operating on the NASA Terra platform. ASTER has a backward- looking stereo band, producing stereo pairs in the near-infrared wavelength region; from these stereo pairs, DEMs with 30 m postings (1 arc-second) can be produced. The joint US/Japan ASTER Project completed a program to produce a global DEM (GDEM). The ASTER GDEM was created by stereo-correlating the entire 1,200,000-scene ASTER archive; stacking and averaging the individual DEMs; cloud screening; and filling voids or holes using SRTM 100 m or other data where available. An extensive validation program was completed prior to release of the GDEM. Validation of the GDEM involved comparisons against higher resolution DEMs worldwide by many organizations. Results indicate that globally, the GDEM meets the 20 m vertical accuracy requirement at the 95% confidence level. Accompanying each tile is another data plane indicating the number of individual DEMs that went into the stack, or identifying the data source used to fill the void. At the November 2007 GEO Ministerial Summit, NASA and METI were invited by GEO to contribute this global DEM to GEOSS. Both countries accepted the invitation. Consequently, the ASTER GDEM is offered at no charge to users worldwide. It is packaged in 1 degree-by-1 degree tiles, and covers the Earth’s land surfaces between 83 degree N and 83 degree S latitudes with estimated accuracies of 20 m for vertical data and 30 m for horizontal data. It is distributed by both METI’s Earth Remote Sensing Data Analysis Center organization in Japan, and NASA’s Land Processes Distributed Active Archive Center in the U.S.
NASA Astrophysics Data System (ADS)
Ramsey, M. S.
2014-12-01
The success of Terra-based observations using the ASTER instrument of active volcanic processes early in the mission gave rise to a funded NASA program designed to both increase the number of ASTER observations following an eruption and validate the satellite data. The urgent request protocol (URP) system for ASTER grew out of this initial study and has now operated in conjunction with and the support of the Alaska Volcano Observatory, the University of Alaska Fairbanks, the University of Hawaii, the USGS Land Processes DAAC, and the ASTER science team. The University of Pittsburgh oversees this rapid response/sensor-web system, which until 2011 had focused solely on the active volcanoes in the North Pacific region. Since that time, it has been expanded to operate globally with AVHRR and MODIS and now ASTER VNIR/TIR data are being acquired at numerous erupting volcanoes around the world. This program relies on the increased temporal resolution of AVHRR/MODIS midwave infrared data to trigger the next available ASTER observation, which results in ASTER data as frequently as every 2-5 days. For many targets, the URP has increased the observational frequency over active eruptions by as much 50%. The data have been used for operational response to new eruptions, longer-term scientific studies such as capturing detailed changes in lava domes/flows, pyroclastic flows and lahars. These data have also been used to infer the emplacement of new lava lobes, detect endogenous dome growth, and interpret hazardous dome collapse events. The emitted TIR radiance from lava surfaces has also been used effectively to model composition, texture and degassing. Now, this long-term archive of volcanic image data is being mined to provide statistics on the expectations of future high-repeat TIR data such as that proposed for the NASA HyspIRI mission. In summary, this operational/scientific program utilizing the unique properties of ASTER and the Terra mission has shown the potential for providing innovative and integrated synoptic measurements of geothermal activity, volcanic eruptions and their subsequent hazards globally.
Thales Angenieux: 42 years of cine 35 mm zoom leadership
NASA Astrophysics Data System (ADS)
Debize, Jacques
2004-02-01
Since the early years of zoom optics, Angenieux has been involved in cine 8 mm, 16 mm and 35 mm. Among more than twenty different zoom lenses, four of them have been milestones in this field, technical progresses being sanctified by two Oscars in 1964 and 1990. From 1960 to 2002 Angenieux has created first the 4 x 35 LA2, the first four times mechanically compensated zoom lens for cine 35 mm in the world, secondary the 10 x 25 T2, the first ten times mechanically compensated zoom lens for cine 35 mm in the world, then the 10 x 25 HR, the top level of quality for its category and finally the 12 x 24 Optimo with all characteristics and performances greatly increased. This leadership has been reached thanks to computers and in-house softwares but also thanks to new manufacturing processes.
Fast dictionary generation and searching for magnetic resonance fingerprinting.
Jun Xie; Mengye Lyu; Jian Zhang; Hui, Edward S; Wu, Ed X; Ze Wang
2017-07-01
A super-fast dictionary generation and searching (DGS) algorithm was developed for MR parameter quantification using magnetic resonance fingerprinting (MRF). MRF is a new technique for simultaneously quantifying multiple MR parameters using one temporally resolved MR scan. But it has a multiplicative computation complexity, resulting in a big burden of dictionary generating, saving, and retrieving, which can easily be intractable for any state-of-art computers. Based on retrospective analysis of the dictionary matching object function, a multi-scale ZOOM like DGS algorithm, dubbed as MRF-ZOOM, was proposed. MRF ZOOM is quasi-parameter-separable so the multiplicative computation complexity is broken into additive one. Evaluations showed that MRF ZOOM was hundreds or thousands of times faster than the original MRF parameter quantification method even without counting the dictionary generation time in. Using real data, it yielded nearly the same results as produced by the original method. MRF ZOOM provides a super-fast solution for MR parameter quantification.
Federal Aviation Administration - Graphic TFR's
NAVAJO CITY, NM, Saturday, May 26, 2018 through Tuesday, June 26, 2018 UTC New zoom to 8/4424 05/26/2018 8/4423 ZAB NM HAZARDS QUEEN, NM, Saturday, May 26, 2018 through Tuesday, June 26, 2018 UTC New zoom ZHU TX SECURITY Corpus Christi, TX, Tuesday, May 29, 2018 through Wednesday, May 30, 2018 Local zoom
An Electrically Tunable Zoom System Using Liquid Lenses
Li, Heng; Cheng, Xuemin; Hao, Qun
2015-01-01
A four-group stabilized zoom system using two liquid lenses and two fixed lens groups is proposed. We describe the design principle, realization, and the testing of a 5.06:1 zoom system. The realized effective focal length (EFL) range is 6.93 mm to 35.06 mm, and the field of view (FOV) range is 8° to 40°. The system can zoom fast when liquid lens 1’s (L1’s) optical power take the value from 0.0087 mm−1 to 0.0192 mm−1 and liquid lens 2’s (L2’s) optical power take the value from 0.0185 mm−1 to −0.01 mm−1. Response time of the realized zoom system was less than 2.5 ms, and the settling time was less than 15 ms.The analysis of elements’ parameters and the measurement of lens performance not only verify the design principle further, but also show the zooming process by the use of two liquid lenses. The system is useful for motion carriers e.g., robot, ground vehicle, and unmanned aerial vehicles considering that it is fast, reliable, and miniature. PMID:26729124
GeneXplorer: an interactive web application for microarray data visualization and analysis.
Rees, Christian A; Demeter, Janos; Matese, John C; Botstein, David; Sherlock, Gavin
2004-10-01
When publishing large-scale microarray datasets, it is of great value to create supplemental websites where either the full data, or selected subsets corresponding to figures within the paper, can be browsed. We set out to create a CGI application containing many of the features of some of the existing standalone software for the visualization of clustered microarray data. We present GeneXplorer, a web application for interactive microarray data visualization and analysis in a web environment. GeneXplorer allows users to browse a microarray dataset in an intuitive fashion. It provides simple access to microarray data over the Internet and uses only HTML and JavaScript to display graphic and annotation information. It provides radar and zoom views of the data, allows display of the nearest neighbors to a gene expression vector based on their Pearson correlations and provides the ability to search gene annotation fields. The software is released under the permissive MIT Open Source license, and the complete documentation and the entire source code are freely available for download from CPAN http://search.cpan.org/dist/Microarray-GeneXplorer/.
Davis, R. E.; Whitcomb, R. F.
1970-01-01
Antibiotics suppressed development of aster yellows (AY) disease symptoms in plants of china aster [Callistephus chinensis (L.) Nees.] and annual chrysanthemum (Chrysanthemum carinatum, Schousb.). When inoculated chrysanthemum plants were treated by any of several techniques with tetracycline antibiotics or chloramphenicol, symptoms failed to appear during treatment but appeared 1 to 4 weeks after treatments were terminated. Under continuous administration of chlortetracycline, aster plants with AY symptoms developed symptomless axillary growth, including flowers. Streptomycin, oleandomycin, kanamycin, tylosin, carbomycin, polymyxin, bacitracin, neomycin, sulfanilamide, penicillin, vancomycin, or cycloserine had no discernible effect on development of AY symptoms. Treatment of plants with tetracycline antibiotics before exposure to inoculative (pathogen-transmitting) vectors delayed the appearance of symptoms or prevented AY infection. Remission of AY symptoms in inoculated plants treated with chlortetracycline was correlated with an inhibition of multiplication of AY agent, as measured by bioassay of extracts. The data give additional support to the hypothesis that aster yellows disease is caused by a mycoplasma-like microorganism. Images PMID:16557820
ASTER preflight and inflight calibration and the validation of level 2 products
Thome, K.; Aral, K.; Hook, S.; Kieffer, H.; Lang, H.; Matsunaga, T.; Ono, A.; Palluconi, F. D.; Sakuma, H.; Slater, P.; Takashima, T.; Tonooka, H.; Tsuchida, S.; Welch, R.M.; Zalewski, E.
1998-01-01
This paper describes the preflight and inflight calibration approaches used for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The system is a multispectral, high-spatial resolution sensor on the Earth Observing System's (EOS)-AMl platform. Preflight calibration of ASTER uses well-characterized sources to provide calibration and preflight round-robin exercises to understand biases between the calibration sources of ASTER and other EOS sensors. These round-robins rely on well-characterized, ultra-stable radiometers. An experiment held in Yokohama, Japan, showed that the output from the source used for the visible and near-infrared (VNIR) subsystem of ASTER may be underestimated by 1.5%, but this is still within the 4% specification for the absolute, radiometric calibration of these bands. Inflight calibration will rely on vicarious techniques and onboard blackbodies and lamps. Vicarious techniques include ground-reference methods using desert and water sites. A recent joint field campaign gives confidence that these methods currently provide absolute calibration to better than 5%, and indications are that uncertainties less than the required 4% should be achievable at launch. The EOS-AMI platform will also provide a spacecraft maneuver that will allow ASTER to see the moon, allowing further characterization of the sensor. A method for combining the results of these independent calibration results is presented. The paper also describes the plans for validating the Level 2 data products from ASTER. These plans rely heavily upon field campaigns using methods similar to those used for the ground-reference, vicarious calibration methods. ?? 1998 IEEE.
Enhanced ASTER DEMs for Decadal Measurements of Glacier Elevation Changes
NASA Astrophysics Data System (ADS)
Girod, L.; Nuth, C.; Kääb, A.
2016-12-01
Elevation change data is critical to the understanding of a number of geophysical processes, including glaciers through the measurement their volume change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system on-board the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available today, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. We developed MMASTER, an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. Our sensor modeling does not require ground control points and thus potentially allows for automatic processing of large data volumes. When compared to ground truth data, we have assessed a ±5m accuracy in DEM differencing when using our processing method, improved from the ±30m when using the AST14DMO DEM product. We demonstrate and discuss this improved ASTER DEM quality for a number of glaciers in Greenland (See figure attached), Alaska, and Svalbard. The quality of our measurements promises to further unlock the underused potential of ASTER DEMs for glacier volume change time series on a global scale. The data produced by our method will thus help to better understand the response of glaciers to climate change and their influence on runoff and sea level.
Characterizing regional soil mineral composition using spectroscopyand geostatistics
Mulder, V.L.; de Bruin, S.; Weyermann, J.; Kokaly, Raymond F.; Schaepman, M.E.
2013-01-01
This work aims at improving the mapping of major mineral variability at regional scale using scale-dependent spatial variability observed in remote sensing data. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and statistical methods were combined with laboratory-based mineral characterization of field samples to create maps of the distributions of clay, mica and carbonate minerals and their abundances. The Material Identification and Characterization Algorithm (MICA) was used to identify the spectrally-dominant minerals in field samples; these results were combined with ASTER data using multinomial logistic regression to map mineral distributions. X-ray diffraction (XRD)was used to quantify mineral composition in field samples. XRD results were combined with ASTER data using multiple linear regression to map mineral abundances. We testedwhether smoothing of the ASTER data to match the scale of variability of the target sample would improve model correlations. Smoothing was donewith Fixed Rank Kriging (FRK) to represent the mediumand long-range spatial variability in the ASTER data. Stronger correlations resulted using the smoothed data compared to results obtained with the original data. Highest model accuracies came from using both medium and long-range scaled ASTER data as input to the statistical models. High correlation coefficients were obtained for the abundances of calcite and mica (R2 = 0.71 and 0.70, respectively). Moderately-high correlation coefficients were found for smectite and kaolinite (R2 = 0.57 and 0.45, respectively). Maps of mineral distributions, obtained by relating ASTER data to MICA analysis of field samples, were found to characterize major soil mineral variability (overall accuracies for mica, smectite and kaolinite were 76%, 89% and 86% respectively). The results of this study suggest that the distributions of minerals and their abundances derived using FRK-smoothed ASTER data more closely match the spatial variability of soil and environmental properties at regional scale.
Feasibility Study of ASTER SWIR data prediction
NASA Astrophysics Data System (ADS)
Yamamoto, H.; Gonzalez, L.
2017-12-01
Observation by ASTER SWIR spectral bands are unavailable since 2008 due to anomalously high SWIR detector temperatures, but ASTER VNIR and TIR spectral bands are still valid. SWIR wavelength region is however very useful to determining the land cover or discriminating rock types, etc. In this work, we present the results of a feasibility study for the prediction of ASTER SWIR bands with artificial neural networks (ANN) using ASTER valid bands. The latter are selected over three types of ground data sets, representing desert, rocky and vegetated areas. The ASTER VNIR bands are atmospherically corrected, using the US standard 62 model, without aerosol correction. To optimize the training of the ANN, it is crucial to categorize the input data. In this goal, we have built a histogram using a simple linear combination of the 3 VNIR bands, that we call contrast histogram, to split the input ASTER data in 4 areas. For each of these 4 areas, we have built six ANN, one for each SWIR band to retrieve with 3 inputs and two layers with 5 hidden nodes each and one outputs layer. The training of the ANN is done using ASTER pixels selected over several millions of pixels in representative desert, green and rocky areas. The analysis of the ANN results demonstrates that 99 % of the pixels are reconstructed with less than 20% error in desert areas. In rocky areas, the errors do not exceed 30%. However, the errors can exceed 50% in vegetated areas. This led us to improve the ANN by introducing new spectral bands (1.24, 1.64, 2.13 μm) from TERRA MODIS that is time synchronized with ASTER. The measurements are pan-sharpened to match ASTER spatial resolution. Instead of using a contrast histogram, a NDVI histogram helps us to classify the input data. With the newly constructed ANNs, the quality of the retrieved SWIR values is perceptible in particular over vegetation ( 45% of the points with less than 20% errors), and even more over the desert and rocky areas ( 75% of the points with less than 10% errors). We demonstrate that it is possible to build ANNs that are capable of regenerating, with a reasonable error, the SWIR bands in deserts and mountainous, while SWIR reconstruction in vegetation areas is more difficult. Improvements can be envisaged by introducing missing elements such as snow or ice along with a better discrimination of the vegetation.
ERIC Educational Resources Information Center
Keogh, Jayne; Garrick, Barbara
2011-01-01
The media regularly present negative news articles about teachers and teaching. This paper focuses particularly on one such news article. Using reflective analytic practices, first we zoom in to conduct a detailed analysis of the text. We find that complex and contradictory moral categories of teachers are assembled within and through the text. We…
ASTER Thermal Anomalies in Western Colorado
Richard E. Zehner
2013-01-01
This layer contains the areas identified as areas of anomalous surface temperature from ASTER satellite imagery. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. Areas that had temperature greater than 2o, and areas with temperature equal to 1o to 2o, were considered ASTER modeled very warm and warm surface exposures (thermal anomalies), respectively Note: 'o' is used in place of lowercase sigma in this description.
Zoom microscope objective using electrowetting lenses.
Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua
2016-02-08
We report a zoom microscope objective which can achieve continuous zoom change and correct the aberrations dynamically. The objective consists of three electrowetting liquid lenses and two glass lenses. The magnification is changed by applying voltages on the three electrowetting lenses. Besides, the three electrowetting liquid lenses can play a role to correct the aberrations. A digital microscope based on the proposed objective is demonstrated. We analyzed the properties of the proposed objective. In contrast to the conventional objectives, the proposed objective can be tuned from ~7.8 × to ~13.2 × continuously. For our objective, the working distance is fixed, which means no movement parts are needed to refocus or change its magnification. Moreover, the zoom objective can be dynamically optimized for a wide range of wavelength. Using such an objective, the fabrication tolerance of the optical system is larger than that of a conventional system, which can decrease the fabrication cost. The proposed zoom microscope objective cannot only take place of the conventional objective, but also has potential application in the 3D microscopy.
Solutions on a high-speed wide-angle zoom lens with aspheric surfaces
NASA Astrophysics Data System (ADS)
Yamanashi, Takanori
2012-10-01
Recent development in CMOS and digital camera technology has accelerated the business and market share of digital cinematography. In terms of optical design, this technology has increased the need to carefully consider pixel pitch and characteristics of the imager. When the field angle at the wide end, zoom ratio, and F-number are specified, choosing an appropriate zoom lens type is crucial. In addition, appropriate power distributions and lens configurations are required. At points near the wide end of a zoom lens, it is known that an aspheric surface is an effective means to correct off-axis aberrations. On the other hand, optical designers have to focus on manufacturability of aspheric surfaces and perform required analysis with respect to the surface shape. Centration errors aside, it is also important to know the sensitivity to aspheric shape errors and their effect on image quality. In this paper, wide angle cine zoom lens design examples are introduced and their main characteristics are described. Moreover, technical challenges are pointed out and solutions are proposed.
Assessing Mesoscale Volcanic Aviation Hazards using ASTER
NASA Astrophysics Data System (ADS)
Pieri, D.; Gubbels, T.; Hufford, G.; Olsson, P.; Realmuto, V.
2006-12-01
The Advanced Spaceborne Thermal Emission and Reflection (ASTER) imager onboard the NASA Terra Spacecraft is a joint project of the Japanese Ministry for Economy, Trade, and Industry (METI) and NASA. ASTER has acquired over one million multi-spectral 60km by 60 km images of the earth over the last six years. It consists of three sub-instruments: (a) a four channel VNIR (0.52-0.86um) imager with a spatial resolution of 15m/pixel, including three nadir-viewing bands (1N, 2N, 3N) and one repeated rear-viewing band (3B) for stereo-photogrammetric terrain reconstruction (8-12m vertical resolution); (b) a SWIR (1.6-2.43um) imager with six bands at 30m/pixel; and (c) a TIR (8.125-11.65um) instrument with five bands at 90m/pixel. Returned data are processed in Japan at the Earth Remote Sensing Data Analysis Center (ERSDAC) and at the Land Processes Distributed Active Archive Center (LP DAAC), located at the USGS Center for Earth Resource Observation and Science (EROS) in Sioux Falls, South Dakota. Within the ASTER Project, the JPL Volcano Data Acquisition and Analyses System (VDAAS) houses over 60,000 ASTER volcano images of 1542 volcanoes worldwide and will be accessible for downloads by the general public and on-line image analyses by researchers in early 2007. VDAAS multi-spectral thermal infrared (TIR) de-correlation stretch products are optimized for volcanic ash detection and have a spatial resolution of 90m/pixel. Digital elevation models (DEM) stereo-photogrammetrically derived from ASTER Band 3B/3N data are also available within VDAAS at 15 and 30m/pixel horizontal resolution. Thus, ASTER visible, IR, and DEM data at 15-100m/pixel resolution within VDAAS can be combined to provide useful boundary conditions on local volcanic eruption plume location, composition, and altitude, as well as on topography of underlying terrain. During and after eruptions, low- altitude winds and ash transport can be affected by topography, and other orographic thermal and water vapor transport effects from the micro (<1km) to mesoscale (1-100km). Such phenomena are thus well-observed by ASTER and pose transient and severe hazards to aircraft operating in and out of airports near volcanoes (e.g., Anchorage, AK, USA; Catania, Italy; Kagoshima City, Japan). ASTER image data and derived products provide boundary conditions for 3D mesoscale atmospheric transport and chemistry models (e.g., RAMS) for retrospective and prospective studies of volcanic aerosol transport at low altitudes in takeoff and landing corridors near active volcanoes. Putative ASTER direct downlinks in the future could provide real-time mitigation of such hazards. Some examples of mesoscale analyses for threatened airspace near US and non- US airports will be shown. This work was, in part, carried out at the Jet Propulsion Laboratory of the California Institute of Technology under contract to the NASA Earth Science Research Program and as part of ASTER Science Team activities.
ZebraZoom: an automated program for high-throughput behavioral analysis and categorization
Mirat, Olivier; Sternberg, Jenna R.; Severi, Kristen E.; Wyart, Claire
2013-01-01
The zebrafish larva stands out as an emergent model organism for translational studies involving gene or drug screening thanks to its size, genetics, and permeability. At the larval stage, locomotion occurs in short episodes punctuated by periods of rest. Although phenotyping behavior is a key component of large-scale screens, it has not yet been automated in this model system. We developed ZebraZoom, a program to automatically track larvae and identify maneuvers for many animals performing discrete movements. Our program detects each episodic movement and extracts large-scale statistics on motor patterns to produce a quantification of the locomotor repertoire. We used ZebraZoom to identify motor defects induced by a glycinergic receptor antagonist. The analysis of the blind mutant atoh7 revealed small locomotor defects associated with the mutation. Using multiclass supervised machine learning, ZebraZoom categorized all episodes of movement for each larva into one of three possible maneuvers: slow forward swim, routine turn, and escape. ZebraZoom reached 91% accuracy for categorization of stereotypical maneuvers that four independent experimenters unanimously identified. For all maneuvers in the data set, ZebraZoom agreed with four experimenters in 73.2–82.5% of cases. We modeled the series of maneuvers performed by larvae as Markov chains and observed that larvae often repeated the same maneuvers within a group. When analyzing subsequent maneuvers performed by different larvae, we found that larva–larva interactions occurred as series of escapes. Overall, ZebraZoom reached the level of precision found in manual analysis but accomplished tasks in a high-throughput format necessary for large screens. PMID:23781175
Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.
2014-01-01
Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.
Discrepancy Between ASTER- and MODIS- Derived Land Surface Temperatures: Terrain Effects
Liu, Yuanbo; Noumi, Yousuke; Yamaguchi, Yasushi
2009-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) are onboard the same satellite platform NASA TERRA. Both MODIS and ASTER offer routine retrieval of land surface temperatures (LSTs), and the ASTER- and MODIS-retrieved LST products have been used worldwide. Because a large fraction of the earth surface consists of mountainous areas, variations in elevation, terrain slope and aspect angles can cause biases in the retrieved LSTs. However, terrain-induced effects are generally neglected in most satellite retrievals, which may generate discrepancy between ASTER and MODIS LSTs. In this paper, we reported the terrain effects on the LST discrepancy with a case examination over a relief area at the Loess Plateau of China. Results showed that the terrain-induced effects were not major, but nevertheless important for the total LST discrepancy. A large local slope did not necessarily lead to a large LST discrepancy. The angle of emitted radiance was more important than the angle of local slope in generating the LST discrepancy. Specifically, the conventional terrain correction may be unsuitable for densely vegetated areas. The distribution of ASTER-to-MODIS emissivity suggested that the terrain correction was included in the generalized split window (GSW) based approach used to rectify MODIS LSTs. Further study should include the classification-induced uncertainty in emissivity for reliable use of satellite-retrieved LSTs over relief areas. PMID:22399955
... Meningococcemia associated purpura Necrosis of the toes References Kumar V, Abbas AK, Aster JC. Cellular responses to ... and toxic insults: adaptation, injury, and death. In: Kumar V, Abbas AK, Aster JC, eds. Robbins and ...
... A. Bones, joints, and soft tissue tumors. In: Kumar V, Abbas AK, Aster JC, eds. Robbins and ... ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 26. Kumar V, Abbas AK, Aster JC. Cellular responses to ...
Spectral mineral mapping for characterization of subtle geothermal prospects using ASTER data
NASA Astrophysics Data System (ADS)
Abubakar, A. J.; Hashim, M.; Pour, A. B.
2017-05-01
In this study, the performance of ASTER data is evaluated for mapping subtle geothermal prospects in an unexplored tropical region having a number of thermal springs. The study employed a simple Decorrelation stretch with specific absorptions to highlight possible alteration zones of interest related to Geothermal (GT) systems. Hydrothermal alteration minerals are subsequently mapped using Spectral Angle Mapper (SAM) and Linear Spectral Unmixing (LSU) algorithms to target representative minerals such as clays, carbonates and AL-OH minerals as indicators of GT activity. The results were validated through field GPS survey, rock sampling and laboratory analysis using latest smart lab X-Ray Diffractometer technology. The study indicates that ASTER broadband satellite data could be used to map subtle GT prospects with the aid of an in-situ verification. However, it also shows that ASTER could not discriminate within specie minerals especially for clays using SWIR bands. Subsequent studies are aimed at looking at both ASTER and Hyperion hyperspectral data in the same area as this could have significant implications for GT resource detection in unmapped aseismic and inaccessible tropical regions using available spaceborne data.
Validation Study on Alos Prism Dsm Mosaic and Aster Gdem 2
NASA Astrophysics Data System (ADS)
Tadono, T.; Takaku, J.; Shimada, M.
2012-07-01
This study aims to evaluate height accuracy of two datasets obtained by spaceborne optical instruments of a digital elevation data for a large-scale area. The digital surface model (DSM) was generated by the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed 'Daichi'), and the global digital elevation model (DEM) version 2 (GDEM-2) was derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard NASA's TERRA satellite. The test site of this study was the entire country of Bhutan, which is located on the southern slopes of the eastern Himalayas. Bhutan is not a large country, covering about 330 km from east to west, and 170 km from north to south; however, it has large height variation from 200 m to more than 7,000 m. This therefore makes it very interesting for validating digital topographic information in terms of national scale generation as well as wide height range. Regarding the reference data, field surveys were conducted in 2010 and 2011, and collected ground control points by a global positioning system were used for evaluating precise height accuracies in point scale as check points (CPs), with a 3 arc-sec DEM created by the Shuttle Radar Topography Mission (SRTM-3) used to validate the wide region. The results confirmed a root mean square error of 8.1 m for PRISM DSM and 29.4 m for GDEM-2 by CPs.
... 12th ed. Philadelphia, PA: Elsevier; 2017:1061-1067. Kumar V, Abbas AK, Aster JC. Cellular responses to ... and toxic insults: adaptation, injury, and death. In: Kumar V, Abbas AK, Aster JC, eds. Robbins and ...
Gowrishankar, Kripa; Rao, Madan
2016-02-21
We study the patterning, fluctuations and correlations of an active polar fluid consisting of contractile polar filaments on a two-dimensional substrate, using a hydrodynamic description. The steady states generically consist of arrays of inward pointing asters and show a continuous transition from a moving lamellar phase, a moving aster street, to a stationary aster lattice with no net polar order. We next study the effect of spatio-temporal athermal noise, parametrized by an active temperature TA, on the stability of the ordered phases. In contrast to its equilibrium counterpart, we find that the active crystal shows true long range order at low TA. On increasing TA, the asters dynamically remodel, concomitantly we find novel phase transitions characterized by bond-orientational and polar order upon "heating".
Common Aperture Techniques for Imaging Electro-Optical Sensors (CATIES).
1980-02-01
milliradians ) at the 5.33:1 zoom point. The zoom optics contain five elements with two moveable air -spaced doublets for accomplishing the zoom function...included in the electrical and optical design but due to funding limitations, system safety requirements during the testing phase and lack of long-term...determined during the system testing phase to be conducted by the Air Force. Limited electronic signal processing (split screen and video mix) was
Optical design of laser zoom projective lens with variable total track
NASA Astrophysics Data System (ADS)
He, Yulan; Xiao, Xiangguo; Lu, Feng; Li, Yuan; Han, Kunye; Wang, Nanxi; Qiang, Hua
2017-02-01
In order to project the laser command information to the proper distance , so a laser zoom projective lens with variable total track optical system is designed in the carrier-based aircraft landing system. By choosing the zoom structure, designing of initial structure with PW solution, correcting and balancing the aberration, a large variable total track with 35 × zoom is carried out. The size of image is invariable that is φ25m, the distance of projective image is variable from 100m to 3500m. Optical reverse design, the spot is less than 8μm, the MTF is near the diffraction limitation, the value of MTF is bigger than 0.4 at 50lp/mm.
NASA Astrophysics Data System (ADS)
Ferreira da Silva, R.; Filgueira, R.; Deelman, E.; Atkinson, M.
2016-12-01
We present Asterism, an open source data-intensive framework, which combines the Pegasus and dispel4py workflow systems. Asterism aims to simplify the effort required to develop data-intensive applications that run across multiple heterogeneous resources, without users having to: re-formulate their methods according to different enactment systems; manage the data distribution across systems; parallelize their methods; co-place and schedule their methods with computing resources; and store and transfer large/small volumes of data. Asterism's key element is to leverage the strengths of each workflow system: dispel4py allows developing scientific applications locally and then automatically parallelize and scale them on a wide range of HPC infrastructures with no changes to the application's code; Pegasus orchestrates the distributed execution of applications while providing portability, automated data management, recovery, debugging, and monitoring, without users needing to worry about the particulars of the target execution systems. Asterism leverages the level of abstractions provided by each workflow system to describe hybrid workflows where no information about the underlying infrastructure is required beforehand. The feasibility of Asterism has been evaluated using the seismic ambient noise cross-correlation application, a common data-intensive analysis pattern used by many seismologists. The application preprocesses (Phase1) and cross-correlates (Phase2) traces from several seismic stations. The Asterism workflow is implemented as a Pegasus workflow composed of two tasks (Phase1 and Phase2), where each phase represents a dispel4py workflow. Pegasus tasks describe the in/output data at a logical level, the data dependency between tasks, and the e-Infrastructures and the execution engine to run each dispel4py workflow. We have instantiated the workflow using data from 1000 stations from the IRIS services, and run it across two heterogeneous resources described as Docker containers: MPI (Container2) and Storm (Container3) clusters (Figure 1). Each dispel4py workflow is mapped to a particular execution engine, and data transfers between resources are automatically handled by Pegasus. Asterism is freely available online at http://github.com/dispel4py/pegasus_dispel4py.
Recent Release of the ASTER Global DEM Product
NASA Astrophysics Data System (ADS)
Behnke, J.; Hall, A.; Meyer, D.; Sohre, T.; Doescher, C.
2009-12-01
On June 29th, the ASTER Global Digital Elevation Model (DEM) release was announced to the public and to a very eager audience. ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) is an imaging instrument flying on Terra, a satellite launched in December 1999 as part of NASA's Earth Observing System (EOS). ASTER is a cooperative effort between NASA, Japan's Ministry of Economy, Trade and Industry (METI) and Japan's Earth Remote Sensing Data Analysis Center (ERSDAC). On June 21, NASA Headquarters along with colleagues in Japan (METI) signed a plan for distribution of this product. The global digital elevation model of Earth is available online to users everywhere at no cost from NASA's Land Processes Distributed Active Archive Center (DAAC) located at Sioux Falls, SD. The DAAC is a joint project of NASA and the USGS and is a key component of NASA's EOSDIS. The new ASTER GDEM was created from nearly 1.3 million individual stereo-pair images acquired by the Japanese Advanced Spaceborne Thermal Emission and Reflection Radiometer (Aster) instrument aboard NASA’s Terra satellite. The ASTER elevation model was jointly developed by NASA and METI under contract to Sensor Information Laboratory Corp., Tsukuba, Japan. On June 29, the NASA press release was picked up quickly by numerous news organizations and online sites. Response to the product was incredible! The news of the release of the product was carried on websites across the globe, this fueled a tremendous response from users. Here are a few interesting metrics about the release: - over 41,000 unique visitors to website in first week following release - top countries in order were: US (approx. 20%), Germany, U.K., Brazil, Austria, Canada, Spain, Switzerland, Japan - approximately 29,000 visitors came to the news page in the first week and about 11,000 of these users downloaded the actual press release - by the end of August, over 2 Million ASTER GDEM files had been downloaded from the Land Processes DAAC This presentation covers the issues associated with the release of this very popular product, including issues raised by many of our users.
Land cover of oases and forest in XinJiang, China retrieved from ASTER data
NASA Astrophysics Data System (ADS)
Buhe, Aosier; Tsuchiya, K.; Kaneko, M.; Ohtaishi, N.; Halik, Mahmut
ASTER aboard NASA’s satellite Terra is a high-resolution multispectral radiometer of 14 bands. The spatial resolution is 15 m in VNIR, 30 m in SWIR and 90 m in TIR spectra, respectively. With the data observed with ASTER, the land cover classification is produced for the Tarim Diversifolious Poplar Protection Area along the Tarim River in the northern Tarim Basin (Taklamakan Desert) in XinJiang, China. The classification of the vegetation (plants) in the arid and semiarid regions using remote-sensing technology is very difficult. Because the cause has low vegetable cover density and the influence of reflection from background soil is large. ASTER data are effective in studying the spectrum characteristics of land cover in arid and semiarid regions. The sensor has several bands in the shortwave infrared wavelength region that is designed for exploration of earth resources and study of the arid and semiarid region natural environment. However, we are not clear combination of which band is the most effective in research of the arid region like the Taklamakan desert in the data of 14 bands of ASTER. The optimum index factor (OIF), based on total variance within bands and correlation coefficient between bands, is a statistical approach to rank all possible three-band combinations. In the process of analyzing the data, the pixel sizes of all the data are converted (layer stacking and re-sampling) into consistent same size of 15 m. The three-band composite with the largest OIF value will have most information (as measured by variance) with the least amount of duplication (as measured by correlation). We used the OIF technique to rank all three-band combinations of ASTER original 14-band data over Tarim River Poplar Protection Area. Our study indicates that RGB color overlay using atmospheric corrected ASTER original bands 2, 3 (VNIR), and 6 (SWIR) has the highest OIF. When NDVI is considered as one ASTER band, highest OIF will have by carrying out bands 3 (VNIR), 4 (SWIR), and NDVI. In this study, we used highest OIF (bands 3, 4, and NDVI) succeeded in extraction of Tarim River Poplar Forest.
Optical satellite data volcano monitoring: a multi-sensor rapid response system
Duda, Kenneth A.; Ramsey, Michael; Wessels, Rick L.; Dehn, Jonathan
2009-01-01
In this chapter, the use of satellite remote sensing to monitor active geological processes is described. Specifically, threats posed by volcanic eruptions are briefly outlined, and essential monitoring requirements are discussed. As an application example, a collaborative, multi-agency operational volcano monitoring system in the north Pacific is highlighted with a focus on the 2007 eruption of Kliuchevskoi volcano, Russia. The data from this system have been used since 2004 to detect the onset of volcanic activity, support the emergency response to large eruptions, and assess the volcanic products produced following the eruption. The overall utility of such integrative assessments is also summarized. The work described in this chapter was originally funded through two National Aeronautics and Space Administration (NASA) Earth System Science research grants that focused on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. A skilled team of volcanologists, geologists, satellite tasking experts, satellite ground system experts, system engineers and software developers collaborated to accomplish the objectives. The first project, Automation of the ASTER Emergency Data Acquisition Protocol for Scientific Analysis, Disaster Monitoring, and Preparedness, established the original collaborative research and monitoring program between the University of Pittsburgh (UP), the Alaska Volcano Observatory (AVO), the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, and affiliates on the ASTER Science Team at the Jet Propulsion Laboratory (JPL) as well as associates at the Earth Remote Sensing Data Analysis Center (ERSDAC) in Japan. This grant, completed in 2008, also allowed for detailed volcanic analyses and data validation during three separate summer field campaigns to Kamchatka Russia. The second project, Expansion and synergistic use of the ASTER Urgent Request Protocol (URP) for natural disaster monitoring and scientific analysis, has expanded the project to other volcanoes around the world and is in progress through 2011. The focus on ASTER data is due to the suitability of the sensor for natural disaster monitoring and the availability of data. The instrument has several unique facets that make it especially attractive for volcanic observations (Ramsey and Dehn, 2004). Specifically, ASTER routinely collects data at night, it has the ability to generate digital elevation models using stereo imaging, it can collect data in various gain states to minimize data saturation, it has a cross-track pointing capability for faster targeting, and it collects data up to ±85° latitude for better global coverage. As with any optical imaging-based remote sensing, the viewing conditions can negatively impact the data quality. This impact varies across the optical and thermal infrared wavelengths as well as being a function of the specific atmospheric window within a given wavelength region. Water vapor and cloud formation can obscure surface data in the visible and near infrared (VNIR)/shortwave infrared (SWIR) region due mainly to non-selective scattering of the incident photons. In the longer wavelengths of the thermal infrared (TIR), scattering is less of an issue, but heavy cloud cover can still obscure the ground due to atmospheric absorption. Thin clouds can be optically-transparent in the VNIR and TIR regions, but can cause errors in the extracted surface reflectance or derived surface temperatures. In regions prone to heavy cloud cover, optical remote sensing can be improved through increased temporal resolution. As more images are acquired in a given time period the chances of a clear image improve dramatically. The Advanced Very High Resolution Radiometer (AVHRR) routine monitoring, which commonly collects 4-6 images per day of any north Pacific volcano, takes advantage of this fact. The rapid response program described in this chapter also improves the temporal resolution of the ASTER instrument. ASTER has been acquiring images of volcanic eruptions since soon after its launch in December 1999. An early example included the observations of the large pyroclastic flow deposit emplaced at Bezymianny volcano in Kamchatka, Russia. The first images in March 2000, just weeks after the eruption, revealed the extent, composition, and cooling history of this large deposit and of the active lava dome (Ramsey and Dehn, 2004). The initial results from these early datasets spurred interest in using ASTER data for expanded volcano monitoring in the north Pacific. It also gave rise to the multi-year NASA-funded programs of rapid response scheduling and imaging throughout the Aleutian, Kamchatka and Kurile arcs. Since the formal establishment of the programs, the data have provided detailed descriptions of the eruptions of Augustine, Bezymianny, Kliuchevskoi and Sheveluch volcanoes over the past nine years (Wessels et al., in press; Carter et al., 2007, 2008; Ramsey et al., 2008; Rose and Ramsey, 2009). The initial research focus of this rapid response program was specifically on automating the ASTER sensor’s ability for targeted observational scheduling using the expedited data system. This urgent request protocol is one of the unique characteristics of ASTER. It provides a limited number of emergency observations, typically at a much-improved temporal resolution and quicker turnaround with data processing in the United States rather than in Japan. This can speed the reception of the processed data by several days to a week. The ongoing multi-agency research and operational collaboration has been highly successful. AVO serves as the primary source for status information on volcanic activity, working closely with the National Weather Service (NWS), Federal Aviation Administration (FAA), military and other state and federal emergency services. Collaboration with the Russian Institute of Volcanology and Seismology (IVS)/Kamchatka Volcanic Eruption Response Team (KVERT) is also maintained. Once a volcano is identified as having increased thermal output, ASTER is automatically tasked and the volcano is targeted at the next available opportunity. After the data are acquired, scientists at all the agencies have access to the images, with the primary science analysis carried out at the University of Pittsburgh and AVO. Results are disseminated to the responsible monitoring agencies and the global community through e-mail mailing lists.
NASA Astrophysics Data System (ADS)
Tarquini, S.; Nannipieri, L.; Favalli, M.; Fornaciai, A.; Vinci, S.; Doumaz, F.
2012-04-01
Digital elevation models (DEMs) are fundamental in any kind of environmental or morphological study. DEMs are obtained from a variety of sources and generated in several ways. Nowadays, a few global-coverage elevation datasets are available for free (e.g., SRTM, http://www.jpl.nasa.gov/srtm; ASTER, http://asterweb.jpl.nasa.gov/). When the matrix of a DEM is used also for computational purposes, the choice of the elevation dataset which better suits the target of the study is crucial. Recently, the increasing use of DEM-based numerical simulation tools (e.g. for gravity driven mass flows), would largely benefit from the use of a higher resolution/higher accuracy topography than those available at planetary scale. Similar elevation datasets are neither easily nor freely available for all countries worldwide. Here we introduce a new web resource which made available for free (for research purposes only) a 10 m-resolution DEM for the whole Italian territory. The creation of this elevation dataset was presented by Tarquini et al. (2007). This DEM was obtained in triangular irregular network (TIN) format starting from heterogeneous vector datasets, mostly consisting in elevation contour lines and elevation points derived from several sources. The input vector database was carefully cleaned up to obtain an improved seamless TIN refined by using the DEST algorithm, thus improving the Delaunay tessellation. The whole TINITALY/01 DEM was converted in grid format (10-m cell size) according to a tiled structure composed of 193, 50-km side square elements. The grid database consists of more than 3 billions of cells and occupies almost 12 GB of disk memory. A web-GIS has been created (http://tinitaly.pi.ingv.it/ ) where a seamless layer of images in full resolution (10 m) obtained from the whole DEM (both in color-shaded and anaglyph mode) is open for browsing. Accredited navigators are allowed to download the elevation dataset.
ASTER Global Digital Elevation Model GDEM
2009-06-29
NASA and Japan Ministry of Economy, Trade and Industry METI released the Advanced Spaceborne Thermal Emission and Reflection Radiometer ASTER Global Digital Elevation Model GDEM to the worldwide public on June 29, 2009.
Bifocal liquid lens zoom objective for mobile phone applications
NASA Astrophysics Data System (ADS)
Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Craen, P.
2007-02-01
Miniaturized camera systems are an integral part of today's mobile phones which recently possess auto focus functionality. Commercially available solutions without moving parts have been developed using the electrowetting technology. Here, the contact angle of a drop of a conductive or polar liquid placed on an insulating substrate can be influenced by an electric field. Besides the compensation of the axial image shift due to different object distances, mobile phones with zoom functionality are desired as a next evolutionary step. In classical mechanically compensated zoom lenses two independently driven actuators combined with precision guides are needed leading to a delicate, space consuming and expansive opto-mechanical setup. Liquid lens technology based on the electrowetting effect gives the opportunity to built adaptive lenses without moving parts thus simplifying the mechanical setup. However, with the recent commercially available liquid lens products a completely motionless and continuously adaptive zoom system with market relevant optical performance is not feasible. This is due to the limited change in optical power the liquid lenses can provide and the dispersion of the used materials. As an intermediate step towards a continuously adjustable and motionless zoom lens we propose a bifocal system sufficient for toggling between two effective focal lengths without any moving parts. The system has its mechanical counterpart in a bifocal zoom lens where only one lens group has to be moved. In a liquid lens bifocal zoom two groups of adaptable liquid lenses are required for adjusting the effective focal length and keeping the image location constant. In order to overcome the difficulties in achromatizing the lens we propose a sequential image acquisition algorithm. Here, the full color image is obtained from a sequence of monochrome images (red, green, blue) leading to a simplified optical setup.
Geographic Data Display Implementation
1977-06-01
display to be either multiplied or divided by the magnification factor (normally 1.5). The result is a change of extent around the cursor as seen in... Products printer and a 200-card- per-minute card reader with the Interdata 4 (1-4). The 1-4 with its 64K of core is the applications machine connected...storing these values in the CURSTA array. 57 ZOOM IN FUNCTION KEY ZOOM OUT FUNCTION KEY ZMINTP ZMOUTP SET ZOOM OUT MAG FACTOR ZOMTOP SET
NASA Technical Reports Server (NTRS)
2000-01-01
The Eiffel Tower and its shadow can be seen next to the Seine in the left middle of this ASTER image of Paris. Based on the length of the shadow and the solar elevation angle of 59 degrees, we can calculate its height as 324 meters (1,054 feet), compared to its actual height of 303 meters (985 feet). Acquired on July 23, 2000, this image covers an area 23 kilometers (15 miles) wide and 20 kilometers (13 miles) long in three bands of the reflected visible and infrared wavelength region. Known as the City of Light, Paris has been extolled for centuries as one of the great cities of the world. Its location on the Seine River, at a strategic crossroads of land and river routes, has been the key to its expansion since the Parisii tribe first settled here in the 3rd century B.C.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.Moon illusion and spiral aftereffect: illusions due to the loom-zoom system?
Hershenson, M
1982-12-01
The moon illusion and the spiral aftereffect are illusions in which apparent size and apparent distance vary inversely. Because this relationship is exactly opposite to that predicted by the static size--distance invariance hypothesis, the illusions have been called "paradoxical." The illusions may be understood as products of a loom-zoom system, a hypothetical visual subsystem that, in its normal operation, acts according to its structural constraint, the constancy axiom, to produce perceptions that satisfy the constraints of stimulation, the kinetic size--distance invariance hypothesis. When stimulated by its characteristic stimulus of symmetrical expansion or contraction, the loom-zoom system produces the perception of a rigid object moving in depth. If this system is stimulated by a rotating spiral, a negative motion-aftereffect is produced when rotation ceases. If fixation is then shifted to a fixed-sized disc, the aftereffect process alters perceived distance and the loom-zoom system alters perceived size such that the disc appears to expand and approach or to contract and recede, depending on the direction of rotation of the spiral. If the loom-zoom system is stimulated by a moon-terrain configuration, the equidistance tendency produces a foreshortened perceived distance for the moon as an inverse function of elevation and acts in conjunction with the loom-zoom system to produce the increased perceived size of the moon.
Wick, David V.
2005-12-20
An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.
Optical zoom lens module using MEMS deformable mirrors for portable device
NASA Astrophysics Data System (ADS)
Lu, Jia-Shiun; Su, Guo-Dung J.
2012-10-01
The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52° and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.°
Continuous zoom antenna for mobile visible light communication.
Zhang, Xuebin; Tang, Yi; Cui, Lu; Bai, Tingzhu
2015-11-10
In this paper, we design a continuous zoom antenna for mobile visible light communication (VLC). In the design, a right-angle reflecting prism was adopted to fold the space optical path, thus decreasing the antenna thickness. The surface of each lens in the antenna is spherical, and the system cost is relatively low. Simulation results indicated that the designed system achieved the following performance: zoom ratio of 2.44, field of view (FOV) range of 18°-48°, system gain of 16.8, and system size of 18 mm×6 mm. Finally, we established an indoor VLC system model in a room the size of 5 m ×5 m ×3 m and compared the detection results of the zoom antenna and fixed-focus antenna obtained in a multisource communication environment, a mobile VLC environment, and a multiple-input multiple-output communication environment. The simulation results indicated that the continuous zoom antenna could realize large FOV and high gain. Moreover, the system showed improved stability, mobility, and environmental applicability.
Engineering the Ideal Gigapixel Image Viewer
NASA Astrophysics Data System (ADS)
Perpeet, D. Wassenberg, J.
2011-09-01
Despite improvements in automatic processing, analysts are still faced with the task of evaluating gigapixel-scale mosaics or images acquired by telescopes such as Pan-STARRS. Displaying such images in ‘ideal’ form is a major challenge even today, and the amount of data will only increase as sensor resolutions improve. In our opinion, the ideal viewer has several key characteristics. Lossless display - down to individual pixels - ensures all information can be extracted from the image. Support for all relevant pixel formats (integer or floating point) allows displaying data from different sensors. Smooth zooming and panning in the high-resolution data enables rapid screening and navigation in the image. High responsiveness to input commands avoids frustrating delays. Instantaneous image enhancement, e.g. contrast adjustment and image channel selection, helps with analysis tasks. Modest system requirements allow viewing on regular workstation computers or even laptops. To the best of our knowledge, no such software product is currently available. Meeting these goals requires addressing certain realities of current computer architectures. GPU hardware accelerates rendering and allows smooth zooming without high CPU load. Programmable GPU shaders enable instant channel selection and contrast adjustment without any perceptible slowdown or changes to the input data. Relatively low disk transfer speeds suggest the use of compression to decrease the amount of data to transfer. Asynchronous I/O allows decompressing while waiting for previous I/O operations to complete. The slow seek times of magnetic disks motivate optimizing the order of the data on disk. Vectorization and parallelization allow significant increases in computational capacity. Limited memory requires streaming and caching of image regions. We develop a viewer that takes the above issues into account. Its awareness of the computer architecture enables previously unattainable features such as smooth zooming and image enhancement within high-resolution data. We describe our implementation, disclosing its novel file format and lossless image codec whose decompression is faster than copying the raw data in memory. Both provide crucial performance boosts compared to conventional approaches. Usability tests demonstrate the suitability of our viewer for rapid analysis of large SAR datasets, multispectral satellite imagery and mosaics.
Geological applications of machine learning on hyperspectral remote sensing data
NASA Astrophysics Data System (ADS)
Tse, C. H.; Li, Yi-liang; Lam, Edmund Y.
2015-02-01
The CRISM imaging spectrometer orbiting Mars has been producing a vast amount of data in the visible to infrared wavelengths in the form of hyperspectral data cubes. These data, compared with those obtained from previous remote sensing techniques, yield an unprecedented level of detailed spectral resolution in additional to an ever increasing level of spatial information. A major challenge brought about by the data is the burden of processing and interpreting these datasets and extract the relevant information from it. This research aims at approaching the challenge by exploring machine learning methods especially unsupervised learning to achieve cluster density estimation and classification, and ultimately devising an efficient means leading to identification of minerals. A set of software tools have been constructed by Python to access and experiment with CRISM hyperspectral cubes selected from two specific Mars locations. A machine learning pipeline is proposed and unsupervised learning methods were implemented onto pre-processed datasets. The resulting data clusters are compared with the published ASTER spectral library and browse data products from the Planetary Data System (PDS). The result demonstrated that this approach is capable of processing the huge amount of hyperspectral data and potentially providing guidance to scientists for more detailed studies.
NASA Astrophysics Data System (ADS)
Girod, L.; Nuth, C.; Kääb, A.
2015-12-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a source of stereoscopic images covering the whole globe at a 15m resolution at a consistent quality for over 15 years. The potential of this data in terms of geomorphological analysis and change detection in three dimensions is unrivaled and needs to be exploited. However, the quality of the DEMs and ortho-images currently delivered by NASA (ASTER DMO products) is often of insufficient quality for a number of applications such as mountain glacier mass balance. For this study, the use of Ground Control Points (GCPs) or of other ground truth was rejected due to the global "big data" type of processing that we hope to perform on the ASTER archive. We have therefore developed a tool to compute Rational Polynomial Coefficient (RPC) models from the ASTER metadata and a method improving the quality of the matching by identifying and correcting jitter induced cross-track parallax errors. Our method outputs more accurate DEMs with less unmatched areas and reduced overall noise. The algorithms were implemented in the open source photogrammetric library and software suite MicMac.
1987-01-01
0.5 O.6 11.0 2.6 1.7 13.0 3.3 2.201C199t11 tuberosi Ascleplas viridi flora Aster Pricoides Aster piloaus Aster 19. Aitraqi1ui crIsitcar~n. 9arbarea...strigosus 4.0 1.0 0.5 15.0 3.11 7.1 19.0 4.9 2.9 Eujohoofii so. ’estuca etltior Festqci xctofloea 0.0 0.0 0.0 3.0 0.9 1.0 3.0 0.8 1.0 Fragaria virginiani
NASA Technical Reports Server (NTRS)
2000-01-01
Dramatic differences in land use patterns are highlighted in this image of the U.S.-Mexico border. Lush, regularly gridded agricultural fields on the U.S. side contrast with the more barren fields of Mexico This June 12, 2000, sub-scene combines visible and near infrared bands, displaying vegetation in red. The town of Mexicali-Calexico spans the border in the middle of the image; El Centro, California, is in the upper left. Watered by canals fed from the Colorado River, California's Imperial Valley is one of the country's major fruit and vegetable producers. This image covers an area 24 kilometers (15 miles) wide and 30 kilometers (19 miles) long in three bands of the reflected visible and infrared wavelength region.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.NASA Astrophysics Data System (ADS)
Rajendran, Sankaran; Thirunavukkarasu, A.; Balamurugan, G.; Shankar, K.
2011-04-01
This work describes a new image processing technique for discriminating iron ores (magnetite quartzite deposits) and associated lithology in high-grade granulite region of Salem, Southern Peninsular India using visible, near-infrared and short wave infrared reflectance data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Image spectra show that the magnetite quartzite and associated lithology of garnetiferrous pyroxene granulite, hornblende biotite gneiss, amphibolite, dunite, and pegmatite have absorption features around spectral bands 1, 3, 5, and 7. ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in RGB are constructed by summing the bands representing the shoulders of absorption features as a numerator, and the band located nearest the absorption feature as a denominator to map iron ores and band ratios ((2 + 4)/3, (5 + 7)/6, (7 + 9)/8) in RGB for associated lithology. The results show that ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in a Red-Green-Blue (RGB) color combination identifies the iron ores much better than previously published ASTER band ratios analysis. A Principal Component Analysis (PCA) is applied to reduce redundant information in highly correlated bands. PCA (3, 2, and 1 for iron ores and 5, 4, 2 for granulite rock) in RGB enabled the discrimination between the iron ores and garnetiferrous pyroxene granulite rock. Thus, this image processing technique is very much suitable for discriminating the different types of rocks of granulite region. As outcome of the present work, the geology map of Salem region is provided based on the interpretation of ASTER image results and field verification work. It is recommended that the proposed methods have great potential for mapping of iron ores and associated lithology of granulite region with similar rock units of granulite regions of Southern Peninsular India. This work also demonstrates the ability of ASTER's to provide information on iron ores, which is valuable for mineral prospecting and exploration activities.
Validation of the ASTER instrument level 1A scene geometry
Kieffer, H.H.; Mullins, K.F.; MacKinnon, D.J.
2008-01-01
An independent assessment of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument geometry was undertaken by the U.S. ASTER Team, to confirm the geometric correction parameters developed and applied to Level 1A (radiometrically and geometrically raw with correction parameters appended) ASTER data. The goal was to evaluate the geometric quality of the ASTER system and the stability of the Terra spacecraft. ASTER is a 15-band system containing optical instruments with resolutions from 15- to 90-meters; all geometrically registered products are ultimately tied to the 15-meter Visible and Near Infrared (VNIR) sub-system. Our evaluation process first involved establishing a large database of Ground Control Points (GCP) in the mid-western United States; an area with features of an appropriate size for spacecraft instrument resolutions. We used standard U.S. Geological Survey (USGS) Digital Orthophoto Quads (DOQS) of areas in the mid-west to locate accurate GCPs by systematically identifying road intersections and recording their coordinates. Elevations for these points were derived from USGS Digital Elevation Models (DEMS). Road intersections in a swath of nine contiguous ASTER scenes were then matched to the GCPs, including terrain correction. We found no significant distortion in the images; after a simple image offset to absolute position, the RMS residual of about 200 points per scene was less than one-half a VNIR pixel. Absolute locations were within 80 meters, with a slow drift of about 10 meters over the entire 530-kilometer swath. Using strictly simultaneous observations of scenes 370 kilometers apart, we determined a stereo angle correction of 0.00134 degree with an accuracy of one microradian. The mid-west GCP field and the techniques used here should be widely applicable in assessing other spacecraft instruments having resolutions from 5 to 50-meters. ?? 2008 American Society for Photogrammetry and Remote Sensing.
Sulfur Dioxide Plume During the Continuing Eruption of Mt. Etna, Italy
NASA Technical Reports Server (NTRS)
2001-01-01
The current eruption of Mt. Etna started on July 17, and has continued to the present. This ASTER image was acquired on Sunday, July 29 and shows the sulfur dioxide plume (in purple) originating form the summit, drifting over the city of Catania, and continuing over the Ionian Sea. ASTER's unique combination of multiple thermal infrared channels and high spatial resolution allows the determination of the thickness and position of the SO2 plume. The image covers an area of 24 x 30 km.The image is centered at 37.7 degrees north latitude, 15 degrees east longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.NASA Technical Reports Server (NTRS)
2000-01-01
This ASTER images was acquired on May 2, 2000 over the North Patagonia Ice Sheet, Chile near latitude 47 degrees south, longitude 73 degrees west. The image covers 36 x 30 km. The false color composite displays vegetation in red. The image dramatically shows a single large glacier, covered with crevasses. A semi-circular terminal moraine indicates that the glacier was once more extensive than at present. ASTER data are being acquired over hundreds of glaciers worldwide to measure their changes over time. Since glaciers are sensitive indicators of warming or cooling, this program can provide global data set critical to understand climate change.This image is located at 46.5 degrees south latitude and 73.9 degrees west longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.Which DEM is the best for glaciology? -Evaluation of global-scale DEM products-
NASA Astrophysics Data System (ADS)
Nagai, Hiroto; Tadono, Takeo
2017-04-01
Digital elevation models (DEMs) are fundamental geospatial data to study glacier distribution, changes, dynamics, mass balance and various geomorphological conditions. This study evaluates latest global-scale free DEMs in order to clarify their superiority and inferiority in glaciological uses. Three DEMs are now available; the 1-arcsec. product obtained from the Shuttle Radar Topographic Mission (SRTM1), the second version of Global Digital Elevation Model of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM2), and the first resampled dataset acquired by the Advanced Land observing Satellite, namely ALOS World 3D-30m (AW3D30). These DEMs have common specifications of global coverage (<60°S/N for SRTM1), freely downloadable via internet, and 1-arcsec. ( 30 m) pixel spacing. We carried out quantitative accuracy evaluation and spatial analysis of missing data (i.e. "void") distribution for these DEMs. Elevation values of the three DEMs are validated at check points (CPs), where elevation was measured by Geospatial Information Authority of Japan, in (A) the Japan Alps (as steep mountains with glaciation), in (B) Mt. Fuji (as monotonous hillslope), and in (C) the Tone river basin (as an flat plain). In all study sites, AW3D30 has the smallest errors against the CP elevation values (A: -6.1±8.6 m, B: +0.1±3.9 m, C: +0.1±2.5 m as the mean value and standard deviation of elevation differences). SRTM1 is secondly accurate (A: -17.8±16.3 m, B: +1.3±6.4 m, C: +0.1±3.1 m,), followed by ASTER GDEM2 (A: -13.9±20.8 m, B: -3.9±10.0 m, C: +4.3±3.8 m,). This accuracy differences among the DEMs are greater in steeper terrains (A>B>C). In the Tone river basin, SRTM1 has equivalent accuracy to AW3D30. High resolution (2.5 m) of the original stereo-pair images for AW3D30 (i.e. ALOS PRISM imagery) contributes for the best absolute accuracy. Glaciers on rather flat terrains are usually distributed in higher latitude (e.g. Antarctica and Greenland), where SRTM1 is unable. Glaciers at mid-to-low latitudes glaciers are usually distributed in high and steep mountains, where SRTM1 has lower accuracy than AW3D30. AW3D30 would contributes as a preferable option for glaciology in a global scale. At the tops of high mountains in the Nepal Himalaya, however, AW3D30 has a large area of data missing due to snow cover. This inferiority should be improved by filling with other datasets in the next version. ASTER GDEM2 has less area of data missing in the Nepal Himalaya, which would contribute for coarse uses such as generation of river basin, brief drawing of a topographic map, etc.
Topographic Features of Malyy Naryn River Watershed Based on Different Data
NASA Astrophysics Data System (ADS)
Li, M.; Chen, L.; Cui, Y.; Zhang, M.
2018-04-01
This paper researched the influence on the topographical characteristics of watersheds by setting different catchment area thresholds based on different data sets, namely ZY3 DSM, SRTM DEM and ASTER GDEM. Slope, hypsometric integral, river network density and river network discrepancy are analyzed and compared. The results are as follows: a) Three data sets all can express the same rough terrain characteristics and the same degree of watershed topography development; b) ZY3 DSM can reflect terrain information over the Malyy Naryn River watershed in most detail and it has the best expression effect on the terrain among the three data sets of ZY3 DSM, SRTM DEM and ASTER GDEM, followed by SRTM DEM, and the effect of ASTER GDEM is the worst; c) The similarity of river networks extracted by ZY3 DSM and SRTM DEM is the highest, and the similarity between ZY3 DSM and ASTER GDEM is the lowest one.
Recognition of a porphyry system using ASTER data in Bideghan - Qom province (central of Iran)
NASA Astrophysics Data System (ADS)
Feizi, F.; Mansouri, E.
2014-07-01
The Bideghan area is located south of the Qom province (central of Iran). The most impressive geological features in the studied area are the Eocene sequences which are intruded by volcanic rocks with basic compositions. Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) image processing have been used for hydrothermal alteration mapping and lineaments identification in the investigated area. In this research false color composite, band ratio, Principal Component Analysis (PCA), Least Square Fit (LS-Fit) and Spectral Angel Mapping (SAM) techniques were applied on ASTER data and argillic, phyllic, Iron oxide and propylitic alteration zones were separated. Lineaments were identified by aid of false color composite, high pass filters and hill-shade DEM techniques. The results of this study demonstrate the usefulness of remote sensing method and ASTER multi-spectral data for alteration and lineament mapping. Finally, the results were confirmed by field investigation.
Lee, Gregory K.
2015-01-01
A digital elevation model (DEM) of the entire country of the Islamic Republic of Mauritania was produced using Shuttle Radar Topography Mission (SRTM) data as required for deliverable 65 of the contract. In addition, because of significant recent advancements of availability, seamlessness, and validity of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global elevation data, the U.S. Geological Survey (USGS) extended its efforts to include a higher resolution countrywide ASTER DEM as value added to the required Deliverable 63, which was limited to five areas within the country. Both SRTM and ASTER countrywide DEMs have been provided in ERDAS Imagine (.img) format that is also directly compatible with ESRI ArcMap, ArcGIS Explorer, and other GIS applications.
The Reactome pathway Knowledgebase
Fabregat, Antonio; Sidiropoulos, Konstantinos; Garapati, Phani; Gillespie, Marc; Hausmann, Kerstin; Haw, Robin; Jassal, Bijay; Jupe, Steven; Korninger, Florian; McKay, Sheldon; Matthews, Lisa; May, Bruce; Milacic, Marija; Rothfels, Karen; Shamovsky, Veronica; Webber, Marissa; Weiser, Joel; Williams, Mark; Wu, Guanming; Stein, Lincoln; Hermjakob, Henning; D'Eustachio, Peter
2016-01-01
The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations—an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently. PMID:26656494
ZOOM Lite: next-generation sequencing data mapping and visualization software
Zhang, Zefeng; Lin, Hao; Ma, Bin
2010-01-01
High-throughput next-generation sequencing technologies pose increasing demands on the efficiency, accuracy and usability of data analysis software. In this article, we present ZOOM Lite, a software for efficient reads mapping and result visualization. With a kernel capable of mapping tens of millions of Illumina or AB SOLiD sequencing reads efficiently and accurately, and an intuitive graphical user interface, ZOOM Lite integrates reads mapping and result visualization into a easy to use pipeline on desktop PC. The software handles both single-end and paired-end reads, and can output both the unique mapping result or the top N mapping results for each read. Additionally, the software takes a variety of input file formats and outputs to several commonly used result formats. The software is freely available at http://bioinfor.com/zoom/lite/. PMID:20530531
Design of a variable-focal-length optical system
NASA Technical Reports Server (NTRS)
Ricks, D.; Shannon, R. R.
1984-01-01
Requirements to place an entire optical system with a variable focal length ranging from 20 to 200 cm within a overall length somewhat less than 100 cm placed severe restrictions on the design of a zoom lens suitable for use on a comet explorer. The requirements of a wavelength range of 0.4 to 1.0 microns produced even greater limitations on the possibilities for a design that included a catadioptric (using mirrors and glass) front and followed by a zooming refractive portion. Capabilities available commercial zoom lenses as well as patents of optical systems are reviewed. Preliminary designs of the refractive optics zoom lens and the catadioptric system are presented and evaluated. Of the two, the latter probably has the best chance of success, so long as the shortest focal lengths are not really needed.
A methodology for coupling a visual enhancement device to human visual attention
NASA Astrophysics Data System (ADS)
Todorovic, Aleksandar; Black, John A., Jr.; Panchanathan, Sethuraman
2009-02-01
The Human Variation Model views disability as simply "an extension of the natural physical, social, and cultural variability of mankind." Given this human variation, it can be difficult to distinguish between a prosthetic device such as a pair of glasses (which extends limited visual abilities into the "normal" range) and a visual enhancement device such as a pair of binoculars (which extends visual abilities beyond the "normal" range). Indeed, there is no inherent reason why the design of visual prosthetic devices should be limited to just providing "normal" vision. One obvious enhancement to human vision would be the ability to visually "zoom" in on objects that are of particular interest to the viewer. Indeed, it could be argued that humans already have a limited zoom capability, which is provided by their highresolution foveal vision. However, humans still find additional zooming useful, as evidenced by their purchases of binoculars equipped with mechanized zoom features. The fact that these zoom features are manually controlled raises two questions: (1) Could a visual enhancement device be developed to monitor attention and control visual zoom automatically? (2) If such a device were developed, would its use be experienced by users as a simple extension of their natural vision? This paper details the results of work with two research platforms called the Remote Visual Explorer (ReVEx) and the Interactive Visual Explorer (InVEx) that were developed specifically to answer these two questions.
NASA Technical Reports Server (NTRS)
2000-01-01
One of the most important waterways in the world, the Suez Canal runs north to south across the Isthmus of Suez in northeastern Egypt. This image of the canal covers an area 36 kilometers (22 miles) wide and 60 kilometers (47 miles) long in three bands of the reflected visible and infrared wavelength region. It shows the northern part of the canal, with the Mediterranean Sea just visible in the upper right corner. The Suez Canal connects the Mediterranean Sea with the Gulf of Suez, an arm of the Red Sea. The artificial canal provides an important shortcut for ships operating between both European and American ports and ports located in southern Asia, eastern Africa, and Oceania. With a length of about 195 kilometers (121 miles) and a minimum channel width of 60 meters (197 feet), the Suez Canal is able to accommodate ships as large as 150,000 tons fully loaded. Because no locks interrupt traffic on this sea level waterway, the transit time only averages about 15 hours. ASTER acquired this scene on May 19, 2000.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.ASTER spectral sensitivity of carbonate rocks - Study in Sultanate of Oman
NASA Astrophysics Data System (ADS)
Rajendran, Sankaran; Nasir, Sobhi
2014-02-01
Remote sensing satellite data plays a vital role and capable in detecting minerals and discriminating rock types for explorations of mineral resources and geological studies. Study of spectral absorption characters of remotely sensed data are under consideration by the exploration and mining companies, and demonstrating the spectral absorption characters of carbonates on the cost-effective multispectral image (rather than the hyperspectral, Lidar image) for easy understanding of all geologists and exploration communities of carbonates is very much important. The present work is an integrated study and an outcome of recently published works on the economic important carbonate rocks, includes limestone, marl, listwaenites and carbonatites occurred in parts of the Sultanate of Oman. It demonstrates the spectral sensitivity of such rocks for simple interpretation over satellite data and describes and distinguishes them based on the absorptions of carbonate minerals in the spectral bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) for mapping and exploration studies. The study results that the ASTER spectral band 8 discriminates the carbonate rocks due to the presence of predominantly occurred carbonate minerals; the ASTER band 5 distinguishes the limestones and marls (more hydroxyl clay minerals) from listwaenite (hydrothermally altered rock) due to the presence of altered minerals and the ASTER band 4 detects carbonatites (ultramafic intrusive alkaline rocks) which contain relatively more silicates. The study on the intensity of the total absorptions against the reflections of these rocks shows that the limestones and marls have low intensity in absorptions (and high reflection values) due to the presence of carbonate minerals (calcite and dolomite) occurred in different proportions. The listwaenites and carbonatites have high intensity of absorptions (low reflection values) due to the occurrence of Mn-oxide in listwaenites and carbonates in carbonatites apart the influence of major carbonate minerals that occurred predominantly in these rocks. The study of ASTER thermal infrared (TIR) spectral bands distinguished the marls have low emissivity of energy due to the presence of hydroxyl bearing alumina-silicate minerals from the other rocks such as limestones, listwaenites and carbonatites which have high emissivity due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of carbonate minerals and carbonates. Further, the study demonstrates and confirms the spectral sensitivity of marls and carbonatites. Marls have high reflectivity in ASTER visible near infrared (VNIR) and shortwave infrared (SWIR) spectral bands and low emissivity of energy in ASTER TIR spectral bands due to the presence of hydroxyl bearing alumina-silicate minerals. Carbonatites have low reflectivity in ASTER VNIR-SWIR spectral bands and high emissivity in ASTER TIR spectral bands due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of the carbonate minerals and carbonates. These have been discussed by providing the grey scale color image of 14 ASTER spectral bands of the study sites. The study is based on the interpretation of image spectra of multispectral image conducted to map such economic valuable carbonate rocks. It provides a simple methods and basic knowledge, which are of great help to the geology and exploration communities. It is recommended to the geologists, industrialists, exploration communities of carbonates and mine owners to take up the knowledge for economic exploration of such deposits. Further, the study has proved that the technique is time and cost effective in mapping of such deposits and can be used to the areas which have extremely rugged topography occurred in similar arid region, where difficult to do exhaustive sampling and not reachable for conventional geological mapping.
NASA Astrophysics Data System (ADS)
Xu, Hanqiu; Huang, Shaolin; Zhang, Tiejun
2013-10-01
Worldwide urbanization has accelerated expansion of urban built-up lands and resulted in substantial negative impacts on the global environments. Precisely measuring the urban sprawl is becoming an increasing need. Among the satellite-based earth observation systems, the Landsat and ASTER data are most suitable for mesoscale measurements of urban changes. Nevertheless, to date the difference in the capability of mapping built-up land between the two sensors is not clear. Therefore, this study compared the performances of the Landsat-7 ETM+ and ASTER sensors for built-up land mapping in the coastal areas of southeastern China. The comparison was implemented on three date-coincident image pairs and achieved by using three approaches, including per-band-based, index-based, and classification-based comparisons. The index used is the Index-based Built-up Index (IBI), while the classification algorithm employed is the Support Vector Machine (SVM). Results show that in the study areas, ETM+ and ASTER have an overall similar performance in built-up land mapping but also differ in several aspects. The IBI values determined from ASTER were consistently higher than from ETM+ by up to 45.54% according to percentage difference. The ASTER also estimates more built-up land area than ETM+ by 5.9-6.3% estimated with the IBI-based approach or 3.9-6.1% with the SVM classification. The differences in the spectral response functions and spatial resolution between relative spectral bands of the two sensors are attributed to these different performances.
NASA Astrophysics Data System (ADS)
Wright, Shawn P.; Ramsey, Michael S.
2006-02-01
Thermal infrared (TIR) data from the Earth-orbiting Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument are used to identify the lithologic distribution of the Meteor Crater ejecta blanket. Thermal emission laboratory spectra were obtained for collected samples, and spectral deconvolution was performed on ASTER emissivity data using both image and sample end-members. Comparison of the spaceborne ASTER data to the airborne Thermal Infrared Multispectral Scanner (TIMS) data was used to validate the ASTER end-member analyses. The ASTER image end-member analysis agrees well with past studies considering the effects of resolution degradation. The work at Meteor Crater has direct bearing on the interpretation of Thermal Emission Imaging System (THEMIS) data currently being returned from Mars. ASTER and THEMIS have similar spatial and spectral resolutions, and Meteor Crater serves as an analog for similar-sized impact sites on Mars. These small impact craters have not been studied in detail owing to the low spatial resolution of past orbiting TIR instruments. Using the same methodology as that applied to Meteor Crater, THEMIS TIR data of a provisionally named Winslow Crater (~1 km) impact crater in Syrtis Major are analyzed. The crater rim and ejecta blanket were found to contain larger block sizes and a lower albedo than the surrounding ejecta-free plain, indicating a young impact age. The composition of the rim, ejecta, and surrounding plain is determined to be dominated by basalt; however, potential stratigraphy has also been identified. Results of this work could be extended to future investigations using THEMIS data.
ASTER cloud coverage reassessment using MODIS cloud mask products
NASA Astrophysics Data System (ADS)
Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli
2010-10-01
In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.
NASA Astrophysics Data System (ADS)
Othman, Arsalan; Gloaguen, Richard
2015-04-01
Topographic effects and complex vegetation cover hinder lithology classification in mountain regions based not only in field, but also in reflectance remote sensing data. The area of interest "Bardi-Zard" is located in the NE of Iraq. It is part of the Zagros orogenic belt, where seven lithological units outcrop and is known for its chromite deposit. The aim of this study is to compare three machine learning algorithms (MLAs): Maximum Likelihood (ML), Support Vector Machines (SVM), and Random Forest (RF) in the context of a supervised lithology classification task using Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite, its derived, spatial information (spatial coordinates) and geomorphic data. We emphasize the enhancement in remote sensing lithological mapping accuracy that arises from the integration of geomorphic features and spatial information (spatial coordinates) in classifications. This study identifies that RF is better than ML and SVM algorithms in almost the sixteen combination datasets, which were tested. The overall accuracy of the best dataset combination with the RF map for the all seven classes reach ~80% and the producer and user's accuracies are ~73.91% and 76.09% respectively while the kappa coefficient is ~0.76. TPI is more effective with SVM algorithm than an RF algorithm. This paper demonstrates that adding geomorphic indices such as TPI and spatial information in the dataset increases the lithological classification accuracy.
2010-03-11
Shiveluch volcano on Russia’s Kamchatka Peninsula. This is a false-color satellite image, acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on March 10, 2010. To download a full high res version of this image and to learn more go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=43103 Credit: NASA Earth Observatory image by Jesse Allen and Robert Simmon, based on data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Instrument: Terra - ASTER For more information about the Goddard Space Flight Center go here: www.nasa.gov/centers/goddard/home/index.html
NASA Technical Reports Server (NTRS)
2001-01-01
This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.
This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 55 by 40 kilometers (34 by 25 miles) Location: 60.0 degrees North latitude, 140.7 degrees West longitude Orientation: North at top Image Data: ASTER bands 2, 3 and 4 Original Data Resolution: 15 meters (49 feet) Date Acquired: June 8, 2001Queiroz, Polyane Mazucatto; Santaella, Gustavo Machado; Capelozza, Ana Lúcia Alvares; Rosalen, Pedro Luiz; Freitas, Deborah Queiroz; Haiter-Neto, Francisco
2018-04-01
This study evaluated the image quality and the diagnosis of root fractures when using the Zoom Reconstruction tool (J Morita, Kyoto, Japan). A utility wax phantom with a metal sample inside was used for objective evaluation, and a mandible with 27 single-rooted teeth (with and without obturation and with and without vertical or horizontal fractures) was used for diagnostic evaluation. The images were acquired in 3 protocols: protocol 1, field of view (FOV) of 4 × 4 cm and a voxel size of 0.08 mm; protocol 2, FOV of 10 × 10 cm and a voxel size of 0.2 mm; and protocol 3, Zoom Reconstruction of images from protocol 2 (FOV of 4 × 4 cm and a voxel size of 0.08 mm). The objective evaluation was achieved by measuring the image noise, and the diagnosis of fractures was performed by 3 evaluators. The area under the receiver operating characteristic curve was used to calculate accuracy, and analysis of variance compared the accuracy and image quality of the protocols. Regarding quality, protocol 1 was superior to protocol 2 (P < .0001) and Zoom Reconstruction (P < .0001). Additionally, images of protocol 2 presented less noise than the Zoom Reconstruction image (P < .0001); however, for diagnosis, Zoom Reconstruction was superior in relation to protocol 2 (P = .011) and did not differ from protocol 1 (P = .228) for the diagnosis of a vertical root fracture in filled teeth. The Zoom Reconstruction tool allows better accuracy for vertical root fracture detection in filled teeth, making it possible to obtain a higher-resolution image from a lower-resolution examination without having to expose the patient to more radiation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Rockwell, Barnaby W.
2010-01-01
Multispectral remote sensing data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were analyzed to identify and map minerals, vegetation groups, and volatiles (water and snow) in support of geologic studies of the Bodie Hills, Sweetwater Mountains, and Wassuk Range, California/Nevada. Digital mineral and vegetation mapping results are presented in both portable document format (PDF) and ERDAS Imagine format (.img). The ERDAS-format files are suitable for integration with other geospatial data in Geographic Information Systems (GIS) such as ArcGIS. The ERDAS files showing occurrence of 1) iron-bearing minerals, vegetation, and water, and 2) clay, sulfate, mica, carbonate, Mg-OH, and hydrous quartz minerals have been attributed according to identified material, so that the material detected in a pixel can be queried with the interactive attribute identification tools of GIS and image processing software packages (for example, the Identify Tool of ArcMap and the Inquire Cursor Tool of ERDAS Imagine). All raster data have been orthorectified to the Universal Transverse Mercator (UTM) projection using a projective transform with ground-control points selected from orthorectified Landsat Thematic Mapper data and a digital elevation model from the U.S. Geological Survey (USGS) National Elevation Dataset (1/3 arc second, 10 m resolution). Metadata compliant with Federal Geographic Data Committee (FGDC) standards for all ERDAS-format files have been included, and contain important information regarding geographic coordinate systems, attributes, and cross-references. Documentation regarding spectral analysis methodologies employed to make the maps is included in these cross-references.
Synthetic aperture radar correlator phase histories
NASA Technical Reports Server (NTRS)
1977-01-01
This report supplements the design of the following subsystems: (1) zoom azimuth telescope, zooming range from 3X to 6X. (2) range curvature correcting lenses. (3) Sphero-cylindrical shift lens. (4) Auxiliary lenses (tilted cylinder and matching lens).
2008-05-24
This animation zooms in on the area on Mars where NASA Phoenix Mars Lander will touchdown on May 25, 2008. The image was taken by the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.
The zoom lens of attention: Simulating shuffled versus normal text reading using the SWIFT model
Schad, Daniel J.; Engbert, Ralf
2012-01-01
Assumptions on the allocation of attention during reading are crucial for theoretical models of eye guidance. The zoom lens model of attention postulates that attentional deployment can vary from a sharp focus to a broad window. The model is closely related to the foveal load hypothesis, i.e., the assumption that the perceptual span is modulated by the difficulty of the fixated word. However, these important theoretical concepts for cognitive research have not been tested quantitatively in eye movement models. Here we show that the zoom lens model, implemented in the SWIFT model of saccade generation, captures many important patterns of eye movements. We compared the model's performance to experimental data from normal and shuffled text reading. Our results demonstrate that the zoom lens of attention might be an important concept for eye movement control in reading. PMID:22754295
Brokering technologies to realize the hydrology scenario in NSF BCube
NASA Astrophysics Data System (ADS)
Boldrini, Enrico; Easton, Zachary; Fuka, Daniel; Pearlman, Jay; Nativi, Stefano
2015-04-01
In the National Science Foundation (NSF) BCube project an international team composed of cyber infrastructure experts, geoscientists, social scientists and educators are working together to explore the use of brokering technologies, initially focusing on four domains: hydrology, oceans, polar, and weather. In the hydrology domain, environmental models are fundamental to understand the behaviour of hydrological systems. A specific model usually requires datasets coming from different disciplines for its initialization (e.g. elevation models from Earth observation, weather data from Atmospheric sciences, etc.). Scientific datasets are usually available on heterogeneous publishing services, such as inventory and access services (e.g. OGC Web Coverage Service, THREDDS Data Server, etc.). Indeed, datasets are published according to different protocols, moreover they usually come in different formats, resolutions, Coordinate Reference Systems (CRSs): in short different grid environments depending on the original data and the publishing service processing capabilities. Scientists can thus be impeded by the burden of discovery, access and normalize the desired datasets to the grid environment required by the model. These technological tasks of course divert scientists from their main, scientific goals. The use of GI-axe brokering framework has been experimented in a hydrology scenario where scientists needed to compare a particular hydrological model with two different input datasets (digital elevation models): - the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) dataset, v.2. - the Shuttle Radar Topography Mission (SRTM) dataset, v.3. These datasets were published by means of Hyrax Server technology, which can provide NetCDF files at their original resolution and CRS. Scientists had their model running on ArcGIS, so the main goal was to import the datasets using the available ArcPy library and have EPSG:4326 with the same resolution grid as the reference system, so that model outputs could be compared. ArcPy however is able to access only GeoTIff datasets that are published by a OGC Web Coverage Service (WCS). The GI-axe broker has then been deployed between the client application and the data providers. It has been configured to broker the two different Hyrax service endpoints and republish the data content through a WCS interface for the use of the ArcPy library. Finally, scientists were able to easily run the model, and to concentrate on the comparison of the different results obtained according to the selected input dataset. The use of a third party broker to perform such technological tasks has also shown to have the potential advantage of increasing the repeatability of a study among different researchers.
Assessment Tools for the Evaluation of Risk
ASTER (Assessment Tools for the Evaluation of Risk) was developed by the U.S. EPA Mid-Continent Ecology Division, Duluth, MN to assist regulators in performing ecological risk assessments. ASTER is an integration of the ECOTOXicology Database (ECOTOX; TableViewer for Herschel Data Processing
NASA Astrophysics Data System (ADS)
Zhang, L.; Schulz, B.
2006-07-01
The TableViewer utility is a GUI tool written in Java to support interactive data processing and analysis for the Herschel Space Observatory (Pilbratt et al. 2001). The idea was inherited from a prototype written in IDL (Schulz et al. 2005). It allows to graphically view and analyze tabular data organized in columns with equal numbers of rows. It can be run either as a standalone application, where data access is restricted to FITS (FITS 1999) files only, or it can be run from the Quick Look Analysis(QLA) or Interactive Analysis(IA) command line, from where also objects are accessible. The graphic display is very versatile, allowing plots in either linear or log scales. Zooming, panning, and changing data columns is performed rapidly using a group of navigation buttons. Selecting and de-selecting of fields of data points controls the input to simple analysis tasks like building a statistics table, or generating power spectra. The binary data stored in a TableDataset^1, a Product or in FITS files can also be displayed as tabular data, where values in individual cells can be modified. TableViewer provides several processing utilities which, besides calculation of statistics either for all channels or for selected channels, and calculation of power spectra, allows to convert/repair datasets by changing the unit name of data columns, and by modifying data values in columns with a simple calculator tool. Interactively selected data can be separated out, and modified data sets can be saved to FITS files. The tool will be very helpful especially in the early phases of Herschel data analysis when a quick access to contents of data products is important. TableDataset and Product are Java classes defined in herschel.ia.dataset.
NASA Technical Reports Server (NTRS)
2006-01-01
This ASTER image of Teshekpuk Lake on Alaska's North Slope, within the National Petroleum Reserve, was acquired on August 15, 2000. It covers an area of 58.7 x 89.9 km, and is centered near 70.4 degrees north latitude, 153 degrees west longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 58.7 by 89.9 kilometers (36.4 by 55.7 miles) Location: 70.4 degrees North latitude, 153 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 30 meters (98.4 feet) Dates Acquired: August 15, 2000ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.
Beiranvand Pour, Amin; Hashim, Mazlan
2014-01-01
This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration, lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great ability to assist geologists in all disciplines to map the distribution and detect the rock units exposed at the earth's surface. The near coincidence of Earth Observing System (EOS)/Terra and Earth Observing One (EO-1) platforms allows acquiring ASTER, ALI, and Hyperion imagery of the same ground areas, resulting accurate information for geological mapping applications especially in the reconnaissance stages of hydrothermal copper and gold exploration, chromite, magnetite, massive sulfide and uranium ore deposits, mineral components of soils and structural interpretation at both regional and district scales. Shortwave length infrared and thermal infrared bands of ASTER have sufficient spectral resolution to map fundamental absorptions of hydroxyl mineral groups and silica and carbonate minerals for regional mapping purposes. Ferric-iron bearing minerals can be discriminated using six unique wavelength bands of ALI spanning the visible and near infrared. Hyperion visible and near infrared bands (0.4 to 1.0 μm) and shortwave infrared bands (0.9 to 2.5 μm) allowed to produce image maps of iron oxide minerals, hydroxyl-bearing minerals, sulfates and carbonates in association with hydrothermal alteration assemblages, respectively. The techniques and achievements reviewed in the present paper can further introduce the efficacy of ASTER, ALI, and Hyperion data for future mineral and lithological mapping and exploration of the porphyry copper, epithermal gold, chromite, magnetite, massive sulfide and uranium ore deposits especially in arid and semi-arid territory.
NASA Astrophysics Data System (ADS)
Stefanov, W. L.; Stefanov, W. L.; Christensen, P. R.
2001-05-01
Land cover and land use changes associated with urbanization are important drivers of global ecologic and climatic change. Quantification and monitoring of these changes are part of the primary mission of the ASTER instrument, and comprise the fundamental research objective of the Urban Environmental Monitoring (UEM) Program. The UEM program will acquire day/night, visible through thermal infrared ASTER data twice per year for 100 global urban centers over the duration of the mission (6 years). Data are currently available for a number of these urban centers and allow for initial comparison of global city structure using spatial variance texture analysis of the 15 m/pixel visible to near infrared ASTER bands. Variance texture analysis highlights changes in pixel edge density as recorded by sharp transitions from bright to dark pixels. In human-dominated landscapes these brightness variations correlate well with urbanized vs. natural land cover and are useful for characterizing the geographic extent and internal structure of cities. Variance texture analysis was performed on twelve urban centers (Albuquerque, Baghdad, Baltimore, Chongqing, Istanbul, Johannesburg, Lisbon, Madrid, Phoenix, Puebla, Riyadh, Vancouver) for which cloud-free daytime ASTER data are available. Image transects through each urban center produce texture profiles that correspond to urban density. These profiles can be used to classify cities into centralized (ex. Baltimore), decentralized (ex. Phoenix), or intermediate (ex. Madrid) structural types. Image texture is one of the primary data inputs (with vegetation indices and visible to thermal infrared image spectra) to a knowledge-based land cover classifier currently under development for application to ASTER UEM data as it is acquired. Collaboration with local investigators is sought to both verify the accuracy of the knowledge-based system and to develop more sophisticated classification models.
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
NASA Astrophysics Data System (ADS)
Ma, W.; Ma, Y.; Hu, Z.; Su, B.; Wang, J.; Ishikawa, H.
2009-06-01
Surface fluxes are important boundary conditions for climatological modeling and the Asian monsoon system. Recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A Surface Energy Balance System (SEBS) method based on ASTER data and field observations has been proposed and tested for deriving net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E) over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the WATER (Watershed Allied Telemetry Experimental Research), located at the mid-to-upstream sections of the Heihe River, northwest China. The ASTER data of 3 May and 4 June in 2008 was used in this paper for the case of mid-to-upstream sections of the Heihe River Basin. To validate the proposed methodology, the ground-measured land surface heat fluxes (net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E)) were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in different months over the study area are in good accordance with the land surface status. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface heat fluxes using the ASTER data and filed observation over the study area.
NASA and USGS ASTER Expedited Satellite Data Services for Disaster Situations
NASA Astrophysics Data System (ADS)
Duda, K. A.
2012-12-01
Significant international disasters related to storms, floods, volcanoes, wildfires and numerous other themes reoccur annually, often inflicting widespread human suffering and fatalities with substantial economic consequences. During and immediately after such events it can be difficult to access the affected areas and become aware of the overall impacts, but insight on the spatial extent and effects can be gleaned from above through satellite images. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on the Terra spacecraft has offered such views for over a decade. On short notice, ASTER continues to deliver analysts multispectral imagery at 15 m spatial resolution in near real-time to assist participating responders, emergency managers, and government officials in planning for such situations and in developing appropriate responses after they occur. The joint U.S./Japan ASTER Science Team has developed policies and procedures to ensure such ongoing support is accessible when needed. Processing and distribution of data products occurs at the NASA Land Processes Distributed Active Archive Center (LP DAAC) located at the USGS Earth Resources Observation and Science Center in South Dakota. In addition to current imagery, the long-term ASTER mission has generated an extensive collection of nearly 2.5 million global 3,600 km2 scenes since the launch of Terra in late 1999. These are archived and distributed by LP DAAC and affiliates at Japan Space Systems in Tokyo. Advanced processing is performed to create higher level products of use to researchers. These include a global digital elevation model. Such pre-event imagery provides a comparative basis for use in detecting changes associated with disasters and to monitor land use trends to portray areas of increased risk. ASTER imagery acquired via the expedited collection and distribution process illustrates the utility and relevancy of such data in crisis situations.
Xu, Han-qiu; Zhang, Tie-jun
2011-07-01
The present paper investigates the quantitative relationship between the NDVI and SAVI vegetation indices of Landsat and ASTER sensors based on three tandem image pairs. The study examines how well ASTER sensor vegetation observations replicate ETM+ vegetation observations, and more importantly, the difference in the vegetation observations between the two sensors. The DN values of the three image pairs were first converted to at-sensor reflectance to reduce radiometric differences between two sensors, images. The NDVI and SAVI vegetation indices of the two sensors were then calculated using the converted reflectance. The quantitative relationship was revealed through regression analysis on the scatter plots of the vegetation index values of the two sensors. The models for the conversion between the two sensors, vegetation indices were also obtained from the regression. The results show that the difference does exist between the two sensors, vegetation indices though they have a very strong positive linear relationship. The study found that the red and near infrared measurements differ between the two sensors, with ASTER generally producing higher reflectance in the red band and lower reflectance in the near infrared band than the ETM+ sensor. This results in the ASTER sensor producing lower spectral vegetation index measurements, for the same target, than ETM+. The relative spectral response function differences in the red and near infrared bands between the two sensors are believed to be the main factor contributing to their differences in vegetation index measurements, because the red and near infrared relative spectral response features of the ASTER sensor overlap the vegetation "red edge" spectral region. The obtained conversion models have high accuracy with a RMSE less than 0.04 for both sensors' inter-conversion between corresponding vegetation indices.
Roughness effects on thermal-infrared emissivities estimated from remotely sensed images
NASA Astrophysics Data System (ADS)
Mushkin, Amit; Danilina, Iryna; Gillespie, Alan R.; Balick, Lee K.; McCabe, Matthew F.
2007-10-01
Multispectral thermal-infrared images from the Mauna Loa caldera in Hawaii, USA are examined to study the effects of surface roughness on remotely retrieved emissivities. We find up to a 3% decrease in spectral contrast in ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 90-m/pixel emissivities due to sub-pixel surface roughness variations on the caldera floor. A similar decrease in spectral contrast of emissivities extracted from MASTER (MODIS/ASTER Airborne Simulator) ~12.5-m/pixel data can be described as a function of increasing surface roughness, which was measured remotely from ASTER 15-m/pixel stereo images. The ratio between ASTER stereo images provides a measure of sub-pixel surface-roughness variations across the scene. These independent roughness estimates complement a radiosity model designed to quantify the unresolved effects of multiple scattering and differential solar heating due to sub-pixel roughness elements and to compensate for both sub-pixel temperature dispersion and cavity radiation on TIR measurements.
Stack Number Influence on the Accuracy of Aster Gdem (V2)
NASA Astrophysics Data System (ADS)
Mirzadeh, S. M. J.; Alizadeh Naeini, A.; Fatemi, S. B.
2017-09-01
In this research, the influence of stack number (STKN) on the accuracy of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM (GDEM) has been investigated. For this purpose, two data sets of ASTER and Reference DEMs from two study areas with various topography (Bomehen and Tazehabad) were used. The Results show that in both study areas, STKN of 19 results in minimum error so that this minimum error has small difference with other STKN. The analysis of slope, STKN, and error values shows that there is no strong correlation between these parameters in both study areas. For example, the value of mean absolute error increase by changing the topography and the increase of slope values and height on cells but, the changes in STKN has no important effect on error values. Furthermore, according to high values of STKN, effect of slope on elevation accuracy has practically decreased. Also, there is no great correlation between the residual and STKN in ASTER GDEM.
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Sader, Steven; Smoot, James
2012-01-01
Cypress swamp forests of Louisiana offer many important ecological and economic benefits: wildlife habitat, forest products, storm buffers, water quality, and recreation. Such forests are also threatened by multiple factors: subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, hurricanes, insect and nutria damage, timber harvesting, and land use conversion. Unfortunately, there are many information gaps regarding the type, location, extent, and condition of these forests. Better more up to date swamp forest mapping products are needed to aid coastal forest conservation and restoration work (e.g., through the Coastal Forest Conservation Initiative or CFCI). In response, a collaborative project was initiated to develop, test and demonstrate cypress swamp forest mapping products, using NASA supported Landsat, ASTER, and MODIS satellite data. Research Objectives are: Develop, test, and demonstrate use of Landsat and ASTER data for computing new cypress forest classification products and Landsat, ASTER, and MODIS satellite data for detecting and monitoring swamp forest change
NASA Astrophysics Data System (ADS)
Toomey, M.; Vierling, L.
2004-12-01
Landsat TM and ASTER satellite data can be used to make physically-based estimates of equivalent water thickness (EWT) in a Pinus ponderosa ecosystem. EWT is a measure of ecosystem water status and is an important parameter for studying ecosystem dynamics, fire potential, and biological responses to climate change. Near infrared (NIR) and shortwave infrared (SWIR) reflectances were simulated using the LIBERTY and GeoSAIL leaf and canopy reflectance models; the results were used to calculate a NIR/SWIR ratio and a normalized NIR/SWIR index. Index-EWT relationships were modeled and inverted for EWT derivation. Landsat and ASTER were used to make reasonably accurate estimates of EWT (± 17.3% and 19.4% mean error, respectively); TM band 5 and ASTER band 4 produced the best results. Exclusion of plots with dense understory vegetation reduced point scatter substantially, especially with Landsat (r2 = 0.847, ±13%), indicating that this method can provide robust EWT quantification in homogeneous conifer ecosystems.
NASA MEaSUREs Combined ASTER and MODIS Emissivity over Land (CAMEL)
NASA Astrophysics Data System (ADS)
Borbas, E. E.; Hulley, G. C.; Feltz, M.; Knuteson, R. O.; Hook, S. J.
2016-12-01
A land surface emissivity product of the NASA MEASUREs project called Combined ASTER and MODIS Emissivity over Land (CAMEL) is being made available as part of the Unified and Coherent Land Surface Temperature and Emissivity (LST&E) Earth System Data Record (ESDR). The CAMEL database has been created by merging the UW MODIS-based baseline-fit emissivity database (UWIREMIS) developed at the University of Wisconsin-Madison, and the ASTER Global Emissivity Database (ASTER GED V4) produced at JPL. This poster will introduce the beta version of the database, which is available globally for the period 2003 through 2015 at 5km in mean monthly time-steps and for 13 bands from 3.6-14.3 micron. An algorithm to create a high spectral emissivity on 417 wavenumbers is also provided for high spectral IR applications. On the poster the CAMEL database has been evaluated with the IASI Emissivity Atlas (Zhou et al, 2010) and laboratory measurements, and also through simulation of IASI BTs in the RTTOV Forward model.
Rowan, L.C.; Hook, S.J.; Abrams, M.J.; Mars, J.C.
2003-01-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 14-band multispectral instrument on board the Earth Observing System (EOS), TERRA. The three bands between 0.52 and 0.86 ??m and the six bands from 1.60 and 2.43 ??m, which have 15- and 30-m spatial resolution, respectively, were selected primarily for making remote mineralogical determinations. The Cuprite, Nevada, mining district comprises two hydrothermal alteration centers where Tertiary volcanic rocks have been hydrothermally altered mainly to bleached silicified rocks and opalized rocks, with a marginal zone of limonitic argilized rocks. Country rocks are mainly Cambrian phyllitic siltstone and limestone. Evaluation of an ASTER image of the Cuprite district shows that spectral reflectance differences in the nine bands in the 0.52 to 2.43 ??m region provide a basis for identifying and mapping mineralogical components which characterize the main hydrothermal alteration zones: opal is the spectrally dominant mineral in the silicified zone; whereas, alunite and kaolinite are dominant in the opalized zone. In addition, the distribution of unaltered country rocks was mapped because of the presence of spectrally dominant muscovite in the siltstone and calcite in limestone, and the tuffaceous rocks and playa deposits were distinguishable due to their relatively flat spectra and weak absorption features at 2.33 and 2.20 ??m, respectively. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image of the study area was processed using a similar methodology used with the ASTER data. Comparison of the ASTER and AVIRIS results shows that the results are generally similar, but the higher spectral resolution of AVIRIS (224 bands) permits identification of more individual minerals, including certain polymorphs. However, ASTER has recorded images of more than 90 percent of the Earth's land surface with less than 20 percent cloud cover, and these data are available at nominal or no cost. Landsat TM images have a similar spatial resolution to ASTER images, but TM has fewer bands, which limits its usefulness for making mineral determinations.
Monitoring and predicting eutrophication of Sri Lankan inland waters using ASTER satellite data
NASA Astrophysics Data System (ADS)
Dahanayaka, D. D. G. L.; Wijeyaratne, M. J. S.; Tonooka, H.; Minato, A.; Ozawa, S.; Perera, B. D. C.
2014-10-01
This study focused on determining the past changes and predicting the future trends in eutrophication of the Bolgoda North lake, Sri Lanka using in situ Chlorophyll-a (Chl-a) measurements and Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) satellite data. This Lake is located in a mixed land use area with industries, some agricultural lands, middle income and high income housing, tourist hotels and low income housing. From March to October 2013, water samples from five sampling sites were collected once a month parallel to ASTER overpass and Chl-a, nitrate and phosphate contents of each sample were measured using standard laboratory methods. Cloud-free ASTER scenes over the lake during the 2000-2013 periods were acquired for Chl-a estimation and trend analysis. All ASTER images were atmospherically corrected using FLAASH software and in-situ Chl-a data were regressed with atmospherically corrected three ASTER VNIR band ratios of the same date. The regression equation of the band ratio and Chl-a content with the highest correlation, which was the green/red band ratio was used to develop algorithm for generation of 15-m resolution Chl-a distribution maps. According to the ASTER based Chl-a distribution maps it was evident that eutrophication of this lake has gradually increased from 2008-2011. Results also indicated that there had been significantly high eutrophic conditions throughout the year 2013 in several regions, especially in water stagnant areas and adjacent to freshwater outlets. Field observations showed that this lake is receiving various discharges from factories. Unplanned urbanization and inadequacy of proper facilities in the nearby industries for waste management have resulted in the eutrophication of the water body. If the present trends of waste disposal and unplanned urbanization continue, enormous environmental problems would be resulted in future. Results of the present study showed that information from satellite remote sensing can play a useful role in the development of time series Chl-a distribution maps. Such information is important for the future predictions, development and management of this area as well as in the conservation of this water body.
NASA Technical Reports Server (NTRS)
2006-01-01
Northern Arizona is best known for the Grand Canyon. Less widely known are the hundreds of geologically young volcanoes, at least one of which buried the homes of local residents. San Francisco Mtn., a truncated stratovolcano at 3887 meters, was once a much taller structure (about 4900 meters) before it exploded some 400,000 years ago a la Mt. St. Helens. The young cinder cone field to its east includes Sunset Crater, that erupted in 1064 and buried Native American homes. This ASTER perspective was created by draping ASTER image data over topographic data from the U.S. Geological Survey National Elevation Data. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 20.4 by 24.6 kilometers (12.6 by 15.2 miles) Location: 35.3 degrees North latitude, 111.5 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: Landsat 30 meters (24.6 feet); ASTER 15 meters (49.2 feet) Dates Acquired: October 21, 2003NASA Technical Reports Server (NTRS)
2006-01-01
In many parts of the world, wetlands are being converted to shrimp ponds in order to farm these crustaceans for food and sale. One example is on the west coast of Ecuador, south of Guayaquil. The 1991 Landsat image on top shows a coastal area where 143 square kilometers of wetlands were converted to shrimp ponds. By the time ASTER acquired the bottom image in 2001, 243 square kilometers had been converted, eliminating 83% of the wetlands. These scenes cover an area of 30 x 31 km, and are centered near 3.4 degrees south latitude and 80.2 degrees west longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 30 by 31 kilometers (18.6 by 19.2 miles) Location: 3.4 degrees South latitude, 80.2 degrees West longitude Orientation: North at top Image Data: Landsat bands 4,3 and 2; ASTER bands 3, 2, and 1 Original Data Resolution: Landsat 30 meters (24.6 feet); ASTER 15 meters (49.2 feet) Dates Acquired: Landsat: April 29, 1991; ASTER March 31, 2001NASA Astrophysics Data System (ADS)
Pour, Amin Beiranvand; Hashim, Mazlan
2012-02-01
This study investigates the application of spectral image processing methods to ASTER data for mapping hydrothermal alteration zones associated with porphyry copper mineralization and related host rock. The study area is located in the southeastern segment of the Urumieh-Dokhtar Volcanic Belt of Iran. This area has been selected because it is a potential zone for exploration of new porphyry copper deposits. Spectral transform approaches, namely principal component analysis, band ratio and minimum noise fraction were used for mapping hydrothermally altered rocks and lithological units at regional scale. Spectral mapping methods, including spectral angle mapper, linear spectral unmixing, matched filtering and mixture tuned matched filtering were applied to differentiate hydrothermal alteration zones associated with porphyry copper mineralization such as phyllic, argillic and propylitic mineral assemblages.Spectral transform methods enhanced hydrothermally altered rocks associated with the known porphyry copper deposits and new identified prospects using shortwave infrared (SWIR) bands of ASTER. These methods showed the discrimination of quartz rich igneous rocks from the magmatic background and the boundary between igneous and sedimentary rocks using the thermal infrared (TIR) bands of ASTER at regional scale. Spectral mapping methods distinguished the sericitically- and argillically-altered rocks (the phyllic and argillic alteration zones) that surrounded by discontinuous to extensive zones of propylitized rocks (the propylitic alteration zone) using SWIR bands of ASTER at both regional and district scales. Linear spectral unmixing method can be best suited for distinguishing specific high economic-potential hydrothermal alteration zone (the phyllic zone) and mineral assemblages using SWIR bands of ASTER. Results have proven to be effective, and in accordance with the results of field surveying, spectral reflectance measurements and X-ray diffraction (XRD) analysis. In conclusion, the image processing methods used can provide cost-effective information to discover possible locations of porphyry copper and epithermal gold mineralization prior to detailed and costly ground investigations. The extraction of spectral information from ASTER data can produce comprehensive and accurate information for copper and gold resource investigations around the world, including those yet to be discovered.
NASA Technical Reports Server (NTRS)
2001-01-01
Anchorage, Alaska and Cook Inlet are seen in this 30 by 30 km (19 by 19 miles) sub-image, acquired May 12, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Orbiting at an altitude of 705 km (430 miles) on board NASA's Terra satellite, ASTER provides data at a resolution of 15 m (47 feet) and allows creation of this simulated natural color image. At the center of the image is the Ted Stevens Anchorage International Airport; in the upper right corner is Elmendorf Air Force Base. Dark green coniferous forests are seen in the northwest part of the image. A golf course, with its lush green fairways, is just south of the Air Force Base.The image covers an area of 30 by 30 km, was acquired May 12, 2000, and is located at 61.2 degrees north latitude and 149.9 degrees west longitude.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.Eye-gaze determination of user intent at the computer interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, J.H.; Schryver, J.C.
1993-12-31
Determination of user intent at the computer interface through eye-gaze monitoring can significantly aid applications for the disabled, as well as telerobotics and process control interfaces. Whereas current eye-gaze control applications are limited to object selection and x/y gazepoint tracking, a methodology was developed here to discriminate a more abstract interface operation: zooming-in or out. This methodology first collects samples of eve-gaze location looking at controlled stimuli, at 30 Hz, just prior to a user`s decision to zoom. The sample is broken into data frames, or temporal snapshots. Within a data frame, all spatial samples are connected into a minimummore » spanning tree, then clustered, according to user defined parameters. Each cluster is mapped to one in the prior data frame, and statistics are computed from each cluster. These characteristics include cluster size, position, and pupil size. A multiple discriminant analysis uses these statistics both within and between data frames to formulate optimal rules for assigning the observations into zooming, zoom-out, or no zoom conditions. The statistical procedure effectively generates heuristics for future assignments, based upon these variables. Future work will enhance the accuracy and precision of the modeling technique, and will empirically test users in controlled experiments.« less
ASTER First Views of Red Sea, Ethiopia - Thermal-Infrared TIR Image monochrome
2000-03-11
ASTER succeeded in acquiring this image at night, which is something Visible/Near Infrared VNIR) and Shortwave Infrared (SWIR) sensors cannot do. The scene covers the Red Sea coastline to an inland area of Ethiopia. White pixels represent areas with higher temperature material on the surface, while dark pixels indicate lower temperatures. This image shows ASTER's ability as a highly sensitive, temperature-discerning instrument and the first spaceborne TIR multi-band sensor in history. The size of image: 60 km x 60 km approx., ground resolution 90 m x 90 m approximately. http://photojournal.jpl.nasa.gov/catalog/PIA02452
Bahar, Md H; Wist, Tyler J; Bekkaoui, Diana R; Hegedus, Dwayne D; Olivier, Chrystel Y
2018-01-10
Aster yellows (AY) is an important disease of Brassica crops and is caused by Candidatus Phytoplasma asteris and transmitted by the insect vector, Aster leafhopper (Macrosteles quadrilineatus). Phytoplasma-infected Aster leafhoppers were incubated at various constant and fluctuating temperatures ranging from 0 to 35 °C with the reproductive host plant barley (Hordium vulgare). At 0 °C, leafhopper adults survived for 18 days, but failed to reproduce, whereas at 35 °C insects died within 18 days, but successfully reproduced before dying. Temperature fluctuation increased thermal tolerance in leafhoppers at 25 °C and increased fecundity of leafhoppers at 5 and 20 °C. Leafhopper adults successfully infected and produced AY-symptoms in canola plants after incubating for 18 days at 0-20 °C on barley, indicating that AY-phytoplasma maintains its virulence in this temperature range. The presence and number of AY-phytoplasma in insects and plants were confirmed by droplet digital PCR (ddPCR) quantification. The number of phytoplasma in leafhoppers increased over time, but did not differ among temperatures. The temperatures associated with a typical crop growing season on the Canadian Prairies will not limit the spread of AY disease by their predominant insect vector. Also, ddPCR quantification is a useful tool for early detection and accurate quantification of phytoplasma in plants and insects.
2002-02-26
This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating. This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03475
Exploring the limits of identifying sub-pixel thermal features using ASTER TIR data
Vaughan, R.G.; Keszthelyi, L.P.; Davies, A.G.; Schneider, D.J.; Jaworowski, C.; Heasler, H.
2010-01-01
Understanding the characteristics of volcanic thermal emissions and how they change with time is important for forecasting and monitoring volcanic activity and potential hazards. Satellite instruments view volcanic thermal features across the globe at various temporal and spatial resolutions. Thermal features that may be a precursor to a major eruption, or indicative of important changes in an on-going eruption can be subtle, making them challenging to reliably identify with satellite instruments. The goal of this study was to explore the limits of the types and magnitudes of thermal anomalies that could be detected using satellite thermal infrared (TIR) data. Specifically, the characterization of sub-pixel thermal features with a wide range of temperatures is considered using ASTER multispectral TIR data. First, theoretical calculations were made to define a "thermal mixing detection threshold" for ASTER, which quantifies the limits of ASTER's ability to resolve sub-pixel thermal mixing over a range of hot target temperatures and % pixel areas. Then, ASTER TIR data were used to model sub-pixel thermal features at the Yellowstone National Park geothermal area (hot spring pools with temperatures from 40 to 90 ??C) and at Mount Erebus Volcano, Antarctica (an active lava lake with temperatures from 200 to 800 ??C). Finally, various sources of uncertainty in sub-pixel thermal calculations were quantified for these empirical measurements, including pixel resampling, atmospheric correction, and background temperature and emissivity assumptions.
Evaluation of Aster Images for Characterization and Mapping of Amethyst Mining Residues
NASA Astrophysics Data System (ADS)
Markoski, P. R.; Rolim, S. B. A.
2012-07-01
The objective of this work was to evaluate the potential of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), subsystems VNIR (Visible and Near Infrared) and SWIR (Short Wave Infrared) images, for discrimination and mapping of amethyst mining residues (basalt) in the Ametista do Sul Region, Rio Grande do Sul State, Brazil. This region provides the most part of amethyst mining of the World. The basalt is extracted during the mining process and deposited outside the mine. As a result, mounts of residues (basalt) rise up. These mounts are many times smaller than ASTER pixel size (VNIR - 15 meters and SWIR - 30 meters). Thus, the pixel composition becomes a mixing of various materials, hampering its identification and mapping. Trying to solve this problem, multispectral algorithm Maximum Likelihood (MaxVer) and the hyperspectral technique SAM (Spectral Angle Mapper) were used in this work. Images from ASTER subsystems VNIR and SWIR were used to perform the classifications. SAM technique produced better results than MaxVer algorithm. The main error found by the techniques was the mixing between "shadow" and "mining residues/basalt" classes. With the SAM technique the confusion decreased because it employed the basalt spectral curve as a reference, while the multispectral techniques employed pixels groups that could have spectral mixture with other targets. The results showed that in tropical terrains as the study area, ASTER data can be efficacious for the characterization of mining residues.
Evaluation of Aster Gdem v3 Using Icesat Laser Altimetry
NASA Astrophysics Data System (ADS)
Carabajal, C. C.; Boy, J.-P.
2016-06-01
We have used a set of Ground Control Points (GCPs) derived from altimetry measurements from the Ice, Cloud and land Elevation Satellite (ICESat) to evaluate the quality of the 30 m posting ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) Global Digital Elevation Model (GDEM) V3 elevation products produced by NASA/METI for Greenland and Antarctica. These data represent the highest quality globally distributed altimetry measurements that can be used for geodetic ground control, selected by applying rigorous editing criteria, useful at high latitudes, where other topographic control is scarce. Even if large outliers still remain in all ASTER GDEM V3 data for both, Greenland and Antarctica, they are significantly reduced when editing ASTER by number of scenes (N≥5) included in the elevation processing. For 667,354 GCPs in Greenland, differences show a mean of 13.74 m, a median of -6.37 m, with an RMSE of 109.65 m. For Antarctica, 6,976,703 GCPs show a mean of 0.41 m, with a median of -4.66 m, and a 54.85 m RMSE, displaying smaller means, similar medians, and less scatter than GDEM V2. Mean and median differences between ASTER and ICESat are lower than 10 m, and RMSEs lower than 10 m for Greenland, and 20 m for Antarctica when only 9 to 31 scenes are included.
ASTER and USGS EROS disaster response: emergency imaging after Hurricane Katrina
Duda, Kenneth A.; Abrams, Michael
2005-01-01
The value of remotely sensed imagery during times of crisis is well established, and the increasing spatial and spectral resolution in newer systems provides ever greater utility and ability to discriminate features of interest (International Charter, Space and Major Disasters, 2005). The existing suite of sensors provides an abundance of data, and enables warning alerts to be broadcast for many situations in advance. In addition, imagery acquired soon after an event occurs can be used to assist response and remediation teams in identifying the extent of the affected area and the degree of damage. The data characteristics of the Advanced Spaceborne Thermal Emission and Refl ection Radiometer (ASTER) are well-suited for monitoring natural hazards and providing local and regional views after disaster strikes. For this reason, and because of the system fl exibility in scheduling high-priority observations, ASTER is often tasked to support emergency situations. The Emergency Response coordinators at the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) work closely with staff at the National Aeronautics and Space Administration (NASA) Land Processes Distributed Active Archive Center (LP DAAC) at EROS and the ASTER Science Team as they fulfi ll their mission to acquire and distribute data during critical situations. This article summarizes the role of the USGS/EROS Emergency Response coordinators, and provides further discussion of ASTER data and the images portrayed on the cover of this issue
Mars, John C.; Hubbard, Bernard E.; Pieri, David; Linick, Justin
2015-01-01
This study was undertaken during 2012–2013 in cooperation with the National Aeronautics and Space Administration (NASA). Since completion of this study, a new lahar modeling program (LAHAR_pz) has been released, which may produce slightly different modeling results from the LAHARZ model used in this study. The maps and data from this study should not be used in place of existing volcano hazard maps published by local authorities. For volcanoes without hazard maps and (or) published lahar-related hazard studies, this work will provide a starting point from which more accurate hazard maps can be produced. This is the first dataset to provide digital maps of altered volcanoes and adjacent watersheds that can be used for assessing volcanic hazards, hydrothermal alteration, and other volcanic processes in future studies.
Augustine Volcano, Cook Inlet, Alaska (January 12, 2006)
NASA Technical Reports Server (NTRS)
2006-01-01
Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. An ASTER image was acquired at 12:42 AST on January 12, 2006, during an eruptive phase of Augustine. The perspective rendition shows the eruption plume derived from the ASTER image data. ASTER's stereo viewing capability was used to calculate the 3-dimensional topography of the eruption cloud as it was blown to the south by prevailing winds. From a maximum height of 3060 m (9950 ft), the plume cooled and its top descended to 1900 m (6175 ft). The perspective view shows the ASTER data draped over the plume top topography, combined with a base image acquired in 2000 by the Landsat satellite, that is itself draped over ground elevation data from the Shuttle Radar Topography Mission. The topographic relief has been increased 1.5 times for this illustration. Comparison of the ASTER plume topography data with ash dispersal models and weather radar data will allow the National Weather Service to validate and improve such models. These models are used to forecast volcanic ash plume trajectories and provide hazard alerts and warnings to aircraft in the Alaska region. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: Roughly 25 km (15 miles) across; scale varies in this perspective view Location: 59.3 deg. North latitude, 153.4 deg. West longitude Orientation: View from southwest towards the northeast Vertical Exaggeration: 2 Eruption plume and Elevation: 30 m ASTER, (1-arcsecond) Image Data: Landsat bands 7, 4 and 2 Ground Topography Data: SRTM 90 m data, acquired January 2000 Date Acquired: ASTER: January 12, 2006; Landsat: September 17, 2000Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA
NASA Astrophysics Data System (ADS)
Froula, D. H.; Kessler, T. J.; Igumenshchev, I. V.; Betti, R.; Goncharov, V. N.; Huang, H.; Hu, S. X.; Hill, E.; Kelly, J. H.; Meyerhofer, D. D.; Shvydky, A.; Zuegel, J. D.
2013-08-01
Cross-beam energy transfer (CBET) during OMEGA low-adiabat cryogenic experiments reduces the hydrodynamic efficiency by ˜35%, which lowers the calculated one-dimensional (1-D) yield by a factor of 7. CBET can be mitigated by reducing the diameter of the laser beams relative to the target diameter. Reducing the diameter of the laser beams by 30%, after a sufficient conduction zone has been generated (two-state zooming), is predicted to maintain low-mode uniformity while recovering 90% of the kinetic energy lost to CBET. A radially varying phase plate is proposed to implement two-state zooming on OMEGA. A beam propagating through the central half-diameter of the phase plate will produce a large spot, while a beam propagating through the outer annular region of the phase plate will produce a narrower spot. To generate the required two-state near-field laser-beam profile, a picket driver with smoothing by spectral dispersion (SSD) would pass through an apodizer, forming a beam of half the standard diameter. A second main-pulse driver would co-propagate without SSD through its own apodizer, forming a full-diameter annular beam. Hydrodynamic simulations, using the designed laser spots produced by the proposed zooming scheme on OMEGA, show that implementing zooming will increase the implosion velocity by 25% resulting in a 4.5× increase in the 1-D neutron yield. Demonstrating zooming on OMEGA would validate a viable direct-drive CBET mitigation scheme and help establish a pathway to hydrodynamically equivalent direct-drive-ignition implosions by increasing the ablation pressure (1.6×), which will allow for more stable implosions at ignition-relevant velocities.
Toxicokinetics and pathology of plant-associated acute selenium toxicosis in steers
USDA-ARS?s Scientific Manuscript database
Sixteen of about 500 yearling steers died of acute selenium (Se) toxicosis after grazing Se contaminated range for only a few days. Field studies and chemical analyses identified the predominant toxic plant as western aster (Aster ascendens), which contained over 4,000 ppm Se. Several dead animals...
Restoration of the endangered Ruth's golden aster (Pityopsis ruthii)
USDA-ARS?s Scientific Manuscript database
Pityopsis ruthii Small (Small), Ruth’s golden aster, is an endangered herbaceous perennial that is endemic to small sections of the Hiwassee and Ocoee Rivers in the Southeastern United States. Our objective was to test the effect of bonded fiber matrix (BFM) on establishment and fecundity of P. ruth...
ASTER Images San Francisco Bay Area
NASA Technical Reports Server (NTRS)
2000-01-01
This image of the San Francisco Bay region was acquired on March 3, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.
Image: This image covers an area 60 kilometers (37 miles) wide and 75 kilometers (47 miles) long in three bands of the reflected visible and infrared wavelength region. The combination of bands portrays vegetation in red, and urban areas in gray. Sediment in the Suisun Bay, San Pablo Bay, San Francisco Bay, and the Pacific Ocean shows up as lighter shades of blue. Along the west coast of the San Francisco Peninsula, strong surf can be seen as a white fringe along the shoreline. A powerful rip tide is visible extending westward from Daly City into the Pacific Ocean. In the lower right corner, the wetlands of the South San Francisco Bay National Wildlife Refuge appear as large dark blue and brown polygons. The high spatial resolution of ASTER allows fine detail to be observed in the scene. The main bridges of the area (San Mateo, San Francisco-Oakland Bay, Golden Gate, Richmond-San Rafael, Benicia-Martinez, and Carquinez) are easily picked out, connecting the different communities in the Bay area. Shadows of the towers along the Bay Bridge can be seen over the adjacent bay water. With enlargement the entire road network can be easily mapped; individual buildings are visible, including the shadows of the high-rises in downtown San Francisco.Inset: This enlargement of the San Francisco Airport highlights the high spatial resolution of ASTER. With further enlargement and careful examination, airplanes can be seen at the terminals.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.NASA Technical Reports Server (NTRS)
2000-01-01
The Strait of Gibraltar separates Spain from Morocco. This image, acquired on July 5, 2000, covers an area 34 kilometers (21 miles) wide and 59 kilometers (37 miles) long in three bands of the reflected visible and infrared wavelength region. The promontory on the eastern side of the conspicuous Spanish port is the Rock of Gibraltar. Once one of the two classical Pillars of Hercules, the Rock was crowned with silver columns by Phoenician mariners to mark the limits of safe navigation for the ancient Mediterranean peoples. The rocky promontory still commands the western entrance to the Mediterranean Sea. The rocky limestone and shale ridge rises abruptly from the sea, to a maximum elevation of 426 meters (1,398 feet). A British colony, Gibraltar occupies a narrow strip of land at the southernmost tip of the Iberian Peninsula. It is separated from the Spanish mainland by a neutral zone contained on a narrow, sandy isthmus. Because of its strategic location and formidable topography, Gibraltar serves mainly as a British fortress. Most of its sparse land is taken up by air and naval installations, and the civilian population is small.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.NASA Astrophysics Data System (ADS)
Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles
2016-04-01
Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps implemented in LANDARTs and propose a local and spatial validation of the LST products from Landsat dataset archive over two climatically contrasted zones: south-west France and centre of Tunisia. In both sites, long term datasets of in-situ surface temperature measurements have been compared to LST obtained for Landsat data processed by LANDARTs and filtered from clouds. This temporal comparison presents RMSE between 1.84K and 2.55K. Then, Landsat LST products are compared to ASTER kinetic surface temperature products on two synchronous dates from both zones. This comparison presents satisfactory RMSE about 2.55K with a good correlation coefficient of 0.9. Finally, a sensibility analysis to the spatial variation of parameters presents a variability reaching 2K at the Landsat image scale and confirms the improved accuracy in Landsat LST estimation linked to our spatial approach.
Gigliotta, Onofrio; Bartolomeo, Paolo; Miglino, Orazio
2015-09-01
Mainstream approaches to modelling cognitive processes have typically focused on (1) reproducing their neural underpinning, without regard to sensory-motor systems and (2) producing a single, ideal computational model. Evolutionary robotics is an alternative possibility to bridge the gap between neural substrate and behavior by means of a sensory-motor apparatus, and a powerful tool to build a population of individuals rather than a single model. We trained 4 populations of neurorobots, equipped with a pan/tilt/zoom camera, and provided with different types of motor control in order to perform a cancellation task, often used to tap spatial cognition. Neurorobots' eye movements were controlled by (a) position, (b) velocity, (c) simulated muscles and (d) simulated muscles with fixed level of zoom. Neurorobots provided with muscle and velocity control showed better performances than those controlled in position. This is an interesting result since muscle control can be considered a particular type of position control. Finally, neurorobots provided with muscle control and zoom outperformed those without zooming ability.
Martin, G. T.; Yoon, S. S.; Mott, K. E.
1991-01-01
Schistosomiasis, a group of parasitic diseases caused by Schistosoma parasites, is associated with water resources development and affects more than 200 million people in 76 countries. Depending on the species of parasite involved, disease of the liver, spleen, gastrointestinal or urinary tract, or kidneys may result. A computer-assisted teaching package has been developed by WHO for use in the training of public health workers involved in schistosomiasis control. The package consists of the software, ZOOM, and a schistosomiasis information file, Dr Schisto, and uses hypermedia technology to link pictures and text. ZOOM runs on the IBM-PC and IBM-compatible computers, is user-friendly, requires a minimal hardware configuration, and can interact with the user in English, French, Spanish or Portuguese. The information files for ZOOM can be created or modified by the instructor using a word processor, and thus can be designed to suit the need of students. No programming knowledge is required to create the stacks. PMID:1786618
Zoom-climb altitude maximization of the F-4C and F-15 aircraft for stratospheric sampling missions
NASA Technical Reports Server (NTRS)
Hague, D. S.; Merz, A. W.; Page, W. A.
1976-01-01
Some predictions indicate that byproducts of aerosol containers may lead to a modification of the ultraviolet-radiation shielding properties of the upper atmosphere. NASA currently monitors atmospheric properties to 70,000 feet using U-2 aircraft. Testing is needed at about 100,000 feet for adequate monitoring of possible aerosol contaminants during the next decade. To study this problem the F-4C and F-15 aircraft were analyzed to determine their maximum altitude ability in zoom-climb maneuvers. These trajectories must satisfy realistic dynamic pressure and Mach number constraints. Maximum altitudes obtained for the F4-C are above 90,000 feet, and for the F-15 above 100,000 feet. Sensitivities of the zoom-climb altitudes were found with respect to several variables including vehicle thrust, initial weight, stratospheric winds and the constraints. A final decision on aircraft selection must be based on mission modification costs and operational considerations balanced against their respective zoom altitude performance capabilities.
Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses
NASA Astrophysics Data System (ADS)
Kim, Baek-Chul; Kim, Hyunseok; Nguyen, H. C.; Cho, M. S.; Lee, Y.; Nam, Jae-Do; Choi, Hyouk Ryeol; Koo, J. C.; Jeong, H.-S.
2008-03-01
The objective of the present work is to demonstrate the efficiency and feasibility of NBR (Nitrile Butadiene Rubber) based conducting polymer actuator that is fabricated into a micro zoon lens driver. Unlike the traditional conducting polymer that normally operates in a liquid, the proposed actuator successfully provides fairly effective driving performance for the zoom lens system in a dry environment. And this paper is including the experiment results for an efficiency improvement. The result suggested by an experiment was efficient in micro optical zoom lens system. In addition, the developed design method of actuator was given consideration to design the system.
2002-10-22
In this ASTER image the features that look like folded material are carbonate sand dunes in the shallow waters of Tarpum Bay, southwest of Eleuthera Island in the Bahamas. The sand making up the dunes comes from the erosion of limestone coral reefs, and has been shaped into dunes by ocean currents. This image was acquired on May 12, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03877
2002-07-25
This ASTER image shows a 60 km stretch of the Yangtze River in China, including the Xiling Gorge, the eastern of the three gorges. In the left part of the image is the construction site of the Three Gorges Dam, the world's largest. This image was acquired on July 20, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03852
2002-10-15
Thirteen years after devastating forest fires burned over 1.6 million acres in Yellowstone National Park, the scars are still evident. In this simulated natural color ASTER image, burned areas appear gray, in contrast to the dark green of unburned forests. The image covers an area of 60 x 63 km. This image was acquired on July 2, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03875
ERIC Educational Resources Information Center
Thorn, Courtney; Rye, James; Walls, Holly
2017-01-01
Photography is a creative art that continues to advance through technological innovations. Smart phones have made photography a nearly daily occurance, and people have become quite accustomed to zooming in and taking photos. This article explains how elementary teachers can harness a much "bigger" technology application--GigaPan--to help…
Mechanically assisted liquid lens zoom system for mobile phone cameras
NASA Astrophysics Data System (ADS)
Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Berge, B.
2006-08-01
Camera systems with small form factor are an integral part of today's mobile phones which recently feature auto focus functionality. Ready to market solutions without moving parts have been developed by using the electrowetting technology. Besides virtually no deterioration, easy control electronics and simple and therefore cost-effective fabrication, this type of liquid lenses enables extremely fast settling times compared to mechanical approaches. As a next evolutionary step mobile phone cameras will be equipped with zoom functionality. We present first order considerations for the optical design of a miniaturized zoom system based on liquid-lenses and compare it to its mechanical counterpart. We propose a design of a zoom lens with a zoom factor of 2.5 considering state-of-the-art commercially available liquid lens products. The lens possesses auto focus capability and is based on liquid lenses and one additional mechanical actuator. The combination of liquid lenses and a single mechanical actuator enables extremely short settling times of about 20ms for the auto focus and a simplified mechanical system design leading to lower production cost and longer life time. The camera system has a mechanical outline of 24mm in length and 8mm in diameter. The lens with f/# 3.5 provides market relevant optical performance and is designed for an image circle of 6.25mm (1/2.8" format sensor).
Immersive Earth Science: Data Visualization in Virtual Reality
NASA Astrophysics Data System (ADS)
Skolnik, S.; Ramirez-Linan, R.
2017-12-01
Utilizing next generation technology, Navteca's exploration of 3D and volumetric temporal data in Virtual Reality (VR) takes advantage of immersive user experiences where stakeholders are literally inside the data. No longer restricted by the edges of a screen, VR provides an innovative way of viewing spatially distributed 2D and 3D data that leverages a 360 field of view and positional-tracking input, allowing users to see and experience data differently. These concepts are relevant to many sectors, industries, and fields of study, as real-time collaboration in VR can enhance understanding and mission with VR visualizations that display temporally-aware 3D, meteorological, and other volumetric datasets. The ability to view data that is traditionally "difficult" to visualize, such as subsurface features or air columns, is a particularly compelling use of the technology. Various development iterations have resulted in Navteca's proof of concept that imports and renders volumetric point-cloud data in the virtual reality environment by interfacing PC-based VR hardware to a back-end server and popular GIS software. The integration of the geo-located data in VR and subsequent display of changeable basemaps, overlaid datasets, and the ability to zoom, navigate, and select specific areas show the potential for immersive VR to revolutionize the way Earth data is viewed, analyzed, and communicated.
NASA Astrophysics Data System (ADS)
Karapetsas, Nikolaos; Skoulikaris, Charalampos; Katsogiannos, Fotis; Zalidis, George; Alexandridis, Thomas
2013-04-01
The use of satellite remote sensing products, such as Digital Elevation Models (DEMs), under specific computational interfaces of Geographic Information Systems (GIS) has fostered and facilitated the acquisition of data on specific hydrologic features, such as slope, flow direction and flow accumulation, which are crucial inputs to hydrology or hydraulic models at the river basin scale. However, even though DEMs of different resolution varying from a few km up to 20m are freely available for the European continent, these remotely sensed elevation data are rather coarse in cases where large flat areas are dominant inside a watershed, resulting in an unsatisfactory representation of the terrain characteristics. This scientific work aims at implementing a combing interpolation technique for the amelioration of the analysis of a DEM in order to be used as the input ground model to a hydraulic model for the assessment of potential flood events propagation in plains. More specifically, the second version of the ASTER Global Digital Elevation Model (GDEM2), which has an overall accuracy of around 20 meters, was interpolated with a vast number of aerial control points available from the Hellenic Mapping and Cadastral Organization (HMCO). The uncertainty that was inherent in both the available datasets (ASTER & HMCO) and the appearance of uncorrelated errors and artifacts was minimized by incorporating geostatistical filtering. The resolution of the produced DEM was approximately 10 meters and its validation was conducted with the use of an external dataset of 220 geodetic survey points. The derived DEM was then used as an input to the hydraulic model InfoWorks RS, whose operation is based on the relief characteristics contained in the ground model, for defining, in an automated way, the cross section parameters and simulating the flood spatial distribution. The plain of Serres, which is located in the downstream part of the Struma/Strymon transboundary river basin shared by Bulgaria and Greece, was selected as the case study area, because of its importance to the regional and national economy of Greece and because of the numerous flood events recorded in the past. The results of the simulation processing demonstrated the importance of high resolution relief models for estimating the potential flood hazard zones in order to mitigate the catastrophe caused, both in economic and environmental terms, by this type of extreme event.
Early Exposure to Research: Outcomes of the ASTER Certification Program
ERIC Educational Resources Information Center
Griffard, Phyllis Baudoin; Golkowska, Krystyna
2013-01-01
This paper discusses a novel structure for providing a high-impact, first year experience for science students. ASTER (Access to Science Through Experience in Research) is an extracurricular certification program designed to introduce our students to the research culture via seminar attendance, journal clubs, book clubs, and lab visits.…
USDA-ARS?s Scientific Manuscript database
Ruth’s golden aster, Pityopsis ruthii (Small), is an endangered, herbaceous perennial plant that is only endemic to small sections of the Hiwassee and Ocoee Rivers, in Polk County, Tennessee. In July 2015, a greenhouse grown plant exhibited symptoms of disease that included elongated brown lesions o...
1990-12-01
Name Species Cover Mudflat Area Cocklebur Xanthium strumarium ង to ɝ Shepherd’s purse Capsella bursa pastoris Barnyard grass Echinochloa crusgalli...Lythrium salicaria Rice cutgrass Leersia oryzoides * Cocklebur Xanthium strumarium Love giais Era grostis hypnoides Bog rush Juncus sp. Aster Aster pilosus
Cultural Resources Survey of Palmetto and Coochie Revetments, Mississippi River M-326 to 315
1993-11-11
oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Sedim entary...wildlife are asters (Aster sp.), buck vine (Amelopsis arborea), dewberry (Rubus sp.), elderberry ( Sambucus canadensis), and various maples (Acer sp...time characterized by a "filling in" of regional areas by peoples adapting to essentially modern natural environments. The concept of an Archaic Stage
Interface colloidal robotic manipulator
Aronson, Igor; Snezhko, Oleksiy
2015-08-04
A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.
Hubbard, B.E.; Crowley, J.K.; Zimbelman, D.R.
2003-01-01
Advanced Land Imager (ALI), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Hyperion imaging spectrometer data covering an area in the Central Andes between Volcan Socompa and Salar de Llullaillaco were used to map hydrothermally altered rocks associated with several young volcanic systems. Six ALI channels in the visible and near-infrared wavelength range (0.4-1.0 ??m) were useful for discriminating between ferric-iron alteration minerals based on the spectral shapes of electronic absorption features seen in continuum-removed spectra. Six ASTER channels in the short wavelength infrared (1.0-2.5 ??m) enabled distinctions between clay and sulfate mineral types based on the positions of band minima related to Al-OH vibrational absorption features. Hyperion imagery embedded in the broader image coverage of ALI and ASTER provided essential leverage for calibrating and improving the mapping accuracy of the multispectral data. This capability is especially valuable in remote areas of the earth where available geologic and other ground truth information is limited.
Micromanipulation studies of the mitotic apparatus in sand dollar eggs.
Hiramoto, Y; Nakano, Y
1988-01-01
Mechanical properties of the mitotic spindle and the effects of various operations of the mitotic apparatus on the chromosome movement and spindle elongation were investigated in fertilized eggs and blastomeres of the sand dollar, Clypeaster japonicus. On the basis of results with mechanical stretching and compression of the spindle with a pair of microneedles and the behavior of an oil drop microinjected into the spindle, it was concluded that the equatorial region of the spindle is mechanically weaker than the half-spindle region. Anaphase chromosome movement occurred in the spindle from which an aster had been removed or separated with its polar end and in the spindle in which the interzonal region had been removed. This fact indicates that chromosomes move poleward in anaphase by forces generated near the kinetochores in the half-spindle. Because of the effects of separation or removal of an aster from the spindle on the spindle elongation in anaphase and the behavior of the aster, it was concluded that the spindle elongation in anaphase is caused by pulling forces generated by asters attached to the ends of the spindle.
2003-01-08
The Anti-Atlas Mountains of Morocco formed as a result of the collision of the African and Eurasian tectonic plates about 80 million years ago. This collision destroyed the Tethys Ocean; the limestone, sandstone, claystone, and gypsum layers that formed the ocean bed were folded and crumpled to create the Atlas and Anti-Atlas Mountains. In this ASTER image, short wavelength infrared bands are combined to dramatically highlight the different rock types, and illustrate the complex folding. The yellowish, orange and green areas are limestones, sandstones and gypsum; the dark blue and green areas are underlying granitic rocks. The ability to map geology using ASTER data is enhanced by the multiple short wavelength infrared bands, that are sensitive to differences in rock mineralogy. This image was acquired on June 13, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03893
Zanin, Esther; Desai, Arshad; Poser, Ina; Toyoda, Yusuke; Andree, Cordula; Moebius, Claudia; Bickle, Marc; Conradt, Barbara; Piekny, Alisa; Oegema, Karen
2014-01-01
SUMMARY During animal cell cytokinesis, the spindle directs contractile ring assembly by activating RhoA in a narrow equatorial zone. Rapid GTPase activating protein (GAP)-mediated inactivation (RhoA flux) is proposed to limit RhoA zone dimensions. Testing the significance of RhoA flux has been hampered by the fact that the GAP targeting RhoA is not known. Here, we identify M-phase GAP (MP-GAP) as the primary GAP targeting RhoA during mitosis/cytokinesis. MP-GAP inhibition caused excessive RhoA activation in M-phase leading to the uncontrolled formation of large cortical protrusions and late cytokinesis failure. RhoA zone width was broadened by attenuation of the centrosomal asters but was not affected by MP-GAP inhibition alone. Simultaneous aster attenuation and MP-GAP inhibition led to RhoA accumulation around the entire cell periphery. These results identify the major GAP restraining RhoA during cell division and delineate the relative contributions of RhoA flux and centrosomal asters in controlling RhoA zone dimensions. PMID:24012485
Analysis of multispectral and hyperspectral longwave infrared (LWIR) data for geologic mapping
NASA Astrophysics Data System (ADS)
Kruse, Fred A.; McDowell, Meryl
2015-05-01
Multispectral MODIS/ASTER Airborne Simulator (MASTER) data and Hyperspectral Thermal Emission Spectrometer (HyTES) data covering the 8 - 12 μm spectral range (longwave infrared or LWIR) were analyzed for an area near Mountain Pass, California. Decorrelation stretched images were initially used to highlight spectral differences between geologic materials. Both datasets were atmospherically corrected using the ISAC method, and the Normalized Emissivity approach was used to separate temperature and emissivity. The MASTER data had 10 LWIR spectral bands and approximately 35-meter spatial resolution and covered a larger area than the HyTES data, which were collected with 256 narrow (approximately 17nm-wide) spectral bands at approximately 2.3-meter spatial resolution. Spectra for key spatially-coherent, spectrally-determined geologic units for overlap areas were overlain and visually compared to determine similarities and differences. Endmember spectra were extracted from both datasets using n-dimensional scatterplotting and compared to emissivity spectral libraries for identification. Endmember distributions and abundances were then mapped using Mixture-Tuned Matched Filtering (MTMF), a partial unmixing approach. Multispectral results demonstrate separation of silica-rich vs non-silicate materials, with distinct mapping of carbonate areas and general correspondence to the regional geology. Hyperspectral results illustrate refined mapping of silicates with distinction between similar units based on the position, character, and shape of high resolution emission minima near 9 μm. Calcite and dolomite were separated, identified, and mapped using HyTES based on a shift of the main carbonate emissivity minimum from approximately 11.3 to 11.2 μm respectively. Both datasets demonstrate the utility of LWIR spectral remote sensing for geologic mapping.
Gradient Index Optics at DARPA
2013-11-01
four efforts were selected for further development and demonstration: fluidic adaptive zoom lenses, foveated imaging, photon sieves, and nanolayer...2-4 1. Fluidic Adaptive Zoom Lenses... gastropod mollusks. In simple optical systems such as the fish lens, the focal length is a function of the wavelength of light. This distortion is called
Zhang, Guo-Jin; Hu, Hai-Hua; Zhang, Cai-Fei; Tian, Xiao-Juan; Peng, Hui; Gao, Tian-Gang
2015-01-01
Aster tianmenshanensis G. J. Zhang & T. G. Gao, a new species of Asteraceae from southern China is described and illustrated based on evidence from morphology, micromorphology and molecular phylogeny. The new species is superficially similar to Aster salwinensis Onno in having rosettes of spatulate leaves and a solitary, terminal capitulum, but it differs by its glabrous leaf margins, unequal disc floret lobes and 1-seriate pappus. The molecular phylogenetic analysis, based on nuclear sequences ITS, ETS and chloroplast sequence trnL-F, showed that the new species was nested within the genus Aster and formed a well supported clade with Aster verticillatus (Reinw.) Brouillet et al. The new species differs from the latter in having unbranched stems, much larger capitula, unequal disc floret lobes, beakless achenes and persistent pappus. In particular, A. tianmenshanensis has very short stigmatic lines, only ca. 0.18 mm long and less than 1/3 of the length of sterile style tip appendages, remarkably different from its congeners. This type of stigmatic line, as far as we know, has not been found in any other species of Aster. The very short stigmatic lines plus the unequal disc floret lobes imply that the new species may have a very specialized pollination system, which may be a consequence of habitat specialization. The new species grows only on the limestone cliffs of Mt. Tianmen, Hunan Province, at the elevation of 1400 m. It could only be accessed when a plank walkway was built across the cliffs for tourists. As it is known only from an area estimated at less than 10 km2 and a walkway passes through this location, its habitat could be easily disturbed. This species should best be treated as Critically Endangered based on the International Union for Conservation of Nature Red List Categories and Criteria B2a.
NASA Technical Reports Server (NTRS)
2002-01-01
This ASTER image shows a 60 km stretch of the Yangtze River in China, including the Xiling Gorge, the eastern of the three gorges. In the left part of the image is the construction site of the Three Gorges Dam, the world's largest.
This image was acquired on July 20, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 60 x 24 km (36 x 15 miles) Location: 30.6 deg. North lat., 111.2 deg. East long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: July 20, 2000NASA Technical Reports Server (NTRS)
2005-01-01
This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mount St. Helens was captured one week after the March 8, 2005, ash and steam eruption, the latest activity since the volcano's reawakening in September 2004. The new lava dome in the southeast part of the crater is clearly visible, highlighted by red areas where ASTER's infrared channels detected hot spots from incandescent lava. The new lava dome is 155 meters (500 feet) higher than the old lava dome, and still growing. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 21.9 by 24.4 kilometers (13.6 by 15.1 miles) Location: 46.2 degrees North latitude, 122.2 degrees West longitude Orientation: North at top Image Data: ASTER bands 8, 3, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: March 15, 2005NASA Technical Reports Server (NTRS)
2000-01-01
This 60 by 55 km ASTER scene shows almost the entire island of Oahu, Hawaii on June 3, 2000. The data were processed to produce a simulated natural color presentation. Oahu is the commercial center of Hawaii and is important to United States defense in the Pacific. Pearl Harbor naval base is situated here. The chief agricultural industries are the growing and processing of pineapples and sugarcane. Tourism also is important to the economy. Among the many popular beaches is the renowned Waikiki Beach, backed by the famous Diamond Head, an extinct volcano. The largest community, Honolulu, is the state capital.The image is located at 21.5 degrees north latitude and 158 degrees west longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.NASA Technical Reports Server (NTRS)
2001-01-01
This ASTER image was acquired on July 23, 2001 and covers an area of 64 x 72 km. The data were processed to create a simulated natural color image. From its start as a sleepy Spanish pueblo in 1781, LA and its metropolitan area has grown to become an ethnically diverse, semitropical megalopolis, laying claim as the principal center of the western US and the nation's second largest urban area. The city's economy is based on international trade, aerospace, agriculture, tourism, and filmmaking. LA provides a glimpse of the typically cosmopolitan and global city of the future.The image is located at 34.1 degrees north latitude and 118.2 degrees west longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.ASTER View of Sharm El Sheik, Egypt
NASA Technical Reports Server (NTRS)
2000-01-01
The Red Sea golf resort in Sharm El Sheik, Egypt, where President Clinton met with Israeli Prime Minister Ehud Barak and Palestinian Authority President Yasser Arafat, stands out against the desert landscape in this image acquired on August 25, 2000.This image of the southern tip of the Sinai Peninsula shows an area about 30 by 40 kilometers (19 by 25 miles) in the visible and near infrared wavelength region. Vegetation appears in red. The blue areas in the water at the top and bottom of the image are coral reefs. The airport is visible just to the north of the golf resort.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.Tian, Xiao-Juan; Peng, Hui; Gao, Tian-Gang
2015-01-01
Aster tianmenshanensis G. J. Zhang & T. G. Gao, a new species of Asteraceae from southern China is described and illustrated based on evidence from morphology, micromorphology and molecular phylogeny. The new species is superficially similar to Aster salwinensis Onno in having rosettes of spatulate leaves and a solitary, terminal capitulum, but it differs by its glabrous leaf margins, unequal disc floret lobes and 1-seriate pappus. The molecular phylogenetic analysis, based on nuclear sequences ITS, ETS and chloroplast sequence trnL-F, showed that the new species was nested within the genus Aster and formed a well supported clade with Aster verticillatus (Reinw.) Brouillet et al. The new species differs from the latter in having unbranched stems, much larger capitula, unequal disc floret lobes, beakless achenes and persistent pappus. In particular, A. tianmenshanensis has very short stigmatic lines, only ca. 0.18 mm long and less than 1/3 of the length of sterile style tip appendages, remarkably different from its congeners. This type of stigmatic line, as far as we know, has not been found in any other species of Aster. The very short stigmatic lines plus the unequal disc floret lobes imply that the new species may have a very specialized pollination system, which may be a consequence of habitat specialization. The new species grows only on the limestone cliffs of Mt. Tianmen, Hunan Province, at the elevation of 1400 m. It could only be accessed when a plank walkway was built across the cliffs for tourists. As it is known only from an area estimated at less than 10 km2 and a walkway passes through this location, its habitat could be easily disturbed. This species should best be treated as Critically Endangered based on the International Union for Conservation of Nature Red List Categories and Criteria B2a. PMID:26308863
NASA Technical Reports Server (NTRS)
2001-01-01
This ASTER sub-image covers a 12 x 12 km area in northern Shanxi Province, China, and was acquired January 9, 2001. The low sun angle, and light snow cover highlight a section of the Great Wall, visible as a black line running diagonally through the image from lower left to upper right. The Great Wall is over 2000 years old and was built over a period of 1000 years. Stretching 4500 miles from Korea to the Gobi Desert it was first built to protect China from marauders from the north.This image is located at 40.2 degrees north latitude and 112.8 degrees east longitude.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.The Global ASTER Geoscience and Mineralogical Maps
NASA Astrophysics Data System (ADS)
Abrams, M.
2017-12-01
In 2012, Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) released 17 Geoscience mineral maps for the continent of Australia We are producing the CSIRO Geoscience data products for the entire land surface of the Earth. These maps are created from Advanced Spacecraft Thermal Emission and Reflection Radiometer (ASTER) data, acquired between 2000 and 2008. ASTER, onboard the United States' Terra satellite, is part of NASA's Earth Observing System. This multispectral satellite system has 14 spectral bands spanning: the visible and near-infrared (VNIR) @ 15 m pixel resolution; shortwave-infrared (SWIR) @ 30 m pixel resolution; and thermal infrared (TIR) @ 90 m pixel resolution. In a polar-orbit, ASTER acquires a 60 km swath of data.The CSIRO maps are the first continental-scale mineral maps generated from an imaging satellite designed to measure clays, quartz and other minerals. Besides their obvious use in resource exploration, the data have applicability to climatological studies. Over Australia, these satellite mineral maps improved our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map showed how kaolinite has developed over tectonically stable continental crust in response to deep weathering. The same clay composition map, in combination with one sensitive to water content, enabled the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust. This product was also used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The two-year project is undertaken by JPL with collaboration from CSIRO. JPL has in-house the entire ASTER global archive of Level 1B image data—more than 1,500,000 scenes. This cloud-screened and vegetation-masked data set will be the basis for creation of the suite of global Geoscience products using all of ASTER's 14 VNIR-SWIR-TIR spectral bands resampled to 100 m pixel resolution. We plan a staged release of the geoscience products through NASA's LPDAAC.
3D View of Death Valley, California
NASA Technical Reports Server (NTRS)
2000-01-01
This 3-D perspective view looking north over Death Valley, California, was produced by draping ASTER nighttime thermal infrared data over topographic data from the US Geological Survey. The ASTER data were acquired April 7, 2000 with the multi-spectral thermal infrared channels, and cover an area of 60 by 80 km (37 by 50 miles). Bands 13, 12, and 10 are displayed in red, green and blue respectively. The data have been computer enhanced to exaggerate the color variations that highlight differences in types of surface materials. Salt deposits on the floor of Death Valley appear in shades of yellow, green, purple, and pink, indicating presence of carbonate, sulfate, and chloride minerals. The Panamint Mtns. to the west, and the Black Mtns. to the east, are made up of sedimentary limestones, sandstones, shales, and metamorphic rocks. The bright red areas are dominated by the mineral quartz, such as is found in sandstones; green areas are limestones. In the lower center part of the image is Badwater, the lowest point in North America.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.NASA Technical Reports Server (NTRS)
2002-01-01
On March 26, New York Mayor Michael Bloomberg declared a drought emergency for the city and four upstate counties in response to the worst drought to hit the eastern United States in nearly 70 years. Restrictions on water use will affect more than 8 million residents of New York. The city's reservoirs, located in the Catskill Mountains, are at 52 percent capacity. One of these, Ashokan Reservoir, is seen in this pair of ASTER images acquired on September 18, 2000 and February 3, 2002.
These images were acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 16.5 x 13 km (10.2 x 8.1 miles) Location: 41.9 deg. North lat., 74.2 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: September 18, 2000 and February 3, 2002NASA Astrophysics Data System (ADS)
Ramsey, M.; Wessels, R.; Dehn, J.; Duda, K.; Harris, A.; Watson, M.
2008-12-01
From soon after its launch in December 1999, the ASTER sensor on the NASA Terra satellite has been acquiring data of volcanic eruptions and other natural disasters around the world. ASTER has the capability to acquire high spatial resolution data from the visible to thermal infrared wavelength region. Those data, in conjunction with its ability to generate digital elevation models (DEMs), makes ASTER particularly useful for numerous aspects of volcanic remote sensing. However, the nature of the ASTER scheduling/data collection/calibration pathway makes rapid observations of hazard locations nearly impossible. The sensor's acquisitions are scheduled in advance and the data are processed and calibrated in Japan prior to archiving in the United States. This can produce a lag of at least several days from the initial request to data scheduling and another several days after acquisition until the data are available. However, there exists a manual "rapid response" mode that provides faster data scheduling, processing and availability. This mode has now been semi-automated and linked to larger-scale and more rapid monitoring alert system. The first phase has been to integrate with the Alaska Volcano Observatory's current near-real-time satellite monitoring system, which relies on high temporal/low spatial resolution orbital data. This phase of the project has focused on eruptions in the north Pacific region, and in particular over Kamchatka, Russia. Several beneficial factors have combined that resulted in over 1350 ASTER images being acquired for the five most thermally-active Kamchatka volcanoes (Bezymianny, Karimsky, Kluichevskoi, Sheveluch and Tolbachik). These factors include the orbital alignment of Terra, the high latitude of the peninsula, and the many eruptions and volcanic activity in Kamchatka. From the inception of the automated rapid response program in 2003, an additional 350 scenes have been acquired over the Kamchatka volcanoes, which have targeted both small-scale activity and larger eruptions for science and hazard response. Numerous eruptions have been observed that displayed varying volcanic styles including basaltic lava flow emplacement, silicic lava dome growth, pyroclastic flow production, volcanic ash plume production, fumarolic activity, and geothermal emission. The focus of this presentation is to summarize the current ASTER rapid response program in Kamchatka, focus on two specific eruptions of Sheveluch volcano, and discuss the future expansion plans for global hazard response.
Salt Lake City, Utah, Perspective View
NASA Technical Reports Server (NTRS)
2001-01-01
The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This 3-D perspective view, in simulated natural colors, presents a late spring view over Salt Lake City towards the snow-capped Wasatch Mountains to the east. The image was created by draping ASTER image data over digital topography data from the US Geological Survey's National Elevation Data.
This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: View width 15 km ( 9.2 miles); view distance 12 km (7.3 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 28, 2000Glacier Volume Change Estimation Using Time Series of Improved Aster Dems
NASA Astrophysics Data System (ADS)
Girod, Luc; Nuth, Christopher; Kääb, Andreas
2016-06-01
Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter seems not to be easily modeled analytically from the first one. We thus remove the remaining along-track jitter effects in the DEMs statistically through temporal DEM stacks to finally compute the glacier volume changes over time. Our method yields cleaner and spatially more complete elevation data, which also proved to be more in accordance to reference DEMs, compared to NASA's AST14DMO DEM standard products. The quality of the demonstrated measurements promises to further unlock the underused potential of ASTER DEMs for glacier volume change time series on a global scale. The data produced by our method will help to better understand the response of glaciers to climate change and their influence on runoff and sea level.
2017-12-08
Sochi, Russia Winter Olympic Sites (Mountain Cluster) The 2014 Winter Olympic ski runs may be rated double black diamond, but they're not quite as steep as they appear in this image of the skiing and snowboarding sites for the Sochi Winter Olympic Games, acquired on Jan. 4, 2014, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft. Rosa Khutar ski resort near Sochi, Russia, is in the valley at center, and the runs are visible on the shadowed slopes on the left-hand side of the valley. Height has been exaggerated 1.5 times to bring out topographic details. The games, which begin on Feb. 7 and continue for 17 days, feature six new skiing and boarding events plus the return of the legendary Jamaican bobsled team to the winter games for the first time since 2002. In this southwest-looking image, red indicates vegetation, white is snow, and the resort site appears in gray. The area imaged is about 11 miles (18 kilometers) across in the foreground and 20 miles (32 kilometers) from front to back. The image was created from the ASTER visible and near-infrared bands, draped over ASTER-derived digital elevation data. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. credit:NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Ultrathin zoom lens system based on liquid lenses
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Chao; Wang, Qiong-Hua
2015-07-01
In this paper, we propose an ultrathin zoom lens system based on liquid lenses. The proposed system consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens has several concentric surfaces. The annular folded lens is used to get the main power and correct aberrations. The three liquid lenses are used to change the focal length and correct aberration. An analysis of the proposed system is presented along with the design, fabrication, and testing of a prototype. All the elements in the proposed system are very thin, so the system is an ultrathin zoom lens system, which has potential application as lightweight, thin, high-quality imagers for aerospace, consumer, and military applications.
Draft genome sequence of the New Jersey aster yellows strain of ‘Candidatus Phytoplasma asteris’
USDA-ARS?s Scientific Manuscript database
The NJAY (New Jersey aster yellows) strain of ‘Candidatus Phytoplasma asteris’ is a significant plant pathogen responsible for causing severe lettuce yellows in the U.S. state of New Jersey. A draft genome sequence was prepared for this organism and used for genome- and gene-based comparative phylog...
USDA-ARS?s Scientific Manuscript database
Ruth's golden aster (Pityopsis ruthii) is an endangered, herbaceous perennial that occurs only at a few sites along small reaches of the Hiwassee and Ocoee rivers in Polk County, Tennessee. This species has ornamental potential. In 2012, we vegetatively propagated various genotypes and established p...
Rockwell, Barnaby W.; Knepper, Daniel H.; Horton, John D.
2015-01-01
The image products derived from Landsat TM and ASTER data enable the delineation of mineral groups across wide areas based on color response. Guides are provided that allow users to interpret these colors as to mineral group occurrence over lithologic units and known deposits. This information can be extrapolated to other geologically permissive tracts for various deposit types in the search for similar mineralogic responses that may be indicative of concealed deposits.
Normalizing Landsat and ASTER Data Using MODIS Data Products for Forest Change Detection
NASA Technical Reports Server (NTRS)
Gao, Feng; Masek, Jeffrey G.; Wolfe, Robert E.; Tan, Bin
2010-01-01
Monitoring forest cover and its changes are a major application for optical remote sensing. In this paper, we present an approach to integrate Landsat, ASTER and MODIS data for forest change detection. Moderate resolution (10-100m) images (e.g. Landsat and ASTER) acquired from different seasons and times are normalized to one "standard" date using MODIS data products as reference. The normalized data are then used to compute forest disturbance index for forest change detection. Comparing to the results from original data, forest disturbance index from the normalized images is more consistent spatially and temporally. This work demonstrates an effective approach for mapping forest change over a large area from multiple moderate resolution sensors on various acquisition dates.
ERIC Educational Resources Information Center
Rosenfeld, Malke; Kelin, Daniel; Plows, Kate; Conarro, Ryan; Broderick, Debora
2014-01-01
When one says "writing about teaching artist practice," what exactly does that mean? In the first two sections (EJ1039315 and EJ1039319), the authors considered different ways to frame a story by either zooming in closely to a specific moment or zooming out to provide more context in an effort to address complex issues. The stories in…
Iberian Spanish "Macho": Vantages and Polysemy in Culturally Defined Meaning
ERIC Educational Resources Information Center
Grace, Caroline A.; Glaz, Adam
2010-01-01
This study explores some specific aspects of compatibility between cognitive models. Robert E. MacLaury's theory of vantages as arrangements of coordinates and Lakoff's concept of radial categories are mutually reinforcing to an analysis of semantic polysemy. Vantage Theory (VT) includes the notions of "zooming in" and "zooming out", allowing…
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] Click on the image for movie of Zooming in on Landing Site This animation zooms in on the area on Mars where NASA's Phoenix Mars Lander will touchdown on May 25, 2008. The image was taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The first shot shows the spacecraft's landing ellipse in green, the area where Phoenix has a high probability of landing. It then zooms in to show the region's arctic terrain. This polar landscape is relatively free of rocks, with only about 1 to 2 rocks 1.5 meters (4.9 feet) or larger in an area about as big as two football fields. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colo.Genoviz Software Development Kit: Java tool kit for building genomics visualization applications.
Helt, Gregg A; Nicol, John W; Erwin, Ed; Blossom, Eric; Blanchard, Steven G; Chervitz, Stephen A; Harmon, Cyrus; Loraine, Ann E
2009-08-25
Visualization software can expose previously undiscovered patterns in genomic data and advance biological science. The Genoviz Software Development Kit (SDK) is an open source, Java-based framework designed for rapid assembly of visualization software applications for genomics. The Genoviz SDK framework provides a mechanism for incorporating adaptive, dynamic zooming into applications, a desirable feature of genome viewers. Visualization capabilities of the Genoviz SDK include automated layout of features along genetic or genomic axes; support for user interactions with graphical elements (Glyphs) in a map; a variety of Glyph sub-classes that promote experimentation with new ways of representing data in graphical formats; and support for adaptive, semantic zooming, whereby objects change their appearance depending on zoom level and zooming rate adapts to the current scale. Freely available demonstration and production quality applications, including the Integrated Genome Browser, illustrate Genoviz SDK capabilities. Separation between graphics components and genomic data models makes it easy for developers to add visualization capability to pre-existing applications or build new applications using third-party data models. Source code, documentation, sample applications, and tutorials are available at http://genoviz.sourceforge.net/.
Pastor, Géraldine; Jiménez-González, María; Plaza-García, Sandra; Beraza, Marta; Reese, Torsten
2017-06-01
A newly adapted zoomed ultrafast low-angle RARE (U-FLARE) sequence is described for abdominal imaging applications at 11.7 Tesla and compared with the standard echo-plannar imaging (EPI) and snapshot fast low angle shot (FLASH) methods. Ultrafast EPI and snapshot-FLASH protocols were evaluated to determine relaxation times in phantoms and in the mouse kidney in vivo. Owing to their apparent shortcomings, imaging artefacts, signal-to-noise ratio (SNR), and variability in the determination of relaxation times, these methods are compared with the newly implemented zoomed U-FLARE sequence. Snapshot-FLASH has a lower SNR when compared with the zoomed U-FLARE sequence and EPI. The variability in the measurement of relaxation times is higher in the Look-Locker sequences than in inversion recovery experiments. Respectively, the average T1 and T2 values at 11.7 Tesla are as follows: kidney cortex, 1810 and 29 ms; kidney medulla, 2100 and 25 ms; subcutaneous tumour, 2365 and 28 ms. This study demonstrates that the zoomed U-FLARE sequence yields single-shot single-slice images with good anatomical resolution and high SNR at 11.7 Tesla. Thus, it offers a viable alternative to standard protocols for mapping very fast parameters, such as T1 and T2, or dynamic processes in vivo at high field.
NASA Technical Reports Server (NTRS)
Follen, Gregory; auBuchon, M.
2000-01-01
Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer along with the concept of numerical zooming between zero-dimensional to one-, two-, and three-dimensional component engine codes. In addition, the NPSS is refining the computing and communication technologies necessary to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Of the different technology areas that contribute to the development of the NPSS Environment, the subject of this paper is a discussion on numerical zooming between a NPSS engine simulation and higher fidelity representations of the engine components (fan, compressor, burner, turbines, etc.). What follows is a description of successfully zooming one-dimensional (row-by-row) high-pressure compressor analysis results back to a zero-dimensional NPSS engine simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the capability of the engine system simulation and increase the level of virtual test conducted prior to committing the design to hardware.
2017-12-08
Lake Mackay is the largest of hundreds of ephemeral lakes scattered throughout Western Australia and the Northern Territory, and is the second largest lake in Australia. The darker areas indicate some form of desert vegetation or algae, moisture within the soils, and lowest elevations where water pools. The image was acquired on September 19, 2010 and covers an area of 27 x 41 km. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. Image Credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team
Cleavage in conical sand dollar eggs.
Rappaport, R; Rappaport, B N
1994-07-01
Previous experiments have shown that the mitotic apparatus and the surface can interact and produce functional furrows in various unusual geometrical circumstances. The consistent development of the furrow in the plane equidistant from the aster centers has led to conjecture about the need for a special structural configuration of the subsurface in the future cleavage plane. In most experiments involving altered cell geometry, the relation between each aster and nearby surface was symmetrical, and the effect of that symmetry upon the position and orientation of the cleavage mechanism in the cortex has not been systematically analyzed. The normal symmetry of sand dollar eggs can be changed by reshaping them into cones. When the cone and mitotic axes are parallel, the aster center closer to the vertex is also closer to the nearby surface, and the cleavage plane develops on the vertex side of the midpoint between the asters. A mitotic apparatus oriented perpendicular to the cone axis produces in the base of the cone a normal unilateral furrow that advances toward the vertex, and a second contractile band that isolates the vertex region. This event only occurs when the surface is conical and the mitotic apparatus is perpendicular to the cone axis. Furrow formation is not restricted to the plane of the metaphase plate or the midpoint between the aster centers. The orientation of mitotic apparatus-produced contractile bands is not limited to the circumstances in normal cytokinesis, but may vary according to surface contour. These results confirm predictions of the Harris and Gewalt model of contractile ring induction.
NASA Astrophysics Data System (ADS)
De Bonis, Giulia; Bozza, Cristiano
2017-03-01
In the framework of Horizon 2020, the European Commission approved the ASTERICS initiative (ASTronomy ESFRI and Research Infrastructure CluSter) to collect knowledge and experiences from astronomy, astrophysics and particle physics and foster synergies among existing research infrastructures and scientific communities, hence paving the way for future ones. ASTERICS aims at producing a common set of tools and strategies to be applied in Astronomy ESFRI facilities. In particular, it will target the so-called multi-messenger approach to combine information from optical and radio telescopes, photon counters and neutrino telescopes. pLISA is a software tool under development in ASTERICS to help and promote machine learning as a unified approach to multivariate analysis of astrophysical data and signals. The library will offer a collection of classification parameters, estimators, classes and methods to be linked and used in reconstruction programs (and possibly also extended), to characterize events in terms of particle identification and energy. The pLISA library aims at offering the software infras tructure for applications developed inside different experiments and has been designed with an effort to extrapolate general, physics-related estimators from the specific features of the data model related to each particular experiment. pLISA is oriented towards parallel computing architectures, with awareness of the opportunity of using GPUs as accelerators demanding specifically optimized algorithms and to reduce the costs of pro cessing hardware requested for the reconstruction tasks. Indeed, a fast (ideally, real-time) reconstruction can open the way for the development or improvement of alert systems, typically required by multi-messenger search programmes among the different experi mental facilities involved in ASTERICS.
NASA Astrophysics Data System (ADS)
Grohmann, Carlos H.
2018-06-01
A first assessment of the TanDEM-X DEMs over Brazilian territory is presented through a comparison with SRTM, ASTER GDEM and ALOS AW3D30 DEMs in seven study areas with distinct geomorphological contexts, vegetation coverage and land use. Visual analysis and elevation histograms point to a finer effective spatial resolution of TanDEM-X compared to SRTM and ASTER GDEM. In areas of open vegetation, TanDEM-X lower elevations indicate a better penetration of the radar signal. DEMs of differences (DoDs) allowed the identification of issues inherent to the production methods of the analyzed DEMs, such as mast oscillations in SRTM data and mismatch between adjacent scenes in ASTER GDEM and ALOS AW3D30. A systematic difference in elevations between TanDEM-X 12m, TanDEM-X 30m and SRTM was observed in the steep slopes of the coastal ranges, related to the moving-window process used to resample the 12m data to a 30m pixel size. Due its simplicity, it is strongly recommended to produce a DoD with SRTM before using ASTER GDEM or ALOS AW3D30 in any analysis, to evaluate if the area of interest is affected by these problems. The DoDs also highlighted changes in land use in the time span between the acquisition of SRTM (2000) and TanDEM-X (2013) data, whether by natural causes or by human interference in the environment.
2010-03-03
Image taken 5/2/2002 by ASTER: A vast alluvial fan blossoms across the desolate landscape between the Kunlun and Altun mountain ranges that form the southern border of the Taklimakan Desert in China's XinJiang Province. This image can be found on ASTER Path 143 Row 34, center: 37.43 N, 84.30 E. To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/
Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao
2015-08-01
There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models.
another search. Multiple locations were found. Please select one of the following: Close Location Help Top view Zoom in shot of snow on the Big Island Summits 11/5/2007 (photo by Andrew Beavers (NWS)) Zoom in shot of snow on the Big Island Summits 11/5/2007 (photo by Andrew Beavers (NWS)) Click for larger view
An all-silicone zoom lens in an optical imaging system
NASA Astrophysics Data System (ADS)
Zhao, Cun-Hua
2013-09-01
An all-silicone zoom lens is fabricated. A tunable metal ringer is fettered around the side edge of the lens. A nylon rope linking a motor is tied, encircling the notch in the metal ringer. While the motor is operating, the rope can shrink or release to change the focal length of the lens. A calculation method is developed to obtain the focal length and the zoom ratio. The testing is carried out in succession. The testing values are compared with the calculated ones, and they tally with each other well. Finally, the imaging performance of the all-silicone lens is demonstrated. The all-silicone lens has potential uses in cellphone cameras, notebook cameras, micro monitor lenses, etc.
Photographic zoom fisheye lens design for DSLR cameras
NASA Astrophysics Data System (ADS)
Yan, Yufeng; Sasian, Jose
2017-09-01
Photographic fisheye lenses with fixed focal length for cameras with different sensor formats have been well developed for decades. However, photographic fisheye lenses with variable focal length are rare on the market due in part to the greater design difficulty. This paper presents a large aperture zoom fisheye lens for DSLR cameras that produces both circular and diagonal fisheye imaging for 35-mm sensors and diagonal fisheye imaging for APS-C sensors. The history and optical characteristics of fisheye lenses are briefly reviewed. Then, a 9.2- to 16.1-mm F/2.8 to F/3.5 zoom fisheye lens design is presented, including the design approach and aberration control. Image quality and tolerance performance analysis for this lens are also presented.
A reflection polarizations zoom metasurfaces
NASA Astrophysics Data System (ADS)
Yang, Fulong; Wang, Xiaoyan
2017-02-01
Based on generalized Snell's law, we propose a dual-polarity zoom metasurfaces operating electromagnetic wave in the reflection geometry. The metasurfaces is constructed by two identical ultrathin metal-backed dielectric slabs with metallic Jerusalem cross patterns on the other sides to form a triangular region. The normally incident waves are totally reflected, but the reflection phases of both x- and y-polarized waves are controlled independently. According to the classical theory of optical imaging, the reflection electromagnetic wave phases were obtained in the different polarizations and focus. Each subwavelength units size were determined with the reflection coefficient of the basic unit, the polarizations zoom metasurfaces was designed in the way. The full-wave simulations are in good agreement with theoretical analysis in microwave lengths.
Potential for using regional and global datasets for national scale ecosystem service modelling
NASA Astrophysics Data System (ADS)
Maxwell, Deborah; Jackson, Bethanna
2016-04-01
Ecosystem service models are increasingly being used by planners and policy makers to inform policy development and decisions about national-level resource management. Such models allow ecosystem services to be mapped and quantified, and subsequent changes to these services to be identified and monitored. In some cases, the impact of small scale changes can be modelled at a national scale, providing more detailed information to decision makers about where to best focus investment and management interventions that could address these issues, while moving toward national goals and/or targets. National scale modelling often uses national (or local) data (for example, soils, landcover and topographical information) as input. However, there are some places where fine resolution and/or high quality national datasets cannot be easily obtained, or do not even exist. In the absence of such detailed information, regional or global datasets could be used as input to such models. There are questions, however, about the usefulness of these coarser resolution datasets and the extent to which inaccuracies in this data may degrade predictions of existing and potential ecosystem service provision and subsequent decision making. Using LUCI (the Land Utilisation and Capability Indicator) as an example predictive model, we examine how the reliability of predictions change when national datasets of soil, landcover and topography are substituted with coarser scale regional and global datasets. We specifically look at how LUCI's predictions of where water services, such as flood risk, flood mitigation, erosion and water quality, change when national data inputs are replaced by regional and global datasets. Using the Conwy catchment, Wales, as a case study, the land cover products compared are the UK's Land Cover Map (2007), the European CORINE land cover map and the ESA global land cover map. Soils products include the National Soil Map of England and Wales (NatMap) and the European Soils Database. NEXTmap elevation data, which covers the UK and parts of continental Europe, are compared to global AsterDEM and SRTM30 topographical products. While the regional and global datasets can be used to fill gaps in data requirements, the coarser resolution of these datasets means that there is greater aggregation of information over larger areas. This loss of detail impacts on the reliability of model output, particularly where significant discrepancies between datasets exist. The implications of this loss of detail in terms of spatial planning and decision making is discussed. Finally, in the context of broader development the need for better nationally and globally available data to allow LUCI and other ecosystem models to become more globally applicable is highlighted.
Spectral unmixing of hyperspectral data to map bauxite deposits
NASA Astrophysics Data System (ADS)
Shanmugam, Sanjeevi; Abhishekh, P. V.
2006-12-01
This paper presents a study about the potential of remote sensing in bauxite exploration in the Kolli hills of Tamilnadu state, southern India. ASTER image (acquired in the VNIR and SWIR regions) has been used in conjunction with SRTM - DEM in this study. A new approach of spectral unmixing of ASTER image data delineated areas rich in alumina. Various geological and geomorphological parameters that control bauxite formation were also derived from the ASTER image. All these information, when integrated, showed that there are 16 cappings (including the existing mines) that satisfy most of the conditions favouring bauxitization in the Kolli Hills. The study concludes that spectral unmixing of hyperspectral satellite data in the VNIR and SWIR regions may be combined with the terrain parameters to get accurate information about bauxite deposits, including their quality.
2017-12-08
Sochi, Russia Winter Olympic Sites (Coastal Cluster) The Black Sea resort of Sochi, Russia, is the warmest city ever to host the Winter Olympic Games, which open on Feb. 7, 2014, and run through Feb. 23. This north-looking image, acquired on Jan. 4, 2014, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft, shows the Sochi Olympic Park Coastal Cluster -- the circular area on the shoreline in the bottom center of the image -- which was built for Olympic indoor sports. Even curling has its own arena alongside multiple arenas for hockey and skating. The Olympic alpine events will take place at the Mountain Cluster, located in a snow-capped valley at the top right of the image. Sochi itself, a city of about 400,000, is not visible in the picture. It's farther west (left) along the coast, past the airport at bottom left. In the image, red indicates vegetation, white is snow, buildings are gray and the ocean is dark blue. The area imaged is about 15 miles (24 kilometers) from west to east (left to right) at the coastline and 25 miles (41 kilometers) from front to back. Height is exaggerated 1.5 times. The image was created from the ASTER visible and near-infrared bands, draped over ASTER-derived digital elevation data. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. Image credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
2002-01-01
The Hayman forest fire, started on June 8, is continuing to burn in the Pike National Forest, 57 km (35 miles) south-southwest of Denver. According to the U.S. Forest Service, the fire has consumed more than 90,000 acres and has become Colorado's worst fire ever. In this ASTER image, acquired Sunday, June 16, 2002 at 10:30 am MST, the dark blue area is burned vegetation and the green areas are healthy vegetation. Red areas are active fires, and the blue cloud at the top center is smoke. Meteorological clouds are white. The image covers an area of 32.2 x 35.2 km (20.0 x 21.8 miles), and displays ASTER bands 8-3-2 in red, green and blue.
This image was acquired on June 16, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 32.2 x 35.2 km (20.0 x 21.8 miles) Location: 39.2 deg. North lat., 105.3 deg. West long. Orientation: North at top Image Data: ASTER bands 8, 3, and 2. Original Data Resolution: 15 m Date Acquired: June 16, 2002Esperanza Fire near Palm Springs, California
NASA Technical Reports Server (NTRS)
2006-01-01
The Esperanza fire started on October 26 in the dry brush near Palm Springs, CA. By the time it was contained 6 days later, the fire had consumed 40,200 acres, and destroyed 34 homes and 20 outbuildings. Racing through grass, brush, and timber, the blaze had forced hundreds to evacuate, and it killed five firefighters who were working to protect homes. Fire officials are reporting the cause of the blaze as arson. In this ASTER image composite of visible and infrared bands, burned areas are shown in shades of red, vegetation is green, brown vegetation is brown and asphalt and concrete are blue-gray. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 21.4 by 26.9 kilometers (13.2 by 16.6 miles) Location: 33.6 degrees North latitude, 116.8 degrees West longitude Orientation: North at top Image Data: ASTER Bands 7, 3 and 1 Original Data Resolution: ASTER 15 meters (49.2 feet) and 30 meters (98.4 feet) Dates Acquired: November 3, 2006Fire near South Lake Tahoe, California
NASA Technical Reports Server (NTRS)
2007-01-01
A destructive forest fire that broke out June 24, 2007 near South Lake Tahoe, Calif., continued to burn June 27 when this image was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer instrument on NASA's Terra satellite. As of June 28, the fire had destroyed about 230 residences and other buildings. In all, about 2,000 people were evacuated, according to South Lake Tahoe Police. The blaze has charred more than 3,100 acres -- about 4.8 square miles -- and was 60 percent contained on June 28. In this ASTER image, the burned area is in gray, a combination of burned forest and some smoke, between Fallen Leaf Lake and the Tahoe Airport. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 15 by 15 kilometers (9.3 by 9.3 miles) Location: 38.9 degrees North latitude, 120 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 15 meters (49.2 feet) Date Acquired: June 27, 2007.NASA Technical Reports Server (NTRS)
2007-01-01
The last major fire in southern Greece was brought under control this weekend, but not until over 469,000 acres of mostly forest and farmland were destroyed. An estimated 4000 people lost their homes, and over 60 deaths were reported. These were the worst fires ever to occur in Greece. In this Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image acquired September 4 over the western coast of the Peloponnesus Peninsula, burned areas appear in dark red, and unburned vegetation is green. The area includes the ancient site of Olympia, the site of the Olympic Games in classical times. The fires came within 2 kilometers (1.2 miles) of the archaeological site, but spared it. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 56.4 by 63.5 kilometers (35 by 39.4 miles) Location: 37.9 degrees North latitude, 21.6 degrees East longitude Orientation: North at top Image Data: ASTER Bands 6, 3, and 1 Original Data Resolution: ASTER 15 meters (49.2 feet Dates Acquired: September 4, 2007.Witch Wildland Fire, California
NASA Technical Reports Server (NTRS)
2007-01-01
The October wildfires that plagued southern California were some of the worst on record. One of these, the Witch Wildland fire, burned 198,000 acres north of San Diego, destroying 1125 homes, commercial structures, and outbuildings. Over 3,000 firefighters finally contained the fire two weeks after it started on October 21. Now begins the huge task of planning and implementing mitigation measures to replant and reseed the burned areas. This ASTER image depicts the area after the fire, on November 6; vegetation is green, burned areas are dark red, and urban areas are blue. On the burn severity index image, calculated using infrared and visible bands, red areas are the most severely burned, followed by green and blue. This information can help the US Forest Service to plan post-fire activities. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 37.5 by 45 kilometers (23.1 by 27.8 miles) Location: 33 degrees North latitude, 116.9 degrees West longitude Orientation: North at top Image Data: ASTER Bands 6, 3, and 1 Original Data Resolution: ASTER 15 meters (49.2 feet) Dates Acquired: November 6, 2007NASA Astrophysics Data System (ADS)
Zhang, Wangfei; Chen, Erxue; Li, Zengyuan; Feng, Qi; Zhao, Lei
2016-08-01
DEM Differential Method is an effective and efficient way for forest tree height assessment with Polarimetric and interferometric technology, however, the assessment accuracy of it is based on the accuracy of interferometric results and DEM. Terra-SAR/TanDEM-X, which established the first spaceborne bistatic interferometer, can provide highly accurate cross-track interferometric images in the whole global without inherent accuracy limitations like temporal decorrelation and atmospheric disturbance. These characters of Terra-SAR/TandDEM-X give great potential for global or regional tree height assessment, which have been constraint by the temporal decorrelation in traditional repeat-pass interferometry. Currently, in China, it will be costly to collect high accurate DEM with Lidar. At the same time, it is also difficult to get truly representative ground survey samples to test and verify the assessment results. In this paper, we analyzed the feasibility of using TerraSAR/TanDEM-X data to assess forest tree height with current free DEM data like ASTER-GDEM and archived ground in-suit data like forest management inventory data (FMI). At first, the accuracy and of ASTER-GDEM and forest management inventory data had been assessment according to the DEM and canopy height model (CHM) extracted from Lidar data. The results show the average elevation RMSE between ASTER-GEDM and Lidar-DEM is about 13 meters, but they have high correlation with the correlation coefficient of 0.96. With a linear regression model, we can compensate ASTER-GDEM and improve its accuracy nearly to the Lidar-DEM with same scale. The correlation coefficient between FMI and CHM is 0.40. its accuracy is able to be improved by a linear regression model withinconfidence intervals of 95%. After compensation of ASTER-GDEM and FMI, we calculated the tree height in Mengla test site with DEM Differential Method. The results showed that the corrected ASTER-GDEM can effectively improve the assessment accuracy. The average assessment accuracy before and after corrected is 0.73 and 0.76, the RMSE is 5.5 and 4.4, respectively.
NASA Astrophysics Data System (ADS)
Said, Yahia A.; Petropoulos, George; Srivastava, Prashant K.
2014-05-01
Information on burned area estimates is of key importance in environmental and ecological studies as well as in fire management including damage assessment and planning of post-fire recovery of affected areas. Earth Observation (EO) provides today the most efficient way in obtaining such information in a rapid, consistent and cost-effective manner. The present study aimed at exploring the effect of topographic correction to the burnt area delineation in conditions characteristic of a Mediterranean environment using ASTER high resolution multispectral remotely sensed imagery. A further objective was to investigate the potential added-value of the inclusion of the shortwave infrared (SWIR) bands in improving the retrievals of burned area cartography from the ASTER data. In particular the capability of the Maximum Likelihood (ML), the Support Vector Machines (SVMs) and Object-based Image Analysis (OBIA) classification techniques has been examined herein for the purposes of our study. As a case study is used a typical Mediterranean site on which a fire event occurred in Greece during the summer of 2007, for which post-fire ASTER imagery has been acquired. Our results indicated that the combination of topographic correction (ortho-rectification) with the inclusion of the SWIR bands returned the most accurate results in terms of burnt area mapping. In terms of image processing methods, OBIA showed the best results and found as the most promising approach for burned area mapping with least absolute difference from the validation polygon followed by SVM and ML. All in all, our study provides an important contribution to the understanding of the capability of high resolution imagery such as that from ASTER sensor and corroborates the usefulness particularly of the topographic correction as an image processing step when in delineating the burnt areas from such data. It also provides further evidence that use of EO technology can offer an effective practical tool for the extent of ecosystem destruction from wildfires, providing extremely useful information in co-ordinating efforts for the recovery of fire-affected ecosystems after wildfire. Keywords: Remote Sensing, ASTER, Burned area mapping, Maximum Likelihood, Support Vector Machines, Object-based image analysis, Greece
Chromatic correction for a VIS-SWIR zoom lens using optical glasses
NASA Astrophysics Data System (ADS)
Zhao, Yang; Williams, Daniel J. L.; McCarthy, Peter; Visconti, Anthony J.; Bentley, Julie L.; Moore, Duncan T.
2015-09-01
With the advancement in sensors, hyperspectral imaging in short wave infrared (SWIR 0.9 μm to 1.7 μm) now has wide applications, including night vision, haze-penetrating imaging, etc. Most conventional optical glasses can be material candidates for designing in the SWIR as they transmit up to 2.2 μm. However, since SWIR is in the middle of the glasses' major absorption wavebands in UV and IR, the flint glasses in SWIR are less dispersive than in the visible spectrum. As a result, the glass map in the SWIR is highly compressed, with crowns and flints all clustering together. Thus correcting for chromatic aberration is more challenging in the SWIR, since the Abbé number ratio of the same glass combination is reduced. Conventionally, fluorides, such as CaF2 and BaF2, are widely used in designing SWIR system due to their unique dispersion properties, even though they are notorious for poor manufacturability or even high toxicity. For lens elements in a zoom system, the ray bundle samples different sections of the each lens aperture as the lens zooms. This creates extra uncertainty in correcting chromatic aberrations. This paper focuses on using only commercially available optical glasses to color-correct a 3X dual-band zoom lens system in the VIS-SWIR. The design tools and techniques are detailed in terms of material selections to minimize the chromatic aberrations in such a large spectrum band and all zoom positions. Examples are discussed for designs with different aperture stop locations, which considerably affect the material choices.
Stereoscopic 3D reconstruction using motorized zoom lenses within an embedded system
NASA Astrophysics Data System (ADS)
Liu, Pengcheng; Willis, Andrew; Sui, Yunfeng
2009-02-01
This paper describes a novel embedded system capable of estimating 3D positions of surfaces viewed by a stereoscopic rig consisting of a pair of calibrated cameras. Novel theoretical and technical aspects of the system are tied to two aspects of the design that deviate from typical stereoscopic reconstruction systems: (1) incorporation of an 10x zoom lens (Rainbow- H10x8.5) and (2) implementation of the system on an embedded system. The system components include a DSP running μClinux, an embedded version of the Linux operating system, and an FPGA. The DSP orchestrates data flow within the system and performs complex computational tasks and the FPGA provides an interface to the system devices which consist of a CMOS camera pair and a pair of servo motors which rotate (pan) each camera. Calibration of the camera pair is accomplished using a collection of stereo images that view a common chess board calibration pattern for a set of pre-defined zoom positions. Calibration settings for an arbitrary zoom setting are estimated by interpolation of the camera parameters. A low-computational cost method for dense stereo matching is used to compute depth disparities for the stereo image pairs. Surface reconstruction is accomplished by classical triangulation of the matched points from the depth disparities. This article includes our methods and results for the following problems: (1) automatic computation of the focus and exposure settings for the lens and camera sensor, (2) calibration of the system for various zoom settings and (3) stereo reconstruction results for several free form objects.
NASA Astrophysics Data System (ADS)
Mandal, D.; Bhatia, N.; Srivastav, R. K.
2016-12-01
Soil Water Assessment Tool (SWAT) is one of the most comprehensive hydrologic models to simulate streamflow for a watershed. The two major inputs for a SWAT model are: (i) Digital Elevation Models (DEM), and (ii) Land Use and Land Cover Maps (LULC). This study aims to quantify the uncertainty in streamflow predictions using SWAT for San Bernard River in Brazos-Colorado coastal watershed, Texas, by incorporating the respective datasets from different sources: (i) DEM data will be obtained from ASTER GDEM V2, GMTED2010, NHD DEM, and SRTM DEM datasets with ranging resolution from 1/3 arc-second to 30 arc-second, and (ii) LULC data will be obtained from GLCC V2, MRLC NLCD2011, NOAA's C-CAP, USGS GAP, and TCEQ databases. Weather variables (Precipitation and Max-Min Temperature at daily scale) will be obtained from National Climatic Data Centre (NCDC) and SWAT in-built STASGO tool will be used to obtain the soil maps. The SWAT model will be calibrated using SWAT-CUP SUFI-2 approach and its performance will be evaluated using the statistical indices of Nash-Sutcliffe efficiency (NSE), ratio of Root-Mean-Square-Error to standard deviation of observed streamflow (RSR), and Percent-Bias Error (PBIAS). The study will help understand the performance of SWAT model with varying data sources and eventually aid the regional state water boards in planning, designing, and managing hydrologic systems.
3D visualization of numeric planetary data using JMARS
NASA Astrophysics Data System (ADS)
Dickenshied, S.; Christensen, P. R.; Anwar, S.; Carter, S.; Hagee, W.; Noss, D.
2013-12-01
JMARS (Java Mission-planning and Analysis for Remote Sensing) is a free geospatial application developed by the Mars Space Flight Facility at Arizona State University. Originally written as a mission planning tool for the THEMIS instrument on board the MARS Odyssey Spacecraft, it was released as an analysis tool to the general public in 2003. Since then it has expanded to be used for mission planning and scientific data analysis by additional NASA missions to Mars, the Moon, and Vesta, and it has come to be used by scientists, researchers and students of all ages from more than 40 countries around the world. The public version of JMARS now also includes remote sensing data for Mercury, Venus, Earth, the Moon, Mars, and a number of the moons of Jupiter and Saturn. Additional datasets for asteroids and other smaller bodies are being added as they becomes available and time permits. In addition to visualizing multiple datasets in context with one another, significant effort has been put into on-the-fly projection of georegistered data over surface topography. This functionality allows a user to easily create and modify 3D visualizations of any regional scene where elevation data is available in JMARS. This can be accomplished through the use of global topographic maps or regional numeric data such as HiRISE or HRSC DTMs. Users can also upload their own regional or global topographic dataset and use it as an elevation source for 3D rendering of their scene. The 3D Layer in JMARS allows the user to exaggerate the z-scale of any elevation source to emphasize the vertical variance throughout a scene. In addition, the user can rotate, tilt, and zoom the scene to any desired angle and then illuminate it with an artificial light source. This scene can be easily overlain with additional JMARS datasets such as maps, images, shapefiles, contour lines, or scale bars, and the scene can be easily saved as a graphic image for use in presentations or publications.
Integrin Alpha-v and HER2 in Breast Cancer Brain Metastasis
2015-10-01
ZOOM live cell imaging machine (ESSEN Bioscience; Figure 2). c. Interactions of αv integrin and HER2 in breast cancer brain metastases. We found...HCC1954 breast cancer cells. C) Real time live cell imaging of MM2BH cells treated with cilengitide (0, .3, 1, 3, and 10 µg/mL) using IncuCyte ZOOM
ERIC Educational Resources Information Center
Van Mele, Paul; Wanvoeke, Jonas; Akakpo, Cyriaque; Dacko, Rosaline Maiga; Ceesay, Mustapha; Beavogui, Louis; Soumah, Malick; Anyang, Robert
2010-01-01
Will African farmers watch and learn from videos featuring farmers in Bangladesh? Learning videos on rice seed management were made with rural women in Bangladesh. By using a new approach, called zooming-in, zooming-out, the videos were of regional relevance and locally appropriate. When the Africa Rice Center (AfricaRice) introduced them to…
Low-Rate Information Transmission (LRIT) - NOAA Satellite Information
bulletins and notices and an updated area where further explanations can be found. GOES-East Full Disk Image Viewed Using LRIT GOES-EAST full disk image viewed using LRIT. Zoomed In Portion of the LRIT Full Disk Image. A zoomed in portion of the LRIT full disk image. Contact Information: LRIT / EMWIN: Paul Seymour
New long-zoom lens for 4K super 35mm digital cameras
NASA Astrophysics Data System (ADS)
Thorpe, Laurence J.; Usui, Fumiaki; Kamata, Ryuhei
2015-05-01
The world of television production is beginning to adopt 4K Super 35 mm (S35) image capture for a widening range of program genres that seek both the unique imaging properties of that large image format and the protection of their program assets in a world anticipating future 4K services. Documentary and natural history production in particular are transitioning to this form of production. The nature of their shooting demands long zoom lenses. In their traditional world of 2/3-inch digital HDTV cameras they have a broad choice in portable lenses - with zoom ranges as high as 40:1. In the world of Super 35mm the longest zoom lens is limited to 12:1 offering a telephoto of 400mm. Canon was requested to consider a significantly longer focal range lens while severely curtailing its size and weight. Extensive computer simulation explored countless combinations of optical and optomechanical systems in a quest to ensure that all operational requests and full 4K performance could be met. The final lens design is anticipated to have applications beyond entertainment production, including a variety of security systems.
NASA Astrophysics Data System (ADS)
Linick, J. P.; Pieri, D. C.; Sanchez, R. M.
2014-12-01
The physical and temporal systematics of the world's volcanic activity is a compelling and productive arena for the exercise of orbital remote sensing techniques, informing studies ranging from basic volcanology to societal risk. Comprised of over 160,000 frames and spanning 15 years of the Terra platform mission, the ASTER Volcano Archive (AVA: http://ava.jpl.nasa.gov) is the world's largest (100+Tb) high spatial resolution (15-30-90m/pixel), multi-spectral (visible-SWIR-TIR), downloadable (kml enabled) dedicated archive of volcano imagery. We will discuss the development of the AVA, and describe its growing capability to provide new easy public access to ASTER global volcano remote sensing data. AVA system architecture is designed to facilitate parameter-based data mining, and for the implementation of archive-wide data analysis algorithms. Such search and analysis capabilities exploit AVA's unprecedented time-series data compilations for over 1,550 volcanoes worldwide (Smithsonian Holocene catalog). Results include thermal anomaly detection and mapping, as well as detection of SO2 plumes from explosive eruptions and passive SO2 emissions confined to the troposphere. We are also implementing retrospective ASTER image retrievals based on volcanic activity reports from Volcanic Ash Advisory Centers (VAACs) and the US Air Force Weather Agency (AFWA). A major planned expansion of the AVA is currently underway, with the ingest of the full 1972-present LANDSAT, and NASA EO-1, volcano imagery for comparison and integration with ASTER data. Work described here is carried out under contract to NASA at the Jet Propulsion Laboratory as part of the California Institute of Technology.
NASA Astrophysics Data System (ADS)
Moghtaderi, Arsia; Moore, Farid; Ranjbar, Hojjatollah
2017-01-01
Satellite images are widely used to map geological and environmental features at different map scales. The ability of visible to near-infrared (VNIR) scanner systems to map gossans, rich in iron and associated with weathered sulfide occurrences, as well as to characterize regoliths, is perhaps one of the most important current applications of this technology. Initial results of this study show that advanced space-borne thermal emission and reflection (ASTER), VNIR, and short-wave infrared radiometer scanner systems can be used successfully to map iron ores. By applying internal average relative reflectance, false color composite, minimum noise fraction transform, and mathematical evaluation method (MEM) techniques, iron contaminations were successfully detected in the Chadormalu iron mine area of central Iran. An attempt was also made to discriminate between the geogenic and anthropogenic iron contaminations in the vicinity of the Chadormalu iron deposit. This research compares ASTER and Landsat 8 data images and the MEM with the band ratio method in a full scope view scale and demonstrates ASTER image data capability in detecting iron contaminations in the Chadormalu area. This indicates that ASTER bands 3, 2, and 1 have a higher spatial (15 m) resolution compared with sensors used in previous works. In addition, the capability of the MEM in detecting Fe-contaminants, unlike the color judgments of the band ratio method, can discriminate between iron pollution in an alluvial plain and the Fe-contents of the host and country rocks in the study area. This study proved that Landsat 8 data illustrate exaggeration both in the MEM and band ratio final results (outputs) and cannot display iron contamination in detail.
The Tibesti Volcanoes of Chad: an ASTER-based Remote Sensing Analysis
NASA Astrophysics Data System (ADS)
Permenter, J. L.; Oppenheimer, C.
2002-12-01
Situated in the central Sahara desert, the Tibesti volcanic province of northern Chad, Africa, is a superb example of large-scale continental hot spot volcanism. The massif is comprised of seven major volcanoes and an assembly of related volcanic and tectonic structures, with a total surface area of over 350 km2. Its highest peak (Emi Koussi) rises above the surrounding desert to ~3415 m above sea level. Due, in part, to its remoteness, the Tibesti has never been described in volcanological detail. This study aims to provide the first modern synthesis of the volcanology of this significant hot spot province. It is based primarily on a detailed analysis and interpretation of a comprehensive set of multi-band imagery from NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). ASTER has 14 spectral bands, divided between 3 optical subsystems; 3 in the very-near infrared (VNIR), 6 in the short-wave infrared, and 5 in the thermal infrared regions. In addition, the VNIR subsystem has aft-viewing optics for stereoscopic observation in the along-track direction, which permits generation of digital elevation models. The preliminary results presented here focus on the discrimination of lava composition, identification of pyroclastic deposits, and characterisation of the dimension of flows, craters, and other structural elements of the massif, using spectral and textural information gathered from the ASTER imagery. Furthermore, stratigraphic detail is obtained from the superposition of flow units and craters. The application of ASTER data to the Tibesti volcanic complex permits an initial first order description of the relative proportions and timing of different erupted materials, providing a framework for further interpretation of the volcanology and magmatic evolution of the Tibesti, based on modern geologic and tectonic concepts. It also allows intercomparisons to be made with other continental hot spot provinces.
Assessment of ASTER data for forest inventory in Canary Islands
NASA Astrophysics Data System (ADS)
Alonso-Benito, Alfonso; Arbelo, Manuel; Hernandez-Leal, Pedro A.; González-Calvo, Alejandro; Labrador Garcia, Mauricio
To understand and evaluate the forest structural attributes, forest inventories are conducted, which are costly and lengthy in time. Since the last 10-15 years there has been examining the possibility of using remote sensing data, to save costs and cheapen the process. One of the aims of SATELMAC, a project PCT-MAC 2007-2013 co-financing with FEDER funds, is to automate the forest inventory in Canary Islands using satellite images. In this study, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were used to estimate forest structure of the endemic vegetal specie, Pinus canariensis, located on the island of Tenerife (Spain). The forest structural attributes analyzed have been volume, basal area, stem per hectare and tree height. ASTER is an imaging instrument flying on Terra, a satellite launched in December 1999 as part of NASA's Earth Observing System. ASTER data were used because it have relatively high spatial resolution in the three visible and near-infrared bands (15 m) and in the six spectral bands (30 m) in the shortwave-IR region. To identify the vegetation index that is most suitable to use, about specific forest structural attributes in our study area, we assess the ability of different spectral indices: Normalized Difference Vegetation Index, Transformed Soil Adjusted Vegetation Index, Modified Soil adjusted Vegetation Index, Perpendicular Vegetation Index and Reduced Simple Ratio. The information provided by the ASTER data has been supplemented by the Third National Forest Inventory (III NFI) and field data. The results are analyzed statistically in order to see the degree of correlation (R2) and the mean square error (RMSE) of the values studied.
Annular ring zoom system using two positive axicons
NASA Astrophysics Data System (ADS)
Dickey, Fred M.; Conner, Jacob D.
2011-10-01
The production of an annular ring of light with a variable diameter has applications in laser material processing and machining, particle manipulation, and corneal surgery. This can readily be accomplished using a positive and negative axicon pair. However, negative axicons are very expensive and difficult to obtain with small diameters. In this paper, we present a design of an annular ring zoom system using two positive axicons. One axicon is placed a distance before a primary lens that is greater than some prescribed minimum, and the second axicon is placed after the primary lens. The position of the second axicon determines the ring diameter. The ring diameter can be zoomed from some maximum design size to a zero diameter ring (spot). Experimental results from a developmental system will be presented.
Influence of Elevation Data Source on 2D Hydraulic Modelling
NASA Astrophysics Data System (ADS)
Bakuła, Krzysztof; StĘpnik, Mateusz; Kurczyński, Zdzisław
2016-08-01
The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain-digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.
NASA Technical Reports Server (NTRS)
Follen, G.; Naiman, C.; auBuchon, M.
2000-01-01
Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of propulsion systems for aircraft and space vehicles called the Numerical Propulsion System Simulation (NPSS). The NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer, along with the concept of numerical zooming between 0- Dimensional to 1-, 2-, and 3-dimensional component engine codes. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Current "state-of-the-art" engine simulations are 0-dimensional in that there is there is no axial, radial or circumferential resolution within a given component (e.g. a compressor or turbine has no internal station designations). In these 0-dimensional cycle simulations the individual component performance characteristics typically come from a table look-up (map) with adjustments for off-design effects such as variable geometry, Reynolds effects, and clearances. Zooming one or more of the engine components to a higher order, physics-based analysis means a higher order code is executed and the results from this analysis are used to adjust the 0-dimensional component performance characteristics within the system simulation. By drawing on the results from more predictive, physics based higher order analysis codes, "cycle" simulations are refined to closely model and predict the complex physical processes inherent to engines. As part of the overall development of the NPSS, NASA and industry began the process of defining and implementing an object class structure that enables Numerical Zooming between the NPSS Version I (0-dimension) and higher order 1-, 2- and 3-dimensional analysis codes. The NPSS Version I preserves the historical cycle engineering practices but also extends these classical practices into the area of numerical zooming for use within a companies' design system. What follows here is a description of successfully zooming I-dimensional (row-by-row) high pressure compressor results back to a NPSS engine 0-dimension simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the fidelity of the engine system simulation and enable the engine system to be "pre-validated" prior to commitment to engine hardware.
Velocities along Byrd Glacier, East Antarctica, derived from Automatic Feature Tracking
NASA Astrophysics Data System (ADS)
Stearns, L. A.; Hamilton, G. S.
2003-12-01
Automatic feature tracking techniques are applied to recently acquired ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery in order to determine the velocity field of Byrd Glacier, East Antarctica. The software IMCORR tracks the displacement of surface features (crevasses, drift mounds) in time sequential images, to produce the velocity field. Due to its high resolution, ASTER imagery is ideally suited for detecting small features changes. The produced result is a dense array of velocity vectors, which allows more thorough characterization of glacier dynamics. Byrd Glacier drains approximately 20.5 km3 of ice into the Ross Ice Shelf every year. Previous studies have determined ice velocities for Byrd Glacier by using photogrammetry, field measurements and manual feature tracking. The most recent velocity data is from 1986 and, as evident in the West Antarctic ice streams, substantial changes in velocity can occur on decadal time scales. The application of ASTER-based velocities fills this time lapse, and increased temporal resolution allows for a more complete analysis of Byrd Glacier. The ASTER-derived ice velocities are used in updating mass balance and force budget calculations to assess the stability of Byrd Glacier. Ice thickness information from BEDMAP, surface slopes from the OSUDEM and a compilation of accumulation rates are used to complete the calculations.
NASA Astrophysics Data System (ADS)
Trunk, Laura; Bernard, Alain
2008-12-01
A two-channel or split-window algorithm designed to correct for atmospheric conditions was applied to thermal images taken by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) of Lake Yugama on Kusatsu-Shirane volcano in Japan in order to measure the temperature of its crater lake. These temperature calculations were validated using lake water temperatures that were collected on the ground. Overall, the agreement between the temperatures calculated using the split-window method and ground truth is quite good, typically ± 1.5 °C for cloud-free images. Data from fieldwork undertaken in the summer of 2004 at Kusatsu-Shirane allow a comparison of ground-truth data with the radiant temperatures measured using ASTER imagery. Further images were analyzed of Ruapehu, Poás, Kawah Ijen, and Copahué volcanoes to acquire time-series of lake temperatures. A total of 64 images of these 4 volcanoes covering a wide range of geographical locations and climates were analyzed. Results of the split-window algorithm applied to ASTER images are reliable for monitoring thermal changes in active volcanic lakes. These temperature data, when considered in conjunction with traditional volcano monitoring techniques, lead to a better understanding of whether and how thermal changes in crater lakes aid in eruption forecasting.
Cartographic analyses of geographic information available on Google Earth Images
NASA Astrophysics Data System (ADS)
Oliveira, J. C.; Ramos, J. R.; Epiphanio, J. C.
2011-12-01
The propose was to evaluate planimetric accuracy of satellite images available on database of Google Earth. These images are referents to the vicinities of the Federal Univertisity of Viçosa, Minas Gerais - Brazil. The methodology developed evaluated the geographical information of three groups of images which were in accordance to the level of detail presented in the screen images (zoom). These groups of images were labeled to Zoom 1000 (a single image for the entire study area), Zoom 100 (formed by a mosaic of 73 images) and Zoom 100 with geometric correction (this mosaic is like before, however, it was applied a geometric correction through control points). In each group of image was measured the Cartographic Accuracy based on statistical analyses and brazilian's law parameters about planimetric mapping. For this evaluation were identified 22 points in each group of image, where the coordinates of each point were compared to the coordinates of the field obtained by GPS (Global Positioning System). The Table 1 show results related to accuracy (based on a threshold equal to 0.5 mm * mapping scale) and tendency (abscissa and ordinate) between the coordinates of the image and the coordinates of field. Table 1 The geometric correction applied to the Group Zoom 100 reduced the trends identified earlier, and the statistical tests pointed a usefulness of the data for a mapping at a scale of 1/5000 with error minor than 0.5 mm * scale. The analyses proved the quality of cartographic data provided by Google, as well as the possibility of reduce the divergences of positioning present on the data. It can be concluded that it is possible to obtain geographic information database available on Google Earth, however, the level of detail (zoom) used at the time of viewing and capturing information on the screen influences the quality cartographic of the mapping. Although cartographic and thematic potential present in the database, it is important to note that both the software as data distributed by Google Earth has policies for use and distribution.
Table 1 - PLANIMETRIC ANALYSIS
NASA Astrophysics Data System (ADS)
Schmugge, T.; Hulley, G.; Hook, S.
2009-04-01
The land surface emissivity is often overlooked when considering surface properties that effect the energy balance. However, knowledge of the emissivity in the window region is important for determining the longwave radiation balance and its subsequent effect on surface temperature. The net longwave radiation (NLR) is strongly affected by the difference between the temperature of the emitting surface and the sky brightness temperature, this difference will be the greatest in the window region. Outside the window region any changes in the emitted radiation by emissivity variability are mostly compensated for by changes in the reflected sky brightness. The emissivity variability is typically greatest in arid regions where the exposed soil and rock surfaces display the widest range of emissivity. For example, the dune regions of North Africa have emissivities of 0.7 or less in the 8 to 9 micrometer wavelength band due to the quartz sands of the region, which can produce changes in NLR of more than 10 w/m*m compared to assuming a constant emissivity. The errors in retrievals of atmospheric temperature and moisture profiles from hyperspectral infrared radiances, such as those from the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite result from using constant or inaccurate surface emissivities, particularly over arid and semi-arid regions here the variation in emissivity is large, both spatially and spectrally. The multispectral thermal infrared data obtained from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer and MODerate resolution Imaging Spectrometer (MODIS) sensors on NASA's Terra satellite have been shown to be of good quality and provide a unique new tool for studying the emissivity of the land surface. ASTER has 5 channels in the 8 to 12 micrometer waveband with 90 m spatial resolution, when the data are combined with the Temperature Emissivity Separation (TES) algorithm the surface emissivity over this wavelength region can be determined. The TES algorithm has been validated with field measurements using a multi-spectral radiometer having similar bands to ASTER. The ASTER data have now been used to produce a seasonal gridded database of the emissivity for North America and the results compared to laboratory measured emissivities of in-situ rock/sand samples collected at ten validation sites in the Western USA during 2008. The directional hemispherical reflectance of the in-situ samples are measured in the laboratory using a Nicolet Fourier Transform Interferometer (FTIR), converted to emissivity using Kirchoff's law, and convolving to the appropriate sensor spectral response functions. This ASTER database, termed the North American ASTER Land Surface Emissivity Database (NAALSED), was validated using the laboratory results from these ten sites to within 0.015 (1.5%) in emissivity. MODIS has 3 channels in this waveband with 1km spatial resolution and almost daily global coverage. The MODIS data are composited to 5 km resolution and day night pairs of observations are used to derive the emissivities. These results have been validated using the ASTER emissivities over selected test areas.
ASTER Images San Francisco Bay Area
NASA Technical Reports Server (NTRS)
2000-01-01
These images of the San Francisco Bay region were acquired on March 3, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. Each covers an area 60 kilometers (37 miles) wide and 75 kilometers (47 miles) long. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image the Earth for the next 6 years to map and monitor the changing surface of our planet.
Upper Left: The color infrared composite uses bands in the visible and reflected infrared. Vegetation is red, urban areas are gray; sediment in the bays shows up as lighter shades of blue. Thanks to the 15 meter (50-foot) spatial resolution, shadows of the towers along the Bay Bridge can be seen.Upper right: A composite of bands in the short wave infrared displays differences in soils and rocks in the mountainous areas. Even though these regions appear entirely vegetated in the visible, enough surface shows through openings in the vegetation to allow the ground to be imaged.Lower left: This composite of multispectral thermal bands shows differences in urban materials in varying colors. Separation of materials is due to differences in thermal emission properties, analogous to colors in the visible.Lower right: This is a color coded temperature image of water temperature, derived from the thermal bands. Warm waters are in white and yellow, colder waters are blue. Suisun Bay in the upper right is fed directly from the cold Sacramento River. As the water flows through San Pablo and San Francisco Bays on the way to the Pacific, the waters warm up.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Using New Remotely-sensed Biomass To Estimate Co2 Fluxes Over Siberia
NASA Astrophysics Data System (ADS)
Lafont, S.; Kergoat, L.; Dedieu, G.; Le Toan, T.
Two european programs recently focused on Siberia. The first one, Eurosiberian Car- bonflux was a faisability study for an observation system of the regional CO2 fluxes. The second one, SIBERIA was a big effort to develop and validate a biomass map on Siberia using radar data from satelltes (J-ERS, ERS). Here, we extend the simula- tion of NPP performed for the first program by using the biomass data of the second program. The TURC model, used here, is a global NPP model, based on light use efficiency, where photosynthetic assimilation is driven by satellite vegetation index, and au- totrophic respiration is driven by biomass. In this study, we will present a n´ zoom z on siberian region. The TURC model was run with a fine resolution (few kilometers) and a daily time step. We will discuss the impact of a new biomass dataset description on Net Primary Pro- ductivity (NPP) and CO2 fluxes estimation.
Large-scale time-lapse microscopy of Oct4 expression in human embryonic stem cell colonies.
Bhadriraju, Kiran; Halter, Michael; Amelot, Julien; Bajcsy, Peter; Chalfoun, Joe; Vandecreme, Antoine; Mallon, Barbara S; Park, Kye-Yoon; Sista, Subhash; Elliott, John T; Plant, Anne L
2016-07-01
Identification and quantification of the characteristics of stem cell preparations is critical for understanding stem cell biology and for the development and manufacturing of stem cell based therapies. We have developed image analysis and visualization software that allows effective use of time-lapse microscopy to provide spatial and dynamic information from large numbers of human embryonic stem cell colonies. To achieve statistically relevant sampling, we examined >680 colonies from 3 different preparations of cells over 5days each, generating a total experimental dataset of 0.9 terabyte (TB). The 0.5 Giga-pixel images at each time point were represented by multi-resolution pyramids and visualized using the Deep Zoom Javascript library extended to support viewing Giga-pixel images over time and extracting data on individual colonies. We present a methodology that enables quantification of variations in nominally-identical preparations and between colonies, correlation of colony characteristics with Oct4 expression, and identification of rare events. Copyright © 2016. Published by Elsevier B.V.
Riffel, Philipp; Michaely, Henrik J; Morelli, John N; Paul, Dominik; Kannengiesser, Stephan; Schoenberg, Stefan O; Haneder, Stefan
2015-04-01
The purpose of this study was to evaluate the feasibility and technical quality of a zoomed three-dimensional (3D) turbo spin-echo (TSE) sampling perfection with application optimized contrasts using different flip-angle evolutions (SPACE) sequence of the lumbar spine. In this prospective feasibility study, nine volunteers underwent a 3-T magnetic resonance examination of the lumbar spine including 1) a conventional 3D T2-weighted (T2w) SPACE sequence with generalized autocalibrating partially parallel acquisition technique acceleration factor 2 and 2) a zoomed 3D T2w SPACE sequence with a reduced field of view (reduction factor 2). Images were evaluated with regard to image sharpness, signal homogeneity, and the presence of artifacts by two experienced radiologists. For quantitative analysis, signal-to-noise ratio (SNR) values were calculated. Image sharpness of anatomic structures was statistically significantly greater with zoomed SPACE (P < .0001), whereas the signal homogeneity was statistically significantly greater with conventional SPACE (cSPACE; P = .0003). There were no statistically significant differences in extent of artifacts. Acquisition times were 8:20 minutes for cSPACE and 6:30 minutes for zoomed SPACE. Readers 1 and 2 selected zSPACE as the preferred sequence in five of nine cases. In two of nine cases, both sequences were rated as equally preferred by both the readers. SNR values were statistically significantly greater with cSPACE. In comparison to a cSPACE sequences, zoomed SPACE imaging of the lumbar spine provides sharper images in conjunction with a 25% reduction in acquisition time. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Design of a novel Hyper-spectral riflescope system
NASA Astrophysics Data System (ADS)
Huang, YunHan; Fu, YueGang
2016-10-01
Hyper-spectral imaging involves many research areas, such as optics, spectroscopy, mechanical, microelectronics, and computers, etc. Hyper-spectral imaging system has an irreplaceable role in the detection field. At present, due to the improvement of camouflage technology, characteristic of target in battlefield becomes more complex and the targets became more and more difficult to be detected, According to this phenomenon the author designed a novel hyper-spectral riflescope optical system. In general, the riflescope optical system is composed of two parts front object lens and zoom relay system. Firstly, dispersion characteristics of the typical optical glasses varies during band 400nm 1 000nm, the author derived apochromatic theory that suitable to the front system and relay system without using special glass, and make a example to testify its correctness. In general, the zoom mode of relay system lens is different from the objective lens system, so we should take consideration of them separately. Secondly, based on the above theory, the articles designed a hyper-spectral riflescope system, which has a continuous zoom curve, zoom ratio is 4 times and the F number of the system is 4.8;Full field of view varies during 1.8° 7.2°.Structure of the system is relatively compact, and has not used special glass, eventually the article give the schematic of system MTF and zoom curves of relay movable parts. the curve is smooth and can be applied to practical engineering. The author adopt ZEMAX design software to analyses the results .Design result shows that, in the visible and near-infrared wavelengths, the MTF of imaging system at 60lp / mm during all bands are greater than 0.3, which prove the correctness of the design theory and good performance of system.
Bridging the scales in a eulerian air quality model to assess megacity export of pollution
NASA Astrophysics Data System (ADS)
Siour, G.; Colette, A.; Menut, L.; Bessagnet, B.; Coll, I.; Meleux, F.
2013-08-01
In Chemistry Transport Models (CTMs), spatial scale interactions are often represented through off-line coupling between large and small scale models. However, those nested configurations cannot give account of the impact of the local scale on its surroundings. This issue can be critical in areas exposed to air mass recirculation (sea breeze cells) or around regions with sharp pollutant emission gradients (large cities). Such phenomena can still be captured by the mean of adaptive gridding, two-way nesting or using model nudging, but these approaches remain relatively costly. We present here the development and the results of a simple alternative multi-scale approach making use of a horizontal stretched grid, in the Eulerian CTM CHIMERE. This method, called "stretching" or "zooming", consists in the introduction of local zooms in a single chemistry-transport simulation. It allows bridging online the spatial scales from the city (∼1 km resolution) to the continental area (∼50 km resolution). The CHIMERE model was run over a continental European domain, zoomed over the BeNeLux (Belgium, Netherlands and Luxembourg) area. We demonstrate that, compared with one-way nesting, the zooming method allows the expression of a significant feedback of the refined domain towards the large scale: around the city cluster of BeNeLuX, NO2 and O3 scores are improved. NO2 variability around BeNeLux is also better accounted for, and the net primary pollutant flux transported back towards BeNeLux is reduced. Although the results could not be validated for ozone over BeNeLux, we show that the zooming approach provides a simple and immediate way to better represent scale interactions within a CTM, and constitutes a useful tool for apprehending the hot topic of megacities within their continental environment.
NASA Astrophysics Data System (ADS)
Sensui, Takayuki
2012-10-01
Although digitalization has tripled consumer-class camera market scale, extreme reductions in prices of fixed-lens cameras has reduced profitability. As a result, a number of manufacturers have entered the market of the System DSC i.e. digital still camera with interchangeable lens, where large profit margins are possible, and many high ratio zoom lenses with image stabilization functions have been released. Quiet actuators are another indispensable component. Design with which there is little degradation in performance due to all types of errors is preferred for good balance in terms of size, lens performance, and the rate of quality to sub-standard products. Decentering, such as that caused by tilting, sensitivity of moving groups is especially important. In addition, image stabilization mechanisms actively shift lens groups. Development of high ratio zoom lenses with vibration reduction mechanism is confronted by the challenge of reduced performance due to decentering, making control over decentering sensitivity between lens groups everything. While there are a number of ways to align lenses (axial alignment), shock resistance and ability to stand up to environmental conditions must also be considered. Naturally, it is very difficult, if not impossible, to make lenses smaller and achieve a low decentering sensitivity at the same time. 4-group zoom construction is beneficial in making lenses smaller, but decentering sensitivity is greater. 5-group zoom configuration makes smaller lenses more difficult, but it enables lower decentering sensitivities. At Nikon, the most advantageous construction is selected for each lens based on specifications. The AF-S DX NIKKOR 18-200mm f/3.5-5.6G ED VR II and AF-S NIKKOR 28-300mm f/3.5-5.6G ED VR are excellent examples of this.
Design of laser afocal zoom expander system
NASA Astrophysics Data System (ADS)
Jiang, Lian; Zeng, Chun-Mei; Hu, Tian-Tian
2018-01-01
Laser afocal zoom expander system due to the beam diameter variable, can be used in the light sheet illumination microscope to observe the samples of different sizes. Based on the principle of afocal zoom system, the laser collimation and beam expander system with a total length of less than 110mm, 6 pieces of spherical lens and a beam expander ratio of 10 is designed by using Zemax software. The system is focused on laser with a wavelength of 532nm, divergence angle of less than 4mrad and incident diameter of 4mm. With the combination of 6 spherical lens, the beam divergence angle is 0.4mrad at the maximum magnification ratio, and the RMS values at different rates are less than λ/4. This design is simple in structure and easy to process and adjust. It has certain practical value.
1984-07-01
POSITAE C. rugosa *Arctiumn minus CON VOLULACEAE * .Centaurea maculosa , Convolviliis Cirsium arvense (several possible) C. discolor CRASSULACEAE C. hill...Heracleum lanatumn A. umbllatusHieraciumn aurantiacum - A. sp. I H. florentinumn A. sp. 2 H. pratense A. sp. 3 Hypericumn perforatumn Centaurea maculosa H...Hypericumn perforatumn Aster umbellatus Lychnis alba Aster sp. I Melilotus alba *Centaurea maculosa Oenethera biennis Chrysanthemum leucanthemnum Prunus
2002-06-11
This image was acquired on October 12, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03498
NASA Astrophysics Data System (ADS)
Adiri, Zakaria; Harti, Abderrazak El; Jellouli, Amine; Maacha, Lhou; Bachaoui, El Mostafa
2016-01-01
Lithological mapping is a fundamental step in various mineral prospecting studies because it forms the basis of the interpretation and validation of retrieved results. Therefore, this study exploited the multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat 8 Operational Land Imager (OLI) data in order to map lithological units in the Bas Drâa inlier, at the Moroccan Anti Atlas. This task was completed by using principal component analysis (PCA), band ratios (BR), and support vector machine (SVM) classification. Overall accuracy and the kappa coefficient of SVM based on ground truth in addition to the results of PCA and BR show an excellent correlation with the existing geological map of the study area. Consequently, the methodology proposed demonstrates a high potential of ASTER and Landsat 8 OLI data in lithological units discrimination.
2002-04-03
On March 26, New York Mayor Michael Bloomberg declared a drought emergency for the city and four upstate counties in response to the worst drought to hit the eastern United States in nearly 70 years. Restrictions on water use will affect more than 8 million residents of New York. The city's reservoirs, located in the Catskill Mountains, are at 52 percent capacity. One of these, Ashokan Reservoir, is seen in this pair of ASTER images acquired on September 18, 2000 and February 3, 2002. These images were acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03491
2002-07-16
The junctions of the Amazon and the Rio Negro Rivers at Manaus, Brazil. The Rio Negro flows 2300 km from Columbia, and is the dark current forming the north side of the river. It gets its color from the high tannin content in the water. The Amazon is sediment laden, appearing brown in this simulated natural color image. Manaus is the capital of Amazonas state, and has a population in excess of one million. The ASTER image covers an area of 60 x 45 km. This image was acquired on July 16, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03851
NASA Technical Reports Server (NTRS)
2003-01-01
The Anti-Atlas Mountains of Morocco formed as a result of the collision of the African and Eurasian tectonic plates about 80 million years ago. This collision destroyed the Tethys Ocean; the limestone, sandstone, claystone, and gypsum layers that formed the ocean bed were folded and crumpled to create the Atlas and Anti-Atlas Mountains. In this ASTER image, short wavelength infrared bands are combined to dramatically highlight the different rock types, and illustrate the complex folding. The yellowish, orange and green areas are limestones, sandstones and gypsum; the dark blue and green areas are underlying granitic rocks. The ability to map geology using ASTER data is enhanced by the multiple short wavelength infrared bands, that are sensitive to differences in rock mineralogy. This image was acquired on June 13, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.
ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the technologies needed to explore the universe and search for life beyond our home planet.Size: 28.7 x 29.4 km (17.8 x 18.2 miles) Location: 29.4 deg. North lat., 8.9 deg. West long. Orientation: North at top Image Data: ASTER bands 4,6 and 8. Original Data Resolution: 30 m Date Acquired: June 13, 2001ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan
Mars, John C.; Rowan, Lawrence C.
2011-01-01
Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) data of the early Quaternary Khanneshin carbonatite volcano located in southern Afghanistan were used to identify carbonate rocks within the volcano and to distinguish them from Neogene ferruginous polymict sandstone and argillite. The carbonatitic rocks are characterized by diagnostic CO3 absorption near 11.2 μm and 2.31–2.33 μm, whereas the sandstone, argillite, and adjacent alluvial deposits exhibit intense Si-O absorption near 8.7 μm caused mainly by quartz and Al-OH absorption near 2.20 μm due to muscovite and illite.Calcitic carbonatite was distinguished from ankeritic carbonatite in the short wave infrared (SWIR) region of the ASTER data due to a slight shift of the CO3 absorption feature toward 2.26 μm (ASTER band 7) in the ankeritic carbonatite spectra. Spectral assessment using ASTER SWIR data suggests that the area is covered by extensive carbonatite flows that contain calcite, ankerite, and muscovite, though some areas mapped as ankeritic carbonatite on a preexisting geologic map were not identified in the ASTER data. A contact aureole shown on the geologic map was defined using an ASTER false color composite image (R = 6, G = 3, B = 1) and a logical operator byte image. The contact aureole rocks exhibit Fe2+, Al-OH, and Fe, Mg-OH spectral absorption features at 1.65, 2.2, and 2.33 μm, respectively, which suggest that the contact aureole rocks contain muscovite, epidote, and chlorite. The contact aureole rocks were mapped using an Interactive Data Language (IDL) logical operator.A visible through short wave infrared (VNIR-SWIR) mineral and rock-type map based on matched filter, band ratio, and logical operator analysis illustrates: (1) laterally extensive calcitic carbonatite that covers most of the crater and areas northeast of the crater; (2) ankeritic carbonatite located southeast and north of the crater and some small deposits located within the crater; (3) agglomerate that primarily covers the inside rim of the crater and a small area west of the crater; (4) a crater rim that consists mostly of epidote-chlorite-muscovite–rich metamorphosed argillite and sandstone; and (5) iron (Fe3+) and muscovite-illite–rich rocks and iron-rich eolian sands surrounding the western part of the volcano. The thermal infrared (TIR) rock-type map illustrates laterally extensive carbonatitic and mafic rocks surrounded by quartz-rich eolian and fluvial reworked sediments. In addition, the combination of VNIR, SWIR, and TIR data complement one another in that the TIR data illustrate more laterally extensive rock types and the VNIR-SWIR data distinguish more specific varieties of rocks and mineral mixtures.
NASA Technical Reports Server (NTRS)
2001-01-01
This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.
Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Rockwell, Barnaby W.
2009-01-01
This report presents and compares mineral and vegetation maps of parts of the Marysvale volcanic field in west-central Utah that were published in a recent paper describing the White Horse replacement alunite deposit. Detailed, field-verified maps of the deposit were produced from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired from a low-altitude Twin Otter turboprop airborne platform. Reconnaissance-level maps of surrounding areas including the central and northern Tushar Mountains, Pahvant Range, and portions of the Sevier Plateau to the east were produced from visible, near-infrared, and shortwave-infrared data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor carried aboard the Terra satellite platform. These maps are also compared to a previously published mineral map of the same area generated from AVIRIS data acquired from the high-altitude NASA ER-2 jet platform. All of the maps were generated by similar analysis methods, enabling the direct comparison of the spatial scale and mineral composition of surface geologic features that can be identified using the three types of remote sensing data. The high spatial (2-17 meter) and spectral (224 bands) resolution AVIRIS data can be used to generate detailed mineral and vegetation maps suitable for geologic and geoenvironmental studies of individual deposits, mines, and smelters. The lower spatial (15-30 meter) and spectral (9 bands) resolution ASTER data are better suited to less detailed mineralogical studies of lithology and alteration across entire hydrothermal systems and mining districts, including regional mineral resource and geoenvironmental assessments. The results presented here demonstrate that minerals and mineral mixtures can be directly identified using AVIRIS and ASTER data to elucidate spatial patterns of mineralogic zonation; AVIRIS data can enable the generation of maps with significantly greater detail and accuracy. The vegetation mapping results suggest that ASTER data may provide an efficient alternative to spectroscopic data for studies of burn severity after wildland fires. A new, semiautomated methodology for the analysis of ASTER data is presented that is currently being applied to ASTER data coverage of large areas for regional assessments of mineral-resource potential and mineral-environmental effects. All maps are presented in a variety of digital formats, including jpeg, pdf, and ERDAS Imagine (.img). The Imagine format files are georeferenced and suitable for viewing with other geospatial data in Imagine, ArcGIS, and ENVI. The mineral and vegetation maps are attributed so that the material identified for a pixel can be determined easily in ArcMap by using the Identify tool and in Imagine by using the Inquire Cursor tool.
Zooming in on the cause of the perceptual load effect in the go/no-go paradigm.
Chen, Zhe; Cave, Kyle R
2016-08-01
Perceptual load theory (Lavie, 2005) claims that attentional capacity that is not used for the current task is allocated to irrelevant distractors. It predicts that if the attentional demands of the current task are high, distractor interference will be low. One particularly powerful demonstration of perceptual load effects on distractor processing relies on a go/no-go cue that is interpreted by either simple feature detection or feature conjunction (Lavie, 1995). However, a possible alternative interpretation of these effects is that the differential degree of distractor processing is caused by how broadly attention is allocated (attentional zoom) rather than to perceptual load. In 4 experiments, we show that when stimuli are arranged to equalize the extent of spatial attention across conditions, distractor interference varies little whether cues are defined by a simple feature or a conjunction, and that the typical perceptual load effect emerges only when attentional zoom can covary with perceptual load. These results suggest that attentional zoom can account for the differential degree of distractor processing traditionally attributed to perceptual load in the go/no-go paradigm. They also provide new insight into how different factors interact to control distractor interference. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Implementation of focal zooming on the Nike KrF laser
NASA Astrophysics Data System (ADS)
Kehne, D. M.; Karasik, M.; Aglitsky, Y.; Smyth, Z.; Terrell, S.; Weaver, J. L.; Chan, Y.; Lehmberg, R. H.; Obenschain, S. P.
2013-01-01
In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser (λ = 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 μm thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters.
Implementation of focal zooming on the Nike KrF laser.
Kehne, D M; Karasik, M; Aglitsky, Y; Smyth, Z; Terrell, S; Weaver, J L; Chan, Y; Lehmberg, R H; Obenschain, S P
2013-01-01
In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser (λ = 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 μm thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters.
NASA Technical Reports Server (NTRS)
2001-01-01
This simulated natural color ASTER image in the German state of North Rhine Westphalia covers an area of 30 by 36 km, and was acquired on August 26, 2000. On the right side of the image are 3 enormous opencast coalmines. The Hambach opencast coal mine has recently been brought to full output capacity through the addition of the No. 293 giant bucket wheel excavator. This is the largest machine in the world; it is twice as long as a soccer field and as tall as a building with 30 floors. To uncover the 2.4 billion tons of brown coal (lignite) found at Hambach, five years were required to remove a 200-m-thick layer of waste sand and to redeposit it off site. The mine currently yields 30 million tons of lignite annually, with annual capacity scheduled to increase to 40 million tons in coming years.The image is centered at 51 degrees north latitude, 6.4 degrees east longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.NASA Technical Reports Server (NTRS)
2002-01-01
The junctions of the Amazon and the Rio Negro Rivers at Manaus, Brazil. The Rio Negro flows 2300 km from Columbia, and is the dark current forming the north side of the river. It gets its color from the high tannin content in the water. The Amazon is sediment laden, appearing brown in this simulated natural color image. Manaus is the capital of Amazonas state, and has a population in excess of one million. The ASTER image covers an area of 60 x 45 km. This image was acquired on July 16, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.
ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 60 x 45 km (37 x 27 miles) Location: 3.1 deg. South lat., 60.0 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: July 16, 2000NASA Technical Reports Server (NTRS)
2002-01-01
In this ASTER image the features that look like folded material are carbonate sand dunes in the shallow waters of Tarpum Bay, southwest of Eleuthera Island in the Bahamas. The sand making up the dunes comes from the erosion of limestone coral reefs, and has been shaped into dunes by ocean currents.
This image was acquired on May 12, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the technologies needed to explore the universe and search for life beyond our home planet.Size: 30.7 x 46.1 km (19.0 x 28.2 miles) Location: 25.1 deg. North lat., 76.4 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 12, 2002NASA Spacecraft Image Shows Location of Iranian Earthquake
2017-12-08
On April 9, 2013 at 11:52 GMT, a magnitude 6.3 earthquake hit southwestern Iran's Bushehr province near the town of Kaki. Preliminary information is that several villages have been destroyed and many people have died, as reported by BBC News. This perspective view of the region was acquired Nov. 17, 2012, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft. The location of the earthquake's epicenter is marked with a yellow star. Vegetation is displayed in red; the vertical exaggeration of the topography is 2X. The image is centered near 28.5 degrees north latitude, 51.6 degrees east longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. Image Credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team Image Addition Date: 2013-04-10 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Eruption of Shiveluch Volcano, Kamchatka, Russia
NASA Technical Reports Server (NTRS)
2001-01-01
On the night of June 4, 2001 ASTER captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 8028'. The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25 km ash plume, seen as a cold 'cloud' streaming from the summit. At least 60 large eruptions have occurred during the last 10,000 years; the largest historical eruptions were in 1854 and 1964. Because Kamchatka is located along the major aircraft routes between North America/Europe and the Far East, this area is constantly monitored for potential ash hazards to aircraft. The lower image is the same as the upper, except it has been color coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas.The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.A Stochastic-entropic Approach to Detect Persistent Low-temperature Volcanogenic Thermal Anomalies
NASA Astrophysics Data System (ADS)
Pieri, D. C.; Baxter, S.
2011-12-01
Eruption prediction is a chancy idiosyncratic affair, as volcanoes often manifest waxing and/or waning pre-eruption emission, geodetic, and seismic behavior that is unsystematic. Thus, fundamental to increased prediction accuracy and precision are good and frequent assessments of the time-series behavior of relevant precursor geophysical, geochemical, and geological phenomena, especially when volcanoes become restless. The Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), in orbit since 1999 on the NASA Terra Earth Observing System satellite is an important capability for detection of thermal eruption precursors (even subtle ones) and increased passive gas emissions. The unique combination of ASTER high spatial resolution multi-spectral thermal IR imaging data (90m/pixel; 5 bands in the 8-12um region), combined with simultaneous visible and near-IR imaging data, and stereo-photogrammetric capabilities make it a useful, especially thermal, precursor detection tool. The JPL ASTER Volcano Archive consisting of 80,000+ASTER volcano images allows systematic analysis of (a) baseline thermal emissions for 1550+ volcanoes, (b) important aspects of the time-dependent thermal variability, and (c) the limits of detection of temporal dynamics of eruption precursors. We are analyzing a catalog of the magnitude, frequency, and distribution of ASTER-documented volcano thermal signatures, compiled from 2000 onward, at 90m/pixel. Low contrast thermal anomalies of relatively low apparent absolute temperature (e.g., summit lakes, fumarolically altered areas, geysers, very small sub-pixel hotspots), for which the signal-to-noise ratio may be marginal (e.g., scene confusion due to clouds, water and water vapor, fumarolic emissions, variegated ground emissivity, and their combinations), are particularly important to discern and monitor. We have developed a technique to detect persistent hotspots that takes into account in-scene observed pixel joint frequency distributions over time, temperature contrast, and Shannon entropy. Preliminary analyses of Fogo Volcano and Yellowstone hotspots, among others, indicate that this is a very sensitive technique with good potential to be applied over the entire ASTER global night-time archive. We will discuss our progress in creating the global thermal anomaly catalog as well as algorithm approach and results. This work was carried out at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.
College Fjord, Prince Williams Sound
NASA Technical Reports Server (NTRS)
2000-01-01
The College Fjord with its glaciers was imaged by ASTER on June 24, 2000.This image covers an area 20 kilometers (13 miles) wide and 24 kilometers (15 miles) long in three bands of the reflected visible and infrared wavelength region. College Fjord is located in Prince Williams Sound, east of Seward, Alaska. Vegetation is in red, and snow and ice are white and blue. Ice bergs calved off of the glaciers can be seen as white dots in the water. At the head of the fjord, Harvard Glacier (left) is one of the few advancing glaciers in the area; dark streaks on the glacier are medial moraines: rock and dirt that indicate the incorporated margins of merging glaciers. Yale Glacier to the right is retreating, exposing (now vegetated) bedrock where once there was ice. On the west edge of the fjord, several small glaciers enter the water. This fjord is a favorite stop for cruise ships plying Alaska's inland passage.This image is located at 61.2 degrees north latitude and 147.7 degrees west longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.NASA Astrophysics Data System (ADS)
Rose, Shellie; Ramsey, Michael
2009-07-01
Kliuchevskoi volcano, located on the Kamchatka peninsula of eastern Russia, is one of the largest and most active volcanoes in the world. Its location and diversity of eruption styles make satellite-based monitoring and characterization of its eruptive activity essential. In 2005, the Kamchatka Volcano Emergency Response Team (KVERT) first reported that seismic activity of Kliuchevskoi increased above background levels on 12 January (Kamchatka Volcanic Eruption Response Team (KVERT) Report, 2005. Kliuchevskoi Volcano, 14 January through 13 May 2005. ( http://www.avo.alaska.edu/activity/avoreport.php?view=kam info&id=&month=January&year=2005). Cited January 2007). By 15 January Kliuchevskoi entered an explosive-effusive phase, which lasted for five months and produced basaltic lava flows, lahar deposits, and phreatic explosions along its northwestern flank. We present a comparison between field observations and multispectral satellite image data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument in order to characterize the eruptive behavior. The ASTER instrument was targeted in an automated urgent request mode throughout the eruption timeline in order to collect data at the highest observation frequency possible. Brightness temperatures were calculated in all three ASTER wavelength regions during lava flow emplacement. The maximum lava flow brightness temperatures, calculated from the 15 m/pixel visible near infrared (VNIR) data, were in excess of 800 °C. The shortwave infrared (SWIR) data were radiometrically and geometrically corrected, normalized to the same gain settings, and used to estimate an eruptive volume of 2.35 × 10 - 2 km 3 at the summit. These data were also used to better constrain errors arising in the thermal infrared (TIR) data due to sub-pixel thermal heterogeneities. Based on all the ASTER data, the eruption was separated into three phases: an initial explosive phase (20 January-31 January), an explosive-effusive phase (1 February-8 March), and a subsequent cooling phase. Decorrelation stretch (DCS) images of the TIR data also suggested the presence of silicate ash, SO 2, and water vapor plumes that extended up to 300 km from the summit. The ASTER rapid-response program provided important multispectral, moderate spatial resolution information that was used to detect and monitor the eruptive activity of this remote volcano which can be applied to other eruptions worldwide.
Salt Lake City, Utah, Winter 2001
NASA Technical Reports Server (NTRS)
2001-01-01
The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.
This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 63.5 x 123.3 km (38.1 x 74 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: February 8, 2001NASA Technical Reports Server (NTRS)
2001-01-01
The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.
This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 63.5 x 123.3 km (38.1 x 74 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 28, 2000NASA Astrophysics Data System (ADS)
Ries, William; Langridge, Robert; Villamor, Pilar; Litchfield, Nicola; Van Dissen, Russ; Townsend, Dougal; Lee, Julie; Heron, David; Lukovic, Biljana
2014-05-01
In New Zealand, we are currently reconciling multiple digital coverages of mapped active faults into a national coverage at a single scale (1:250,000). This seems at first glance to be a relatively simple task. However, methods used to capture data, the scale of capture, and the initial purpose of the fault mapping, has produced datasets that have very different characteristics. The New Zealand digital active fault database (AFDB) was initially developed as a way of managing active fault locations and fault-related features within a computer-based spatial framework. The data contained within the AFDB comes from a wide range of studies, from plate tectonic (1:500,000) to cadastral (1:2,000) scale. The database was designed to allow capture of field observations and remotely sourced data without a loss in data resolution. This approach has worked well as a method for compiling a centralised database for fault information but not for providing a complete national coverage at a single scale. During the last 15 years other complementary projects have used and also contributed data to the AFDB, most notably the QMAP project (a national series of geological maps completed over 19 years that include coverage of active and inactive faults at 1:250,000). AFDB linework and attributes was incorporated into this series but simplification of linework and attributes has occurred to maintain map clarity at 1:250,000 scale. Also, during this period on-going mapping of active faults has improved upon these data. Other projects of note that have used data from the AFDB include the National Seismic Hazard Model of New Zealand and the Global Earthquake Model (GEM). The main goal of the current project has been to provide the best digital spatial representation of a fault trace at 1:250,000 scale and combine this with the most up to date attributes. In some areas this has required a simplification of very fine detailed data and in some cases new mapping to provide a complete coverage. Where datasets have conflicting line work and/or attributes, data was reviewed through consultation with authors or review of published research to ensure the most to date representation was maintained. The current project aims to provide a coverage that will be consistent between the AFDB and QMAP digital and provide a free download of these data on the AFDB website (http://data.gns.cri.nz/af/).
Use of NASA Satellite Data to Improve Coastal Cypress Forest Management
NASA Technical Reports Server (NTRS)
Spurce, Joseph; Graham, William; Barras, John
2010-01-01
Problem: Information gaps exist regarding health status and location of cypress forests in coastal Louisiana (LA). Such information is needed to aid coastal forest conservation and restoration programs. Approach to Issue Mitigation: Use NASA data to revise cypress forest cover type maps. Landsat and ASTER data. Use NASA data to identify and track cypress forest change. Landsat, ASTER, and MODIS data. Work with partners and end-users to transfer useful products and technology.
2000-10-06
The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces. http://photojournal.jpl.nasa.gov/catalog/PIA02662
NASA Technical Reports Server (NTRS)
2002-01-01
This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. St. Helens volcano in Washington State was acquired on August 8, 2000 and covers an area of 37 by 51 km. Mount Saint Helens, a volcano in the Cascade Range of southwestern Washington that had been dormant since 1857, began to show signs of renewed activity in early 1980. On 18 May 1980, it erupted with such violence that the top of the mountain was blown off, spewing a cloud of ash and gases that rose to an altitude of 19 kilometers. The blast killed about 60 people and destroyed all life in an area of some 180 square kilometers (some 70 square miles), while a much larger area was covered with ash and debris. It continues to spit forth ash and steam intermittently. As a result of the eruption, the mountain's elevation decreased from 2,950 meters to 2,549 meters. The simulated fly-over was produced by draping ASTER visible and near infrared image data over a digital topography model, created from ASTER's 3-D stereo bands. The color was computer enhanced to create a 'natural' color image, where the vegetation appears green. The topography has been exaggerated 2 times to enhance the appearance of the relief. Landsat7 aquired an image of Mt. St. Helens on August 22, 1999. Image and animation courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.
NASA Technical Reports Server (NTRS)
Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John
1994-01-01
This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.
NASA Astrophysics Data System (ADS)
Ye, Fa-wang; Liu, De-chang
2008-12-01
Practices of sandstone-type uranium exploration in recent years in China indicate that the uranium mineralization alteration information is of great importance for selecting a new uranium target or prospecting in outer area of the known uranium ore district. Taking a case study of BASHIBULAKE uranium ore district, this paper mainly presents the technical minds and methods of extracting the reduced alteration information by oil and gas in BASHIBULAKE ore district using ASTER data. First, the regional geological setting and study status in BASHIBULAKE uranium ore district are introduced in brief. Then, the spectral characteristics of altered sandstone and un-altered sandstone in BASHIBULAKE ore district are analyzed deeply. Based on the spectral analysis, two technical minds to extract the remote sensing reduced alteration information are proposed, and the un-mixing method is introduced to process ASTER data to extract the reduced alteration information in BASHIBULAKE ore district. From the enhanced images, three remote sensing anomaly zones are discovered, and their geological and prospecting significances are further made sure by taking the advantages of multi-bands in SWIR of ASTER data. Finally, the distribution and intensity of the reduced alteration information in Cretaceous system and its relationship with the genesis of uranium deposit are discussed, the specific suggestions for uranium prospecting orientation in outer of BASHIBULAKE ore district are also proposed.
NASA Astrophysics Data System (ADS)
Hu, B.; Wan, B.
2017-12-01
The porphyry copper deposits are characterized by alteration zones. Hydrothermal alteration minerals have diagnostic spectral absorption properties in the visible and near-infrared (VNIR) through the shortwave infrared (SWIR) regions. In order to identify the alteration zones in the study area, the Sentinel-2A Multi-Spectral Instrument(MSI) * Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and field inspection were combined. The Sentinel-2A MSI has ten bands in the visible and near-infrared (VNIR) regions, which has advantages of detecting ferric iron alteration minerals. Six ASTER bands in the shortwave infrared(SWIR) regions have been demonstrated to be effective in the mapping of Al-OH * Mg-OH group minerals. Integrating ASTER and Sentinel-2A MSI (AM) for mineral mapping can compensate each other's defect. The methods of minimum noise fraction(MNF) * band combination * matched filtering were applied to get Al-OH and Mg-OH group minerals information from AM data. The anomaly-overlaying selection method was used to process three temporal Sentinel-2A MSI data for extracting iron oxides minerals. The ground inspection has confirmed the validity of AM and Sentinel-2A MSI data in mineral mapping. The methodology proved effective in an arid area of Duolong ore concentrating area,Tibet and hereby suggested for application in similar geological settings.
MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole
NASA Technical Reports Server (NTRS)
2001-01-01
MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole: False Color. This is a visualization of the topography near the Martian north pole as measured with the MOLA instrument. This particular animation shows a slow zoom to the surface of the pole, a flyover of the polar cap and a slow zoom out. The surface color is based on the elevation of the topography.
Fast digital zooming system using directionally adaptive image interpolation and restoration.
Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki
2014-01-01
This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.
Electrowetting-actuated zoom lens with spherical-interface liquid lenses.
Peng, Runling; Chen, Jiabi; Zhuang, Songlin
2008-11-01
The interface shape of two immiscible liquids in a conical chamber is discussed. The analytical solution of the differential equation describing the interface shape shows that the interface shape is completely spherical when the density difference of two liquids is zero. On the basis of the spherical-interface shape and an energy-minimization method, explicit calculations and detailed analyses of an extended Young-type equation for the conical double-liquid lens are given. Finally, a novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two conical double-liquid variable-focus lenses. The structure and principle of the lens system are introduced in this paper. Taking finite objects as example, detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.
NASA Technical Reports Server (NTRS)
2002-01-01
A January 6, 2002 ASTER nighttime thermal infrared image of Chiliques volcano in Chile shows a hot spot in the summit crater and several others along the upper flanks of the edifice, indicating new volcanic activity. Examination of an earlier nighttime thermal infrared image from May 24,2000 showed no thermal anomaly. Chiliques volcano was previously thought to be dormant. Rising to an elevation of 5778 m, Chiliques is a simple stratovolcano with a 500-m-diameter circular summit crater. This mountain is one of the most important high altitude ceremonial centers of the Incas. It is rarely visited due to its difficult accessibility. Climbing to the summit along Inca trails, numerous ruins are encountered; at the summit there are a series of constructions used for rituals. There is a beautiful lagoon in the crater that is almost always frozen.The daytime image was acquired on November 19, 2000 and was created by displaying ASTER bands 1,2 and 3 in blue, green and red. The nighttime image was acquired January 6, 2002, and is a color-coded display of a single thermal infrared band. The hottest areas are white, and colder areas are darker shades of red. Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.These images were acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 7.5 x 7.5 km (4.5 x 4.5 miles) Location: 23.6 deg. South lat., 67.6 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3, and thermal band 12 Original Data Resolution: 15 m and 90 m Date Acquired: January 6, 2002 and November 19, 2000NASA Technical Reports Server (NTRS)
2000-01-01
On April 3, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra Satellite captured this image of the erupting Mt. Usu volcano in Hokkaido, Japan. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image the Earth for the next 6 years to map and monitor the changing surface of our planet.
This false color infrared image of Mt Usu volcano is dominated by Lake Toya, an ancient volcanic caldera. On the south shore is the active Usu volcano. On Friday, March 31, more than 11,000 people were evacuated by helicopter, truck and boat from the foot of Usu, that began erupting from the northwest flank, shooting debris and plumes of smoke streaked with blue lightning thousands of feet in the air. Although no lava gushed from the mountain, rocks and ash continued to fall after the eruption. The region was shaken by thousands of tremors before the eruption. People said they could taste grit from the ash that was spewed as high as 2,700 meters (8,850 ft) into the sky and fell to coat surrounding towns with ash. 'Mount Usu has had seven significant eruptions that we know of, and at no time has it ended quickly with only a small scale eruption,' said Yoshio Katsui, a professor at Hokkaido University. This was the seventh major eruption of Mount Usu in the past 300 years. Fifty people died when the volcano erupted in 1822, its worst known eruption.In the image, most of the land is covered by snow. Vegetation, appearing red in the false color composite, can be seen in the agricultural fields, and forests in the mountains. Mt. Usu is crossed by three dark streaks. These are the paths of ash deposits that rained out from eruption plumes two days earlier. The prevailing wind was from the northwest, carrying the ash away from the main city of Date. Ash deposited can be traced on the image as far away as 10 kilometers (16 miles) from the volcano.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.ASTER Images the Island of Hawaii
NASA Technical Reports Server (NTRS)
2000-01-01
These images of the Island of Hawaii were acquired on March 19, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Data are shown from the short wavelength and thermal infrared spectral regions, illustrating how different and complementary information is contained in different parts of the spectrum.
Left image: This false-color image covers an area 60 kilometers (37 miles) wide and 120 kilometers (75 miles) long in three bands of the short wavelength infrared region. While, much of the island was covered in clouds, the dominant central Mauna Loa volcano, rising to an altitude of 4115 meters (13,500 feet), is cloud-free. Lava flows can be seen radiating from the central crater in green and black tones. As they reach lower elevations, the flows become covered with vegetation, and their image color changes to yellow and orange. Mauna Kea volcano to the north of Mauna Loa has a thin cloud-cover, producing a bluish tone on the image. The ocean in the lower right appears brown due to the color processing.Right image: This image is a false-color composite of three thermal infrared bands. The brightness of the colors is proportional to the temperature, and the hues display differences in rock composition. Clouds are black, because they are the coldest objects in the scene. The ocean and thick vegetation appear dark green because they are colder than bare rock surfaces, and have no thermal spectral features. Lava flows are shades of magenta, green, pink and yellow, reflecting chemical changes due to weathering and relative age differences.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Determination for regional differences of agriculture using satellite data
NASA Astrophysics Data System (ADS)
Saito, G.
2006-12-01
Remote Sensing Laboratory, Field Science Center, Graduate School of Agriculture Science, Tohoku University starts at April 2004. For studies and education at the laboratory we are now developing the system of remote sensing and GIS. Earth Remote Sensing Data Analysis Center (ERSDAC) made the Home Pages of Terra/ASTER Image Web Library 3 "The Major Airport of the World." http://www.Ersdac.or.jp/ASTERimage3/library_E.html. First, we check the Airport Data to use agricultural understanding for the world. Almost major airport is located in rural area and surrounded with agriculture field. To survey the agriculture field adjacent to the major airport has almost the same condition of human activities. The images are same size and display about 18km X 14km. We can easily understand field size and surrounding conditions. We study seven airports as follows, 1. Tokyo Narita Airport (NRT), Japan, 2. Taipei Chiang kai Shek International Airport (TPE), Taiwan, 3. Bangkok International Airport (BKK), Thailand, 4. Riyadh King Khalid International Airport (RUH), Saudi Arabia, 5. Charles de Gaulle Airport (CDG), Paris, France, 6. Vienna International Airport (VIE), Austria, 7. Denver International Airport (DEN), CO, USA. At the area of Tokyo Narita Airport, there are many golf courses, big urban area and small size of agricultural fields. At Taipei Airport area are almost same as Tokyo Narita Airport area and there are many ponds for irrigations. Bangkok Airport area also has golf courses and many ponds for irrigation water. Riyadh Airport area is quite different from others, and there are large bare soils and small agriculture fields with irrigation and circle shape. Paris Airport area and Vienna Airport area are almost agricultural fields and there are vegetated field and bare soil fields because of crop rotation. Denver Airport area consists of almost agriculture fields and each field size is very large. The advantages of ASTER data are as follows, 1. High-resolution and large swath, 2. Large wavelength and many bands, 3. High-revel of geographical location, 4. Stereo pair images, 5. High performance data searching system, 6. High speed data delivery system, 7. Cheap price, 8. Seven years observation and large volume archive. A kind of project "Determination of Local Characteristics at Global Agriculture Using Archive ASTER Data" was started at middle of November 2005. We establish data processing system and get some results. Paddy rice fields analysis was started at first, we analyze 1) the Shonai Plains in Japan, 2) the Yangtze River delta in Middle-East China, 3) Mekong Delta in South Vietnam, 4) North-east Thai Plaines, Thailand, 5) Sacrament Valley, California, USA. The results of this studies are as follows, 1) Using ASTER images, we can easily understand agricultural characteristics of each local area. 2) ASTER data are high accuracy for location, and the accuracy is suitable for global study without the fine topographical maps, 3) By five years observation of ASTER, there is huge numbers of ASTER scenes, but not enough volumes for cloud free data for seasonal analysis. It means that follow-on program of ASTER is necessary, 4) We need not only paddy field, but also all crop fields and all area, 5) The studies are necessary to international corroboration.
Spindles and active vortices in a model of confined filament-motor mixtures.
Head, David A; Briels, Wj; Gompper, Gerhard
2011-11-16
Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue the need for a deeper understanding of the microscopic activities underpinning macroscopic self-organization in active gels and urge further experiments to help bridge these lengths.
NASA Technical Reports Server (NTRS)
2006-01-01
Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 90 meters (295 feet) Dates Acquired: July 4, 2000Damage by Hurricane Ivan over Pensacola Bay, Florida
NASA Technical Reports Server (NTRS)
2004-01-01
Interstate 10 across Pensacola Bay, Florida was severely damaged by Hurricane Ivan. The ASTER image acquired September 21 (left) clearly shows the destruction, compared with an image acquired September 28, 2003 (right). The Florida Department of Transportation awarded a contract to repair the twin bridges that connect Escambia and Santa Rosa Counties. Traffic could resume crossing the bay in mid-October. These images display vegetation in red, buildings and roads in white and gray, and water in dark blue and green. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. Science Team is located at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.. Size: 6 by 6.5 kilometers (3.7 x 4 miles) Location: 30.5 degrees North latitude, 87.1 degrees West longitude Orientation: North at top Image Data: ASTER bands 3,2, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: September 21, 2004, and September 28, 2003ASTER Images San Francisco Bay Area
2000-04-26
This image of the San Francisco Bay region was acquired on March 3, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Image: This image covers an area 60 kilometers (37 miles) wide and 75 kilometers (47 miles) long in three bands of the reflected visible and infrared wavelength region. The combination of bands portrays vegetation in red, and urban areas in gray. Sediment in the Suisun Bay, San Pablo Bay, San Francisco Bay, and the Pacific Ocean shows up as lighter shades of blue. Along the west coast of the San Francisco Peninsula, strong surf can be seen as a white fringe along the shoreline. A powerful rip tide is visible extending westward from Daly City into the Pacific Ocean. In the lower right corner, the wetlands of the South San Francisco Bay National Wildlife Refuge appear as large dark blue and brown polygons. The high spatial resolution of ASTER allows fine detail to be observed in the scene. The main bridges of the area (San Mateo, San Francisco-Oakland Bay, Golden Gate, Richmond-San Rafael, Benicia-Martinez, and Carquinez) are easily picked out, connecting the different communities in the Bay area. Shadows of the towers along the Bay Bridge can be seen over the adjacent bay water. With enlargement the entire road network can be easily mapped; individual buildings are visible, including the shadows of the high-rises in downtown San Francisco. Inset: This enlargement of the San Francisco Airport highlights the high spatial resolution of ASTER. With further enlargement and careful examination, airplanes can be seen at the terminals. http://photojournal.jpl.nasa.gov/catalog/PIA02606
Hubbard, Bernard E.; Rowan1, Lawrence C.; Dusel-Bacon, Cynthia; Eppinger, Robert G.
2007-01-01
On July 8, 2003, ASTER acquired satellite imagery of a 60 km-wide swath of parts of two 1:250,000 Alaska quadrangles, under favorable conditions of minimal cloud- and snow-cover. Rocks from eight different lithotectonic terranes are exposed within the swath of data, several of which define permissive tracts for various mineral deposit types such as: volcanic-hosted massive sulfides (VMS) and porphyry copper and molybdenum. Representative rock samples collected from 13 different lithologic units from the Bonnifield mining district within the Yukon-Tanana terrane (YTT), plus hydrothermally altered VMS material from the Red Mountain prospect, were analyzed to produce a spectral library spanning the VNIR-SWIR (0.4 - 2.5 ?m) through the TIR (8.1 - 11.7 ?m). Comparison of the five-band ASTER TIR emissivity and decorrelation stretch data to available geologic maps indicates that rocks from the YTT display the greatest range and diversity of silica composition of the mapped terranes, ranging from mafic rocks to silicic quartzites. The nine-band ASTER VNIR-SWIR reflectance data and spectral matched-filter processing were used to map several lithologic sequences characterized by distinct suites of minerals that exhibit diagnostic spectral features (e.g. chlorite, epidote, amphibole and other ferrous-iron bearing minerals); other sequences were distinguished by their weathering characteristics and associated hydroxyl- and ferric-iron minerals, such as illite, smectite, and hematite. Smectite, kaolinite, opaline silica, jarosite and/or other ferric iron minerals defined narrow (< 250 m diameter) zonal patterns around Red Mountain and other potential VMS targets. Using ASTER we identified some of the known mineral deposits in the region, as well as mineralogically similar targets that may represent potential undiscovered deposits. Some known deposits were not identified and may have been obscured by vegetation- or snow-cover, or were too small to be resolved.
Surface Heat Balance Analysis of Tainan City on March 6, 2001 Using ASTER and Formosat-2 Data
Kato, Soushi; Yamaguchi, Yasushi; Liu, Cheng-Chien; Sun, Chen-Yi
2008-01-01
The urban heat island phenomenon occurs as a mixed result of anthropogenic heat discharge, decreased vegetation, and increased artificial impervious surfaces. To clarify the contribution of each factor to the urban heat island, it is necessary to evaluate the surface heat balance. Satellite remote sensing data of Tainan City, Taiwan, obtained from Terra ASTER and Formosat-2 were used to estimate surface heat balance in this study. ASTER data is suitable for analyzing heat balance because of the wide spectral range. We used Formosat-2 multispectral data to classify the land surface, which was used to interpolate some surface parameters for estimating heat fluxes. Because of the high spatial resolution of the Formosat-2 image, more roads, open spaces and small vegetation areas could be distinguished from buildings in urban areas; however, misclassifications of land cover in such areas using ASTER data would overestimate the sensible heat flux. On the other hand, the small vegetated areas detected from the Formosat-2 image slightly increased the estimation of latent heat flux. As a result, the storage heat flux derived from Formosat-2 is higher than that derived from ASTER data in most areas. From these results, we can conclude that the higher resolution land coverage map increases accuracy of the heat balance analysis. Storage heat flux occupies about 60 to 80% of the net radiation in most of the artificial surface areas in spite of their usages. Because of the homogeneity of the building roof materials, there is no contrast between the storage heat flux in business and residential areas. In sparsely vegetated urban areas, more heat is stored and latent heat is smaller than that in the forested suburbs. This result implies that density of vegetation has a significant influence in decreasing temperatures. PMID:27873856
NASA Astrophysics Data System (ADS)
Özkan, Mutlu; Çelik, Ömer Faruk; Özyavaş, Aziz
2018-02-01
One of the most appropriate approaches to better understand and interpret geologic evolution of an accretionary complex is to make a detailed geologic map. The fact that ophiolite sequences consist of various rock types may require a unique image processing method to map each ophiolite body. The accretionary complex in the study area is composed mainly of ophiolitic and metamorphic rocks along with epi-ophiolitic sedimentary rocks. This paper attempts to map the Late Cretaceous accretionary complex in detail in northern Sivas (within İzmir-Ankara-Erzincan Suture Zone in Turkey) by the analysis of all of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) bands and field study. The new two hybrid color composite images yield satisfactory results in delineating peridotite, gabbro, basalt, and epi-ophiolitic sedimentary rocks of the accretionary complex in the study area. While the first hybrid color composite image consists of one principle component (PC) and two band ratios (PC1, 3/4, 4/6 in the RGB), the PC5, the original ASTER band 4 and the 3/4 band ratio images were assigned to the RGB colors to generate the second hybrid color composite image. In addition to that, the spectral indices derived from the ASTER thermal infrared (TIR) bands discriminate clearly ultramafic, siliceous, and carbonate rocks from adjacent lithologies at a regional scale. Peridotites with varying degrees of serpentinization illustrated as a single color were best identified in the spectral indices map. Furthermore, the boundaries of ophiolitic rocks based on fieldwork were outlined in detail in some parts of the study area by superimposing the resultant maps of ASTER maps on Google Earth images of finer spatial resolution. Eventually, the encouraging geologic map generated by the image analysis of ASTER data strongly correlates with lithological boundaries from a field survey.
Accuracy assessment of linear spectral mixture model due to terrain undulation
NASA Astrophysics Data System (ADS)
Wang, Tianxing; Chen, Songlin; Ma, Ya
2008-12-01
Mixture spectra are common in remote sensing due to the limitations of spatial resolution and the heterogeneity of land surface. During the past 30 years, a lot of subpixel model have developed to investigate the information within mixture pixels. Linear spectral mixture model (LSMM) is a simper and more general subpixel model. LSMM also known as spectral mixture analysis is a widely used procedure to determine the proportion of endmembers (constituent materials) within a pixel based on the endmembers' spectral characteristics. The unmixing accuracy of LSMM is restricted by variety of factors, but now the research about LSMM is mostly focused on appraisement of nonlinear effect relating to itself and techniques used to select endmembers, unfortunately, the environment conditions of study area which could sway the unmixing-accuracy, such as atmospheric scatting and terrain undulation, are not studied. This paper probes emphatically into the accuracy uncertainty of LSMM resulting from the terrain undulation. ASTER dataset was chosen and the C terrain correction algorithm was applied to it. Based on this, fractional abundances for different cover types were extracted from both pre- and post-C terrain illumination corrected ASTER using LSMM. Simultaneously, the regression analyses and the IKONOS image were introduced to assess the unmixing accuracy. Results showed that terrain undulation could dramatically constrain the application of LSMM in mountain area. Specifically, for vegetation abundances, a improved unmixing accuracy of 17.6% (regression against to NDVI) and 18.6% (regression against to MVI) for R2 was achieved respectively by removing terrain undulation. Anyway, this study indicated in a quantitative way that effective removal or minimization of terrain illumination effects was essential for applying LSMM. This paper could also provide a new instance for LSMM applications in mountainous areas. In addition, the methods employed in this study could be effectively used to evaluate different algorithms of terrain undulation correction for further study.
Enhancing Remotely Sensed TIR Data for Public Health Applications: Is West Nile Virus Heat-Related?
NASA Astrophysics Data System (ADS)
Weng, Q.; Liu, H.; Jiang, Y.
2014-12-01
Public health studies often require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. This technological limitation prevents the wide usage of remote sensing data in epidemiological studies. To solve this issue, we have developed a few image fusion techniques to generate high temporally-resolved image data. We downscaled GOES LST data to 15-minute 1-km resolution to assess community-based heat-related risk in Los Angeles County, California and simulated ASTER datasets by fusing ASTER and MODIS data to derive biophysical variables, including LST, NDVI, and normalized difference water index, to examine the effects of those environmental characteristics on WNV outbreak and dissemination. A spatio-temporal analysis of WNV outbreak and dissemination was conducted by synthesizing the remote sensing variables and mosquito surveillance data, and by focusing on WNV risk areas in July through September due to data sufficiency of mosquito pools. Moderate- and high-risk areas of WNV infections in mosquitoes were identified for five epidemiological weeks. These identified WNV-risk areas were then collocated in GIS with heat hazard, exposure, and vulnerability maps to answer the question of whether WNV is a heat related virus. The results show that elevation and built-up conditions were negatively associated with the WNV propagation, while LST positively correlated with the viral transmission. NDVI was not significantly associated with WNV transmission. San Fernando Valley was found to be the most vulnerable to mosquito infections of WNV. This research provides important insights into how high temporal resolution remote sensing imagery may be used to study time-dependant events in public health, especially in the operational surveillance and control of vector-borne, water-borne, or other epidemic diseases.
NASA Astrophysics Data System (ADS)
Cordero-Llana, L.; Selmes, N.; Murray, T.; Scharrer, K.; Booth, A. D.
2012-12-01
Large volumes of water are necessary to propagate cracks to the glacial bed via hydrofractures. Hydrological models have shown that lakes above a critical volume can supply the necessary water for this process, so the ability to measure water depth in lakes remotely is important to study these processes. Previously, water depth has been derived from the optical properties of water using data from high resolution optical satellite images, as such ASTER, (Advanced Spaceborne Thermal Emission and Reflection Radiometer), IKONOS and LANDSAT. These studies used water-reflectance models based on the Bouguer-Lambert-Beer law and lack any estimation of model uncertainties. We propose an optimized model based on Sneed and Hamilton's (2007) approach to estimate water depths in supraglacial lakes and undertake a robust analysis of the errors for the first time. We used atmospherically-corrected data from ASTER and MODIS data as an input to the water-reflectance model. Three physical parameters are needed: namely bed albedo, water attenuation coefficient and reflectance of optically-deep water. These parameters were derived for each wavelength using standard calibrations. As a reference dataset, we obtained lake geometries using ICESat measurements over empty lakes. Differences between modeled and reference depths are used in a minimization model to obtain parameters for the water-reflectance model, yielding optimized lake depth estimates. Our key contribution is the development of a Monte Carlo simulation to run the water-reflectance model, which allows us to quantify the uncertainties in water depth and hence water volume. This robust statistical analysis provides better understanding of the sensitivity of the water-reflectance model to the choice of input parameters, which should contribute to the understanding of the influence of surface-derived melt-water on ice sheet dynamics. Sneed, W.A. and Hamilton, G.S., 2007: Evolution of melt pond volume on the surface of the Greenland Ice Sheet. Geophysical Research Letters, 34, 1-4.
Geothermal Target Areas in Colorado as Identified by Remote Sensing Techniques
Khalid Hussein
2012-02-01
This layer contains the areas identified as targets of potential geothermal activity. The Criteria used to identify the target areas include: hot/warm surface exposures modeled from ASTER/Landsat satellite imagery and geological characteristics, alteration mineral commonly associated with hot springs (clays, Si, and FeOx) modeled from ASTER and Landsat data, Colorado Geological Survey (CGS) known thermal hot springs/wells and heat-flow data points, Colorado deep-seated fault zones, weakened basement identified from isostatic gravity data, and Colorado sedimentary and topographic characteristics.
1979-12-01
Catalpa Solidago sp. Goldenrod Aster novae - angliae New England Aster Acer saccharum Sugar Maple Ulmus rubra Slippery elm Solanum hi rum Common...red pine, and hemlock are the common softwood species, and the common hardwood species include red maple, silver maple, white oak, willow, slippery ... elm and birch. In 1972, between 70 and 7S percent of the total area of the watershed consisted of forests and primarily wooded land. (Reference 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Young-Sun; Yoon, Wang-Jung
The purpose of this study is to map pyprophyllite distribution at surface of the Nohwa deposit, Korea by using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) data. For this, combined Spectral Angle Mapper (SAM), and Matched Filtering (MF) technique based on mathematical algorithm was applied. The regional distribution of high-grade and low-grade pyrophyllite in the Nohwa deposit area could be differentiated by this method. The results of this study show that ASTER data analysis using combination of SAM and MF techniques will assist in exploration of pyrophyllite at the exposed surface.
Coffland, Douglas R.
2006-04-25
A system for increasing the resolution in the far field resolution of video or still frame images, while maintaining full coverage in the near field. The system includes a camera connected to a computer. The computer applies a specific zooming scale factor to each of line of pixels and continuously increases the scale factor of the line of pixels from the bottom to the top to capture the scene in the near field, yet maintain resolution in the scene in the far field.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Liu, Pengfei; Wei, Xiaona; Zhuang, Songlin; Yang, Bo
2010-11-01
Liquid lens is a novel optical device which can implement active zooming. With liquid lens, zoom camera can be designed with more miniature size and simpler structure than before. It is thought that the micro zoom system with liquid lens has a very wide potential applications in many fields, in which the volume and weight of the system are critically limited, such as endoscope, mobile, PDA and so on. There are mainly three types of tunable-focus liquid lens: liquid crystal lens, electrowetting effect based liquid lens and liquid-filled membrane lens. Comparing with the other two kinds of liquid lens, the liquid-filled membrane lens has the advantages of simple structure, flexible aperture and high zooming efficiency. But its membrane surface will have an initial shape deformation caused by the gravity when the aperture of the lens is at large size, which will lead to the wave front aberration and the imaging quality impairing. In this paper, the initial deformation of the lens caused by the gravity was simulated based on the theory of Elastic Mechanics, which was calculated by the Finite Element Analysis method. The relationship between the diameter of the lens and the wave front aberration caused by the gravity was studied. And the Optical path difference produced by different liquid density was also analyzed.
Buchs, Galit; Maidenbaum, Shachar; Levy-Tzedek, Shelly; Amedi, Amir
2015-01-01
Purpose: To visually perceive our surroundings we constantly move our eyes and focus on particular details, and then integrate them into a combined whole. Current visual rehabilitation methods, both invasive, like bionic-eyes and non-invasive, like Sensory Substitution Devices (SSDs), down-sample visual stimuli into low-resolution images. Zooming-in to sub-parts of the scene could potentially improve detail perception. Can congenitally blind individuals integrate a ‘visual’ scene when offered this information via different sensory modalities, such as audition? Can they integrate visual information –perceived in parts - into larger percepts despite never having had any visual experience? Methods: We explored these questions using a zooming-in functionality embedded in the EyeMusic visual-to-auditory SSD. Eight blind participants were tasked with identifying cartoon faces by integrating their individual components recognized via the EyeMusic’s zooming mechanism. Results: After specialized training of just 6–10 hours, blind participants successfully and actively integrated facial features into cartooned identities in 79±18% of the trials in a highly significant manner, (chance level 10% ; rank-sum P < 1.55E-04). Conclusions: These findings show that even users who lacked any previous visual experience whatsoever can indeed integrate this visual information with increased resolution. This potentially has important practical visual rehabilitation implications for both invasive and non-invasive methods. PMID:26518671
NPOESS, Essential Climates Variables and Climate Change
NASA Astrophysics Data System (ADS)
Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.
2008-12-01
Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.
Yong, Alan; Hough, Susan E.; Cox, Brady R.; Rathje, Ellen M.; Bachhuber, Jeff; Dulberg, Ranon; Hulslander, David; Christiansen, Lisa; and Abrams, Michael J.
2011-01-01
We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, VS30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available VS30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data.
NASA Technical Reports Server (NTRS)
2002-01-01
In southwest Oregon, the Biscuit Fire continues to grow. This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image from August 14, 2002, shows the burn scar associated with the enormous blaze. The visualization uses ASTER's 30-meter-resolution, short-wave infrared bands to minimize smoke contamination and enhance the burn scar, which appears purple amid green vegetation. Actively burning areas of the fire appear very light purple. More than 6,000 fire personnel are assigned to the Biscuit Fire, which was 390, 276 acres as of Friday morning, August 15, and only 26 percent contained. Among the resources threatened are thousands of homes, three nationally designated wild and scenic rivers, and habitat for several categories of plants and animals at risk of extinction. Firefighters currently have no estimate as to when the fire might be contained. Credit: This image was acquired on an expedited basis as part of NASA Wildfire Response Team activities. Image courtesy Mike Abrams, Simon Hook, and the ASTER team at EROS Data Center DAAC.
NASA Astrophysics Data System (ADS)
Anugrahadi, A.
2018-01-01
Remote sensing technology is to support the identification and assessment of resources and disasters in coastal areas and oceans, because it has the advantage of covering large areas and the highest of the spatial and temporal resolution. Aster GDEM image is used to determine the slope and the length of cross the incision on exposed area abrasion and accretion. Western coastal of Banten Province has experienced abrasion with the furthest distance of 125.05 m to 274.73 m. and experienced accretion with the furthest distance of 31.65 m to 111, 58 m. ASTER GDEM results of image analysis in areas of abrasion has a slope about 1.4° to 3.3° and cross the incision length is approximately 350.52 meters to 506.57 meters. At the accretion region has a slope about 2.0° to 3.1° and cross the incision length about 306.62 m to 562.05 m.
2002-11-07
In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit. This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03880
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Overview
,
2008-01-01
The National Aeronautics and Space Administration (NASA) launched Terra, the Earth Observing System's (EOS) flagship satellite platform on December 18, 1999. The polar-orbiting Terra contains five remote sensing instruments, which enable the scientific study and analyses of global terrestrial processes and manifestations of global change. One of the five instruments is the multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which is built in Japan by a consortium of government, industry, and research groups. It has three spectral bands in the visible near-infrared region (VNIR), six bands in the shortwave infrared region (SWIR), and five bands in the thermal infrared region (TIR), with 15-, 30-, and 90-meter ground resolutions, respectively. This combination of wide spectral coverage and high spatial resolution allows ASTER to discriminate among a wide variety of surface materials. The VNIR subsystem also has a backward-viewing telescope for high-resolution (15-meter) stereoscopic observation in the along-track direction, which facilitates the generation of digital elevation models (DEM).
NASA Astrophysics Data System (ADS)
Asadi Haroni, Hooshang; Hassan Tabatabaei, Seyed
2016-04-01
Muteh gold mining area is located in 160 km NW of Isfahan town. Gold mineralization is meso-thermal type and associated with silisic, seresitic and carbonate alterations as well as with hematite and goethite. Image processing and interpretation were applied on the ASTER satellite imagery data of about 400 km2 at the Muteh gold mining area to identify hydrothermal alterations and iron oxides associated with gold mineralization. After applying preprocessing methods such as radiometric and geometric corrections, image processing methods of Principal Components Analysis (PCA), Least Square Fit (Ls-Fit) and Spectral Angle Mapper (SAM) were applied on the ASTER data to identify hydrothermal alterations and iron oxides. In this research reference spectra of minerals such as chlorite, hematite, clay minerals and phengite identified from laboratory spectral analysis of collected samples were used to map the hydrothermal alterations. Finally, identified hydrothermal alteration and iron oxides were validated by visiting and sampling some of the mapped hydrothermal alterations.
Microscopic Image of Martian Surface Material on a Silicone Substrate
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] Click on image for larger version of Figure 1 This image taken by the Optical Microscope on NASA's Phoenix Mars Lander shows soil sprinkled from the lander's Robot Arm scoop onto a silicone substrate. The substrate was then rotated in front of the microscope. This is the first sample collected and delivered for instrumental analysis onboard a planetary lander since NASA's Viking Mars missions of the 1970s. It is also the highest resolution image yet seen of Martian soil. The image is dominated by fine particles close to the resolution of the microscope. These particles have formed clumps, which may be a smaller scale version of what has been observed by Phoenix during digging of the surface material. The microscope took this image during Phoenix's Sol 17 (June 11), or the 17th Martian day after landing. The scale bar is 1 millimeter (0.04 inch). Zooming in on the Martian Soil In figure 1, three zoomed-in portions are shown with an image of Martian soil particles taken by the Optical Microscope on NASA's Phoenix Mars Lander. The left zoom box shows a composite particle. The top of the particle has a green tinge, possibly indicating olivine. The bottom of the particle has been reimaged at a different focus position in black and white (middle zoom box), showing that this is a clump of finer particles. The right zoom box shows a rounded, glassy particle, similar to those which have also been seen in an earlier sample of airfall dust collected on a surface exposed during landing. The shadows at the bottom of image are of the beams of the Atomic Force Microscope. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Riffel, Philipp; Michaely, Henrik J; Morelli, John N; Pfeuffer, Josef; Attenberger, Ulrike I; Schoenberg, Stefan O; Haneder, Stefan
2014-01-01
Implementation of DWI in the abdomen is challenging due to artifacts, particularly those arising from differences in tissue susceptibility. Two-dimensional, spatially-selective radiofrequency (RF) excitation pulses for single-shot echo-planar imaging (EPI) combined with a reduction in the FOV in the phase-encoding direction (i.e. zooming) leads to a decreased number of k-space acquisition lines, significantly shortening the EPI echo train and potentially susceptibility artifacts. To assess the feasibility and image quality of a zoomed diffusion-weighted EPI (z-EPI) sequence in MR imaging of the pancreas. The approach is compared to conventional single-shot EPI (c-EPI). 23 patients who had undergone an MRI study of the abdomen were included in this retrospective study. Examinations were performed on a 3T whole-body MR system (Magnetom Skyra, Siemens) equipped with a two-channel fully dynamic parallel transmit array (TimTX TrueShape, Siemens). The acquired sequences consisted of a conventional EPI DWI of the abdomen and a zoomed EPI DWI of the pancreas. For z-EPI, the standard sinc excitation was replaced with a two-dimensional spatially-selective RF pulse using an echo-planar transmit trajectory. Images were evaluated with regard to image blur, respiratory motion artifacts, diagnostic confidence, delineation of the pancreas, and overall scan preference. Additionally ADC values of the pancreatic head, body, and tail were calculated and compared between sequences. The pancreas was better delineated in every case (23/23) with z-EPI versus c-EPI. In every case (23/23), both readers preferred z-EPI overall to c-EPI. With z-EPI there was statistically significantly less image blur (p<0.0001) and respiratory motion artifact compared to c-EPI (p<0.0001). Diagnostic confidence was statistically significantly better with z-EPI (p<0.0001). No statistically significant differences in calculated ADC values were observed between the two sequences. Zoomed diffusion-weighted EPI leads to substantial image quality improvements with reduction of susceptibility artifacts in pancreatic DWI.
NASA Astrophysics Data System (ADS)
Sengar, Vivek K.; Champati Ray, P. K.; Chattoraj, Shovan L.; Venkatesh, A. S.; Sajeev, R.; Konwar, Purnima; Thapa, Shailaja
2017-10-01
The objective of this work is to identify the potential zones for detailed mineral exploration studies in areas adjoining to a copper prospect using Remotely Sensed data sets. In this study visualization of ASTER data has been enhanced to highlight the mineral-rich areas using various remote sensing techniques such as colour composites and band ratios. VNIR region of ASTER is significant to detect iron oxides while, clay minerals, carbonates and chlorites have characteristic absorption in the SWIR wavelength region. Therefore, an attempt has been made to target the mineral abundant regions through ASTER data processing. Height based information was extracted using high-resolution ALOSDEM to analyse the topographical controls in the region considering the fact that mineral deposits often found associated with geological structures and geomorphological units. Gravity data was used to generate gravity anomaly map which gives clues about subsurface density differences. In this context, base metal ores may show anomalous (high) gravity values in comparison to the non-mineralised areas. Outputs from all the data sets were analysed and correlated with the geological map and available literature. Final validation of results has been done through proper ground checks and laboratory analysis of rock samples collected from the litho-units present in the study area. Based on this study some new areas have been successfully demarcated which may be potential for base metal exploration.
NASA Astrophysics Data System (ADS)
Hoffmeister, Dirk; Kramm, Tanja; Curdt, Constanze; Maleki, Sedigheh; Khormali, Farhad; Kehl, Martin
2016-04-01
The Iranian loess plateau is covered by loess deposits, up to 70 m thick. Tectonic uplift triggered deep erosion and valley incision into the loess and underlying marine deposits. Soil development strongly relates to the aspect of these incised slopes, because on northern slopes vegetation protects the soil surface against erosion and facilitates formation and preservation of a Cambisol, whereas on south-facing slopes soils were probably eroded and weakly developed Entisols formed. While the whole area is intensively stocked with sheep and goat, rain-fed cropping of winter wheat is practiced on the valley floors. Most time of the year, the soil surface is unprotected against rainfall, which is one of the factors promoting soil erosion and serious flooding. However, little information is available on soil distribution, plant cover and the geomorphological evolution of the plateau, as well as on potentials and problems in land use. Thus, digital landform and soil mapping is needed. As a requirement of digital landform and soil mapping, four different landform classification methods were compared and evaluated. These geomorphometric classifications were run on two different scales. On the whole area an ASTER GDEM and SRTM dataset (30 m pixel resolution) was used. Likewise, two high-resolution digital elevation models were derived from Pléiades satellite stereo-imagery (< 1m pixel resolution, 10 by 10 km). The high-resolution information of this dataset was aggregated to datasets of 5 and 10 m scale. The applied classification methods are the Geomorphons approach, an object-based image approach, the topographical position index and a mainly slope based approach. The accuracy of the classification was checked with a location related image dataset obtained in a field survey (n ~ 150) in September 2015. The accuracy of the DEMs was compared to measured DGPS trenches and map-based elevation data. The overall derived accuracy of the landform classification based on the high-resolution DEM with a resolution of 5 m is approximately 70% and on a 10 m resolution >58%. For the 30 m resolution datasets is the achieved accuracy approximately 40%, as several small scale features are not recognizable in this resolution. Thus, for an accurate differentiation between different important landform types, high-resolution datasets are necessary for this strongly shaped area. One major problem of this approach are the different classes derived by each method and the various class annotations. The result of this evaluation will be regarded for the derivation of landform and soil maps.
Graphics processing unit (GPU) real-time infrared scene generation
NASA Astrophysics Data System (ADS)
Christie, Chad L.; Gouthas, Efthimios (Themie); Williams, Owen M.
2007-04-01
VIRSuite, the GPU-based suite of software tools developed at DSTO for real-time infrared scene generation, is described. The tools include the painting of scene objects with radiometrically-associated colours, translucent object generation, polar plot validation and versatile scene generation. Special features include radiometric scaling within the GPU and the presence of zoom anti-aliasing at the core of VIRSuite. Extension of the zoom anti-aliasing construct to cover target embedding and the treatment of translucent objects is described.
Aviation Wide-Angle Visual System (AWAVS). Trainer Design Report. Subsystem Design Report
1977-05-01
205 60 Frequency-Gain Plot for FLOLS Meatball Servo 209 61 FLOLS Zoom Servo, Block Diagram 210 62 FLOLS Zoom Iris Servo, Block Diagram and...Servo Input Torques 196 24 FLOLS Servo Components 197 25 FLOLS Meatball Servo Performance 203 26 Inherent Zeros and Poles for FLOLS Meatball Servo...of their relative powers must equal the ratio of 500 ft to the simu- lated range. The FLOLS are on whenever the pilot is within the meatball field
A comparison of locally adaptive multigrid methods: LDC, FAC and FIC
NASA Technical Reports Server (NTRS)
Khadra, Khodor; Angot, Philippe; Caltagirone, Jean-Paul
1993-01-01
This study is devoted to a comparative analysis of three 'Adaptive ZOOM' (ZOom Overlapping Multi-level) methods based on similar concepts of hierarchical multigrid local refinement: LDC (Local Defect Correction), FAC (Fast Adaptive Composite), and FIC (Flux Interface Correction)--which we proposed recently. These methods are tested on two examples of a bidimensional elliptic problem. We compare, for V-cycle procedures, the asymptotic evolution of the global error evaluated by discrete norms, the corresponding local errors, and the convergence rates of these algorithms.
A Validation of Remotely Sensed Fires Using Ground Reports
NASA Astrophysics Data System (ADS)
Ruminski, M. G.; Hanna, J.
2007-12-01
A satellite based analysis of fire detections and smoke emissions for North America is produced daily by NOAA/NESDIS. The analysis incorporates data from the MODIS (Terra and Aqua) and AVHRR (NOAA-15/16/17) polar orbiting instruments and GOES East and West geostationary spacecraft with nominal resolutions of 1km and 4 km for the polar and geostationary platforms respectively. Automated fire detection algorithms are utilized for each of the sensors. Analysts perform a quality control procedure on the automated detects by deleting points that are deemed to be false detects and adding points that the algorithms did not detect. A limited validation of the final quality controlled product was performed using high resolution (30 m) ASTER data in the summer of 2006. Some limitations in using ASTER data are that each scene is only approximately 3600 square km, the data acquisition time is relatively constant at around 1030 local solar time and ASTER is another remotely sensed data source. This study expands on the ASTER validation by using ground reports of prescribed burns in Montana and Idaho for 2003 and 2004. It provides a non-remote sensing data source for comparison. While the ground data do not have the limitations noted above for ASTER there are still limitations. For example, even though the data set covers a much larger area (nearly 600,000 square km) than even several ASTER scenes, it still represents a single region of North America. And while the ground data are not restricted to a narrow time window, only a date is provided with each report, limiting the ability to make detailed conclusions about the detection capabilities for specific instruments, especially for the less temporally frequent polar orbiting MODIS and AVHRR sensors. Comparison of the ground data reports to the quality controlled fire analysis revealed a low rate of overall detection of 23.00% over the entire study period. Examination of the daily detection rates revealed a wide variation, with some days resulting in as little as 5 detects out of 107 reported fires while other days had as many as 84 detections out of 160 reports. Inspection of the satellite imagery from the days with very low detection rates revealed that extensive cloud cover prohibited satellite fire detection. On days when cloud cover was at a minimum, detection rates were substantially higher. An estimate of the fire size was also provided with the ground data set. Statistics will be presented for days with minimal cloud cover which will indicate the probability of detection for fires of various sizes.
NASA Technical Reports Server (NTRS)
2007-01-01
On July 21, 2007, the world's most active volcano, Kilauea on Hawaii's Big Island, produced a new fissure eruption from the Pu'u O'o vent, which fed an open lava channel and lava flows toward the east. Access to the Kahauale'a Natural Area Reserve was closed due to fire and gas hazards. The two Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) nighttime thermal infrared images were acquired on August 21 and August 30, 2007. The brightest areas are the hottest lava flows from the recent fissure eruption. The large lava field extending down to the ocean is part of the Kupaianaha field. The most recent activity there ceased on June 20, but the lava is still hot and appears bright on the images. Magenta areas are cold lava flows from eruptions that occurred between 1969 and 2006. Clouds are cold (black) and the ocean is a uniform warm temperature, and light gray in color. These images are being used by volcanologists at the U.S. Geological Survey Hawaii Volcano Observatory to help monitor the progress of the lava flows. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 23.3 by 33.2 kilometers (14.4 by 20.6 miles) Location: 19.4 degrees North latitude, 155.1 degrees West longitude Orientation: North at top Image Data: ASTER Bands 13, 12, and 10 Original Data Resolution: ASTER 90 meters (147.6 feet) Dates Acquired: August 21 & 30, 2007.Volcanic Eruptions in Kamchatka
NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF
One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 19.2 by 21 kilometers (11.9 by 13.0 miles) Location: 57 degrees North latitude, 161 degrees East longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1, and 12 in red Original Data Resolution: ASTER 15 meters (49.2 feet) visible; 90 meters (295.2 feet) thermal infrared Date Acquired: April 26, 2007NASA Technical Reports Server (NTRS)
2002-01-01
In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.
This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the technologies needed to explore the universe and search for life beyond our home planet.Size: 40.5 x 40.5 km (25.1 x 25.1 miles) Location: 16.7 deg. North lat., 62.2 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: October 29, 20022017-12-08
Salt Lake City, Utah, Winter 2001 The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake. This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system. The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. Image credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Detection of Low Temperature Volcanogenic Thermal Anomalies with ASTER
NASA Astrophysics Data System (ADS)
Pieri, D. C.; Baxter, S.
2009-12-01
Predicting volcanic eruptions is a thorny problem, as volcanoes typically exhibit idiosyncratic waxing and/or waning pre-eruption emission, geodetic, and seismic behavior. It is no surprise that increasing our accuracy and precision in eruption prediction depends on assessing the time-progressions of all relevant precursor geophysical, geochemical, and geological phenomena, and on more frequently observing volcanoes when they become restless. The ASTER instrument on the NASA Terra Earth Observing System satellite in low earth orbit provides important capabilities in the area of detection of volcanogenic anomalies such as thermal precursors and increased passive gas emissions. Its unique high spatial resolution multi-spectral thermal IR imaging data (90m/pixel; 5 bands in the 8-12um region), bore-sighted with visible and near-IR imaging data, and combined with off-nadir pointing and stereo-photogrammetric capabilities make ASTER a potentially important volcanic precursor detection tool. We are utilizing the JPL ASTER Volcano Archive (http://ava.jpl.nasa.gov) to systematically examine 80,000+ ASTER volcano images to analyze (a) thermal emission baseline behavior for over 1500 volcanoes worldwide, (b) the form and magnitude of time-dependent thermal emission variability for these volcanoes, and (c) the spatio-temporal limits of detection of pre-eruption temporal changes in thermal emission in the context of eruption precursor behavior. We are creating and analyzing a catalog of the magnitude, frequency, and distribution of volcano thermal signatures worldwide as observed from ASTER since 2000 at 90m/pixel. Of particular interest as eruption precursors are small low contrast thermal anomalies of low apparent absolute temperature (e.g., melt-water lakes, fumaroles, geysers, grossly sub-pixel hotspots), for which the signal-to-noise ratio may be marginal (e.g., scene confusion due to clouds, water and water vapor, fumarolic emissions, variegated ground emissivity, and their combinations). To systematically detect such intrinsically difficult anomalies within our large archive, we are exploring a four step approach: (a) the recursive application of a GPU-accelerated, edge-preserving bilateral filter prepares a thermal image by removing noise and fine detail; (b) the resulting stylized filtered image is segmented by a path-independent region-growing algorithm, (c) the resulting segments are fused based on thermal affinity, and (d) fused segments are subjected to thermal and geographical tests for hotspot detection and classification, to eliminate false alarms or non-volcanogenic anomalies. We will discuss our progress in creating the general thermal anomaly catalog as well as algorithm approach and results. This work was carried out at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.
Nyiragongo Volcano, Congo, Map View with Lava, Landsat / ASTER / SRTM
NASA Technical Reports Server (NTRS)
2002-01-01
The Nyiragongo volcano in the Congo erupted on January 17, 2002, and subsequently sent streams of lava into the city of Goma on the north shore of Lake Kivu. More than 100 people were killed, more than 12,000 homes were destroyed, and hundreds of thousands were forced to flee the broader community of nearly half a million people. This Landsat satellite image shows the volcano (right of center), the city of Goma, and surrounding terrain. Image data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite were used to supply a partial map of the recent lava flows (red overlay), including a complete mapping of their intrusion into Goma as of January 28, 2002. Lava is also apparent within the volcanic crater and at a few other locations. Thick (but broken) cloud cover during the ASTER image acquisition prevented a complete mapping of the lava distribution, but future image acquisitions should complete the mapping.
Goma has a light pink speckled appearance along the shore of Lake Kivu. The city airport parallels, and is just right (east) of, the larger lava flow. Nyiragongo peaks at about 3,470 meters (11,380 feet) elevation and reaches almost exactly 2,000 meters (6,560 feet) above Lake Kivu. The shorter but much broader Nyamuragira volcano appears in the upper left.Goma, Lake Kivu, Nyiragongo, Nyamuragira and other nearby volcanoes sit within the East African Rift Valley, a zone where tectonic processes are cracking, stretching, and lowering the Earth's crust. Volcanic activity is common here, and older but geologically recent lava flows (magenta in this depiction) are particularly apparent on the flanks of the Nyamuragira volcano.The Landsat image used here was acquired on December 11, 2001, about a month before the eruption, and shows an unusually cloud-free view of this tropical terrain. Minor clouds and their shadows were digitally removed to clarify the view and topographic shading derived from the SRTM elevation model was added to the Landsat image. Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and substantially helps in analyzing the large and growing Landsat image archive. This Landsat 7 Thematic Mapper image was provided to the SRTM and ASTER projects by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, S.D.With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) will image Earth for several years to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy,Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. ASTER is providing scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter(approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.Size: 21 by 42 kilometers (13 by 26 miles) Location: 1.5 degrees South latitude, 29.3 degrees East longitude Orientation: East-northeast at top Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively. ASTER Band 12 (thermal) shown as red overlay. Original Data Resolution: Landsat 30 meters (98 feet). ASTER (thermal) 90 meters (295 feet), SRTM 1 arcsecond (30 meters or 98 feet). Date Acquired: December 11, 2001 (Landsat), January 28, 2002 (ASTER), February 2000 (SRTM).Johnson, Michaela R.; Graham, Garth E.; Hubbard, Bernard E.; Benzel, William M.
2015-07-16
This Data Series summarizes results from July 2013 sampling in the western Alaska Range near Mount Estelle, Alaska. The fieldwork combined in situ and camp-based spectral measurements of talus/soil and rock samples. Five rock and 48 soil samples were submitted for quantitative geochemical analysis (for 55 major and trace elements), and the 48 soils samples were also analyzed by x-ray diffraction to establish mineralogy and geochemistry. The results and sample photographs are presented in a geodatabase that accompanies this report. The spectral, mineralogical, and geochemical characterization of these samples and the sites that they represent can be used to validate existing remote-sensing datasets (for example, ASTER) and future hyperspectral studies. Empirical evidence of jarosite (as identified by x-ray diffraction and spectral analysis) corresponding with gold concentrations in excess of 50 parts per billion in soil samples suggests that surficial mapping of jarosite in regional surveys may be useful for targeting areas of prospective gold occurrences in this sampling area.
Project Zoom IN, Citizen Perspectives on Climate and Water Resources
NASA Astrophysics Data System (ADS)
Glaser, J. P.
2012-12-01
Perspective on climate and water resources can come from the top, scientists sharing invaluable data and findings about how climate dynamics function or quantifications of systems in flux. However, citizens are endowed with an equally as powerful tool for insight: ground zero experience. Project Zoom In is a nascent project undertaken by Global Media Forge to empower youth, educators and scientists with tools to reach the media with locale-specific imagery and perspective of climate dynamics and evidence of anecdotal resource management of liquid gold: fresh water. Zoom In is taking root in Colorado but is designed for national/international scaling. This effort has three limbs: (1) student, scientist and educator workshops teaching invaluable video production skills (2) engaging Colorado school systems to stimulate submission of clips to full video productions to our database, and (3) embedding the findings on a taxonomic GIS interface on-line. The website will be invaluable in classrooms and link network media to individuals with firsthand viewpoints on change.; Climate and Water Resources
Sadygov, Rovshan G.; Zhao, Yingxin; Haidacher, Sigmund J.; Starkey, Jonathan M.; Tilton, Ronald G.; Denner, Larry
2010-01-01
We describe a method for ratio estimations in 18O-water labeling experiments acquired from low resolution isotopically resolved data. The method is implemented in a software package specifically designed for use in experiments making use of zoom-scan mode data acquisition. Zoom-scan mode data allows commonly used ion trap mass spectrometers to attain isotopic resolution, which make them amenable to use in labeling schemes such as 18O-water labeling, but algorithms and software developed for high resolution instruments may not be appropriate for the lower resolution data acquired in zoom-scan mode. The use of power spectrum analysis is proposed as a general approach which may be uniquely suited to these data types. The software implementation uses power spectrum to remove high-frequency noise, and band-filter contributions from co-eluting species of differing charge states. From the elemental composition of a peptide sequence we generate theoretical isotope envelopes of heavy-light peptide pairs in five different ratios; these theoretical envelopes are correlated with the filtered experimental zoom scans. To automate peptide quantification in high-throughput experiments, we have implemented our approach in a computer program, MassXplorer. We demonstrate the application of MassXplorer to two model mixtures of known proteins, and to a complex mixture of mouse kidney cortical extract. Comparison with another algorithm for ratio estimations demonstrates the increased precision and automation of MassXplorer. PMID:20568695
Optical design of an athermalised dual field of view step zoom optical system in MWIR
NASA Astrophysics Data System (ADS)
Kucukcelebi, Doruk
2017-08-01
In this paper, the optical design of an athermalised dual field of view step zoom optical system in MWIR (3.7μm - 4.8μm) is described. The dual field of view infrared optical system is designed based on the principle of passive athermalization method not only to achieve athermal optical system but also to keep the high image quality within the working temperature between -40°C and +60°C. The infrared optical system used in this study had a 320 pixel x 256 pixel resolution, 20μm pixel pitch size cooled MWIR focal plane array detector. In this study, the step zoom mechanism, which has the axial motion due to consisting of a lens group, is considered to simplify mechanical structure. The optical design was based on moving a single lens along the optical axis for changing the optical system's field of view not only to reduce the number of moving parts but also to athermalize for the optical system. The optical design began with an optimization process using paraxial optics when first-order optics parameters are determined. During the optimization process, in order to reduce aberrations, such as coma, astigmatism, spherical and chromatic aberrations, aspherical surfaces were used. As a result, athermalised dual field of view step zoom optical design is proposed and the performance of the design using proposed method was verified by providing the focus shifts, spot diagrams and MTF analyzes' plots.
Goodhew, Stephanie C; Lawrence, Rebecca K; Edwards, Mark
2017-05-01
There are volumes of information available to process in visual scenes. Visual spatial attention is a critically important selection mechanism that prevents these volumes from overwhelming our visual system's limited-capacity processing resources. We were interested in understanding the effect of the size of the attended area on visual perception. The prevailing model of attended-region size across cognition, perception, and neuroscience is the zoom-lens model. This model stipulates that the magnitude of perceptual processing enhancement is inversely related to the size of the attended region, such that a narrow attended-region facilitates greater perceptual enhancement than a wider region. Yet visual processing is subserved by two major visual pathways (magnocellular and parvocellular) that operate with a degree of independence in early visual processing and encode contrasting visual information. Historically, testing of the zoom-lens has used measures of spatial acuity ideally suited to parvocellular processing. This, therefore, raises questions about the generality of the zoom-lens model to different aspects of visual perception. We found that while a narrow attended-region facilitated spatial acuity and the perception of high spatial frequency targets, it had no impact on either temporal acuity or the perception of low spatial frequency targets. This pattern also held up when targets were not presented centrally. This supports the notion that visual attended-region size has dissociable effects on magnocellular versus parvocellular mediated visual processing.
Modeling the Impact of Baryons on Subhalo Populations with Machine Learning
NASA Astrophysics Data System (ADS)
Nadler, Ethan O.; Mao, Yao-Yuan; Wechsler, Risa H.; Garrison-Kimmel, Shea; Wetzel, Andrew
2018-06-01
We identify subhalos in dark matter–only (DMO) zoom-in simulations that are likely to be disrupted due to baryonic effects by using a random forest classifier trained on two hydrodynamic simulations of Milky Way (MW)–mass host halos from the Latte suite of the Feedback in Realistic Environments (FIRE) project. We train our classifier using five properties of each disrupted and surviving subhalo: pericentric distance and scale factor at first pericentric passage after accretion and scale factor, virial mass, and maximum circular velocity at accretion. Our five-property classifier identifies disrupted subhalos in the FIRE simulations with an 85% out-of-bag classification score. We predict surviving subhalo populations in DMO simulations of the FIRE host halos, finding excellent agreement with the hydrodynamic results; in particular, our classifier outperforms DMO zoom-in simulations that include the gravitational potential of the central galactic disk in each hydrodynamic simulation, indicating that it captures both the dynamical effects of a central disk and additional baryonic physics. We also predict surviving subhalo populations for a suite of DMO zoom-in simulations of MW-mass host halos, finding that baryons impact each system consistently and that the predicted amount of subhalo disruption is larger than the host-to-host scatter among the subhalo populations. Although the small size and specific baryonic physics prescription of our training set limits the generality of our results, our work suggests that machine-learning classification algorithms trained on hydrodynamic zoom-in simulations can efficiently predict realistic subhalo populations.
CFRP variable curvature mirror used for realizing non-moving-element optical zoom imaging
NASA Astrophysics Data System (ADS)
Zhao, Hui; Fan, Xuewu; Pang, Zhihai; Ren, Guorui; Wang, Wei; Xie, Yongjie; Ma, Zhen; Du, Yunfei; Su, Yu; Wei, Jingxuan
2014-12-01
In recent years, how to eliminate moving elements while realizing optical zoom imaging has been paid much attention. Compared with the conventional optical zooming techniques, removing moving elements would bring in many benefits such as reduction in weight, volume and power cost and so on. The key to implement non-moving-element optical zooming lies in the design of variable curvature mirror (VCM). In order to obtain big enough optical magnification, the VCM should be capable of generating a large variation of saggitus. Hence, the mirror material should not be brittle, in other words the corresponding ultimate strength should be high enough to ensure that mirror surface would not be broken during large curvature variation. Besides that, the material should have a not too big Young's modulus because in this case less force is required to generate a deformation. Among all available materials, for instance SiC, Zerodur and et.al, CFRP (carbon fiber reinforced polymer) satisfies all these requirements and many related research have proven this. In this paper, a CFRP VCM is designed, fabricated and tested. With a diameter of 100mm, a thickness of 2mm and an initial curvature radius of 1740mm, this component could change its curvature radius from 1705mm to 1760mm, which correspond to a saggitus variation of nearly 23μm. The work reported further proves the suitability of CFRP in constructing variable curvature mirror which could generate a large variation of saggitus.
NASA Astrophysics Data System (ADS)
Rowan, L. C.; Mars, J. C.
2001-05-01
Initial analysis of ASTER data of selected areas in the Western United States shows that many important lithologic units can be mapped on the basis of spectral reflectance and spectral emittance. ASTER's most important attributes are 9 bands which record reflected-solar energy with 15 meter- and 30 meter-resolution; 5 bands of emitted energy at 90 meter- resolution; 15 meter-resolution stereoscopic images; and repetitive coverage. Particularly useful 'on-demand' ASTER data products include surface reflectance and surface emissivity images, and digital elevation models (DEM). In the solar-reflected wavelength region (0.4 to 2.5 micrometers), clays, carbonates, hydrous sulphate, and iron-oxide minerals exhibit diagnostic absorption features, whereas the emitted wavelength region (8 to 14 micrometers) provides critical information about anhydrous rock-forming minerals, such as quartz and feldspars, which lack diagnostic absorption features in the solar-reflected region. The Mountain Pass, Calf., Goldfield, Nev., and Virginia Range, Nev. study areas comprise a wide range of lithologic types for evaluating ASTER data. Calibration of the 3 bands recorded in the 0.52 to 0.86 micrometer wavelength region and the 6 bands in the 1.60 to 2.43 micrometer region was improved beyond the 'on-demand' surface reflectance standard product by using in situ spectral reflectance measurements of homogeneous field sites. Validation of this calibration was based on comparisons with spectra from calibrated AVIRIS data, and with additional field measurements. Lithologic mapping based on ASTER bands 1-9 was conducted by using endmember spectra from the image as reference spectra in matched-filter processing. The results were thresholded to display the pixels with the best match for each endmember. The results in these study areas show that Muscovite Group minerals (muscovite, illite, kaolinite) can be mapped over broad reasonably well exposed areas, and that the most intense absorption features occur in hydrothermally altered rocks. In the Mountain Pass area a few exposures containing Fe-muscovite were distinguished from the more extensive Al-mucovite-bearing rocks and soils. Advanced-argillic alteration minerals (alunite, dickite) were detected in the Goldfield mining district and in the Virginia Range. Carbonate Group minerals (calcite, dolomite) were mapped in extensive exposures in the thrust belt of the Mountain Pass area, and well exposed dolomite was distinguished from limestone in several areas. Although skarn deposits consist mainly of calcite and dolomite, their spectral shape in ASTER bands 1-9 is significantly different than typical limestone and dolomite spectra because of the presence of epidote, garnet and chrysotile in the skarn deposits. Mg-OH-bearing minerals (chlorite, biotite, hornblende) proved to be more difficult to map, although generally they were not confused with minerals of the Carbonate Group. Ferric-iron Group minerals were mapped by using a band2/band1 ratio image. Analysis of the surface emissivity standard image products relied on identification of endmember-image spectra by using the pixel-purity index procedure in the ENVI software package, and matched-filter processing. Silica-rich rocks and silica-poor rocks were recognized readily in decorrelation-stretch images, as well as matched-filter endmember images, and 2 intermediate categories were distinguished in most areas.
NASA Technical Reports Server (NTRS)
2002-01-01
These images show dramatic change in the water at Dongting Lake in Hunan province, China. A flood crest surged down the Yangtze River in late August of this year, but the embankments made by residents there held. The left image was acquired on September 2, 2002 and shows the extent of the lake. The right image was obtained March 19, 2002 before the flooding began.
These images were acquired on September 2, 2002 and March 19,2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.Size: 39.1 x 119.4 km (22.4 x 74.0 miles)Location: 30.1 deg. North lat., 112.9 deg. East long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 mDates Acquired: September 2 and March 19, 2002NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Annotated Version The Day fire has been burning in Ventura County in Southern California since Labor Day, and has consumed more than 160,000 acres. As of September 29, it was 63 percent contained. The Advanced Spaceborne Thermal Emission and Reflection Radiometer on NASA's Terra satellite flew over the fire at 10 p.m. Pacific Time on September 28, and imaged the fire with its infrared camera. The hottest areas of active burning appear as red spots on the image. The blue-green background is a daytime image acquired in June, used as a background to allow firefighters to localize the hot spots. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission directorate. Size: 22.5 by 31.0 kilometers (12.6 by 15.2 miles) Location: 34.6 degrees North latitude, 119.1 degrees West longitude Orientation: North at top Image Data: ASTER Bands 4, 2, and 1 Original Data Resolution: ASTER 15 meters (49.2 feet) and 30 meters (98.4 feet) Dates Acquired: September 28, 2006 and June 19 2006New NASA Imagery Sheds Additional Perspectives on Tsunami
NASA Technical Reports Server (NTRS)
2005-01-01
The island of Phuket on the Indian Ocean coast of Thailand is a major tourist destination and was also in the path of the tsunami that washed ashore on December 26, 2004, resulting in a heavy loss of life. These simulated natural color ASTER images show a 27 kilometer (17-mile) long stretch of coast north of the Phuket airport on December 31 (right), along with an image acquired two years earlier (left). The changes along the coast are obvious where the vegetation has been stripped away. These images are being used to create damage assessment maps for the U.S. Agency for International Development (USAID) Office of Foreign Disaster Assistance. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 9.8 by 27.6 kilometers (6.1 by 17.1 miles) Location: 8.6 degrees North latitude, 98.2 degrees East longitude Orientation: North at top Image Data: ASTER bands 3,2, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: November 15, 2002, and December 31, 2004Willow Fire Near Payson, Arizona
NASA Technical Reports Server (NTRS)
2004-01-01
On July 3, 2004, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the Willow fire near Payson, Arizona. The image is being used by the United States Department of Agriculture's Forest Service Remote Sensing Applications Center (RSAC). The image combines data from the visible and infrared wavelength regions to highlight: the burned areas in dark red; the active fires in red-orange; vegetation in green; and smoke in blue. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. Science Team is located at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space. Size: 34 by 41 kilometers (21.1 by 25.4 miles) Location: 34.0 degrees North latitude, 111.5 degrees West longitude Orientation: North at top Image Data: ASTER bands 2, 3, and 8 Original Data Resolution: 15 meters (49.2 feet) Date Acquired: July 3, 2004NASA Technical Reports Server (NTRS)
2007-01-01
On August 7, 2007, the Zaca fire continued to burn in the Los Padres National Forest near Santa Barbara, California. The fire started more than a month ago, on July 4, and has burned 69,800 acres. The fire remains in steep, rocky terrain with poor access. The continued poor access makes containment difficult in the wilderness area on the eastern flank. So far only one outbuilding has been destroyed; but over 450 homes are currently threatened. Over 2300 fire personnel, aided by four air tankers and 15 helicopters, are working to contain this massive fire. Full containment is expected on September 1. The image covers 45.2 x 46.1 km, and is centered near 34.6 degrees north latitude, 119.7 degrees west longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 45.2 by 46.1 kilometers (27.9 by 28.5 miles) Location: 34.6 degrees North latitude, 119.7 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 15 meters (49.2 feet)2017-12-08
Hamelin Pool Marine Nature Reserve is located in the Shark Bay World Heritage Site in Western Australia. It is one of the very few places in the world where living stromatolites can be found. These are the first living examples of structures built by cyanobacteria. These bacteria are direct descendants of the oldest form of photosynthetic life on earth, dating back 3,500 million years (Wikipedia). The image was acquired December 30, 2010, covers an area of 34 x 46 km, and is located at 26.4 degrees south latitude, 114.1 degrees east longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. Credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team Image Addition Date: 2013-03-15 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Nmor, Jephtha C; Sunahara, Toshihiko; Goto, Kensuke; Futami, Kyoko; Sonye, George; Akweywa, Peter; Dida, Gabriel; Minakawa, Noboru
2013-01-16
Identification of malaria vector breeding sites can enhance control activities. Although associations between malaria vector breeding sites and topography are well recognized, practical models that predict breeding sites from topographic information are lacking. We used topographic variables derived from remotely sensed Digital Elevation Models (DEMs) to model the breeding sites of malaria vectors. We further compared the predictive strength of two different DEMs and evaluated the predictability of various habitat types inhabited by Anopheles larvae. Using GIS techniques, topographic variables were extracted from two DEMs: 1) Shuttle Radar Topography Mission 3 (SRTM3, 90-m resolution) and 2) the Advanced Spaceborne Thermal Emission Reflection Radiometer Global DEM (ASTER, 30-m resolution). We used data on breeding sites from an extensive field survey conducted on an island in western Kenya in 2006. Topographic variables were extracted for 826 breeding sites and for 4520 negative points that were randomly assigned. Logistic regression modelling was applied to characterize topographic features of the malaria vector breeding sites and predict their locations. Model accuracy was evaluated using the area under the receiver operating characteristics curve (AUC). All topographic variables derived from both DEMs were significantly correlated with breeding habitats except for the aspect of SRTM. The magnitude and direction of correlation for each variable were similar in the two DEMs. Multivariate models for SRTM and ASTER showed similar levels of fit indicated by Akaike information criterion (3959.3 and 3972.7, respectively), though the former was slightly better than the latter. The accuracy of prediction indicated by AUC was also similar in SRTM (0.758) and ASTER (0.755) in the training site. In the testing site, both SRTM and ASTER models showed higher AUC in the testing sites than in the training site (0.829 and 0.799, respectively). The predictability of habitat types varied. Drains, foot-prints, puddles and swamp habitat types were most predictable. Both SRTM and ASTER models had similar predictive potentials, which were sufficiently accurate to predict vector habitats. The free availability of these DEMs suggests that topographic predictive models could be widely used by vector control managers in Africa to complement malaria control strategies.
Rowan, L.C.; Mars, J.C.; Simpson, C.J.
2005-01-01
Spectral measurements made in the Mordor Pound, NT, Australia study area using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), in the laboratory and in situ show dominantly Al-OH and ferric-iron VNIR-SWIR absorption features in felsic rock spectra and ferrous-iron and Fe,Mg-OH features in the mafic-ultramafic rock spectra. ASTER ratio images, matched-filter, and spectral-angle mapper processing (SAM) were evaluated for mapping the lithologies. Matched-filter processing in which VNIR + SWIR image spectra were used for reference resulted in 4 felsic classes and 4 mafic-ultramafic classes based on Al-OH or Fe,Mg-OH absorption features and, in some, subtle reflectance differences related to differential weathering and vegetation. These results were similar to those obtained by match-filter analysis of HyMap data from a previous study, but the units were more clearly demarcated in the HyMap image. ASTER TIR spectral emittance data and laboratory emissivity measurements document a wide wavelength range of Si-O spectral features, which reflect the lithological diversity of the Mordor ultramafic complex and adjacent rocks. SAM processing of the spectral emittance data distinguished 2 classes representing the mafic-ultramafic rocks and 4 classes comprising the quartzose to intermediate composition rocks. Utilization of the complementary attributes of the spectral reflectance and spectral emittance data resulted in discrimination of 4 mafic-ultramafic categories; 3 categories of alluvial-colluvial deposits; and a significantly more completely mapped quartzite unit than could be accomplished by using either data set alone. ?? 2005 Elsevier Inc. All rights reserved.
Whitcomb, R. F.; Davis, R. E.
1970-01-01
Chlortetracycline or chloramphenicol (but not kanamycin, penicillin, or erythromycin), when administered in hydroponic solution to diseased aster, reduced the availability of the aster yellows (AY) agent to nymphs of Macrosteles fascifrons (Stål). Insects exposed to healthy plants whose roots were immersed in chlortetracycline were able to acquire AY agent from diseased plants the day after removal from the antibiotic-treated plants, but the latent period of the ensuing disease in the insects was prolonged. Chlortetracycline or tylosin tartrate blocked AY infection in nymphs injected with a mixture of antibiotic and the AY agent, but polymyxin, neomycin, vancomycin, penicillin, carbomycin, or chloramphenicol did not. All tetracyclines tested, methacycline, oxytetracycline, and chlortetracycline, produced a dramatic reduction in the ability of infected vectors to transmit AY agent. Tylosin tartrate also reduced transmission when injected into AY-transmitting vectors, but carbomycin, spectinomycin, cycloserine, penicillin, erythromycin, or kanamycin had no such effect. During the first 10 days after injection of tylosin tartrate or oxytetracycline into transmitting vectors, ability of the insects to transmit AY decayed rapidly. Transmission by insects injected with buffer alone, after decreasing the first day after injection, gradually returned to its normal level in less than 1 week. By 2 to 3 weeks after injection with tylosin or oxytetracycline, ability to transmit AY was regained by vectors. The results suggest that tetracycline antibiotics and tylosin tartrate inhibit multiplication of AY agent in the insect. The spectrum of antibiotic activity in the insect is consistent with the hypothesis that AY and other plant yellows diseases are caused by mycoplasma-like organisms. PMID:16557821
NASA Astrophysics Data System (ADS)
Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C.
2014-09-01
Aboveground biomass (AGB) estimation from optical satellite data is usually based on regression models of original or synthetic bands. To overcome the poor relation between AGB and spectral bands due to mixed-pixels when a medium spatial resolution sensor is considered, we propose to base the AGB estimation on fraction images from Linear Spectral Mixture Analysis (LSMA). Our study area is a managed Mediterranean pine woodland (Pinus pinaster Ait.) in central Spain. A total of 1033 circular field plots were used to estimate AGB from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical data. We applied Pearson correlation statistics and stepwise multiple regression to identify suitable predictors from the set of variables of original bands, fraction imagery, Normalized Difference Vegetation Index and Tasselled Cap components. Four linear models and one nonlinear model were tested. A linear combination of ASTER band 2 (red, 0.630-0.690 μm), band 8 (short wave infrared 5, 2.295-2.365 μm) and green vegetation fraction (from LSMA) was the best AGB predictor (Radj2=0.632, the root-mean-squared error of estimated AGB was 13.3 Mg ha-1 (or 37.7%), resulting from cross-validation), rather than other combinations of the above cited independent variables. Results indicated that using ASTER fraction images in regression models improves the AGB estimation in Mediterranean pine forests. The spatial distribution of the estimated AGB, based on a multiple linear regression model, may be used as baseline information for forest managers in future studies, such as quantifying the regional carbon budget, fuel accumulation or monitoring of management practices.
Preflight and in-flight calibration plan for ASTER
Ono, A.; Sakuma, F.; Arai, K.; Yamaguchi, Y.; Fujisada, H.; Slater, P.N.; Thome, K.J.; Palluconi, Frank Don; Kieffer, H.H.
1996-01-01
Preflight and in-flight radiometric calibration plans are described for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) that is a multispectral optical imager of high spatial resolution. It is designed for the remote sensing from orbit of land surfaces and clouds, and is expected to be launched in 1998 on NASA's EOS AM-1 spacecraft. ASTER acquires images in three separate spectral regions, the visible and near-infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR) with three imaging radiometer subsystems. The absolute radiometric accuracy is required to be better than 4% for VNIR and SWIR radiance measurements and 1 to 3 K, depending on the temperature regions from 200 to 370 K, for TIR temperature measurements. A reference beam is introduced at the entrance pupil of each imaging radiometer to provide the in-flight calibration Thus, the ASTER instrument includes internal onboard calibration units that comprise incandescent lamps for the VNIR and SWIR and a blackbody radiator for the TIR as reference sources. The calibration reliability of the VNIR and SWIR is enhanced by a dual system of onboard calibration units as well as by high-stability halogen lamps. A ground calibration system of spectral radiances traceable to fixed-point blackbodies is used for the preflight VNIR and SWIR calibration. Because of the possibility of nonuniform contamination effects on the partial-aperture onboard calibration, it is desirable to check their results with respect to other methods. Reflectance- and radiance-based vicarious methods have been developed for this purpose. These, and methods involving in-flight cross-calibration with other sensors are also described.
NASA Astrophysics Data System (ADS)
Arulbalaji, Palanisamy; Balasubramanian, Gurugnanam
2017-07-01
This study uses advanced spaceborne thermal emission and reflection radiometer (ASTER) hyperspectral remote sensing techniques to discriminate rock types composing Kanjamalai hill located in the Salem district of Tamil Nadu, India. Kanjamalai hill is of particular interest because it contains economically viable iron ore deposits. ASTER hyperspectral data were subjected to principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF) to improve identification of lithologies remotely and to compare these digital data results with published geologic maps. Hyperspectral remote sensing analysis indicates that PCA (R∶G∶B=2∶1∶3), MNF (R∶G∶B=3∶2∶1), and ICA (R∶G∶B=1∶3∶2) provide the best band combination for effective discrimination of lithological rock types composing Kanjamalai hill. The remote sensing-derived lithological map compares favorably with a published geological map from Geological Survey of India and has been verified with ground truth field investigations. Therefore, ASTER data-based lithological mapping provides fast, cost-effective, and accurate geologic data useful for lithological discrimination and identification of ore deposits.
Yong, A.; Hough, S.E.; Cox, B.R.; Rathje, E.M.; Bachhuber, J.; Dulberg, R.; Hulslander, D.; Christiansen, L.; Abrams, M.J.
2011-01-01
We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, Vs30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available Vs30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data. ?? 2011 American Society for Photogrammetry and Remote Sensing.
Estimation of leaf area index using WorldView-2 and Aster satellite image: a case study from Turkey.
Günlü, Alkan; Keleş, Sedat; Ercanlı, İlker; Şenyurt, Muammer
2017-10-04
The objective of this study is to estimate the leaf area index (LAI) of a forest ecosystem using two different satellite images, WorldView-2 and Aster. For this purpose, 108 sample plots were taken from pure Crimean pine forest stands of Yenice Forest Management Planning Unit in Ilgaz Forest Management Enterprise, Turkey. Each sample plot was imaged with hemispherical photographs with a fish-eye camera to determine the LAI. These photographs were analyzed with the help of Hemisfer Hemiview software program, and thus, the LAI of each sample plot was estimated. Furthermore, multiple regression analysis method was used to model the statistical relationships between the LAI values and band spectral reflection values and some vegetation indices (Vis) obtained from satellite images. The results show that the high-resolution WorldView-2 satellite image is better than the medium-resolution Aster satellite image in predicting the LAI. It was also seen that the results obtained by using the VIs are better than the bands when the LAI value is predicted with satellite images.
Kuske, C R; Kirkpatrick, B C
1990-01-01
Supercoiled double-stranded DNA molecules (plasmids) were isolated from plants infected with three laboratory strains of western aster yellows mycoplasma-like organism (AY-MLO) by using cesium chloride-ethidium bromide density gradients. Southern blot analysis, using plasmids from the severe strain of AY-MLO (SAY-MLO) as the probe, identified at least four plasmids in celery, aster, and periwinkle plants and in Macrosteles severini leafhopper vectors infected with either the dwarf AY-MLO, Tulelake AY-MLO, or SAY-MLO strain. Plasmids were also detected in two California field isolates of AY-MLO but not in plants infected with the beet leafhopper-transmitted virescence agent, western X, or elm yellows MLOs. SAY-MLO plasmids were 5.2, 4.9, 3.4, and 1.7 kilobase pairs in size. Plasmids isolated from dwarf AY- and Tulelake AY-MLOs were 7.4, 5.1, 3.5, and 1.7 kilobase pairs in size. No evidence was obtained for integration of SAY-MLO plasmids into the MLO chromosome. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 PMID:2307660
MEaSUREs Land Surface Temperature from GOES Satellites
NASA Astrophysics Data System (ADS)
Pinker, Rachel T.; Chen, Wen; Ma, Yingtao; Islam, Tanvir; Borbas, Eva; Hain, Chris; Hulley, Glynn; Hook, Simon
2017-04-01
Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record for Earth Science" led by Jet Propulsion Laboratory, an effort is underway to develop long term consistent information from both such systems. In this presentation we will describe an effort to derive LST information from GOES satellites. Results will be presented from two approaches: 1) based on regression developed from a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and the CAMEL (Combined ASTER and MODIS Emissivity for Land) product based on the standard University of Wisconsin 5 km emissivity values (UWIREMIS) and the ASTER Global Emissivity Database (GED) product; 2) RTTOV radiative transfer model driven with MERRA-2 reanalysis fields. We will present results of evaluation of these two methods against various products, such as MOD11, and ground observations for the five year period of (2004-2008).
The ASTER Volcano Archive (AVA): High Spatial Resolution Global Monitoring of Volcanic Eruptions
NASA Astrophysics Data System (ADS)
Linick, J. P.; Pieri, D. C.; Davies, A. G.; Reath, K.; Mars, J. C.; Hubbard, B. E.; Sanchez, R. M.; Tan, H. L.
2017-12-01
The ASTER Volcano Archive (AVA) is a data system focused on collecting and cataloguing higher level remote sensing data products for all Holocene volcanoes over the last several decades, producing volcanogenic science products for global detection, mapping, and modeling of effusive eruptions at high spatial resolution, and providing rapid bulk dissemination of relevant data products to the science community at large. Space-based optical platforms such as ASTER, EO-1, and Landsat, are a critical component for global monitoring systems to provide the capability for volcanic hazard assessment and modeling, and are a vital addition to in-situ measurements. The AVA leverages these instruments for the automated generation of lava flow emplacement maps, sulfur dioxide monitoring, thermal anomaly detection, and modeling of integrated thermal emission across the world's volcanoes. Additionally, we provide slope classified alteration and lahar inundation maps with potential inundation zones for certain relevant volcanoes. We explore the AVA's data product retrieval API, and describe how scientists can rapidly retrieve bulk products using the AVA platform with a focus on practical applications for both general analysis and hazard response.
ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya
Wessels, R.L.; Kargel, J.S.; Kieffer, H.H.
2002-01-01
We demonstrate an application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images to detect and monitor supraglacial lakes on glaciers in the Mount Everest region in Tibet (Xizang) and Nepal. ASTER offers powerful capabilities to monitor supraglacial lakes in terms of (1) surface area, growth and disappearance (spatial resolution = 15 m), (2) turbidity (15 m resolution), and (3) temperature (90 m resolution). Preliminary results show an overall similarity of supraglacial lakes on three glaciers. Lakes have widely varying turbidity as indicated by color in visible/near-infrared bands 1-3, the largest lakes being bright blue (highly turbid), cold (near 0??C) and hydrautically connected with other lakes and supraglacial streams, while small lakes are mostly dark blue (relatively clear water), warmer (>4??C), and appear hydrautically isolated. High levels of turbidity in supraglacial lakes indicate high rates of meltwater input from streams or erosion of ice cliffs, and thus are an indirect measure relating to the activity and hydraulic integration of the lake with respect to other lakes and streams in the glacier.
Xian, G.; Crane, M.; McMahon, C.
2008-01-01
Urban development has expanded rapidly in Las Vegas, Nevada of the United States, over the last fifty years. A major environmental change associated with this urbanization trend is the transformation of the landscape from natural cover types to increasingly anthropogenic impervious surface. This research utilizes remote sensing data from both the Landsat and Terra-Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instruments in conjunction with digital orthophotography to estimate urban extent and its temporal changes by determining sub-pixel impervious surfaces. Percent impervious surface area has shown encouraging agreement with urban land extent and development density. Results indicate that total urban land-use increases approximately 110 percent from 1984 to 2002. Most of the increases are associated with medium-to high-density urban development. Places having significant increases in impervious surfaces are in the northwestern and southeastern parts of Las Vegas. Most high-density urban development, however, appears in central Las Vegas. Impervious surface conditions for 2002 measured from Landsat and ASTER satellite data are compared in terms of their accuracy.
2002-09-03
Aletsch Glacier, the largest glacier of Europe, covers more than 120 square kilometers (more than 45 square miles) in southern Switzerland. At its eastern extremity lies a glacierlake, Mdrjelensee (2,350 meters/7,711 feet above sea level). To the west rises Aletschhorn (4,195 meters/13,763 feet), which was first climbed in 1859. The Rhone River flows along the southern flank of the mountains. This image was acquired on July 23, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. http://photojournal.jpl.nasa.gov/catalog/PIA03857
NASA Astrophysics Data System (ADS)
Schwartz, Richard A.; Zarro, D.; Csillaghy, A.; Dennis, B.; Tolbert, A. K.; Etesi, L.
2009-05-01
We report on our activities to integrate VSO search and retrieval capabilities into standard data access, display, and analysis tools. In addition to its standard Web-based search form, the VSO provides an Interactive Data Language (IDL) client (vso_search) that is available through the Solar Software (SSW) package. We have incorporated this client into an IDL-widget interface program (show_synop) that allows for more simplified searching and downloading of VSO datasets directly into a user's IDL data analysis environment. In particular, we have provided the capability to read VSO datasets into a general purpose IDL package (plotman) that can display different datatypes (lightcurves, images, and spectra) and perform basic data operations such as zooming, image overlays, solar rotation, etc. Currently, the show_synop tool supports access to ground-based and space-based (SOHO, STEREO, and Hinode) observations, and has the capability to include new datasets as they become available. A user encounters two major hurdles when using the VSO: (1) Instrument-specific software (such as level-0 file readers and data-prepping procedures) may not be available in the user's local SSW distribution. (2) Recent calibration files (such as flat-fields) are not automatically distributed with the analysis software. To address these issues, we have developed a dedicated server (prepserver) that incorporates all the latest instrument-specific software libraries and calibration files. The prepserver uses an IDL-Java bridge to read and implement data processing requests from a client and return a processed data file that can be readily displayed with the show_synop/plotman package. The advantage of the prepserver is that the user is only required to install the general branch (gen) of the SSW tree, and is freed from the more onerous task of installing instrument-specific libraries and calibration files. We will demonstrate how the prepserver can be used to read, process, and overlay SOHO/EIT, TRACE, SECCHI/EUVI, and RHESSI images.
Relative Error Evaluation to Typical Open Global dem Datasets in Shanxi Plateau of China
NASA Astrophysics Data System (ADS)
Zhao, S.; Zhang, S.; Cheng, W.
2018-04-01
Produced by radar data or stereo remote sensing image pairs, global DEM datasets are one of the most important types for DEM data. Relative error relates to surface quality created by DEM data, so it relates to geomorphology and hydrologic applications using DEM data. Taking Shanxi Plateau of China as the study area, this research evaluated the relative error to typical open global DEM datasets including Shuttle Radar Terrain Mission (SRTM) data with 1 arc second resolution (SRTM1), SRTM data with 3 arc second resolution (SRTM3), ASTER global DEM data in the second version (GDEM-v2) and ALOS world 3D-30m (AW3D) data. Through process and selection, more than 300,000 ICESat/GLA14 points were used as the GCP data, and the vertical error was computed and compared among four typical global DEM datasets. Then, more than 2,600,000 ICESat/GLA14 point pairs were acquired using the distance threshold between 100 m and 500 m. Meanwhile, the horizontal distance between every point pair was computed, so the relative error was achieved using slope values based on vertical error difference and the horizontal distance of the point pairs. Finally, false slope ratio (FSR) index was computed through analyzing the difference between DEM and ICESat/GLA14 values for every point pair. Both relative error and FSR index were categorically compared for the four DEM datasets under different slope classes. Research results show: Overall, AW3D has the lowest relative error values in mean error, mean absolute error, root mean square error and standard deviation error; then the SRTM1 data, its values are a little higher than AW3D data; the SRTM3 and GDEM-v2 data have the highest relative error values, and the values for the two datasets are similar. Considering different slope conditions, all the four DEM data have better performance in flat areas but worse performance in sloping regions; AW3D has the best performance in all the slope classes, a litter better than SRTM1; with slope increasing, the relative error for the SRTM3 data increases faster than other DEM datasets; so SRTM3 is better than GDEM-v2 in flat regions but worse in sloping regions. As to FSR value, AW3D has the lowest value, 4.37 %; then SRTM1 data, 5.80 %, similar to AW3D data; SRTM3 has higher value, about 8.27 %; GDEM-v2 data has the highest FSR value, about 12.15 %. FSR can represent the performance of correctly creating the earth surface based on DEM data. Hence, AW3D has the best performance, which is approximate to but a little better than SRTM1. The performance of SRTM3 and GDEM-v2 is similar, which is much worse than AW3D and SRTM1, and the performance of GDEM-v2 is the worst of all. Originated from the DEM dataset with 5m resolution, AW3D is regarded as the most precise global DEM datasets up to now, so it may exerts more effect in topographic analysis and geographic research. Through analysis and comparison of the relative error for the four open global DEM datasets, this research will provide reference in open global DEM datasets selection and applications in geosciences and other relevant fields.
NASA Astrophysics Data System (ADS)
Adjorlolo, Clement; Cho, Moses A.; Mutanga, Onisimo; Ismail, Riyad
2012-01-01
Hyperspectral remote-sensing approaches are suitable for detection of the differences in 3-carbon (C3) and four carbon (C4) grass species phenology and composition. However, the application of hyperspectral sensors to vegetation has been hampered by high-dimensionality, spectral redundancy, and multicollinearity problems. In this experiment, resampling of hyperspectral data to wider wavelength intervals, around a few band-centers, sensitive to the biophysical and biochemical properties of C3 or C4 grass species is proposed. The approach accounts for an inherent property of vegetation spectral response: the asymmetrical nature of the inter-band correlations between a waveband and its shorter- and longer-wavelength neighbors. It involves constructing a curve of weighting threshold of correlation (Pearson's r) between a chosen band-center and its neighbors, as a function of wavelength. In addition, data were resampled to some multispectral sensors-ASTER, GeoEye-1, IKONOS, QuickBird, RapidEye, SPOT 5, and WorldView-2 satellites-for comparative purposes, with the proposed method. The resulting datasets were analyzed, using the random forest algorithm. The proposed resampling method achieved improved classification accuracy (κ=0.82), compared to the resampled multispectral datasets (κ=0.78, 0.65, 0.62, 0.59, 0.65, 0.62, 0.76, respectively). Overall, results from this study demonstrated that spectral resolutions for C3 and C4 grasses can be optimized and controlled for high dimensionality and multicollinearity problems, yet yielding high classification accuracies. The findings also provide a sound basis for programming wavebands for future sensors.
Benefit of the UltraZoom beamforming technology in noise in cochlear implant users.
Mosnier, Isabelle; Mathias, Nathalie; Flament, Jonathan; Amar, Dorith; Liagre-Callies, Amelie; Borel, Stephanie; Ambert-Dahan, Emmanuèle; Sterkers, Olivier; Bernardeschi, Daniele
2017-09-01
The objectives of the study were to demonstrate the audiological and subjective benefits of the adaptive UltraZoom beamforming technology available in the Naída CI Q70 sound processor, in cochlear-implanted adults upgraded from a previous generation sound processor. Thirty-four adults aged between 21 and 89 years (mean 53 ± 19) were prospectively included. Nine subjects were unilaterally implanted, 11 bilaterally and 14 were bimodal users. The mean duration of cochlear implant use was 7 years (range 5-15 years). Subjects were tested in quiet with monosyllabic words and in noise with the adaptive French Matrix test in the best-aided conditions. The test setup contained a signal source in front of the subject and three noise sources at +/-90° and 180°. The noise was presented at a fixed level of 65 dB SPL and the level of speech signal was varied to obtain the speech reception threshold (SRT). During the upgrade visit, subjects were tested with the Harmony and with the Naída CI sound processors in omnidirectional microphone configuration. After a take-home phase of 2 months, tests were repeated with the Naída CI processor with and without UltraZoom. Subjective assessment of the sound quality in daily environments was recorded using the APHAB questionnaire. No difference in performance was observed in quiet between the two processors. The Matrix test in noise was possible in the 21 subjects with the better performance. No difference was observed between the two processors for performance in noise when using the omnidirectional microphone. At the follow-up session, the median SRT with the Naída CI processor with UltraZoom was -4 dB compared to -0.45 dB without UltraZoom. The use of UltraZoom improved the median SRT by 3.6 dB (p < 0.0001, Wilcoxon paired test). When looking at the APHAB outcome, improvement was observed for speech understanding in noisy environments (p < 0.01) and in aversive situations (p < 0.05) in the group of 21 subjects who were able to perform the Matrix test in noise and for speech understanding in noise (p < 0.05) in the group of 13 subjects with the poorest performance, who were not able to perform the Matrix test in noise. The use of UltraZoom beamforming technology, available on the new sound processor Naída CI, improves speech performance in difficult and realistic noisy conditions when the cochlear implant user needs to focus on the person speaking at the front. Using the APHAB questionnaire, a subjective benefit for listening in background noise was also observed in subjects with good performance as well as in those with poor performance. This study highlighted the importance of upgrading CI recipients to new technology and to include assessment in noise and subjective feedback evaluation as part of the process.
2008-03-01
preparation by Ximing Tang et al. b.3. NOTCH3 /JAGGED1 pathway. Notch3 (N3) is a member of the family of Notch transmembrane receptors, which are...Prudkin L, Liu D, Tchinda J, Woods D, Behrens C, Bekele BN, Moran C, Lee C, Aster JC, Zhou B-B, Wistuba II. NOTCH3 /JAGGED1 pathway is involved in non...Behrens C, Bekele BN, Moran C, Lee C, Aster JC, Zhou B-B, Wistuba II. NOTCH3 /JAGGED1 pathway is involved in non-small cell lung cancer pathogenesis
Impact of Northern California Fires Seen in New NASA Satellite Image
2017-10-23
As firefighters continue to work toward full containment of the rash of wildfires burning in Northern California, a new image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite shows the growing fire scar on the landscape. In this ASTER image, acquired Oct. 21, 2017, vegetation is red, while burned areas appear dark gray. The image covers an area of 38 by 39 miles (60.5 by 63 kilometers) and is located near 38.5 degrees north, 122.4 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA22049
Chirico, Peter G.; Malpeli, Katherine C.; Trimble, Sarah M.
2012-01-01
This study compares the ASTER Global DEM version 1 (GDEMv1) and version 2 (GDEMv2) for two study sites with distinct terrain and land cover characteristics in western Africa. The effects of land cover, slope, relief, and stack number are evaluated through both absolute and relative DEM statistical comparisons. While GDEMv2 at times performed better than GDEMv1, this improvement was not consistent, revealing the complex nature and interaction of terrain and land cover characteristics, which influences the accuracy of GDEM tiles on local and regional scales.
3D View of Grand Canyon, Arizona
NASA Technical Reports Server (NTRS)
2000-01-01
The Grand Canyon is one of North America's most spectacular geologic features. Carved primarily by the Colorado River over the past six million years, the canyon sports vertical drops of 5,000 feet and spans a 445-kilometer-long stretch of Arizona desert. The strata along the steep walls of the canyon form a record of geologic time from the Paleozoic Era (250 million years ago) to the Precambrian (1.7 billion years ago).The above view was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard the Terra spacecraft. Visible and near infrared data were combined to form an image that simulates the natural colors of water and vegetation. Rock colors, however, are not accurate. The image data were combined with elevation data to produce this perspective view, with no vertical exaggeration, looking from above the South Rim up Bright Angel Canyon towards the North Rim. The light lines on the plateau at lower right are the roads around the Canyon View Information Plaza. The Bright Angel Trail, which reaches the Colorado in 11.3 kilometers, can be seen dropping into the canyon over Plateau Point at bottom center. The blue and black areas on the North Rim indicate a forest fire that was smoldering as the data were acquired on May 12, 2000.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.NASA Technical Reports Server (NTRS)
2003-01-01
A chunk of glacier was threatening to fall into an Andean lake and cause major flooding in a Peruvian city of 60,000. A fissure has appeared in the glacier that feeds the Lake Palcacocha near the city of Huaraz, 270 km north of Lima. If the piece breaks off, ensuing floods would take 15 minutes to reach the city. In 1941, the lake overflowed and caused massive destruction, killing 7,000 people. The city can be seen in the left-center part of the image. Lake Palcacocha is in the upper right corner of the image at the head of a valley, below the snow and glacier cap. The ASTER instrument is being tasked to obtain current images of the glacier to help monitor the situation. This image was acquired on November 5, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the technologies needed to explore the universe and search for life beyond our home planet. Size: 31.8 x 31.8 km (19.7 x 19.7 miles) Location: 9.5 deg. South lat., 77.5 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: November 5, 2001Engineering web maps with gradual content zoom based on streaming vector data
NASA Astrophysics Data System (ADS)
Huang, Lina; Meijers, Martijn; Šuba, Radan; van Oosterom, Peter
2016-04-01
Vario-scale data structures have been designed to support gradual content zoom and the progressive transfer of vector data, for use with arbitrary map scales. The focus to date has been on the server side, especially on how to convert geographic data into the proposed vario-scale structures by means of automated generalisation. This paper contributes to the ongoing vario-scale research by focusing on the client side and communication, particularly on how this works in a web-services setting. It is claimed that these functionalities are urgently needed, as many web-based applications, both desktop and mobile, require gradual content zoom, progressive transfer and a high performance level. The web-client prototypes developed in this paper make it possible to assess the behaviour of vario-scale data and to determine how users will actually see the interactions. Several different options of web-services communication architectures are possible in a vario-scale setting. These options are analysed and tested with various web-client prototypes, with respect to functionality, ease of implementation and performance (amount of transmitted data and response times). We show that the vario-scale data structure can fit in with current web-based architectures and efforts to standardise map distribution on the internet. However, to maximise the benefits of vario-scale data, a client needs to be aware of this structure. When a client needs a map to be refined (by means of a gradual content zoom operation), only the 'missing' data will be requested. This data will be sent incrementally to the client from a server. In this way, the amount of data transferred at one time is reduced, shortening the transmission time. In addition to these conceptual architecture aspects, there are many implementation and tooling design decisions at play. These will also be elaborated on in this paper. Based on the experiments conducted, we conclude that the vario-scale approach indeed supports gradual content zoom and the progressive web transfer of vector data. This is a big step forward in making vector data at arbitrary map scales available to larger user groups.
Modeling the Impact of Baryons on Subhalo Populations with Machine Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadler, Ethan O.; Mao, Yao -Yuan; Wechsler, Risa H.
Here, we identify subhalos in dark matter–only (DMO) zoom-in simulations that are likely to be disrupted due to baryonic effects by using a random forest classifier trained on two hydrodynamic simulations of Milky Way (MW)–mass host halos from the Latte suite of the Feedback in Realistic Environments (FIRE) project. We train our classifier using five properties of each disrupted and surviving subhalo: pericentric distance and scale factor at first pericentric passage after accretion and scale factor, virial mass, and maximum circular velocity at accretion. Our five-property classifier identifies disrupted subhalos in the FIRE simulations with an 85% out-of-bag classification score.more » We predict surviving subhalo populations in DMO simulations of the FIRE host halos, finding excellent agreement with the hydrodynamic results; in particular, our classifier outperforms DMO zoom-in simulations that include the gravitational potential of the central galactic disk in each hydrodynamic simulation, indicating that it captures both the dynamical effects of a central disk and additional baryonic physics. We also predict surviving subhalo populations for a suite of DMO zoom-in simulations of MW-mass host halos, finding that baryons impact each system consistently and that the predicted amount of subhalo disruption is larger than the host-to-host scatter among the subhalo populations. Although the small size and specific baryonic physics prescription of our training set limits the generality of our results, our work suggests that machine-learning classification algorithms trained on hydrodynamic zoom-in simulations can efficiently predict realistic subhalo populations.« less
Modeling the Impact of Baryons on Subhalo Populations with Machine Learning
Nadler, Ethan O.; Mao, Yao -Yuan; Wechsler, Risa H.; ...
2018-06-01
Here, we identify subhalos in dark matter–only (DMO) zoom-in simulations that are likely to be disrupted due to baryonic effects by using a random forest classifier trained on two hydrodynamic simulations of Milky Way (MW)–mass host halos from the Latte suite of the Feedback in Realistic Environments (FIRE) project. We train our classifier using five properties of each disrupted and surviving subhalo: pericentric distance and scale factor at first pericentric passage after accretion and scale factor, virial mass, and maximum circular velocity at accretion. Our five-property classifier identifies disrupted subhalos in the FIRE simulations with an 85% out-of-bag classification score.more » We predict surviving subhalo populations in DMO simulations of the FIRE host halos, finding excellent agreement with the hydrodynamic results; in particular, our classifier outperforms DMO zoom-in simulations that include the gravitational potential of the central galactic disk in each hydrodynamic simulation, indicating that it captures both the dynamical effects of a central disk and additional baryonic physics. We also predict surviving subhalo populations for a suite of DMO zoom-in simulations of MW-mass host halos, finding that baryons impact each system consistently and that the predicted amount of subhalo disruption is larger than the host-to-host scatter among the subhalo populations. Although the small size and specific baryonic physics prescription of our training set limits the generality of our results, our work suggests that machine-learning classification algorithms trained on hydrodynamic zoom-in simulations can efficiently predict realistic subhalo populations.« less
An electronic pan/tilt/zoom camera system
NASA Technical Reports Server (NTRS)
Zimmermann, Steve; Martin, H. Lee
1991-01-01
A camera system for omnidirectional image viewing applications that provides pan, tilt, zoom, and rotational orientation within a hemispherical field of view (FOV) using no moving parts was developed. The imaging device is based on the effect that from a fisheye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high speed electronic circuitry. An incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical FOV without the need for any mechanical mechanisms. A programmable transformation processor provides flexible control over viewing situations. Multiple images, each with different image magnifications and pan tilt rotation parameters, can be obtained from a single camera. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment.
Numerical Propulsion System Simulation: A Common Tool for Aerospace Propulsion Being Developed
NASA Technical Reports Server (NTRS)
Follen, Gregory J.; Naiman, Cynthia G.
2001-01-01
The NASA Glenn Research Center is developing an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). This simulation is initially being used to support aeropropulsion in the analysis and design of aircraft engines. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the Aviation Safety Program and Advanced Space Transportation. NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes using the Common Object Request Broker Architecture (CORBA) in the NPSS Developer's Kit to facilitate collaborative engineering. The NPSS Developer's Kit will provide the tools to develop custom components and to use the CORBA capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities will extend NPSS from a zero-dimensional simulation tool to a multifidelity, multidiscipline system-level simulation tool for the full life cycle of an engine.
Nyiragongo volcano, Congo, Perspective View with Lava SRTM / ASTER / Landsat
NASA Technical Reports Server (NTRS)
2002-01-01
The Nyiragongo volcano in the Congo erupted on January 17, 2002, and subsequently sent streams of lava into the city of Goma on the north shore of Lake Kivu. More than 100 people were killed, more than 12,000 homes were destroyed, and hundreds of thousands were forced to flee the broader community of nearly half a million people. This computer-generated visualization combines a Landsat satellite image and an elevation model from the Shuttle Radar Topography Mission (SRTM) to provide a view of both the volcano and the city of Goma, looking slightly east of north. Additionally, image data from the Advanced Spaceborne Thermal Emission and reflection Radiometer (ASTER) on NASA's Terra satellite were used to supply a partial map of the recent lava flows (red), including a complete mapping of their intrusion into Goma as of January 28, 2002. Lava is also apparent within the volcanic crater and at a few other locations. Thick (but broken) cloud cover during the ASTER image acquisition prevented a complete mapping of the lava distribution, but future image acquisitions should complete the mapping.Nyiragongo is the steep volcano on the right, Lake Kivu is in the foreground, and the city of Goma has a light pink speckled appearance along the shoreline. Nyiragongo peaks at about 3,470 meters (11,380 feet) elevation and reaches almost exactly 2,000 meters (6,560 feet) above Lake Kivu. The shorter but broader Nyamuragira volcano appears in the left background. Topographic expression has been exaggerated vertically by a factor of 1.5 for this visualization.Goma, Lake Kivu, Nyiragongo, Nyamuragira and other nearby volcanoes sit within the East African Rift Valley, a zone where tectonic processes are cracking, stretching, and lowering the Earth's crust. Volcanic activity is common here, and older but geologically recent lava flows (magenta in this depiction) are particularly apparent on the flanks of the Nyamuragira volcano.The Landsat image used here was acquired on December 11, 2001, about a month before the eruption, and shows an unusually cloud-free view of this tropical terrain. Minor clouds and their shadows were digitally removed to clarify the view, topographic shading derived from the SRTM elevation model was added to the Landsat image, and a false sky was added.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and substantially helps in analyzing the large and growing Landsat image archive. This Landsat 7 Thematic Mapper image was provided to the SRTM and ASTER projects by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center,Sioux Falls, S.D.With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) will image Earth for several years to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. ASTER is providing scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.Size: View width 21 kilometers (13 miles), View distance 42 kilometers (26 miles) Location: 1.5 degrees South latitude, 29.3 degrees East longitude Orientation: View east-northeast, 5 degrees below horizontal Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively. ASTER Band 12 (thermal) shown as red overlay. Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Landsat 30 meters (98 feet). ASTER (thermal) 90 meters (295 feet). Date Acquired: February 2000 (SRTM), December 11, 2001 (Landsat), January 28, 2002 (ASTER)Activation of maternal centrosomes in unfertilized sea urchin eggs
NASA Technical Reports Server (NTRS)
Schatten, H.; Walter, M.; Biessmann, H.; Schatten, G.
1992-01-01
Centrosomes are undetectable in unfertilized sea urchin eggs, and normally the sperm introduces the cell's microtubule-organizing center (MTOC) at fertilization. However, artificial activation or parthenogenesis triggers microtubule assembly in the unfertilized egg, and this study explores the reappearance and behavior of the maternal centrosome. During activation with A23187 or ammonia, microtubules appear first at the cortex; centrosomal antigen is detected diffusely throughout the entire cytoplasm. Later, the centrosome becomes more distinct and organizes a radial microtubule shell, and eventually a compact centrosome at the egg center organizes a monaster. In these activated eggs, centrosomes undergo cycles of compaction and decompaction in synchrony with the chromatin, which also undergoes cycles of condensation and decondensation. Parthenogenetic activation with heavy water (50% D2O) or the microtubule-stabilizing drug taxol (10 microM) induces numerous centrosomal foci in the unfertilized sea urchin egg. Within 15 min after incubation in D2O, numerous fine centrosomal foci are detected, and they organize a connected network of numerous asters which fill the entire egg. Taxol induces over 100 centrosomal foci by 15 min after treatment, which organize a corresponding number of asters. The centrosomal material in either D2O- or taxol-treated eggs aggregates with time to form fewer but denser foci, resulting in fewer and larger asters. Fertilization of eggs pretreated with either D2O or taxol shows that the paternal centrosome is dominant over the maternal centrosome. The centrosomal material gradually becomes associated with the enlarged sperm aster. These experiments demonstrate that maternal centrosomal material is present in the unfertilized egg, likely as dispersed undetectable material, which can be activated without paternal contributions. At fertilization, paternal centrosomes become dominant over the maternal centrosomal material.
2016-01-01
Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased ‘search-and-capture’ mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics. In a second step, this optimized gradient is used to determine the location of immobilized dynein motors and MT polymerization parameters, since these are hypothesized to generate the gradient of forces needed to move MTOCs. We compare these scenarios to self-organized mechanisms by which asters have been hypothesized to find the cell-center- MT pushing at the cell-boundary and clustering motor complexes. By minimizing the error between simulation outputs and experiments, we find a model of “pulling” by a gradient of dynein motors alone can drive the centripetal motility. Interestingly, models of passive MT based “pushing” at the cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by themselves do not result in the observed motility. The model predicts the sensitivity of the results to motor density and stall force, but not MTs per aster. A hybrid model combining a chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering motors and pushing at the cell cortex, is required to comprehensively explain the available data. The model makes experimentally testable predictions of a spatial bias and self-organized mechanisms by which MT asters can find the center of a large cell. PMID:27706163
Comizzoli, Pierre; Wildt, David E.; Pukazhenthi, Budhan S.
2007-01-01
In the domestic cat, morula-blastocyst formation in vitro is compromised after intracytoplasmic sperm injection (ICSI) with testicular compared to ejaculated spermatozoa. The aim of this study was to determine the cellular basis of the lower developmental potential of testicular spermatozoa. Specifically, we examined the influence of sperm DNA fragmentation (evaluated by TUNEL assay) and centrosomal function (assessed by sperm aster formation after ICSI) on first-cleavage timing, developmental rate, and morula-blastocyst formation. Because the incidences of DNA fragmentation were not different between testicular and ejaculated sperm suspensions, DNA integrity was not the origin of the reduced developmental potential of testicular spermatozoa. After ICSI, proportions of fertilized and cleaved oocytes were similar and not influenced by sperm source. However, observations made at 5 h post-activation clearly demonstrated that 1) zygotes generally contained a large sperm aster after ICSI with ejaculated spermatozoa, a phenomenon never observed with testicular spermatozoa, and 2) proportions of zygotes with short or absent sperm asters were higher after ICSI with testicular spermatozoa than using ejaculated spermatozoa. The poor pattern of aster formation arose from the testicular sperm centrosome, which contributed to a delayed first cleavage, a slower developmental rate, and a reduced formation of morulae and blastocysts compared to ejaculated spermatozoa. When a testicular sperm centrosome was replaced by a centrosome from an ejaculated spermatozoon, kinetics of first cell cycle as well as embryo development quality significantly improved and were comparable to data from ejaculated spermatozoa. Results demonstrate for the first time in mammals that maturity of the cat sperm centrosome (likely via epididymal transit) contributes to an enhanced ability of the spermatozoon to produce embryos that develop normally to the morula and blastocyst stages. PMID:16687647
NASA Astrophysics Data System (ADS)
Guha, Arindam; Singh, Vivek Kr.; Parveen, Reshma; Kumar, K. Vinod; Jeyaseelan, A. T.; Dhanamjaya Rao, E. N.
2013-04-01
Bauxite deposits of Jharkhand in India are resulted from the lateritization process and therefore are often associated with the laterites. In the present study, ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) image is processed to delineate bauxite rich pockets within the laterites. In this regard, spectral signatures of lateritic bauxite samples are analyzed in the laboratory with reference to the spectral features of gibbsite (main mineral constituent of bauxite) and goethite (main mineral constituent of laterite) in VNIR-SWIR (visible-near infrared and short wave infrared) electromagnetic domain. The analysis of spectral signatures of lateritic bauxite samples helps in understanding the differences in the spectral features of bauxites and laterites. Based on these differences; ASTER data based relative band depth and simple ratio images are derived for spatial mapping of the bauxites developed within the lateritic province. In order to integrate the complementary information of different index image, an index based principal component (IPC) image is derived to incorporate the correlative information of these indices to delineate bauxite rich pockets. The occurrences of bauxite rich pockets derived from density sliced IPC image are further delimited by the topographic controls as it has been observed that the major bauxite occurrences of the area are controlled by slope and altitude. In addition to above, IPC image is draped over the digital elevation model (DEM) to illustrate how bauxite rich pockets are distributed with reference to the topographic variability of the terrain. Bauxite rich pockets delineated in the IPC image are also validated based on the known mine occurrences and existing geological map of the bauxite. It is also conceptually validated based on the spectral similarity of the bauxite pixels delineated in the IPC image with the ASTER convolved laboratory spectra of bauxite samples.
Yolla Bolly Complex Wildland Fire
NASA Technical Reports Server (NTRS)
2008-01-01
The Yolla Bolly Complex Wildland Fire was started on June 21 by a lightning strike. As of July 11, it had burned 8,000 acres and was 65% contained. This is one of the numerous lightning-triggered blazes burning in northern California this summer. This false-color image was made from visible and infrared data collected by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite on July 6. The image centers on the largest of the fires. The burned area is charcoal-colored, while surrounding forest and other vegetation is red. Smoke is light blue-gray. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 22.5 by 33.2 kilometers (14 by 20.6 miles) Location: 40.1 degrees North latitude, 122.9 degrees West longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49 feet) Dates Acquired: July 6, 2008Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran
NASA Astrophysics Data System (ADS)
Azizi, H.; Tarverdi, M. A.; Akbarpour, A.
2010-07-01
The use of satellite images for mineral exploration has been very successful in pointing out the presence of minerals such as smectite and kaolinite which are important in the identification of hydrothermal alterations. Shortwave infrared (SWIR) bands from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with the wavelength of ASTER SWIR bands between 1.65 and 2.43 μm has a good potential for mapping a hydrothermal alteration minerals such as alunite, pyrophyllite, kaolinite, illite-muscovite-sericite, and carbonate. In this range, hydroxide minerals which have been produced by hydrothermal alteration exhibit good absorption compared to shorter or longer wavelengths. In this research which aims to remove atmospheric and topographic effects from ASTER SWIR data, the authors used the log-residual method (LRM) with the minimum noise fraction (MNF) transformation to create a pixel purity index (PPI) which was used to extract the most spectrally pure pixels from multispectral images. Spectral analyses of the clay mineralogy of the study area (east Zanjan, in northern Iran) were obtained by matching the unknown spectra of the purest pixels to the U.S. Geological Survey (USGS) mineral library. Three methods, spectral feature fitting (SFF), spectral angle mapping (SAM), and binary encoding (BE) were used to generate a score between 0 and 1, where a value of 1 indicates a perfect match showing the exact mineral type. In this way, it was possible to identify certain mineral classes, including chlorite, carbonate, calcite-dolomite-magnesite, kaolinite-smectite, alunite, and illite. In this research, two main propylitic and phyllic-argillic zones could be separated using their compositions of these minerals. These two alteration zones are important for porphyry copper deposits and gold mineralization in this part of Iran.
Perspective view over the Grand Canyon, Arizona
NASA Technical Reports Server (NTRS)
2001-01-01
This simulated true color perspective view over the Grand Canyon was created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired on May 12, 2000. The Grand Canyon Village is in the lower foreground; the Bright Angel Trail crosses the Tonto Platform, before dropping down to the Colorado Village and then to the Phantom Ranch (green area across the river). Bright Angel Canyon and the North Rim dominate the view. At the top center of the image the dark blue area with light blue haze is an active forest fire. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 5 km in foreground to 40 km Location: 36.3 degrees north latitude, 112 degrees west longitude Orientation: North-northeast at top Original Data Resolution: ASTER 15 meters Dates Acquired: May 12, 2000Khetan, Neha; Athale, Chaitanya A
2016-10-01
Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased 'search-and-capture' mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics. In a second step, this optimized gradient is used to determine the location of immobilized dynein motors and MT polymerization parameters, since these are hypothesized to generate the gradient of forces needed to move MTOCs. We compare these scenarios to self-organized mechanisms by which asters have been hypothesized to find the cell-center- MT pushing at the cell-boundary and clustering motor complexes. By minimizing the error between simulation outputs and experiments, we find a model of "pulling" by a gradient of dynein motors alone can drive the centripetal motility. Interestingly, models of passive MT based "pushing" at the cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by themselves do not result in the observed motility. The model predicts the sensitivity of the results to motor density and stall force, but not MTs per aster. A hybrid model combining a chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering motors and pushing at the cell cortex, is required to comprehensively explain the available data. The model makes experimentally testable predictions of a spatial bias and self-organized mechanisms by which MT asters can find the center of a large cell.
The Making of NASA's Global Selfie: 100+ Countries, Thousands of Photos
2014-05-22
The 3.2 gigapixel Global Selfie mosaic, hosted by GigaPan, was made with 36,422 individual images that were posted to social media sites on or around Earth Day, April 22, 2014. Zoom in and find yours here: 1.usa.gov/SnR7ki Credit: NASA The 3.2 gigapixel Global Selfie mosaic, hosted by GigaPan, was made with 36,422 individual images that were posted to social media sites on or around Earth Day, April 22, 2014. Zoom in and find yours here: 1.usa.gov/SnR7ki
Variable focus photographic lens without mechanical movements
NASA Astrophysics Data System (ADS)
Chen, Jiabi; Peng, Runling; Zhuang, Songlin
2007-09-01
A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. And detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.
Mapping for the masses: using free remote sensing data for disaster management
NASA Astrophysics Data System (ADS)
Teeuw, R.; McWilliam, N.; Morris, N.; Saunders, C.
2009-04-01
We examine the uses of free satellite imagery and Digital Elevation Models (DEMs) for disaster management, targeting three data sources: the United Nations Charter on Space and Disasters, Google Earth and internet-based satellite data archives, such as the Global Land Cover Facility (GLCF). The research has assessed SRTM and ASTER DEM data, Landsat TM/ETM+ and ASTER imagery, as well as utilising datasets and basic GIS operations available via Google Earth. As an aid to Disaster Risk Reduction, four sets of maps can be produced from satellite data: (i) Multiple Geohazards: areas prone to slope instability, coastal inundation and fluvial flooding; (ii) Vulnerability: population density, habitation types, land cover types and infrastructure; (iii) Disaster Risk: produced by combining severity scores from (i) and (ii); (iv) Reconstruction: zones of rock/sediment with construction uses; areas of woodland (for fuel/construction) water sources; transport routes; zones suitable for re-settlement. This set of Disaster Risk Reduction maps are ideal for regional (1:50,000 to 1:250,000 scale) planning for in low-income countries: more detailed assessments require relatively expensive high resolution satellite imagery or aerial photography, although Google Earth has a good track record for posting high-res imagery of disaster zones (e.g. the 2008 Burma storm surge). The Disaster Risk maps highlight areas of maximum risk to a region's emergency planners and decision makers, enabling various types of public education and other disaster mitigation measures. The Reconstruction map also helps to save lives, by facilitating disaster recovery. Many problems have been identified. Access to the UN Charter imagery is fine after a disaster, but very difficult if assessing pre-disaster indicators: the data supplied also tends to be pre-processed, when some relief agencies would prefer to have raw data. The limited and expensive internet access in many developing countries limits access to archives of free satellite data, such as the GLCF. Finally, data integration, spatial/temporal analysis and map production are all hindered by the high price of most GIS software, making the development of suitable open-source software a priority.
Mars, John L.; Zientek, M.L.; Hammarstrom, J.M.; Johnson, K.M.; Pierce, F.W.
2014-01-01
The ASTER alteration map and corresponding geologic maps were used to select circular to elliptical patterns of argillic- and phyllic-altered volcanic and intrusive rocks as potential porphyry copper sites. One hundred and seventy eight potential porphyry copper sites were mapped along the UDVB, and 23 sites were mapped along the CVB. The potential sites were selected to assist in further exploration and assessments of undiscovered porphyry copper deposits.
ASTER First Views of San Francisco River, Brazil - Visible/near Infrared VNIR Image monochrome
2000-03-11
This image of the San Francisco River channel, and its surrounding flood zone, in Brazil was acquired by band 3N of ASTER's Visible/Near Infrared sensor. The surrounding area along the river channel in light gray to white could be covered by dense tropical rain forests. The water surface of the San Francisco River shows rather gray color as compared to small lakes and tributaries, which could indicate that the river water is contaminated by suspended material. The size of image: 20 km x 20 km approx., ground resolution 15 m x 15 m approximately. http://photojournal.jpl.nasa.gov/catalog/PIA02451
Re-modelled CT unit quickly up to speed.
2011-06-01
Medical turnkey pre-installation specialist Canute International Medical Services (CIMS) recently supported provider of managed equipment services Asteral in a project to re-model the Rowan Bentall wing of Surrey's Kingston Hospital. The new CT scanning facility was developed by Asteral via an MES agreement, elements of which included two new CT scanners, major refurbishment of the existing building, and ongoing maintenance and finance. As HEJ editor Jonathan Baillie reports, despite a tight two-month schedule, the project team's expertise, and meticulous co-ordination and planning, enabled the delivery of a significantly enhanced facility on time and on budget with minimal disruption and without a single day's scanning being lost.
Sulfur Dioxide Plume During the Continuing Eruption of Mt. Etna, Italy
2001-08-03
The current eruption of Mt. Etna started on July 17, and has continued to the present. This ASTER image was acquired on Sunday, July 29 and shows the sulfur dioxide plume (in purple) originating form the summit, drifting over the city of Catania, and continuing over the Ionian Sea. ASTER's unique combination of multiple thermal infrared channels and high spatial resolution allows the determination of the thickness and position of the SO2 plume. The image covers an area of 24 x 30 km. The image is centered at 37.7 degrees north latitude, 15 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02678
Assessment of Reference Height Models on Quality of Tandem-X dem
NASA Astrophysics Data System (ADS)
Mirzaee, S.; Motagh, M.; Arefi, H.
2015-12-01
The aim of this study is to investigate the effect of various Global Digital Elevation Models (GDEMs) in producing high-resolution topography model using TanDEM-X (TDX) Coregistered Single Look Slant Range Complex (CoSSC) images. We selected an image acquired on Jun 12th, 2012 over Doroud region in Lorestan, west of Iran and used 4 external digital elevation models in our processing including DLR/ASI X-SAR DEM (SRTM-X, 30m resolution), ASTER GDEM Version 2 (ASTER-GDEMV2, 30m resolution), NASA SRTM Version 4 (SRTM-V4, 90m resolution), and a local photogrammetry-based DEM prepared by National Cartographic Center (NCC DEM, 10m resolution) of Iran. InSAR procedure for DEM generation was repeated four times with each of the four external height references. The quality of each external DEM was initially assessed using ICESat filtered points. Then, the quality of, each TDX-based DEM was assessed using the more precise external DEM selected in the previous step. Results showed that both local (NCC) DEM and SRTM X-band performed the best (RMSE< 9m) for TDX-DEM generation. In contrast, ASTER GDEM v2 and SRTM C-band v4 showed poorer quality.