A Wide-Angle Camera for the Mobile Asteroid Surface Scout (MASCOT) on Hayabusa-2
NASA Astrophysics Data System (ADS)
Schmitz, N.; Koncz, A.; Jaumann, R.; Hoffmann, H.; Jobs, D.; Kachlicki, J.; Michaelis, H.; Mottola, S.; Pforte, B.; Schroeder, S.; Terzer, R.; Trauthan, F.; Tschentscher, M.; Weisse, S.; Ho, T.-M.; Biele, J.; Ulamec, S.; Broll, B.; Kruselburger, A.; Perez-Prieto, L.
2014-04-01
JAXA's Hayabusa-2 mission, an asteroid sample return mission, is scheduled for launch in December 2014, for a rendezvous with the C-type asteroid 1999 JU3 in 2018. MASCOT, the Mobile Asteroid Surface Scout [1], is a small lander, designed to deliver ground truth for the orbiter remote measurements, support the selection of sampling sites, and provide context for the returned samples.MASCOT's main objective is to investigate the landing site's geomorphology, the internal structure, texture and composition of the regolith (dust, soil and rocks), and the thermal, mechanical, and magnetic properties of the surface. MASCOT comprises a payload of four scientific instruments: camera, radiometer, magnetometer and hyper-spectral microscope. The camera (MASCOT CAM) was designed and built by DLR's Institute of Planetary Research, together with Airbus DS Germany.
Momentum Management for the NASA Near Earth Asteroid Scout Solar Sail Mission
NASA Technical Reports Server (NTRS)
Heaton, Andrew; Diedrich, Benjamin L.; Orphee, Juan; Stiltner, Brandon; Becker, Christopher
2017-01-01
The Momentum Management (MM) system is described for the NASA Near Earth Asteroid Scout (NEA Scout) cubesat solar sail mission. Unlike many solar sail mission proposals that used solar torque as the primary or only attitude control system, NEA Scout uses small reaction wheels (RW) and a reaction control system (RCS) with cold gas thrusters, as described in the abstract "Solar Sail Attitude Control System for Near Earth Asteroid Scout Cubesat Mission." The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The MM system keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS.
CubeSat Mission- Near-Earth Asteroid Scout (animation only, no audio)
2016-09-21
The Near-Earth Asteroid Scout, or NEA Scout, is a robotic reconnaissance mission that will deploy a 6U CubeSat to fly by and return data from an asteroid representative of possible human destinations. Using a solar sail for its propulsion system, it will perform reconnaissance of an asteroid, take pictures and observe its position in space. Launching on NASA's Space Launch System rocket, the CubeSat deployment animation starts at the 1:25 timecode with the solar sail deployment animation beginning at the 2:54 timecode. The NEA Scout team is currently evaluating a range of targets, and is continually updating the candidate pool based on new discoveries and expected performance. NEA Scout is one of three payloads selected by NASA’s Human Exploration and Operations Mission Directorate. These small satellites were chosen to address Strategic Knowledge Gaps (SKGs) and help inform research strategies and prioritize technology development for future human and robotic exploration. It is being developed at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Learn more by visiting http://www.nasa.gov/content/nea-scout
Near Earth Asteroid (NEA) Scout
NASA Technical Reports Server (NTRS)
Johnson, Les; Castillo-Rogez, Julie; Dervan, Jared; McNutt, Leslie
2017-01-01
NASA is developing solar sail propulsion for a near-term Near Earth Asteroid (NEA) reconnaissance mission that will lay the groundwork for the future use of solar sails. The NEA Scout mission will use the sail as primary propulsion allowing it to survey and image one NEA's of interest for future human exploration. NEA Scout will launch on the first mission of the Space Launch System (SLS) in 2018. After its first encounter with the Moon, NEA Scout will enter the sail characterization phase by the 86 square meter sail deployment. A mechanical Active Mass Translation (AMT) system, combined with the remaining ACS propellant, will be used for sail momentum management. The spacecraft will perform a series of lunar flybys to achieve optimum departure trajectory before beginning its two year-long cruise. About one month before the asteroid flyby, NEA Scout will start its approach phase using optical navigation on top of radio tracking. The solar sail will provide NEA Scout continuous low thrust to enable a relatively slow flyby of the target asteroid under lighting conditions favorable to geological imaging. Once complete, NASA will have demonstrated the capability to fly low-cost, high delta V CubeSats to perform interplanetary missions.
NASA Technical Reports Server (NTRS)
Diedrich, Benjamin; Heaton, Andrew
2017-01-01
NASA's Near Earth Asteroid Scout (NEA Scout) solar sail mission will fly by and image an asteroid. The team has experience characterizing the sail forces and torques used in guidance, navigation, and control to meet the scientific objectives. Interstellar and precursor sail missions similarly require understanding of beam riding dynamics to follow sufficiently accurate trajectories to perform their missions. Objective: Identify the driving factors required to implement a guidance and control system that meets mission requirements for a solar sail mission; Compare experience of an asteroid flyby mission to interstellar missions to flyby and observe other stars or precursor missions to study the extrasolar medium.
Cold Gas Reaction Control System for the Near Earth Asteroid Scout CubeSat
NASA Technical Reports Server (NTRS)
Stiltner, Brandon C.; Diedrich, Ben; Orphee, Juan; Heaton, Andrew; Becker, Chris; Bertaska, Ivan
2017-01-01
This paper describes the Attitude Control System (ACS) for the Near Earth Asteroid (NEA) Scout cubesat with particular focus on the Reaction Control System (RCS). NEA Scout is a 6U cubesat with an 86 square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2018. The spacecraft will rendezvous with an asteroid after a two year journey, and will conduct science imagery. The ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. The RCS performs a number of critical functions during NEA Scout's mission. These requirements are described and the performance for achieving these requirements is shown. Moreover, NEA Scout employs a solar sail for long-duration propulsion. Solar sails are large, flexible structures that typically have low bending-mode frequencies. This paper demonstrates a robust performance while avoiding excitation of the sail's structural modes.
NASA Astrophysics Data System (ADS)
Herčík, David; Auster, Hans-Ulrich; Blum, Jürgen; Fornaçon, Karl-Heinz; Fujimoto, Masaki; Gebauer, Kathrin; Güttler, Carsten; Hillenmaier, Olaf; Hördt, Andreas; Liebert, Evelyn; Matsuoka, Ayako; Nomura, Reiko; Richter, Ingo; Stoll, Bernd; Weiss, Benjamin P.; Glassmeier, Karl-Heinz
2017-07-01
The Mobile Asteroid Scout (MASCOT) is a small lander on board the Hayabusa2 mission of the Japan Aerospace Exploration Agency to the asteroid 162173 Ryugu. Among the instruments on MASCOT is a fluxgate magnetometer, the MASCOT Magnetometer (MasMag). The magnetometer is a lightweight (˜280 g) and low power (˜0.5 W) triaxial fluxgate magnetometer. Magnetic field measurements during the landing period and during the surface operational phase shall provide information about any intrinsic magnetic field of the asteroid and its remanent magnetization. This could provide important constraints on planet formation and the thermal and aqueous evolution of primitive asteroids.
NASA Astrophysics Data System (ADS)
Jaumann, Ralf; Bibring, Jean-Pierre; Glassmeier, Karl-Heinz; Grott, Matthias; Ho, Tra-Mi; Ulamec, Stepahn; Schmitz, Nicole; Auster, Ulrich; Biele, Jens; Kuninaka, Hitoshi; Okada, Tatsuaki; Yoshikawa, Makoto; Watanabe, Sei-ichhiro; Fujimoto, Masaki; Spohn, Tilman; Koncz, Alexander; Michaelis, Harald
2014-05-01
MASCOT, a Mobile Asteroid Surface Scout, will support JAXA's Hayabusa 2 mission to investigate the C-type asteroid 1999 JU3 (1). The German Aer-ospace Center (DLR) develops MASCOT with contributions from CNES (France) (2,3). Main objective is to in-situ map the asteroid's geomorpholo-gy, the intimate structure, texture and composition of the regolith (dust, soil and rocks), and the thermal, mechanical, and magnetic properties of the sur-face in order to provide ground truth for the orbiter remote measurements, support the selection of sampling sites, and provide context information for the returned samples. MASCOT comprises a payload of four scientific in-struments: camera, radiometer, magnetometer and hyperspectral microscope. C- and D-type asteroids hold clues to the origin of the solar system, the for-mation of planets, the origins of water and life on Earth, the protection of Earth from impacts, and resources for future human exploration. C- and D-types are dark and difficult to study from Earth, and have only been glimpsed by spacecraft. While results from recent missions (e.g., Hayabusa, NEAR (4, 5, 6)) have dramatically increased our understanding of asteroids, important questions remain. For example, characterizing the properties of asteroid regolith in-situ would deliver important ground truth for further understanding telescopic and orbital observations and samples of such aster-oids. MASCOT will descend and land on the asteroid and will change its position two times by hopping. This enables measurements during descent, at the landing and hopping positions #1-3, and during hopping. References: (1) Vilas, F., Astronomical J. 1101-1105, 2008; (2) Ulamec, S., et al., Acta Astronautica, Vol. 93, pp. 460-466; (3) Jaumann et al., 45th LPSC, Houston; (4) Special Issue, Science, Vol. 312 no. 5778, 2006; (5) Special Issue Science, Vol. 333 no. 6046, 2011. (6) Bell, L., Mitton, J-., Cambridge Univ. Press, 2002.
NASA Astrophysics Data System (ADS)
Jaumann, Ralf; Bibring, Jean-Pierre; Glassmeier, Karl-Heinz; Grott, Matthias; Ho, Tra-Mie; Ulamec, Stephan; Schmitz, Nicole; Auster, Hans-Ulrich; Biele, Jens; Kuninaka, Hitoshi; Okada, Tatsuaki; Yoshikawa, Makoto; Watanabe, Sei-ichhiro; Fujimoto, Masaki; Spohn, Tilman
2013-04-01
Mascot, a Mobile Asteroid Surface Scout, will support JAXA's Hayabusa 2 mission to investigate the C-type asteroid 1999 JU3 (1). The German Aero-space Center (DLR) develops Mascot with contributions from CNES (France) (2). Main objective is to in-situ map the asteroid's geomorphology, the intimate structure, texture and composition of the regolith (dust, soil and rocks), and the thermal, mechanical, and magnetic properties of the surface in order to provide ground truth for the orbiter remote measurements, sup-port the selection of sampling sites, and provide context information for the returned samples. Mascot comprises a payload of four scientific instruments: camera, radiometer, magnetometer and hyperspectral microscope. C- and D-type asteroids hold clues to the origin of the solar system, the formation of planets, the origins of water and life on Earth, the protection of Earth from impacts, and resources for future human exploration. C- and D-types are dark and difficult to study from Earth, and have only been glimpsed by spacecraft. While results from recent missions (e.g., Hayabusa, NEAR (3, 4, 5)) have dramatically increased our understanding of asteroids, important questions remain. For example, characterizing the properties of asteroid reg-olith in-situ would deliver important ground truth for further understanding telescopic and orbital observations and samples of such asteroids. Mascot will descend and land on the asteroid and will change its position two times by hopping. This enables measurements during descent, at the landing and hopping positions #1-3, and during hopping. References: (1) Vilas, F., Astronomical J. 1101-1105, 2008; (2) Ulamec, S., et al., COSPAR, General Assembly, Mysore/India, 2012; (3) Special Issue, Science, Vol. 312 no. 5778, 2006; (4) Special Issue Science, Vol. 333 no. 6046, 2011; (5) Bell, L., Mitton, J-., Cambridge Univ. Press, 2002.
Cold Gas Reaction Control System for the Near Earth Asteroid Scout CubeSat
NASA Technical Reports Server (NTRS)
Stiltner, Brandon C.; Diedrich, Ben; Becker, Chris; Bertaska, Ivan; Heaton, Andrew; Orphee, Juan
2017-01-01
This paper describes the Attitude Control System (ACS) for the Near Earth Asteroid (NEA) Scout cubesat with particular focus on the Reaction Control System (RCS). NEA Scout is a 6-Unit cubesat with an 86-square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2019. The spacecraft will rendezvous with an asteroid after a two year journey, and will conduct science imagery. The ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. The RCS performs a number of critical functions during NEA Scout’s mission. These requirements are described and the performance for achieving these requirements is shown. Moreover, NEA Scout employs a solar sail for long-duration propulsion. Solar sails are large, flexible structures that typically have low bending-mode frequencies. This paper demonstrates a robust performance while avoiding excitation of the sail’s structural modes.
Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA
NASA Technical Reports Server (NTRS)
Johnson, Les; Lockett, Tiffany
2017-01-01
NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high Delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m(exp. 2) solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four approximately 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general.
NASA Technical Reports Server (NTRS)
Diedrich, Benjamin; Heaton, Andrew
2017-01-01
NASA is developing the Near Earth Asteroid (NEA) Scout mission that will use a solar sail to travel to an asteroid where it will perform a slow flyby to acquire science imagery. A guidance and control system was developed to meet the science and trajectory requirements. The NEA Scout design process can be applied to an interstellar or precursor mission that uses a beam propelled sail. The scientific objectives are met by accurately targeting the destination trajectory position and velocity. The destination is targeted by understanding the force on the sail from the beam (or sunlight in the case of NEA Scout) over the duration of the thrust maneuver. The propulsive maneuver is maintained by accurate understanding of the torque on the sail, which is a function of sail shape, optical properties, and mass properties, all of which apply to NEA Scout and beam propelled sails. NEA Scout uses active control of the sail attitude while trimming the solar torque, which could be used on a beamed propulsion sail if necessary. The biggest difference is that NEA Scout can correct for uncertainties in sail thrust modeling, spacecraft orbit, and target orbit throughout the flight to the target, while beamed propulsion needs accurate operation for the short duration of the beamed propulsion maneuver, making accurate understanding of the sail thrust and orbits much more critical.
Near Earth Asteroid Scout Thrust and Torque Model
NASA Technical Reports Server (NTRS)
Heaton, Andrew; Ahmad, Naeem; Miller, Kyle
2017-01-01
The Near Earth Asteroid (NEA) Scout is a solar sail mission whose objective is to scout at least one Near Earth Asteroid in preparation for manned missions to asteroids. NEA Scout will use a solar sail as the primary means of propulsion. Thus it is important for mission planning to accurately characterize the thrust of the sail. Additionally, the solar sail creates a relatively large solar disturbance torque that must be mitigated. For early mission design studies a flat plate model of the solar sail with a fixed center of pressure was adequate, but as mission concepts and the sail design matured, greater fidelity was required. Here we discuss the progress to a three-dimensional sail model that includes the effects of tension and thermal deformation that has been derived from a large structural Finite Element Model (FEM) developed by the Langley Research Center. We have found that the deformed sail membrane affects torque relatively much more than thrust. We have also found that other than uncertainty over the precise shape, the effect of small (approximately millimeter scale) wrinkles on the diffusivity of the sail is the leading remaining source of uncertainty. We demonstrate that millimeter-scale wrinkles can be modeled analytically as a change in the fraction of specular reflection. Finally we discuss the implications of these results for the NEA Scout mission.
NASA Astrophysics Data System (ADS)
Jaumann, Ralf; Bibring, Jean-Piere; Glassmeier, Karl-Heiz; Grott, Mathias; Ho, Tra-Mi; Ulamec, Stefan; Schmitz, Nicole; Auster, Ulrich; Biele, Jens; Kuninaka, Hitoshi; Okada, Tatsuaki; Yoshikawa, Makoto; Watanabe, Sei-ichiro; Fujimoto, Masaki; Spohn, Tilman; Koncz, Aalexander; Hercik, Davis; Michaelis, Harald
2015-04-01
MASCOT, a Mobile Asteroid Surface Scout, will support JAXA's Hayabusa 2 mission to investigate the C-type asteroid 1999 JU3 (1). The German Aer-ospace Center (DLR) develops MASCOT with contributions from CNES (France) (2,3,4). Main objective is to in-situ map the asteroid's geomorphol-ogy, the intimate mixture, texture and composition of the regolith (dust, soil and rocks), and the thermal, mechanical, and magnetic properties of the sur-face in order to provide ground truth for the orbiter remote measurements, support the selection of sampling sites, and provide context information for the returned samples. MASCOT comprises a payload of four scientific in-struments: camera, radiometer, magnetometer and hyperspectral microscope. C- and D-type asteroids hold clues to the origin of the solar system, the for-mation of planets, the origins of water and life on Earth, the protection of Earth from impacts, and resources for future human exploration. C- and D-types are dark and difficult to study from Earth, and have only been glimpsed by spacecraft. While results from recent missions (e.g., Hayabusa, NEAR (5, 6, 7)) have dramatically increased our understanding of asteroids, important questions remain open. For example, characterizing the properties of asteroid regolith in-situ would deliver important ground truth for further understanding telescopic and orbital observations and samples of such asteroids. MASCOT will descend and land on the asteroid and will change its own position up to two times by hopping. This enables measurements during descent, at the landing and hopping positions #1-3, and during hopping. Hayabusa 2 together with MASCOT launched December 3rd 2014, will arrive at 1999JU3 in 2018 and return samples back to Earth in 2020. References: (1) Vilas, F., Astronomical J. 1101-1105, 2008; (2) Ulamec, S., et al., Acta Astronautica, Vol. 93, pp. 460-466; (3) Jaumann et al., 45th LPSC, #1812, Houston; (4) Ho et al., 45th LPSC, #2535, Houston; (5) Spe-cial Issue, Science, Vol. 312 no. 5778, 2006; (6) Special Issue Science, Vol. 333 no. 6046, 2011. (7) Bell, L., Mitton, J-., Cambridge Univ. Press, 2002.
Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA
NASA Technical Reports Server (NTRS)
Johnson, Les; Castillo-Rogez, Julie; Dervan, Jared
2017-01-01
NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellant-less thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA’s Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA’s of interest for possible future human exploration. The NEA Scout spacecraft is housed in a 6U CubeSat-form factor and utilizes an 86 square meter solar sail for a total mass less than 14 kilograms. The mission is in partnership with the Jet Propulsion Laboratory with support from Langley Research Center and science participants from various institutions. NEA Scout will be launched on the maiden flight of the Space Launch System in 2019. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and flown on The Planetary Society’s Lightsail-A. Four approximately-7-meter stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor driven and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general.
Temperature-Driven Shape Changes of the Near Earth Asteroid Scout Solar Sail
NASA Technical Reports Server (NTRS)
Stohlman, Olive R.; Loper, Erik R.; Lockett, Tiffany E.
2017-01-01
Near Earth Asteroid Scout (NEA Scout) is a NASA deep space Cubesat, scheduled to launch on the Exploration Mission 1 flight of the Space Launch System. NEA Scout will use a deployable solar sail as its primary propulsion system. The sail is a square membrane supported by rigid metallic tapespring booms, and analysis predicts that these booms will experience substantial thermal warping if they are exposed to direct sunlight in the space environment. NASA has conducted sunspot chamber experiments to confirm the thermal distortion of this class of booms, demonstrating tip displacement of between 20 and 50 centimeters in a 4-meter boom. The distortion behavior of the boom is complex and demonstrates an application for advanced thermal-structural analysis. The needs of the NEA Scout project were supported by changing the solar sail design to keep the booms shaded during use of the solar sail, and an additional experiment in the sunspot chamber is presented in support of this solution.
NASA's Near Earth Asteroid Scout Mission
NASA Technical Reports Server (NTRS)
Johnson, Les; McNutt, Leslie; Castillo-Rogez, Julie
2017-01-01
NASA is developing solar sail propulsion for a near-term Near Earth Asteroid (NEA) reconnaissance mission and laying the groundwork for their future use in deep space science and exploration missions. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m2 solar sail and will weigh less than 14 kilograms. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 3 microns thick. NEA Scout will launch on the Space Launch System (SLS) first mission in 2018 and deploy from the SLS after the Orion spacecraft is separated from the SLS upper stage. The NEA Scout spacecraft will stabilize its orientation after ejection using an onboard cold-gas thruster system. The same system provides the vehicle Delta-V sufficient for a lunar flyby. After its first encounter with the moon, the 86 m2 sail will deploy, and the sail characterization phase will begin. A mechanical Active Mass Translation (AMT) system, combined with the remaining ACS propellant, will be used for sail momentum management. Once the system is checked out, the spacecraft will perform a series of lunar flybys until it achieves optimum departure trajectory to the target asteroid. The spacecraft will then begin its two year-long cruise. About one month before the asteroid flyby, NEA Scout will pause to search for the target and start its approach phase using a combination of radio tracking and optical navigation. The solar sail will provide continuous low thrust to enable a relatively slow flyby of the target asteroid under lighting conditions favorable to geological imaging. Once complete, NASA will have demonstrated the capability to fly low-cost, high Delta-V cubesats to perform interplanetary missions.
NASA Technical Reports Server (NTRS)
Orphee, Juan; Heaton, Andrew; Diedrich, Ben; Stiltner, Brandon C.
2018-01-01
A novel mechanism, the Active Mass Translator (AMT), has been developed for the NASA Near Earth Asteroid (NEA) Scout mission to autonomously manage the spacecraft momentum. The NEA Scout CubeSat will launch as a secondary payload onboard Exploration Mission 1 of the Space Launch System. To accomplish its mission, the CubeSat will be propelled by an 86 square-meter solar sail during its two-year journey to reach asteroid 1991VG. NEA Scout's primary attitude control system uses reaction wheels for holding attitude and performing slew maneuvers, while a cold gas reaction control system performs the initial detumble and early trajectory correction maneuvers. The AMT control system requirements, feedback architecture, and control performance will be presented. The AMT reduces the amount of reaction control propellant needed for momentum management and allows for smaller capacity reaction wheels suitable for the limited 6U spacecraft volume. The reduced spacecraft mass allows higher in-space solar sail acceleration, thus reducing time-of-flight. The reduced time-of-flight opens the range of possible missions, which is limited by the lifetime of typical non-radiation tolerant CubeSat avionics exposed to the deep-space environment.
Near Earth Asteroid Scout Solar Sail Thrust and Torque Model
NASA Technical Reports Server (NTRS)
Heaton, Andy; Ahmad, Naeem; Miller, Kyle
2017-01-01
The Near Earth Asteroid (NEA) Scout is a solar sail mission whose objective is to scout at least one Near Earth Asteroid to help prepare for human missions to Near Earth Asteroids. NEA Scout will launch as a secondary payload on the first SLS-Orion mission. NEA Scout will perform a small trim maneuver shortly after deploy from the spent SLS upper stage using a cold gas propulsion system, but from that point on will depend entirely on the solar sail for thrust. As such, it is important to accurately characterize the thrust of the sail in order to achieve mission success. Additionally, the solar sail creates a relatively large solar disturbance torque that must be mitigated. For early mission design studies a flat plate model of the solar sail with a fixed center of pressure was adequate, but as mission concepts and the sail design matured, greater fidelity was required. Here we discuss the progress to a three-dimensional sail model that includes the effects of tension and thermal deformation that has been derived from a large structural Finite Element Model (FEM) developed by the Langley Research Center. We have found that the deformed sail membrane affects torque relatively much more than thrust; a flat plate model could potentially model thrust well enough to close mission design studies, but a three-dimensional solar sail is essential to control system design. The three-dimensional solar sail model revealed that thermal deformations of unshielded booms would create unacceptably large solar disturbance torques. The original large FEM model was used in control and mission simulations, but was resulted in simulations with prohibitive run times. This led us to adapt the Generalized Sail Model (GSM) of Rios-Reyes. A design reference sail model has been baselined for NEA Scout and has been used to design the mission and control system for the sailcraft. Additionally, since NEA Scout uses reaction wheels for attitude pointing and control, the solar torque model is essentially to successfully design the NEA Scout momentum management control system. We have also updated the estimate of diffusivity used for the aluminized sail material based on optical testing of wrinkled sail material. The model presented here represents the current state of the art of NASA's ability to model solar sail thrust and torque.
Lessons for Interstellar Travel from the G&C Design of the NEA Scout Solar Sail Mission
NASA Technical Reports Server (NTRS)
Heaton, Andrew; Diedrich, Benjamin
2017-01-01
NASA is developing the Near Earth Asteroid (NEA) Scout mission that will use a solar sail to travel to an asteroid where it will perform a slow flyby to acquire science imagery. A guidance and control system was developed to meet the science and trajectory requirements. The NEA Scout design process can be applied to an interstellar or precursor mission that uses a beam-propelled sail. The scientific objectives are met by accurately targeting the destination trajectory position and velocity. The destination is targeted by understanding the force on the sail from the beam (or sunlight in the case of NEA Scout) over the duration of the thrust maneuver. The propulsive maneuver is maintained by accurate understanding of the torque on the sail, which is a function of sail shape, optical properties, and mass properties, all of which apply to NEA Scout and beam propelled sails. NEA Scout uses active control of the sail attitude while trimming the solar torque, which could be used on a beamed propulsion sail if necessary. The biggest difference is that NEA Scout can correct for uncertainties in sail thrust modeling, spacecraft orbit, and target orbit throughout the flight to the target, while beamed propulsion needs accurate operation for the short duration of the beamed propulsion maneuver, making accurate understanding of the sail thrust and orbits much more critical.
NASA Technical Reports Server (NTRS)
Walden, Amy; Clardy, Dennon; Johnson, Les
2015-01-01
Near-Earth asteroids (NEAs) are easily accessible objects in Earth's vicinity. As NASA continues to refine its plans to possibly explore NEAs with humans, initial reconnaissance with comparatively inexpensive robotic precursors is necessary. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit an NEA will significantly minimize crew and mission risk, as well as maximize exploration return potential. The NASA Marshall Space Flight Center (MSFC) and NASA Jet Propulsion Laboratory are jointly developing the Near-Earth Asteroid Scout (NEAS) utilizing a low-cost CubeSat platform in response to the current needs for affordable missions with exploration science value. The mission is enabled by the use of an 85-sq m solar sail being developed by MSFC (figs. 1 and 2).
Near-Earth Asteroid Solar Sail Test Deployment
2018-06-28
NASA's Near-Earth Asteroid Scout, a small satellite the size of a shoebox designed to study asteroids close to Earth, performed a deployment test June 28 of the solar sail that will launch on Exploration Mission-1. The test was performed in an indoor clean room at the NeXolve facility in Huntsville, Alabama.
Scout: orbit analysis and hazard assessment for NEOCP objects
NASA Astrophysics Data System (ADS)
Farnocchia, Davide; Chesley, Steven R.; Chamberlin, Alan B.
2016-10-01
It typically takes a few days for a newly discovered asteroid to be officially recognized as a real object. During this time, the tentative discovery is published on the Minor Planet Center's Near-Earth Object Confirmation Page (NEOCP) until additional observations confirm that the object is a real asteroid rather than an observational artifact or an artificial object. Also, NEOCP objects could have a limited observability window and yet be scientifically interesting, e.g., radar and lightcurve targets, mini-moons (temporary Earth captures), mission accessible targets, close approachers or even impactors. For instance, the only two asteroids discovered before an impact, 2008 TC3 and 2014 AA, both reached the Earth less than a day after discovery. For these reasons we developed Scout, an automated system that provides an orbital and hazard assessment for NEOCP objects within minutes after the observations are available. Scout's rapid analysis increases the chances of securing the trajectory of interesting NEOCP objects before the ephemeris uncertainty grows too large or the observing geometry becomes unfavorable. The generally short observation arcs, perhaps only a few hours or even less, lead severe degeneracies in the orbit estimation process. To overcome these degeneracies Scout relies on systematic ranging, a technique that derives possible orbits by scanning a grid in the poorly constrained space of topocentric range and range rate, while the plane-of-sky position and motion are directly tied to the recorded observations. This scan allows us to derive a distribution of the possible orbits and in turn identify the NEOCP objects of most interest to prioritize followup efforts. In particular, Scout ranks objects according to the likelihood of an impact, estimates the close approach distance, the Earth-relative minimum orbit intersection distance and v-infinity, and computes scores to identify objects more likely to be an NEO, a km-sized NEO, a Potentially Hazardous Asteroid, and those on a geocentric orbit. Moreover, Scout provides an ephemeris service that makes use of the statistical information to support observers in their followup efforts.
Near Earth Asteroid Solar Sail Engineering Development Unit Test Program
NASA Technical Reports Server (NTRS)
Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard
2017-01-01
The Near Earth Asteroid (NEA) Scout project is a 30x20x10cm (6U) cubesat reconnaissance mission to investigate a near Earth asteroid utilizing an 86m2 solar sail as the primary propulsion system. This will be the largest solar sail NASA will launch to date. NEA Scout is a secondary payload currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis furthered understanding of thermal, stress, and dynamics of the stowed system and matured an integrated sail membrane model for deployed flight dynamics. This paper will address design, fabrication, and lessons learned from the NEA Scout solar sail subsystem engineering development unit. From optical properties of the sail material to folding and spooling the single 86m2 sail, the team has developed a robust deployment system for the solar sail. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.
NASA Technical Reports Server (NTRS)
Bell, Evan A.
2015-01-01
During my time at NASA, I worked with the Granular Mechanics and Regolith Organization (GMRO), better known as Swamp Works. The goal of the lab is to find ways to utilize resources found after the astronaut or robot has landed on another planet or asteroid. This concept is known as in-situ resource utilization and it is critical to long term missions such as those to Mars. During my time here I worked on the Asteroid and Lava Tube Free Flyer project (ALTFF). A lava tube, such as the one shown in figure 1, is a long tear drop shaped cavern that is produced when molten lava tunnels through the surrounding rock creating large unground pathways. Before mining for resources on Mars or on asteroids, a sampling mission must be done to scout out useful resource deposits. ALTFF's goal is to provide a low cost, autonomous scout robot that can sample the surface and return to the mother ship or lander for further processing of the samples. The vehicle will be looking for water ice in the regolith that can be processed into either potable water, hydrogen and oxygen fuel, or a binder material for 3D printing. By using a low cost craft to sample, there is much less risk to the more expensive mother ship or lander. While my main task was the construction of a simulation environment to test control code in and the construction of the asteroid free flyer prototype, there were other tasks that I performed relating to the ALTFF project.
Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission
NASA Technical Reports Server (NTRS)
Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew
2017-01-01
An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.
NASA Technical Reports Server (NTRS)
McNutt, Leslie; Johnson, Les; Clardy, Dennon; Castillo-Rogez, Julie; Frick, Andreas; Jones, Laura
2014-01-01
Near-Earth Asteroids (NEAs) are an easily accessible object in Earth's vicinity. Detections of NEAs are expected to grow in the near future, offering increasing target opportunities. As NASA continues to refine its plans to possibly explore these small worlds with human explorers, initial reconnaissance with comparatively inexpensive robotic precursors is necessary. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit a NEA will significantly minimize crew and mission risk, as well as maximize exploration return potential. The Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL) are jointly examining a mission concept, tentatively called 'NEA Scout,' utilizing a low-cost CubeSats platform in response to the current needs for affordable missions with exploration science value. The NEA Scout mission concept would be a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1), the first planned flight of the SLS and the second un-crewed test flight of the Orion Multi-Purpose Crew Vehicle (MPCV).
Design and Development of NEA Scout Solar Sail Deployer Mechanism
NASA Technical Reports Server (NTRS)
Sobey, Alexander R.; Lockett, Tiffany Russell
2016-01-01
The 6U (approx.10 cm x 20 cm x 30 cm) cubesat Near Earth Asteroid (NEA) Scout1, projected for launch in September 2018 aboard the maiden voyage of the Space Launch System, will utilize a solar sail as its main method of propulsion throughout its approx.3-year mission to a Near Earth Asteroid. Due to the extreme volume constraints levied onto the mission, an acutely compact solar sail deployment mechanism has been designed to meet the volume and mass constraints, as well as provide enough propulsive solar sail area and quality in order to achieve mission success. The design of such a compact system required the development of approximately half a dozen prototypes in order to identify unforeseen problems, advance solutions, and build confidence in the final design product. This paper focuses on the obstacles of developing a solar sail deployment mechanism for such an application and the lessons learned from a thorough development process. The lessons presented will have significant applications beyond the NEA Scout mission, such as the development of other deployable boom mechanisms and uses for gossamer-thin films in space.
Design and Development of NEA Scout Solar Sail Deployer Mechanism
NASA Technical Reports Server (NTRS)
Sobey, Alexander R.; Lockett, Tiffany Russell
2016-01-01
The 6U (approximately 10cm x 20cm x 30cm) cubesat Near Earth Asteroid (NEA) Scout1, projected for launch in September 2018 aboard the maiden voyage of the Space Launch System (SLS), will utilize a solar sail as its main method of propulsion throughout its approximately 3 year mission to a Near Earth Asteroid (NEA). Due to the extreme volume constraints levied onto the mission, an acutely compact solar sail deployment mechanism has been designed to meet the volume and mass constraints, as well as provide enough propulsive solar sail area and quality in order to achieve mission success. The design of such a compact system required the development of approximately half a dozen prototypes in order to identify unforeseen problems, advance solutions, and build confidence in the final design product. This paper focuses on the obstacles of developing a solar sail deployment mechanism for such an application and the lessons learned from a thorough development process. The lessons presented will have significant applications beyond the NEA Scout mission, such as the development of other deployable boom mechanisms and uses for gossamer-thin films in space.
A Mobile Asteroid Surface Scout for the AIDA Mission
NASA Astrophysics Data System (ADS)
Ho, Tra Mi; Lange, Caroline; Grimm, Christian; Thimo Grundmann, Jan; Rößler, Johannes; Schröder, Silvio; Skoczylas, Thomas; Ziach, Christian; Biele, Jens; Cozzoni, Barbara; Krause, Christian; Küchemann, Oliver; Maibaum, Michael; Ulamec, Stephan; Lange, Michael; Mierheim, Olaf; Maier, Maximilian; Herique, Alain; Mascot Study Team
2016-04-01
The Asteroid Impact Deflection, AIDA, mission is composed of a kinetic impactor, DART and an observer, the Asteroid Impact Monitor, AIM, carrying among other payload a surface package, MASCOT2 (MSC2). Its proposed concept is based on the MASCOT lander onboard the HAYABUSA2 Mission (JAXA) to near-Earth asteroid (162173) Ryugu. MASCOT is a compact platform ('shoe box size') carrying a suite of 4 scientific instruments and has a landed mass of ~10kg. Equipped with a mobility mechanism, the MASCOT lander is able to upright and relocate on the targeted asteroid; thus providing in-situ data at more than one site. In the context of the AIDA Mission, the MASCOT2 lander would be carried by the AIM spacecraft and delivered onto Didymoon, the secondary object in the (65803) Didymos binary near-Earth asteroid system. Since the mission objectives of the AIM mission within the joint AIDA mission concept differ from JAXA's sample return mission HAYABUSA2, several design changes need to be studied and implemented. To support one of the prime objectives of the AIM mission, the characterization of the bulk physical properties of Didymoon, the main scientific payload of MSC2 is a low-frequency radar (LFR) to investigate the internal structure of the asteroid moon. Since the total science payload on MASCOT2 is limited to approximately 2.3 kg, the mass remaining for a suite of other experiments is in the range of 0.1 to 0.5 kg per instrument. Further requirements have a significant impact on the MSC2 design which will be presented. Among these are the much longer required operational lifetime than for MASCOT on HAYABUSA2, and different conditions on the target body such as an extremely low gravity due to its small size of Ø_[Didymoon] ~ 150m.
Near Earth Asteroid Scout Solar Sail Engineering Development Unit Test Suite
NASA Technical Reports Server (NTRS)
Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard
2017-01-01
The Near Earth Asteroid (NEA) Scout project is a 6U reconnaissance mission to investigate a near Earth asteroid utilizing an 86m(sub 2) solar sail as the primary propulsion system. This will be the largest solar sail NASA has launched to date. NEA Scout is currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis was able to capture understanding of thermal, stress, and dynamics of the stowed system as well as mature an integrated sail membrane model for deployed flight dynamics. Full scale system testing on the ground is the optimal way to demonstrate system robustness, repeatability, and overall performance on a compressed flight schedule. To physically test the system, the team developed a flight sized engineering development unit with design features as close to flight as possible. The test suite included ascent vent, random vibration, functional deployments, thermal vacuum, and full sail deployments. All of these tests contributed towards development of the final flight unit. This paper will address several of the design challenges and lessons learned from the NEA Scout solar sail subsystem engineering development unit. Testing on the component level all the way to the integrated subsystem level. From optical properties of the sail material to fold and spooling the single sail, the team has developed a robust deployment system for the solar sail. The team completed several deployments of the sail system in preparation for flight at half scale (4m) and full scale (6.8m): boom only, half scale sail deployment, and full scale sail deployment. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.
NEA Scout and Lunar Flashlight: Two NearTerm Interplanetary CubeSat Missions
NASA Technical Reports Server (NTRS)
Johnson, Les
2015-01-01
NASA is developing two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use a solar sail to enable their scientific objectives. Solar sails reflect sunlight from a large, mirror-like sail made of a lightweight, highly reflective material to provide thrust. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers in space. Lunar Flashlight, managed by the NASA Jet Propulsion Laboratory, will search for and map volatiles in permanently shadowed lunar craters using a solar sail as a gigantic mirror to steer sunlight into them, then examine the reflected light with a spectrometer. The Lunar Flashlight spacecraft will also use the solar sail to maneuver into a lunar polar orbit. The mission will demonstrate a low-cost capability to explore, locate and estimate the size and composition of ice deposits on the Moon. The Near Earth Asteroid (NEA) Scout mission, managed by the NASA Marshall Space Flight Center will survey and image a Near Earth Asteroid for possible future human exploration using a smallsat propelled by a solar sail. Detections of NEAs are expected to grow in the near future, offering increasing target opportunities. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit them is essential. The NEA Scout spacecraft is nearly identical to the one being developed for Lunar Flashlight, with the science instrument package being the primary difference. The NEA Scout solar sail will provide the primary propulsion taking the 6U cubesat from near the Earth to its final asteroid destination and the Lunar Flashlight sail will provide the propulsion necessary for its spacecraft to enter lunar orbit. Both projects will use an 85 m2 solar sail developed by NASA MSFC. The NEA Scout and Lunar Flashlight flight systems are based on a 6U cubesat form factor, with a stowed envelope of 10 x 20 x 30 cm and a mass of less than 12 kg. The solar sail for NEA Scout and Lunar Flashlight will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material will be 3 micron CP1, an aluminized polyimide that was extensively tested for solar sail applications. The sail will spooled rather than Z-folded. This paper will describe both the Lunar Flashlight and NEA Scout missions and their solar sails.
NEAR EARTH ASTERIOD SCOUT SOLAR SAIL
2015-01-08
NEAR EARTH ASTEROID (NEA) SAIL TEAM PERFORMING A DEPLOYMENT OF THE FLIGHT-LIKE ENGINEERING DEVELOPMENT UNIT SOLAR SAIL. THE SAIL WAS MANUFACTURED AT NEXOLVE (HSV, AL) AND DEPLOYED FOR THE FIRST TIME AT MSFC ON AUGUST 4TH, 2016
NASA Astrophysics Data System (ADS)
Jaumann, R.; Bibring, J. P.; Glassmeier, K. H.; Grott, M.; Ho, T. M.; Ulamec, S.; Schmitz, N.; Auster, H. U.; Biele, J.; Kuninaka, H.; Okada, T.; Yoshikawa, M.; Watanabe, S.; Spohn, T.; Koncz, A.; Hercik, D.; Michaelis, H.; Fujimoto, M.
2016-12-01
MASCOT is part of JAXA's Hayabusa 2 asteroid sample return mission that has been launched to asteroid (162173) Ryugu (1,2,3) on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth in 2020. The German Aerospace Center (DLR) developed the lander MASCOT with contributions from CNES (France) (2,3). Ryugu has been classified as a Cg-type (4), believed to be a primitive volatile-rich remnant from the early solar system. Its visible geometric albedo is 0.07±0.01with a diameter of 0.87±0.03 km (5). The thermal inertia indicates thick dust with a cm-sized, gravel-dominated surface layer (5,6). Ryugu shows a retrograde rotation with a period of 7.63±0.01h. Spectral observations indicate iron-bearing phyllosilicates (1) on parts of the surface, suggesting compositional heterogeneity. MASCOT will enable to in-situ map the asteroid's geomorphology, the intimate structure, texture and composition of the regolith (dust, soil and rocks), and its thermal, mechanical, and magnetic properties in order to provide ground truth for the orbiter remote measurements, support the selection of sampling sites, and provide context information for the returned samples (2,3). MASCOT comprises a payload of four scientific instruments: camera, radiometer, magnetometer and hyperspectral microscope (2,3). Characterizing the properties of asteroid regolith in-situ will deliver important ground truth for further understanding telescopic and orbital observations as well as samples of asteroids. MASCOT will descend and land on the asteroid and will change its position by hopping (3). (1) Vilas, F., Astro. J. 1101-1105, 2008; (2) Jaumann, R., et al., SSR, DOI 10.1007/s11214-016-0263-2, 2016; (3) Ho, T.-M. et al., SSR, DOI 10.1007/s11214-016-0251-6, 2016; (4) Bus, S.J., Binzel, R.P. Icarus 158, 2002; (5) Hasegawa, T.G., et al., Astron. Soc. Japan 60, 2008; (6) T.G. Müller, T.G., et al., doi 10.1051/0004-6361/201015599, 2011.
Design and Development of NEA Scout Solar Sail Deployer Mechanism
NASA Technical Reports Server (NTRS)
Sobey, Alexander R.; Lockett, Tiffany Russell
2016-01-01
The 6U (approximately10cm x 20cm x 30cm) cubesat Near Earth Asteroid (NEA) Scout, projected for launch in September 2018 aboard the maiden voyage of the Space Launch System (SLS), will utilize a solar sail as its main method of propulsion throughout its approximately 3 year mission to a near earth asteroid. Due to the extreme volume constraints levied onto the mission, an acutely compact solar sail deployment mechanism has been designed to meet the volume and mass constraints, as well as provide enough propulsive solar sail area and quality in order to achieve mission success. The design of such a compact system required the development of approximately half a dozen prototypes in order to identify unforeseen problems and advance solutions. Though finite element analysis was performed during this process in an attempt to quantify forces present within the mechanism during deployment, both the boom and the sail materials do not lend themselves to achieving high-confidence results. This paper focuses on the obstacles of developing a solar sail deployment mechanism for such an application and the lessons learned from a thorough development process. The lessons presented here will have significant applications beyond the NEA Scout mission, such as the development of other deployable boom mechanisms and uses for gossamer-thin films in space.
Flex Dynamics Avoidance Control of the NEA Scout Solar Sail Spacecraft's Reaction Control System
NASA Technical Reports Server (NTRS)
Heaton Andrew; Stiltner, Brandon; Diedrich, Benjamin; Becker, Christopher; Orphee, Juan
2017-01-01
The Attitude Control System (ACS) is developed for a Near Earth Asteroid (NEA) Scout mission using a solar sail. The NEA-Scout spacecraft is a 6U cubesat with an 86 square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2018. The spacecraft will rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The solar sail spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Adjustable Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. Because the sail is a flexible structure, care must be taken in designing a control system to avoid exciting the structural modes of the sail. This is especially true for the RCS, which uses pulse actuated, cold-gas jets to control the spacecraft's attitude. While the reaction wheels can be commanded smoothly, the RCS jets are simple on-off actuators. Long duration firing of the RCS jets - firings greater than one second - can be thought of as step inputs to the spacecraft's torque. On the other hand, short duration firings - pulses on the order of 0.1 seconds - can be thought of as impulses in the spacecraft's torque. These types of inputs will excite the structural modes of the spacecraft, causing the sail to oscillate. Sail oscillations are undesirable for many reasons. Mainly, these oscillations will feed into the spacecraft attitude sensors and pointing accuracy, and long term oscillations may be undesirable over the lifetime of the solar sail. In order to limit the sail oscillations, an RCS control scheme is being developed to minimize sail excitations. Specifically, an input shaping scheme similar to the method described in Reference 1 will be employed. A detailed description of the RCS control scheme will be provided with particular emphasis on flexible body excitation. The RCS performance will be provided to show that sail and boom excitation is minimized.
An experimental study on low-velocity low-gravity collisions into granular surfaces
NASA Astrophysics Data System (ADS)
Sunday, C.; Murdoch, N.; Mimoun, D.
2014-07-01
The Japanese Space Agency (JAXA) is scheduled to launch the asteroid sample-return mission, Hayabusa-2, to target body 1999 JU_3 in December 2014 [1]. The spacecraft will arrive at the C-type near-Earth asteroid in mid-2018 and deploy several science payloads to its surface. Among these payloads is a 10-kg lander, the Mobile Asteroid Surface Scout (MASCOT), provided by the German Space Agency (DLR) with cooperation from the Centre National d'Etudes Spatiales (CNES). MASCOT will reach the asteroid's surface with an anticipated impact speed of 10--20 cm/s. In addition to housing four instruments for in-situ science investigation, MASCOT contains a mobility mechanism that will correct its orientation and enable it to ''hop'' to various measurement sites [2]. Based on thermal infrared observations [3,4,5] and previous space missions [6,7], it is strongly believed that 1999 JU_3 is covered by loose regolith. The asteroid's granular surface, in combination with the low surface gravity, makes it difficult to predict the lander's collision behavior from existing theoretical models. However, to ensure that MASCOT can successfully fulfill its mission, it is vital to understand the rebound dynamics of the lander in the asteroid surface environment. The objective of this work, derived from the needs of current and future asteroid missions, is to present an experiment designed to study low-velocity, low-gravity collisions into granular surfaces. The experiment measures the amount of energy lost during impact via a projectile's coefficient of restitution and also the acceleration profile of the projectile during collision. The key challenge to designing an asteroid collision experiment is finding a way to simulate reduced gravity conditions on the Earth so that the prevailing forces in micro-gravity collisions can be reflected in the experimental results. The proposed way to achieve this goal is to let a free-falling projectile impact a surface with a constant downward acceleration, or an acceleration less than that of gravity, so that the effective surface acceleration felt by the grains at impact is very small. In reducing the effective surface acceleration of the granular material, the medium's inter-grain cohesion forces will become more important compared to its weight force [8], and the properties of the granular material will become more representative of those on an asteroid's surface. The concept of effective acceleration drives the design of this experiment and results in the following key features: First, the granular surface is given a constant downward acceleration using an Atwood machine, or a system of pulleys and counterweights. Next, the projectile and surface are simultaneously released from rest using a magnetic solenoid and hook assembly. The starting height of the surface container and the initial separation distance between the projectile and surface are variable and chosen to accommodate collision velocities of 10--20 cm/s and effective accelerations of 0.3--1.0 m/s^2. Finally, wireless accelerometers, placed on the surface container and in the projectile, provide acceleration data, while high-speed cameras capable of recording 100,000 frames per second capture the collision and act as secondary data sources. The experiment is built into an existing 6-m drop-tower frame and requires the custom design of all components, including the projectile, surface sample container, release mechanism, and deceleration system. This work will present the detailed design of the asteroid-collision experiment as well as a discussion on the planned experimental trials. The experimental results, once obtained, will be used to create a scaling law that will help predict a projectile's rebound and acceleration behavior during a low-velocity collision into a granular surface in micro-gravity conditions.
Scouts: Using Numbers to Explore Mars In Situ
NASA Technical Reports Server (NTRS)
Blaney, D. L.; Wilson, G. R.
2000-01-01
Mars is a planet with a complex geologic history involving fluvial, volcanic, aeolian, atmospheric, and impact processes. Many critical questions about Mars are still heatedly debated within the scientific community and we still have much to discover. The current Mars exploration philosophy involves remote observation of the planet from orbit and intensive in situ study of a few sites on the surface. Orbital data provides a global picture while in situ investigations provide detailed knowledge at a single location. Mars Scouts are proposed to provide access to multiple locations on Mars. They address the emerging program needs of exploring the diversity of the planet globally in ways that cannot be achieved from orbit. The goal of the Scout is to find a way to investigate many locations on the surface of Mars in an affordable and efficient manner. We have only visited three locations on the surface of Mars, which have very similar characteristics. Increased numbers allows more types of locations to be investigated. The hallmarks of Scouts are numbers and access. Thus the capability of a single Scout will be limited. The science return from a single Scout will be significantly less than from a large science lander or an orbiting spacecraft. Scouts rely on their numbers to collectively provide a substantial increase in our knowledge of Mars. Scouts potentially serve two purposes in the Mars exploration architecture. First, Scouts are a science exploration tool. They provide access to places on Mars we currently can't explore because program focus, surface roughness, elevation, or latitude that we know are scientifically interesting. Scouts can react to new discoveries and evolving ideas about Mars. They can be used to test theories which until proven would not warrant the investment of a large lander. Second, Scouts enable better large scale missions by providing ground truth of remote sensing data and allowing us to "know" sites in advance before sending large landers and sample return missions. This increases the probability of success for these expensive missions both from safety and science return stand-points.
An Alternate Configuration of the Multi-Mission Space Exploration Vehicle
NASA Technical Reports Server (NTRS)
Howard, Robert L., Jr.
2014-01-01
The NASA Multi-Mission Space Exploration Vehicle (MMSEV) Team has developed an alternate configuration of the vehicle that can be used as a lunar lander. The MMSEV was originally conceived of during the Constellation program as the successor to the Apollo lunar rover as a pressurized rover for two-person, multiday excursions on the lunar surface. Following the cancellation of the Constellation program, the MMSEV has been reconfigured to serve as a free-flying scout vehicle for exploration of a Near Earth Asteroid and is also being assessed for use as a Habitable Airlock in a Cislunar microgravity spacecraft. The Alternate MMSEV (AMMSEV) variant of the MMSEV would serve as the transport vehicle for a four-person lunar crew, providing descent from an orbiting spacecraft or space station and ascent back to the spaceborne asset. This paper will provide a high level overview of the MMSEV and preliminary results from human-in-the-loop testing.
The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2
NASA Astrophysics Data System (ADS)
Jaumann, R.; Schmitz, N.; Koncz, A.; Michaelis, H.; Schroeder, S. E.; Mottola, S.; Trauthan, F.; Hoffmann, H.; Roatsch, T.; Jobs, D.; Kachlicki, J.; Pforte, B.; Terzer, R.; Tschentscher, M.; Weisse, S.; Mueller, U.; Perez-Prieto, L.; Broll, B.; Kruselburger, A.; Ho, T.-M.; Biele, J.; Ulamec, S.; Krause, C.; Grott, M.; Bibring, J.-P.; Watanabe, S.; Sugita, S.; Okada, T.; Yoshikawa, M.; Yabuta, H.
2017-07-01
The MASCOT Camera (MasCam) is part of the Mobile Asteroid Surface Scout (MASCOT) lander's science payload. MASCOT has been launched to asteroid (162173) Ryugu onboard JAXA's Hayabusa 2 asteroid sample return mission on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth by 2020. MasCam was designed and built by DLR's Institute of Planetary Research, together with Airbus-DS Germany. The scientific goals of the MasCam investigation are to provide ground truth for the orbiter's remote sensing observations, provide context for measurements by the other lander instruments (radiometer, spectrometer and magnetometer), the orbiter sampling experiment, and characterize the geological context, compositional variations and physical properties of the surface (e.g. rock and regolith particle size distributions). During daytime, clear filter images will be acquired. During night, illumination of the dark surface is performed by an LED array, equipped with 4×36 monochromatic light-emitting diodes (LEDs) working in four spectral bands. Color imaging will allow the identification of spectrally distinct surface units. Continued imaging during the surface mission phase and the acquisition of image series at different sun angles over the course of an asteroid day will contribute to the physical characterization of the surface and also allow the investigation of time-dependent processes and to determine the photometric properties of the regolith. The MasCam observations, combined with the MASCOT hyperspectral microscope (MMEGA) and radiometer (MARA) thermal observations, will cover a wide range of observational scales and serve as a strong tie point between Hayabusa 2's remote-sensing scales (103-10^{-3} m) and sample scales (10^{-3}-10^{-6} m). The descent sequence and the close-up images will reveal the surface features over a broad range of scales, allowing an assessment of the surface's diversity and close the gap between the orbital observations and those made by the in-situ measurements. The MasCam is mounted inside the lander slightly tilted, such that the center of its 54.8° square field-of-view is directed towards the surface at an angle of 22° with respect to the surface plane. This is to ensure that both the surface close to the lander and the horizon are observable. The camera optics is designed according to the Scheimpflug principle, thus that the entire scene along the camera's depth of field (150 mm to infinity) is in focus. The camera utilizes a 1024×1024 pixel CMOS sensor sensitive in the 400-1000 nm wavelength range, peaking at 600-700 nm. Together with the f-16 optics, this yields a nominal ground resolution of 150 micron/px at 150 mm distance (diffraction limited). The camera flight model has undergone standard radiometric and geometric calibration both at the component and system (lander) level. MasCam relies on the use of wavelet compression to maximize data return within stringent mission downlink limits. All calibration and flight data products will be generated and archived in the Planetary Data System in PDS image format.
Deployable Propulsion and Power Systems for Solar System Exploration
NASA Technical Reports Server (NTRS)
Johnson, Les; Carr, John
2017-01-01
NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept to the NEA Scout solar sail, the LISA-T array is designed to fit into a very small volume and provide abundant power and omnidirectional communications in just about any deployment configuration. The technology is being proposed for flight validation as early as 2019 in a low earth orbit demonstration using a 3U cubesat, of which less than 1U will be devoted to the LISA-T power and propulsion system. By leveraging recent advancements in thin films, photovoltaics and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions.
NASA Astrophysics Data System (ADS)
Watanabe, Sei-ichiro; Tsuda, Yuichi; Yoshikawa, Makoto; Tanaka, Satoshi; Saiki, Takanao; Nakazawa, Satoru
2017-07-01
The Hayabusa2 mission journeys to C-type near-Earth asteroid (162173) Ryugu (1999 JU3) to observe and explore the 900 m-sized object, as well as return samples collected from the surface layer. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on December 3, 2014 by an H-IIA launch vehicle and performed an Earth swing-by on December 3, 2015 to set it on a course toward its target Ryugu. Hayabusa2 aims at increasing our knowledge of the early history and transfer processes of the solar system through deciphering memories recorded on Ryugu, especially about the origin of water and organic materials transferred to the Earth's region. Hayabusa2 carries four remote-sensing instruments, a telescopic optical camera with seven colors (ONC-T), a laser altimeter (LIDAR), a near-infrared spectrometer covering the 3-μm absorption band (NIRS3), and a thermal infrared imager (TIR). It also has three small rovers of MINERVA-II and a small lander MASCOT (Mobile Asteroid Surface Scout) developed by German Aerospace Center (DLR) in cooperation with French space agency CNES. MASCOT has a wide angle imager (MasCam), a 6-band thermal radiator (MARA), a 3-axis magnetometer (MasMag), and a hyperspectral infrared microscope (MicrOmega). Further, Hayabusa2 has a sampling device (SMP), and impact experiment devices which consist of a small carry-on impactor (SCI) and a deployable camera (DCAM3). The interdisciplinary research using the data from these onboard and lander's instruments and the analyses of returned samples are the key to success of the mission.
Near-Earth Asteroid (NEA) Scout
NASA Technical Reports Server (NTRS)
McNutt, Leslie; Johnson, Les; Kahn, Peter; Castillo-Rogez, Julie; Frick, Andreas
2014-01-01
Near-Earth asteroids (NEAs) are the most easily accessible bodies in the solar system, and detections of NEAs are expected to grow exponentially in the near future, offering increasing target opportunities. As NASA continues to refine its plans to possibly explore these small worlds with human explorers, initial reconnaissance with comparatively inexpensive robotic precursors is necessary. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit a NEA will significantly minimize crew and mission risk, as well as maximize exploration return potential. The Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL) are jointly examining a potential mission concept, tentatively called 'NEAScout,' utilizing a low-cost platform such as CubeSat in response to the current needs for affordable missions with exploration science value. The NEAScout mission concept would be treated as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1), the first planned flight of the SLS and the second un-crewed test flight of the Orion Multi-Purpose Crew Vehicle (MPCV).
Asteroid surface materials - Mineralogical characterizations and cosmological implications
NASA Technical Reports Server (NTRS)
Gaffey, M. J.; Mccord, T. B.
1977-01-01
The theoretical basis for the interpretation of diagnostic spectral features is examined and previous characterizations of asteroid surface materials are considered. A summary is provided of results reported by Gaffey and McCord (1977) who have utilized the most sophisticated interpretive techniques available to interpret the spectral reflectance data of about 65 asteroids for mineralogic and petrologic information. Cosmological implications related to the study of asteroid surface materials are also considered, taking into account source bodies for the meteorites, postaccretionary thermal history, significant factors of asteroid thermal history, and the Apollo and Amor asteroids. It is found that the asteroids exhibit surface materials made up of assemblages of meteoritic minerals. The relative abundance of meteorite types reaching the earth's surface is very different from the population of mineralogic types on asteroid surfaces. The earth-crossing or -approaching asteroids apparently derive from a restricted source region or population which is very strongly depleted in the C2-like assemblages that dominate the belt as a whole.
Spectral evidence of size dependent space weathering processes on asteroid surfaces
NASA Technical Reports Server (NTRS)
Gaffey, M. J.; Bell, J. F.; Brown, R. H.; Burbine, T. H.; Piatek, J. L.; Reed, K. L.; Chaky, D. A.
1993-01-01
Most compositional characterizations of the minor planets are derived from analysis of visible and near-infrared reflectance spectra. However, such spectra are derived from light which has only interacted with a very thin surface layer. Although regolith processes are assumed to mix all near-surface lithologic units into this layer, it has been proposed that space weathering processes can alter this surface layer to obscure the spectral signature of the bedrock lithology. It has been proposed that these spectral alteration processes are much less pronounced on asteroid surfaces than on the lunar surface, but the possibility of major spectral alteration of asteroidal optical surfaces has been invoked to reconcile S-asteroids with ordinary chondrites. The reflectance spectra of a large subset of the S-asteroid population have been analyzed in a systematic investigation of the mineralogical diversity within the S-class. In this sample, absorption band depth is a strong function of asteroid diameter. The S-asteroid band depths are relatively constant for objects larger than 100 km and increase linearly by factor of two toward smaller sizes (approximately 40 km). Although the S-asteroid surface materials includes a diverse variety of silicate assemblages, ranging from dunites to basalts, all compositional subtypes of the S-asteroids conform to this trend. The A-, R-, and V-type asteroids which are primarily silicate assemblages (as opposed to the metal-silicate mixtures of most S-asteroids) follow a parallel but displaced trend. Some sort of textural or regolith equilibrium appears to have been attained in the optical surfaces of asteroids larger than about 100 km diameter but not on bodies below this size. The relationships between absorption band depth, spectral slope, surface albedo and body size provide an intriguing insight into the nature of the optical surfaces of the S-asteroids and space weathering on these objects.
Asteroid surface mineralogy: Evidence from earth-based telescope observations
NASA Technical Reports Server (NTRS)
Mccord, T. B.
1978-01-01
The interpretation of asteroid reflectance spectrophotometry in terms of mineralogical types gives inferred mineral assemblages for about 60 asteroids. Asteroid surface materials are compared with similar materials that make up many meteorites. The absence of asteroids with spectra that match identically the ordinary chondrites is noted.
Asteroid surface materials: Mineralogical characterizations from reflectance spectra
NASA Technical Reports Server (NTRS)
Gaffey, M. J.; Mccord, T. B.
1977-01-01
Mineral assemblages analogous to most meteorite types, with the exception of ordinary chondritic assemblages, have been found as surface materials of Main Belt asteroids. C1- and C2-like assemblages (unleached, oxidized meteoritic clay minerals plus opaques such as carbon) dominate the population throughout the Belt, especially in the outer Belt. A smaller population of asteroids exhibit surface materials similar to C3 (CO, CV) meteoritic assemblages (olivine plus opaque, probably carbon) and are also distributed throughout the Belt. The majority of remaining studied asteroids (20) of 65 asteroids exhibit spectral reflectance curves dominated by the presence of metallic nickel-iron in their surface materials. The C2-like materials which dominate the main asteroid belt population appear to be relatively rare on earth-approaching asteroids.
Solar wind tans young asteroids
NASA Astrophysics Data System (ADS)
2009-04-01
A new study published in Nature this week reveals that asteroid surfaces age and redden much faster than previously thought -- in less than a million years, the blink of an eye for an asteroid. This study has finally confirmed that the solar wind is the most likely cause of very rapid space weathering in asteroids. This fundamental result will help astronomers relate the appearance of an asteroid to its actual history and identify any after effects of a catastrophic impact with another asteroid. ESO PR Photo 16a/09 Young Asteroids Look Old "Asteroids seem to get a ‘sun tan' very quickly," says lead author Pierre Vernazza. "But not, as for people, from an overdose of the Sun's ultraviolet radiation, but from the effects of its powerful wind." It has long been known that asteroid surfaces alter in appearance with time -- the observed asteroids are much redder than the interior of meteorites found on Earth [1] -- but the actual processes of this "space weathering" and the timescales involved were controversial. Thanks to observations of different families of asteroids [2] using ESO's New Technology Telescope at La Silla and the Very Large Telescope at Paranal, as well as telescopes in Spain and Hawaii, Vernazza's team have now solved the puzzle. When two asteroids collide, they create a family of fragments with "fresh" surfaces. The astronomers found that these newly exposed surfaces are quickly altered and change colour in less than a million years -- a very short time compared to the age of the Solar System. "The charged, fast moving particles in the solar wind damage the asteroid's surface at an amazing rate [3]", says Vernazza. Unlike human skin, which is damaged and aged by repeated overexposure to sunlight, it is, perhaps rather surprisingly, the first moments of exposure (on the timescale considered) -- the first million years -- that causes most of the aging in asteroids. By studying different families of asteroids, the team has also shown that an asteroid's surface composition is an important factor in how red its surface can become. After the first million years, the surface "tans" much more slowly. At that stage, the colour depends more on composition than on age. Moreover, the observations reveal that collisions cannot be the main mechanism behind the high proportion of "fresh" surfaces seen among near-Earth asteroids. Instead, these "fresh-looking" surfaces may be the results of planetary encounters, where the tug of a planet has "shaken" the asteroid, exposing unaltered material. Thanks to these results, astronomers will now be able to understand better how the surface of an asteroid -- which often is the only thing we can observe -- reflects its history. More information This result was presented in a paper published this week in the journal Nature, "Solar wind as the origin of rapid reddening of asteroid surfaces", by P. Vernazza et al. The team is composed of Pierre Vernazza (ESA), Richard Binzel (MIT, Cambridge, USA), Alessandro Rossi (ISTI-CNR, Pisa, Italy), Marcello Fulchignoni (Paris Observatory, France), and Mirel Birlan (IMCCE, CNRS-8028, Paris Observatory, France). A PDF file can be downloaded here. Notes [1] Meteorites are small fragments of asteroids that fall on Earth. While a meteorite enters the Earth's atmosphere its surface can melt and be partially charred by the intense heat. Nevertheless, the meteorite interior remains unaffected, and can be studied in a laboratory, providing a wealth of information on the nature and composition of asteroids. [2] An asteroid family is a group of asteroids that are on similar orbits around the Sun. The members of a given family are believed to be the fragments of a larger asteroid that was destroyed during a collision. [3] The surface of an asteroid is affected by the highly energetic particles forming the solar wind. These particles partially destroy the molecules and crystals on the surface, re-arranging them in other combinations. Over time, these changes give formation of a thin crust or irradiated material with distinct colours and properties.
Demonstrations of Deployable Systems for Robotic Precursor Missions
NASA Technical Reports Server (NTRS)
Dervan, J.; Johnson, L.; Lockett, T.; Carr, J.; Boyd, D.
2017-01-01
NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that serve as enabling technologies for exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, deployment systems, and miniaturized electronics, new mission-level capabilities will be demonstrated aboard small spacecraft enabling a new generation of frequent, inexpensive, and highly capable robotic precursor missions with goals extensible to future human exploration. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication as demonstrated by recent advances on the Near Earth Asteroid (NEA) Scout and Lightweight Integrated Solar Array and anTenna (LISA-T) projects.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Condon, Gerald; Graham, Lee; Bevilacqua, Ricardo
2014-01-01
In this paper we describe a micro/nano satellite spacecraft and a supporting mission profile and architecture designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonable cost. The spacecraft will be referred to as the NEO Scout. NEO Scout spacecraft are to be placed in GTO, GEO, or cis-lunar space as secondary payloads on launch vehicles headed for GTO or beyond and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO scout system is to design the mission timeline and spacecraft to rendezvous with and land on the target NEOs during close approach to the Earth-Moon system using low-thrust/high- impulse propulsion systems. Mission feasibility and preliminary design analysis are presented along with detailed trajectory calculations. The use of micro/nano satellites in low-cost interplanetary exploration is attracting increasing attention and is the subject of several annual workshops and published design studies (1-4). The NEO population consists of those asteroids and short period comets orbiting the Sun with a perihelion of 1.3 astronomical units or less (5-8). As of July 30, 2013 10065 Near-Earth objects have been discovered. The spin rate, mass, density, surface physical (especially mechanical) properties, composition, and mineralogy of the vast majority of these objects are highly uncertain and the limited available telescopic remote sensing data imply a very diverse population (5-8). In-situ measurements by robotic spacecraft are urgently needed to provide the characterization data needed to support hardware and mission design for more ambitious human and robotic NEO operations. Large numbers of NEOs move into close proximity with the Earth-Moon system every year (9). The JPL Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) (10) has produced detailed mission profile and delta V requirements for various NEO missions ranging from 30 to 420 days in duration and assuming chemical propulsion. Similar studies have been reported assuming high power electric propulsion for manned NEO rendezvous missions (11). The delta V requirement breakdown and mission profile data from references 10 and 11 are used as a basis for sizing the NEO Scout spacecraft and for conducting preliminary feasibility assessments using the Tsiokolvsky rocket equation, a (worst-case) delta V requirement of 10 km/sec, and a maximum spacecraft dry mass of 20 kg. Using chemical propellant for a 10 km/sec delta V drives spacecraft wet mass well above 300 kg so that chemical propulsion is a non-starter for the proposed mission profile and spacecraft wet mass limits. In contrast, a solar electric propulsion system needs only 8 kg of Xe propellant to accelerate the spacecraft to 10 km/sec in 163 days with 0.02 N of thrust and 500 W of power from1.6 sq m of 29% efficient solar panels. In a second example, accelerating a 4 kg payload to 7 km/sec over 180 days requires about 6.7 kg of propellant and 1.2 kg of solar panels (12 kg total spacecraft wet mass).
Status of Solar Sail Propulsion Within NASA - Moving Toward Interstellar Travel
NASA Technical Reports Server (NTRS)
Johnson, Les
2015-01-01
NASA is developing solar sail propulsion for two near-term missions and laying the groundwork for their future use in deep space and interstellar precursor missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, managed by MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Lunar Flashlight spacecraft will also use the propulsive solar sail to maneuver into a lunar polar orbit. Both missions use a 6U cubesat architecture, a common an 85 sq m solar sail, and will weigh less than 12 kilograms. Both missions will be launched on the first flight of the Space Launch System in 2018. NEA Scout and Lunar Flashlight will serve as important milestones in the development of solar sail propulsion technology for future, more ambitious missions including the Interstellar Probe - a mission long desired by the space science community which would send a robotic probe beyond the edge of the solar system to a distance of 250 Astronomical Units or more. This paper will summarize the development status of NEA Scout and Lunar Flashlight and describe the next steps required to enable an interstellar solar sail capability.
NASA Astrophysics Data System (ADS)
Becker, Tracy M.; Runyon, Cassandra; Cynthia, Hall; Britt, Daniel; Tracy Becker
2017-10-01
Through NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the Center for Lunar and Asteroid Surface Science (CLASS) and the SSERVI Evolution and Environment of Exploration Destinations (SEEED) nodes have developed an interdisciplinary formal and informal hands-on curriculum to bring the excitement of space exploration directly to the students.With a focus on exploring asteroids, this 5-year effort has infused art with traditional STEM practices (creating STEAM) and provides teachers with learning materials to incorporate art, social studies, English language arts, and other courses into the lesson plans. The formal curricula being developed follows Next Generation Standards and incorporates effective and engaging pedagogical strategies, such as problem-based learning (PBL), design thinking, and document based questions, using authentic data and articles, some of which are produced by the SSERVI scientists. From the materials developed for the formal education component, we have built up a collection of informal activities of varying lengths (minutes to weeks-long programs) to be used by museums, girl and boy scouts, science camps, etc.The curricula are being developed by formal and informal educators, artists, storytellers, and scientists. The continual feedback between the educators, artists, and scientists enables the program to evolve and mature such that the material will be accessible to the students without losing scientific merit. Online components will allow students to interact with SSERVI scientists and will ultimately infuse ongoing, exciting research into the student’s lessons.Our Education & Public Engagement (EPE) program makes a strong effort to make educational material accessible to all learners, including those with visual or hearing impairments. Specific activities have been included or independently developed to give all students an opportunity to experience the excitement of the universe.
Meteoroid Impact Ejecta Detection by Nanosatellites for Asteroid Surface Characterization
NASA Astrophysics Data System (ADS)
Lee, N.; Close, S.; Goel, A.
2015-12-01
Asteroids are constantly bombarded by much smaller meteoroids at extremely high speeds, which results in erosion of the material on the asteroid surface. Some of this material is vaporized and ionized, forming a plasma that is ejected into the environment around the asteroid where it can be detected by a constellation of closely orbiting nanosatellites. We present a concept to leverage this natural phenomenon and to analyze this excavated material using low-power plasma sensors on nanosatellites in order to determine the composition of the asteroid surface. This concept would enable a constellation of nanosatellites to provide useful data complementing existing techniques such as spectroscopy, which require larger and more power-hungry sensors. Possible mission architectures include precursor exploratory missions using nanosatellites to survey and identify asteroid candidates worthy of further study by a large spacecraft, or simultaneous exploration by a nanosatellite constellation with a larger parent spacecraft to decrease the time required to cover the entire asteroid surface. The use of meteoroid impact plasma to analyze the surface composition of asteroids will not only produce measurements that have not been previously obtained, including the molecular composition of the surface, but will also yield a better measurement of the meteoroid flux in the vicinity of the asteroid. Current meteoroid models are poorly constrained beyond the orbit of Mars, due to scarcity of data. If this technology is used to survey asteroids in the main belt, it will offer a dramatic increase in the availability of meteoroid flux measurements in deep space, identifying previously unknown meteoroid streams and providing additional data to support models of solar system dust dynamics.
NASA Technical Reports Server (NTRS)
Mcfadden, Lucy-Ann
1991-01-01
The effect of the solar wind on the optical properties of meteorites was studied to determine whether the solar wind can alter the properties of ordinary chondrite parent bodies resulting in the spectral properties of S-type asteroids. The existing database of optical properties of asteroids was analyzed to determine the effect of solar wind in altering asteroid surface properties.
PRoViScout: a planetary scouting rover demonstrator
NASA Astrophysics Data System (ADS)
Paar, Gerhard; Woods, Mark; Gimkiewicz, Christiane; Labrosse, Frédéric; Medina, Alberto; Tyler, Laurence; Barnes, David P.; Fritz, Gerald; Kapellos, Konstantinos
2012-01-01
Mobile systems exploring Planetary surfaces in future will require more autonomy than today. The EU FP7-SPACE Project ProViScout (2010-2012) establishes the building blocks of such autonomous exploration systems in terms of robotics vision by a decision-based combination of navigation and scientific target selection, and integrates them into a framework ready for and exposed to field demonstration. The PRoViScout on-board system consists of mission management components such as an Executive, a Mars Mission On-Board Planner and Scheduler, a Science Assessment Module, and Navigation & Vision Processing modules. The platform hardware consists of the rover with the sensors and pointing devices. We report on the major building blocks and their functions & interfaces, emphasizing on the computer vision parts such as image acquisition (using a novel zoomed 3D-Time-of-Flight & RGB camera), mapping from 3D-TOF data, panoramic image & stereo reconstruction, hazard and slope maps, visual odometry and the recognition of potential scientifically interesting targets.
The effect of asteroid topography on surface ablation deflection
NASA Astrophysics Data System (ADS)
McMahon, Jay W.; Scheeres, Daniel J.
2017-02-01
Ablation techniques for deflecting hazardous asteroids deposit energy into the asteroid's surface, causing an effective thrust on the asteroid as the ablating material leaves normal to the surface. Although it has long been recognized that surface topography plays an important role in determining the deflection capabilities, most studies to date have ignored this aspect of the model. This paper focuses on understanding the topography for real asteroid shapes, and how this topography can change the deflection performance of an ablation technique. The near Earth asteroids Golevka, Bennu, and Itokawa are used as the basis for this study, as all three have high-resolution shape models available. This paper shows that naive targeting of an ablation method without accounting for the surface topography can lower the deflection performance by up to 20% in the cases studied in terms of the amount of acceleration applied in the desired direction. If the ablation thrust level is assumed to be 100 N, as used elsewhere in the literature, this misapplication of thrust translates to tens of kilometers per year in decreased semimajor axis change. However, if the ablation method can freely target any visible point on the surface of the asteroid, almost all of this performance can be recovered.
Thermal Infrared Imager on Hayabusa2: Science and Development
NASA Astrophysics Data System (ADS)
Okada, Tatsuaki
2015-04-01
Thermal Infrared Imager TIR was developed and calibrated for Haya-busa2 asteroid explorer, aiming at the investigation of thermo-physical properties of C-class near-Earth sub-km sized asteroid (162173) 1999JU3. TIR is based on the 2D micro-bolometer array with germani-um lens to image the surface of asteroid in 8 to 12 μm wavelength (1), measuring the thermal emission off the asteroid surface. Its field of view is 16° x 12° with 328 x 248 pixels. At least 40 (up to 100) images will be taken during asteroid rotation once a week, mainly from the Home Position which is about 20km sunward from asteroid surface. Therefore TIR will image the whole asteroid with spatial resolution of < 20m per pixel, and the temperature profile of each site on the asteroid will be traced from dawn to dusk regions by asteroid rotation. The scien-tific objectives of TIR include the mapping of asteroid surface condi-tions (regional distribution of thermal inertia), since the surface physical conditions are strongly correlated with thermal inertia. It is so informa-tive on understanding the re-accretion or surface sedimentation process-es of the asteroid to be the current form. TIR data will be used for searching for those sites having the typical particle size of 1mm for best sample collection, and within the proper thermal condition for space-craft safe operation. After launch of Hayabusa2, TIR has been tested successfully, covering from -100 to 150 °C using a single parameter settings (2). This implies that TIR is actually able to map the surface other than the sunlit areas. Performance of TIR was found basically the same as those in the pre-launch test, when the temperature of TIR is well controlled. References: (1) Fukuhara T. et al., (2011) Earth Planet. Space 63, 1009-1018; (2) Okada T. et al., (2015) Lunar Planet. Sci. Conf. 46, #1331.
NASA Technical Reports Server (NTRS)
Levine, Arlene S.
2008-01-01
Planetary impact craters are a common surface feature of many planetary bodies, including the Earth, the Moon, Mars, Mercury, Venus, and Jupiter s moons, Ganymede and Callisto. The NASA Langley Research Center in Hampton, VA, is located about 5 km inside the outer rim of the Chesapeake Bay Impact Crater. The Chesapeake Bay Impact Crater, with a diameter of 85 km is the sixth largest impact crater on our planet. The U.S. Geological Survey (USGS), in collaboration with the NASA Langley Research Center, the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Planning District Commission (HRPDC), and the Department of Geology of the College of William and Mary (WM) drilled into and through the crater at the NASA Langley Research Center and obtained a continuous core to a depth of 2075.9 ft (632.73 meters) from the Chesapeake Bay Impact Crater. At the NASA Langley location, the granite basement depth was at 2046 ft (623.87 meters). This collaborative drilling activity provided a unique educational opportunity and ongoing educational partnership between USGS, NASA Langley and the other collaborators. NASA Langley has a decade-long, ongoing educational partnership with the Colonial Coast Council of the Girl Scouts. The core drilling and on site analysis and cataloguing of the core segments provided a unique opportunity for the Girl Scouts to learn how geologists work in the field, their tools for scientific investigation and evaluation, how they perform geological analyses of the cores in an on-site tent and learn about the formation of impact craters and the impact of impacting bodies on the sub-surface, the surface, the oceans and atmosphere of the target body. This was accomplished with a two-part activity. Girl Scout day camps and local Girl Scout troops were invited to Langley Research Center Conference Center, where more than 300 Girl Scouts, their leaders and adult personnel were given briefings by scientists and educators from the USGS, NASA, VDEQ, HRPDC and WM on the principles of geology, the formation of impact craters, the consequences of the impacting body on the atmosphere, ocean, surface and sub-surface, the geological, chemical and biological analyses of the core and the cataloguing and storage of the core segments, etc. After the briefings, the Girl Scouts visited the drilling site where they inspected the core drilling rig, examined the core samples and discussed the drilling procedures, cores and interpretation of the cores with scientists and educators from the organizations conducting the core drilling. Demonstrations at the drilling site included demonstrations of impacting objects hitting multi-colored layered mud targets at different angles of entry. The multi-colored layers of mud were instructive in mapping out the distribution of impact-ejected material around the impact crater. The presentation will include a series of photographs of the Girl Scout participating in activities at the Chesapeake Bay Impact Crater drill site, including retrieving cores from the drilling rig, inspecting the core samples and participating in the impact-crater formation demonstrations.
NASA Technical Reports Server (NTRS)
Gaffey, M. J.
2003-01-01
Mineralogy is the key to determining the compositional history of the asteroids and to determining the genetic relationships between the asteroids and meteorites. The most sophisticated remote mineralogical characterizations involve the quantitative extraction of specific diagnostic parameters from reflectance spectra and the use of quantitative interpretive calibrations to determine the presence, abundance and/or composition of mineral phases in a surface material. Although this approach is potentially subject to systematic errors, it provides the only consistent set of asteroid surface material characterizations.
Mainbelt asteroids - Dual-polarization radar observations
NASA Technical Reports Server (NTRS)
Ostro, S. J.; Campbell, D. B.; Shapiro, I. I.
1985-01-01
Observations of 20 asteroids in the main belt between Mars and Jupiter provide information about the nature of these objects' surfaces at centimeter-to-kilometer scales. At least one asteroid (Pallas) is extremely smooth at centimeter-to-meter scales. Each asteroid appears much rougher than the moon at some scale between several meters and many kilometers. The range of asteroid radar albedos is very broad and implies substantial variations in porosity or metal concentration (or both). The highest albedo estimate, for the asteroid Psyche, is consistent with a surface having porosities typical of lunar soil and a composition nearly entirely metallic.
Asteroid Pond Mineralogy: View from a Cognate Clast in LL3 NWA 8330
NASA Technical Reports Server (NTRS)
Zolensky, M.; Le, L.
2017-01-01
All asteroids surfaces imaged at the cm-scale reveal the presence of pond deposits. These ponds are important because it is likely all asteroid sample return missions will sample them, being the safest (very flat) places to touch down. Therefore, it is essential to understand the differences between the material at the pond surfaces and the host asteroid. Fortunately, some fine-grained cognate lithologies in chondrites show sedimentary features indicating that they sample asteroid ponds.
NASA Astrophysics Data System (ADS)
Yoshimitsu, T.; Sasaki, S.; Yanagisawa, M.
2005-03-01
This paper describes the current status of the MINERVA rover boarded on the Japanese asteroid explorer Hayabusa. Also the plan and the strategy to acquire surface images of the asteroid are presented.
NASA Astrophysics Data System (ADS)
Murdoch, Naomi; Cadu, Alexandre; Mimoun, David; Karatekin, Ozgur; Garcia, Raphael; Carrasco, José; Garcia de Quiros, Javier; Vasseur, Hugues; Ritter, Birgit; Eubanks, Marshall; Radley, Charles; Dehant, Veronique
2016-04-01
Despite the successes of recent space missions (e.g., Cheng et al., 1997; Fujiwara et al., 2006), there is still no clear understanding of the asteroid internal structure(s). Depending on their size, evolution and physical properties, many different asteroid internal structure models have been suggested from completely cohesive bodies, through to rubble pile objects. The Asteroid Geophysical Explorer (AGEX), a COPINS payload selected by ESA*, will land geophysical instrument packages on the surface of Didymoon; the secondary object in the (65803) Didymos (1996 GT) binary system (Karatekin et al 2016). The instruments will characterize the asteroid surface mechanical properties and probe, for the first time, the sub-surface structure of an asteroid. AGEX will be deployed from AIM on a ballistic transfer to the asteroid surface, several days before the MASCOT-2 package. We expect that AGEX will bounce multiple times before coming to rest on the surface of the asteroid thus providing a unique opportunity to study the asteroid surface properties, perhaps at several locations, using accelerometers. Once stationary, the seismological surface-monitoring phase, using a three-axis set of geophones, can begin. The high speed DART impact will be a major seismic source on Didymoon. However, the seismic payload may also be able to perform seismological investigations using natural seismic sources such as micrometeoroid impacts (e.g., Garcia et al., 2015), thermal cracks (e.g., Delbo et al., 2014), internal quakes due to tidal forces (e.g., Richardson et al. 1998) and other geophysical processes (see Murdoch et al., 2015). We will present the expected signal characteristics of the landing and also of the natural seismic sources that may occur on Didymoon. An understanding of the amplitude and frequency content of such signals is necessary in order to design the optimal geophysical payload for small body exploration using a CubeSat platform. [1.] Cheng, A. et al., Journal of Geophysical Research, 102, E10 (1997) [2.] Delbo, M., et al., Nature, 508, 233-236 (2014) [3.] Fujiwara, A. et al., Science 312, 1330 (2006) [4.] Garcia, R. F. et al., Icarus, 253, 159-168 (2015) [5.] Murdoch, N. et al., ASTEROIDS IV, University of Arizona Press Space Science Series, edited by P. Michel, F. DeMeo and W. Bottke, (2015) [6.] Richardson, D.C. et al., Icarus, 134, 47-79 (1998) [7.] Karatekin et al., The Asteroid Geophysical Explorer (AGEX); Proposal to explore the Didymos System using Cubesats, EGU (2016) *http://www.esa.int/Our_Activities/Space_Engineering_Technology/Asteroid_Impact_Mission/ CubeSat_companions_for_ESA_s_asteroid_mission
A new mechanism for the formation of regolith on asteroids
NASA Astrophysics Data System (ADS)
Delbo, Marco; Libourel, Guy; Wilkerson, Justin; Murdoch, Naomi; Michel, Patrick; Ramesh, Kt; Ganino, Clement; Verati, Chrystele; Marchi, Simone
2014-11-01
The soil of asteroids, like that of the Moon, and other rocky, airless bodies in the Solar System, is made of a layer of pebbles, sand, and dust called regolith.Previous works suggested that the regolith on asteroids is made from material ejected from impacts and re-accumulated on the surface and from surface rocks that are broken down by micrometeoroid impacts. However, this regolith formation process has problems to explain the regolith on km-sized and smaller asteroids: it is known that impact fragments can reach escape velocities and breaks free from the gravitational forces of these small asteroids, indicating the impact mechanism is not the dominant process for regolith creation. Other studies also reveal that there is too much regolith on small asteroids’ surfaces to have been deposited there solely by impacts over the millions of years of asteroids’ evolution.We proposed that another process is capable of gently breaking rocks at the surface of asteroids: thermal fatigue by temperature cycling. As asteroids spin about their rotation axes, their surfaces go in and out of shadow resulting in large surface temperature variations. The rapid heating and cooling creates thermal expansion and contraction in the asteroid material, initiating cracking and propagating existing cracks. As the process is repeated over and over, the crack damage increases with time, leading eventually to rock fragmentation (and production of new regolith).To study this process, in the laboratory, we subjected meteorites, used as asteroid material analogs, to 37 days of thermal cycles similar to those occurring on asteroids. We measured cracks widening at an average rate of 0.5 mm/y. Some fragments were also produced, indicating meteorite fragmentation. To scale our results to asteroid lifetime, we incorporated our measurements into a fracture model and we deduced that thermal cycling is more efficient than micrometeorite bombardment at fragmenting rock over millions of years on asteroids (see Delbo et al. 2014. Nature 508, 233-236).This work was supported by the French Agence National de la Recherche (ANR) SHOCKS,
Heat Models of Asteroids and the YORP Effect
NASA Astrophysics Data System (ADS)
Golubov, O.
The Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) effect is a torque of light pressure recoil forces acting on an asteroid. We show how this torque can be expressed as an integral of a universal function over the surface of an asteroid, and discuss generalizations of this expression for the case of non-Lambert's scattering laws, non-convex shapes of asteroids, and non-zero heat conductivity. Then we discuss tangential YORP (TYORP), which appears due to uneven heat conductivity in stones lying on the surface of an asteroid. TYORP manifests itself as a drag, which pulls the surface in the tangential direction. Finally, we discuss relation and interplay between the normal YORP and the tangential YORP.
Hayabusa2 Sampler: Collection of Asteroidal Surface Material
NASA Astrophysics Data System (ADS)
Sawada, Hirotaka; Okazaki, Ryuji; Tachibana, Shogo; Sakamoto, Kanako; Takano, Yoshinori; Okamoto, Chisato; Yano, Hajime; Miura, Yayoi; Abe, Masanao; Hasegawa, Sunao; Noguchi, Takaaki
2017-07-01
Japan Aerospace Exploration Agency (JAXA) launched the asteroid exploration probe "Hayabusa2" in December 3rd, 2014, following the 1st Hayabusa mission. With technological and scientific improvements from the Hayabusa probe, we plan to visit the C-type asteroid 162137 Ryugu (1999 JU3), and to sample surface materials of the C-type asteroid that is likely to be different from the S-type asteroid Itokawa and contain more pristine materials, including organic matter and/or hydrated minerals, than S-type asteroids. We developed the Hayabusa2 sampler to collect a minimum of 100 mg of surface samples including several mm-sized particles at three surface locations without any severe terrestrial contamination. The basic configuration of the sampler design is mainly as same as the 1st Hayabusa (Yano et al. in Science, 312(5778):1350-1353, 2006), with several minor but important modifications based on lessons learned from the Hayabusa to fulfill the scientific requirements and to raise the scientific value of the returned samples.
In-situ Image Acquisition Strategy on Asteroid Surface by MINERVA Rover in HAYABUSA Mission
NASA Astrophysics Data System (ADS)
Yoshimitsu, T.; Sasaki, S.; Yanagisawa, M.
Institute of Space and Astronautical Science (ISAS) has launched the engineering test spacecraft ``HAYABUSA'' (formerly called ``MUSES-C'') to the near Earth asteroid ``ITOKAWA (1998SF36)'' on May 9, 2003. HAYABUSA will go to the target asteroid after two years' interplanetary cruise and will descend onto the asteroid surface in 2005 to acquire some fragments, which will be brought back to the Earth in 2007. A tiny rover called ``MINERVA'' has boarded the HAYABUSA spacecraft. MINERVA is the first asteroid rover in the world. It will be deployed onto the surface immediately before the spacecraft touches the asteroid to acquire some fragments. Then it will autonomously move over the surface by hopping for a couple of days and the obtained data on multiple places are transmitted to the Earth via the mother spacecraft. Small cameras and thermometers are installed in the rover. This paper describes the image acquisition strategy by the cameras installed in the rover.
Penetrator Coring Apparatus for Cometary Surfaces
NASA Technical Reports Server (NTRS)
Braun, David F.; Heinrich, Michael; Ai, Huirong Anita; Ahrens, Thomas J.
2004-01-01
Touch and go impact coring is an attractive technique for sampling cometary nuclei and asteroidal surface on account of the uncertain strength properties and low surface gravities of these objects. Initial coring experiments in low temperature (approx. 153K polycrystalline ice) and porous rock demonstrate that simultaneous with impact coring, measurements of both the penetration strength and constraints on the frictional properties of surface materials can be obtained upon core penetration and core sample extraction. The method of sampling an asteroid, to be deployed, on the now launched MUSES-C mission, employs a small gun device that fires into the asteroid and the resulted impact ejecta is collected for return to Earth. This technique is well suited for initial sampling in a very low gravity environment and deployment depends little on asteroid surface mechanical properties. Since both asteroids and comets are believed to have altered surface properties a simple sampling apparatus that preserves stratigraphic information, such as impact coring is an attractive alternate to impact ejecta collection.
NASA Technical Reports Server (NTRS)
Noguchi, T.; Nakamura, T.; Zolensky, Michael E.; Tanaka, M.; Hashimoto, T.; Konno, M.; Nakato, A.; Ogami, T.; Fujimura, A.; Abe, M.;
2011-01-01
Surface materials on airless solar system bodies exposed to interplanetary space are gradually changed their visible to near-infrared reflectance spectra by the process called "space weathering", which makes the spectra darker and redder. Hapke et al. proposed a model of space weathering: vapor deposition of nanophase reduced iron (npFe(sup 0)) on the surfaces of the grains within the very surface of lunar regolith. This model has been proved by detailed observation of the surfaces of the lunar soil grains by transmission electron microscope (TEM). They demonstrated that npFe(sup 0) was formed by a combination of vapor deposition and irradiation effects. In other words, both micrometeorite impacts and irradiation by solar wind and galactic cosmic ray play roles on the space weathering on the Moon. Because there is a continuum of reflectance spectra from those of Q-type asteroids (almost the same as those of ordinary chondrites) to those of S-type asteroids, it is strongly suggested that reflectance spectra of asteroids composed of ordinary chondrite-like materials were modified over time to those of S-type asteroids due to space weathering. It is predicted that a small amount of npFe(sup 0) on the surface of grains in the asteroidal regolith composed of ordinary chondrite-like materials is the main agent of asteroidal space weathering.
Detection of ice and organics on an asteroidal surface.
Rivkin, Andrew S; Emery, Joshua P
2010-04-29
Recent observations, including the discovery in typical asteroidal orbits of objects with cometary characteristics (main-belt comets, or MBCs), have blurred the line between comets and asteroids, although so far neither ice nor organic material has been detected on the surface of an asteroid or directly proven to be an asteroidal constituent. Here we report the spectroscopic detection of water ice and organic material on the asteroid 24 Themis, a detection that has been independently confirmed. 24 Themis belongs to the same dynamical family as three of the five known MBCs, and the presence of ice on 24 Themis is strong evidence that it also is present in the MBCs. We conclude that water ice is more common on asteroids than was previously thought and may be widespread in asteroidal interiors at much smaller heliocentric distances than was previously expected.
Meteorite spectroscopy and characterization of asteroid surface materials
NASA Technical Reports Server (NTRS)
Gaffey, Michael J.
1991-01-01
The analysis of visible and near-infrared reflectance spectra is the primary means to determine surface mineralogy and petrology of individual asteroids. These individual studies provide the data to investigate the broader relationships between the asteroids and meteorites and between asteroids at different heliocentric distances. The main purpose is to improve the understanding of the origin, evolution, and inter-relationships of the asteroids; of their relationships to the meteorites; and of the processes active and the conditions present in the early inner solar system. Empirical information from the study of asteroids and the meteorites is essential to the adequate development and testing of the theoretical models for the accretion of the terrestrial planets, and for their early post-accretionary evolution. The recent results are outined in the following sections: (1) asteroid igneous processes, and (2) spinel-bearing asteroids and the nebular compositional gradient.
Silicone intraocular lens surface calcification in a patient with asteroid hyalosis.
Matsumura, Kazuhiro; Takano, Masahiko; Shimizu, Kimiya; Nemoto, Noriko
2012-07-01
To confirm a substance presence on the posterior intraocular lens (IOL) surface in a patient with asteroid hyalosis. An 80-year-old man had IOLs for approximately 12 years. Opacities and neodymium-doped yttrium aluminum garnet pits were observed on the posterior surface of the right IOL. Asteroid hyalosis and an epiretinal membrane were observed OD. An IOL exchange was performed on 24 March 2008, and the explanted IOL was analyzed using a light microscope and a transmission electron microscope with a scanning electron micrograph and an energy-dispersive X-ray spectrometer for elemental analysis. To confirm asteroid hyalosis, asteroid bodies were examined with the ionic liquid (EtMeIm+ BF4-) method using a field emission scanning electron microscope (FE-SEM) with digital beam control RGB mapping. X-ray spectrometry of the deposits revealed high calcium and phosphorus peaks. Spectrometry revealed that the posterior IOL surface opacity was due to a calcium-phosphorus compound. Examination of the asteroid bodies using FE-SEM with digital beam control RGB mapping confirmed calcium and phosphorus as the main components. Calcium hydrogen phosphate dihydrate deposits were probably responsible for the posterior IOL surface opacity. Furthermore, analysis of the asteroid bodies demonstrated that calcium and phosphorus were its main components.
Reaching for the Stars: NASA Space Science for Girl Scouts (Girl Scout Stars)
NASA Astrophysics Data System (ADS)
DeVore, E. K.; Harman, P. K.; Berg, J.; Friedman, W.; Fahy, J.; Henricks, J.; Chin, W.; Hudson, A.; Grissom, C.; Lebofsky, L. A.; McCarthy, D.; Gurton, S. P.; White, V.; Summer, T.; Mayo, L.; Patel, R.; Bass, K.
2016-12-01
Girl Scout Stars aims to enhance science, technology, engineering and mathermatics (STEM) experiences for Girl Scouts in grades K-12 through the national Girl Scout Leadership Experience. New space science badges are being created for every Girl Scout level. Using best practices, we engage girls and volunteers with the fundamental STEM concepts that underpin our human quest to explore the universe. Through early and sustained exposure to the people and assets of NASA and the excitement of NASA's Mission, they explore STEM content, discoveries, and careers. Today's tech savvy Girl Scout volunteers prefer just-in-time materials and asynchronous learning. The Girl Scout Volunteer Tool Kit taps into the wealth of online materials provided by NASA for the new space science badges. Training volunteers supports troop activities for the younger girls. For older girls, we enhance Girl Scout summer camp activities, support in-depth experiences at University of Arizona's Astronomy Camp, and "Destination" events for the 2017 total solar eclipse. We partner with the Night Sky Network to engage amateur astronomers with Girl Scouts. Univeristy of Arizona also leads Astronomy Camp for Girl Scout volunteers. Aires Scientific leads eclipse preparation and summer sessions at NASA Goddard Space Flight Center for teams of volunteers, amateur astronomers and older Girl Scouts. There are 1,900,000 Girl Scouts and 800,000 volunteers in the USA. During development, we work with the Girl Scouts of Northern California (50,000 girl members and 31,000 volunteers) and expand across the USA to 121 Girl Scout councils over five years. SETI Institute leads the experienced space science educators and scientists at Astronomical Society of the Pacific, University of Arizona, and Aires Scientific. Girl Scouts of the USA leads dissemination of Girl Scout Stars to Councils across the USA with support of Girl Scouts of Northern California. Through professional development of Girl Scout volunteers, Girl Scout Stars enhances public science literacy. Girl Scout Stars supports the NASA Science Mission Directorate Science Education Objectives and NASA's STEM Engagement and Educator Professional Development lines of business. The Girl Scout Research Institute at GSUSA leads program evaluation with Rockman, et al, external evaluators.
Storyboard GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid encounters
NASA Technical Reports Server (NTRS)
1989-01-01
Storyboard with mosaicked image of an asteroid and entitled GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid objectives. These objectives include: first asteroid encounter; surface geology, composition size, shape, mass; and relation of primitive bodies to meteorites.
UV Reflectance of Jupiter's Moon Europa and Asteroid (16) Psyche
NASA Astrophysics Data System (ADS)
Becker, T. M.; Retherford, K. D.; Roth, L.; Hendrix, A.; McGrath, M. A.; Cunningham, N.; Feaga, L. M.; Saur, J.; Elkins-Tanton, L. T.; Walhund, J. E.; Molyneux, P.
2017-12-01
Surface reflectance observations of solar system objects in the UV are not only complimentary to longer wavelength observations for identifying surface composition, but can also reveal new and meaningful information about the surfaces of those bodies. On Europa, far-UV (FUV) spectral observations made by the Hubble Space Telescope (HST) show that the surface lacks a strong water ice absorption edge near 165 nm, which is intriguing because such a band has been detected on most icy satellites. This may suggest that radiolytic processing by Jupiter's magnetosphere has altered the surface, causing absorption at wavelengths longward of the H2O edge, masking this feature. Additionally, the FUV spectra are blue (increasing albedo with shorter wavelengths), and regions that are observed to be dark in the visible appear bright in the FUV. This spectral inversion, also observed on the Moon and some asteroids, may provide insight into the properties of the surface material and how they are processed.We also explore the UV reflectance spectra of the main belt asteroid (16) Psyche. This asteroid is believed to be the metallic remnant core of a differentiated asteroid, stripped of its mantle through collisions. However, there is speculation that the asteroid could have formed as-is from highly reduced metal-rich material near the Sun early in the formation of the solar system. Further, spectral observations in the infrared have revealed pyroxene and hydroxyl on the asteroid's surface, complicating the interpretation that (16) Psyche is a pure metallic object. Laboratory studies indicate that there are diagnostic spectral features in the UV that could be useful for determining the surface composition. We obtained HST observations of Psyche from 160 - 300 nm. Preliminary results show a featureless, red-sloped spectrum, inconsistent with significant amounts of pyroxene on the surface. We will present the spectra of Europa and the asteroid (16) Psyche and discuss the unique details unveiled by studies of these objects in the UV.
Ultraviolet reflectance properties of asteroids
NASA Astrophysics Data System (ADS)
Butterworth, P. S.; Meadows, A. J.
1985-05-01
An analysis of the UV spectra of 28 asteroids obtained with the Internal Ultraviolet Explorer (IUE) satellite is presented. The spectra lie within the range 2100-3200 A. The results are examined in terms of both asteroid classification and of current ideas concerning the surface mineralogy of asteroids. For all the asteroids examined, UV reflectivity declines approximately linearly toward shorter wavelengths. In general, the same taxonomic groups are seen in the UV as in the visible and IR, although there is some evidence for asteroids with anomalous UV properties and for UV subclasses within the S class. No mineral absorption features are reported of strength similar to the strongest features in the visible and IR regions, but a number of shallow absorptions do occur and may provide valuable information on the surface composition of many asteroids.
Environmental design implications for two deep space SmallSats
NASA Astrophysics Data System (ADS)
Kahn, Peter; Imken, Travis; Elliott, John; Sherwood, Brent; Frick, Andreas; Sheldon, Douglas; Lunine, Jonathan
2017-10-01
The extreme environmental challenges of deep space exploration force unique solutions to small satellite design in order to enable their use as scientifically viable spacecraft. The challenges of implementing small satellites within limited resources can be daunting when faced with radiation effects on delicate electronics that require shielding or unique adaptations for protection, or mass, power and volume limitations due to constraints placed by the carrier spacecraft, or even Planetary Protection compliant design techniques that drive assembly and testing. This paper will explore two concept studies where the environmental constraints and/or planetary protection mitigations drove the design of the Flight System. The paper will describe the key technical drivers on the Sylph mission concept to explore a plume at Europa as a secondary free-flyer as a part of the planned Europa Mission. Sylph is a radiation-hardened smallsat concept that would utilize terrain relative navigation to fly at low altitudes through a plume, if found, and relay the mass spectra data back through the flyby spacecraft during its 24-h mission. The second topic to be discussed will be the mission design constraints of the Near Earth Asteroid (NEA) Scout concept. NEAScout is a 6U cubesat that would utilize an 86 sq. m solar sail as propulsion to execute a flyby with a near-Earth asteroid and help retire Strategic Knowledge Gaps for future human exploration. NEAScout would cruise for 24 months to reach and characterize one Near-Earth asteroid that is representative of Human Exploration targets and telemeter that data directly back to Earth at the end of its roughly 2.5 year mission.
The surface roughness of (433) Eros as measured by thermal-infrared beaming
NASA Astrophysics Data System (ADS)
Rozitis, B.
2017-01-01
In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (I.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (I.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an `almost pole-on' illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterized by an rms slope of 38 ± 8° at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the rms slope of 25 ± 5° implied by the NEAR Shoemaker laser ranging results when extrapolated to this spatial scale, and indicates that other surface shaping processes might operate, in addition to collisions and gravity, at spatial scales under one metre in order to make asteroid surfaces rougher. For other high-obliquity asteroids observed during `pole-on' illumination conditions, the thermal-infrared beaming effect allows surface roughness to be constrained when the sub-solar latitude is greater than 60°, and if the asteroids are observed at phase angles of less than 40°. They will likely exhibit near-Earth asteroid thermal model beaming parameters that are lower than expected for a typical asteroid at all phase angles up to 100°.
Science education in the Boy Scouts of America
NASA Astrophysics Data System (ADS)
Hintz, Rachel Sterneman
This study of science education in the Boy Scouts of America focused on males with Boy Scout experience. The mixed-methods study topics included: merit badge standards compared with National Science Education Standards, Scout responses to open-ended survey questions, the learning styles of Scouts, a quantitative assessment of science content knowledge acquisition using the Geology merit badge, and a qualitative analysis of interview responses of Scouts, Scout leaders, and scientists who were Scouts. The merit badge requirements of the 121 current merit badges were mapped onto the National Science Education Standards: 103 badges (85.12%) had at least one requirement meeting the National Science Education Standards. In 2007, Scouts earned 1,628,500 merit badges with at least one science requirement, including 72,279 Environmental Science merit badges. "Camping" was the "favorite thing about Scouts" for 54.4% of the boys who completed the survey. When combined with other outdoor activities, what 72.5% of the boys liked best about Boy Scouts involved outdoor activity. The learning styles of Scouts tend to include tactile and/or visual elements. Scouts were more global and integrated than analytical in their thinking patterns; they also had a significant intake element in their learning style. Earning a Geology merit badge at any location resulted in a significant gain of content knowledge; the combined treatment groups for all location types had a 9.13% gain in content knowledge. The amount of content knowledge acquired through the merit badge program varied with location; boys earning the Geology merit badge at summer camp or working as a troop with a merit badge counselor tended to acquire more geology content knowledge than boys earning the merit badge at a one-day event. Boys retained the content knowledge learned while earning the merit badge. Scientists, Scout leaders, and Scouts felt that Scouts learned science through participation in the Boy Scout program, both in the merit badge program and also through activities, trips, outdoors, in meetings, and through rank advancement. On an open-ended questionnaire, 75.2% of Scouts reported that doing merit badges helped them do better in school. Scout leaders indicated that the overall Scouting environment introduced boys to science. Scout scientists credited Boy Scouts with providing experiences that interested and/or helped them in their scientific careers.
Spectral decomposition of asteroid Itokawa based on principal component analysis
NASA Astrophysics Data System (ADS)
Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho
2018-01-01
The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.
Reaching for the Stars: NASA Science for Girl Scouts (Girl Scout Stars)
NASA Astrophysics Data System (ADS)
DeVore, Edna; Harman, Pamela; Girl Scouts of the USA; Girl Scouts of Northern California; University of Arizona; Astronomical Society of the Pacific; Aires Scientific
2017-01-01
Girl Scout Stars aims to enhance STEM experiences for Girl Scouts in grades K-12. New space science badges are being created for every Girl Scout level. Using best practices, we engage girls and volunteers with the fundamental STEM concepts that underpin our human quest to explore the universe. Through early and sustained exposure to the people and assets of NASA and the excitement of NASA’s Mission, they explore STEM content, discoveries, and careers. Today’s tech savvy Girl Scout volunteers prefer just-in-time materials and asynchronous learning. The Volunteer Tool Kit taps into the wealth of NASA's online materials for the new space science badges. Training volunteers supports troop activities for the younger girls. For older girls, we enhance Girl Scout summer camp activities, support in-depth experiences at Univ. of Arizona’s Astronomy Camp, and “Destination” events for the 2017 total solar eclipse. We partner with the Night Sky Network to engage amateur astronomers with Girl Scouts. Univ. of Arizona also leads Astronomy Camp for Girl Scout volunteers. Aires Scientific leads eclipse preparation and summer sessions at NASA Goddard Space Flight Center for teams of volunteers, amateur astronomers and older Girl Scouts.There are 1,900,000 Girl Scouts and 800,000 volunteers in the USA. During development, we work with the Girl Scouts of Northern California (50,000 girl members and 31,000 volunteers) and expand across the USA to 121 Girl Scout councils over five years. SETI Institute leads the space science educators and scientists at Astronomical Society of the Pacific, Univ. of Arizona, and Aires Scientific. Girl Scouts of the USA leads dissemination of Girl Scout Stars with support of Girl Scouts of Northern California. Through professional development of Girl Scout volunteers, Girl Scout Stars enhances public science literacy. Girl Scout Stars supports the NASA Science Mission Directorate Science Education Objectives and NASA’s STEM Engagement and Educator Professional Development lines of business. The Girl Scout Research Institute at GSUSA leads program evaluation with Rockman, et al, external evaluators. Funded by NASA: NNX16AB90A.
Spectrophotometric Characterisation of the Trojan Asteroids (624) Hektor et (911) Agamemnon
NASA Astrophysics Data System (ADS)
Doressoundiram, A.; Bott, N.; Perna, D.
2016-12-01
We obtained spectrophotometric observations of (624) Hektor and (911) Agamemnon, two large Trojan asteroids in order to (1) better understand the composition of their surface by means of their visible and infrared spectra, and (2) eventually detect a possible weak cometary activity by means of their images in the visible. We had data at different rotational phases to probe surface variegations. We found that the visible and infrared spectra are very similar to each other. That indicates a relatively homogenous surface for the asteroids, but it does not exclude the presence of localized inhomogeneities. Computation of a high spectral slope confirmed their D-type asteroids classification. No aqueous alteration absorption band was found in the visible spectra of both studied Trojan asteroids. This can be interpreted in two differents ways: either no liquid water flowed on their surface, or the surface is covered with a crust that mask the presence of hydrated minerals. We use a radiative transfer model to investigate the surface composition of these icy and primitive outer solar system bodies. We suggest models composed of mixtures of organic compounds, minerals and lower limits for water ice. Lastly, the analysis of the images of both Trojan asteroids did not reveal any cometary activity.
Laser Simulations of the Destructive Impact of Nuclear Explosions on Hazardous Asteroids
NASA Astrophysics Data System (ADS)
Aristova, E. Yu.; Aushev, A. A.; Baranov, V. K.; Belov, I. A.; Bel'kov, S. A.; Voronin, A. Yu.; Voronich, I. N.; Garanin, R. V.; Garanin, S. G.; Gainullin, K. G.; Golubinskii, A. G.; Gorodnichev, A. V.; Denisova, V. A.; Derkach, V. N.; Drozhzhin, V. S.; Ericheva, I. A.; Zhidkov, N. V.; Il'kaev, R. I.; Krayukhin, A. A.; Leonov, A. G.; Litvin, D. N.; Makarov, K. N.; Martynenko, A. S.; Malinov, V. I.; Mis'ko, V. V.; Rogachev, V. G.; Rukavishnikov, A. N.; Salatov, E. A.; Skorochkin, Yu. V.; Smorchkov, G. Yu.; Stadnik, A. L.; Starodubtsev, V. A.; Starodubtsev, P. V.; Sungatullin, R. R.; Suslov, N. A.; Sysoeva, T. I.; Khatunkin, V. Yu.; Tsoi, E. S.; Shubin, O. N.; Yufa, V. N.
2018-01-01
We present the results of preliminary experiments at laser facilities in which the processes of the undeniable destruction of stony asteroids (chondrites) in space by nuclear explosions on the asteroid surface are simulated based on the principle of physical similarity. We present the results of comparative gasdynamic computations of a model nuclear explosion on the surface of a large asteroid and computations of the impact of a laser pulse on a miniature asteroid simulator confirming the similarity of the key processes in the fullscale and model cases. The technology of fabricating miniature mockups with mechanical properties close to those of stony asteroids is described. For mini-mockups 4-10 mm in size differing by the shape and impact conditions, we have made an experimental estimate of the energy threshold for the undeniable destruction of a mockup and investigated the parameters of its fragmentation at a laser energy up to 500 J. The results obtained confirm the possibility of an experimental determination of the criteria for the destruction of asteroids of various types by a nuclear explosion in laser experiments. We show that the undeniable destruction of a large asteroid is possible at attainable nuclear explosion energies on its surface.
Probing the internal structure of the asteriod Didymoon with a passive seismic investigation
NASA Astrophysics Data System (ADS)
Murdoch, N.; Hempel, S.; Pou, L.; Cadu, A.; Garcia, R. F.; Mimoun, D.; Margerin, L.; Karatekin, O.
2017-09-01
Understanding the internal structure of an asteroid has important implications for interpreting its evolutionary history, for understanding its continuing geological evolution, and also for asteroid deflection and in-situ space resource utilisation. Given the strong evidence that asteroids are seismically active, an in-situ passive seismic experiment could provide information about the asteroid surface and interior properties. Here, we discuss the natural seismic activity that may be present on Didymoon, the secondary component of asteroid (65803) Didymos. Our analysis of the tidal stresses in Didymoon shows that tidal quakes are likely to occur if the secondary has an eccentric orbit. Failure occurs most easily at the asteroid poles and close to the surface for both homogeneous and layered internal structures. Simulations of seismic wave propagation in Didymoon show that the seismic moment of even small meteoroid impacts can generate clearly observable body and surface waves if the asteroid's internal structure is homogeneous. The presence of a regolith layer over a consolidated core can result in the seismic energy becoming trapped in the regolith due to the strong impedance contrast at the regolith-core boundary. The inclusion of macro-porosity (voids) further complexifies the wavefield due to increased scattering. The most prominent seismic waves are always found to be those traveling along the surface of the asteroid and those focusing in the antipodal point of the seismic source. We find also that the waveforms and ground acceleration spectra allow discrimination between the different internal structure models. Although the science return of a passive seismic experiment would be enhanced by having multiple seismic stations, one single seismic station can already vastly improve our knowledge about the seismic environment and sub-surface structure of an asteroid. We describe several seismic measurement techniques that could be applied in order to study the asteroid internal structure with one three-component seismic station.
An age-colour relationship for main-belt S-complex asteroids.
Jedicke, Robert; Nesvorný, David; Whiteley, Robert; Ivezić Z, Zeljko; Jurić, Mario
2004-05-20
Asteroid collisions in the main belt eject fragments that may eventually land on Earth as meteorites. It has therefore been a long-standing puzzle in planetary science that laboratory spectra of the most populous class of meteorite (ordinary chondrites, OC) do not match the remotely observed surface spectra of their presumed (S-complex) asteroidal parent bodies. One of the proposed solutions to this perplexing observation is that 'space weathering' modifies the exposed planetary surfaces over time through a variety of processes (such as solar and cosmic ray bombardment, micro-meteorite bombardment, and so on). Space weathering has been observed on lunar samples, in Earth-based laboratory experiments, and there is good evidence from spacecraft data that the process is active on asteroid surfaces. Here, we present a measurement of the rate of space weathering on S-complex main-belt asteroids using a relationship between the ages of asteroid families and their colours. Extrapolating this age-colour relationship to very young ages yields a good match to the colour of freshly cut OC meteorite samples, lending strong support to a genetic relationship between them and the S-complex asteroids.
Scientific Packages on Small Bodies, a Deployment Strategy for New Missions
NASA Astrophysics Data System (ADS)
Tardivel, Simon; Scheeres, D. J.; Michel, P.
2013-10-01
The exploration of asteroids is currently a topic of high priority for the space agencies. JAXA will launch its second asteroid explorer, aimed at 1999 JU3, in the second half of 2014. NASA has selected OSIRIS-REx to go to asteroid Bennu, and it will launch in 2016. ESA is currently performing the assessment study of the MarcoPolo-R space mission, in the framework of the M3 (medium) competition of its Cosmic Vision Program, whose objective is now 2008 EV5. In the continuity of these missions, landing for an extended period of time on the ground to perform measurements seems a logical next step to asteroid exploration. Yet, the surface behavior of an asteroid is not well known and landing the whole spacecraft on it could be hazardous, and pose other mission operations problems such as ensuring communication with Earth. Hence, we propose a new approach to asteroid surface exploration. Using a mothership spacecraft, we will present how multiple landers could be deployed to the surface of an asteroid using ballistic trajectories. Combining a detailed simulation of the bouncing and contact dynamics on the surface with numerical and mathematical analysis of the flight dynamics near an asteroid, we show how landing pods could be distributed at the surface of a body. The strategy has the advantages that the mothership always maintains a safe distance from the surface and the landers do not need any GNC (guidance, navigation and control system) or landing apparatus. Thus, it allows for simple operations and for the design of lightweight landers with minimum platform overhead and maximum payload. These pods could then be used as a single measurement apparatus (e.g. seismometers) or as independent and different instruments, using their widespread distribution to gain both global and local knowledge on the asteroid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilas, Faith; Hendrix, Amanda R., E-mail: fvilas@psi.edu
Evidence for the manifestation of space weathering in S-complex asteroids as a bluing of the UV/blue reflectance spectrum is extended using high resolution CCD reflectance spectra of 21 main-belt, 1 Mars-crossing, and 3 near-Earth asteroids covering a wavelength range of 320–620 nm. Demonstration of the transition of iron-bearing materials from volume scattering to surface (Fresnel) scattering is apparent as an abrupt downturn at wavelengths just short of 400 nm in reflectance spectra of fresh asteroid surfaces. The weathering away of this downturn is demonstrated by its absence in reflectance spectra of mature S-complex asteroids, consistent with an increase in npFe{supmore » 0} on the material's surface. Modeling of the effects of the addition of small amounts of npFe{sup 0} to particles from both a hypothetical mineral and a terrestrial basalt shows that evidence of the addition of 0.0001% npFe{sup 0} affects the reflectance at UV/blue wavelengths, while the addition of 0.01% is required to see the visible/near-infrared reddening and diminution of absorption features. Thus, the UV/blue reflectance characteristics allow earlier detection of the onset of space weathering effects. Combining UV/blue spectral characteristics of asteroids and ordinary chondrite meteorites with estimated ages of the young Datura family, we establish a method of dating asteroid surface ages during the early stages of space weathering. We demonstrate by dating the surface of NEA 163249 2002 GT to be 109 (±18) to 128 (±10) Kyr.« less
Origin of Dark Material on VESTA from DAWN FC Data: Remnant Carbonaceous Chondrite Impators
NASA Technical Reports Server (NTRS)
Reddy, V.; LeCorre, L.; Nathues, A.; Mittlefehldt, David W.; Cloutis, E. A.; OBrien, D. P.; Durda, D. D.; Bottke, W. F.; Buczkowski, D.; Scully, J. E. C.;
2012-01-01
NASA's Dawn spacecraft entered orbit around asteroid (4) Vesta in July 2011 for a yearlong mapping orbit. The surface of Vesta as imaged by the Dawn Framing Camera (FC) revealed a surface that is unlike any asteroid we have visited so far with a spacecraft. Albedo and color variations on Vesta are the most diverse in the asteroid belt with a majority of these linked to distinct compositional units on the asteroid s surface. FC discovered dark material on Vesta. These low albedo surface features were first observed during Rotational Characterization 3 phase at a resolution of approx. 487 m/pixel. Here we explore the composition and possible meteoritical analogs for the dark material on Vesta.
OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugent, C. R.; Mainzer, A.; Masiero, J.
The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emittedmore » flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.« less
NASA Technical Reports Server (NTRS)
Kuhl, Christopher A.
2008-01-01
The Aerial Regional-scale Environmental Survey (ARES) is a Mars exploration mission concept designed to send an airplane to fly through the lower atmosphere of Mars, with the goal of taking scientific measurements of the atmosphere, surface, and subsurface phenomenon. ARES was first proposed to the Mars Scout program in December 2002 for a 2007 launch opportunity and was selected to proceed with a Phase A study, step-2 proposal which was submitted in May 2003. ARES was not selected for the Scout mission, but efforts continued on risk reduction of the atmospheric flight system in preparation for the next Mars Scout opportunity in 2006. The ARES concept was again proposed in July 2006 to the Mars Scout program but was not selected to proceed into Phase A. This document describes the Planetary Protection strategy that was developed in ARES Pre Phase-A activities to help identify, early in the design process, certain hardware, assemblies, and/or subsystems that will require unique design considerations based on constraints imposed by Planetary Protection requirements. Had ARES been selected as an exploration project, information in this document would make up the ARES Project Planetary Protection Plan.
NASA Technical Reports Server (NTRS)
Mcfadden, Lucy-Ann
1988-01-01
Photometric and spectrophotometric studies of asteroids and comets are in progress to address questions about the mineralogical relationship between asteroids near the 3:1 Kirkwood gap and ordinary chondrite meteorites and between cometary nuclei and the surface of asteroids. Progress was made on a method to convert the measured excess UV flux in the spectrum of 2201 Oljato to column abundance of OH and CN. Spectral reflectance measurements of large asteroids near the 3:1 Kirkwood gap, which is expected to be the source of ordinary chondrite meteorites, were briefly examined and show no spectral signatures that are characteristic of ordinary chondrite meteorite powders measured in the lab.
NASA Astrophysics Data System (ADS)
Delbo, Marco; Matter, A.; Gundlach, B.; Blum, J.
2013-10-01
Asteroids belonging to the spectroscopic M-type exhibit a quasi featureless and moderately red reflectance spectrum and a geometric visible albedo between 0.1 and 0.3. These asteroids were initially thought to be metallic cores of differentiated asteroids that were exposed to space by a catastrophic disruption by impacts. Later, this view has been challenged by the detection of silicates and hydration spectroscopic bands on these bodies. Unveiling the physical properties of the surfaces of these asteroids, and identifying their meteorite analogs is a challenge from remote-sensing observations. Nevertheless, these are crucial problems, important for estimating the number of asteroids that underwent differentiation in the early phases of the formation of our solar system. The thermal inertia is a sensitive indicator for the presence of metal in the regolith on the surfaces of asteroids. We developed a new thermophysical model that allow us to derive the value of the thermal inertia from interferometric observations in the thermal infrared. We report on our investigation of the thermal inertia of M-type asteroids, including the asteroids (16) Psyche, for which we obtained a thermal inertia value anomalously high compared to the thermal inertia values of other asteroids in the same size range. From the thermal inertia and model of heat conductivity that accounts for different values of the packing fraction (a measure of the degree of compaction of the regolith particles) the regolith grain size is derived.
The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu
NASA Astrophysics Data System (ADS)
Reuter, D. C.; Simon, A. A.; Hair, J.; Lunsford, A.; Manthripragada, S.; Bly, V.; Bos, B.; Brambora, C.; Caldwell, E.; Casto, G.; Dolch, Z.; Finneran, P.; Jennings, D.; Jhabvala, M.; Matson, E.; McLelland, M.; Roher, W.; Sullivan, T.; Weigle, E.; Wen, Y.; Wilson, D.; Lauretta, D. S.
2018-03-01
The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000-2300 cm-1). Its primary purpose is to map the surface composition of the asteroid Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission. The information it returns will help guide the selection of the sample site. It will also provide global context for the sample and high spatial resolution spectra that can be related to spatially unresolved terrestrial observations of asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W average), and robust instrument with the sensitivity needed to detect a 5% spectral absorption feature on a very dark surface (3% reflectance) in the inner solar system (0.89-1.35 AU). It, in combination with the other instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an asteroid's surface.
Properties of the moon, Mars, Martian satellites, and near-earth asteroids
NASA Technical Reports Server (NTRS)
Taylor, Jeffrey G.
1989-01-01
Environments and surface properties of the moon, Mars, Martian satellites, and near-earth asteroids are discussed. Topics include gravity, atmospheres, surface properties, surface compositions, seismicity, radiation environment, degradation, use of robotics, and environmental impacts. Gravity fields vary from large fractions of the earth's field such as 1/3 on Mars and 1/6 on the moon to smaller fractions of 0.0004 g on an asteroid 1 km in diameter. Spectral data and the analogy with meteor compositions suggest that near-earth asteroids may contain many resources such as water-rich carbonaceous materials and iron-rich metallic bodies. It is concluded that future mining and materials processing operations from extraterrestrial bodies require an investment now in both (1) missions to the moon, Mars, Phobos, Deimos, and near-earth asteroids and (2) earth-based laboratory research in materials and processing.
Chang'e-2 spacecraft observations of asteroid 4179 Toutatis
NASA Astrophysics Data System (ADS)
Ji, Jianghui; Jiang, Yun; Zhao, Yuhui; Wang, Su; Yu, Liangliang
2016-01-01
On 13 December 2012, Chang'e-2 completed a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 meters from the asteroid's surface. The observations show that Toutatis has an irregular surface and its shape resembles a ginger-root of a smaller lobe (head) and a larger lobe (body). Such bilobate shape is indicative of a contact binary origin for Toutatis. In addition, the high-resolution images better than 3 meters provide a number of new discoveries about this asteroid, such as an 800-meter depression at the end of the large lobe, a sharply perpendicular silhouette near the neck region, boulders, indicating that Toutatis is probably a rubble-pile asteroid. Chang'e-2 observations have significantly revealed new insights into the geological features and the formation and evolution of this asteroid. In final, we brief the future Chinese asteroid mission concept.
Optical remote sensing of asteroid surfaces from spacecraft
NASA Technical Reports Server (NTRS)
Mccord, T. B.
1978-01-01
Reflectance spectroscopy and multispectral mapping are the techniques likely to be most useful for determining asteroid surfaces. Several other techniques should be considered for providing complementary information.
Electrostatic Levitation of Fines on Asteroids
NASA Astrophysics Data System (ADS)
Lee, P.
1995-09-01
Electrostatic fields can develop at the surface of resistive asteroids exposed directly to solar radiation and to the solar wind. As on the Moon (e.g., [1-3]), the process may lead to the levitation and transport of charged grains, and contribute to winnowing asteroidal regoliths of their finest particle size fraction. Two commonly proposed mechanisms for the levitation of dust on the Moon are applied to asteroids. The first depends on global scale electrostatic fields and involves the development of a near-surface photoelectron layer over the asteroid's sunlit hemisphere [4,5] ; the second involves local fields near the terminator and particle charging by higher-energy photoelectron emission on the sunlit faces of blocks and other small-scale prominences [6,7]. Preliminary modeling results suggest that on a sufficiently resistive and slow-rotating asteroid at a heliocentric distance of 3 AU, the subsolar region evolves surface electrostatic fields of ~5 V/m^-1, while field intensities in the terminator zone may reach ~10^5 V/m^-1. Charged regolithic fines are easily levitated, their fate being a function of their charge and size. On a 20 km-radius chondritic main belt asteroid, particles up to ~100 microns across may be electro- statically accelerated to escape. Fines <=1 micron across are subject to radiation pressure and/or to solar wind drag as soon as they are lofted, and may be quickly entrained to escape even if initially launched at sub-escape velocities. Larger particles levitated in the sub-escape regime remain gravitationally bound to the asteroid and experience lateral transport along local electrostatic and gravity gradients. The particles may migrate across the asteroid's surface indefinitely or, more likely, until they settle in perenially shadowed areas and/or topographic lows (craters or grooves), thus smoothing the asteroid's topography and minimizing shadows. They will remain on the asteroid until ejected by impacts or until the particles are further comminuted by micrometeoritic sandblasting. Remote-sensing studies of asteroids and the examination of meteorite regolithic breccias indicate that, in comparison to the lunar regolith, asteroidal regoliths are generally deficient in fine-grained material <=100 microns across (i.e. in dust and agglutinates) (e.g., [8,9]). This characteristic, usually attributed to the preferential loss of smaller particles by micrometeoritic bombardment [10], may be in part due to electrostatic winnowing. Surface features on Phobos, Deimos and on asteroids 951 Gaspra and 243 Ida (regional albedo-topography relationships [11-13], dark-floored craters [11,14], grooves [11,15], blocks with possible basal debris aprons [16]) appear consistent with an electrophysical mobilization of fines. The inference from polarimetry [17] that the surfaces of M-type asteroids, which are thought to be metal-rich and thus unlikely to evolve strong fields, are finer-grained than most other types of asteroid surfaces suggests that the size of the smallest particles retained on asteroids may indeed be related to their electrophysical properties. Although many unknowns remain with regard to the actual electrophysical properties of asteroid surfaces and to the true effectiveness of the levitation mechanisms invoked, the available models predict interesting results. Electrostatic levitation offers an additional means of particle segregation, transport, and removal on asteroids. The process is expected to be more effective closer to the sun, on less massive objects, on asteroids with a slower spin rate, on the more resistive surfaces, over the more rugged terrain, for less dense particles, and for smaller grains. References: [1] Rennilson J. J. and Criswell D. R. (1974) Moon, 10, 121-142. [2] Berg O. E. et al. (1974) GRL, 1, 289. [3] Whipple E. C. (1981) Rept. Prog. Phys., 44, 1197-1250. [4] Singer S. F. and Walker E. H. (1962) Icarus, 1, 7-12. [5] Mendis D. A. et al. (1981) Astrophys. J., 249, 789-797. [6] Criswell D. R. (1973) in Photons and Particle Interactions with Surfaces in Space (R. Grard, ed.), 545-556. [7] De B. R. and Criswell D. R. (1977) JGR, 82, 999-1004. [8] McKay D. S. et al. (1989) in Asteroids II (R. Binzel et al., eds.), 617-642. [9] Bunch T. E. and Rajan R. S. (1988) in Meteorites and the Early Solar System (J. Kerridge and M. Matthews, eds.), 144-164. [10] Matson D. L. et al. (1977). Proc. LSC 8th, 1001-1011. [11] Thomas P. and Veverka J. (1979) in Asteroids (T. Gehrels, ed.), 628-651. [12] Helfenstein P. et al. (1994) Icarus, 107, 37-60. [13] Helfenstein P. et al. (1995) Icarus, submitted. [14] Sullivan R. et al. (1995) Icarus, submitted. [15] Veverka J. et al. (1994) Icarus, 107, 72-83. [16] Lee P. et al. (1995) Icarus, submitted. [17] Dollfus A. et al. (1989) in Asteroids II (R. Binzel et al., eds.), 594-616.
Lunar and Planetary Science XXXV: Asteroids, Meteors, Comets
NASA Technical Reports Server (NTRS)
2004-01-01
Reports included:Long Term Stability of Mars Trojans; Horseshoe Asteroids and Quasi-satellites in Earth-like Orbits; Effect of Roughness on Visible Reflectance Spectra of Planetary Surface; SUBARU Spectroscopy of Asteroid (832) Karin; Determining Time Scale of Space Weathering; Change of Asteroid Reflectance Spectra by Space Weathering: Pulse Laser Irradiation on Meteorite Samples; Reflectance Spectra of CM2 Chondrite Mighei Irradiated with Pulsed Laser and Implications for Low-Albedo Asteroids and Martian Moons; Meteorite Porosities and Densities: A Review of Trends in the Data; Small Craters in the Inner Solar System: Primaries or Secondaries or Both?; Generation of an Ordinary-Chondrite Regolith by Repetitive Impact; Asteroid Modal Mineralogy Using Hapke Mixing Models: Validation with HED Meteorites; Particle Size Effect in X-Ray Fluorescence at a Large Phase Angle: Importance on Elemental Analysis of Asteroid Eros (433); An Investigation into Solar Wind Depletion of Sulfur in Troilite; Photometric Behaviour Dependent on Solar Phase Angle and Physical Characteristics of Binary Near-Earth-Asteroid (65803) 1996 GT; Spectroscopic Observations of Asteroid 4 Vesta from 1.9 to 3.5 micron: Evidence of Hydrated and/or Hydroxylated Minerals; Multi-Wavelength Observations of Asteroid 2100 Ra-Shalom: Visible, Infrared, and Thermal Spectroscopy Results; New Peculiarities of Cometary Outburst Activity; Preliminary Shape Modeling for the Asteroid (25143) Itokawa, AMICA of Hayabusa Mission; Scientific Capability of MINERVA Rover in Hayabusa Asteroid Mission; Characteristics and Current Status of Near Infrared Spectrometer for Hayabusa Mission; Sampling Strategy and Curation Plan of Hayabusa Asteroid Sample Return Mission; Visible/Near-Infrared Spectral Properties of MUSES C Target Asteroid 25143 Itokawa; Calibration of the NEAR XRS Solar Monitor; Modeling Mosaic Degradation of X-Ray Measurements of 433 Eros by NEAR-Shoemaker; Scattered Light Remediation and Recalibration of near Sheomaker s NIS Global Dataaset at 433 Eros; Evaluation of Preparation and Measuring Techniques for Interplanetary Dust Particles for the MIDAS Experiment on Rosetta; Chiron: a Proposed Remote Sensing Prompt Gamma Ray Activation Analysis Instrument for a Nuclear Powered Prometheus Mission;From Present Surveying to Future Prospecting of the Asteroid Belt; Asteroid Physical Properties Probe Microgravity Testing of a Surface Sampling System for Sample Return from Small Solar System Bodies;and Penetrator Coring Apparatus for Cometary Surfaces.
Laboratory Simulations of Space Weathering of Asteroid Surfaces by Solar Wind Ions.
NASA Astrophysics Data System (ADS)
Miller, Kenneth A.; De Ruette, Nathalie; Harlow, George; Domingue, Deborah L.; Savin, Daniel Wolf
2014-06-01
Studies into the formation of the terrestrial planets rely on the analysis of asteroids and meteorites. Asteroids are solar system remnants from the planetary formation period. By characterizing their mineralogical composition we can better constrain the formation and evolution of the inner planets.Remote sensing is the primary means for studying asteroids. Sample return missions, such as Hayabusa, are complex and expensive, hence we rely on asteroid reflectance spectra to determine chemical composition. Links have been made and debated between meteorite classes and asteroid types [1, 2]. If such relationships can be confirmed, then meteorites would provide a low cost asteroid sample set for study. However, a major issue in establishing this link is the spectral differences between meteorite samples and asteroid surfaces. The most commonly invoked explanation for these differences is that the surfaces of asteroids are space weathered [2, 3]. The dominant mechanism for this weathering is believed to be solar-wind ion irradiation [2, 4, 5]. Laboratory simulations of space weathering have demonstrated changes in the general direction required to alter spectra from unweathered meteorite samples to asteroid observations [3, 6 -10], but many open questions remain and we still lack a comprehensive understanding. We propose to explore the alleged connection of ordinary chondrite (OC) meteorites to S-type asteroids through a series of systematic laboratory simulations of solar-wind space weathering of asteroid surface materials. Here we describe the issue in more detail and describe the proposed apparatus. [1] Chapman C. R. (1996) Meteorit. Planet. Sci., 31, 699-725. [2] Chapman C. R. (2004), Annu. Rev. Earth Planet. Sci., 32, 539-567. [3] Hapke B. (2001) J. Ge-ophys. Res., 106, 10039-10074. [4] Pieters C.M. et al. (2000) Meteorit. Planet. Sci., 35, 1101-1107. [5] Ver-nazza P. et al. (2009) Nature, 458, 993-995. [6] Stra-zulla G. et al. (2005) Icarus, 174, 31-35 (2005). [7] Brunetto R and Strazzulla G (2005) Icarus, 179, 265-273. [8] Marchi S et al. (2005) Astron. Astrophys., 443, 769-775. [9] Loeffler M. J. et al. (2009) J. Geo-phys. Res., 114, E03003. [10] Fu X. et al. (2012) Ica-rus, 219, 630-640
Science Education in the Boy Scouts of America
ERIC Educational Resources Information Center
Hintz, Rachel Sterneman
2009-01-01
This study of science education in the Boy Scouts of America focused on males with Boy Scout experience. The mixed-methods study topics included: merit badge standards compared with National Science Education Standards, Scout responses to open-ended survey questions, the learning styles of Scouts, a quantitative assessment of science content…
Asteroid collisions, craters, regoliths, and lifetimes
NASA Technical Reports Server (NTRS)
Chapman, C. R.
1978-01-01
Laboratory experiments and computer modeling are used to predict the development of regoliths on all asteroids more than a few tens of kilometers in diameter, allowing for a wide range in the intrinsic strength of asteroidal surface materials. The high frequency of interasteroid collisions requires nearly all asteroids to be fragments of precursors.
NASA Technical Reports Server (NTRS)
Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.;
2016-01-01
The Strata-1 experiment will study the evolution of asteroidal regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies are subjected to a variety of forces and will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. Our understanding of this dynamical evolution and the inter-particle forces involved would benefit from long-term observations of granular materials exposed to small vibrations in microgravity. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples collected by missions such as OSIRIS-REx and Hayabusa 1 and 2, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Understanding regolith dynamics will inform designs of how to land and set anchors, safely sample/move material on asteroidal surfaces, process large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predict behavior of large and small particles on disturbed asteroid surfaces.
Girl Scout Stars: Engaging Girl Scouts in the 2017 Total Eclipse
NASA Astrophysics Data System (ADS)
Harman, P. K.
2017-12-01
Reaching for the Stars: NASA Science for Girl Scouts (Girl Scout Stars) engages Girl Scouts in observing the 2017 eclipse. Three councils are host-sponsors of Girl Scout Total Eclipse Destinations,. Total Eclipse of the Heartland, sponsored by Girl Scouts of Southern Illinois, begins with planetarium, and science center visits in St. Louis, and transits to Carbondale for the eclipse. The Great Eclipse Adventure, sponsored by the Girl Scouts of the Missouri Heartland, features hands-on science activities led by Astronomy and Physics faculty and grad students at University of Missouri, Columbia, MO, and observing the eclipse at a camp nearby. Eyes to the Sky: A Once in a Lifetime Destination, by the Girl Scouts of South Carolina - Mountains to Midlands, visits a Challenger Center, a planetarium, and observatory, and culminates at Camp MaBak, Marietta, SC. Girl Scout Destinations are travel adventures, for individual girls ages 11 and older, that are inspiring, life-changing experiences. Destinations are determined via an application and review process by Girls Scouts of the USA. Girl Scout Stars also developed an Eclipse Activity Guide and kit box of materials, distributed the materials to 91 Girl Scout Councils, and delivered webinar training to councils. The eclipse materials enrich the girls' summer camp experiences with activities that promote understanding the Sun-Earth-Moon relationship, the solar system and safe eclipse viewing; and that feature science practices. Examples of the reach of the kit boxes are Girl Scouts of Montana and Wyoming Total Eclipse Event in Casper, WY, and the Girl Scouts of Northern California summer camps featuring the activities. In Girl Scouting, girls discover their skills, talents and what they care about; connect with other Girl Scouts and people in their community; and take action to change the world. This is called the Girl Scout Leadership Experience. With girl-led, hands on activities where girls can team up and work together - they successfully achieve the five leadership outcomes: Strong sense of self, positive values, challenge seeking, healthy relationships, and community problem solving. When girls exhibit these attitudes and skills, they become responsible, productive, caring, and engaged citizens. Successes in this context will be presented. Funded by NASA:NNX16AB90A.
NASA Astrophysics Data System (ADS)
Goguen, Jay D.; Bauer, James M.
2017-10-01
The reflectivity of solar system surfaces ‘spikes’ sharply when the Sun is less than 1 degree from directly behind the observer. The Galileo spacecraft measured the reflectivity of part of Europa’s surface to increase by as much as a factor of 8 as the observer moves from 5 degrees to the exact backscattering direction! One mechanism explains this spike as coherent light scattering that occurs only close to this unique retro-reflection geometry. Due to the tight linear alignment of the target, observer and Sun required to measure the peak brightness of the spike, accurate and complete measurements of the amplitude and decay of the spike exist for only a few targets. We used the unique capabilities of the automated Las Cumbres Observatory global telescope network (LCO) to systematically measure this extreme opposition surge for 60+ asteroids sampling a variety of taxonomic classes in the Bus/DeMeo taxonomy.Each asteroid was observed in the SDSS r’ and g’ filters during the ~8 hour interval when it passes within ~0.1 deg of the point opposite the Sun on the sky. Supporting observations of each asteroid with LCO collected over ~50 days measure asteroid rotation and phase angle brightness changes to enable accurate characterization of the retro-reflection spike. This data set vastly increases the number and variety of the surfaces characterized at such small phase angles compared to existing asteroid data. We examine how the spike characteristics vary with surface composition, albedo, and wavelength providing new constraints on physical models of this ubiquitous yet poorly understood phenomenon.Analysis and modeling of these measurements will advance our understanding of the physical mechanism responsible for this enhanced retro-reflection thereby improving our ability to characterize these surfaces from remote observations. The ability to infer surface physical properties from remote sensing data is a key capability for future asteroid missions, manned exploration, impact hazard assessment, and fundamental asteroid science.
Discovery of Spin-Rate-Dependent Asteroid Thermal Inertia
NASA Astrophysics Data System (ADS)
Harris, Alan; Drube, Line
2016-10-01
Knowledge of the surface thermal inertia of an asteroid can provide insight into surface structure: porous material has a lower thermal inertia than rock. Using WISE/NEOWISE data and our new asteroid thermal-inertia estimator we show that the thermal inertia of main-belt asteroids (MBAs) appears to increase with spin period. Similar behavior is found in the case of thermophysically-modeled thermal inertia values of near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. On the basis of a picture of depth-dependent thermal inertia our results suggest that, in general, thermal inertia values representative of solid rock are reached some tens of centimeters to meters below the surface in the case of MBAs (the median diameter in our dataset = 24 km). In the case of the much smaller (km-sized) NEOs a thinner porous surface layer is indicated, with large pieces of solid rock possibly existing just a meter or less below the surface. These conclusions are consistent with our understanding from in-situ measurements of the surfaces of the Moon, and a few asteroids, and suggest a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids. Our results have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles ("kinetic impactors") in planetary defense.
Samples of Asteroid Surface Ponded Deposits in Chondritic Meteorites
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Lee, R.; Le, L.
2004-01-01
One of the many unexpected observations of asteroid 433 Eros by the Near Earth Asteroid Rendezvous (NEAR) mission was the many ponds of fine-grained materials [1-3]. The ponds have smooth surfaces, and define equipotential surfaces up to 10's of meters in diameter [4]. The ponds have a uniformly sub-cm grain size and appear to be cohesive or indurated to some degree, as revealed by slumping. The ponds appear to be concentrated within 30 degrees of the equator of Eros, where gravity is lowest. There is some insight into the mineralogy and composition of the ponds surfaces from NEAR spectroscopy [2,4,5,6]. Compared to the bulk asteroid, ponds: (1) are distinctly bluer (high 550/760 nm ratio), (2) have a deeper 1um mafic band, (3) have reflectance elevated by 5%.
Compositional studies of primitive asteroids
NASA Technical Reports Server (NTRS)
Vilas, Faith
1991-01-01
Primitive asteroids in the solar system (C, P, D class and associated subclasses) are believed to have undergone less thermal processing compared with the differential (S class) asteroids. Telescopic spectra of C class asteroids show effects of aqueous alteration products produced when heating of the asteroids was sufficient to melt surface water, but not strong enough to produce differentiation. Spectrum analysis of P and D class asteroids suggests that aqueous alteration terminated in the outer belt and did not operate at the distance of Jupiter's orbit.
The influence of rough surface thermal-infrared beaming on the Yarkovsky and YORP effects
NASA Astrophysics Data System (ADS)
Rozitis, B.; Green, S. F.
2012-06-01
It is now becoming widely accepted that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are, together with collisions and gravitational forces, primary mechanisms governing the dynamical and physical evolution of asteroids. The Yarkovsky effect causes orbital semimajor axis drift, and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect causes changes in the rotation rate and pole orientation. We present an adaptation of the Advanced Thermophysical Model to simultaneously predict the Yarkovsky and YORP effects in the presence of thermal-infrared beaming caused by surface roughness, which has been neglected or dismissed in all previous models. Tests on Gaussian random sphere shaped asteroids, and on the real shapes of asteroids (1620) Geographos and (6489) Golevka, show that rough surface thermal-infrared beaming enhances the Yarkovsky orbital drift by typically tens of per cent but it can be as much as a factor of 2. The YORP rotational acceleration is on average dampened by up to a third typically but can be as much as one-half. We find that the Yarkovsky orbital drift is only sensitive to the average degree, and not to the spatial distribution, of roughness across an asteroid surface. However, the YORP rotational acceleration is sensitive to the surface roughness spatial distribution, and can add significant uncertainties to the predictions for asteroids with relatively weak YORP effects. To accurately predict either effect the degree and spatial distribution of roughness across an asteroid surface must be known.
Environmental protection requirements for scout/shuttle auxiliary stages
NASA Technical Reports Server (NTRS)
Qualls, G. L.; Kress, S. S.; Storey, W. W.; Ransdell, P. N.
1980-01-01
The requirements for enabling the Scout upper stages to endure the expected temperature, mechanical shock, acoustical and mechanical vibration environments during a specified shuttle mission were determined. The study consisted of: determining a shuttle mission trajectory for a 545 kilogram (1200 pound) Scout payload; compilation of shuttle environmental conditions; determining of Scout upper stages environments in shuttle missions; compilation of Scout upper stages environmental qualification criteria and comparison to shuttle mission expected environments; and recommendations for enabling Scout upper stages to endure the exptected shuttle mission environments.
MQ-8 Fire Scout Unmanned Aircraft System (MQ-8 Fire Scout)
2015-12-01
Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-253 MQ-8 Fire Scout Unmanned Aircraft System (MQ-8 Fire Scout) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) March 8, 2016 11:20:32 UNCLASSIFIED MQ-8 Fire Scout December 2015 SAR March 8, 2016...Scout December 2015 SAR March 8, 2016 11:20:32 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM - Program
The Explored Asteroids: Science and Exploration in the Space Age
NASA Astrophysics Data System (ADS)
Sears, D. W. G.
2015-11-01
Interest in asteroids is currently high in view of their scientific importance, the impact hazard, and the in situ resource opportunities they offer. They are also a case study of the intimate relationship between science and exploration. A detailed review of the twelve asteroids that have been visited by eight robotic spacecraft is presented here. While the twelve explored asteroids have many features in common, like their heavily cratered and regolith covered surfaces, they are a remarkably diverse group. Some have low-eccentricity orbits in the main belt, while some are potentially hazardous objects. They range from dwarf planets to primary planetesimals to fragments of larger precursor objects to tiny shards. One has a moon. Their surface compositions range from basaltic to various chondrite-like compositions. Here their properties are reviewed and what was confirmed and what was newly learned is discussed, and additionally the explored asteroids are compared with comets and meteorites. Several topics are developed. These topics are the internal structure of asteroids, water distribution in the inner solar system and its role in shaping surfaces, and the meteoritic links.
Studies of Itokawa's Surface Exposure by Measurements of Cosmic-ray Produced Nuclides
NASA Technical Reports Server (NTRS)
Caffee, M. W.; Nishiizumi, K.; Tsuchiyama, A.; Uesugi, M.; Zolensky, M. E.
2014-01-01
We plan to investigate the evolutionary history of surface materials from 25143 Itokawa, the Hayabusa samples. Our studies are based on the measurement of nuclides produced in asteroidal surface materials by cosmic rays. Cosmogenic radionuclides are used to determine the duration and nature of the exposure of materials to energetic particles. Our goals are to understand both the fundamental processes on the asteroidal surface and the evolutionary history of its surface materials. They are also key to understanding the history of Itokawa's surface and asteroid-meteoroid evolutionary dynamics. To achieve our key goals, in particular reconstructing the evolutionary histories of the asteroidal surface, we proposed: (1) characterizing Itokawa particles using SXCT, SXRD, and FE-SEM without modification of the sample; (2) embedding each particle in acrylic resin, then slicing a small corner with an ultra-microtome and examining it using super-STEM and SIMS for characterizing surface morphology, space weathering, and oxygen three-isotope analysis; and finally (3) measuring small amounts of cosmogenic radionuclides (104-105 atoms) in Hayabusa samples by AMS. However, we have to modify our plan due to unexpected situation.
Size-dependent modification of asteroid family Yarkovsky V-shapes
NASA Astrophysics Data System (ADS)
Bolin, B. T.; Morbidelli, A.; Walsh, K. J.
2018-04-01
Context. The thermal properties of the surfaces of asteroids determine the magnitude of the drift rate cause by the Yarkovsky force. In the general case of Main Belt asteroids, the Yarkovsky force is indirectly proportional to the thermal inertia, Γ. Aim. Following the proposed relationship between Γ and asteroid diameter D, we find that asteroids' Yarkovsky drift rates might have a more complex size dependence than previous thought, leading to a curved family V-shape boundary in semi-major axis, a, vs. 1/D space. This implies that asteroids are drifting faster at larger sizes than previously considered decreasing on average the known ages of asteroid families. Methods: The V-Shape curvature is determined for >25 families located throughout the Main Belt to quantify the Yarkovsky size-dependent drift rate. Results: We find that there is no correlation between family age and V-shape curvature. In addition, the V-shape curvature decreases for asteroid families with larger heliocentric distances suggesting that the relationship between Γ and D is weaker in the outer MB possibly due to homogenous surface roughness among family members.
Girl Scouts as an Educational Force. Bulletin, 1919, No. 33
ERIC Educational Resources Information Center
Low, Juliette
1919-01-01
So closely is learning interwoven with doing that to the Girl Scout herself all the scout activities are "just play." To the observant educator, the fundamentals of citizenship, good health, and community spirit are implanted through the natural ambition of the Girl Scout to strive for proficiency badges and scout honors. Subtler, but by no means…
Is the U-B color sufficient for identifying water of hydration on solar system bodies?
NASA Technical Reports Server (NTRS)
Vilas, Faith
1995-01-01
The U-B color has been suggested as a predictor of the presence of water of hydration on asteroids. Photometry from the Eight-Color Asteroid Survey (ECAS) was used to test this concept. An overlap in U-B color prevents this magnitude difference from distinguishing between surface material that was thermally processed at higher temperatures and surface material that was aqueously altered. Two tests of the presence of water of hydration using visible spectral region photometry failed to flag those few higher albedo M- and E-class asteroids having photometry that shows a 3.0-micrometers water of hydration absorption. These asteroids probably contain little or no oxidized iron in their surface material.
Guided asteroid deflection by kinetic impact: Mapping keyholes to an asteroid's surface
NASA Astrophysics Data System (ADS)
Chesley, S.; Farnocchia, D.
2014-07-01
The kinetic impactor deflection approach is likely to be the optimal deflection strategy in most real-world cases, given the likelihood of decades of warning time provided by asteroid search programs and the probable small size of the next confirmed asteroid impact that would require deflection. However, despite its straightforward implementation, the kinetic impactor approach can have its effectiveness limited by the astrodynamics that govern the impactor spacecraft trajectory. First, the deflection from an impact is maximized when the asteroid is at perihelion, while an impact near perihelion can in some cases be energetically difficult to implement. Additionally, the asteroid change in velocity Δ V should aligned with the target's heliocentric velocity vector in order to maximize the deflection at a potential impact some years in the future. Thus the relative velocity should be aligned with or against the heliocentric velocity, which implies that the impactor and asteroid orbits should be tangent at the point of impact. However, for natural bodies such as meteorites colliding with the Earth, the relative velocity vectors tend to cluster near the sunward or anti- sunward directions, far from the desired direction. This is because there is generally a significant crossing angle between the orbits of the impactor and target and an impact at tangency is unusual. The point is that hitting the asteroid is not enough, but rather we desire to hit the asteroid at a point when the asteroid and spacecraft orbits are nearly tangent and when the asteroid is near perihelion. However, complicating the analysis is the fact that the impact of a spacecraft on an asteroid would create an ejecta plume that is roughly normal to the surface at the point of impact. This escaping ejecta provides additional momentum transfer that generally adds to the effectiveness of a kinetic deflection. The ratio β between the ejecta momentum and the total momentum (ejecta plus spacecraft) can range from around 1 for a porous, compressible body producing negligible ejecta, to 2 when the ejecta momentum matches the spacecraft momentum, and as high as 5--10 for rocky bodies that produce large, high-velocity ejecta fragments. If the impactor hits the centerpoint of a spherical asteroid the momentum of the escaping ejecta directly adds to the momentum of the impacting asteroid, but if the impact is oblique then the ejecta and spacecraft momenta are added to the asteroid in vector sum. This suggests the possibility that for a given intercept trajectory the asteroid deflection could include guidance by targeting an oblique impact that could steer the asteroid Δ V to a more optimal direction that is different from the relative velocity direction of the spacecraft. An oblique impact decreases the net Δ V magnitude, and yet could significantly increase the net deflection at the time of the threatening Earth encounter. We use asteroid (101955) Bennu, which is the target of the OSIRIS-REx asteroid sample return mission and which has a series of potential Earth impacts in the years from 2175--2196, as an example to demonstrate the effectiveness of the oblique impact. These future potential impacts will occur if the asteroid passes through one of a series of keyholes when the asteroid passes the Earth at roughly the lunar distance from the Earth in 2135. To study the Bennu deflection problem we simulate a hypervelocity spacecraft impact on Bennu in March 2021, after the OSIRIS-REx mission is complete. In our example, the spacecraft arrives from approximately the sunward direction, and targeting ahead or behind the center of the asteroid allows non-negligible transverse accelerations for modest values of β. A given impact location on the asteroid surface yields a given Δ V vector, and our approach starts by mapping the net Δ V components on the surface for an assumed value of β. Knowing the mapping from impact location to Δ V and also the mapping from Δ V to the future Earth miss distance allows us to map the surface locations where a spacecraft impact would lead to an Earth impact 150--200 years later. In effect, we are able to project Earth impact trajectories, or keyholes, onto the asteroid surface and, for a given value of β, we can target our impactor spacecraft for an area on the surface that avoids potential Earth impacts. Of course, at the present time we have little information on what is the appropriate value or range of values for β in the case of asteroid Bennu, or any other asteroid for that matter. However, if this information is made known, either through a precursor mission or better inferences as to its nature we can develop a distribution of β that can be used to better design an impact deflection strategy. Specifically, we can compute a map of Earth impact probability density on the surface of the asteroid based on an assumed probability density function for β. If we target the lowest impact probability density regions then we maximize the chance of a successful deflection. This approach has the potential to allow more efficient kinetic impactor deflection, and therefore the deflection of larger bodies than would otherwise be possible.
NASA Technical Reports Server (NTRS)
Jones, Thomas D.; Lebofsky, Larry A.; Lewis, John S.; Marley, Mark S.
1990-01-01
A telescopic and laboratory investigation of water distribution among low albedo asteroids in the outer belt, using the 3-micron reflectance absorption of molecular H2O and structural OH ions (coincident with the 3-micron spectral signature of meteorite and asteroid hydrated silicates) shows that 66 percent of the C-class asteroids in the sample have hydrated silicate surfaces. In conjunction with the apparently anhydrous P and D surfaces, this pronounced hydration difference between C-class asteroids and the more distant P and D classes points to an original outer belt asteroid composition of anhydrous silicates, water ice, and complex organic material. Early solar-wind induction heating of protoasteroids, declining in intensity with distance from the sun, is conjectured to have produced the observed diminution of hydrated silicate abundance.
Advanced Navigation Strategies for an Asteroid Sample Return Mission
NASA Technical Reports Server (NTRS)
Bauman, J.; Getzandanner, K.; Williams, B.; Williams, K.
2011-01-01
The proximity operations phases of a sample return mission to an asteroid have been analyzed using advanced navigation techniques derived from experience gained in planetary exploration. These techniques rely on tracking types such as Earth-based radio metric Doppler and ranging, spacecraft-based ranging, and optical navigation using images of landmarks on the asteroid surface. Navigation strategies for the orbital phases leading up to sample collection, the touch down for collecting the sample, and the post sample collection phase at the asteroid are included. Options for successfully executing the phases are studied using covariance analysis and Monte Carlo simulations of an example mission to the near Earth asteroid 4660 Nereus. Two landing options were studied including trajectories with either one or two bums from orbit to the surface. Additionally, a comparison of post-sample collection strategies is presented. These strategies include remaining in orbit about the asteroid or standing-off a given distance until departure to Earth.
32 CFR 643.129 - Youth groups.
Code of Federal Regulations, 2010 CFR
2010-07-01
... facilities, without monetary consideration, to on-post youth groups such as the Boy Scouts, Girl Scouts, and... intermittent or continuing use, to off-post youth groups such as the Boy Scouts, Girl Scouts, and the Little...
On the transfer of radiation at asteroidal surfaces in relation to their orbit deflection - II
NASA Astrophysics Data System (ADS)
Yabushita, Shin
1998-08-01
The efficiency of absorption of X-rays generated by a nuclear explosion at the surface of an asteroid, estimated earlier, is used to calculate the explosion yield needed to deflect the orbit of an asteroid. Following the work of Ahrens & Harris, it is shown that a recoil velocity of 1 cm s^-1 is required to deflect an asteroid from a collision course with the Earth, and the necessary yield of explosion energy is estimated. If it is assumed that the scaling law between the energy and the diameter of the resulting crater, obtained from experiments carried out on the Earth, remains valid on the asteroid surface, where gravity is much weaker, an explosion energy of 8 and 800 megaton (Mton) equivalent of TNT would be required for asteroids of diameter 1 and 10 km respectively. If, on the other hand, the crater diameter is proportional to a certain power of the gravity g, the power being determined from a dimension analysis, 130 kton and 12 Mton would be required to endow asteroids of diameters 1 and 10 km with the required velocity, respectively. The result indicates that in order to estimate the required explosion energy, a better understanding of cratering under gravity much weaker than on the Earth would be required.
Fission Limit And Surface Disruption Criteria For Asteroids: The Case Of Kleopatra
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi; Scheeres, D. J.
2012-05-01
Asteroid structural failure due to a rapid rotation may occur by two fundamentally different ways: by spinning so fast that surface particles are lofted off due to centripetal accelerations overcoming gravitational attractions or through fission of the body. We generalize these failure modes for real asteroid shapes. How a rubble pile asteroid will fail depends on which of these failure criterion occur first if its spin rate is increased due to the YORP effect, impacts, or planetary flybys. The spin rate at which the interior of an arbitrary uniformly rotating body will undergo tension (and conservatively be susceptible to fission) is computed by taking planar cuts through the shape model, computing the mutual gravitational attraction between the two segments, and determining the spin rate at which the centrifugal force between the two components equals the mutual gravitational attraction. The gravitational attraction computation uses an improved version of the algorithm presented in Werner et al. (2005). To determine the interior point that first undergoes tension, we consider this planar cut perpendicular to the axis of minimum moment of inertia at different cross-sections. On the other hand, we define the surface disruption as follows. For an arbitrary body uniformly rotating at a constant spin rate there are at least four synchronous orbits, which represent circular orbits with the same period as the asteroid spin rate. Surface disruption occurs when the body spins fast enough so that at least one of these synchronous orbits touches the asteroid surface. Kleopatra currently spins with a period of 5.38 hours. The spin period for surface disruption is computed to be 3.02 hours, while the spin period for the interior of the asteroid to go into tension is about 4.8 hours. Thus Kleopatra’s internal fission could occur at spin periods longer than when surface disruption occurs.
Dielectric properties of Asteroid Vesta's surface as constrained by Dawn VIR observations
NASA Astrophysics Data System (ADS)
Palmer, Elizabeth M.; Heggy, Essam; Capria, Maria T.; Tosi, Federico
2015-12-01
Earth and orbital-based radar observations of asteroids provide a unique opportunity to characterize surface roughness and the dielectric properties of their surfaces, as well as potentially explore some of their shallow subsurface physical properties. If the dielectric and topographic properties of asteroid's surfaces are defined, one can constrain their surface textural characteristics as well as potential subsurface volatile enrichment using the observed radar backscatter. To achieve this objective, we establish the first dielectric model of asteroid Vesta for the case of a dry, volatile-poor regolith-employing an analogy to the dielectric properties of lunar soil, and adjusted for the surface densities and temperatures deduced from Dawn's Visible and InfraRed mapping spectrometer (VIR). Our model suggests that the real part of the dielectric constant at the surface of Vesta is relatively constant, ranging from 2.3 to 2.5 from the night- to day-side of Vesta, while the loss tangent shows slight variation as a function of diurnal temperature, ranging from 6 × 10-3 to 8 × 10-3. We estimate the surface porosity to be ∼55% in the upper meter of the regolith, as derived from VIR observations. This is ∼12% higher than previous estimation of porosity derived from previous Earth-based X- and S-band radar observation. We suggest that the radar backscattering properties of asteroid Vesta will be mainly driven by the changes in surface roughness rather than potential dielectric variations in the upper regolith in the X- and S-band.
Girl Scouts and Subject Matter Experts: What’s the Connection?
NASA Astrophysics Data System (ADS)
Harman, Pamela; Girls Scouts of Northern California, Girl Scouts USA, Astronomical Society of the Pacifica, Univeristy of Arizona, and ARIES Scientific.
2018-01-01
Reaching for the Stars: NASA Science for Girl Scouts (Girl Scout Stars) fosters interaction between Girl Scouts and NASA Subject Matter Experts (SMEs), disseminates NASA STEM education-related resources, and engages Girl Scouts in NASA science and programs through space science badges and summer camps.A space science badge is in development for each of the six levels of Girl Scouts: Daisies, Grades K – 1; Brownies, Grades 2 -3; Juniors, Grades 4 -5; Cadettes, Grades 6 -8; Seniors, Grades 9 -10; and Ambassadors, Grades 11 -12. Indirectly, SMEs will reach tens of thousands of girls through the badges. SETI Institute SMEs Institute and SME Co-Is located at ARIES Scientific, Astronomical Society of the Pacific, University of Arizona, and Girl Scouts of Northern California developed and modified astronomy activities for the Girl Scouts USA badge writers to finesse into the Girl Scout formats. Revisions are reviewed by SMEs for accuracy. Each badge includes a step option that encourages girls to connect with SMEs, and recommendations for volunteers.A total of 127 girls from 31 states and the District of Columbia attendedTotal Eclipse Destination Camps at three locations. SMEs led activities and tours, inspiring girls to consider STEM careers. University of Arizona (U of A) SMEs lead Astronomy Camp for Volunteers, enabling volunteers to lead and inspire Girl Scouts in their respective Girl Scout Councils. A Destination Camp for Girl Scouts was also held at U of A. Girls experience authentic astronomy, learning how to collect and analyze data.Eleven teams comprised of two Girl Scouts, a volunteer or Council Staff, and an amateur astronomer attended Astronomy Club Camp, held at NASA GSFC. SMEs delivered science content. The girls will lead the formation of astronomy clubs in their councils, and will train their successors. SMEs will present and coach the clubs during monthly webinars.This presentation will highlight success and discuss lessons learned that are applicable to working with Girl Scouts.
NASA Astrophysics Data System (ADS)
Giebner, T.; Jaumann, R.; Schröder, S.
2016-08-01
This master's thesis project tries to reevaluate previous findings on asteroid (4) Vesta's surface composition by using DAWN FC Filter image ratios in a new way in order to identify HED (howardite, eucrite, diogenite) lithologies on the surface.
High-throughput and multiplexed regeneration buffer scouting for affinity-based interactions.
Geuijen, Karin P M; Schasfoort, Richard B; Wijffels, Rene H; Eppink, Michel H M
2014-06-01
Affinity-based analyses on biosensors depend partly on regeneration between measurements. Regeneration is performed with a buffer that efficiently breaks all interactions between ligand and analyte while maintaining the active binding site of the ligand. We demonstrated a regeneration buffer scouting using the combination of a continuous flow microspotter with a surface plasmon resonance imaging platform to simultaneously test 48 different regeneration buffers on a single biosensor. Optimal regeneration conditions are found within hours and consume little amounts of buffers, analyte, and ligand. This workflow can be applied to any ligand that is coupled through amine, thiol, or streptavidin immobilization. Copyright © 2014 Elsevier Inc. All rights reserved.
2011-07-29
squad Armament: M60 7 .62mm machine gun , MK19 40mm, M2 .50 caL machine gun 61 "Spartan Scout Unmanned Surface Vehicle (USV)," Defense Industry...1) RQ-8B Fire Scout helicopter (VTUAV) a) EO/IR/LD sensor and datalink relay 2) MH-60R/S helicopters a) GAU 16/19 machine gun b) AGM-114 Hellfire...60Rhelicopter car1ies the a .50 caliber OAU 16/A machine gun , a crew-served, recoil operated, belt-fed, air cooled, percussion fired weapon, with a rate of fire
NASA Technical Reports Server (NTRS)
French, Linda M.; Vilas, Faith; Hartmann, William K.; Tholen, David J.
1989-01-01
Knowledge of the physical properties of distant asteroids (a greater than 3.3 AU) has grown dramatically over the past five years, due to systematic compositional and lighcurve studies. Most of these objects have red, dark surfaces, and their spectra show a reddening in spectral slope with heliocentric distance, implying a change in surface composition. Trojans for which near-opposition phase curve information is available appear to show little or no opposition effect, unlike any other dark solar system objects. The lightcurve amplitudes of Trojan and Hilda asteroids imply significantly more elongated shapes for these groups than for main-belt asteroids of comparable size. These recent observations are reviewed in the context of their implications for the formationan and subsequent evolution of the distant asteroids, and their interrelations with the main belt, Chiron, and comets.
Detection of large color variation in the potentially hazardous asteroid (297274) 1996 SK
NASA Astrophysics Data System (ADS)
Lin, Chien-Hsien; Ip, Wing-Huen; Lin, Zhong-Yi; Yoshida, Fumi; Cheng, Yu-Chi
2014-03-01
Low-inclination near-earth asteroid (NEA) (297274) 1996 SK, which is also classified as a potentially hazardous asteroid, has a highly eccentric orbit. It was studied by multi-wavelength photometry within the framework of an NEA color survey at Lulin Observatory. Here, we report the finding of large color variation across the surface of (297274) 1996 SK within one asteroidal rotation period of 4.656 ± 0.122 hours and classify it as an S-type asteroid according to its average colors of B — V = 0.767 ± 0.033, V — R = 0.482 ± 0.021, V — I = 0.801 ± 0.025 and the corresponding relative reflectance spectrum. These results might be indicative of differential space weathering or compositional inhomogeneity in the surface materials.
Asteroid Origins Satellite (AOSAT) I: An On-orbit Centrifuge Science Laboratory
NASA Astrophysics Data System (ADS)
Lightholder, Jack; Thoesen, Andrew; Adamson, Eric; Jakubowski, Jeremy; Nallapu, Ravi; Smallwood, Sarah; Raura, Laksh; Klesh, Andrew; Asphaug, Erik; Thangavelautham, Jekan
2017-04-01
Exploration of asteroids, comets and small moons (small bodies) can answer fundamental questions relating to the formation of the solar system, the availability of resources, and the nature of impact hazards. Near-earth asteroids and the small moons of Mars are potential targets of human exploration. But as illustrated by recent missions, small body surface exploration remains challenging, expensive, and fraught with risk. Despite their small size, they are among the most extreme planetary environments, with low and irregular gravity, loosely bound regolith, extreme temperature variation, and the presence of electrically charged dust. Here we describe the Asteroid Origins Satellite (AOSAT-I), an on-orbit, 3U CubeSat centrifuge using a sandwich-sized bed of crushed meteorite fragments to replicate asteroid surface conditions. Demonstration of this CubeSat will provide a low-cost pathway to physical asteroid model validation, shed light on the origin and geophysics of asteroids, and constrain the design of future landers, rovers, resource extractors, and human missions. AOSAT-I will conduct scientific experiments within its payload chamber while operating in two distinct modes: (1) as a nonrotating microgravity laboratory to investigate primary accretion, and (2) as a rotating centrifuge producing artificial milligravity to simulate surface conditions on asteroids, comets and small moons. AOSAT-I takes advantage of low-cost, off-the-shelf components, modular design, and the rapid assembly and instrumentation of the CubeSat standard, to answer fundamental questions in planetary science and reduce cost and risk of future exploration.
Space Weathering Rates in Lunar and Itokawa Samples
NASA Technical Reports Server (NTRS)
Keller, L. P.; Berger, E. L.
2017-01-01
Space weathering alters the chemistry, microstructure, and spectral proper-ties of grains on the surfaces of airless bodies by two major processes: micrometeorite impacts and solar wind interactions. Investigating the nature of space weathering processes both in returned samples and in remote sensing observations provides information fundamental to understanding the evolution of airless body regoliths, improving our ability to determine the surface composition of asteroids, and linking meteorites to specific asteroidal parent bodies. Despite decades of research into space weathering processes and their effects, we still know very little about weathering rates. For example, what is the timescale to alter the reflectance spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope from an S-type asteroid? One approach to answering this question has been to determine ages of asteroid families by dynamical modeling and determine the spectral proper-ties of the daughter fragments. However, large differences exist between inferred space weathering rates and timescales derived from laboratory experiments, analysis of asteroid family spectra and the space weathering styles; estimated timescales range from 5000 years up to 108 years. Vernazza et al. concluded that solar wind interactions dominate asteroid space weathering on rapid timescales of 10(exp 4)-10(exp 6) years. Shestopalov et al. suggested that impact-gardening of regolith particles and asteroid resurfacing counteract the rapid progress of solar wind optical maturation of asteroid surfaces and proposed a space weathering timescale of 10(exp 5)-10(exp 6) years.
Developing space weathering on the asteroid 25143 Itokawa.
Hiroi, Takahiro; Abe, Masanao; Kitazato, Kohei; Abe, Shinsuke; Clark, Beth E; Sasaki, Sho; Ishiguro, Masateru; Barnouin-Jha, Olivier S
2006-09-07
Puzzlingly, the parent bodies of ordinary chondrites (the most abundant type of meteorites) do not seem to be abundant among asteroids. One possible explanation is that surfaces of the parent bodies become optically altered, to become the S-type asteroids which are abundant in the main asteroid belt. The process is called 'space weathering'-it makes the visible and near-infrared reflectance spectrum of a body darker and redder. A recent survey of small, near-Earth asteroids suggests that the surfaces of small S asteroids may have developing stages of space weathering. Here we report that a dark region on a small (550-metre) asteroid-25143 Itokawa-is significantly more space-weathered than a nearby bright region. Spectra of both regions are consistent with those of LL5-6 chondrites after continuum removal. A simple calculation suggests that the dark area has a shorter mean optical path length and about 0.04 per cent by volume more nanophase metallic iron particles than the bright area. This clearly shows that space-weathered materials accumulate on small asteroids, which are likely to be the parent bodies of LL chondrites. We conclude that, because LL meteorites are the least abundant of ordinary (H, L, and LL) chondrites, there must be many asteroids with ordinary-chondrite compositions in near-Earth orbits.
Physical observations and taxonomy of asteroids
NASA Technical Reports Server (NTRS)
Morrison, D.
1978-01-01
Physical asteroid observations are summarized and the classification scheme to describe asteroid surfaces in relation to mineralogical composition is detailed. The principle classes, distinguished on the basis of a number of parameters involving albedo and color, are called C, S, and M.
Multiple-hopping trajectories near a rotating asteroid
NASA Astrophysics Data System (ADS)
Shen, Hong-Xin; Zhang, Tian-Jiao; Li, Zhao; Li, Heng-Nian
2017-03-01
We present a study of the transfer orbits connecting landing points of irregular-shaped asteroids. The landing points do not touch the surface of the asteroids and are chosen several meters above the surface. The ant colony optimization technique is used to calculate the multiple-hopping trajectories near an arbitrary irregular asteroid. This new method has three steps which are as follows: (1) the search of the maximal clique of candidate target landing points; (2) leg optimization connecting all landing point pairs; and (3) the hopping sequence optimization. In particular this method is applied to asteroids 433 Eros and 216 Kleopatra. We impose a critical constraint on the target landing points to allow for extensive exploration of the asteroid: the relative distance between all the arrived target positions should be larger than a minimum allowed value. Ant colony optimization is applied to find the set and sequence of targets, and the differential evolution algorithm is used to solve for the hopping orbits. The minimum-velocity increment tours of hopping trajectories connecting all the landing positions are obtained by ant colony optimization. The results from different size asteroids indicate that the cost of the minimum velocity-increment tour depends on the size of the asteroids.
Rotational Study of Ambiguous Taxonomic Classified Asteroids
NASA Astrophysics Data System (ADS)
Linder, Tyler R.; Sanchez, Rick; Wuerker, Wolfgang; Clayson, Timothy; Giles, Tucker
2017-01-01
The Sloan Digital Sky Survey (SDSS) moving object catalog (MOC4) provided the largest ever catalog of asteroid spectrophotometry observations. Carvano et al. (2010), while analyzing MOC4, discovered that individual observations of asteroids which were observed multiple times did not classify into the same photometric-based taxonomic class. A small subset of those asteroids were classified as having both the presence and absence of a 1um silicate absorption feature. If these variations are linked to differences in surface mineralogy, the prevailing assumption that an asteroid’s surface composition is predominantly homogenous would need to be reexamined. Furthermore, our understanding of the evolution of the asteroid belt, as well as the linkage between certain asteroids and meteorite types may need to be modified.This research is an investigation to determine the rotational rates of these taxonomically ambiguous asteroids. Initial questions to be answered:Do these asteroids have unique or nonstandard rotational rates?Is there any evidence in their light curve to suggest an abnormality?Observations were taken using PROMPT6 a 0.41-m telescope apart of the SKYNET network at Cerro Tololo Inter-American Observatory (CTIO). Observations were calibrated and analyzed using Canopus software. Initial results will be presented at AAS.
Thermal Tomography of Asteroid Surface Structure
NASA Astrophysics Data System (ADS)
Harris, Alan W.; Drube, Line
2016-12-01
Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.
THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Alan W.; Drube, Line, E-mail: alan.harris@dlr.de
Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) tomore » 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.« less
NASA Astrophysics Data System (ADS)
Hardersen, Paul S.; Reddy, Vishnu; Cloutis, Edward; Nowinski, Matt; Dievendorf, Margaret; Genet, Russell M.; Becker, Savan; Roberts, Rachel
2018-07-01
Investigations of the main asteroid belt and efforts to constrain that population’s physical characteristics involve the daunting task of studying hundreds of thousands of small bodies. Taxonomic systems are routinely employed to study the large-scale nature of the asteroid belt because they utilize common observational parameters, but asteroid taxonomies only define broadly observable properties and are not compositionally diagnostic. This work builds upon the results of work by Hardersen et al., which has the goal of constraining the abundance and distribution of basaltic asteroids throughout the main asteroid belt. We report on the near-infrared (NIR: 0.7 to 2.5 μm) reflectance spectra, surface mineralogical characterizations, analysis of spectral band parameters, and meteorite analogs for 33 Vp asteroids. NIR reflectance spectroscopy is an effective remote sensing technique to detect most pyroxene group minerals, which are spectrally distinct with two very broad spectral absorptions at ∼0.9 and ∼1.9 μm. Combined with the results from Hardersen et al., we identify basaltic asteroids for ∼95% (39/41) of our inner-belt Vp sample, but only ∼25% (2/8) of the outer-belt Vp sample. Inner-belt basaltic asteroids are most likely associated with (4) Vesta and represent impact fragments ejected from previous collisions. Outer-belt Vp asteroids exhibit disparate spectral, mineralogical, and meteorite analog characteristics and likely originate from diverse parent bodies. The discovery of two additional likely basaltic asteroids provides additional evidence for an outer-belt basaltic asteroid population.
Parameter-Study Of The Thermal Yarkovsky Effect Acting On Neas
NASA Astrophysics Data System (ADS)
Polishook, David; Prialnik, D.; Rosenberg, E.; Brosch, N.
2010-10-01
We study the relevant parameters for the thermal Yarkovsky effect acting on Near-Earth Asteroids (NEAs), specifically the rotation period and rotation axis. The study uses a quasi 3-D thermal model to derive the temperature map over the surface of the asteroid, and the thermal thrust is calculated. The model (Prialnik et al. 2004, Rosenberg and Prialnik 2006), uses an implicit scheme to numerically solve the equations that describe the asteroid and its thermal evolution. The results show how the thermal thrust is stronger for fast-rotating asteroids, as heat is emitted from their surface on the evening side, increasing the tangential component of the thermal thrust. Moreover, we show the differences in the thermal thrust between asteroids with different perihelion distances, and how this can explain the observed distribution of asteroids in the inner Solar System on the spin-perihelion plane. Our results suggest that many asteroids within the inner Solar System may have retrograde spins. Acknowledgements: D. Polishook is grateful for an Ilan Ramon doctoral scholarship from the Israeli Ministry of Science.
A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Berger, Eve L.
2014-01-01
The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques
Asteroids: Does Space Weathering Matter?
NASA Technical Reports Server (NTRS)
Gaffey, Michael J.
2001-01-01
The interpretive calibrations and methodologies used to extract mineralogy from asteroidal spectra appear to remain valid until the space weathering process is advanced to a degree which appears to be rare or absent on asteroid surfaces. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Kehoe, A. E.; Shaw, C.; Kehoe, T. J. J.
2017-12-01
Zodiacal dust bands are a fine-structure feature of the mid-IR emission profile of the zodiacal cloud. The dust bands have been studied for many years dating back to the InfraRed Astronomical Satellite (IRAS) data of the 1980's. The recent discovery and modeling (Espy et al., 2009; 2010; Espy Kehoe et al., 2015) of a very young, still-forming dust band structure has shown that, in the early stages following an asteroid disruption, much information on the dust parameters of the original disruption is retained in the band. Partial dust bands allow a never-before-seen observational look at the size distribution and cross-sectional area of dust produced in an asteroidal disruption, before it has been lost or significantly altered by orbital and collisional decay. The study of these partial band structures reveals information on the way asteroids disrupt and allow us to reconstruct the surface properties of the parent asteroid, including the depth of the surface regolith and the size distribution of particles composing the regolith. Using the greatly increased sensitivity of the Wide-field Infrared Survey Explorer (WISE), we can now detect much fainter (and thus younger) dust bands. The WISE data also reveals much better longitudinal resolution of the bands, allowing a better constraint on the source and age of the disruption. We will present our newest results from the WISE dataset, including detection of faint partial dust bands, improved models of more prominent bands, and our constraints on the asteroid surface properties from modeling these structures.
Simulation of the dusty plasma environment of 65803 Didymos for the Asteroid Impact Mission (AIM)
NASA Astrophysics Data System (ADS)
Cipriani, Fabrice; Rodgers, David; Hilgers, Alain; Hess, Sebastien; Carnelli, Ian
2016-10-01
The Asteroid Impact and Deflection Assessment mission (AIDA) is a joint European-US technology demonstrator mission including the DART asteroid impactor (NASA/JHU/APL) and the AIM asteroid rendezvous platform (ESA/DLR/OCA) set to reach Near Earth binary Object 65803 Didymos in October 2022. Besides technology demonstration in the deep space communications domain and the realization of a kinetic impact on the moonlet to study deflection parameters, this asteroid rendezvous mission is an opportunity to carry out in-situ observations of the close environment of a binary system, addressing some fundamental science questions. The MASCOT-2 lander will be released from the AIM platform and operate at the surface of the moonlet of 65803 Didymos, complemented by the ability of the Cubesat Opportunity Payloads (COPINS) to sample the close environment of the binary.In this context, we have developed an model describing the plasma and charged dust components of the near surface environment of the moonlet (170m in diameter), targeted by the MASCOT-2 lander and of the DART impactor. We performed numerical simulations in order to estimate the electrostatic surface potentials at various locations of the surface, resulting from its interaction with the solar wind plasma and solar photons. In addition, we describe charging levels, density profiles, and velocity distribution of regolith grains lifted out from the surface up to about 70m above the surface.
Proximity Operations for the Robotic Boulder Capture Option for the Asteroid Redirect Mission
NASA Technical Reports Server (NTRS)
Reeves, David M.; Naasz, Bo J.; Wright, Cinnamon A.; Pini, Alex J.
2014-01-01
In September of 2013, the Asteroid Robotic Redirect Mission (ARRM) Option B team was formed to expand on NASA's previous work on the robotic boulder capture option. While the original Option A concept focuses on capturing an entire smaller Near-Earth Asteroid (NEA) using an inflatable bag capture mechanism, this design seeks to land on a larger NEA and retrieve a boulder off of its surface. The Option B team has developed a detailed and feasible mission concept that preserves many aspects of Option A's vehicle design while employing a fundamentally different technique for returning a significant quantity of asteroidal material to the Earth-Moon system. As part of this effort, a point of departure proximity operations concept was developed complete with a detailed timeline, as well as DeltaV and propellant allocations. Special attention was paid to the development of the approach strategy, terminal descent to the surface, controlled ascent with the captured boulder, and control during the Enhanced Gravity Tractor planetary defense demonstration. The concept of retrieving a boulder from the surface of an asteroid and demonstrating the Enhanced Gravity Tractor planetary defense technique is found to be feasible and within the proposed capabilities of the Asteroid Redirect Vehicle (ARV). While this point of departure concept initially focuses on a mission to Itokawa, the proximity operations design is also shown to be extensible to wide range of asteroids.
Colors and spin period distributions of sub-km main belt asteroids
NASA Astrophysics Data System (ADS)
Yoshida, Fumi; Lin, Hsing-Wen; Chen, Ying-Tung; Souami, Damya; Bouquillon, Sebastien; Ip, Wing-Huen; Chang, Chan-Kao; Nakamura, Tsuko; Dermawan, Budi; Yagi, Masafumi; Souchay, Jean
2014-11-01
The size dependency of space weathering on asteroid’s surface and collisional lifetimes suggest that small asteroids are younger than large asteroids. Therefore, the studies of smaller asteroid provide us new information about asteroid composition on fresh surface and their collisional evolution. We performed a color observation using 4 filters and lightcurve observation using 2 filters on different nights, using the 8.2m Subaru telescope/Suprime-Cam, for investigating the color and spin period distributions of sub-km main-belt asteroids (MBAs) that could not be seen before by middle class telescopes. In a lightcurve observation on Sep. 2, 2002, we kept taking images of a single sky field at near the opposition and near the ecliptic plane. Taking advantage of the wide field view of Suprime-Cam, this observation was planned to obtain lightcurves of 100 asteroids at the same time. Actually, we detected 112 MBAs and obtained their lightcurves by using a modified GAIA-GBOT PIPELINE. For the period analysis, we defined a criterion for judging whether an obtained rotational period is robust or not. Although Dermawan et al. (2011) have suggested that there are many fast rotators (FR) in MBAs, we noticed that many MBAs have long spin periods. Therefore, we could determine the rotation period of only 22 asteroids. We found one FR candidate (P=2.02 hr). We could measure the B-R color of 16 asteroids among the 22 MBAs. We divided them into S-like and C-like asteroids by the B-R color. The average rotational periods of C-like and S-like asteroids are 4.3 hr and 7.6 hr, respectively. C-like asteroids seem to rotate faster than S-like ones. We carried out a multi-color survey on Aug. 9 and 10, 2004 and then detected 154 MBAs. We classified them into several taxonomic types. Then we noticed that there are only very few Q-type candidates (non-weathered S-type) unlike the near Earth asteroid (NEAs) population, in which Q-type is a main component. This may indicate that most of Q-type NEAs did not originated from Q-type MBAs. They are probably objects subjected to resurfacing process (by peeling surface regolith, the outer layer of asteroid changes from S-type to Q-type) due to the tidal effect during their planetary encounters.
28 CFR 54.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
28 CFR 54.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (i) No person because of race, color, creed, sex, age, disability, or national origin shall be... that serve as the legal basis for the creation of Boy Scouts organizations (including Boy Scouts, Cub... Boy Scouts or their official affiliates; Boy Scouts activities on DoD installations; or sponsorship of...
28 CFR 54.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (i) No person because of race, color, creed, sex, age, disability, or national origin shall be... that serve as the legal basis for the creation of Boy Scouts organizations (including Boy Scouts, Cub... Boy Scouts or their official affiliates; Boy Scouts activities on DoD installations; or sponsorship of...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (i) No person because of race, color, creed, sex, age, disability, or national origin shall be... that serve as the legal basis for the creation of Boy Scouts organizations (including Boy Scouts, Cub... Boy Scouts or their official affiliates; Boy Scouts activities on DoD installations; or sponsorship of...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (i) No person because of race, color, creed, sex, age, disability, or national origin shall be... that serve as the legal basis for the creation of Boy Scouts organizations (including Boy Scouts, Cub... Boy Scouts or their official affiliates; Boy Scouts activities on DoD installations; or sponsorship of...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (i) No person because of race, color, creed, sex, age, disability, or national origin shall be... that serve as the legal basis for the creation of Boy Scouts organizations (including Boy Scouts, Cub... Boy Scouts or their official affiliates; Boy Scouts activities on DoD installations; or sponsorship of...
28 CFR 54.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
28 CFR 54.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
2016-11-05
Junior Girl Scouts from two locals conceils, Girl Scouts of Central Maryland and Girl Scouts of Nations Capital, participated in She's an Engineer! Girl Scout program on November 3, 2016. They met with female NASA engineers and tested rover models in simulated I&T stations to explore the Engineering Design process.
NASA Astrophysics Data System (ADS)
Ostrik, A. V.; Kazantsev, A. M.
2018-01-01
The problem of principal change of asteroid 99952 (Apophis) orbit is formulated. Aim of this change is the termination of asteroid motion in Solar system. Instead of the passive rescue tactics from asteroid threat, an option is proposed for using the asteroid for setting up a large-scale space experiment on the impact interaction of the asteroid with the Moon. The scientific and methodical apparatus for calculating the possibility of realization, searching and justification the scientific uses of this space experiment is considered.
NASA's Asteroid Redirect Mission (ARM)
NASA Technical Reports Server (NTRS)
Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.
2017-01-01
Mission Description and Objectives: NASA's Asteroid Redirect Mission (ARM) consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), a robotic mission to visit a large (greater than approximately 100 meters diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will explore and investigate the boulder and return to Earth with samples. The ARRM is currently planned to launch at the end of 2021 and the ARCM is scheduled for late 2026.
A mission concept for a Grand Tour of Multiple Asteroid Systems
NASA Astrophysics Data System (ADS)
Marchis, F.; Dankanich, J.; Tricarico, P.; Bellerose, J.
2009-12-01
In 1993, the Galileo spacecraft imaged the first companion of asteroid, Dactyl orbiting 243 Ida, a main-belt asteroid. Since then, discoveries have been accumulated thanks to the development of high angular resolution imaging on ground-based telescopes (adaptive optics), radar observations and accurate photometric light curve measurements. To date, 180 companions of small solar system bodies (SSSBs) are known in various populations, including 100 in the asteroid main belt, 33 Near Earth Asteroids, 4 Jupiter-Trojan asteroids and 44 in the Kuiper Belt. Multiple Asteroids have been shown to be complex worlds in their own with a wide range of morphologies, dynamical histories, and structural evolution. To the exception of 243 Ida, no spacecraft has visited any of them. Investigating binary asteroid systems can verify and validate current theories on their formation and on the influence of the sun in their formation (YORP effect) and evolution (space weathering). In particular, assessing the origin of the secondary satellite, if it is of common origin or capture, can provide clue of their formation. To a larger extend, the determination of their nature, scenario formation and evolution are key to understand how planet formation occurred but also to understand i) the population and compositional structure of the SSSB today ii) how the dynamics and collisions modify this structure over time iii) what the physical properties of asteroids are (density, porosity) iv) how the surface modification processes affect our ability to determine this structure (e.g. space weathering). In addition, being able to study these properties on closeby asteroids will give a relative scale accounting for the sizes, shape, rotation periods and cratering rate of these small and young bodies. In the framework of the NASA Discovery program, we propose a mission consisting of a Grand Tour of several multiple asteroid systems, including the flyby of a near earth binary asteroid and the rendezvous with several multiple asteroid systems located in the main belt. This mission concept uses the NASA's evolutionary Xenon Thruster (NEXT), the second generation of electric propulsion with 3 times more input power than the previous generation (NSTAR) of the Dawn mission. The mission objectives for each rendezvous asteroid are i) the characterization of the surface geology by direct imaging in visible and thermal infrared spectroscopy, ii) the characterization of the shape and gravity coupling visible observations with LIDAR ranging data, iii) the determination of the thermophysical properties of the surface, and iv) the identification of the surface composition by visible and near-infrared spectroscopy. The trajectory, science package and mission operations of the mission will be described. This work is supported by the National Science Foundation 05-608, "Astronomy and Astrophysics Research Grants (AAG)" No AST-0807468
Wang, Jun; Ferris, Kaitlyn A; Hershberg, Rachel M; Lerner, Richard M
2015-12-01
Youth development programs, such as the Boy Scouts of America, aim to develop positive attributes in youth (e.g., character virtues, prosocial behaviors, and positive civic actions), which are necessary for individuals and societies to flourish. However, few developmental studies have focused on how specific positive attributes develop through participation in programs such as the Boy Scouts of America. As part of the Character and Merit Project, this article examined the developmental trajectories of character and other positive attributes, which are of focal concern of the Boy Scouts of America and the developmental literature. Data were collected from 1398 Scouts (M = 8.59 years, SD = 1.29 years, Range 6.17-11.92 years) and 325 non-Scout boys (M = 9.06 years, SD = 1.43 years, Range 6.20-11.81 years) over five waves of testing across a two-and-half-year period. Latent growth-curve analyses of self-report survey data examined the developmental trajectories of the attributes. Older youth rated themselves lower than younger participants on helpfulness, reverence, thriftiness, and school performance. However, all youth had moderately high self-ratings on all the attributes. Across waves, Scouts' self-ratings increased significantly for cheerfulness, helpfulness, kindness, obedience, trustworthiness, and hopeful future expectations. Non-Scout boys' self-ratings showed no significant change for any attributes except for a significant decrease in religious reverence among non-Scout boys from religious institutions. We discuss implications for positive youth development and for the role of the Boy Scouts of America programming in character development.
Martian cratering. II - Asteroid impact history.
NASA Technical Reports Server (NTRS)
Hartmann, W. K.
1971-01-01
This paper considers the extent to which Martian craters can be explained by considering asteroidal impact. Sections I, II, and III of this paper derive the diameter distribution of hypothetical asteroidal craters on Mars from recent Palomar-Leiden asteroid statistics and show that the observed Martian craters correspond to a bombardment by roughly 100 times the present number of Mars-crossing asteroids. Section IV discusses the early bombardment history of Mars, based on the capture theory of Opik and probable orbital parameters of early planetesimals. These results show that the visible craters and surface of Mars should not be identified with the initial, accreted surface. A backward extrapolation of the impact rates based on surviving Mars-crossing asteroids can account for the majority of Mars craters over an interval of several aeons, indicating that we see back in time no further than part-way into a period of intense bombardment. An early period of erosion and deposition is thus suggested. Section V presents a comparison with results and terminology of other authors.
32 CFR 643.129 - Youth groups.
Code of Federal Regulations, 2011 CFR
2011-07-01
... facilities, without monetary consideration, to on-post youth groups such as the Boy Scouts, Girl Scouts, and Little League. (b) Installation commanders may grant revocable-at-will licenses for one-time use, or for intermittent or continuing use, to off-post youth groups such as the Boy Scouts, Girl Scouts, and the Little...
32 CFR 643.129 - Youth groups.
Code of Federal Regulations, 2013 CFR
2013-07-01
... facilities, without monetary consideration, to on-post youth groups such as the Boy Scouts, Girl Scouts, and Little League. (b) Installation commanders may grant revocable-at-will licenses for one-time use, or for intermittent or continuing use, to off-post youth groups such as the Boy Scouts, Girl Scouts, and the Little...
32 CFR 643.129 - Youth groups.
Code of Federal Regulations, 2012 CFR
2012-07-01
... facilities, without monetary consideration, to on-post youth groups such as the Boy Scouts, Girl Scouts, and Little League. (b) Installation commanders may grant revocable-at-will licenses for one-time use, or for intermittent or continuing use, to off-post youth groups such as the Boy Scouts, Girl Scouts, and the Little...
32 CFR 643.129 - Youth groups.
Code of Federal Regulations, 2014 CFR
2014-07-01
... facilities, without monetary consideration, to on-post youth groups such as the Boy Scouts, Girl Scouts, and Little League. (b) Installation commanders may grant revocable-at-will licenses for one-time use, or for intermittent or continuing use, to off-post youth groups such as the Boy Scouts, Girl Scouts, and the Little...
45 CFR 618.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... FOUNDATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
31 CFR 28.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
44 CFR 19.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
22 CFR 229.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
49 CFR 25.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage § 25... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
44 CFR 19.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
49 CFR 25.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage § 25... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
45 CFR 618.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... FOUNDATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
6 CFR 17.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
13 CFR 113.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ADMINISTRATOR Nondiscrimination on the Basis of Sex in Education Programs or Activities Receiving Federal... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
45 CFR 618.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... FOUNDATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
10 CFR 1042.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 1042.215 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION ON THE BASIS OF SEX IN..., YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the... (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations...
6 CFR 17.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
13 CFR 113.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ADMINISTRATOR Nondiscrimination on the Basis of Sex in Education Programs or Activities Receiving Federal... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
34 CFR 106.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the... Girl Scouts, the Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part...
44 CFR 19.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
18 CFR 1317.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... VALLEY AUTHORITY NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
34 CFR 106.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the... Girl Scouts, the Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part...
13 CFR 113.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ADMINISTRATOR Nondiscrimination on the Basis of Sex in Education Programs or Activities Receiving Federal... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
31 CFR 28.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
41 CFR 101-4.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
22 CFR 229.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
41 CFR 101-4.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
49 CFR 25.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage § 25... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
43 CFR 41.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
49 CFR 25.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage § 25... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
40 CFR 5.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
34 CFR 106.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the... Girl Scouts, the Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part...
15 CFR 8a.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
45 CFR 618.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... FOUNDATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
10 CFR 5.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 5.215 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
15 CFR 8a.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
10 CFR 5.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 5.215 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
13 CFR 113.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ADMINISTRATOR Nondiscrimination on the Basis of Sex in Education Programs or Activities Receiving Federal... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
43 CFR 41.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
14 CFR 1253.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
22 CFR 229.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
10 CFR 5.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 5.215 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
10 CFR 1042.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 1042.215 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION ON THE BASIS OF SEX IN..., YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the... (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations...
43 CFR 41.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
22 CFR 146.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage § 146... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
14 CFR 1253.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
43 CFR 41.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
40 CFR 5.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
13 CFR 113.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ADMINISTRATOR Nondiscrimination on the Basis of Sex in Education Programs or Activities Receiving Federal... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
10 CFR 1042.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 1042.215 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION ON THE BASIS OF SEX IN..., YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the... (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations...
10 CFR 5.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 5.215 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
40 CFR 5.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
44 CFR 19.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
45 CFR 618.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... FOUNDATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
18 CFR 1317.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... VALLEY AUTHORITY NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
31 CFR 28.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
31 CFR 28.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
6 CFR 17.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
15 CFR 8a.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
36 CFR § 1211.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ARCHIVES AND RECORDS ADMINISTRATION GENERAL RULES NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
18 CFR 1317.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... VALLEY AUTHORITY NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
44 CFR 19.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
22 CFR 146.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage § 146... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
40 CFR 5.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
10 CFR 5.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 5.215 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
41 CFR 101-4.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
49 CFR 25.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage § 25... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
34 CFR 106.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the... Girl Scouts, the Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part...
6 CFR 17.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
34 CFR 106.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the... Girl Scouts, the Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part...
18 CFR 1317.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... VALLEY AUTHORITY NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
41 CFR 101-4.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
14 CFR 1253.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
6 CFR 17.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
41 CFR 101-4.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
31 CFR 28.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
22 CFR 229.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
22 CFR 229.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
10 CFR 1042.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 1042.215 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION ON THE BASIS OF SEX IN..., YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the... (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations...
10 CFR 1042.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 1042.215 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION ON THE BASIS OF SEX IN..., YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the... (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations...
14 CFR § 1253.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ADMINISTRATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
18 CFR 1317.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... VALLEY AUTHORITY NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING... institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
40 CFR 5.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
22 CFR 146.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage § 146... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
14 CFR 1253.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
22 CFR 146.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage § 146... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
43 CFR 41.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
22 CFR 146.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage § 146... education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not... Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth...
15 CFR 8a.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
15 CFR 8a.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and Camp Fire Girls. These Title IX... Young Women's Christian Association (YWCA), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c...
32 CFR 621.4 - Issues, loans, and donations for scouting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to commodity command or military deparment property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...
32 CFR 621.4 - Issues, loans, and donations for scouting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... to commodity command or military deparment property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...
32 CFR 621.4 - Issues, loans, and donations for scouting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... to commodity command or military department property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...
32 CFR 621.4 - Issues, loans, and donations for scouting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to commodity command or military deparment property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...
32 CFR 621.4 - Issues, loans, and donations for scouting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... to commodity command or military department property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...
The Implementation of Character Education through Scout Activities
ERIC Educational Resources Information Center
Mislia; Mahmud, Alimuddin; Manda, Darman
2016-01-01
This research aims at describing the factors influencing the extracurricular activities especially scouting. This research also aims at describing the Scouts skills that can form the students' character. This research is also to describe the strategies for the formation of the students' character through scout activities. This research was a…
Code of Federal Regulations, 2010 CFR
2010-07-01
... ACCESS TO PUBLIC SCHOOL FACILITIES FOR THE BOY SCOUTS OF AMERICA AND OTHER DESIGNATED YOUTH GROUPS § 108.3 Definitions. The following definitions apply to this part: (a) Act means the Boy Scouts of America.... 7905). (b) Boy Scouts means the organization named “Boy Scouts of America,” which has a Federal charter...
Code of Federal Regulations, 2014 CFR
2014-07-01
... ACCESS TO PUBLIC SCHOOL FACILITIES FOR THE BOY SCOUTS OF AMERICA AND OTHER DESIGNATED YOUTH GROUPS § 108.3 Definitions. The following definitions apply to this part: (a) Act means the Boy Scouts of America.... 7905). (b) Boy Scouts means the organization named “Boy Scouts of America,” which has a Federal charter...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ACCESS TO PUBLIC SCHOOL FACILITIES FOR THE BOY SCOUTS OF AMERICA AND OTHER DESIGNATED YOUTH GROUPS § 108.3 Definitions. The following definitions apply to this part: (a) Act means the Boy Scouts of America.... 7905). (b) Boy Scouts means the organization named “Boy Scouts of America,” which has a Federal charter...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ACCESS TO PUBLIC SCHOOL FACILITIES FOR THE BOY SCOUTS OF AMERICA AND OTHER DESIGNATED YOUTH GROUPS § 108.3 Definitions. The following definitions apply to this part: (a) Act means the Boy Scouts of America.... 7905). (b) Boy Scouts means the organization named “Boy Scouts of America,” which has a Federal charter...
Code of Federal Regulations, 2013 CFR
2013-07-01
... ACCESS TO PUBLIC SCHOOL FACILITIES FOR THE BOY SCOUTS OF AMERICA AND OTHER DESIGNATED YOUTH GROUPS § 108.3 Definitions. The following definitions apply to this part: (a) Act means the Boy Scouts of America.... 7905). (b) Boy Scouts means the organization named “Boy Scouts of America,” which has a Federal charter...
Near-earth asteroids - Possible sources from reflectance spectroscopy
NASA Technical Reports Server (NTRS)
Mcfadden, L. A.; Gaffey, M. J.; Mccord, T. B.
1985-01-01
The diversity of reflectance spectra noted among near-earth asteroids that were compared with selected asteroids, planets and satellites to determine possible source regions is indicative of different mineralogical composition and, accordingly, of more than one source region. Spectral signatures that are similar to those of main belt asteroids support models deriving some of these asteroids from the 5:2 Kirkwood gap and the Flora family, by way of gravitational perturbations. The differences in composition found between near-earth asteroids and planetary and satellite surfaces are in keeping with theoretical arguments that such bodies should not be sources. While some near-earth asteroids furnish portions of the earth's meteorite flux, other sources must also contribute.
Surface Exposure Ages of Space-Weathered Grains from Asteroid 25143 Itokawa
NASA Technical Reports Server (NTRS)
Keller, L. P.; Berger, E. L.; Christoffersen, R.
2015-01-01
Space weathering processes such as solar wind ion irradiation and micrometeorite impacts are widely known to alter the properties of regolith materials exposed on airless bodies. The rates of space weathering processes however, are poorly constrained for asteroid regoliths, with recent estimates ranging over many orders of magnitude. The return of surface samples by JAXA's Hayabusa mission to asteroid 25143 Itokawa, and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering processes on airless bodies.
Asteroid Deflection: How, Where and When?
NASA Astrophysics Data System (ADS)
Fargion, D.
2008-10-01
To deflect impact-trajectory of massive and spinning km^3 asteroid by a few terrestrial radiuses one need a large momentum exchange. The dragging of huge spinning bodies in space by external engine seems difficult or impossible. Our solution is based on the landing of multi screw-rockets, powered by mini-nuclear engines, on the body, that dig a small fraction of the soil surface to use as an exhaust propeller, ejecting it vertically in phase among themselves. Such a mass ejection increases the momentum exchange, their number redundancy guarantees the stability of the system. The slow landing (below ≃ 40 cm s^{-1}) of each engine-unity at those very low gravity field, may be achieved by safe rolling and bouncing along the surface. The engine array tuned activity, overcomes the asteroid angular velocity. Coherent turning of the jet heads increases the deflection efficiency. A procession along its surface may compensate at best the asteroid spin. A small skin-mass (about 2×10^4 tons) may be ejected by mini-nuclear engines. Such prototypes may also build first safe galleries for humans on the Moon. Conclusive deflecting tests might be performed on remote asteroids. The incoming asteroid 99942 Apophis (just 2% of km^3) may be deflected safely a few Earth radiuses. Its encounter maybe not just a hazard but an opportunity, learning how to land, to dig, to build and also to nest safe human station inside. Asteroids amplified deflections by gravity swing may be driven into longest planetary journeys, beginning i.e. with the preliminary landing of future missions on Mars' moon-asteroid Phobos or Deimos.
NASA Astrophysics Data System (ADS)
Martikainen, Julia; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri
2017-10-01
Asteroids have remained mostly the same for the past 4.5 billion years, and provide us information on the origin, evolution and current state of the Solar System. Asteroids and meteorites can be linked by matching their respective reflectance spectra. This is difficult, because spectral features depend strongly on the surface properties, and meteorite surfaces are free of regolith dust present in asteroids. Furthermore, asteroid surfaces experience space weathering which affects their spectral features.We present a novel simulation framework for assessing the spectral properties of meteorites and asteroids and matching their reflectance spectra. The simulations are carried out by utilizing a light-scattering code that takes inhomogeneous waves into account and simulates light scattering by Gaussian-random-sphere particles large compared to the wavelength of the incident light. The code uses incoherent input and computes phase matrices by utilizing incoherent scattering matrices. Reflectance spectra are modeled by combining olivine, pyroxene, and iron, the most common materials that dominate the spectral features of asteroids and meteorites. Space weathering is taken into account by adding nanoiron into the modeled asteroid spectrum. The complex refractive indices needed for the simulations are obtained from existing databases, or derived using an optimization that utilizes our ray-optics code and the measured spectrum of the material.We demonstrate our approach by applying it to the reflectance spectrum of (4) Vesta and the reflectance spectrum of the Johnstown meteorite measured with the University of Helsinki integrating-sphere UV-Vis-NIR spectrometer.Acknowledgments. The research is funded by the ERC Advanced Grant No. 320773 (SAEMPL).
OSIRIS-REx Asterod Sample Return Mission
NASA Technical Reports Server (NTRS)
Nakamura-Messinger, Keiki; Connolly, Harold C. Jr.; Messenger, Scott; Lauretta, Dante S.
2017-01-01
OSIRIS-REx is NASA's third New Frontiers Program mission, following New Horizons that completed a flyby of Pluto in 2015 and the Juno mission to Jupiter that has just begun science operations. The OSIRIS-REx mission's primary objective is to collect pristine surface samples of a carbonaceous asteroid and return to Earth for analysis. Carbonaceous asteroids and comets are 'primitive' bodies that preserved remnants of the Solar System starting materials and through their study scientists can learn about the origin and the earliest evolution of the Solar System. The OSIRIS-REx spacecraft was successfully launched on September 8, 2016, beginning its seven year journey to asteroid 101955 Bennu. The robotic arm will collect 60-2000 grams of material from the surface of Bennu and will return to Earth in 2023 for worldwide distribution by the Astromaterials Curation Facility at NASA Johnson Space Center. The name OSIRIS-REx embodies the mission objectives (1) Origins: Return and analyze a sample of a carbonaceous asteroid, (2) Spectral Interpretation: Provide ground-truth for remote observation of asteroids, (3) Resource Identification: Determine the mineral and chemical makeup of a near-Earth asteroid (4) Security: Measure the non-gravitational that changes asteroidal orbits and (5) Regolith Explorer: Determine the properties of the material covering an asteroid surface. Asteroid Bennu may preserve remnants of stardust, interstellar materials and the first solids to form in the Solar System and the molecular precursors to the origin of life and the Earth's oceans. Bennu is a potentially hazardous asteroid, with an approximately 1 in 2700 chance of impacting the Earth late in the 22nd century. OSIRIS-REx collects from Bennu will help formulate the types of operations and identify mission activities that astronauts will perform during their expeditions. Such information is crucial in preparing for humanity's next steps beyond low Earthy orbit and on to deep space destinations.
NASA Astrophysics Data System (ADS)
Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania
2016-10-01
The Hungaria region represents a "purgatory" for the closest, preserved samples of the material from which the terrestrial planets accreted. The Hungaria region harbors a collisional family of Xe-type asteroids, which are situated among a background of predominantly S-complex asteroids. Deciphering their surface composition may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We hypothesize that planetesimals in the inner part of the primordial asteroid belt experienced partial- to full-melting and differentiation, the Hungaria region should retain any petrologically-evolved material that formed there.We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) spectra to characterize taxonomy, surface mineralogy, and potential meteorite analogs. We used NIR instruments at two ground-based facilities (NASA IRTF; TNG). Our data set includes spectra of 82 Hungaria asteroids (61 background; 21 family), 65 were observed during HARTSS. We compare S-complex background asteroids to calibrations developed via laboratory analyses of ordinary chondrites, and to our analyses (EPMA, XRD, VIS+NIR spectra) of 11 primitive achondrite (acapulcoite-lodranite clan) meteorites.We find that stony S-complex asteroids dominate the Hungaria background population (~80%). Background objects exhibit considerable spectral diversity, when quantified by spectral band parameter measurements, translates to a variety of surface compositions. Two main meteorite groups are represented within the Hungaria background: unmelted, nebular L chondrites (and/or L chondrites), and partially-melted primitive achondrites. H-chondrite mineralogies appear to be absent from the Hungaria background. Xe-type Hungaria family members exhibit spectral homogeneity, consistent with the hypothesis that the family was derived from the disruption of a parent body analogous to an enstatite achondrite (i.e., aubrite) composition. Hungaria region asteroids exhibit a full range of petrologic evolution, from nebular, unmelted ordinary chondrites, through partially-melted primitive achondrites, to fully-melted igneous aubrite meteorites.
NASA Technical Reports Server (NTRS)
Cloutis, Edward A.; Smith, Dorian G.; Lambert, Richard St. J.; Gaffey, Michael J.
1990-01-01
In a search for diagnostic spectral parameters which can be used to distinguish different materials on the surface of asteroids and to provide information on the detection limits for mafic silicates, the 0.3- to 2.6-micron reflectance spectra of meteoritic enstatite (nearly pure MgSiO3), iron meteorite metal, magnetite, and amorphous carbon as well as various mixtures of these materials with mafic silicates were examined. Results are presented on the dependence of the spectral detectability of mafic silicates associated with metal, carbon, and magnetite on the particle sizes of the phases, their chemistries, crystal structures, and abundances. It is shown that the observational data for a representative M-class asteroid, (16) Psyche, are largely consistent with a fine-grained metal-rich surface assemblage, whereas data for the E-class asteroid (44) Nysa indicate that its surface is composed of fine-grained material similar to enstatite achondrites, with a small amount of material comparable to the chondritic inclusions found in the Cumberland Falls aubrite.
Exploring Asteroid Interiors: The Deep Interior Mission Concept
NASA Technical Reports Server (NTRS)
Asphaug, E.; Belton, M. J. S.; Cangahuala, A.; Keith, L.; Klaasen, K.; McFadden, L.; Neumann, G.; Ostro, S. J.; Reinert, R.; Safaeinili, A.
2003-01-01
Deep Interior is a mission to determine the geophysical properties of near-Earth objects, including the first volumetric image of the interior of an asteroid. Radio reflection tomography will image the 3D distribution of complex dielectric properties within the 1 km rendezvous target and hence map structural, density or compositional variations. Laser altimetry and visible imaging will provide high-resolution surface topography. Smart surface pods culminating in blast experiments, imaged by the high frame rate camera and scanned by lidar, will characterize active mechanical behavior and structure of surface materials, expose unweathered surface for NIR analysis, and may enable some characterization of bulk seismic response. Multiple flybys en route to this target will characterize a diversity of asteroids, probing their interiors with non-tomographic radar reflectance experiments. Deep Interior is a natural follow-up to the NEARShoemaker mission and will provide essential guidance for future in situ asteroid and comet exploration. While our goal is to learn the interior geology of small bodies and how their surfaces behave, the resulting science will enable pragmatic technologies required of hazard mitigation and resource utilization.
29 CFR 36.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 36.215 Labor Office of the Secretary of Labor NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
29 CFR 36.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 36.215 Labor Office of the Secretary of Labor NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
29 CFR 36.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 36.215 Labor Office of the Secretary of Labor NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
29 CFR 36.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 36.215 Labor Office of the Secretary of Labor NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
29 CFR 36.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 36.215 Labor Office of the Secretary of Labor NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION... Scouts, Boy Scouts, and Camp Fire Girls. These Title IX regulations do not apply to the membership...), the Girl Scouts, the Boy Scouts, and Camp Fire Girls. (c) Voluntary youth service organizations. These...
Preliminary Humanities Tech Scout Report [and] Scouting for Multimedia, the Search Goes On.
ERIC Educational Resources Information Center
Muyskens, Lois
In 1990, the Dallas County Community College District's (DCCCD's) Computer Center recruited three technology scouts (faculty members interested in media) to locate, preview, and evaluate multimedia products that could be used in the classroom. The technology scout for the humanities found and previewed products that could be used in…
The Lightweight Integrated Solar Array and anTenna (LISA-T) Big Power for Small Spacecraft
NASA Technical Reports Server (NTRS)
Johnson, Les; Carr, John A.; Boyd, Darren
2017-01-01
NASA is developing a space power system using lightweight, flexible photovoltaic devices originally developed for use here on Earth to provide low cost power for spacecraft. The Lightweight Integrated Solar Array and anTenna (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. The LISA-T system is deployable, building upon NASA's expertise in developing thin-film deployable solar sails such the one being developed for the Near Earth Asteroid Scout project which will fly in 2018. One of the biggest challenges for the NEA Scout, and most other spacecraft, is power. There simply isn't enough of it available, thus limiting the range of operation of the spacecraft from the Sun (due to the small surface area available for using solar cells), the range of operation from the Earth (low available power with inherently small antenna sizes tightly constrain the bandwidth for communication), and the science (you can only power so many instruments with limited power). The LISA-T has the potential to mitigate each of these limitations, especially for small spacecraft. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between their need for power and robust communications with the requirements of the science or engineering payload they are developed to fly. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft and CubeSats. The problem is that these CubeSats can usually only generate between 7W and 50W of power. The power that can be generated by the LISA-T ranges from tens of watts to several hundred watts, at a much higher mass and stowage efficiency. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the latter is seeking GN&C simplicity. Options for leveraging both high performance, 'typical cost' triple junction thin-film solar cells as well as moderate performance, low cost cells are being developed. Alongside, UHF (ultrahigh frequency), S-band, and X-band antennas are being integrated into the array to move their space claim away from the spacecraft and open the door for more capable multi-element antenna designs such as those needed for spherical coverage and electronically steered phase arrays.
The Lightweight Integrated Solar Array and anTenna (LISA-T) - Big Power for Small Spacecraft
NASA Technical Reports Server (NTRS)
Johnson, Les; Carr, John; Boyd, Darren
2017-01-01
NASA is developing a space power system using lightweight, flexible photovoltaic devices originally developed for use here on Earth to provide low cost power for spacecraft. The Lightweight Integrated Solar Array and anTenna (LISA-T) is a launch-stowed, orbit-deployed array on which thin-film photovoltaic and antenna elements are embedded. The LISA-T system is deployable, building upon NASA's expertise in developing thin-film deployable solar sails such the one being developed for the Near Earth Asteroid Scout project which will fly in 2018. One of the biggest challenges for the NEA Scout, and most other spacecraft, is power. There simply isn't enough of it available, thus limiting the range of operation of the spacecraft from the Sun (due to the small surface area available for using solar cells), the range of operation from the Earth (low available power with inherently small antenna sizes tightly constrain the bandwidth for communication), and the science (you can only power so many instruments with limited power). The LISA-T has the potential to mitigate each of these limitations. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between their need for power and robust communications with the requirements of the science or engineering payload they are developed to fly. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft and CubeSats. The problem is that these CubeSats can usually only generate between 7 watts and 50 watts of power. The power that can be generated by the LISA-T ranges from tens of watts to several hundred watts. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the latter is seeking GN&C (Guidance, Navigation and Control) simplicity. In both cases, power generation ranges from tens of watts to several hundred with an expected specific power greater than 250 watts per kilogram and a stowed power density greater than 200 kilowatts per cubic meter. Options for leveraging both high performance, 'typical cost' triple junction thin-film solar cells as well as moderate performance, low cost cells are being developed. Alongside, both UHF (ultra high frequency) and S-band antennas are being integrated into the array to move their space claim away from the spacecraft and open the door for omnidirectional communications and electronically steered phase arrays.
NASA Technical Reports Server (NTRS)
Zellner, B.; Gradie, J.
1976-01-01
Polarimetric observations are presented and analyzed for a total of 94 asteroids. The data include numerical parameters describing the polarization-plane curve, the maximum depth of the negative branch, geometric albedo, and diameter. With few exceptions, the polarizations are found to be repeatable from hour to hour, night to night, and apparition to apparition at the same solar phase angle within an observational accuracy of plus or minus 0.05%. It is shown that over a range of more than a factor of 50 in diameter or a factor of 100,000 in mass, all the asteroids seem to have microscopically very rough or particulate surface textures. In terms of their polarimetric properties, the asteroids are classified as follows: 48 in the broad S class, with compositions corresponding to stony-iron meteorites or ordinary chondrites; 34 in the C class, probably corresponding to carbonaceous chondrites; three to five M asteroids with surfaces rich in free metal; two with low-opacity surfaces (class E) attributable to pure enstatite; and five of other types.
MRI scout images can detect the acute intracerebral hemorrhage on CT.
Hayashi, Toshiyuki; Aoki, Junya; Suzuki, Kentaro; Sakamoto, Yuki; Suda, Satoshi; Okubo, Seiji; Mishina, Masahiro; Kimura, Kazumi
2018-04-15
Magnetic resonance imaging (MRI) has recently emerged as a first-line tool for investigating acute stroke. However, MRI requires long scan times, which could be detrimental for severe stroke patients with a large intracerebral hemorrhage (ICH). MRI scout images, which are taken prior to a study to determine the range of subsequent images, can be used to rapidly screen the whole brain. We examined whether MRI scout imaging can detect ICHs observed by computed tomography (CT). Between September 2014 and March 2016, consecutive acute ICH patients who underwent both MRI scout and CT imaging in the acute setting were studied. ICHs on MRI scout images were defined as space-occupying lesions. Two neurologists independently assessed the scout images. We investigated whether ICHs on CT scans can be detected on MRI scout images and the characteristics of ICHs not detected by MRI scout images. One hundred and forty-eight ICH patients (median age, 68 [interquartile range, 59-77] years; 99 [67%] males; median National Institutes of Health Stroke Scale score, 11 [4-17]) were enrolled. Among these, 138 (93%) patients were diagnosed as having ICH by MRI scout imaging (positive group), and 10 (7%) patients were not (negative group). The bleeding volume was 9.3 [4.5-22.4] ml in the positive group and 1.0 [0.4-2.0] ml in the negative group (p < .001). The cut-off value of bleeding volume calculated from the receiver operating characteristic curve was 2.0 ml. Regarding ICH lesions, 4 (44%) of the 9 pontine hemorrhages were detected on MRI scout images, whereas 134 (96%) of the 139 other hemorrhages were diagnosed (p < .001). We diagnosed >90% of ICHs using MRI scout images. Low levels of ICH and pontine hemorrhaging might be difficult to detect using MRI scout imaging. Copyright © 2018 Elsevier B.V. All rights reserved.
Leadership Workshops for Adult Girl Scout Leaders
NASA Astrophysics Data System (ADS)
Lebofsky, Larry A.; McCarthy, Donald; DeVore, Edna; Harman, Pamela; Reaching Stars Team
2016-10-01
This year, the University of Arizona is conducting its first two Leadership Workshops for Girl Scout adult leaders. These workshops are being supported by a five-year NASA Collaborative Agreement, Reaching for the Stars: NASA Science for Girl Scouts (www.seti.org/GirlScoutStars), through the SETI Institute in collaboration with the University of Arizona, Girl Scouts of the USA (GSUSA), the Girl Scouts of Northern California, the Astronomical Society of the Pacific, and Aries Scientific, Inc. These workshops are an outgrowth of Astronomy Camp for Girl Scout Leaders, a 14-year "Train the Trainer" program funded by NASA through the James Webb Space Telescope's Near Infrared Camera (NIRCam) education and outreach team. We are continuing our long-term relationship with all Girl Scout Councils to engage girls and young women not only in science and math education, but also in the astronomical and technological concepts relating to NASA's scientific mission. Our training aligns with the GSUSA Journey: It's Your Planet-Love It! and introduces participants to some of the activities that are being developed by the Girl Scout Stars team for GSUSA's new space science badges for all Girl Scout levels being developed as a part of Reaching for the Stars: NASA Science for Girl Scouts.The workshops include hands-on activities in basic astronomy (night sky, stars, galaxies, optics, telescopes, etc.) as well as some more advanced concepts such as lookback time and the expansion of the Universe. Since the inception of our original Astronomy Camp in 2003, our team has grown to include nearly 280 adult leaders, staff, and volunteers from over 79 Councils in 43 states and the District of Columbia so they can, in turn, teach young women essential concepts in astronomy, the night sky environment, applied math, and engineering. Our workshops model what astronomers do by engaging participants in the process of science inquiry, while equipping adults to host astronomy-related programs with local Girl Scouts.Reaching for the Stars: NASA Science for Girl Scouts is supported by NASA Science Mission Directorate's Education Cooperative Agreement # NNX16AB90.
Radar observations of asteroid 216 Kleopatra
NASA Technical Reports Server (NTRS)
Ostro, S.; Hudson, R.; Nolan, M.; Margot, J.; Scheeres, D.; Campbell, D.; Magri, C.; Giorgini, J.; Yeomans, D.
2000-01-01
Radar observations of the main-belt, M-class asteroid 216 Kleopatra reveal a dumbbell-shaped object with overall dimensions of 217 kilometers by 94 kilometers by 81 kilometers (+/-25%). The asteroid's surface properties are consistent with a regolith having a metallic composition and a porosity comparable to that of Lunar soil.
Planetary and asteroid missions. Getting there: Anchoring spacecraft to asteroids
NASA Technical Reports Server (NTRS)
Meyer, Rudolf X.; Melko, Joseph P.
1993-01-01
In this hardware project, the students developed ideas for attaching objects to the surface of small moons or asteroids. A device was designed, and built in the university machine shop, that uses a projectile shot into concrete, thereby attaching a model spacecraft to the landing site.
Chromium on Eros: Further Evidence of Ordinary Chondrite Composition
NASA Technical Reports Server (NTRS)
Foley, C. N.; Nittler, L. R.; Brown, M. R. M.; McCoy, T. J.; Lim, L. F.
2005-01-01
The surface major element composition of the near-earth asteroid 433-Eros has been determined by x-ray fluorescence spectroscopy (XRS) on the NEAR-Shoemaker spacecraft [1]. The abundances of Mg, Al, Si, Ca and Fe match those of ordinary chondrites [1]. However, the observation that Eros appears to have a sulfur abundance at least a factor of two lower than ordinary chondrites, suggests either sulfur loss from the surface of Eros by impact and/or radiation processes (space weathering) or that its surface is comprised of a somewhat more differentiated type of material than an ordinary chondrite [1]. A definitive match for an ordinary chondrite parent body has very rarely been made, despite the conundrum that ordinary chondrites are the most prevalent type of meteorite found on Earth. Furthermore, Eros is classified as an S(IV) type asteroid [2] and being an S, it is the second most prevalent type of asteroid in the asteroid belt [3].
Thermal History of Near-Earth Asteroids: Implications for OSIRIS-REx Asteroid Sample Return
NASA Astrophysics Data System (ADS)
Springmann, Alessondra; Lauretta, Dante S.
2016-10-01
The connection between orbital and temperature history of small Solar System bodies has only been studied through modeling. The upcoming OSIRIS-REx asteroid sample return mission provides an opportunity to connect thermal modeling predictions with laboratory studies of meteorites to predict past heating and thus dynamical histories of bodies such as OSIRIS-REx mission target asteroid (101955) Bennu. Bennu is a desirable target for asteroid sample return due to its inferred primitive nature, likely 4.5 Gyr old, with chemistry and mineralogy established in the first 10 Myr of solar system history (Lauretta et al. 2015). Delbo & Michel (2011) studied connections between the temperature and orbital history of Bennu. Their results suggest that the surface of Bennu (assuming no regolith turnover) has a 50% probability of being heated to 500 K in the past. Further, the Delbo & Michel simulations show that the temperature within the asteroid below the top layer of regolith could remain at temperatures ~100 K below that of the surface. The Touch-And-Go Sample Acquisition Mechanism on OSIRIS-REx could access both the surface and near surface regolith, collecting primitive asteroid material for study in Earth-based laboratories in 2023. To quantify the effects of thermal metamorphism on the Bennu regolith, laboratory heating experiments on carbonaceous chondrite meteorites with compositions likely similar to that of Bennu were conducted from 300-1200 K. These experiments show mobilization and volatilization of a suite of labile elements (sulfur, mercury, arsenic, tellurium, selenium, antimony, and cadmium) at temperatures that could be reached by asteroids that cross Mercury's orbit. We are able to quantify element loss with temperature for several carbonaceous chondrites and use these results to constrain past orbital histories of Bennu. When OSIRIS-REx samples arrive for analysis we will be able to measure labile element loss in the material, determine maximum past temperature of the samples, and predict the past orbital and thermal history of Bennu.
The Spherical Brazil Nut Effect and its Significance to Asteroids
NASA Astrophysics Data System (ADS)
Perera, Viranga; Jackson, Alan P.; Asphaug, Erik; Ballouz, Ronald-Louis
2015-11-01
Asteroids are intriguing remnant objects from the early solar system. They can inform us on how planets formed, they could possibly impact the earth in the future, and they likely contain precious metals; for those reasons, there will be future exploration and mining space missions to them. Telescopic observations and spacecraft data have helped us understand basic properties such as their size, mass, spin rate, orbital elements, and their surface properties. However, their interior structures have remained elusive. In order to fully characterize the interiors of these bodies, seismic data will be necessary. However, we can infer their interior structures by combining several key factors that we know about them: 1). Past work has shown that asteroids between 150 m to 10 km in size are rubble-piles that are a collection of particles held together by gravity and possibly cohesion. 2). Asteroid surfaces show cratering that suggests that past impacts would have seismically shaken these bodies. 3). Spacecraft images show that some asteroids have large protruding boulders on their surfaces. A rubble-pile object made of particles of different sizes and that undergoes seismic shaking will experience granular flow. Specifically, a size sorting effect known as the Brazil Nut Effect will lead larger particles to move towards the surface while smaller particles will move downwards. Previous work has suggested that this effect could possibly explain not only why there are large boulders on the surfaces of some asteroids but also might suggest that the interior particles of these bodies would be organized by size. Previous works have conducted computer simulations and lab experiments; however, all the particle configurations used have been either cylindrical or rectangular boxes. In this work we present a spherical configuration of self-gravitating particles that is a better representation of asteroids. Our results indicate that while friction is not necessary for the Brazil Nut Effect to take place, it aids the sorting process after a certain energy threshold is met. Even though we find that the outer layers of asteroids could possibly be size sorted, the inner regions are likely mixed.
NASA Astrophysics Data System (ADS)
Huang, Shaoxiong; Akridge, Glen; Sears, Derek W. G.
Some of the most primitive solar system materials available for study in the laboratory are the ordinary chondrites, the largest meteorite class. The size and distribution of the chondrules (silicate beads) and metal, which leads to the definition of the H, L, and LL classes, suggest sorting before or during aggregation. We suggest that meteorite parent bodies (probably asteroids) had thick dusty surfaces during their early evolution that were easily mobilized by gases evolving from their interiors. Density and size sorting would have occurred in the surface layers as the upward drag forces of the gases (mainly water) acted against the downward force of gravity. The process is analogous to the industrially important process of fluidization and sorting in pyroclastic volcanics. We calculate that gas flow velocities and gas fluxes for the regolith of an asteroid-sized object heated by the impact of accreting objects or by 26Al would have been sufficient for fluidization. It can also explain, quantitatively in some cases, the observed metal-silicate sorting of ordinary chondrites, which has long been ascribed to processes occurring in the primordial solar nebula. Formation of the chondrites in the thick dynamic regolith is consistent with the major properties of chondritic meteorites (i.e., redox state, petrologic type, cooling rate, matrix abundance). These ideas have implications for the nature of asteroid surfaces and the virtual lack of asteroids with ordinary chondrite-like surfaces.
Water Transport and the Evolution of CM Parent Bodies
NASA Technical Reports Server (NTRS)
Coker, R.; Cohen, B.
2014-01-01
Extraterrestrial water-bearing minerals are of great importance both for understanding the formation and evolution of the solar system and for supporting future human activities in space. Asteroids are the primary source of meteorites, many of which show evidence of an early heating episode and varying degrees of aqueous alteration. The origin and characterization of hydrated minerals (minerals containing H2O or OH) among both the main-belt and near-earth asteroids is important for understanding a wide range of solar system formation and evolutionary processes, as well as for planning for human exploration. Current hypotheses postulate asteroids began as mixtures of water ice and anhydrous silicates. A heating event early in solar system history was then responsible for melting the ice and driving aqueous alteration. The link between asteroids and meteorites is forged by reflectance spectra, which show 3-µm bands indicative of bound OH or H2O on the C-class asteroids, which are believed to be the parent bodies of the carbonaceous chondrites in our collections. The conditions at which aqueous alteration occurred in the parent bodies of carbonaceous chondrites are thought to be well-constrained: at 0-25 C for less than 15 Myr after asteroid formation. In previous models, many scenarios exhibit peak temperatures of the rock and co-existing liquid water in more than 75 percent of the asteroid's volume rising to 150 C and higher, due to the exothermic hydration reactions triggering a thermal runaway effect. However, even in a high porosity, water-saturated asteroid very limited liquid water flow is predicted (distances of 100's nm at most). This contradiction has yet to be resolved. Still, it may be possible for water to become liquid even in the near-surface environment, for a long enough time to drive aqueous alteration before vaporizing or freezing then subliming. Thus, we are using physics- and chemistry-based models that include thermal and fluid transport as well as the effects of relevant chemical reactions, to investigate whether formation of hydrated minerals can occur in the surface and near-surface environments of carbonaceous type asteroids. These models will elucidate how the conditions within the parent body that cause internal aqueous alteration play themselves out at the asteroid's surface. We are using our models to determine whether the heat budget of 20-100-km bodies is sufficient to bring liquid water to the near-surface and cause mineral alteration, or whether additional heat input at the surface (i.e, by impacts) is needed to provide a transient liquid water source for mineral hydration without large- scale liquid water transport.
NASA Technical Reports Server (NTRS)
Ueda, Y.; Miyamoto, M.; Mikouchi, T.; Hiroi, T.
2003-01-01
Recent years, many researchers have been observing a lot of asteroid reflectance spectra in the UV, visible to NIR at wavelength region. Reflectance spectroscopy of asteroid at this range should bring us a lot of information about its surface materials. Pyroxene and olivine have characteristic absorption bands in this wavelength range. Low-Ca pyroxene has two absorption bands around 0.9 microns and 1.9 microns. The more Ca and Fe content, the longer both absorption band centers. On the other hand, reflectance spectrum of olivine has three complicated absorption bands around 1 m, and no absorption feature around 2 microns. In general, reflectance spectra of many asteroids that are considered to be silicate rich (i.e., S- and A type asteroids) show redder slope and more subdued absorption bands than those of terrestrial minerals and meteorites. These features are now believed to be caused by the space weathering effect, which is probably caused by micrometeorite bombardment and/or solar wind. This process causes nanophase reduced iron (npFe(sup 0)) particles near the surface of mineral grains, which leads the optical change. Therefore, the space weathering effect should be removed from asteroid reflectance spectra to compare with those of meteorite and terrestrial minerals. In this report, we will apply the expanded modified Gaussian model (MGM) to the reflectance spectra of S-type asteroids 7 Iris and 532 Herculina and compare them with those of meteorites.
Scout Launch Lift off on Wallops Island
1965-08-10
Scout launch vehicle lift off on Wallops Island in 1965. The Scout launch vehicle was used for unmanned small satellite missions, high altitude probes, and reentry experiments. Scout, the smallest of the basic launch vehicles, is the only United States launch vehicle fueled exclusively with solid propellants. Published in the book " A Century at Langley" by Joseph Chambers pg. 92
Volcanism on differentiated asteroids (Invited)
NASA Astrophysics Data System (ADS)
Wilson, L.
2013-12-01
The Dawn spacecraft's investigation of 4 Vesta, best-preserved of the early-forming differentiated asteroids, prompts a reappraisal of factors controlling igneous activity on such bodies. Analogy with melt transfer in zones of partial melting on Earth implies that silicate melts moved efficiently within asteroid mantles in complex networks of veins and dikes, so that only a few percent of the mantle consisted of melt at any one time. Thus even in cases where large amounts of mantle melting occurred, the melts did not remain in the mantle to form "magma oceans", but instead migrated to shallow depths. The link between magma flow rate and the stresses needed to keep fractures open and allow flow fast enough to avoid excessive cooling implies that only within asteroids with radii more than ~190-250 km would continuous magma flow from mantle to surface be possible. In all smaller asteroids (including Vesta) magma must have accumulated in sills at the base of the lithosphere (the conductively controlled ~10 km thick thermal boundary layer) or in crustal magma reservoirs near its base. Magma would then have erupted intermittently to the surface from these steadily replenished reservoirs. The average rates of eruption to the surface (or shallow intrusion) should balance the magma production rate, but since magma could accumulate and erupt intermittently from these reservoirs, the instantaneous eruption rates could be hundreds to thousands of cubic m/s, comparable to historic basaltic eruption rates on Earth and very much greater than the average mantle melting rate. The absence of asteroid atmospheres makes explosive eruptions likely even if magmas are volatile-poor. On asteroids with radii less than ~100 km, gases and sub-mm pyroclastic melt droplets would have had speeds exceeding the escape speed assuming a few hundred ppm volatiles, and only cm sized or larger clasts would have been retained. On larger bodies almost all pyroclasts will have returned to the surface after passing through optically dense fire fountains. At low eruption rates and high volatile contents many clasts cooled to form spatter or cinder deposits, but at high eruption rates and low volatile contents most clasts landed hot and coalesced into lava ponds to feed lava flows. Lava flow thickness varies with surface slope, acceleration due to gravity, and lava yield strength induced by cooling. Low gravity on asteroids caused flows to be relatively thick which reduced the effects of cooling, and many flows probably attained lengths of tens of km and stopped as a result of cessation of magma supply from the reservoir rather than cooling. On most asteroids larger than 100 km radius experiencing more than ~30% mantle melting, the erupted volcanic deposits will have buried the original chondritic surface layers of the asteroid to such great depths that they were melted, or at least heavily thermally metamorphosed, leaving no present-day meteoritical evidence of their prior existence. Tidal stresses from close encounters between asteroids and proto-planets may have very briefly increased melting and melt migration speeds in asteroid interiors but only gross structural disruption would have greatly have changed volcanic histories.
Regolith grain size and cohesive strength of near-Earth Asteroid (29075) 1950 DA
NASA Astrophysics Data System (ADS)
Gundlach, B.; Blum, J.
2015-09-01
Due to its fast rotation period of 2.12 h, about half of the surface of near-Earth Asteroid (29075) 1950 DA experiences negative (i.e., outward directed) acceleration levels (Rozitis, B., Maclennan, E., Emery, J.P. [2014]. Nature 512, 174-176). Thus, cohesion of the surface material is mandatory to prevent rotational breakup of the asteroid. Rozitis et al. (Rozitis, B., Maclennan, E., Emery, J.P. [2014]. Nature 512, 174-176) concluded that a grain size of ∼6 cm or lower is needed to explain the required cohesive strength of 64-20+12Pa . Here, we present another approach to determine the grain size of near-Earth Asteroid (29075) 1950 DA by using the thermal inertia value from Rozitis et al. (Rozitis, B., Maclennan, E., Emery, J.P. [2014]. Nature 512, 174-176) and a model of the heat conductivity of the surface regolith (Gundlach, B., Blum, J. [2013]. Icarus 223, 479-492). This method yields a mean particle radius ranging from 32 μm to 117 μm. The derived grain sizes are then used to infer the cohesive strength of the surface material of Asteroid (29075) 1950 DA (ranging from 24 Pa to 88 Pa), by using laboratory measurements of the tensile strength of powders.
Osiris-REx Spacecraft Current Status and Forward Plans
NASA Technical Reports Server (NTRS)
Messenger, Scott; Lauretta, Dante S.; Connolly, Harold C., Jr.
2017-01-01
The NASA New Frontiers OSIRIS-REx spacecraft executed a flawless launch on September 8, 2016 to begin its 23-month journey to near-Earth asteroid (101955). The primary objective of the OSIRIS-REx mission is to collect and return to Earth a pristine sample of regolith from the asteroid surface. The sampling event will occur after a two-year period of remote sensing that will ensure a high probability of successful sampling of a region on the asteroid surface having high science value and within well-defined geological context. The OSIRIS-REx instrument payload includes three high-resolution cameras (OCAMS), a visible and near-infrared spectrometer (OVIRS), a thermal imaging spectrometer (OTES), an X-ray imaging spectrometer (REXIS), and a laser altimeter (OLA). As the spacecraft follows its nominal outbound-cruise trajectory, the propulsion, power, communications, and science instruments have undergone basic functional tests, with no major issues. Outbound cruise science investigations include a search for Earth Trojan asteroids as the spacecraft approaches the Sun-Earth L4 Lagrangian point in February 2017. Additional instrument checkouts and calibrations will be carried out during the Earth gravity assist maneuver in September 2017. During the Earth-moon flyby, visual and spectral images will be acquired to validate instrument command sequences planned for Bennu remote sensing. The asteroid Bennu remote sensing campaign will yield high resolution maps of the temperature and thermal inertia, distributions of major minerals and concentrations of organic matter across the asteroid surface. A high resolution 3d shape model including local surface slopes and a high-resolution gravity field will also be determined. Together, these data will be used to generate four separate maps that will be used to select the sampling site(s). The Safety map will identify hazardous and safe operational regions on the asteroid surface. The Deliverability map will quantify the accuracy with which the navigation team can deliver the spacecraft to and from specific sites on the asteroid surface. The Sampleability map quantifies the regolith properties, providing an estimation of how much material would be sampled at different points on the surface. The final Science Value map synthesizes the chemical, mineralogical, and geological, observations to identify the areas of the asteroid surface with the highest science value. Here, priority is given to organic, water-rich regions that have been minimally altered by surface processes. Asteroid surface samples will be acquired with a touch-and-go sample acquisition system (TAGSAM) that uses high purity pressurized N2 gas to mobilize regolith into a stainless steel canister. Although the mission requirement is to collect at least 60 g of material, tests of the TAGSAM routinely exceeded 300 g of simulant in micro-gravity tests. After acquiring the sample, the spacecraft will depart Bennu in 2021 to begin its return journey, with the sample return capsule landing at the Utah Test and Training Range on September 23, 2023. The OSIRIS-REx science team will carry out a series of detailed chemical, mineralogical, isotopic, and spectral studies that will be used to determine the origin and history of Bennu and to relate high spatial resolution sample studies to the global geological context from remote sensing. The outline of the sample analysis plan is described in a companion abstract.
NASA Astrophysics Data System (ADS)
Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.
2017-12-01
Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to spectra measured under terrestrial conditions. Experimental studies such as this one will enhance interpretation of current and future planetary remote sensing data sets. This work is the beginning of an effort to develop a comprehensive spectral library of materials relevant to airless bodies and future missions such as OSIRIS-REx and Hayabusa 2.
NASA Astrophysics Data System (ADS)
Brasil, P. I. O.; Roig, F.; Nesvorný, D.; Carruba, V.
2017-06-01
V-type asteroids are a taxonomic class whose surface is associated with a basaltic composition. The only known source of V-type asteroids in the Main Asteroid Belt is (4) Vesta, which is located in the inner part of the Main Belt. However, many V-type asteroids cannot be dynamically linked to Vesta, in particular, those asteroids located in the middle and outer parts of the Main Belt. Previous works have failed to find mechanisms to transport V-type asteroids from the inner to the middle and outer belts. In this work, we propose a dynamical mechanism that could have acted on primordial asteroid families. We consider a model of the giant planet migration known as the jumping Jupiter model with five planets. Our study is focused on the period of 10 Myr that encompasses the instability phase of the giant planets. We show that, for different hypothetical Vesta-like paleo-families in the inner belt, the perturbations caused by the ice giant that is scattered into the asteroid belt before being ejected from the Solar system are able to scatter V-type asteroids to the middle and outer belts. Based on the orbital distribution of V-type candidates identified from the Sloan Digital Sky Survey and the VISTA Survey colours, we show that this mechanism is efficient enough provided that the hypothetical paleo-family originated from a 100 to 500 km crater excavated on the surface of (4) Vesta. This mechanism is able to explain the currently observed V-type asteroids in the middle and outer belts, with the exception of (1459) Magnya.
Integrated Blowoff and Breakup Calculations for Asteroid Deflection by Nuclear Ablation
NASA Astrophysics Data System (ADS)
Bruck Syal, M.; Owen, M.; Dearborn, D. S.; Miller, P. L.
2016-12-01
When the warning timing is short, hazardous asteroids or comets can only be deflected off of an Earth-impacting trajectory by a nuclear device [1]. Here we model asteroid response to a standoff nuclear explosion, a problem which requires sub-millimeter spatial resolution at the body's surface to fully capture x-ray energy deposition. The first stage of the calculation focuses on modeling blowoff momentum from vaporized material, using a problem domain confined to the uppermost surface of the asteroid. Once the blowoff momentum transfer process is complete, the problem is remapped into a coarser resolution and the remainder of the asteroid body is added to the calculation, so that asteroid response can be tracked over longer timescales. This two-stage approach enables an integrated assessment of both the efficacy of momentum delivery and damage incurred by the bulk of the asteroid. Investigating the degree of post-ablation fracture, fragmentation, and fragment dispersion is necessary for modeling the outcomes of cases intended to fully fragment and disperse the body (disruption), as well as cases where the bulk of the asteroid should remain intact (deflection). We begin with 500-m spherical asteroids but also extend our analysis to radar-derived asteroid shape models. [1] Dearborn, D.S.P., Miller, P.L., 2014. Deflecting or Disrupting a Threatening Object, in: Pelton, J.N., Allahdadi, F. (Eds.), Handbook of Cosmic Hazards and Planetary Defense, Springer. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344. LLNL-ABS-699631.
A cheaper, faster, better way to detect water of hydration on Solar System bodies
NASA Technical Reports Server (NTRS)
Vilas, Faith
1994-01-01
The 3.0-micrometers water of hydration absorption feature observed in the IR photometry of many low-albedo and some medium-albedo asteroids strongly correlates with the 0.7-micrometers Fe(+2) to Fe(+3) oxidized iron absorption feature observed in narrowband spectrophotometry of these asteroids. Using this relationship, an empirical algorithm for predicting the presence of water of hydration in the surface material of a Solar System body using photometry obtained through the Eight-Color Asteroid Survey nu (0.550 micrometers), w (0.701 micrometers), and x (0.853 micrometers) filters was developed and applied to the ECAS photometry of asteroids and outer planet satellites. The percentage of objects in low-albedo, outer main-belt asteroid classes that test positively for water of hydration increases from P to B to C to G class and correlates linearly with the increasing mean albedos of those objects testing positively. The medium-albedo M-class asteroids do not test positively in large number using this algorithm. Aqueously altered asteroids dominate the Solar System population between heliocentric distances of 2.6 to 3.5 AU, bracketing the Solar System region where the aqueous alteration mechanism operated most strongly. One jovian satellite, J VI Himalia, and one saturnian satellite. Phoebe, tested positively for water of hydration, supporting the hypothesis that these may be captured C-class asteroids from a postaccretional dispersion. The proposed testing technique could be applied to an Earth-based survey of asteroids or a space-probe study of an asteroid's surface characteristic in order to identify a potential water source.
A cheaper, faster, better way to detect water of hydration on Solar System bodies
NASA Astrophysics Data System (ADS)
Vilas, Faith
1994-10-01
The 3.0-micrometers water of hydration absorption feature observed in the IR photometry of many low-albedo and some medium-albedo asteroids strongly correlates with the 0.7-micrometers Fe(+2) to Fe(+3) oxidized iron absorption feature observed in narrowband spectrophotometry of these asteroids. Using this relationship, an empirical algorithm for predicting the presence of water of hydration in the surface material of a Solar System body using photometry obtained through the Eight-Color Asteroid Survey nu (0.550 micrometers), w (0.701 micrometers), and x (0.853 micrometers) filters was developed and applied to the ECAS photometry of asteroids and outer planet satellites. The percentage of objects in low-albedo, outer main-belt asteroid classes that test positively for water of hydration increases from P to B to C to G class and correlates linearly with the increasing mean albedos of those objects testing positively. The medium-albedo M-class asteroids do not test positively in large number using this algorithm. Aqueously altered asteroids dominate the Solar System population between heliocentric distances of 2.6 to 3.5 AU, bracketing the Solar System region where the aqueous alteration mechanism operated most strongly. One jovian satellite, J VI Himalia, and one saturnian satellite. Phoebe, tested positively for water of hydration, supporting the hypothesis that these may be captured C-class asteroids from a postaccretional dispersion. The proposed testing technique could be applied to an Earth-based survey of asteroids or a space-probe study of an asteroid's surface characteristic in order to identify a potential water source.
Scouting out a Progressive Role Model: Here Come the Girl Scouts!
ERIC Educational Resources Information Center
Cushman, Mary
2014-01-01
Shana Corey's picture book, "Here Come the Girl Scouts!: The Amazing All-True Story of Juliette 'Daisy' Gordon Low and Her Great Adventure" describes Low's life as one of excitement, boldness, and fun. The "birthday" of Girl Scouts falls conveniently near the middle of Women's History Month, on March…
Improved guidance hardware study for the scout launch vehicle
NASA Technical Reports Server (NTRS)
Schappell, R. T.; Salis, M. L.; Mueller, R.; Best, L. E.; Bradt, A. J.; Harrison, R.; Burrell, J. H.
1972-01-01
A market survey and evaluation of inertial guidance systems (inertial measurement units and digital computers) were made. Comparisons were made to determine the candidate systems for use in the Scout launch vehicle. Error analyses were made using typical Scout trajectories. A reaction control system was sized for the fourth stage. The guidance hardware to Scout vehicle interface was listed.
Educational Work of the Boy Scouts. Bulletin, 1921, No. 41
ERIC Educational Resources Information Center
Barclay, Lorne W.
1921-01-01
Scouting continues to enjoy the cordial endorsement of school men everywhere in the US. More and more those interested are coming to see the enormous possibilities of cooperation between the scout movement and the schools. Many schools now give credit for scout work done outside of the schools. Many more are in hearty sympathy with the program as…
SciTech Clubs for Girls. [Annual] technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogal, A.M.
1993-02-01
Since January 1992, 9 exhibits have been constructed by the SciTech Clubs for Girls, which involved 63 girls, ages 10 to 14. These exhibits are: Bubble Shapes by the St. Charles Cadette Girl Scout Troop No. 109. Density Games by the South Elgin Cadette Girl Scout Troop No. 132. Electric Fleas by the Warrenville Junior Girl Scout Troop No. 305. Energy vs. Power by the Aurora Junior Girl Scout Troop No. 242. The Organ Pipe by the Bartlett Junior Girl Scout Troop No. 107. Ohm`s Law by the Geneva Junior Girl Scout Troop No. 401. What is Gravity by themore » Pilsen YMCA girls. Insulation at Work by the Algonquin Junior Girl Scout Troop No. 303. Series vs. Parallel by the Leland Junior Girl Scout Troop No. 50. The report is a description of each exhibit and the group that built the exhibit. Each group had a minimum of 10 hours of contact time at SciTech with the SciTech Clubs for Girls Program Coordinator. All mentors are female. Each exhibit building experience includes a trip to the hardware store to purchase supplies. After the exhibit is complete, the girls receive certificates of achievement and a SciTech Club Patch.« less
Relative Terrain Imaging Navigation (RETINA) Tool for the Asteroid Redirect Robotic Mission (ARRM)
NASA Technical Reports Server (NTRS)
Wright, Cinnamon A.; Van Eepoel, John; Liounis, Andrew; Shoemaker, Michael; DeWeese, Keith; Getzandanner, Kenneth
2016-01-01
As a part of the NASA initiative to collect a boulder off of an asteroid and return it to Lunar orbit, the Satellite Servicing Capabilities Office (SSCO) and NASA GSFC are developing an on-board relative terrain imaging navigation algorithm for the Asteroid Redirect Robotic Mission (ARRM). After performing several flybys and dry runs to verify and refine the shape, spin, and gravity models and obtain centimeter level imagery, the spacecraft will descend to the surface of the asteroid to capture a boulder and return it to Lunar Orbit. The algorithm implements Stereophotoclinometry methods to register landmarks with images taken onboard the spacecraft, and use these measurements to estimate the position and orientation of the spacecraft with respect to the asteroid. This paper will present an overview of the ARRM GN&C system and concept of operations as well as a description of the algorithm and its implementation. These techniques will be demonstrated for the descent to the surface of the proposed asteroid of interest, 2008 EV5, and preliminary results will be shown.
NASA Astrophysics Data System (ADS)
Hu, Shou-Cun; Ji, Jiang-Hui
2017-12-01
In asteroid rendezvous missions, the dynamical environment near an asteroid’s surface should be made clear prior to launch of the mission. However, most asteroids have irregular shapes, which lower the efficiency of calculating their gravitational field by adopting the traditional polyhedral method. In this work, we propose a method to partition the space near an asteroid adaptively along three spherical coordinates and use Chebyshev polynomial interpolation to represent the gravitational acceleration in each cell. Moreover, we compare four different interpolation schemes to obtain the best precision with identical initial parameters. An error-adaptive octree division is combined to improve the interpolation precision near the surface. As an example, we take the typical irregularly-shaped near-Earth asteroid 4179 Toutatis to demonstrate the advantage of this method; as a result, we show that the efficiency can be increased by hundreds to thousands of times with our method. Our results indicate that this method can be applicable to other irregularly-shaped asteroids and can greatly improve the evaluation efficiency.
Spectral Characteristics of Hayabusa 2 Near-Earth Asteroid Targets 162173 1999 JU3 and 2001 QC34
NASA Astrophysics Data System (ADS)
Vilas, Faith
2008-04-01
Reflectance spectra of C-type near-Earth asteroid 162173 1999 JU3 were acquired on UT 2007 July 11, September 10 and 11. An absorption feature centered near 0.7 μm, and associated with the presence of iron-bearing phyllosilicates, is seen in the 2007 July 11 spectrum. The 2007 September spectrum shows a shallow absorption feature centered near 0.6 μm. In contrast, the reflectance spectrum of 162173 1999 JU3 obtained during its discovery apparition has no absorption feature, suggesting that the asteroid's surface covers the conjunction of two different geological units. The variation in the presence and absence of these features in reflectance spectra of the surface material of C-type asteroids is observed among main-belt asteroids. As the target for the planned Japanese mission Hayabusa 2, 162173 1999 JU3 could represent a sample of aqueously altered early solar system material. An alternative target for Hayabusa 2, 2001 QC34, was observed spectrally for the first time. Its reflectance spectrum has characteristics of a Q-class or O-class asteroid.
Flyght Dynamics of Artificial Satellite of the Minor Asteroid
NASA Astrophysics Data System (ADS)
Zakharov, Alexander; Eismont, Natan; Ledkov, Anton; Simonov, Alexander; Pol, Vadim
During last years the scientific interest to the asteroid is constantly growing. It may be explained by different reasons. One of the most important from them is confirmation of the fact that the asteroids present the real hazard to the Earth. The Chelyabinsk event demonstrates strong in support of this statement. Besides, the asteroids exploration promises to supply new data for understanding of the solar system origin and evolution. And the projects aimed to reach this goal have begun from the NASA NEAR mission to Eros. It was the first one when the spacecraft was landed on the surface of the asteroid. The other successive mission was fulfilled by JAXA with Hayabusa spacecraft which has returned to the Earth soil samples of Itokawa asteroid. In the nearest future the mission to RQ 36 asteroid is planned supposing landing and soil samples return. Unavoidable phase of such missions is the spacecraft flight in vicinity of the target asteroid, for example on the asteroid satellite orbit. It should be mentioned that quite visible number of asteroids has geometric form which is far from being sphere. Accordingly the gravity field of such asteroid cannot be presented as the one close to sphere. The problem is that prior to the mission to the asteroid one cannot receive good enough knowledge of its gravity field and even its gravity field constant. In the paper the flight dynamics problem of spacecraft moving along asteroid satellite orbit is explored. It is supposed that the asteroid is comparatively small with diameter (maximum size) about 300 m, like Apophis asteroid has, or less. To approximate the gravity field of asteroid the last is considered as totality of mass points. We assume such approach as more simple and effective as compared with the commonly accepted use of Legendre polynomial expansion. Different orbits near asteroid are analyzed with the sets of orbital parameters determining the size of orbit, its shape and position with respect to the Sun. The goal of this analysis is to understand what initial orbital parameters deliver stability of the orbit in terms of avoiding the collision with the asteroid surface. The orbital heights are calculated which allow to consider the asteroid gravity field as close to the spherical one de-pending on the shape of asteroid. Also maneuvers are estimated necessary for keeping the spacecraft on asteroid satellite orbit and for changing orbital parameters. Taking into account that gravity field parameters of the target asteroids may have pure accuracy it is supposed that spacecraft starts its motion in vicinity of the asteroid from the high enough orbit and then after processing of the tracking data maneuvers are executed to decrease spacecraft altitude. Methods of this procedure optimization are explored.
Tools for Asteroid Regolith Operations
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Calle, Carlos I.; Mantovani, James G.
2013-01-01
This RFI response is targeting Area 5. Crew Systems for Asteroid Exploration: concepts for lightweight and low volume robotic and extra-vehicular activity (EVA) systems, such as space suits, tools, translation aids, stowage containers, and other equipment.The NASA KSC Surface Systems Office, Granular Mechanics and Regolith Operations (GMRO) Lab and the Electrostatics Surface Physics Lab (ESPL) are dedicated to developing technologies for operating in regolith environments on target body surfaces. We have identified two technologies in our current portfolio that are highly relevant and useful for crews that will visit a re-directed asteroid in Cis-Lunar Space. Both technologies are at a high TRL of 56 and could be rapidly implemented in time for an ARM mission in this decade.
The Gulliver Mission: A Short-Cut to Primitive Body and Mars Sample Return
NASA Astrophysics Data System (ADS)
Britt, D. T.
2003-05-01
The Martian moon Deimos has extraordinary potential for future sample return missions. Deimos is spectrally similar to D-type asteroids and may be a captured primitive asteroid that originated in the outer asteroid belt. This capture probably took place in the earliest periods of Martian history, over 4.4 Gyrs ago [1], and Deimos has been accumulating material ejected from the Martian surface ever since. Analysis of Martian ejecta, material accumulation, capture cross-section, regolith over-turn, and Deimos's albedo suggest that Mars material may make up as much as 10% of Deimos's regolith. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. Deimos could be a repository of samples from ancient Mars, including the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. In addition to Martian ejecta, 90% of the Deimos sample will be spectral type D asteroidal material. D-type asteroids are thought to be highly primitive and are most common in the difficult to access outer asteroid belt and the Jupiter Trojans. The Gulliver Mission proposes to directly collect up to 10 kilograms of Deimos regolith and return it to Earth. This sample may contain up to 1000 grams of Martian material along with up to 9 kilograms of primitive asteroidal material. Because of stochastic processes of regolith mixing over 4.4 Gyrs, the rock fragments and grains will likely sample the diversity of the Martian ancient surface as well as the asteroid. In essence, Gulliver represents two shortcuts, to Mars sample return and to the outer asteroid belt. References: [1] Burns J. A. (1992) Mars (Kieffer H. H. et al., eds), 1283-1302.
Space Weathering in Olivine and the Mineralogy of (Some) M-Class Asteroids
NASA Astrophysics Data System (ADS)
Britt, Daniel; Kohout, Tomas; Schelling, Patrick; Consolmagno, Guy J.
2014-11-01
One aspect of space weathering of airless bodies is the production of nanophase iron (npFe0) from Fe bearing silicate minerals. The combined effects of low oxygen fugacity and solar-wind implanted H tend to result in strongly-reduced surfaces that can be chemically activated by heating due to micrometeorite impacts. The mineral kinetics of olivine makes it particularly vulnerable to reduction, decomposition, and npFe0 production. Kohout et al. has recently developed a new method of controlled npFe0 production on olivine powder grains that mimics the essential features of this weathering process and was developed to quantitatively evaluate spectral changes related to space weathering and presence of npFe0. Compared to fresh olivine the treated samples exhibit spectral characteristics of space weathering including spectral darkening, shallowing and attenuation of 1 µm olivine absorption band, and reddening. The attenuation of the 1 µm band significantly shrinks the band FWHM and shifts the much reduced band center to shorter wavelengths around 0.95 µm. These spectral changes are related to increasing amounts of npFe0 and the disruption of the crystal structure of the parent olivine. Significantly, the darkened, reddened, and band attenuated olivine spectra are a close match to a number of M-class asteroids. What is particularly interesting is the match with the weak absorption band near 0.95 µm seen in many M-class asteroids (i.e. 16 Psyche, 22 Kalliope, 55 Pandora to name a few). One of the major issues in asteroid science is the relative scarcity of olivine asteroids (the ”Great Dunite Shortage” coined by Bell et al in Asteroids II). One possibility worth further study is that asteroidal olivine may be hidden by the relative ease with which it weathers. The surface chemical and micrometeorite environment in the asteroid belt may produce over time a spectrum for an olivine-rich surface that is remarkably similar to that of an M-class asteroid.
NASA Astrophysics Data System (ADS)
Ji, J.
2014-07-01
Primitive asteroids are remnant building blocks in the Solar System formation. They provide key clues for us to reach in-depth understanding of the process of planetary formation, the complex environment of early Solar nebula, and even the occurrence of life on the Earth. On 13 December 2012, Chang'e-2 completed a successful flyby of the near-Earth asteroid (4179) Toutatis at a closest distance of 770 meters from the asteroid's surface. The observations show that Toutatis has an irregular surface and its shape resembles a ginger-root with a smaller lobe (head) and a larger lobe (body). Such bifurcated configuration is indicative of a contact binary origin for Toutatis. In addition, the images with a 3-m resolution or higher provide a number of new discoveries about this asteroid, such as an 800-meter basin at the end of the large lobe, a sharply perpendicular silhouette near the neck region, and direct evidence of boulders and regolith, indicating that Toutatis is probably a rubble-pile asteroid. The Chang'e-2 observations have provided significant new insights into the geological features and the formation and evolution of this asteroid. Moreover, a conceptual introduction to future Chinese missions to asteroids, such as the major scientific objectives, scientific payloads, and potential targets, will be briefly given. The proposed mission will benefit a lot from potential international collaboration in the future.
NASA Technical Reports Server (NTRS)
Gaffey, M. J.
1984-01-01
The surface material and the surface material heterogeneities of the asteroid Flora are characterized using the best available data sets and the most sophisticated interpretive calibrations. Five spectrally derived mineralogic and patrologic properties of the surface assemblage of Flora which are relevant to whether this body is a differentiated or undifferentiated object are considered: bulk mineralogy, mafic mineral assemblage, metallic phase, pyroxene composition and structural type, and mineralogic variation. All of these properties indicate that Flora is a differentiated body. Flora is probably the residual core of an intensely heated, thermally evolved, and magnetically differentiated planetesimal which was subsequently disrupted. The present surface sample layers formed at or near the core-mantle boundary in the parent body.
Scout Programs For Boy Scouts, Webelos, and Girl Scouts
Programs | Science Adventures | Calendar | Registration | About | Contact | FAQ | Fermilab Friends - Fermilab Friends - Fermilab Home Fermilab Office of Education & Public Outreach Fermilab MS 226 Box 500
Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra.
Vilas, F; Gaffey, M J
1989-11-10
Absorption features having depths up to 5% are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.
Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra
NASA Technical Reports Server (NTRS)
Vilas, Faith; Gaffey, Michael J.
1989-01-01
Absorption features having depths up to 5 percent are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.
NASA Technical Reports Server (NTRS)
Vilas, F.; Smith, B. A.
1985-01-01
The surface compositions of outer-belt asteroids were used to obtain information about the origin of these asteroids. High-resolution CCD reflectance spectra of 21 asteroids, primarily P class, were examined for compositional information. Distinct slope changes are observed that suggest that these asteroids are the remnants of a compositional gradation of planetesimals in the outer solar system, which were retained selectively in location when other material was ejected from the solar system. Other data suggest that this gradation could extend through the orbits of Uranus and Neptune.
An Inaugural Girl Scout Destinations Astronomy Camp
NASA Astrophysics Data System (ADS)
Lebofsky, Larry A.; McCarthy, Donald W.; Wright, Joe; Wright, Rita; Mace, Mikayla; Floyd, Charmayne
2017-10-01
The University of Arizona (UA) conducted its first teenage Girl Scout Destinations Astronomy Camp. This program was preceded by 24 Leadership Workshops for Adult Girl Scout Leaders, initially supported by EPO funding from NIRCam for JWST. For five days in late June, 24 girls (ages 13-17 years) attended from 16 states. The Camp was led by UA astronomers and long-term educators. Representing Girl Scouts of the USA (GSUSA) were a husband/wife amateur astronomer team who are SOFIA Airborne Astronomy and NASA Solar System Ambassadors. Other leaders included a Stanford undergraduate engineering student who is a lifelong Girl Scout and Gold Award recipient and a recent UA Master’s degree science journalist. The Camp is a residential, hands-on “immersion” adventure in scientific exploration using telescopes in southern Arizona’s Catalina Mountains near Tucson. Under uniquely dark skies girls become real astronomers, operating telescopes (small and large) and associated technologies, interacting with scientists, obtaining images and quantitative data, investigating their own questions, and most importantly having fun actually doing science and building observing equipment. Girls achieve a basic understanding of celestial objects, how and why they move, and their historical significance, leading to an authentic understanding of science, research, and engineering. Girls can lead these activities back home in their own troops and councils, encouraging others to consider STEM field careers. These programs are supported by a 5-year NASA Collaborative Agreement, Reaching for the Stars: NASA Science for Girl Scouts (www.seti.org/GirlScoutStars), through the SETI Institute in collaboration with the UA, GSUSA, Girl Scouts of Northern California, the Astronomical Society of the Pacific, and Aries Scientific, Inc. The Girl Scout Destinations Astronomy Camp aligns with the GSUSA Journey: It’s Your Planet-Love It! and introduces the girls to some of the activities being developed by the Girl Scout Stars team for GSUSA’s new space science badges for all Girl Scout levels as a part of Reaching for the Stars. Reaching for the Stars: NASA Science for Girl Scouts is supported by NASA SMD’s Education Cooperative Agreement # NNX16AB90.
Regolith X-Ray Imaging Spectrometer (REXIS) Aboard the OSIRIS-REx Asteroid Sample Return Mission
NASA Astrophysics Data System (ADS)
Masterson, R. A.; Chodas, M.; Bayley, L.; Allen, B.; Hong, J.; Biswas, P.; McMenamin, C.; Stout, K.; Bokhour, E.; Bralower, H.; Carte, D.; Chen, S.; Jones, M.; Kissel, S.; Schmidt, F.; Smith, M.; Sondecker, G.; Lim, L. F.; Lauretta, D. S.; Grindlay, J. E.; Binzel, R. P.
2018-02-01
The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA's OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid's surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun's variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid's most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid's surface using the asteroid's rotation as well as the spacecraft's orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master's and Ph.D. theses and other student publications.
NASA Astrophysics Data System (ADS)
Matter, Alexis; Delbo, Marco; Carry, Benoit; Ligori, Sebastiano
2013-09-01
We describe the first determination of thermal properties and size of the M-type Asteroid (16) Psyche from interferometric observations obtained with the Mid-Infrared Interferometric Instrument (MIDI) of the Very Large Telescope Interferometer. We used a thermophysical model to interpret our interferometric data. Our analysis shows that Psyche has a low macroscopic surface roughness. Using a convex 3-D shape model obtained by Kaasalainen et al. (Kaasalainen, M., Torppa, J., Piironen, J. [2002]. Icarus 159, 369-395), we derived a volume-equivalent diameter for (16) Psyche of 247 ± 25 km or 238 ± 24 km, depending on the possible values of surface roughness. Our corresponding thermal inertia estimates are 133 or 114 J m-2 s-0.5 K-1, with a total uncertainty estimated at 40 J m-2 s-0.5 K-1. They are among the highest thermal inertia values ever measured for an asteroid of this size. We consider this as a new evidence of a metal-rich surface for the Asteroid (16) Psyche.
NASA Technical Reports Server (NTRS)
Cintala, M. J.; Durda, D. D.; Housen, K. R.
2005-01-01
Other than remote-sensing and spacecraft-derived data, the only information that exists regarding the physical and chemical properties of asteroids is that inferred through calculations, numerical simulations, extrapolation of experiments, and meteorite studies. Our understanding of the dynamics of accretion of planetesimals, collisional disruption of asteroids, and the macroscopic, shock-induced modification of the surfaces of such small objects is also, for the most part, founded on similar inferences. While considerable strides have been made in improving the state of asteroid science, too many unknowns remain to assert that we understand the parameters necessary for the more practical problem of deflecting an asteroid or asteroid pair on an Earth-intersecting trajectory. Many of these deficiencies could be reduced or eliminated by intentionally deorbiting an asteroidal satellite and monitoring the resulting collision between it and the primary asteroid, a capability that is well within the limitations of current technology.
Routing the asteroid surface vehicle with detailed mechanics
NASA Astrophysics Data System (ADS)
Yu, Yang; Baoyin, He-Xi
2014-06-01
The motion of a surface vehicle on/above an irregular object is investigated for a potential interest in the insitu explorations to asteroids of the solar system. A global valid numeric method, including detailed gravity and geomorphology, is developed to mimic the behaviors of the test particles governed by the orbital equations and surface coupling effects. A general discussion on the surface mechanical environment of a specified asteroid, 1620 Geographos, is presented to make a global evaluation of the surface vehicle's working conditions. We show the connections between the natural trajectories near the ground and differential features of the asteroid surface, which describes both the good and bad of typical terrains from the viewpoint of vehicles' dynamic performances. Monte Carlo simulations are performed to take a further look at the trajectories of particles initializing near the surface. The simulations reveal consistent conclusions with the analysis, i.e., the open-field flat ground and slightly concave basins/valleys are the best choices for the vehicles' dynamical security. The dependence of decending trajectories on the releasing height is studied as an application; the results show that the pole direction (where the centrifugal force is zero) is the most stable direction in which the shift of a natural trajectory will be well limited after landing. We present this work as an example for pre-analysis that provides guidance to engineering design of the exploration site and routing the surface vehicles.
NASA's asteroid redirect mission: Robotic boulder capture option
NASA Astrophysics Data System (ADS)
Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.
2014-07-01
NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (˜4--10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (˜1--5 m) via robotic manipulators from the surface of a larger (˜100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU_3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense.
SCOUT: small chamber for optical UV tests
NASA Astrophysics Data System (ADS)
Pancrazzi, M.; Landini, F.; Romoli, M.; Totaro, M.; Pennelli, G.
2017-11-01
SCOUT is the acronym of the new facility developed within the XUVLab laboratory of the Department of Physics and Astronomy of the University of Florence. SCOUT stands for "Small Chamber for Optical UV Tests" and has been designed to perform practical and fast measurements for those experiments requiring an evacuated environment. SCOUT has been thought, designed and manufactured by paying a particular attention to its flexibility and adaptability. The functionality and the capabilities of SCOUT have been recently tested in a measurement campaign to characterize an innovative wire-grid polarizer optimized to work in transmission in the UV band. This paper provides a description of the overall manufactured system and its performance and shows the additional resources available at the XUVLab laboratory in Florence that make SCOUT exploitable by whatever compact (within 1 m) optical experiment that investigates the UV band of the spectrum.
BAOBAB (Big And Outrageously Bold Asteroid Belt) Project
NASA Technical Reports Server (NTRS)
Mcfadden, L. A.; Thomas, C. A; Englander, J. A.; Ruesch, O.; Hosseini, S.; Goossens, S. J.; Mazarico, E. M.; Schmerr, N.
2017-01-01
One of the intriguing results of NASA's Dawn mission is the composition and structure of the Main Asteroid Belt's only known dwarf planet, Ceres [1]. It has a top layer of dehydrated clays and salts [2] and an icy-rocky mantle [3,4]. It is widely known that the asteroid belt failed to accrete as a planet by resonances between the Sun and Jupiter. About 20-30 asteroids >100 km diameter are probably differentiated protoplanets [5]. 1) how many more and which ones are fragments of protoplanets? 2) How many and which ones are primordial rubble piles left over from condensation of the solar nebula? 3) How would we go about gaining better and more complete characterization of the mass, interior structure and composition of the Main Belt asteroid population? 4) What is the relationship between asteroids and ocean worlds? Bulk parameters such as the mass, density, and porosity, are important to characterize the structure of any celestial body, and for asteroids in particular, they can shed light on the conditions in the early solar system. Asteroid density estimates exist but currently they are often based on assumed properties of taxonomic classes, or through astronomical survey data where interactions with asteroids are weak at best resulting in large measurement uncertainty. We only have direct density estimates from spacecraft encounters for a few asteroids at this time. Knowledge of the asteroids is significant not only to understand their role in solar system workings, but also to assess their potential as space resources, as impact hazards on Earth, or even as harboring life forms. And for the distant future, we want to know if the idea put forth in a contest sponsored by Physics Today, to surface the asteroids into highly reflecting, polished surfaces and use them as a massively segmented mirror for astrophysical exploration [6], is feasible.
IRAS Low Resolution Spectra of Asteroids
NASA Technical Reports Server (NTRS)
Cohen, Martin; Walker, Russell G.
2002-01-01
Optical/near-infrared studies of asteroids are based on reflected sunlight and surface albedo variations create broad spectral features, suggestive of families of materials. There is a significant literature on these features, but there is very little work in the thermal infrared that directly probes the materials emitting on the surfaces of asteroids. We have searched for and extracted 534 thermal spectra of 245 asteroids from the original Dutch (Groningen) archive of spectra observed by the IRAS Low Resolution Spectrometer (LRS). We find that, in general, the observed shapes of the spectral continua are inconsistent with that predicted by the standard thermal model used by IRAS. Thermal models such as proposed by Harris (1998) and Harris et al.(1998) for the near-earth asteroids with the "beaming parameter" in the range of 1.0 to 1.2 best represent the observed spectral shapes. This implies that the IRAS Minor Planet Survey (IMPS, Tedesco, 1992) and the Supplementary IMPS (SIMPS, Tedesco, et al., 2002) derived asteroid diameters are systematically underestimated, and the albedos are overestimated. We have tentatively identified several spectral features that appear to be diagnostic of at least families of materials. The variation of spectral features with taxonomic class hints that thermal infrared spectra can be a valuable tool for taxonomic classification of asteroids.
NASA Technical Reports Server (NTRS)
Belbin, Scott P.; Merrill, Raymond G.
2014-01-01
This paper presents a boulder acquisition and asteroid surface interaction electromechanical concept developed for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger Near Earth Asteroid (NEA). It details the down select process and ranking of potential boulder capture methods, the evolution of a simple yet elegant articulating spaceframe, and ongoing risk reduction and concept refinement efforts. The capture system configuration leverages the spaceframe, heritage manipulators, and a new microspine technology to enable the ARRM boulder capture. While at the NEA it enables attenuation of terminal descent velocity, ascent to escape velocity, boulder collection and restraint. After departure from the NEA it enables, robotic inspection, sample caching, and crew Extra Vehicular Activities (EVA).
Obliquity dependence of the tangential YORP
NASA Astrophysics Data System (ADS)
Ševeček, P.; Golubov, O.; Scheeres, D. J.; Krugly, Yu. N.
2016-08-01
Context. The tangential Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a thermophysical effect that can alter the rotation rate of asteroids and is distinct from the so-called normal YORP effect, but to date has only been studied for asteroids with zero obliquity. Aims: We aim to study the tangential YORP force produced by spherical boulders on the surface of an asteroid with an arbitrary obliquity. Methods: A finite element method is used to simulate heat conductivity inside a boulder, to find the recoil force experienced by it. Then an ellipsoidal asteroid uniformly covered by these types of boulders is considered and the torque is numerically integrated over its surface. Results: Tangential YORP is found to operate on non-zero obliquities and decreases by a factor of two for increasing obliquity.
DIFFERENT ORIGINS OR DIFFERENT EVOLUTIONS? DECODING THE SPECTRAL DIVERSITY AMONG C-TYPE ASTEROIDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernazza, P.; Marsset, M.; Groussin, O.
Anhydrous pyroxene-rich interplanetary dust particles (IDPs) have been proposed as surface analogs for about two-thirds of all C-complex asteroids. However, this suggestion appears to be inconsistent with the presence of hydrated silicates on the surfaces of some of these asteroids, including Ceres. Here, we report the presence of enstatite (pyroxene) on the surface of two C-type asteroids (Ceres and Eugenia) based on their spectral properties in the mid-infrared range. The presence of this component is particularly unexpected in the case of Ceres, because most thermal evolution models predict a surface consisting of hydrated compounds only. The most plausible scenario is that Ceres’more » surface has been partially contaminated by exogenous enstatite-rich material, possibly coming from the Beagle asteroid family. This scenario questions a similar origin for Ceres and the remaining C-types, and it possibly supports recent results obtained by the Dawn mission (NASA) that Ceres may have formed in the very outer solar system. Concerning the smaller D ∼ 200 km C-types such as Eugenia, both their derived surface composition (enstatite and amorphous silicates) and low density (<1.5 g cm{sup −3}) suggest that these bodies accreted from the same building blocks, namely chondritic porous, pyroxene-rich IDPs and volatiles (mostly water ice), and that a significant volume fraction of these bodies has remained unaffected by hydrothermal activity likely implying a late accretion. In addition, their current heliocentric distance may best explain the presence or absence of water ice at their surfaces. Finally, we raise the possibility that CI chondrites, Tagish-Lake-like material, or hydrated IDPs may be representative samples of the cores of these bodies.« less
Different Origins or Different Evolutions? Decoding the Spectral Diversity Among C-type Asteroids
NASA Astrophysics Data System (ADS)
Vernazza, P.; Castillo-Rogez, J.; Beck, P.; Emery, J.; Brunetto, R.; Delbo, M.; Marsset, M.; Marchis, F.; Groussin, O.; Zanda, B.; Lamy, P.; Jorda, L.; Mousis, O.; Delsanti, A.; Djouadi, Z.; Dionnet, Z.; Borondics, F.; Carry, B.
2017-02-01
Anhydrous pyroxene-rich interplanetary dust particles (IDPs) have been proposed as surface analogs for about two-thirds of all C-complex asteroids. However, this suggestion appears to be inconsistent with the presence of hydrated silicates on the surfaces of some of these asteroids, including Ceres. Here, we report the presence of enstatite (pyroxene) on the surface of two C-type asteroids (Ceres and Eugenia) based on their spectral properties in the mid-infrared range. The presence of this component is particularly unexpected in the case of Ceres, because most thermal evolution models predict a surface consisting of hydrated compounds only. The most plausible scenario is that Ceres’ surface has been partially contaminated by exogenous enstatite-rich material, possibly coming from the Beagle asteroid family. This scenario questions a similar origin for Ceres and the remaining C-types, and it possibly supports recent results obtained by the Dawn mission (NASA) that Ceres may have formed in the very outer solar system. Concerning the smaller D ˜ 200 km C-types such as Eugenia, both their derived surface composition (enstatite and amorphous silicates) and low density (<1.5 g cm-3) suggest that these bodies accreted from the same building blocks, namely chondritic porous, pyroxene-rich IDPs and volatiles (mostly water ice), and that a significant volume fraction of these bodies has remained unaffected by hydrothermal activity likely implying a late accretion. In addition, their current heliocentric distance may best explain the presence or absence of water ice at their surfaces. Finally, we raise the possibility that CI chondrites, Tagish-Lake-like material, or hydrated IDPs may be representative samples of the cores of these bodies.
Near-surface bulk densities of asteroids derived from dual-polarization radar observations
NASA Astrophysics Data System (ADS)
Virkki, A.; Taylor, P. A.; Zambrano-Marin, L. F.; Howell, E. S.; Nolan, M. C.; Lejoly, C.; Rivera-Valentin, E. G.; Aponte, B. A.
2017-09-01
We present a new method to constrain the near-surface bulk density and surface roughness of regolith on asteroid surfaces using planetary radar measurements. The number of radar observations has increased rapidly during the last five years, allowing us to compare and contrast the radar scattering properties of different small-body populations and compositional types. This provides us with new opportunities to investigate their near-surface physical properties such as the chemical composition, bulk density, porosity, or the structural roughness in the scale of centimeters to meters. Because the radar signal can penetrate into a planetary surface up to a few decimeters, radar can reveal information that is hidden from other ground-based methods, such as optical and infrared measurements. The near-surface structure of asteroids and comets in centimeter-to-meter scale is essential information for robotic and human space missions, impact threat mitigation, and understanding the history of these bodies as well as the formation of the whole Solar System.
NASA Technical Reports Server (NTRS)
Davis, D. R.; Chapman, C. R.; Campins, H.
1990-01-01
This program consists of two tasks: (1) development of a data base of physical observations of near-earth asteroids and establishment of a network to coordinate observations of newly discovered earth-approaching asteroids; and (2) a simulation of the surface of low-activity comets. Significant progress was made on task one and, and task two was completed during the period covered by this progress report.
Radar Investigations of Asteroids
NASA Technical Reports Server (NTRS)
Ostro, S. J.
1984-01-01
Radar investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of radar data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.
NASA Technical Reports Server (NTRS)
1978-01-01
During January 1977, NASA helped the Cub Scout Division of the Boy Scouts of America in the conduct of its The World of Tomorrow monthly theme. In this period, 249 Cub Scout packs participated in a nationwide aerospace activities project, a pilot project in which den leaders and Cubmasters conducted local programs for their Cub Scouts and Webelos Scouts. The products of these local programs are presented with the written accounts submitted by adult leaders and written compositions, pictures, and photographs of models submitted by the youngsters.
2010-10-08
NASA Hubble Space Telescope snapped these images of the asteroid Vesta in preparation for the Dawn spacecraft visit in 2011. The images show the difference in brightness and color on the asteroid surface.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... required to respond, as well as a brief abstract: Primary: Boy Scout and Girl Scout Troop Leaders. Other: None. Abstract: The Drug Enforcement Administration requests the information from Boy/Girl Scout Troop...
Colorimetry and magnitudes of asteroids
NASA Technical Reports Server (NTRS)
Bowell, E.; Lumme, K.
1979-01-01
In the present paper, 1500 UBV observations are analyzed by a new rather general multiple scattering theory which provided clear insight into previously poorly-recognized optical nature of asteroid surfaces. Thus, phase curves are shown to consist of a surface-texture controlled component, due to singly scattered light, and a component due to multiple scattering. Phase curve shapes can be characterized by a single parameter, the multiple scattering factor, Q. As Q increases, the relative importance of the opposition effect diminishes. Asteroid surfaces are particulate and strikingly similar to texture, being moderately porous and moderately rough on a scale greater than the wavelength of light. In concequence, Q (and also the phase coefficient) correlate well with geometric albedo, and there exists a purely photometric means of determining albedos and diameters.
Crew Systems for Asteroid Exploration: Concepts for Lightweight & Low Volume EVA Systems
NASA Technical Reports Server (NTRS)
Mueller, Rob; Calle, Carlos; Mantovani, James
2013-01-01
This RFI response is targeting Area 5. Crew Systems for Asteroid Exploration: concepts for lightweight and low volume robotic and extra-vehicular activity (EVA) systems, such as space suits, tools, translation aids, stowage containers, and other equipment. The NASA KSC Surface Systems Office, Granular Mechanics and Regolith Operations (GMRO) Lab and the Electrostatics & Surface Physics Lab (ESPL) are dedicated to developing technologies for operating in regolith environments on target body surfaces. We have identified two technologies in our current portfolio that are highly relevant and useful for crews that will visit a re-directed asteroid in Cis-Lunar Space. Both technologies are at a high TRL of 5/6 and could be rapidly implemented in time for an ARM mission in this decade.
NASA Astrophysics Data System (ADS)
Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.
2007-04-01
An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038 Kristina, 4147 Lennon, and 5143 Heracles. Probably there are other spectrally active materials along with pyroxenes on the surfaces of these asteroids.
NASA Technical Reports Server (NTRS)
Abell, P. A.; Rivkin, A. S.
2015-01-01
Introduction: Robotic reconnaissance missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near- Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the direction of the Human Exploration and Operations Missions Directorate (HEOMD), given NASA's recent interest in NEAs and the Martian moons as potential human destinations [1]. The action team organized the SKGs into four broad themes: 1) Identify human mission targets; 2) Understand how to work on and interact with the small body surface; 3) Understand the small body environment and its potential risk/benefit to crew, systems, and operational assets; and 4) Understand the small body resource potential. Each of these themes were then further subdivided into categories to address specific SKG issues. Robotic Precursor Contributions to SKGs: Robotic reconnaissance missions should be able to address specific aspects related to SKG themes 1 through 4. Theme 1 deals with the identification of human mission targets within the NEA population. The current guideline indicates that human missions to fastspinning, tumbling, or binary asteroids may be too risky to conduct successfully from an operational perspective. However, no spacecraft mission has been to any of these types of NEAs before. Theme 2 addresses the concerns about interacting on the small body surface under microgravity conditions, and how the surface and/or sub-surface properties affect or restrict the interaction for human exploration. The combination of remote sensing instruments and in situ payloads will provide good insight into the asteroid's surface and subsurface properties. SKG theme 3 deals with the environment in and around the small body that may present a nuisance or hazard to any assets operating in close proximity. Impact and surface experiments will help address issues related to particle size, particle longevity, internal structure, and the near-surface mechanical stability of the asteroid. Understanding or constraining these physical characteristics are important for mission planning. Theme 4 addresses the resource potential of the small body. This is a particularly important aspect of human exploration since the identification and utilization of resources is a key aspect for deep space mission architectures to the Martian system (i.e., Phobos and Deimos). Conclusions: Robotic reconnaissance of small bodies can provide a wealth of information relevant to the science and planetary defense of NEAs. However, such missions to investigate NEAs can also provide key insights into small body strategic knowledge gaps and contribute to the overall success for human exploration missions to asteroids.
Effective Scenarios for Exploring Asteroid Surfaces
NASA Astrophysics Data System (ADS)
Clark, Pamela E.; Clark, C.; Weisbin, C.
2010-10-01
In response to the proposal that asteroids be the next targets for exploration, we attempt to develop scenarios for exploring previously mapped asteroid 433 Eros, harnessing our recent experience gained planning such activity for return to the lunar surface. The challenges faced in planning Apollo led to the development of a baseline methodology for extraterrestrial field science. What `lessons learned’ can be applied for asteroids? Effective reconnaissance (advanced mapping at <0.5 m, photos with plotted routes as in-field reference maps), training/simulating/planning (highly interactive abundant field time for extended crew), and documentation (hands-free audio and visual systematic description) procedures are still valid. The use of Constant Scale Natural Boundary rather than standard projection maps eases the challenge of navigating and interpreting a highly irregular object. Lunar and asteroid surfaces are dominated by bombardment and space radiation/dust/charged particle/regolith interactions, with similar implications for sampling. Asteroid work stations are selected on the basis of impact-induced exposure of `outcrops’ from prominent ridges (e.g., Himeros, the noses) potentially representing underlying material, supplemented by sampling of areas of especially thin or deep regolith (ponds). Unlike the Moon, an asteroid lacks sufficient gravity and most likely the necessary stability to support `normal’ driving or walking. In fact, the crew delivery vehicle might not even be `tetherable’ and would most likely `station keep’ to maintain a position. The most convenient local mobility mechanism for astronauts/robots would be `hand over hand’ above the surface at a field station supplemented by a `tetherless’ (small rocket-pack) control system for changing station or return to vehicle. Thus, we assume similar mobility constraints (meters to hundreds of meters at a local station, kilometers between stations) as those used for Apollo. We also assume the vehicle could `station keep’ at more than one location separated by tens of kilometers distance.
Towing Asteroids with Gravity Tractors Enhanced by Tethers and Solar Sails
NASA Technical Reports Server (NTRS)
Shen, Haijun; Roithmayr, Carlos M.
2015-01-01
Material collected from an asteroid's surface can be used to increase gravitational attraction between the asteroid and a Gravity Tractor (GT); the spacecraft therefore operates more effectively and is referred to as an Enhanced Gravity Tractor (EGT). The use of tethers and solar sails to further improve effectiveness and simplify operations is investigated. By employing a tether, the asteroidal material can be placed close to the asteroid while the spacecraft is stationed farther away, resulting in a better safety margin and improved thruster efficiency. A solar sail on a spacecraft can naturally provide radial offset and inter-spacecraft separation required for multiple EGTs.
Li, Jian-Yang; Helfenstein, Paul; Buratti, Bonnie J.; Takir, Driss; Beth Ellen Clark,; Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.
2015-01-01
Asteroid photometry has three major applications: providing clues about asteroid surface physical properties and compositions, facilitating photometric corrections, and helping design and plan ground-based and spacecraft observations. The most significant advances in asteroid photometry in the past decade were driven by spacecraft observations that collected spatially resolved imaging and spectroscopy data. In the mean time, laboratory measurements and theoretical developments are revealing controversies regarding the physical interpretations of models and model parameter values. We will review the new developments in asteroid photometry that have occurred over the past decade in the three complementary areas of observations, laboratory work, and theory. Finally we will summarize and discuss the implications of recent findings.
Rotation parameters and shapes of 15 asteroids
NASA Astrophysics Data System (ADS)
Tungalag, N.; Shevchenko, V. G.; Lupishko, D. F.
2002-12-01
With the use of the combined method (the amplitude and magnitude method plus the epoch method) pole coordinates, sidereal rotation periods, and axial ratios of triaxial ellipsoid figures for asteroids 22 Kalliope, 75 Eurydike, 93 Minerva, 97 Klotho, 105 Artemis, 113 Amalthea, 119 Althaea, 201 Penelope, 270 Anahita, 338 Budrosa, 487 Venetia, 674 Rachele, 776 Berbericia, 887 Alinda, nd 951 Gaspra were determined. For eight of them (asteroids 75, 97, 105, 113, 119, 338, 674, and 887) these values were obtained for the first time. We used the numerical photometric asteroid model based on ellipsoidal asteroid shape, homogeneous albedo distribution over the surface, and Akimov's scattering law.
Evaluating Boy Scout Geology Education, A Pilot Study
NASA Astrophysics Data System (ADS)
Hintz, R. S.; Thomson, B.
2008-12-01
This study investigated geology knowledge acquisition by Boy Scouts through use of the Boy Scout Geology Merit Handbook. In this study, boys engaged in hands-on interactive learning following the requirements set forth in the Geology Merit Badge Handbook. The purposes of this study were to determine the amount of geology content knowledge engendered in adolescent males through the use of the Geology Merit Badge Handbook published by the Boy Scouts of America; to determine if single sex, activity oriented, free-choice learning programs can be effective in promoting knowledge development in young males; and to determine if boys participating in the Scouting program believed their participation helped them succeed in school. Members of a local Boy Scout Troop between the ages of 11 and 18 were invited to participate in a Geology Merit Badge program. Boys who did not already possess the badge were allowed to self-select participation. The boys' content knowledge of geology, rocks, and minerals was pre- and post-tested. Boys were interviewed about their school and Scouting experiences; whether they believed their Scouting experiences and work in Merit Badges contributed to their success in school. Contributing educational theories included single-sex education, informal education with free-choice learning, learning styles, hands-on activities, and the social cognitive theory concept of self-efficacy. Boys who completed this study seemed to possess a greater knowledge of geology than they obtained in school. If boys who complete the Boy Scout Geology Merit Badge receive additional geological training, their field experiences and knowledge acquired through this learning experience will be beneficial, and a basis for continued scaffolding of geologic knowledge.
OSIRIS-REx Asteroid Sample-Return Mission
NASA Astrophysics Data System (ADS)
DellaGiustina, D. N.; Lauretta, D. S.
2016-12-01
Launching in September 2016, the primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission is to return a pristine sample of asteroid (101955) Bennu to Earth for sample analysis. Bennu is a carbonaceous primitive near-Earth object, and is expected to be rich in volatile and organic material leftover from the formation of the Solar System. OSIRIS-REx will return a minimum of 60 g of bulk surface material from this body using a novel "touch-and-go" sample acquisition mechanism. Analyses of these samples will provide unprecedented knowledge about presolar history, from the initial stages of planet formation to the origin of life. Before sample acquisition, OSIRIS-REx will perform global mapping of Bennu, detailing the asteroid's composition and texture, resolving surface features, revealing its geologic and dynamic history, and providing context for the returned samples. The mission will also document the sampling site in situ at sub-centimeter scales, as well as the asteroid sampling event. In addition, OSIRIS-REx will measure the Yarkovsky effect, a non-Keplerian force affecting the orbit of this potentially hazardous asteroid, and provide a ground truth data for the interpretation of telescopic observations of carbonaceous asteroids.
Asteroid age distributions determined by space weathering and collisional evolution models
NASA Astrophysics Data System (ADS)
Willman, Mark; Jedicke, Robert
2011-01-01
We provide evidence of consistency between the dynamical evolution of main belt asteroids and their color evolution due to space weathering. The dynamical age of an asteroid's surface (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H. [2005]. Icarus 175 (1), 111-140; Nesvorný, D., Jedicke, R., Whiteley, R.J., Ivezić, Ž. [2005]. Icarus 173, 132-152) is the time since its last catastrophic disruption event which is a function of the object's diameter. The age of an S-complex asteroid's surface may also be determined from its color using a space weathering model (e.g. Willman, M., Jedicke, R., Moskovitz, N., Nesvorný, D., Vokrouhlický, D., Mothé-Diniz, T. [2010]. Icarus 208, 758-772; Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezić, Ž., Jurić, M. [2004]. Nature 429, 275-277; Willman, M., Jedicke, R., Nesvorny, D., Moskovitz, N., Ivezić, Ž., Fevig, R. [2008]. Icarus 195, 663-673. We used a sample of 95 S-complex asteroids from SMASS and obtained their absolute magnitudes and u, g, r, i, z filter magnitudes from SDSS. The absolute magnitudes yield a size-derived age distribution. The u, g, r, i, z filter magnitudes lead to the principal component color which yields a color-derived age distribution by inverting our color-age relationship, an enhanced version of the 'dual τ' space weathering model of Willman et al. (2010). We fit the size-age distribution to the enhanced dual τ model and found characteristic weathering and gardening times of τw = 2050 ± 80 Myr and τg=4400-500+700Myr respectively. The fit also suggests an initial principal component color of -0.05 ± 0.01 for fresh asteroid surface with a maximum possible change of the probable color due to weathering of Δ PC = 1.34 ± 0.04. Our predicted color of fresh asteroid surface matches the color of fresh ordinary chondritic surface of PC1 = 0.17 ± 0.39.
Girl Scout Camps and Badges: Engaging Girls in NASA Science
NASA Astrophysics Data System (ADS)
Harman, P. K.; DeVore, E. K.
2017-12-01
Reaching for the Stars: NASA Science for Girl Scouts (Girl Scout Stars) disseminates NASA STEM education-related resources, fosters interaction between Girl Scouts and NASA Subject Matter Experts (SMEs), and engages Girl Scouts in NASA science and programs through space science badges and summer camps. A space science badge is in development for each of the six levels of Girl Scouts: Daisies, Grades K - 1; Brownies, Grades 2 -3; Juniors, Grades 4 -5; Cadettes, Grades 6 -8; Seniors, Grades 9 -10: and Ambassadors, Grades 11 -12. Daisy badge will be accomplished by following three steps with two choices each. Brownie to Ambassador badges will be awarded by completing five steps with three choices for each. The badges are interwoven with science activities, role models (SMEs), and steps that lead girls to explore NASA missions. External evaluators monitor three rounds of field-testing and deliver formative assessment reports. Badges will be released in Fall of 2018 and 2019. Girl Scout Stars supports two unique camp experiences. The University of Arizona holds an Astronomy Destination, a travel and immersion adventure for individual girls ages 13 and older, which offers dark skies and science exploration using telescopes, and interacting with SMEs. Girls lean about motion of celestial objects and become astronomers. Councils send teams of two girls, a council representative and an amateur astronomer to Astronomy Camp at Goddard Space Flight Center. The teams were immersed in science content and activities, and a star party; and began to plan their new Girl Scout Astronomy Clubs. The girls will lead the clubs, aided by the council and amateur astronomer. Camps are evaluated by the Girl Scouts Research Institute. In Girl Scouting, girls discover their skills, talents and what they care about; connect with other Girl Scouts and people in their community; and take action to change the world. This is called the Girl Scout Leadership Experience. With girl-led, hands on activities where girls can team up and work together - they successfully achieve the five leadership outcomes: Strong sense of self, positive values, challenge seeking, healthy relationships, and community problem solving. When girls exhibit these attitudes and skills, they become responsible, productive, caring, and engaged citizens. Funded by NASA:NNX16AB90A.
SCOUT: A Fast Monte-Carlo Modeling Tool of Scintillation Camera Output
Hunter, William C. J.; Barrett, Harrison H.; Lewellen, Thomas K.; Miyaoka, Robert S.; Muzi, John P.; Li, Xiaoli; McDougald, Wendy; MacDonald, Lawrence R.
2011-01-01
We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:22072297
SCOUT: a fast Monte-Carlo modeling tool of scintillation camera output†
Hunter, William C J; Barrett, Harrison H.; Muzi, John P.; McDougald, Wendy; MacDonald, Lawrence R.; Miyaoka, Robert S.; Lewellen, Thomas K.
2013-01-01
We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout of a scintillation camera. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:23640136
Hazards on Hazards, Ensuring Spacecraft Safety While Sampling Asteroid Surface Materials
NASA Astrophysics Data System (ADS)
Johnson, C. A.; DellaGiustina, D. N.
2016-12-01
The near-Earth object Bennu is a carbonaceous asteroid that is a remnant from the earliest stages of the solar-system formation. It is also a potentially hazardous asteroid with a relatively high probability of impacting Earth late in the 22nd century. While the primary focus of the NASA funded OSIRIS-REx mission is the return of pristine organic material from the asteroid's surface, information about Bennu's physical and chemical properties gleaned throughout operations will be critical for a possible future impact mitigation mission. In order to ensure a regolith sample can be successfully acquired, the sample site and surrounding area must be thoroughly assessed for any potential hazards to the spacecraft. The OSIRIS-REx Image Processing Working Group has been tasked with generating global and site-specific hazard maps using mosaics and a trio of feature identification techniques. These techniques include expert-lead manual classification, internet-based amateur classification using the citizen science platform CosmoQuest, and automated classification using machine learning and computer vision tools. Because proximity operations around Bennu do not begin until the end of 2018, we have an opportunity to test the performance of our software on analogue surfaces of other asteroids from previous NASA and other space agencies missions. The entire pipeline from image processing and mosaicking to hazard identification, analysis and mapping will be performed on asteroids of varying size, shape and surface morphology. As a result, upon arrival at Bennu, we will have the software and processes in place to quickly and confidently produce the hazard maps needed to ensure the success of our mission.
Low-Gravity Centrifuge Facilities for Asteroid Lander and Material Processing and Manufacturing
NASA Astrophysics Data System (ADS)
Asphaug, E.; Thangavelautham, J.; Schwartz, S.
2018-02-01
We are developing space centrifuge research facilities for attaining low-gravity to micro-gravity geological environmental conditions representative of the environment on the surfaces of asteroids and comets.
Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.; ...
2015-05-19
As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface aremore » conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jewitt, David, E-mail: jewitt@ucla.edu
Asteroids near the Sun can attain equilibrium temperatures sufficient to induce surface modification from thermal fracture, desiccation, and decomposition of hydrated silicates. We present optical observations of nine asteroids with perihelia <0.25 AU (sub-solar temperatures {>=}800 K) taken to search for evidence of thermal modification. We find that the broadband colors of these objects are diverse but statistically indistinguishable from those of planet-crossing asteroids having perihelia near 1 AU. Furthermore, images of these bodies taken away from perihelion show no evidence for on-going mass-loss (model-dependent limits {approx}<1 kg s{sup -1}) that might result from thermal disintegration of the surface. Wemore » conclude that, while thermal modification may be an important process in the decay of near-Sun asteroids and in the production of debris, our new data provide no evidence for it.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.
As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface aremore » conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.« less
Star Observations by Asteroid Multiband Imaging Camera (AMICA) on Hayabusa (MUSES-C) Cruising Phase
NASA Astrophysics Data System (ADS)
Saito, J.; Hashimoto, T.; Kubota, T.; Hayabusa AMICA Team
Muses-C is the first Japanese asteroid mission and also a technology demonstration one to the S-type asteroid, 25143 Itokawa (1998SF36). It was launched at May 9, 2003, and renamed Hayabusa after the spacecraft was confirmed to be on the interplanetary orbit. This spacecraft has the event of the Earth-swingby for gravitational assist in the way to Itokawa on 2004 May. The arrival to Itokawa is scheduled on 2005 summer. During the visit to Itokawa, the remote-sensing observation with AMICA, NIRS (Near Infrared Spectrometer), XRS (X-ray Fluorescence Spectrometer), and LIDAR are performed, and the spacecraft descends and collects the surface samples at the touch down to the surface. The captured asteroid sample will be returned to the Earth in the middle of 2007. The telescopic optical navigation camera (ONC-T) with seven bandpass filters (and one wide-band filter) and polarizers is called AMICA (Asteroid Multiband Imaging CAmera) when ONC-T is used for scientific observations. The AMICA's seven bandpass filters are nearly equivalent to the seven filters of the ECAS (Eight Color Asteroid Survey) system. Obtained spectroscopic data will be compared with previously obtained ECAS observations. AMICA also has four polarizers, which are located on one edge of the CCD chip (covering 1.1 x 1.1 degrees each). Using the polarizers of AMICA, we can obtain polarimetric information of the target asteroid's surface. Since last November, we planned the test observations of some stars and planets by AMICA and could successfully obtain these images. Here, we briefly report these observations and its calibration by the ground-based observational data. In addition, we also present a current status of AMICA.
Assessing the Age of an Asteroid's Surface with Data from the International Rosetta Mission
NASA Technical Reports Server (NTRS)
Lopez, Juan Carlos
2011-01-01
Rosetta is an international mission led by the European Space Agency (ESA) with key support and instrumentation from the National Aeronautics and Space Administration (NASA). Rosetta is currently on a ten-year mission to catch comet 67P/Churyumov-Gerasimenko (C-G); throughout its voyage, the spacecraft has performed flybys of two main belt asteroids (MBA): Steins and Lutetia. Data on the physical, chemical, and geological properties of these asteroids are currently being processed and analyzed. Accurate interpretation of such data is fundamental in the success of Rosetta's mission and overall objectives. Post-flyby data analyses strive to correlate the size, shape, volume, and rotational rate of Lutetia, in addition to interpreting its multi-color imagining, albedo, and spectral mapping. Although advancements in science have contributed to the examination of celestial bodies, methods to analyze asteroids remain largely empirical, not semi-empirical, nor ab initio. This study aims to interpret and document the scientific methods currently utilized in the characterization of asteroid (21) Lutetia in order to render these processes and methods accessible to the public. Examples include a standardized technique for assessing the age of an asteroid surface, complete with clickable reference maps, methodology of grouping surface characteristics together, and a standardized power law equation for the age. Other examples include determining the density of an object. Context for what both density and age mean is a bi-product of this study. Results of the study will aid in the development of pedagogical material on asteroids for public use, and in creation of an academic database for selected targets that might be used as a reference.
The opearation and scientific data of MINERVA rover in Hayabusa mission
NASA Astrophysics Data System (ADS)
Yoshimitsu, T.; Kubota, T.; Nakatani, I.
section Introduction The asteroid explorer Hayabusa operated by Institute of Space and Astronautical Science ISAS JAXA made a rendezvous with the target asteroid Itokawa in September 2005 after more than two years interplanetary cruise since the launch in 2003 The spacecraft precisely observed the target from the vicinity of the asteroid for two months and then tried to land on the surface in order to get some fragments which will be brought back to the Earth The authors installed a experimental small rover named MINERVA into the spacecraft It was supposed to make a surface exploration after having been deployed onto the surface MINERVA is the smallest spacecraft with a weight of 591 g and a dimension of about 10 cm in size In this small body it is equipped with a moving ability over the micro-gravity environment on the asteroid and a few scientific instruments cameras and thermometers to characterize the surface MINERVA was deployed in November 2005 but it could not reach at the asteroid because the deployment was not done at the good timing Thus it became a artificial solar satellite and the surface exploration was not conducted It survived at least for 18 hours after the deployment while the obtained data were transmitted to the Earth via the mother spacecraft This paper describes the operation and the possible science from the obtained data by MINERVA section Deployment MINERVA was deployed in November 12 2005 by sending a command from the Earth when the rehearsal operation of the touchdown was in
Asteroid exploration and utilization
NASA Technical Reports Server (NTRS)
Radovich, Brian M.; Carlson, Alan E.; Date, Medha D.; Duarte, Manny G.; Erian, Neil F.; Gafka, George K.; Kappler, Peter H.; Patano, Scott J.; Perez, Martin; Ponce, Edgar
1992-01-01
The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources possessed by asteroids have enormous potential for aiding and enhancing human space exploration as well as life on Earth. Project STONER (Systematic Transfer of Near Earth Resources) is based on mining an asteroid and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plan for humans to utilize asteroid resources. Project STONER is divided into two parts: asteroid selection and explorer spacecraft design. The spacecraft design team is responsible for the selection and integration of the subsystems: GNC, communications, automation, propulsion, power, structures, thermal systems, scientific instruments, and mechanisms used on the surface to retrieve and store asteroid regolith. The sample return mission scenario consists of eight primary phases that are critical to the mission.
Numerical Simulations of Granular Physics in the Solar System
NASA Astrophysics Data System (ADS)
Ballouz, Ronald
2017-08-01
Granular physics is a sub-discipline of physics that attempts to combine principles that have been developed for both solid-state physics and engineering (such as soil mechanics) with fluid dynamics in order to formulate a coherent theory for the description of granular materials, which are found in both terrestrial (e.g., earthquakes, landslides, and pharmaceuticals) and extra-terrestrial settings (e.g., asteroids surfaces, asteroid interiors, and planetary ring systems). In the case of our solar system, the growth of this sub-discipline has been key in helping to interpret the formation, structure, and evolution of both asteroids and planetary rings. It is difficult to develop a deterministic theory for granular materials due to the fact that granular systems are composed of a large number of elements that interact through a non-linear combination of various forces (mechanical, gravitational, and electrostatic, for example) leading to a high degree of stochasticity. Hence, we study these environments using an N-body code, pkdgrav, that is able to simulate the gravitational, collisional, and cohesive interactions of grains. Using pkdgrav, I have studied the size segregation on asteroid surfaces due to seismic shaking (the Brazil-nut effect), the interaction of the OSIRIS-REx asteroid sample-return mission sampling head, TAGSAM, with the surface of the asteroid Bennu, the collisional disruptions of rubble-pile asteroids, and the formation of structure in Saturn's rings. In all of these scenarios, I have found that the evolution of a granular system depends sensitively on the intrinsic properties of the individual grains (size, shape, sand surface roughness). For example, through our simulations, we have been able to determine relationships between regolith properties and the amount of surface penetration a spacecraft achieves upon landing. Furthermore, we have demonstrated that this relationship also depends on the strength of the local gravity. By comparing our numerical results to laboratory experiments and observations by spacecraft we can begin to understand which microscopic properties (i.e., grain properties) control the macroscopic properties of the system. For example, we can compare the mechanical response of a spacecraft to landing or Cassini observations of Saturn's ring to understand how the penetration depth of a spacecraft or the complex optical depth structure of a ring system depends on the size and surface properties of the grains in those systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hills, J.G.
1992-02-06
Nuclear explosives may be used to capture small asteroids (e.g., 20--50 meters in diameter) into bound orbits around the earth. The captured objects could be used for construction material for manned and unmanned activity in Earth orbit. Asteroids with small approach velocities, which are the ones most likely to have close approaches to the Earth, require the least energy for capture. They are particularly easy to capture if they pass within one Earth radius of the surface of the Earth. They could be intercepted with intercontinental missiles if the latter were retrofit with a more flexible guiding and homing capability.more » This asteroid capture-defense system could be implemented in a few years at low cost by using decommissioned ICMs. The economic value of even one captured asteroid is many times the initial investment. The asteroid capture system would be an essential part of the learning curve for dealing with larger asteroids that can hit the earth.« less
Sample Return Science by Hayabusa Near-Earth Asteroid Mission
NASA Technical Reports Server (NTRS)
Fujiwara, A.; Abe, M.; Kato, M.; Kushiro, I.; Mukai, T.; Okada, T.; Saito, J.; Sasaki, S.; Yano, H.; Yeomans, D.
2004-01-01
Assigning the material species to each asteroid spectral type and finding out the corresponding meteorite category is crucial to make the global material map in the whole asteroid belt and to understand the evolution of the asteroid belt. Recent direct observations by spacecrafts are revealing new intriguing aspects of asteroids which cannot be obtained solely from ground-based observations or meteorite studies. However identification of the real material species constituting asteroids and their corresponding meteorite analogs are still ambiguous. Space weathering makes difficult to identify the true material, and there is still a great gap between the remote sensing data on the global surface and the local microscopic data from meteorites. Sample return from asteroids are inevitable to solve these problems. For this purpose sample return missions to asteroids belonging to various spectral classes are required. The HAYABUSA spacecraft (prelaunch name is MUSESC) launched last year is the first attempt on this concept. This report presents outline of the mission with special stress on its science.
Search for Water in Outer Main Belt Based on AKARI Asteroid Catalog
NASA Astrophysics Data System (ADS)
Usui, Fumihiko
2012-06-01
We propose a program to search water ice on the surface of asteroids in the outer main belt regions, which have high albedo measured with AKARI. The distribution of water in the main belt provides important information to understanding of the formation and evolution of the solar system, because water is a good indicator of temperature in the early solar nebula. The existence of water ice is a hot topic in the solar system studies today. Water ice is recently found in the outer region of the main asteroid belt and some of them are linked to the main belt comets. Brand-new albedo data brought by AKARI opens the possibility of detection of water ice on the C-type asteroids. Here we propose to make the spectroscopic observations with the Subaru telescope in the near-infrared wavelengths to detect water ice on these high-albedo C-type asteroids. Thanks to a large aperture of Subaru telescope and a high altitude of Mauna Kea, it can be only possible to observe a weak signal of the existence of water on the surface of asteroids with a certain S/N. In addition, using the imaging data taken prior to IRCS spectroscopic mode, we intend to seek any comet-like activities by investigating diffuseness of the asteroids, which can be detected by comparing the observed point-spread functions with those of field stars.
Comet nucleus and asteroid sample return missions
NASA Technical Reports Server (NTRS)
Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; Mcmillan, C.
1992-01-01
During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.
NASA Astrophysics Data System (ADS)
Allen, Branden; Grindlay, Jonathan; Hong, Jaesub; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K.; Chodas, Mark; Smith, Matthew W.; Bautz, Marshall W.; Kissel, Steven E.; Villasenor, Joel; Oprescu, Miruna; Induni, Nicholas
2013-09-01
The OSIRIS-REx Mission was selected under the NASA New Frontiers program and is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of asteroid Bennu in 2019. 101955 Bennu (previously 1999 RQ36) is an Apollo (near-Earth) asteroid originally discovered by the LINEAR project in 1999 which has since been classified as a potentially hazardous near-Earth object. The REgolith X-Ray Imaging Spectrometer (REXIS) was proposed jointly by MIT and Harvard and was subsequently accepted as a student led instrument for the determination of the elemental composition of the asteroid's surface as well as the surface distribution of select elements through solar induced X-ray fluorescence. REXIS consists of a detector plane that contains 4 X-ray CCDs integrated into a wide field coded aperture telescope with a focal length of 20 em for the detection of regions with enhanced abundance in key elements at 50 m scales. Elemental surface distributions of approximately 50-200 m scales can be detected using the instrument as a simple collimator. An overview of the observation strategy of the REXIS instrument and expected performance are presented here.
NASA Astrophysics Data System (ADS)
Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania
2017-07-01
The Hungaria asteroids remain as survivors of late giant planet migration that destabilized a now extinct inner portion of the primordial asteroid belt and left in its wake the current resonance structure of the Main Belt. In this scenario, the Hungaria region represents a ;purgatory; for the closest, preserved samples of the asteroidal material from which the terrestrial planets accreted. Deciphering the surface composition of these unique samples may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) reflectance spectra in order to characterize their taxonomy, surface mineralogy, and potential meteorite analogs. The overall objective of HARTSS is to evaluate the compositional diversity of asteroids located throughout the Hungaria region. This region harbors a collisional family of Xe-type asteroids, which are situated among a background (i.e., non-family) of predominantly S-complex asteroids. In order to assess the compositional diversity of the Hungaria region, we have targeted background objects during Phase I of HARTSS. Collisional family members likely reflect the composition of one original homogeneous parent body, so we have largely avoided them in this phase. We have employed NIR instruments at two ground-based telescope facilities: the NASA Infrared Telescope Facility (IRTF), and the Telescopio Nazionale Galileo (TNG). Our data set includes the NIR spectra of 42 Hungaria asteroids (36 background; 6 family). We find that stony S-complex asteroids dominate the Hungaria background population (29/36 objects; ∼80%). C-complex asteroids are uncommon (2/42; ∼5%) within the Hungaria region. Background S-complex objects exhibit considerable spectral diversity as band parameter measurements of diagnostic absorption features near 1- and 2-μm indicate that several different S-subtypes are represented therein, which translates to a variety of surface compositions. We identify the Gaffey S-subtype (Gaffey et al. [1993]. Icarus 106, 573-602) and potential meteorite analogs for 24 of these S-complex background asteroids. Additionally, we estimate the olivine and orthopyroxene mineralogy for 18 of these objects using spectral band parameter analysis established from laboratory-based studies of ordinary chondrite meteorites. Nine of the asteroids have band parameters that are not consistent with ordinary chondrites. We compared these to the band parameters measured from laboratory VIS+NIR spectra of six primitive achondrite (acapulcoite-lodranite) meteorites. These comparisons suggest that two main meteorite groups are represented among the Hungaria background asteroids: unmelted, nebular L- (and possibly LL-ordinary chondrites), and partially-melted primitive achondrites of the acapulcoite-lodranite meteorite clan. Our results suggest a source region for L chondrite like material from within the Hungarias, with delivery to Earth via leakage from the inner boundary of the Hungaria region. H chondrite like mineralogies appear to be absent from the Hungaria background asteroids. We therefore conclude that the Hungaria region is not a source for H chondrite meteorites. Seven Hungaria background asteroids have spectral band parameters consistent with partially-melted primitive achondrites, but the probable source region of the acapulcoite-lodranite parent body remains inconclusive. If the proposed connection with the Hungaria family to fully-melted enstatite achondrite meteorites (i.e., aubrites) is accurate (Gaffey et al. [1992]. Icarus 100, 95-109; Kelley and Gaffey [2002]. Meteorit. Planet. Sci. 37, 1815-1827), then asteroids in the Hungaria region exhibit a full range of petrologic evolution: from nebular, unmelted ordinary chondrites, through partially-melted primitive achondrites, to fully-melted igneous aubrite meteorites.
NASA Technical Reports Server (NTRS)
Tholen, David J.; Barucci, M. Antonietta
1989-01-01
The spectral reflectivity of asteroid surfaces over the wavelength range of 0.3 to 1.1 micron can be used to classify these objects into several broad groups with similar spectral characteristics. The three most recently developed taxonomies group the asteroids into 9, 11, or 14 different clases, depending on the technique used to perform the analysis. The distribution of the taxonomic classes shows that darker and redder objects become more dominant at larger heliocentric distances, while the rare asteroid types are found more frequently among the small objects of the planet-crossing population.
1996-01-31
The Near Earth Asteroid Rendezvous (NEAR) spacecraft embarks on a journey that will culminate in a close encounter with an asteroid. The launch of NEAR inaugurates NASA's irnovative Discovery program of small-scale planetary missions with rapid, lower-cost development cycles and focused science objectives. NEAR will rendezvous in 1999 with the asteroid 433 Eros to begin the first long-term, close-up look at an asteroid's surface composition and physical properties. NEAR's science payload includes an x-ray/gamma ray spectrometer, an near-infrared spectrograph, a laser rangefinder, a magnetometer, a radio science experiment and a multi-spectral imager.
NASA Technical Reports Server (NTRS)
1989-01-01
This video looks at a NASA sponsored exhibit at the National Boy Scout Jamboree in Fredricksburg, VA. Boy Scouts are shown interacting with NASA researchers and astronauts and touring mockups of Space Station Freedom and Apollo 11. NASA's program to encourage the researchers of tomorrow is detailed.
Scout 2008 Version 1.0 User Guide
The Scout 2008 version 1.0 software package provides a wide variety of classical and robust statistical methods that are not typically available in other commercial software packages. A major part of Scout deals with classical, robust, and resistant univariate and multivariate ou...
1984-10-01
Investigations DET 816 (AFOSI) Volunteer Girl Scouts Boy Scouts, Elk River District U.S. Department of Agriculture Tennessee State Game & Fish Commission...FIGURE 34 oa LU a U. ww COOI w LU z 000 Z00 0 z 3-2. ES NGIEERIG-SCENC S° drain AEDC. Hunt and Huckleberry Creeks drain northward toward the Little ...Investigations DET 816 (AFOSI) Volunteer Girl Scouts Boy Scouts, Elk River District U.S. Department of Agricultrue Tennessee State Game & Fish Commission
NASA Technical Reports Server (NTRS)
Matousek, S.
2001-01-01
The Mars program institutes the Mars Scout Missions in order to address science goals in the program not otherwise covered in the baseline Mars plan. Mars Scout Missions will be Principle-Investigator (PI) led science missions. Analogous to the Discovery Program, PI led investigations optimize the use of limited resources to accomplish the best focused science and allow the flexibility to quickly respond to discoveries at Mars. Scout missions also require unique investments in technology and reliance upon Mars-based infrastructure such as telecom relay orbiters.
Silicate Phases on the Surfaces of Trojan Asteroids
NASA Astrophysics Data System (ADS)
Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.
2017-10-01
Determining the origin of asteroids provides an effective means of constraining the solar system’s dynamic past. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the amount of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and are spectrally featureless in the near infrared. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 μm region exhibits strong features due to the Si-O fundamental molecular vibrations. Silicates that formed in the inner solar system likely underwent thermal annealing, and thus are crystalline, whereas silicates that accreted in the outer solar system experienced less thermal processing, and therefore are more likely to have remained in an amorphous phase. We hypothesize that the Trojans formed in the outer solar system (i.e., the Kuiper Belt), and therefore will have a more dominant amorphous spectral silicate component. With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 μm feature with sharp cutoffs between about 9 μm and 12 μm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Preliminary results indicate that the surfaces of analyzed Trojans contain primarily amorphous silicates. Emissivity spectra of asteroids 1986 WD and 4709 Ennomos include small peaks in the 10 μm region, diagnostic of small amounts of crystalline olivine. One explanation is that Trojans formed in the same region as Kuiper Belt objects, and when giant planet migration ensued, they were swept into Jupiter’s stable Lagrange points where they are found today. As such, it is possible that an ancestral group of Kuiper Belt objects were separated from Trojans during large planet migration.
AIDA: the Asteroid Impact & Deflection Assessment mission
NASA Astrophysics Data System (ADS)
Vincent, Jean-Baptiste
2016-07-01
The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to assess the possibility of deflecting an asteroid trajectory by using a kinetic impactor. The European Asteroid Impact Mission (AIM) is under Phase A/B1 study at ESA from March 2015 until summer 2016. AIM is set to rendez-vous with the asteroid system a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft to fully characterize the smaller of the two binary components. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions: AIM will release a set of CubeSats in deep space and a lander on the surface of the smaller asteroid and for the first time, deep-space inter-satellite linking will be demonstrated between the main spacecraft, the CubeSats, and the lander, and data will also be transmitted from interplanetary space to Earth by a laser communication system. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Small asteroids are believed to result from collisions and other processes (e.g., spinup, shaking) that made them what they are now. Having direct information on their surface and internal properties will allow us to understand how these processes work and transform these small bodies as well as, for this particular case, how a binary system forms. So far, our understanding of the collisional process and the validation of numerical simulations of the impact process rely on impact experiments at laboratory scales. With DART, thanks to the characterization of the target by AIM, the mission will be the first fully documented impact experiment at asteroid scale, which will include the characterization of the target's properties and the outcome of the impact. By comparing our in situ measurements with ground-based data from telescopes, we can calibrate better the remote observations and improve our data interpretation of other systems. Therefore, AIDA offers a unique opportunity to test and refine our understanding and models at the actual scale of an asteroid. This will allow feeding small-body collisional evolution models with more realistic parameters to draw a more reliable story of the Solar System formation and evolution. Moreover, it will offer a first check of the validity of the kinetic impactor concept to deflect a small body trajectory and lead to improved efficiency for future kinetic impactor designs.
Overview of the Mission Design Reference Trajectory for NASA's Asteroid Redirect Robotic Mission
NASA Technical Reports Server (NTRS)
Mcguire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; McCarty, Steven L.; Lantoine, Gregory B.; Qu, Min; Shen, Haijun; Smith, David A.; Vavrina, Matthew A.
2017-01-01
The National Aeronautics and Space Administration's (NASA's) recently cancelled Asteroid Redirect Mission was proposed to rendezvous with and characterize a 100 m plus class near-Earth asteroid and provide the capability to capture and retrieve a boulder off of the surface of the asteroid and bring the asteroidal material back to cislunar space. Leveraging the best of NASA's science, technology, and human exploration efforts, this mission was originally conceived to support observation campaigns, advanced solar electric propulsion, and NASA's Space Launch System heavy-lift rocket and Orion crew vehicle. The asteroid characterization and capture portion of ARM was referred to as the Asteroid Redirect Robotic Mission (ARRM) and was focused on the robotic capture and then redirection of an asteroidal boulder mass from the reference target, asteroid 2008 EV5, into an orbit near the Moon, referred to as a Near Rectilinear Halo Orbit where astronauts would visit and study it. The purpose of this paper is to document the final reference trajectory of ARRM and the challenges and unique methods employed in the trajectory design of the mission.
Evolution of the inner asteroid belt: Paradigms and paradoxes from spectral studies
NASA Technical Reports Server (NTRS)
Gaffey, Michael J.
1987-01-01
Recent years have witnessed a significant increase in the sophistication of asteroidal surface material characterizations derived from spectral data. An extensive data base of moderate to high spectral resolution, visible and near-infrared asteroid spectra is now available. Interpretive methodologies and calibrations were developed to determine phase abundance and composition in olivine-pyroxene assemblages and to estimate NiFe metal abundance from such spectra. A modified version of the asteroid classifications system more closely parallels the mineralogic variations of the major inner belt asteroid types. These improvements permit several general conclusions to be drawn concerning the nature of inner belt objects; their history, and that of the inner solar system; and the relationship between the asteroids and meteorites. Essentially all large belt asteroids have or are fragments of parent bodies which have undergone strong post-accretionary heating, varying degrees of melting and magmatic differentiation, and subsequent collisional disruption. These asteroids show a systematic, but not yet well characterized, mineralogic variation with semi-major axis. This suggests that the S-type asteroid families represent relatively recent collisions onto the cores of previously disrupted parent bodies.
Asteroid Redirect Mission Proximity Operations for Reference Target Asteroid 2008 EV5
NASA Technical Reports Server (NTRS)
Reeves, David M.; Mazanek, Daniel D.; Cichy, Benjamin D.; Broschart, Steve B.; Deweese, Keith D.
2016-01-01
NASA's Asteroid Redirect Mission (ARM) is composed of two segments, the Asteroid Redirect Robotic Mission (ARRM), and the Asteroid Redirect Crewed Mission (ARCM). In March of 2015, NASA selected the Robotic Boulder Capture Option1 as the baseline for the ARRM. This option will capture a multi-ton boulder, (typically 2-4 meters in size) from the surface of a large (greater than approx.100 m diameter) Near-Earth Asteroid (NEA) and return it to cis-lunar space for subsequent human exploration during the ARCM. Further human and robotic missions to the asteroidal material would also be facilitated by its return to cis-lunar space. In addition, prior to departing the asteroid, the Asteroid Redirect Vehicle (ARV) will perform a demonstration of the Enhanced Gravity Tractor (EGT) planetary defense technique2. This paper will discuss the proximity operations which have been broken into three phases: Approach and Characterization, Boulder Capture, and Planetary Defense Demonstration. Each of these phases has been analyzed for the ARRM reference target, 2008 EV5, and a detailed baseline operations concept has been developed.
Orbit-dependent spectral trends for the near-Earth asteroid population
NASA Astrophysics Data System (ADS)
Fevig, Ronald Adrey
Results of visible to near-infrared spectrophotometric observations of 55 near- Earth asteroids (NEAs) are reported. The observing techniques, instrumentation, and method of data analysis are described. A new asteroid classification method that directly compares these NEA spectra with spectral features of meteorites is presented. Two major siliceous groups (having discernible "1-mm" absorptions) result from this method, OC-likes which match the spectra of ordinary chondrites and S-types. The dataset shows a preponderance of spectra consistent with ordinary chondrites (23 NEAs), as well as S-types (19), 2 with spectra consistent with black ordinary chondrites, 2 R-types, and 9 that show no 1-mm absorption. The spectral characteristics of the siliceous S-type and OC-like asteroids blend together, providing evidence that S-type asteroids are simply ordinary chondrites whose surface has been modified by weathering. This helps resolve the long standing question of the lack of main belt asteroids having spectra matching ordinary chondrite meteorites. Main belt asteroids have on average much older surfaces while NEAs that exhibit OC-like spectra have younger surfaces. It was found that fresh objects having spectra consistent with ordinary chondrites (1) occupy mostly highly eccentric Apollo orbits which encounter a strong collisional environment in the asteroid main-belt, (2) may have been recently injected into high eccentricity orbits, or (3) have suffered tidal disruption. S-type NEAs reside primarily in orbits that do not cross the asteroid main-belt. This orbit dependent trend is verified by using the larger NEA dataset of Binzel et al. (2004a). Nine NEAs from this survey exhibiting no 1-mm absorption can be associated with extinct comets, iron meteorites or enstatite meteorites. It is shown that most of these NEAs must be extinct comets, implying a considerably larger fraction of comets among the NEA population than previously thought. A correlation of these objects with low inclination orbits is found. This study finds that the NEA population is divided roughly as follows: ~40 % fresh ordinary chondrites, ~35% S-types, ~20% extinct comet candidates, and ~5% in minor classes. This work may guide NEA mitigation planning should such an emergency arise.
NASA Technical Reports Server (NTRS)
Downes, Hilary; Mittlefehldt, David W.; Kita, Noriko T.; Valley, John W.
2008-01-01
Ureilites are ultramafic achondrite meteorites that have experienced igneous processing whilst retaining heterogeneity in mg# and oxygen isotope ratios. Polymict ureilites represent material derived from the surface of the ureilite parent asteroid(s). Electron microprobe analysis of more than 500 olivine and pyroxene clasts in six polymict ureilites reveals that they cover a statistically identical range of compositions to that shown by all known monomict ureilites. This is considered to be convincing evidence for derivation from a single parent asteroid. Many of the polymict ureilites also contain clasts that have identical compositions to the anomalously high Mn/Mg olivines and pyroxenes from the Hughes 009 monomict ureilite (here termed the Hughes cluster ). Four of the six samples also contain distinctive ferroan lithic clasts that have been derived from oxidized impactors. The presence of several common distinctive lithologies within the polymict ureilites is additional evidence that the ureilites were derived from a single parent asteroid. Olivine in a large lithic clast of augite-bearing ureilitic has an mg# of 97, extending the compositional range of known ureilite material. Our study confirms that ureilitic olivine clasts with mg#s < 85 are much more common than those with mg# > 85, which also show more variable Mn contents, including the melt-inclusion bearing "Hughes cluster" ureilites. We interpret this to indicate that the parent ureilite asteroid was disrupted by a major impact at a time when melt was still present in regions with a bulk mg# > 85, giving rise to the two types of ureilites: common ferroan ones that were already residual after melting and less common magnesian ones that were still partially molten when disruption occurred, some of which are the result of interaction of melts with residual mantle during disruption. A single daughter asteroid re-accreted from the disrupted remnants of the mantle of the proto-ureilite asteroid, giving rise to a "rubble-pile" body that had material of a wide variety of compositions and shock states present on its surface. The analysed polymict ureilite meteorites represent regolith that subsequently formed on this asteroidal surface, including impact-derived material from at least six different meteoritic sources.
Radioisotope Electric Propulsion (REP) for Selected Interplanetary Science Missions
NASA Technical Reports Server (NTRS)
Oh, David; Bonfiglio, Eugene; Cupples, Mike; Belcher, Jeremy; Witzberger, Kevin; Fiehler, Douglas; Artis, Gwen
2005-01-01
This viewgraph presentation analyzes small body targets (Trojan Asteroids), Medium Outer Planet Class (Jupiter Polar Orbiter with Probes), and Main Belt Asteroids and Comets (Comet Surface Sample Return), for Radioisotope Electric Propulsion (REP).
The gas-surface interaction of a human-occupied spacecraft with a near-Earth object
NASA Astrophysics Data System (ADS)
Farrell, W. M.; Hurley, D. M.; Poston, M. J.; Zimmerman, M. I.; Orlando, T. M.; Hibbitts, C. A.; Killen, R. M.
2016-11-01
NASA's asteroid redirect mission (ARM) will feature an encounter of the human-occupied Orion spacecraft with a portion of a near-Earth asteroid (NEA) previously placed in orbit about the Moon by a capture spacecraft. Applying a shuttle analog, we suggest that the Orion spacecraft should have a dominant local water exosphere, and that molecules from this exosphere can adsorb onto the NEA. The amount of adsorbed water is a function of the defect content of the NEA surface, with retention of shuttle-like water levels on the asteroid at 1015 H2O's/m2 for space weathered regolith at T ∼ 300 K.
Mars Scout 2007 - a current status
NASA Technical Reports Server (NTRS)
Matousek, Steve
2003-01-01
The Mars Program institutes the Mars Scout Missions in order to address science goals in the program not otherwise covered in baseline Mars plans. Mars Scout missions will be Principal-Investigator (PI) led science missions. Analogous to the Discovery Program, PI-led investigations optimize the use of limited resources to accomplish focused science and allow the flexibility to quickly respond to discoveries at Mars. Scout missions also require unique investments in technology and reliance upon Mars-based infrastructure such as telecom relay orbiters. Scouts utilize a two-step competitive process for selection. In Dec, 2002, the Step 2 selections by NASA were announced and then approximately five month studies will result in a selection for flight around August, 2003 for a mission to be launched in 2007.
NASA Technical Reports Server (NTRS)
Kuhl, Christoper A.
2009-01-01
The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Domingue, D. L.; Vilas, F.; Abe, M.; Farnham, T. L.; Jarvis, K. S.; Lowry, S. C.; Ohba, Y.; Weissman, P. R.; French, L. M.
2004-01-01
Several spacecraft missions have recently targeted asteroids to study their morphologies and physical properties (e.g. Galileo, NEAR Shoemaker), and more are planned. MUSES-C is a Japanese mission designed to rendezvous with a near-Earth asteroid (NEA). The MUSES-C spacecraft, Hayabusa, was launched successfully in May 2003. It will rendezvous with its target asteroid in 2005, and return samples to the Earth in 2007. Its target, 25143 Itokawa (1998 SF36), made a close approach to the Earth in 2001. We collected an extensive ground-based database of broadband photometry obtained during this time, which maximized the phase angle coverage, to characterize this target in preparation for the mission. Our project was designed to capitalize on the broadband UBVRI photometric observations taken with a series of telescopes, instrumentation, and observers. Photometry and spectrophotometry of Itokawa were acquired at Lowell, McDonald, Steward, Palomar, Table Mountain and Kiso Observatories. The photometric data sets were combined to calculate Hapke model parameters of the surface material of Itokawa, and examine the solar-corrected broadband color characteristics of the asteroid. Broadband photometry of an object can be used to: (1) determine its colors and thereby contribute to the understanding of its surface composition and taxonomic class, and (2) infer global physical surface properties of the target body. We present both colors from UBVRI observations of the MUSES-C target Itokawa, and physical properties derived by applying a Hapke model to the broadband BVRI photometry.
36 CFR 1211.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... RECORDS ADMINISTRATION GENERAL RULES NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
24 CFR 3.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... and Urban Development NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
38 CFR 23.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... VETERANS AFFAIRS (CONTINUED) NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
32 CFR 196.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... DEFENSE (CONTINUED) MISCELLANEOUS NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
32 CFR 196.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... DEFENSE (CONTINUED) MISCELLANEOUS NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
38 CFR 23.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... VETERANS AFFAIRS (CONTINUED) NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
24 CFR 3.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and Urban Development NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
24 CFR 3.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... and Urban Development NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
36 CFR 1211.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... RECORDS ADMINISTRATION GENERAL RULES NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
24 CFR 3.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... and Urban Development NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
38 CFR 23.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... VETERANS AFFAIRS (CONTINUED) NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
36 CFR 1211.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... RECORDS ADMINISTRATION GENERAL RULES NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
24 CFR 3.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and Urban Development NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
38 CFR 23.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... VETERANS AFFAIRS (CONTINUED) NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
38 CFR 23.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VETERANS AFFAIRS (CONTINUED) NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
32 CFR 196.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DEFENSE (CONTINUED) MISCELLANEOUS NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
32 CFR 196.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... DEFENSE (CONTINUED) MISCELLANEOUS NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
36 CFR 1211.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... RECORDS ADMINISTRATION GENERAL RULES NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
32 CFR 196.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... DEFENSE (CONTINUED) MISCELLANEOUS NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
Dust motions in quasi-statically charged binary asteroid systems
NASA Astrophysics Data System (ADS)
Maruskin, Jared M.; Bellerose, Julie; Wong, Macken; Mitchell, Lara; Richardson, David; Mathews, Douglas; Nguyen, Tri; Ganeshalingam, Usha; Ma, Gina
2013-03-01
In this paper, we discuss dust motion and investigate possible mass transfer of charged particles in a binary asteroid system, in which the asteroids are electrically charged due to solar radiation. The surface potential of the asteroids is assumed to be a piecewise function, with positive potential on the sunlit half and negative potential on the shadow half. We derive the nonautonomous equations of motion for charged particles and an analytic representation for their lofting conditions. Particle trajectories and temporary relative equilibria are examined in relation to their moving forbidden regions, a concept we define and discuss. Finally, we use a Monte Carlo simulation for a case study on mass transfer and loss rates between the asteroids.
Anderson, Mark T.
1995-01-01
The study of ground-water and surface-water interactions often employs streamflow-gaging records and hydrologic budgets to determine ground-water seepage. Because ground-water seepage usually is computed as a residual in the hydrologic budget approach, all uncertainty of measurement and estimation of budget components is associated with the ground-water seepage. This uncertainty can exceed the estimate, especially when streamflow and its associated error of measurement, is large relative to other budget components. In a study of Rapid Creek in western South Dakota, the hydrologic budget approach with hydrochemistry was combined to determine ground-water seepage. The City of Rapid City obtains most of its municipal water from three infiltration galleries (Jackson Springs, Meadowbrook, and Girl Scout) constructed in the near-stream alluvium along Rapid Creek. The reach of Rapid Creek between Pactola Reservoir and Rapid City and, in particular the two subreaches containing the galleries, were studied intensively to identify the sources of water to each gallery. Jackson Springs Gallery was found to pump predominantly ground water with a minor component of surface water. Meadowbrook and Girl Scout Galleries induce infiltration of surface water from Rapid Creek but also have a significant component of ground water.
NASA Astrophysics Data System (ADS)
Le Corre, Lucille; Sanchez, Juan A.; Reddy, Vishnu; Takir, Driss; Cloutis, Edward A.; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri
2018-03-01
Asteroids that are targets of spacecraft missions are interesting because they present us with an opportunity to validate ground-based spectral observations. One such object is near-Earth asteroid (NEA) (162173) Ryugu, which is the target of the Japanese Space Agency's (JAXA) Hayabusa2 sample return mission. We observed Ryugu using the 3-m NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on 2016 July 13 to constrain the object's surface composition, meteorite analogues, and link to other asteroids in the main belt and NEA populations. We also modelled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Ishiguro et al. Our spectral analysis has found a near-perfect match between our spectrum of Ryugu and those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regoliths have similar composition. We compared Ryugu's spectrum with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as a possible source of Ryugu by Campins et al. We found that the spectrum of Clarissa shows significant differences with our spectrum of Ryugu, but it is similar to the spectrum obtained by Moskovitz et al. The best possible meteorite analogues for our spectrum of Ryugu are two CM2 carbonaceous chondrites, Mighei and ALH83100.
Low Cost Mars Surface Exploration: The Mars Tumbleweed
NASA Technical Reports Server (NTRS)
Antol, Jeffrey; Calhoun, Philip; Flick, John; Hajos, Gregory; Kolacinski, Richard; Minton, David; Owens, Rachel; Parker, Jennifer
2003-01-01
The "Mars Tumbleweed," a rover concept that would utilize surface winds for mobility, is being examined as a low cost complement to the current Mars exploration efforts. Tumbleweeds carrying microinstruments would be driven across the Martian landscape by wind, searching for areas of scientific interest. These rovers, relatively simple, inexpensive, and deployed in large numbers to maximize coverage of the Martian surface, would provide a broad scouting capability to identify specific sites for exploration by more complex rover and lander missions.
45 CFR 2555.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... FOR NATIONAL AND COMMUNITY SERVICE NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
45 CFR 2555.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... FOR NATIONAL AND COMMUNITY SERVICE NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
45 CFR 2555.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... FOR NATIONAL AND COMMUNITY SERVICE NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
45 CFR 2555.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... FOR NATIONAL AND COMMUNITY SERVICE NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
45 CFR 2555.215 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... FOR NATIONAL AND COMMUNITY SERVICE NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... students in attendance at institutions of higher education. (b) YMCA, YWCA, Girl Scouts, Boy Scouts, and... Christian Association (YMCA), the Young Women's Christian Association (YWCA), the Girl Scouts, the Boy...
Boy Scouts, School Policies and the Law.
ERIC Educational Resources Information Center
Jones, Rebecca
2001-01-01
The Boy Scouts of America's anti-gay and anti-atheist youth policies are forcing school districts to reconsider sponsoring troops and allowing meetings on campus. To most school boards, banning Boy Scouts organizations seems unthinkable. The meeting-space question boils down to existence of anti-discrimination policies. (MLH)
Be Prepared: The Archeology Merit Badge Is Here.
ERIC Educational Resources Information Center
Skinner, S. Alan; Saunders, Cece; Poirier, David A.; Krofina, Douglas L.; Wheat, Pam
1998-01-01
Describes the new archaeology merit badge of the Boy Scouts of America. Discusses the requirement that scouts recruit a "counselor" who is a hobbyist or working archaeologist, and outlines the duties and ethical responsibilities of such mentors. Includes the scout's requirements for earning the badge. (SV)
Scout and Guides, Key Users of Astronomy & Planetary Sciences Outreach that Support Education
NASA Astrophysics Data System (ADS)
Brumfitt, A.; Thompson, L.
Few people outside of the Scouting and Guide movement would appreciate that these world wide organisations have an active youth membership of over 40 million children and young adults. These two organisations rely on external specialist expert knowledge for the effective delivery of their education and award schemes. The high membership and established program delivery pathways make these organisations excellent vehicles for outreach programs. In particular Scouts and Guides are able to introduce astronomy and planetary sciences into their informal education programs at a timing that best suits the child and not one constrained by the schedule of formal education. It is the global voluntary nature of membership of these organisations that make them extremely effective learning vehicles. The members both youth and leader are highly motivated. These two organisations have a structured education program for youth members based on both individual pursuits or targets and group projects. The organisations has as part of their infra structure benchmarks for the measure of excellence in achievement and education at all levels. Scouts and Guides are a way of encompassing knowledge and lighting candles for life long learning. Scouts and guides address all year groups of formal education from primary through to tertiary levels, from cubs and brownies through various levels to Rovers and Rangers. Space is seen as relevant to Scouting and Guides, the Guide movement UK has recently adopted a "Go for it" challenge award for youth members to investigate space science. Similar awards exist in the Scouting movement in Europe, USA and Australia. The ready adoption of Space science fits well with scouting principles as Space is perceived as the "New Frontier of Discovery". In October 2007, Scouts and Guides from Europe will gather at Tidbinbilla deep space Tracking Station, Australia for the first Scout and Guide International Space Camp. The model used for this camp was based on a pilot camp in Australia of 1200 participants which used the Tracking Station, Astronomy Groups and the Mt Stromlo Observatory and its astronomers, Science Centres and Universities as key tools in the program design and delivery. The enormous sizes and the excellent formalised organisational structure of Scouts and Guides makes these organisations excellent vehicles for the development of space education programs that can be then transferred to traditional formal education organisations such as schools. This paper discusses mechanisms for effective engagement by astronomy planetaria science groups through Scouts and guides to kids.
2010-10-08
Hubble Wide Field Camera 3 observed the potato-shaped asteroid in preparation for the visit by NASA Dawn spacecraft in 2011. This is one frame from a movie showing the difference in brightness and color on the asteroid surface.
Measurement of Cohesion in Asteroid Regolith Materials
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie E.; Gaier, James R.; Waters, Deborah L.; Harvey, Ralph; Zeszut, Zoe; Carreno, Brandon; Shober, Patrick
2017-01-01
A study has been initiated to examine cohesive forces in asteroid materials to contribute to a better understanding of low density bodies such as asteroids and Phobos, and assist in exploration missions involving interaction with their surface material. The test specimen used in this study was a lightly weathered CM2 meteorite which is spectroscopically similar to Type C (carbonaceous) asteroids, and thought to have representative surface chemistry. To account for sample heterogeneity, adhesion forces were measured between the CM2 sample and its five primary mineral phase components. These adhesive forces bound the range of cohesive force that can be expected for the bulk material. All materials were characterized using a variety of optical and spectroscopic methods. Adhesive forces on the order of 50 to 400 µN were measured using a torsion balance in an ultrahigh vacuum chamber. The mineral samples exhibited clearly different adhesive strengths in the following hierarchy: Serpentine > Siderite > Bronzite > Olivine ˜ Fe-Ni.
Geo-Statistical Approach to Estimating Asteroid Exploration Parameters
NASA Technical Reports Server (NTRS)
Lincoln, William; Smith, Jeffrey H.; Weisbin, Charles
2011-01-01
NASA's vision for space exploration calls for a human visit to a near earth asteroid (NEA). Potential human operations at an asteroid include exploring a number of sites and analyzing and collecting multiple surface samples at each site. In this paper two approaches to formulation and scheduling of human exploration activities are compared given uncertain information regarding the asteroid prior to visit. In the first approach a probability model was applied to determine best estimates of mission duration and exploration activities consistent with exploration goals and existing prior data about the expected aggregate terrain information. These estimates were compared to a second approach or baseline plan where activities were constrained to fit within an assumed mission duration. The results compare the number of sites visited, number of samples analyzed per site, and the probability of achieving mission goals related to surface characterization for both cases.
Photopolarimetric observations of the minor planet Flora.
NASA Technical Reports Server (NTRS)
Veverka, J.
1971-01-01
Review of the rotation period, phase coefficients, and polarization curve of the unusual asteroid Flora. It is an almost spherical asteroid whose period of rotation is probably 13.6 h, but may be only one half of this. Its surface layer consists of a dark material resembling lunar surface soil, but since the polarization curves of Flora and the moon, though generally similar, are not identical the surface of Flora must differ somewhat either in composition or in texture from that of the moon.
Roles of Shape and Internal Structure in Rotational Disruption of Asteroids
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi; Scheeres, Daniel Jay
2015-08-01
An active research area over the last decade has been to explore configuration changes of rubble pile asteroids due to rotationally induced disruption, initially driven by the remarkable fact that there is a spin period threshold of 2 hr for asteroids larger than a few hundred meters in size. Several different disruption modes due to rapid rotation can be identified, as surface shedding, fission and failure of the internal structure. Relevant to these discussions are many observations of asteroid shapes that have revealed a diversity of forms such as oblate spheroids with equatorial ridges, strongly elongated shapes and contact binaries, to say nothing of multi-body systems. With consideration that rotationally induced deformation is one of the primary drivers of asteroid evolution, we have been developing two techniques for investigating the structure of asteroids, while accounting for their internal mechanical properties through plastic theory. The first technique developed is an analytical model based on limit analysis, which provides rigorous bounds on the asteroid mechanical properties for their shapes to remain stable. The second technique applies finite element model analysis that accounts for plastic deformation. Combining these models, we have explored the correlation between unique shape features and failure modes. First, we have been able to show that contact binary asteroids preferentially fail at their narrow necks at a relatively slow spin period, due to stress concentration. Second, applying these techniques to the breakup event of active asteroid P/2013 R3, we have been able to develop explicit constraints on the cohesion within rubble pile asteroids. Third, by probing the effect of inhomogeneous material properties, we have been able to develop conditions for whether an oblate body will fail internally or through surface shedding. These different failure modes can be tested by measuring the density distribution within a rubble pile body through determination of its gravity field. This talk will explore these different modes of failure and motivate divergent theories of failure that depend on properties of rubble piles.
Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998)
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Bodnar, R. J.; Gibson, E. K. Jr; Nyquist, L. E.; Reese, Y.; Shih, C. Y.; Wiesmann, H.
1999-01-01
Crystals of halite and sylvite within the Monahans (1998) H5 chondrite contain aqueous fluid inclusions. The fluids are dominantly sodium chloride-potassium chloride brines, but they also contain divalent cations such as iron, magnesium, or calcium. Two possible origins for the brines are indigenous fluids flowing within the asteroid and exogenous fluids delivered into the asteroid surface from a salt-containing icy object.
The 1908 Tunguska explosion - Atmospheric disruption of a stony asteroid
NASA Technical Reports Server (NTRS)
Chyba, Christofer F.; Thomas, Paul J.; Zahnle, Kevin J.
1993-01-01
The explosion over Tunguska, Central Siberia, in 1908 released 10 to 20 megatons (high explosive equivalent) of energy at an altitude of about 10 km. This event represents a typical fate for stony asteroids tens of meters in radius entering the Earth's atmosphere at common hypersonic velocities. Comets and carbonaceous asteroids of the appropriate energy disrupt too high, whereas typical iron objects reach and crater the terrestrial surface.
SPHERE Sheds New Light on the Collisional History of Main-belt Asteroids
NASA Astrophysics Data System (ADS)
Marsset, M.; Carry, B.; Pajuelo, M.; Viikinkoski, M.; Hanuš, J.; Vernazza, P.; Dumas, C.; Yang, B.
2017-09-01
The Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument has unveiled unprecedented details of the three-dimensional shape, surface topography and cratering record of four medium-sized ( 200 km) asteroids, opening the prospect of a new era of ground-based exploration of the asteroid belt. Although two of the targets, (130) Elektra and (107) Camilla, have been observed extensively for more than fifteen years by the first-generation adaptive optics imagers, two new moonlets were discovered around these targets, illustrating the unique power of SPHERE. In the next two years SPHERE will continue to collect high- angular-resolution and high-contrast measurements of about 40 asteroids. These observations of a large number of asteroids will provide a unique dataset to better understand the collisional history and multiplicity rate of the asteroid belt.
45 CFR 86.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE..., Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the membership practices of... Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part does not apply to...
45 CFR 86.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE..., Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the membership practices of... Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part does not apply to...
45 CFR 86.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE..., Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the membership practices of... Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part does not apply to...
45 CFR 86.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE..., Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the membership practices of... Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part does not apply to...
45 CFR 86.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE..., Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the membership practices of... Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part does not apply to...
User's operating procedures. Volume 1: Scout project information programs
NASA Technical Reports Server (NTRS)
Harris, C. G.; Harris, D. K.
1985-01-01
A review of the user's operating procedures for the Scout Project Automatic Data System, called SPADS is given. SPADS is the result of the past seven years of software development on a Prime minicomputer located at the Scout Project Office. SPADS was developed as a single entry, multiple cross reference data management and information retrieval system for the automation of Project office tasks, including engineering, financial, managerial, and clerical support. The instructions to operate the Scout Project Information programs in data retrieval and file maintenance via the user friendly menu drivers is presented.
"5 A Day" achievement badge for urban boy scouts: formative evaluation results.
Cullen, K W; Baranowski, T; Baranowski, J; Warnecke, C; de Moor, C; Nwachokor, A; Hajek, R A; Jones, L A
1998-01-01
Certain cancers are more common among African Americans (AA). Fruit and vegetables (F&V) reduce cancer risk, but Americans, and African Americans in particular, do not meet the "5 A Day" goal. Scouting organizations, particularly urban Boy Scout groups that target inner-city youth, provide promising channels for nutritional behavioral change programs. Focus groups were conducted with urban Boy Scouts and their parents to identify factors influencing F&V consumption and evaluate potential intervention activities. Twenty-four-hour dietary recalls were collected from 85 area Boy Scouts. A national data set was used to obtain values for F&V consumption by African American and European American (boys age 0-16). Vegetable preferences were low and a negative peer influence for vegetables was reported. The group has limited food-preparation skills, but both parents and scouts reported that F&V were available in their homes. Use of goal setting and use of problem-solving techniques were limited. The local scouts' mean F&V intake was 3.2 servings per day. Ethnic differences in F&V consumption were identified in the national data. Based on these results and previous interventions in schools, an overall structure for the intervention was developed to include eight weekly troop sessions and two camping sessions, parent newsletters, seven weekly home badge assignments, and ten comic books.
Innovative Strategies for Asteroid Precursor Exploration
NASA Astrophysics Data System (ADS)
Klaus, K.; Lawrence, S.; Elsperman, M. S.; Smith, D. B.
2011-12-01
Introduction: Our ambitions for space exploration have outpaced our ability to afford frequent visits to targets of interest. Launch costs and development times continue to increase for getting large space craft to deep space. This particularly affects workforce development and imperils opportunities for new development starts. The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Background: As demonstrated by the 1994 Clementine mission, planetary exploration missions maximizing off-the-shelf components to obtain a focused set of measurement objectives can make meaningful contributions to advancing the frontiers of space exploration by achieving numerous science and exploration objectives. Near Earth Objects [NEOs] are interesting candidates for missions of this nature. While results from recent missions (i.e., Hayabusa, NEAR, Dawn) have dramatically increased our understanding of asteroids, important questions remain. For example, characterizing the properties of asteroid regolith is an important consideration for understanding telescopic observations of asteroids, as well as preparing for future asteroid human exploration. Spacecraft Concepts: There are many candidate target asteroids that are attainable with our concept. We envision a "mothership" carrying 2-3 nanosats to the target. The nanosats would serve as in-situ explorers. The spacecraft is notionally designed for launch on a Taurus II. Our study intends on validating the concept and our notional spacecraft design will be refined and presented. The current dry mass with nanosats is estimated to be 750kg. The 1999 JU3 mission concept is a rendezvous with a 950 kg of initial spacecraft mass, launched to a C3 of 4 km2/s2. Subtracting the spacecraft dry mass from the initial mass gives a propellant loading of 200 kg. The solution for this case required 115.3 kg of propellant, leaving a 42% propellant margin. Science Instrumentation: Key objectives of this notional asteroid explorer would include: (1) high-resolution surface topography; (2) characterization surface composition and mineralogy; (3) quantification of the radiation environment near an NEO; and (4) mechanical properties of surface, if a touchdown takes place. Each nanosat would notionally contain a stereo camera for navigation, an alpha proton x-ray spectrometer to make measurements of the surface chemistry, and a microscopic imaging system to characterize the particle size distribution of asteroid regolith; multiple nanosats would provided redundancy for the in-situ surface characterization phase of the mission and enable a rudimentary gravity map through radio signal tracking.
Granular media in the context of small bodies
NASA Astrophysics Data System (ADS)
Tancredi, G.
2014-07-01
Granular materials of different particle sizes are present on the surface and the interior of several atmosphereless Solar System bodies. The presence of very fine particles on the surface of the Moon, the so-called regolith, was confirmed by the Apollo astronauts. From the polarimetric observations and phase angle curves, it is possible to indirectly infer the presence of fine particles on the surfaces of asteroids and planetary satellites. More recently, the visit of spacecraft to several asteroids and comets has provided us with close pictures of the surface, where particles of a wide size range from cm to hundreds of meters have been directly observed. The presence of even finer particles on the visited bodies can also be inferred from image analysis. Solar System bodies smaller than a few hundred km may have a variety of internal structures: monolithic single bodies, objects with internal fractures, rubble piles maintained as a single object by self-gravity, etc. After the visit of the small asteroid Itokawa, it has been speculated that ''some small asteroids appear to be clumps of gravel glued by a very weak gravity field'' (Asphaug 2007). We still do not know the internal structure of these rubble piles and the size distribution of the interior constituents, but these clumps could have several million meter-sized boulders inside. There are several pieces of evidence that many asteroids are agglomerates of small components, like: - Rotation periods for small asteroids - Tidal disruption of asteroids and comets when they enter the Roche's limit of a massive object - The existence of crater chains like the ones observed in Ganymede - Low density estimates (< 2 gr/cm^3) for many asteroids like Mathilde It has been proposed that several typical processes of granular materials (such as: the size segregation of boulders on Itokawa, the displacement of boulders on Eros, the ejection of dust clouds after impacts) can explain some features observed on these bodies. We review the numerical and experimental studies on granular materials with relevance to the understanding of the physical processes on the interior and the surfaces of minor bodies of the Solar System. In particular, we compare the different codes in use to perform numerical simulations of the physical evolution of these objects. We highlight results of these simulations. Some groups have been involved in laboratory experiments on granular material trying to reproduce the conditions in space: vacuum and low gravity. We describe the experimental set-ups and some results of these experiments. Some open problems and future line of work in this field will be presented.
Cohesion of Mm- to Cm-Sized Asteroid Simulant Grains: An Experimental Study
NASA Astrophysics Data System (ADS)
Brisset, Julie; Colwell, Joshua E.; Dove, Adrienne; Jarmak, Stephanie; Anderson, Seamus
2017-10-01
The regolith covering the surfaces of asteroids and planetary satellites is very different from terrestrial soil particles and subject to environmental conditions very different from what is found on Earth. The loose, unconsolidated granular material has angular-shaped grains and a broad size distribution. On small and airless bodies (<10 km), the solar wind leads to a depletion of fine grains (<100µm) on the surface. Ground observations of the two asteroids currently targeted by spacecraft, Ryugu (Hayabusa-2) and Bennu (OSIRIS-REx), indicate that their surfaces could be covered in mm- to cm-sized regolith grains. As these small bodies have surface gravity levels below 10-5g, g being the Earth surface gravity, the cohesion behavior of the regolith grains will dictate the asteroid’s surface morphology and its response to impact or spacecraft contact.Previous laboratory experiments on low-velocity impacts into regolith simulant with grain sizes <250 µm have revealed a transition of the grain behavior from a gravity-dominated regime to a cohesion-dominated regime when the local gravity level reaches values below 10-3g. This is in good agreement with analytical and simulation studies for these grain sizes. From the expected grain sizes at the surfaces of Ryugu and Bennu, we have now focused on larger grain sizes ranging from mm to cm. We have carried out a series of experiments to study the cohesion behavior of such larger grains of asteroid regolith simulant. The simulant used was CI Orgueil of Deep Space Industries. Experiments included laboratory tabletop avalanching, compression and shear force measurements, as well as low-velocity impacts under microgravity.Our goal is to determine if the grain size distribution has an influence on the cohesion behavior of the regolith and if we can validate numerical simulation results with experimental measurements. We will discuss the implications of our results for sample return or landing missions to small bodies such as asteroids or Martian moons.
NASA Astrophysics Data System (ADS)
Binzel, R. P.; Earle, A. M.; Vanatta, M.; Miller, D. W.
2017-12-01
Nature is providing a once-per-thousand year opportunity to study the geophysical outcome induced on an unprecedentedly large (350 meter) asteroid making an extremely close passage by the Earth (inside the distance of geosynchronous satellites) on Friday April 13, 2029. The aircraft carrier-sized (estimated 20 million metric ton) asteroid is named Apophis. While many previous spacecraft missions have studied asteroids, none has ever had the opportunity to study "live" the outcome of planetary tidal forces on their shapes, spin states, surface geology, and internal structure. Beyond the science interest directly observing this planetary process, the Apophis encounter provides an invaluable opportunity to gain knowledge for any eventuality of a known asteroid found to be on a certain impact trajectory. MIT's Project Apophis [1] is our response to nature's generous opportunity by developing a detailed mission concept for sending a spacecraft to orbit Apophis with the objectives of surveying its surface and interior structure before, during, and after its 2029 near-Earth encounter. The Surface Evaluation & Tomography (SET) mission concept we present is designed toward accomplishing three key science objectives: (1) bulk physical characterization, (2) internal structure, and (3) long-term orbit tracking. For its first mission objective, SET will study Apophis' bulk properties, including: shape, size, mass, volume, bulk density, surface geology, and composition, rotation rate, and spin state. The second mission objective is to characterize Apophis' internal structure before and after the encounter to determine its strength and cohesion - including tidally induced changes. Finally, the third objective studies the process of thermal re-radiation and consequential Yarkovsky drift, whose results will improve orbit predictions for Apophis as well as other potentially hazardous asteroids. [1] https://eapsweb.mit.edu/mit-project-apophis
NASA Astrophysics Data System (ADS)
Michel, Patrick; Cheng, A.; Küppers, M.; Pravec, P.; Blum, J.; Delbo, M.; Green, S. F.; Rosenblatt, P.; Tsiganis, K.; Vincent, J. B.; Biele, J.; Ciarletti, V.; Hérique, A.; Ulamec, S.; Carnelli, I.; Galvez, A.; Benner, L.; Naidu, S. P.; Barnouin, O. S.; Richardson, D. C.; Rivkin, A.; Scheirich, P.; Moskovitz, N.; Thirouin, A.; Schwartz, S. R.; Campo Bagatin, A.; Yu, Y.
2016-06-01
The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to test the kinetic impactor technique to deflect an asteroid. The European Asteroid Impact Mission (AIM) is set to rendezvous with the asteroid system to fully characterize the smaller of the two binary components a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near-Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Having direct information on the surface and internal properties of small asteroids will allow us to understand how the various processes they undergo work and transform these small bodies as well as, for this particular case, how a binary system forms. Making these measurements from up close and comparing them with ground-based data from telescopes will also allow us to calibrate remote observations and improve our data interpretation of other systems. With DART, thanks to the characterization of the target by AIM, the mission will be the first fully documented impact experiment at asteroid scale, which will include the characterization of the target's properties and the outcome of the impact. AIDA will thus offer a great opportunity to test and refine our understanding and models at the actual scale of an asteroid, and to check whether the current extrapolations of material strength from laboratory-scale targets to the scale of AIDA's target are valid. Moreover, it will offer a first check of the validity of the kinetic impactor concept to deflect a small body and lead to improved efficiency for future kinetic impactor designs. This paper focuses on the science return of AIM, the current knowledge of its target from ground-based observations, and the instrumentation planned to get the necessary data.
Organic material: Asteroids, meteorites, and planetary satellites
NASA Technical Reports Server (NTRS)
Cruikshank, Dale P.; Kerridge, John F.
1992-01-01
Telescopic observations in in situ spacecraft investigations over the last two decades have shown that many planetary satellites, asteroids, and comets have surfaces containing very dark material that is either neutral (black) or red in color. Although comets are not the focus of this paper, the possible relationship of comets to asteroids, meteorites, and interplanetary dust is briefly discussed in the context of their dark-matter component. The following topics are discussed with respect to their organic content: carbonaceous chondrites; asteroids; low-albedo planetary satellites; and Pluto, Charon, and Triton. Laboratory studies and a summary are also presented.
Discovery of a basaltic asteroid in the outer main belt
Lazzaro; Michtchenko; Carvano; Binzel; Bus; Burbine; Mothe-Diniz; Florczak; Angeli; Harris
2000-06-16
Visible and near-infrared spectroscopic observations of the asteroid 1459 Magnya indicate that it has a basaltic surface. Magnya is at 3. 15 astronomical units (AU) from the sun and has no known dynamical link to any family, to any nearby large asteroid, or to asteroid 4 Vesta at 2.36 AU, which is the only other known large basaltic asteroid. We show that the region of the belt around Magnya is densely filled by mean-motion resonances, generating slow orbital diffusion processes and providing a potential mechanism for removing other basaltic fragments that may have been created on the same parent body as Magnya. Magnya may represent a rare surviving fragment from a larger, differentiated planetesimal that was disrupted long ago.
Inoue, Yusuke; Nagahara, Kazunori; Kudo, Hiroko; Itoh, Hiroyasu
2018-01-01
Automatic exposure control (AEC) modulates tube current and consequently X-ray exposure in CT. We investigated the behavior of AEC systems in whole-body PET/CT. CT images of a whole-body phantom were acquired using AEC on two scanners from different manufactures. The effects of scout imaging direction and arm positioning on dose modulation were evaluated. Image noise was assessed in the chest and upper abdomen. On one scanner, AEC using two scout images in the posteroanterior (PA) and lateral (Lat) directions provided relatively constant image noise along the z-axis with the arms at the sides. Raising the arms increased tube current in the head and neck and decreased it in the body trunk. Image noise increased in the upper abdomen, suggesting excessive reduction in radiation exposure. AEC using the PA scout alone strikingly increased tube current and reduced image noise in the shoulder. Raising the arms did not substantially influence dose modulation and decreased noise in the abdomen. On the other scanner, AEC using the PA scout alone or Lat scout alone resulted in similar dose modulation. Raising the arms increased tube current in the head and neck and decreased it in the trunk. Image noise was higher in the upper abdomen than in the middle and lower chest, and was not influenced by arm positioning. CT dose modulation using AEC may vary greatly depending on scout direction. Raising the arms tended to decrease radiation exposure; however, the effect depends on scout direction and the AEC system.
Nanoscale Analysis of Space-Weathering Features in Soils from Itokawa
NASA Technical Reports Server (NTRS)
Thompson, M. S.; Christoffersen, R.; Zega, T. J.; Keller, L. P.
2014-01-01
Space weathering alters the spectral properties of airless body surface materials by redden-ing and darkening their spectra and attenuating characteristic absorption bands, making it challenging to characterize them remotely [1,2]. It also causes a discrepency between laboratory analysis of meteorites and remotely sensed spectra from asteroids, making it difficult to associate meteorites with their parent bodies. The mechanisms driving space weathering include mi-crometeorite impacts and the interaction of surface materials with solar energetic ions, particularly the solar wind. These processes continuously alter the microchemical and structural characteristics of exposed grains on airless bodies. The change of these properties is caused predominantly by the vapor deposition of reduced Fe and FeS nanoparticles (npFe(sup 0) and npFeS respectively) onto the rims of surface grains [3]. Sample-based analysis of space weathering has tra-ditionally been limited to lunar soils and select asteroidal and lunar regolith breccias [3-5]. With the return of samples from the Hayabusa mission to asteroid Itoka-wa [6], for the first time we are able to compare space-weathering features on returned surface soils from a known asteroidal body. Analysis of these samples will contribute to a more comprehensive model for how space weathering varies across the inner solar system. Here we report detailed microchemical and microstructal analysis of surface grains from Itokawa.
NASA Technical Reports Server (NTRS)
Grove, T. L.
1993-01-01
The eucrite-howardite-diogenite meteorite groups are though to be related by magmatic processes. Asteroid 4 Vesta has been proposed as the parent body for these basaltic achondrite meteorites. The similarity of the planetesimal's surface composition to eucrite and diogenite meteorites and the large size of the asteroid (r = 250 km) make it an attractive source, but its position in the asteroid belt far from the known resonances from which meteorites originate make a relation between Vesta and eucrite-howardite-giogenite group problematic. It has been proposed that diogenites are low-Ca pyroxene-rich cumulates that crystallized from a magnesian parent (identified in howardite breccias), and this crystallization process led to evolved eucrite derivative magmas. This eucrite-diogenite genetic relationship places constraints on the physical conditions under which crystallization occurred. Elevated pressure melting experiments on magnesian eucrite parent compositions show that the minimum pressure at which pyroxene crystallization could lead to the observed compositions of main series eucrites is 500 bars, equivalent to a depth of 135 km in a 4 Vesta-sized eucrite parent body. Therefore, the observation of diogenite on the surface of 4 Vesta requires a post-crystallization process that excavates diogenite cumulate from depth. The discovery of diogenite asteroidal fragments is consistent with an impact event on 4 Vesta that penetrated the deep interior of this planetesimal.
Japanese Studies of Asteroids Following the Discovery of the Hirayama Families
NASA Astrophysics Data System (ADS)
Nakamura, Tsuko
This paper reviews studies relating to asteroids conducted by Japanese astronomers since the discovery of asteroid families by Kiyotsugu Hirayama in 1918. First, the situation is mentioned that it took quite some time for the concept of an `asteroid family' to be understood correctly by the astronomical community worldwide. It is no wonder that some eminent researches on the dynamics of asteroids based on secular perturbation theories appeared in Japan after WWII, as represented by the `Kozai mechanism' (1962), which probably was influenced by Hirayama's monumental discovery. As for studies of the physical nature of asteroids, we must note the pioneering work by M. Kitamura in 1959 when the observed colors of about 40 asteroids were compared with reflectance spectra of several meteorites measured in the laboratory, even though this result unfortunately was not pursued further at the time. Modern impact experiments initiated by A. Fujiwara in 1975 soon became an important means of investigating the origin of asteroid families, and of the ubiquitous craters seen on the surfaces of airless Solar System bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasuga, Toshihiro; Shirahata, Mai; Usui, Fumihiko
Most outer main-belt asteroids have low albedos because of their carbonaceouslike bodies. However, infrared satellite surveys have revealed that some asteroids have high albedos, which may suggest the presence of unusual surface minerals for those primitive objects. We present new near-infrared (1.1–2.5 μm) spectra of four outer main-belt asteroids with albedos ≥ 0.1. The C-complex asteroids (555) Norma and (2542) Calpurnia are featureless and have (50%–60%) amorphous Mg pyroxenes that might explain the high albedos. Asteroids (701) Oriola (which is a C-complex asteroid) and (2670) Chuvashia (a D/T-type or M-type asteroid) show possible broad absorption bands (1.5–2.1 μm). The featuremore » can be reproduced by either Mg-rich amorphous pyroxene (with 50%–60% and 80%–95% Mg, respectively) or orthopyroxene (crystalline silicate), which might be responsible for the high albedos. No absorption features of water ice (near 1.5 and 2.0 μm) are detected in the objects. We discuss the origin of high albedo components in the outer main-belt asteroids and their physical relations to comets.« less
Asteroids and Comets Outreach Compilation
NASA Technical Reports Server (NTRS)
1999-01-01
Contents include various different animations in the area of Asteroids and Comets. Titles of the short animated clips are: STARDUST Mission; Asteroid Castallia Impact Simulation; Castallia, Toutatis and the Earth; Simulation Asteroid Encounter with Earth; Nanorover Technology Task; Near Earth Asteroid Tracking; Champollian Anchor Tests; Early Views of Comets; Exploration of Small Bodies; Ulysses Resource Material from ESA; Ulysses Cometary Plasma Tail Animation; and various discussions on the Hale-Bopp Comet. Animation of the following are seen: the Stardust aerogel collector grid collecting cometary dust particles, comet and interstellar dust analyzer, Wiper-shield and dust flux monitor, a navigation camera, and the return of the sample to Earth; a comparison of the rotation of the Earth to the Castallia and Tautatis Asteroids; an animated land on Tautatis and the view of the motion of the sky from its surface; an Asteroid collision with the Earth; the USAF Station in Hawaii; close-up views of asteroids; automatic drilling of the Moon; exploding Cosmic Particles; and the dropping off of the plasma tail of a comet as it travels near the sun.
Photometric analysis of Asteroid (21) Lutetia from Rosetta-OSIRIS images
NASA Astrophysics Data System (ADS)
Masoumzadeh, N.; Boehnhardt, H.; Li, Jian-Yang; Vincent, J.-B.
2015-09-01
We analyzed the photometric properties of Asteroid (21) Lutetia based on images captured by Rosetta during its flyby. We utilized the images recorded in the F17 filter (λ = 631.6 nm) of the Wide Angle Camera (WAC) and in the F82 & F22 filters (λ = 649.2 nm) of the Narrow Angle Camera (NAC) of the OSIRIS imaging system onboard the spacecraft. We present the results of Hapke and Minnaert modeling using disk-integrated and disk-resolved data derived from the surface of the asteroid. At 631.6 nm and 649.2 nm, the geometric albedo of Lutetia is 0.194 ± 0.002. The Bond albedo is 0.076 ± 0.002 at 649.2 nm, and 0.079 ± 0.002 at 631.6 nm. The roughness parameter is 28 ° ± 1 ° , the opposition surge parameters B0 and h are 1.79 ± 0.08 and 0.041 ± 0.003, respectively, and the asymmetry factor of the phase function is -0.28 ± 0.01. The single-scattering albedo is 0.226 ± 0.002 at 631.6 and 649.2 nm. The modeled Hapke parameters of Asteroid Lutetia are close to those of typical S-type asteroids. The Minnaert k parameter of Lutetia at opposition (0.526 ± 0.002) is comparable with other asteroids and comets. Albedo ratio images indicate no significant variation across the surface of Lutetia, apart from the so called NPCC region on Lutetia where a pronounced variation is seen at large phase angle. The small width of the albedo distribution of the surface (∼7% at half maximum) and the similarity between phase ratio maps derived from the measurements and from the modeling suggests that the light scattering property over the whole visible and illuminated surface of the asteroid is widely uniform. The comparison between the reflectance measurement of Lutetia and the available laboratory samples suggests that the regolith on Lutetia is concrete with possible grain size distribution of150 μm or larger.
Regolith on Super Fast Rotators
NASA Astrophysics Data System (ADS)
Sanchez Lana, Diego Paul; Scheeres, Daniel J.
2017-10-01
The current understanding of small asteroids in the Solar System is that they are gravitational aggregates held together by gravitational, cohesive and adhesive forces. Results from the Hayabusa mission to Itokawa along with in situ, thermal and radar observations of asteroids have shown that they can be covered in a size distribution of grains that spans from microns to tens of meters. Before the Hayabusa mission, it was generally thought that smaller asteroids would likely be “regolith-free,” due to impact seismic shaking removing the loose covering. Given the regolith-rich surface of that body, it is now an open question whether even smaller bodies, down to a few meters in size, could also retain regolith covering. The question is especially compelling for the small-fast rotators, whose surface centripetal accelerations exceed their gravitational attraction. When the physical theory of cohesion is considered, it becomes possible for small-fast rotators to retain regolith.We use a Soft-Sphere discrete element method (SSDEM) code to simulate a longitudinal slice of a spherical monolith covered by cohesive regolith. The simulations are carried out in the body frame. Tensile strength is varied to span the observed strength of asteroids and spin rate is elevated in small steps until the majority of regolith is removed from the surface. The simulations show that under an increasing spin rate (such as due to the YORP effect), the regolith covering on an otherwise monolithic asteroid is preferentially lost across certain regions of the body. In general, regolith from the mid latitudes is the first to fail at high spin rates. This failure happens either by regolith flowing towards the equator or by detachment of large coherent chunks of material depending on the tensile strength of the regolith. Regolith from the equator region fails next, usually by the detachment of large pieces. Regolith from the poles stays in place unless the spin rates are extremely high. With these results we derive a scaling law that can be used to determine whether observed small asteroids could retain surface regolith of a given size. The implications of this for the interpretation of spectral observations of small asteroids are discussed.
The Strata-l Experiment on Microgravity Regolith Segregation
NASA Technical Reports Server (NTRS)
Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.;
2016-01-01
The Strata-1 experiment studies the segregation of small-body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples from sample return missions, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Due to observation of rocky regions on asteorids such as Eros and Itokawa, it has been hypothesized that grain size distribution with depth on an asteroid may be inhomogeneous: specifically, that large boulders have been mobilized to the surface. In terrestrial environments, this size-dependent sorting to the surface of the sample is called the Brazil Nut Effect. The microgravity and acceleration environment on the ISS is similar that of a small asteroid. Thus, Strata-1 investigates size segregation of regolith in an environment analogous to that of small bodies. Strata-1 consists of four regolith simulants in evacuated tubes, as shown in Figure 1 (Top and Middle). The simulants are (1) a crushed and sieved ordinary chondrite meteorite to simulate an asteroidal surface, (2) a carbonaceous chondrite simulant with a mixture of fine and course particles, and two simplified silicate glass simulants; (3) one with angular and (4) another with spherical particles. These materials were chosen to span a range of granular complexity. The materials were sorted into three size species pre-launch, and maintained during launch and return by a device called the Entrapulator. The hypothesis under test is that the particles that constitute a granular medium in a micro-gravity environment, subjected to a known vibration environemnt, will segregate in accordance to modeled predictions. Strata-1 is currently operating on ISS, with cameras capturing images of simulant motion throughout the one year mission. Vibration data is recorded and downlinked, and the simulants will be analyzed after return to Earth.
7 CFR 15a.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) YMCA, YWCA, Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the membership..., the Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part does not... traditionally limited to members of one sex and principally to persons of less than nineteen years of age. ...
7 CFR 15a.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) YMCA, YWCA, Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the membership..., the Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part does not... traditionally limited to members of one sex and principally to persons of less than nineteen years of age. ...
7 CFR 15a.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) YMCA, YWCA, Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the membership..., the Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part does not... traditionally limited to members of one sex and principally to persons of less than nineteen years of age. ...
77 FR 22671 - Defense Support to Special Events
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-17
..., Section A(iiii)G reference to DOD support to the ``National Boy Scout Jamboree''. Recommend that DOD not support this event. The Boy Scouts of America are an organization that discriminates based on sex, sexual... Defense has valid statutory authority, 10 U.S.C. 2554, for providing support to the Boy Scout jamboree...
7 CFR 15a.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) YMCA, YWCA, Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the membership..., the Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part does not... traditionally limited to members of one sex and principally to persons of less than nineteen years of age. ...
7 CFR 15a.14 - Membership practices of certain organizations.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) YMCA, YWCA, Girl Scouts, Boy Scouts and Camp Fire Girls. This part does not apply to the membership..., the Boy Scouts and Camp Fire Girls. (c) Voluntary youth service organizations. This part does not... traditionally limited to members of one sex and principally to persons of less than nineteen years of age. ...
The Control of Sexuality in the Early British Boy Scouts Movement
ERIC Educational Resources Information Center
Pryke, Sam
2005-01-01
This article looks at the way in which the early (1907-1922) British Boy Scouts movement attempted to control sexuality through archival examination of the organization's preoccupation with preventing masturbation or, as it was generally referred to, "self abuse". Having briefly outlined the origination and nature of the Scouts, it considers why…
Outdoor Education in Girl Scouting.
ERIC Educational Resources Information Center
Kennedy, Carolyn L.
This book was written to help Girl Scout leaders prepare themselves and the girls with whom they work to enjoy outdoor experiences together. It complements the age-level handbook and leaders' guide, and training provided by the local Girl Scout council. The book contains nine chapters. The first chapter lists age-level characteristics of girls,…
Scouts Serving the Cause of Literacy. Literacy Lessons.
ERIC Educational Resources Information Center
Moreillon, Jacques
Scouting is an expanding worldwide youth movement, with more than 16 million members in 169 countries and territories. Its goal is to contribute to the physical, intellectual, social, and spiritual development of young people. Since participation in development is one of the cornerstones of their program, scouts cannot ignore the challenge that…
Geoscience Education in the Boy Scouts of America
ERIC Educational Resources Information Center
Hintz, Rachel; Thomson, Barbara
2012-01-01
Boy Scout geoscience education is not "desk" education--it is an informal, hands-on, real-world education where Scouts learn through activities, trips, and the outdoors, as well as in meetings and in the merit badge program. Merit badge requirements, many of which meet National Science Education Standards for Earth and Space Science,…
77 FR 5186 - Drawbridge Operation Regulation; Northeast Cape Fear River, Wilmington, NC
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... span to accommodate the 100 year Anniversary of the Girl Scout Program Ceremonial walk. The deviation.... SUPPLEMENTARY INFORMATION: The Event Director for the New Hanover County Girl Scouts, with approval from the... deviation from the current operating schedule to accommodate the 100 year Anniversary of the Girl Scout...
Liang, Zhengzheng S.; Mattila, Heather R.; Rodriguez-Zas, Sandra L.; Southey, Bruce R.; Seeley, Thomas D.; Robinson, Gene E.
2014-01-01
Individual differences in behaviour are often consistent across time and contexts, but it is not clear whether such consistency is reflected at the molecular level. We explored this issue by studying scouting in honeybees in two different behavioural and ecological contexts: finding new sources of floral food resources and finding a new nest site. Brain gene expression profiles in food-source and nest-site scouts showed a significant overlap, despite large expression differences associated with the two different contexts. Class prediction and ‘leave-one-out’ cross-validation analyses revealed that a bee's role as a scout in either context could be predicted with 92.5% success using 89 genes at minimum. We also found that genes related to four neurotransmitter systems were part of a shared brain molecular signature in both types of scouts, and the two types of scouts were more similar for genes related to glutamate and GABA than catecholamine or acetylcholine signalling. These results indicate that consistent behavioural tendencies across different ecological contexts involve a mixture of similarities and differences in brain gene expression. PMID:25355476
NASA Astrophysics Data System (ADS)
Hardersen, Paul S.; Reddy, Vishnu; Roberts, Rachel; Mainzer, Amy
2014-11-01
Vestoids are generally considered to be fragments from Asteroid (4) Vesta that were ejected by past collisions that document Vesta's collisional history. Dynamical Vestoids are defined by their spatial proximity with Vesta (Zappala, V., Bendjoya, Ph., Cellino, A., Farinella, P., Froeschle', C. [1995]. Icarus 116, 291-314; Nesvorny, D. [2012]. Nesvorny HCM Asteroid Families V2.0. EAR-A-VARGBDET-5-NESVORNYFAM-V2.0. NASA Planetary Data System.). Taxonomic Vestoids are defined as V-type asteroids that have a photometric, visible-wavelength spectral, or other observational relationship with Vesta (Tholen, D.J., 1984. Asteroid Taxonomy from Cluster Analysis of Photometry. Ph.D. Thesis, University of Arizona, Tucson; Bus, S.J., Binzel, R.P. [2002]. Icarus 158, 106-145; Carvano, J., Hasselmann, P.H., Lazzaro, D., Mothe'-Diniz, T. [2010]. Astron. Astrophys. 510, A43). We define 'genetic Vestoids' as V-type asteroids that are probable fragments ejected from (4) Vesta based on the supporting combination of dynamical, near-infrared (NIR) spectral, and taxonomic evidence. NIR reflectance spectroscopy is one of the primary ground-based techniques to constrain an asteroid's major surface mineralogy (Burns, R.G. [1993a]. Mineralogical Applications of Crystal Field Theory. Cambridge University Press, Cambridge, UK, 551 p). Despite the reasonable likelihood that many dynamical and taxonomic Vestoids likely originate from Vesta, ambiguity exists concerning the fraction of these populations that are from Vesta as compared to the fraction of asteroids that might not be related to Vesta. Currently, one of the most robust techniques to identify the genetic Vestoid population is through NIR reflectance spectroscopy from ∼0.7 to 2.5 μm. The derivation of spectral band parameters, and the comparison of those band parameters with those from representative samples from the Howardite-Eucrite-Diogenite (HED) meteorite types, allows a direct comparison of their primary mineralogies. Establishing tighter constraints on the genetic Vestoid population will better inform mass estimates for the current population of probable Vestoids, will provide more accurate orbital information of Vestoid migration through time that will assist dynamical models, and will constrain the overall current abundance of basaltic material in the main asteroid belt (Moskovitz, N.A., Jedicke, R., Gaidos, E., Willman, M., Nesvorny, D., Fevig, R. [2008]. Icarus 198, 77-90). This work reports high-quality NIR spectra, and their respective interpretations, for eight Vp-type asteroids, as defined by Carvano et al. (Carvano, J., Hasselmann, P.H., Lazzaro, D., Mothe'-Diniz, T. [2010]. Astron. Astrophys. 510, A43), that were observed at the NASA Infrared Telescope Facility on January 14, 2013 UT. They include: (3867) Shiretoko, (5235) Jean-Loup, (5560) Amytis, (6331) 1992 FZ1, (6976) Kanatsu, (17469) 1991 BT, (29796) 1999 CW77, and (30872) 1992 EM17. All eight asteroids exhibit the broad ∼0.9- and ∼1.9-μm mineral absorption features indicative of pyroxene on each asteroid's surface. Data reduction and analysis via multiple techniques produced consistent results for the derived spectral absorption band centers and average pyroxene surface chemistries for all eight asteroids (Reddy, V., Sanchez, J.A., Nathues, A., Moskovitz, N.A., Li, J.-Y, Cloutis, E.A., Archer, K., Tucker, R.A., Gaffey, M.J., Mann, P.J., Sierks, H., Schade, U. [2012c]. Icarus 217, 153-168; Lindsay, S.S., Emery, J.P., Marchis, F., Enriquez, J., Assafin, M. [2013]. A spectroscopic and mineralogic study of multiple asteroid systems. American Astronomical Society, DPS Meeting #45, #112.04; Lindsay, S.S., Marchis, F., Emery, J.P., Enriquez, J.E., Assafin, M. [2014]. Icarus, submitted for publication; Gaffey, M.J., Cloutis, E.A., Kelley, M.K., Reed, K.L. [2002]. Mineralogy of asteroids. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (Eds.), Asteroids III. The University of Arizona Press, Tucson, pp. 183-204; Burbine, T.H., Buchanan, P.C., Dolkar, T., Binzel, R.P. [2009]. Met. Planet. Sci. 44, 1331-1341.). (3867) Shiretoko is most consistent with the eucrite meteorites while the remaining seven asteroids are most consistent with the howardite meteorites. The existing evidence suggests that all eight of these Vp-type asteroids are genetic Vestoids that probably originated from Vesta's surface.
Stochastic YORP On Real Asteroid Shapes
NASA Astrophysics Data System (ADS)
McMahon, Jay W.
2015-05-01
Since its theoretical foundation and subsequent observational verification, the YORP effect has been understood to be a fundamental process that controls the evolution of small asteroids in the inner solar system. In particular, the coupling of the YORP and Yarkovsky effects are hypothesized to be largely responsible for the transport of asteroids from the main belt to the inner solar system populations. Furthermore, the YORP effect is thought to lead to rotational fission of small asteroids, which leads to the creation of multiple asteroid systems, contact binary asteroids, and asteroid pairs. However recent studies have called into question the ability of YORP to produce these results. In particular, the high sensitivity of the YORP coefficients to variations in the shape of an asteroid, combined with the possibility of a changing shape due to YORP accelerated spin rates can combine to create a stochastic YORP coefficient which can arrest or change the evolution of a small asteroid's spin state. In this talk, initial results are presented from new simulations which comprehensively model the stochastic YORP process. Shape change is governed by the surface slopes on radar based asteroid shape models, where the highest slope regions change first. The investigation of the modification of YORP coefficients and subsequent spin state evolution as a result of this dynamically influenced shape change is presented and discussed.
NASA Astrophysics Data System (ADS)
Zhang, Jun; Dong, Chengcheng; Zhang, Hui; Li, Song; Song, Aiguo
2018-05-01
This paper presents a novel lander anchoring system based on sawing method for asteroid exploration. The system is composed of three robotic arms, three cutting discs, and a control system. The discs mounted at the end of the arms are able to penetrate into the rock surface of asteroids. After the discs cut into the rock surface, the self-locking function of the arms provides forces to fix the lander on the surface. Modeling, trajectory planning, simulations, mechanism design, and prototype fabrication of the anchoring system are discussed, respectively. The performances of the system are tested on different kinds of rocks, at different sawing angles, locations, and speeds. Results show that the system can cut 15 mm deep into granite rock in 180 s at sawing angle of 60°, with the average power of 58.41 W, and the "weight on bit" (WOB) of 8.637 N. The 7.8 kg anchoring system is capable of providing omni-directional anchoring forces, at least 225 N normal and 157 N tangent to the surface of the rock. The system has the advantages of low-weight, low energy consumption and balance forces, high anchoring efficiency and reliability, and could enable the lander to move and sample or assist astronauts and robots in walking and sampling on asteroids.
Radar observations of asteroid 216 kleopatra
Ostro; Hudson; Nolan; Margot; Scheeres; Campbell; Magri; Giorgini; Yeomans
2000-05-05
Radar observations of the main-belt, M-class asteroid 216 Kleopatra reveal a dumbbell-shaped object with overall dimensions of 217 kilometers by 94 kilometers by 81 kilometers (+/-25%). The asteroid's surface properties are consistent with a regolith having a metallic composition and a porosity comparable to that of lunar soil. Kleopatra's shape is probably the outcome of an exotic sequence of collisional events, and much of its interior may have an unconsolidated rubble-pile structure.
Dibben, Chris; Playford, Chris; Mitchell, Richard
2017-03-01
Mental health is a major concern in many countries. We explore whether youth participation in the Scouts and Guides could protect mental health in later life and in particular whether it might reduce inequalities in mental health associated with early life socioeconomic position. Using the 1958 birth cohort National Child Development Study, we tested whether Scouts-Guide attendance was associated with mental health (SF-36, Mental Health Index (MHI-5)) controlling for childhood risk factors and interacted with social class. Of the 9603 cohort members, 28% had participated in the Scouts-Guides. The average MHI-5 score was 74.8 (SD 18.2) at age 50. After adjustment, for potential childhood confounders, participation in Scouts-Guides was associated with a better MHI-5 score of 2.22 (CI 1.32 to 3.08). Among those who had not been a Scout-Guide, there was a gradient in mental health at age 50 by childhood social position, adjusting for other childhood risk factors. This gradient was absent among those who had been a Scout-Guide. Scout-Guides had an 18% lower odds of an MHI-5 score indicative of mood or anxiety disorder. The findings appeared robust to various tests for residual confounding. Participation in Guides or Scouts was associated with better mental health and narrower mental health inequalities, at age 50. This suggests that youth programmes that support resilience and social mobility through developing the potential for continued progressive self-education, 'soft' non-cognitive skills, self-reliance, collaboration and activities in natural environments may be protective of mental health in adulthood. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Discovery of M class objects among the near-earth asteroid population
NASA Technical Reports Server (NTRS)
Tedesco, Edward F.; Gradie, Jonathan
1987-01-01
Broadband colorimetry, visual photometry, near-infrared photometry, and 10 and 20 micron radiometry of the near-earth asteroids (NEAs) 1986 DA and 1986 EB are used to show that these objects belong to the M class of asteroids. The similarity among the distributions of taxonomic classes among the 38 NEAs to the abundances found in the inner astoroid belt between the 3:1 and 5:2 resonances suggests that NEAs have their origins among asteroids in the vicinity of these resonances. The implied mineralogy of 1986 DA and 1986 EB is mostly nickel-iron metal; if this is indeed the case, then current models for meteorite production based on strength-related collisional processes on asteroidal surfaces predict that these two objects alone should produce about one percent of all meteorite falls. Iron meteorites derived from these near-earth asteroids should have low cosmic-ray exposure ages.
Radar Movie of Asteroid 2011 UW158
2015-07-23
Scientists using two giant, Earth-based radio telescopes bounced radar signals off passing asteroid 2011 UW158 to create images for this animation showing the rocky body's fast rotation. The passing asteroid made its closest approach to Earth on July 19, 2015 at 7:37 a.m. PST (4:37 a.m. EST) at a distance of about 1.5 million miles (2.4 million kilometers, or 6 times the distance from Earth to the moon). The close proximity during the pass made 2011 UW158 one of the best asteroid flybys of 2015 for imaging from Earth using radar. The radar images reveal that the shape of the asteroid is extremely irregular and quite elongated. Prominent parallel, linear features run along the length of the object that cause a large increase in brightness of the radar images as they rotate into view. Scientists note that the asteroid appears to be fairly unusual. Its fast rotation suggests the object has greater mechanical strength than other asteroids its size. A fast-rotating asteroid with lower mechanical strength would tend to split apart. To obtain the views, researchers paired the 230-foot- (70-meter-) wide Deep Space Network antenna at Goldstone, California, in concert with the National Radio Astronomy Observatory's 330-foot (100-meter) Green Bank Telescope. Using this technique, the Goldstone antenna beams a radar signal at an asteroid and Green Bank receives the reflections. The technique, referred to as a bi-static observation, dramatically improves the amount of detail that can be seen in radar images. The new views obtained with the technique show features as small as about 24 feet (7.5 meters) wide. The 171 individual images used in the movie were generated from data collected on July 18. They show the asteroid is approximately 2000 by 1000 feet (600 by 300 meters) across. The observations also confirm earlier estimates by astronomers that the asteroid rotates quickly, completing one spin in just over half an hour. The movie spans a period of about an hour and 45 minutes. The trajectory of asteroid 2011 UW158 is well understood. This flyby was the closest approach the asteroid will make to Earth for at least the next 93 years. Asteroid 2011 UW158 was discovered on October 25, 2011, by the PanSTARRS 1 telescope, located on the summit of Haleakala on Maui, Hawaii. Managed by the University of Hawaii, the PanSTARRS survey receives NASA funding. Radar is a powerful technique for studying an asteroid's size, shape, rotation state, surface features and surface roughness, and for improving the calculation of asteroid orbits. Radar measurements of asteroid distances and velocities often enable computation of asteroid orbits much further into the future than if radar observations weren't available. http://photojournal.jpl.nasa.gov/catalog/PIA19644
Negative Searches for Evidence of Aqueous Alteration on Asteroid Surfaces
NASA Technical Reports Server (NTRS)
Vilas, F.
2005-01-01
Small bodies in the Solar System preserve evidence of the processes occurring during early Solar System formation, unlike the larger planets that undergo continuous churning of their surfaces. We study these bodies to understand what processes affected different stages of Solar System formation. The action of aqueous alteration (the alteration of material by the interaction of that material with liquid formed by the melting of incorporated ice) of near-subsurface material has been inferred to occur on many asteroids based on the spectrophotometric evidence of phyllosilicates and iron alteration minerals. The definitive indication of aqueous alteration is the 3.0- micron absorption feature attributed to structural hydroxyl (OH) and interlayer and adsorbed water (H2O) in phyllosilicates (clays) (hereafter water of hydration). A weak absorption feature centered near 0.7 microns attributed to an Fe (2+) right arrow Fe (3+) charge transfer transition in oxidized iron in phyllosilicates has been observed in the reflectance spectra and photometry of approximately 50% of the main-belt C-class asteroids. An approximately 85% correlation between this 0.7- micron feature and the 3.0- micron water of hydration absorption feature was found among the low-albedo asteroids. The feature is usually centered near 0.68 microns in asteroid spectra, and ranges in wavelength from approximately 0.57 to 0.83 microns. Serendipitously, three of the Eight Color Asteroid Survey filters the v (0.550 microns), w (0.701 microns), and x (0.853 microns)-bracket this feature well, and can be used to determine the presence of this feature in the reflectance properties of an asteroid, and probe the aqueous alteration history of larger samples of asteroid data. Two efforts to search for evidence of aqueous alteration based on the presence of this 0.7- micron absorption feature are presented here.
NASA Technical Reports Server (NTRS)
Hiroi, Takahiro
2004-01-01
This short (1-year) funded research encompassed laboratory measurements of the Tagish Lake meteorite samples, experiments of simulated space weathering on them, and comparison with D, T, and P asteroids in reflectance spectrum. In spite of its limited funding and period, we have performed said experiments here at Brown University and at University of Tokyo. Some of the major results were reported at the Lunar and Planetary Science Conference held in Houston in March, 2004. The Tagish Lake meteorite shows a unique visible reflectance spectrum identical to that of the D and T type asteroids. After the present heating experiments at even the lowest temperature of 100 C, the characteristic spectral slope of the Tagish Lake meteorite sample increased. On the other hand, after irradiating its pellet sample with pulse laser, the slope decreased. As the result, the Tagish Lake meteorite and its processed samples have come to cover a wide range of visible reflectance spectra in slope from the C-type asteroids to some extreme T/D-type asteroids, including the P-type asteroids in between. Therefore, logically speaking, our initial affirmation that the Tagish Lake meteorite must have come from one of the D-type asteroids can be wrong if such a meteoritic material is hidden under a space-weathered surface regolith of a C-type asteroid. However, such a case is likely to have a small probability in general. Other major hits of this research includes the first spectral fitting of the P-type asteroids using reflectance spectra derived from the present research. This topic needs more experiments and analysis to be addressed uniquely, and thus further efforts will be proposed.
NASA Technical Reports Server (NTRS)
Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Matins, R. Vieira; Berthier, J.; Vachier, F.;
2012-01-01
We collected mid-IR spectra from 5.2 to 38 microns using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric light curves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq > 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia (Lambda < or = approx.100 J/1/2 s/K/sq m2) and their emissivity spectra display strong mineral features, implying that they are covered with a thick layer of thermally insulating regolith. The smaller (surface-equivalent system diameter Deff < 17 km) asteroids also show some emission lines of minerals, but they are significantly weaker, consistent with regoliths with coarser grains, than those of the large binary asteroids. The average bulk densities of these multiple asteroids vary from 0.7-1.7 g/cu cm (P-, C-type) to approx. 2 g/cu cm (S-type). The highest density is estimated for the M-type (22) Kalliope (3.2 +/- 0.9 g/cu cm). The spectral energy distributions (SEDs) and emissivity spectra, made available as a supplement document, could help to constrain the surface compositions of these asteroids.
Langemo, Diane; Spahn, James; Spahn, Thomas; Pinnamaneni, V. Chowdry
2015-01-01
ABSTRACT The study objective was to examine precision in wound measurement using a recently Food and Drug Administration-approved Scout (WoundVision, LLC, Indianapolis, Indiana) device to measure wound length (L) and width (W). Wound perimeter and a ruler measurement of L and W were also made. Images of 40 actual patient wounds were measured using the Scout device. All 3 techniques (length, width, perimeter) demonstrated acceptable within and between reader precision; however, the best precision was in wound perimeter measurement. PMID:25679463
SeisCube Instrument and Environment Considerations for the Didymos System Geophysical Exploration
NASA Astrophysics Data System (ADS)
Cadu, Alexandre; Murdoch, Naomi; Mimoun, David; Karatekin, Ozgur; Garica, Raphaël F.; Carrasco, Jose A.; De Quiros, Francisco G.; Vasseur, Hugues; Eubanks, Marshall; Radley, Charles; Ritter, Birgit; Dehant, Veronique
2016-04-01
In the context of the Asteroid Impact & Deviation Assessment (AIDA) mission proposed by ESA and NASA, the Asteroid Geophysical Explorer (AGEX) mission concept has been selected for a preliminary study phase. Two 3-Unit CubeSats are embedded into the AIM probe and released into the asteroid binary system [1]. SeisCube will be deployed close to the secondary to reach its surface at a low relative velocity in order to stay on the ground after several rebounds, in a similar way that is foreseen for Mascot-2. The purpose of SeisCube is to provide information about the surface, the sub-surface and the internal structure of the asteroid, by analyzing rebound acceleration profile and seismic activity [2]. We describe the considered instrumentation necessary to fulfill the science objectives (gravimeters, accelerometers, geophones, etc.) in terms of measurement dynamics, frequency ranges, acquisition methods and other common budgets for space equipment. We also present the environment considerations which have to be taken into account for the platform and payload designs. The thermal aspect will be particularly discussed since it is a major issue in the airless body exploration [3] [4]. It implies some modifications in the CubeSat structure, integration and thermal regulation to ensure survival and operations under extreme conditions at the asteroid surface. We then describe the platform subsystems needed to ensure the operations after the deployment and the associated budgets and accommodation. As a direct consequence of the previous topics, we will finally discuss the possible trades-off to satisfy the main science requirements and the associated concept of operations. [1] O. Karatekin, D. Mimoun, J. A. Carrasco, N. Murdoch, A. Cadu, R. F. Garcia, F. G. De Quiros, H. Vasseur, B. Ritter, M. Eubanks, C. Radley and V. Dehant, "The Asteroid Geophysical Explorer (AGEX): Proposal to explore Didymos system using Cubsats," in European Geophysical Union, 2016. [2] N. Murdoch, A. Cadu, D. Mimoun, O. Karatekin, R. F. Garcia, J. A. Carrasco, F. G. De Guiros, H. Vasseur, B. Ritter, M. Eubanks, C. Radley and V. Dehart, "Invertigating the surface and subsurface properties of the Didymos binary asteroid with a landed CubeSat," in European Geophysical Union, 2016. [3] J. De Lafontaine and D. Kassing, "Technologies and Concepts for Lunar Surface Exploration," Acta Astronautica, vol. 38, no. 2, pp. 125-129, 1996. [4] S. Ulamec, J. Biele and E. Trollope, "How to survive a Lunar night," Planetary and Space Science, vol. 58, no. 14-15, pp. 1985-1995, 2010.
NASA Technical Reports Server (NTRS)
Kuhl. Christopher A.
2009-01-01
The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.
Hajdú, István; Flachner, Beáta; Bognár, Melinda; Végh, Barbara M; Dobi, Krisztina; Lőrincz, Zsolt; Lázár, József; Cseh, Sándor; Takács, László; Kurucz, István
2014-08-01
Monoclonal antibody proteomics uses nascent libraries or cloned (Plasmascan™, QuantiPlasma™) libraries of mAbs that react with individual epitopes of proteins in the human plasma. At the initial phase of library creation, cognate protein antigen and the epitope interacting with the antibodies are not known. Scouting for monoclonal antibodies (mAbs) with the best binding characteristics is of high importance for mAb based biomarker assay development. However, in the absence of the identity of the cognate antigen the task represents a challenge. We combined phage display, and surface plasmon resonance (Biacore) experiments to test whether specific phages and the respective mimotope peptides obtained from large scale studies are applicable to determine key features of antibodies for scouting. We show here that mAb captured phage-mimotope heterogeneity that is the diversity of the selected peptide sequences, is inversely correlated with an important binding descriptor; the off-rate of the antibodies and that represents clues for driving the selection of useful mAbs for biomarker assay development. Carefully chosen synthetic mimotope peptides are suitable for specificity testing in competitive assays using the target proteome, in our case the human plasma. Copyright © 2014 Elsevier B.V. All rights reserved.
Two cubesat mission to study the Didymos asteroid system
NASA Astrophysics Data System (ADS)
Wahlund, J.-E.; Vinterhav, E.; Trigo-Rodríguez, J. M.; Hallmann, M.; Barabash, S.; Ivchenko, N.
2015-10-01
Among the growing interest about asteroid impact hazard mitigation in our community the Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to use a kinetic impactor to demonstrate its capability as reliable deflection system [1]. As a part of the AIDA mission, we have proposed a set of two three-axis stabilized 3U CubeSats (with up to 5 science sensors) to simultaneously rendezvous at close range (<500m) with both the primary and the secondary component of the Didymos asteroid system. The CubeSats will be hosted on the ESA component of the AIDA mission, the monitoring satellite AIM (Asteroid Impact Mission). The CubeSats will characterise the magnetization, the main bulk chemical composition and presence of volatiles as well as do superresolution surface imaging of the Didymos components. The CubeSats will also support the plume characterisation resulting from the DART impact (Double Asteroid Redirection Test, a NASA component of the AIDA mission) at much closer range than the AIM main spacecraft, and provide imaging, composition, and temperature of the plume material. At end of the mission, the two CubeSats can optionally land on one of the asteroids for continued science operation. The science sensors consist of a dual fluxgate magnetometer (MAG), one miniaturized volatile composition analyser (VCA), a narrow angle camera (NAC) and a Video Emission Spectrometer (VES) with a diffraction grating for allowing a sequential chemical study of the emission spectra associated with the impact flare and the expanding plume. Consequently, the different envisioned instruments onboard the CubeSats can provide significant insight into the complex response of asteroid materials during impacts that has been theoretically studied using different techniques [2]. The two CubeSats will remain stowed in CubeSat dispensers aboard the main AIM spacecraft. They will be deployed and commissioned before the AIM impactor reaches the secondary and record the impact event from a closer vantage point than the main spacecraft. The two CubeSats are equipped with relative navigation systems capable of estimating the spacecraft position relative to the asteroids and propulsion system that allow them to operate close to the asteroid bodies. The two CubeSats will rely on mapping data relayed via the AIM main spacecraft but operate autonomously and individually based on schedules and navigation maps uploaded from ground. AIDA's target is the binary Apollo asteroid 65803 Didymos that is also catalogued as Potentially Hazardous Asteroid (PHA) because it experiences close approaches to Earth. Didymos' primary has a diameter of ˜800 meters and the secondary is ˜150 m across. Both bodies are separated about 1.1 km [3]. The rotation period and asymmetry of the secondary object is unknown, and it might be tidally locked to the larger primary body. At least the primary body is expected to be associated with ordinary chondrite material, consisting mostly of silicates, and metal, but the earlier made Xk classification suggested a rubble-pile type with large amount of volatile content. The secondary companion spectral class is unknown, but the total mass of the system suggests that the secondary companion could be of similar class. Detailed empirical information on the physical properties of the Didymos asteroid system, in particular the magnetic field, the (mineralogical) surface composition, the internal composition via the bulk density, the ages of surface units through crater counts and other morphological surface features is valuable in order to make progress in the asteroid field of science. Furthermore, the periodic effect of such a close dynamic system in the presence and temporal displacement of the surface regolith is EPSC Abstracts Vol. 10, EPSC2015-698, 2015 European Planetary Science Congress 2015 c Author(s) 2015 EPSC European Planetary Science Congress unknown, and could be followed using close-up video systems provided by the CubeSats. In conclusion, the proposed two CubeSats as part of the AIDA mission can therefore contribute significantly, since they can monitor the Didymos asteroid components at a very close range around hundred meters, and at the same time monitor in-situ an impact plume when it is created.
NASA's Asteroid Redirect Mission: The Boulder Capture Option
NASA Technical Reports Server (NTRS)
Abell, Paul A.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.
2014-01-01
NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (approximately 4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (approximately 1-5 m) via robotic manipulators from the surface of a larger (approximately 100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA's ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more certainty of the target NEA's physical characteristics and reduces mission risk. This increases the return on investment for NASA's future activities with respect to science, human exploration, resource utilization, and planetary defense
Ground-based Characterization of Hayabusa2 Mission Target Asteroid 162173 Ryugu
NASA Astrophysics Data System (ADS)
Le Corre, Lucille; Reddy, Vishnu; Sanchez, Juan A.; Takir, Driss; Cloutis, Edward; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri
2017-10-01
In preparation for the arrival of the Japanese Space Agency’s (JAXA) Hayabusa2 sample return mission to near-Earth asteroid (NEA) (162173) Ryugu, we took the opportunity to characterize the target with a ground-based telescope. We observed Ryugu using the SpeX instrument in Prism mode on NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on July, 12 2016 when the asteroid was 18.87 visual magnitude, at a phase angle of 13.3°. The NIR spectra were used to constrain Ryugu’s surface composition, meteorite analogs and spectral affinity to other asteroids. We also modeled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Masateru et al. (2014). Our spectrum of Ryugu has a broad absorption band at 1 µm, a slope change at 1.6 µm, and a second broad absorption band near 2.2 µm, but no well-defined absorption features over the 0.8-2.5 µm range. The two broad absorption features, if confirmed, are consistent with CO and CV chondrites. The shape of Ryugu’s spectrum matches very well those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regolith have similar composition. We also compared the spectrum of Ryugu with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as the source of Ryugu by Campins et al. (2013). We found that the spectrum of Clarissa shows significant differences with our NIR spectrum of Ryugu. Our analysis shows Ryugu’s spectrum best matches two CM2 carbonaceous chondrites, Mighei and ALH83100. We expect the surface regolith of Ryugu to be altered by a range of factors including temperature, contamination by exogenic material, and space weathering, posing challenges to link spacecraft and ground-based data, and sample site selection.
NASA’s Asteroid Redirect Mission: The Boulder Capture Option
NASA Astrophysics Data System (ADS)
Abell, Paul; Nuth, Joseph A.; Mazanek, Dan D.; Merrill, Raymond G.; Reeves, David M.; Naasz, Bo J.
2014-11-01
NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (˜4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (˜1-5 m) via robotic manipulators from the surface of a larger (˜100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa’s target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA’s OSIRIS REx and JAXA’s Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA’s ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more certainty of the target NEA’s physical characteristics and reduces mission risk. This increases the return on investment for NASA’s future activities with respect to science, human exploration, resource utilization, and planetary defense.
Spectral studies of asteroids 21 lutetia and 4 vesta as objects of space missions
NASA Astrophysics Data System (ADS)
Busarev, V. V.
2010-12-01
Asteroid 21 Lutetia is one of the objects of the Rosetta mission carried out by the European Space Agency (ESA). The Rosetta spacecraft launched in 2004 is to approach Lutetia in July 2010, and then it will be directed to the comet Churyumov-Gerasimenko. Asteroid 4 Vesta is planned to be investigated in 2011 from the Dawn spacecraft launched by the National Aeronautics and Space Administration (NASA) in 2007 (its second object is the largest asteroid, 1 Ceres). The observed characteristics of Lutetia and Vesta are different and even contradictory. In spite of the intense and versatile ground-based studies, the origin and evolution of these minor planets remain obscure or not completely clear. The types of Lutetia and Vesta (M and V, respectively) determined from their spectra correspond to the high-temperature mineralogy, which agrees with their albedo estimated from the Infrared Astronomical Satellite (IRAS) observations. However, according to the opinion of some researchers, Lutetia is of the C type, and, therefore, its mineralogy is of the lowtemperature type. In turn, hydrosilicate formations have been found in some places on the surface of Vesta. Our observations also testify that at some relative phases of rotation (RP), the reflectance spectra of Lutetia and Vesta demonstrate features confirming the presence of hydrosilicates in the surface material. However, this fact can be reconciled with the magmatic nature of Lutetia and Vesta if the hydrated material was delivered to their surfaces by falling primitive bodies. Such small bodies are probably present everywhere in the main asteroid belt and can be the relicts of silicate-icy planetesimals from Jupiter's formation zone or the fragments of primitive-type asteroids. When interpreting the reflectance spectra of Lutetia and Vesta, we discuss the spectral classification by Tholen (1984) from the standpoint of its general importance for the estimation of the mineralogical type of the asteroids and the study of their origin and evolution.
Green is for growing: the Girl Scout experience with environmental programs
Mary A. Rhomberg
1977-01-01
With neighborhood organization, program flexibility, and child participation in the planning and implementation of activities, the Girl Scout program is designed to be highly responsive to the varying needs of individual groups of girls. There is no fixed agenda or focus on a single aspect of environmental education. Instead, the Girl Scout concept of total environment...
Getting Prepared: Nonformal Education in Boy Scouts.
ERIC Educational Resources Information Center
Kleinfeld, Judith; Shinkwin, Anne
An intensive study of boys' experiences in two Boy Scout groups shows that scout programs provide important educational functions that schools and homes do not. Detailed field notes were taken on 75 events of the 2 groups, semi-structured interviews were conducted with 20 boys and their parents to explore what parents and boys felt they were…
Art, Boys, and the Boy Scout Movement: Lord Baden-Powell
ERIC Educational Resources Information Center
Chalmers, F. Graeme; Dancer, Andrea A.
2007-01-01
Robert Stephenson Smyth Baden-Powell (1857-1941), founder of the Boy Scout Movement in 1907, was a British military hero during the Boer War. Within an ethos and era of empire-building, athleticism, soldier-heroes and the pursuit of "manliness," Baden-Powell valued the arts and adapted his artistic skill to his wartime and Scouting activities. His…
NASA Technical Reports Server (NTRS)
Cooper, George; Horz, Fred; Oleary, Alanna; Chang, Sherwood
2013-01-01
Polar, non-volatile organic compounds may be present on the surfaces (or near surfaces) of multiple Solar System bodies. If found, by current or future missions, it would be desirable to determine the origin(s) of such compounds, e.g., asteroidal or in situ. To test the possible survival of meteoritic compounds both during impacts with planetary surfaces and under subsequent (possibly) harsh ambient conditions, we subjected known meteoritic compounds to relatively high impact-shock pressures and/or to varying oxidizing/corrosive conditions. Tested compounds include sulfonic and phosphonic acids (S&P), polyaromatic hydrocarbons (PAHs) amino acids, keto acids, dicarboxylic acids, deoxy sugar acids, and hydroxy tricarboxylic acids (Table 1). Meteoritic sulfonic acids were found to be relatively abundant in the Murchison meteorite and to possess unusual S-33 isotope anomalies (non mass-dependent isotope fractionations). Combined with distinctive C-S and C-P bonds, the S&P are potential signatures of asteroidal organic material.
Evidence for ground-ice occurrence on asteroid Vesta using Dawn bistatic radar observations
NASA Astrophysics Data System (ADS)
Palmer, E. M.; Heggy, E.; Kofman, W. W.
2017-12-01
From 2011 to 2012, the Dawn spacecraft orbited asteroid Vesta, the first of its two targets in the asteroid belt, and conducted the first bistatic radar (BSR) experiment at a small-body, during which Dawn's high-gain communications antenna is used to transmit radar waves that scatter from Vesta's surface toward Earth at high incidence angles just before and after occultation of the spacecraft behind the asteroid. Among the 14 observed mid-latitude forward-scatter reflections, the radar cross section ranges from 84 ± 8 km2 (near Saturnalia Fossae) to 3,588 ± 200 km2 (northwest of Caparronia crater), implying substantial spatial variation in centimeter- to decimeter-scale surface roughness. The compared distributions of surface roughness and subsurface hydrogen concentration [H]—measured using data from Dawn's BSR experiment and Gamma Ray and Neutron Spectrometer (GRaND), respectively—reveal the occurrence of heightened subsurface [H] with smoother terrains that cover tens of square kilometers. Furthermore, unlike on the Moon, we observe no correlation between surface roughness and surface ages on Vesta—whether the latter is derived from lunar or asteroid-flux chronology [Williams et al., 2014]—suggesting that cratering processes alone are insufficient to explain Vesta's surface texture at centimeter-to-decimeter scales. Dawn's BSR observations support the hypothesis of transient melting, runoff and recrystallization of potential ground-ice deposits, which are postulated to flow along fractures after an impact, and provide a mechanism for the smoothing of otherwise rough, fragmented impact ejecta. Potential ground-ice presence within Vesta's subsurface was first proposed by Scully et al. [2014], who identified geomorphological evidence for transient water flow along several of Vesta's crater walls using Dawn Framing Camera images. While airless, differentiated bodies such as Vesta and the Moon are thought to have depleted their initial volatile content during the process of differentiation, evidence to the contrary is continuing to change our understanding of the distribution and preservation of volatiles during planetary formation in the early solar system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Zhye, E-mail: yin@ge.com; De Man, Bruno; Yao, Yangyang
Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. Methods: The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies tomore » achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors’ pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. Conclusions: The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.« less
Arecibo and Goldstone radar images of near-Earth Asteroid (469896) 2005 WC1
NASA Astrophysics Data System (ADS)
Lawrence, Kenneth J.; Benner, Lance A. M.; Brozovic, Marina; Ostro, Steven J.; Jao, Joseph S.; Giorgini, Jon D.; Slade, Martin A.; Jurgens, Raymond F.; Nolan, Michael C.; Howell, Ellen S.; Taylor, Patrick A.
2018-01-01
We report radar observations of near-Earth asteroid (469896) 2005 WC1 that were obtained at Arecibo (2380 MHz, 13 cm) and Goldstone (8560 MHz, 3.5 cm) on 2005 December 14-15 during the asteroid's approach within 0.020 au The asteroid was a strong radar target. Delay-Doppler images with resolutions as fine as 15 m/pixel were obtained with 2 samples per baud giving a correlated pixel resolution of 7.5 m. The radar images reveal an angular object with 100 m-scale surface facets, radar-dark regions, and an estimated diameter of 400 ± 50 m. The rotation of the facets in the images gives a rotation period of ∼2.6 h that is consistent with the estimated period of 2.582 h ± 0.002 h from optical lightcurves reported by Miles (private communication). 2005 WC1 has a circular polarization ratio of 1.12 ± 0.05 that is one of the highest values known, suggesting a structurally-complex near-surface at centimeter to decimeter spatial scales. It is the first asteroid known with an extremely high circular polarization ratio, relatively low optical albedo, and high radar albedo.
Asteroidal Space Weathering: The Major Role of FeS
NASA Technical Reports Server (NTRS)
Keller, L. P.; Rahman, Z.; Hiroi, T.; Sasaki, S.; Noble, S. K.; Horz, F.; Cintala, M. J.
2013-01-01
Space weathering (SW) effects on the lunar surface are reasonably well-understood from sample analyses, remote-sensing data, and experiments, yet our knowledge of asteroidal SW effects are far less constrained. While the same SW processes are operating on asteroids and the Moon, namely solar wind irradiation, impact vaporization and condensation, and impact melting, their relative rates and efficiencies are poorly known, as are their effects on such vastly different parent materials. Asteroidal SW models based on remote-sensing data and experiments are in wide disagreement over the dominant mechanisms involved and their kinetics. Lunar space weathering effects observed in UVVIS-NIR spectra result from surface- and volume-correlated nanophase Fe metal (npFe(sup 0)) particles. In the lunar case, it is the tiny vapor-deposited npFe(sup 0) that provides much of the spectral reddening, while the coarser (largely melt-derived) npFe(sup 0) produce lowered albedos. Nanophase FeS (npFeS) particles are expected to modify reflectance spectra in much the same way as npFe(sup 0) particles. Here we report the results of experiments designed to explore the efficiency of npFeS production via the main space weathering processes operating in the asteroid belt.
Investigation of Shapes and Spins of Reaccumulated Remnants from Asteroid Disruption Simulations
NASA Astrophysics Data System (ADS)
Michel, Patrick; Ballouz, R.; Richardson, D. C.; Schwartz, S. R.
2012-10-01
Evidence that asteroids larger than a few hundred meters diameter can be gravitational aggregates of smaller, cohesive pieces comes, for instance, from images returned by the Hayabusa spacecraft of asteroid 25143 Itokawa (Fujiwara et al., 2006, Science 312, 1330). These images show an irregular 500-meter-long body with a boulder-strewn surface, as might be expected from reaccumulation following catastrophic disruption of a larger parent asteroid (Michel et al., 2001, Science 294, 1696). However, numerical simulations of this process to date essentially focus on the size/mass and velocity distributions of reaccumulated fragments, matching asteroid families. Reaccumulation was simplified by merging the objects into growing spheres. However, understanding shapes, spins and surface properties of gravitational aggregates formed by reaccumulation is required to interpret information from ground-based observations and space missions. E.g., do boulders on Itokawa originate from reaccumulation of material ejected from a catastrophic impact or from other processes (such as the Brazil-nut effect)? How does reaccumulation affect the observed shapes? A model was developed (Richardson et al., 2009, Planet. Space Sci. 57, 183) to preserve shape and spin information of reaccumulated bodies in simulations of asteroid disruption, by allowing fragments to stick on contact (and optionally bounce or fragment further, depending on user-selectable parameters). Such treatments are computationally expensive, and we could only recently start to explore the parameter space. Preliminary results will be presented, showing that some observed surface and shape features may be explained by how fragments produced by a disruption reaccumulate. Simulations of rubble pile collisions without particle cohesion, and an investigation of the influence of initial target rotation on the outcome will also be shown. We acknowledge the National Science Foundation (AST1009579) and NASA (NNX08AM39G).
NASA Astrophysics Data System (ADS)
Schmidt, B.; Dyl, K.
2014-07-01
The mid-outer main belt is rich in possible parent bodies for the water-bearing carbonaceous chondrites, given their dark surfaces and frequent presence of hydrated minerals (e.g., Feierberg et al. 1985). Ceres (Thomas et al. 2005) and Pallas (Schmidt et al. 2009) possess shapes that indicate that these bodies have achieved hydrostatic equilibrium and may be differentiated (rock from ice). Dynamical calculations suggest asteroids formed rapidly to large sizes to produce the size frequency distribution within today's main belt (e.g., Morbidelli et al. 2009). Water-ice bound to organics has now been detected on the surface of Themis (Rivkin and Emery 2009, Campins et al. 2009), and indirect evidence for ice on many of the remaining family members, including main-belt comets (Hsieh & Jewitt 2006, Castillo-Rogez & Schmidt 2010), supports the theory that the ''C-class'' asteroids formed early and ice-rich. The carbonaceous chondrites represent a rich history of the thermal and aqueous evolution of early planetesimals (e.g., McSween 1979, Bunch and Chang, 1980, Zolensky and McSween 1988, Clayton 1993, Rowe et al., 1994). The composition of these meteorites reflects the timing and duration of water flow, as well as subsequent mineral alteration and isotopic evolution that can constrain temperature and water-rock ratios in which these systematics were set (e.g., Young et al. 1999, Dyl et al. 2012). Debate exists as to how the chemical and thermal consequences of fluid flow on carbonaceous chondrite parent bodies relate to parent-body characteristics: small, static water bodies (e.g., McSween 1979); small, convecting but homogeneous bodies (e.g., Young et al. 1999, 2003); or larger convecting bodies (e.g., Grimm and McSween 1989, Palguta et al. 2010). Heterogeneous thermal and aqueous evolution on larger asteroids that suggests more than one class of carbonaceous chondrite may be produced on the same body (e.g., Castillo-Rogez & Schmidt 2010, Elkins-Tanton et al. 2011, Schmidt & Castillo-Rogez 2012) if the chemical consequences can be reconciled (e.g., Young 2001, Young et al. 2003). Both models (Schmidt and Castillo-Rogez 2012) and experiments (e.g., Hiroi et al. 1996) suggest that water loss from asteroids is an important factor in interpreting the connections between the C-class asteroids and meteorites. The arrival of the Dawn spacecraft to Ceres will determine its much-debated internal structure and finally answer the following question: did large, icy planetesimals form and thermally evolve in the inner solar system? Even if Ceres is not icy, Dawn observations will shed light on its surface composition, and by extension on the surfaces of objects with similar surface properties. This presentation will focus on tying the observational evidence for water on evolving and contemporary asteroids with detailed studies of the carbonaceous chondrites in an effort to synthesize physical and chemical realities with the observational record, bridging the gap between the asteroid and meteorite communities.
Variaciones polarimétricas en asteroides debidas a rotación
NASA Astrophysics Data System (ADS)
Mesa, V.; Gil-Hutton, R.
The different characteristics of asteroidal surfaces could be studied record- ing the polarimetric variations during a rotational cycle of the object. Since different relations between polarimetric and physical (rugosity, porosity, taxonomy, albedo) parameters exist, it is possible to find information about the physical property responsible of the polarimetric variation. In this pa- per, a study of the polarimetric variations observed on the asteroids (11) Parthenope and (16) Psyche are presented. FULL TEXT IN SPANISH
Unveiling Clues from Spacecraft Missions to Comets and Asteroids through Impact Experiments
NASA Technical Reports Server (NTRS)
Lederer, Susan M.; Jensen, Elizabeth; Fane, Michael; Smith, Douglas; Holmes, Jacob; Keller, Lindasy P.; Lindsay, Sean S.; Wooden, Diane H.; Whizin, Akbar; Cintala, Mark J.;
2016-01-01
The Deep Impact Spacecraft mission was the first to boldly face the challenge of impacting the surface of a comet, 9P/Tempel 1, to investigate surface and subsurface 'pristine' materials. The Stardust mission to Comet 81P/Wild 2 brought back an exciting surprise: shocked minerals which were likely altered during the comet's lifetime. Signatures of shock in meteorites also suggest that the violent past of the solar system has left our small bodies with signatures of impacts and collisions. These results have led to the question: How have impacts affected the evolutionary path taken by comets and asteroids, and what signatures can be observed? A future planetary mission to a near-Earth asteroid is proposing to take the next steps toward understanding small bodies through impacts. The mission would combine an ESA led AIM (Asteroid Impact Mission) with a JHU/APL led DART (Double Asteroid Redirect Mission) spacecraft to rendezvous with binary near-Earth asteroid 65803 Didymus (1996 G2). DART would impact the smaller asteroid, 'Didymoon' while AIM would characterize the impact and the larger Didymus asteroid. With these missions in mind, a suite of experiments have been conducted at the Experimental Impact Laboratory (EIL) at NASA Johnson Space Center to investigate the effects that collisions may have on comets and asteroids. With the new capability of the vertical gun to cool targets in the chamber through the use of a cold jacket fed by liquid nitrogen, the effects of target temperature have been the focus of recent studies. Mg-rich forsterite and enstatite (orthopyroxene), diopside (monoclinic pyroxene) and magnesite (Mg-rich carbonate) were impacted. Target temperatures ranged from 25 deg to -100 deg, monitored by connecting thermocouples to the target container. Impacted targets were analyzed with a Fourier Transform Infrared Spectrometer (FTIR) and Transmission Electron Microscope (TEM). Here we present the evidence for impact-induced shock in the minerals through both spectra and TEM imaging and compare with unshocked samples.
New Results on Hydration in M-Type Asteroids
NASA Astrophysics Data System (ADS)
Landsman, Zoe A.; Campins, Humberto; Pinilla-Alonso, Noemí; Emery, Joshua P.; Lorenzi, Vania
2014-11-01
The M-type asteroids are a taxonomic group considered to be a candidate source of iron meteorites due to spectral and albedo similarities; however, because the spectra of M-type asteroids lack strong diagnostic absorption features in the near-infrared (NIR), their composition is difficult to constrain. High-resolution NIR spectroscopy and radar studies have shown that a metallic interpretation is unlikely to be valid for the majority of M-types. Many show weak absorption features attributed to mafic silicates (Hardersen et al. 2005, 2011; Ockert-Bell et al. 2010; Fornasier et al. 2010). Radar results show evidence for elevated metal content on the surfaces of most M-type asteroids, but few are likely to be entirely metal (Shepard et al. 2010). Surprisingly, spectrophotometric studies in the 3-μm region have indicated that hydrated minerals are relatively common among the M-type population, confounding interpretations of M-types as highly thermally processed (Rivkin et al. 1995, 2000). The shape of the 3-μm band, diagnostic of hydrated and hydroxylated minerals, is relevant to an asteroid’s thermal history (Rivkin et al. 2002, Takir & Emery 2012). To characterize this region, we have conducted a 2 - 4 μm spectroscopic study of six M-type asteroids using SpeX at NASA’s Infrared Telescope Facility. In its LXD mode, SpeX allows us to investigate the 3-μm band at spectral resolutions unavailable during previously published studies. We report the presence of a 3-μm feature on all six asteroids, indicating hydrated minerals on the asteroids’ surfaces. We have also detected rotational variability of the 3-μm feature in asteroid (216) Kleopatra, which, interestingly, had been interpreted as “dry” in previous work (Rivkin et al. 2000). On all of our target asteroids, the 3-μm band depths are < 10%, and there is apparent variation in the shape of the feature among them. We discuss the impact of our results on interpretations of M-type asteroid composition.
Localized sources of water vapour on the dwarf planet (1) Ceres.
Küppers, Michael; O'Rourke, Laurence; Bockelée-Morvan, Dominique; Zakharov, Vladimir; Lee, Seungwon; von Allmen, Paul; Carry, Benoît; Teyssier, David; Marston, Anthony; Müller, Thomas; Crovisier, Jacques; Barucci, M Antonietta; Moreno, Raphael
2014-01-23
The 'snowline' conventionally divides Solar System objects into dry bodies, ranging out to the main asteroid belt, and icy bodies beyond the belt. Models suggest that some of the icy bodies may have migrated into the asteroid belt. Recent observations indicate the presence of water ice on the surface of some asteroids, with sublimation a potential reason for the dust activity observed on others. Hydrated minerals have been found on the surface of the largest object in the asteroid belt, the dwarf planet (1) Ceres, which is thought to be differentiated into a silicate core with an icy mantle. The presence of water vapour around Ceres was suggested by a marginal detection of the photodissociation product of water, hydroxyl (ref. 12), but could not be confirmed by later, more sensitive observations. Here we report the detection of water vapour around Ceres, with at least 10(26) molecules being produced per second, originating from localized sources that seem to be linked to mid-latitude regions on the surface. The water evaporation could be due to comet-like sublimation or to cryo-volcanism, in which volcanoes erupt volatiles such as water instead of molten rocks.
NASA Technical Reports Server (NTRS)
Merrill, Raymond Gabriel; Qu, Min; Vavrina, Matthew A.; Englander, Jacob A.; Jones, Christopher A.
2014-01-01
This paper presents mission performance analysis methods and results for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger NEA. It details the optimization and design of heliocentric low-thrust trajectories to asteroid targets for the ARRM solar electric propulsion spacecraft. Extensive searches were conducted to determine asteroid targets with large pick-up mass potential and potential observation opportunities. Interplanetary trajectory approximations were developed in method based tools for Itokawa, Bennu, 1999 JU3, and 2008 EV5 and were validated by end-to-end integrated trajectories.
OSIRIS-REx Touch-And-Go (TAG) Mission Design and Analysis
NASA Technical Reports Server (NTRS)
Berry, Kevin; Sutter, Brian; May, Alex; Williams, Ken; Barbee, Brent W.; Beckman, Mark; Williams, Bobby
2013-01-01
The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the near-Earth asteroid (101955) 1999 RQ36 in late 2018. After several months in formation with and orbit about the asteroid, OSIRIS-REx will fly a Touch-And-Go (TAG) trajectory to the asteroid s surface to obtain a regolith sample. This paper describes the mission design of the TAG sequence and the propulsive maneuvers required to achieve the trajectory. This paper also shows preliminary results of orbit covariance analysis and Monte-Carlo analysis that demonstrate the ability to arrive at a targeted location on the surface of RQ36 within a 25 meter radius with 98.3% confidence.
Illumination Conditions at the Asteroid 4 Vesta: Implications for the Presence of Water Ice
NASA Technical Reports Server (NTRS)
Stubbs, Timothy J.; Wang, Yongli
2011-01-01
The mean illumination conditions and surface temperatures over one orbital period are calculated for the Asteroid 4 Vesta using a coarse digital elevation model produced from Hubble Space Telescope images. Even with the anticipated effects of finer-scale topography taken into account, it is unlikely that any significant permanently shadowed regions currently exist on Vesta due to its large axial tilt (approx. = 27deg). However, under present day conditions, it is predicted that about half of Vesta's surface has an average temperature of less than 145 K, which, based on previous thermal modeling of main belt asteroids, suggests that water ice could survive in the top few meters of the vestal regolith on billion-year timescales.
Detection of water and/or hydroxyl on asteroid (16) Psyche
Takir, Driss; Reddy, Vishnu; Sanchez, Juan A.; Shepard, Michael K.; Emery, Joshua P.
2016-01-01
In order to search for evidence of hydration on M-type asteroid (16) Psyche, we observed this object in the 3 μm spectral region using the long-wavelength cross-dispersed (LXD: 1.9–4.2 μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Our observations show that Psyche exhibits a 3 μm absorption feature, attributed to water or hydroxyl. The 3 μm absorption feature is consistent with the hydration features found on the surfaces of water-rich asteroids, attributed to OH- and/or H2O-bearing phases (phyllosilicates). The detection of a 3 μm hydration absorption band on Psyche suggests that this asteroid may not be a metallic core, or it could be a metallic core that has been impacted by carbonaceous material over the past 4.5 Gyr. Our results also indicate rotational spectral variations, which we suggest reflect heterogeneity in the metal/silicate ratio on the surface of Psyche.
NASA Technical Reports Server (NTRS)
Murchie, S. L.; Fraeman, A. A.; Arvidson, R. E.; Rivkin, A. S.; Morris, R. V.
2013-01-01
Compositional interpretations of new spectral measurements of Phobos and Deimos from Mars Express/OMEGA and MRO/CRISM and density measurements from encounters by multiple spacecraft support refined estimates of the moons' porosity and internal structure. Phobos' estimated macroporosity of 12-20% is consistent with a fractured but coherent interior; Deimos' estimated macroporosity of 23-44% is more consistent with a loosely consolidated interior. These internal differences are reflected in differences in surface morphology: Phobos exhibits a globally coherent pattern of grooves, whereas Deimos has a surface dominated instead by fragmental debris. Comparison with other asteroids .110 km in diameter shows that this correspondence between landforms and inferred internal structure is part of a pervasive pattern: asteroids interpreted to have coherent interiors exhibit pervasive, organized ridge or groove systems, whereas loosely consolidated asteroids have landforms dominated by fragmental debris and/or retain craters >1.3 body radii in diameter suggesting a porous, compressible interior.
Detection of Water and/or Hydroxyl on Asteroid (16) Psyche
NASA Astrophysics Data System (ADS)
Takir, Driss; Reddy, Vishnu; Sanchez, Juan A.; Shepard, Michael K.; Emery, Joshua P.
2017-01-01
In order to search for evidence of hydration on M-type asteroid (16) Psyche, we observed this object in the 3 μm spectral region using the long-wavelength cross-dispersed (LXD: 1.9-4.2 μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Our observations show that Psyche exhibits a 3 μm absorption feature, attributed to water or hydroxyl. The 3 μm absorption feature is consistent with the hydration features found on the surfaces of water-rich asteroids, attributed to OH- and/or H2O-bearing phases (phyllosilicates). The detection of a 3 μm hydration absorption band on Psyche suggests that this asteroid may not be a metallic core, or it could be a metallic core that has been impacted by carbonaceous material over the past 4.5 Gyr. Our results also indicate rotational spectral variations, which we suggest reflect heterogeneity in the metal/silicate ratio on the surface of Psyche.
DETECTION OF WATER AND/OR HYDROXYL ON ASTEROID (16) Psyche
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takir, Driss; Reddy, Vishnu; Sanchez, Juan A.
In order to search for evidence of hydration on M-type asteroid (16) Psyche, we observed this object in the 3 μ m spectral region using the long-wavelength cross-dispersed (LXD: 1.9–4.2 μ m) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Our observations show that Psyche exhibits a 3 μ m absorption feature, attributed to water or hydroxyl. The 3 μ m absorption feature is consistent with the hydration features found on the surfaces of water-rich asteroids, attributed to OH- and/or H{sub 2}O-bearing phases (phyllosilicates). The detection of a 3 μ m hydration absorption band on Psyche suggestsmore » that this asteroid may not be a metallic core, or it could be a metallic core that has been impacted by carbonaceous material over the past 4.5 Gyr. Our results also indicate rotational spectral variations, which we suggest reflect heterogeneity in the metal/silicate ratio on the surface of Psyche.« less
78 FR 10265 - Pricing for the 2013 Commemorative Coin Programs-Silver and Clad Coin Options
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
.... SUMMARY: The United States Mint is announcing prices for the 2013 Girl Scouts of the USA Centennial Silver.... Introductory Product price Regular price 2013 Girl Scouts of the USA Centennial $54.95 $59.95 Proof Silver Dollar 2013 Girl Scouts of the USA Centennial 50.95 55.95 Uncirculated Silver Dollar 2013 5-Star Generals...
Educational Work of the Boy Scouts. Bulletin, 1919, No. 24
ERIC Educational Resources Information Center
Barclay, Lorne W.
1919-01-01
Scouting has been described as the process of making real boys into real men by a real program that works. This program is adapted to the boy's leisure hours, but its principles are the kind that permeate every phase of his life, becoming part and parcel of himself. Character development is the keynote of scouting. By precept and practice it…
78 FR 38452 - Price for the 2013 Girl Scouts of the USA Young Collector Set
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... DEPARTMENT OF THE TREASURY United States Mint Price for the 2013 Girl Scouts of the USA Young Collector Set AGENCY: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing a price of $54.95 for the 2013 Girl Scouts of the USA Young Collector Set. FOR...
NASA Technical Reports Server (NTRS)
Posner, Jack (Editor)
1961-01-01
This report reviews a number of the factors which influence space flight experiments. Included are discussions of payload considerations, payload design and packaging, environmental tests, launch facilities, tracking and telemetry requirements, data acquisition, processing and analysis procedures, communication of information, and project management. Particular emphasis is placed on the "Scout" as a launching vehicle. The document includes a description of the geometry of the "Scout" as well as its flight capabilities and limitations. Although oriented toward the "Scout" vehicle and its payload capabilities, the information presented is sufficiently general to be equally applicable to most space vehicle systems.
User's operating procedures. Volume 2: Scout project financial analysis program
NASA Technical Reports Server (NTRS)
Harris, C. G.; Haris, D. K.
1985-01-01
A review is presented of the user's operating procedures for the Scout Project Automatic Data system, called SPADS. SPADS is the result of the past seven years of software development on a Prime mini-computer located at the Scout Project Office, NASA Langley Research Center, Hampton, Virginia. SPADS was developed as a single entry, multiple cross-reference data management and information retrieval system for the automation of Project office tasks, including engineering, financial, managerial, and clerical support. This volume, two (2) of three (3), provides the instructions to operate the Scout Project Financial Analysis program in data retrieval and file maintenance via the user friendly menu drivers.