Sample records for asteroidal sample preliminary

  1. Preliminary Examination of Particles Recovered from the Surface of the Asteroid Itokawa by the Hayabusa Mission

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, A.; Ebihara, M.; Kimura, M.; Kitajima, F.; Kotsugi, M.; Ito, S.; Nagao, K.; Nakamura, T.; Naraoka, H.; Noguchi, T.; hide

    2011-01-01

    The Hayabusa spacecraft arrived at S-type Asteroid 25143 Itokawa in November 2006, and reveal astounding features of the small asteroid (535 x 294 x 209 m). Near-infrared spectral shape indicates that the surface of this body has an olivinerich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering. Based on the surface morphological features observed in high-resolution images of Itokawa s surface, two major types of boulders were distinguished: rounded and angular boulders. Rounded boulders seem to be breccias, while angular boulders seem to have severe impact origin. Although the sample collection did not be made by normal operations, it was considered that some amount of samples, probably small particles of regolith, was collected from MUSES-C regio on the Itokawa s surface. The sample capsule was successfully recovered on the earth on June 13, 2010, and was opened at curation facility of JAXA (Japan Aerospace Exploration Agency), Sagamihara, Japan. A large number of small particles were found in the sample container. Preliminary analysis with SEM/EDX at the curation facility showed that at least more than 1500 grains were identified as rocky particles, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa. Minerals (olivine, low-Ca pyroxene, high-Ca pyroxene, plagioclase, Fe sulfide, Fe-Ni metal, chromite, Ca phosphate), roughly estimated mode the minerals and rough measurement of the chemical compositions of the silicates show that these particles are roughly similar to LL chondrites. Although their size are mostly less than 10 m, some larger particles of about 100 m or larger were also identified. A part of the sample (probably several tens particles) will be selected by Hayabusa sample curation team and examined preliminary in Japan within one year after the sample recovery in prior to detailed analysis phase. Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET) has been preparing for the preliminary examination with close cooperation with the curation team.

  2. Albedos of Small Hilda Asteroids

    NASA Astrophysics Data System (ADS)

    Ryan, Erin L.; Woodward, C. E.

    2010-10-01

    We present albedo results for 70 small Hilda dynamical family members detected by the Spitzer Space Telescope in multiple archival programs. This Spitzer data samples Hildas with diameters between 2 and 11 kilometers. Our preliminary analysis reveals that the mean geometric albedo for this sample is pv = 0.05, matching the mean albedo derived for large (20 to 160 km) Hilda asteroids observed by IRAS (Ryan and Woodward 2010). This mean albedo is significantly darker than the mean albedo of asteroids in the outer main belt (2.8 AU < a < 3.5 AU), possibly suggesting that these asteroids did not originate from the outer main belt . This is in direct conflict with some dynamical models which suggest that the HIldas are field asteroids trapped from an inward migration of Jupiter (Franklin et al. 2004), and may provide additional observation support for delivery of dark Kuiper Belt contaminants to the inner solar system as per the Nice Model (Levison et al. 2009).

  3. Oxygen and Magnesium Isotopic Compositions of Asteroidal Materials Returned from Itokawa by the Hayabusa Mission

    NASA Technical Reports Server (NTRS)

    Yurimoto, H; Abe, M.; Ebihara, M.; Fujimura, A.; Hashizume, K.; Ireland, T. R.; Itoh, S.; Kawaguchi, K.; Kitajima, F.; Mukai, T.; hide

    2011-01-01

    The Hayabusa spacecraft made two touchdowns on the surface of Asteroid 25143 Itokawa on November 20th and 26th, 2005. The Asteroid 25143 Itokawa is classified as an S-type asteroid and inferred to consist of materials similar to ordinary chondrites or primitive achondrites [1]. Near-infrared spectroscopy by the Hayabusa spacecraft proposed that the surface of this body has an olivine-rich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering [2]. The spacecraft made the reentry into the Earth s atmosphere on June 12th, 2010 and the sample capsule was successfully recovered in Australia on June 13th, 2010. Although the sample collection processes on the Itokawa surface had not been made by the designed operations, more than 1,500 grains were identified as rocky particles in the sample curation facility of JAXA, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa on November 17th, 2010 [3]. Although their sizes are mostly less than 10 microns, some larger grains of about 100 microns or larger were also included. The mineral assembly is olivine, pyroxene, plagioclase, iron sulfide and iron metal. The mean mineral compositions are consistent with the results of near-infrared spectroscopy from Hayabusa spacecraft [2], but the variations suggest that the petrologic type may be smaller than the spectroscopic results. Several tens of grains of relatively large sizes among the 1,500 grains will be selected by the Hayabusa sample curation team for preliminary examination [4]. Each grain will be subjected to one set of preliminary examinations, i.e., micro-tomography, XRD, XRF, TEM, SEM, EPMA and SIMS in this sequence. The preliminary examination will start from the last week of January 2011. Therefore, samples for isotope analyses in this study will start from the last week of February 2011. By the time of the LPSC meeting we will have measured the oxygen and magnesium isotopic composition of several grains. We will present the first results from the isotope analyses that will have been performed.

  4. Lunar and Planetary Science XXXV: Asteroids, Meteors, Comets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reports included:Long Term Stability of Mars Trojans; Horseshoe Asteroids and Quasi-satellites in Earth-like Orbits; Effect of Roughness on Visible Reflectance Spectra of Planetary Surface; SUBARU Spectroscopy of Asteroid (832) Karin; Determining Time Scale of Space Weathering; Change of Asteroid Reflectance Spectra by Space Weathering: Pulse Laser Irradiation on Meteorite Samples; Reflectance Spectra of CM2 Chondrite Mighei Irradiated with Pulsed Laser and Implications for Low-Albedo Asteroids and Martian Moons; Meteorite Porosities and Densities: A Review of Trends in the Data; Small Craters in the Inner Solar System: Primaries or Secondaries or Both?; Generation of an Ordinary-Chondrite Regolith by Repetitive Impact; Asteroid Modal Mineralogy Using Hapke Mixing Models: Validation with HED Meteorites; Particle Size Effect in X-Ray Fluorescence at a Large Phase Angle: Importance on Elemental Analysis of Asteroid Eros (433); An Investigation into Solar Wind Depletion of Sulfur in Troilite; Photometric Behaviour Dependent on Solar Phase Angle and Physical Characteristics of Binary Near-Earth-Asteroid (65803) 1996 GT; Spectroscopic Observations of Asteroid 4 Vesta from 1.9 to 3.5 micron: Evidence of Hydrated and/or Hydroxylated Minerals; Multi-Wavelength Observations of Asteroid 2100 Ra-Shalom: Visible, Infrared, and Thermal Spectroscopy Results; New Peculiarities of Cometary Outburst Activity; Preliminary Shape Modeling for the Asteroid (25143) Itokawa, AMICA of Hayabusa Mission; Scientific Capability of MINERVA Rover in Hayabusa Asteroid Mission; Characteristics and Current Status of Near Infrared Spectrometer for Hayabusa Mission; Sampling Strategy and Curation Plan of Hayabusa Asteroid Sample Return Mission; Visible/Near-Infrared Spectral Properties of MUSES C Target Asteroid 25143 Itokawa; Calibration of the NEAR XRS Solar Monitor; Modeling Mosaic Degradation of X-Ray Measurements of 433 Eros by NEAR-Shoemaker; Scattered Light Remediation and Recalibration of near Sheomaker s NIS Global Dataaset at 433 Eros; Evaluation of Preparation and Measuring Techniques for Interplanetary Dust Particles for the MIDAS Experiment on Rosetta; Chiron: a Proposed Remote Sensing Prompt Gamma Ray Activation Analysis Instrument for a Nuclear Powered Prometheus Mission;From Present Surveying to Future Prospecting of the Asteroid Belt; Asteroid Physical Properties Probe Microgravity Testing of a Surface Sampling System for Sample Return from Small Solar System Bodies;and Penetrator Coring Apparatus for Cometary Surfaces.

  5. VNIR Reflectance and MIR Emissivity Spectra of Ordinary Chondrite Meteorites Under Simulated Asteroid Surface Conditions

    NASA Astrophysics Data System (ADS)

    Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.

    2017-12-01

    Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to spectra measured under terrestrial conditions. Experimental studies such as this one will enhance interpretation of current and future planetary remote sensing data sets. This work is the beginning of an effort to develop a comprehensive spectral library of materials relevant to airless bodies and future missions such as OSIRIS-REx and Hayabusa 2.

  6. Three Dimensional Structures of Particles Recovered from the Asteroid Itokawa by the Hayabusa Mission and a Role of X-Ray Microtomography in the Preliminary Examination

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, A.; Uesugi, M.; Uesugi, K.; Nakano, T.; Nakamura, T.; Noguchi, T.; Noguchi, R.; Matsumoto, T.; Matsuno, J.; Nagano, T.; hide

    2011-01-01

    Particles of regolith on S-type Asteroid 25143 Itokawa were successfully recovered by the Hayabusa mission of JAXA (Japan Aerospace Exploration Agency). Near-infrared spectral study of Itokawa s surface indicates that these particles are materials similar to LL5 or LL6 chondrites. High-resolution images of Itokawa's surface suggest that they may be breccias and some impact products. At least more than 1500 particles were identified as Itokawa origin at curation facility of JAXA. Preliminary analysis with SEM/EDX at the curation facility shows that they are roughly similar to LL chondrites. Although most of them are less than 10 micron in size, some larger particles of about 100 micron or larger were also identified. A part of the sample (probably several tens particles) will be selected by Hayabusa sample curation team, and sequential examination will start from January 2011 by Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). In mainstream of the analytical flow, each particle will be examined by microtomography, XRD and XRF first as nondestructive analyses, and then the particle will be cut by an ultra-microtome and examined by TEM, SEM, EPMA, SIMS, PEEM/XANES, and TOF-SIMS sequentially. Three-dimensional structures of Itokawa particles will be obtained by microtomography sub-team of HASPET. The results together with XRD and XRF will be used for design of later destructive analyses, such as determination of cutting direction and depth, to obtain as much information as possible from small particles. Scientific results and a role of the microtomography in the preliminary examination will be presented.

  7. OSIRIS-REx Flight Dynamics and Navigation Design

    NASA Astrophysics Data System (ADS)

    Williams, B.; Antreasian, P.; Carranza, E.; Jackman, C.; Leonard, J.; Nelson, D.; Page, B.; Stanbridge, D.; Wibben, D.; Williams, K.; Moreau, M.; Berry, K.; Getzandanner, K.; Liounis, A.; Mashiku, A.; Highsmith, D.; Sutter, B.; Lauretta, D. S.

    2018-06-01

    OSIRIS-REx is the first NASA mission to return a sample of an asteroid to Earth. Navigation and flight dynamics for the mission to acquire and return a sample of asteroid 101955 Bennu establish many firsts for space exploration. These include relatively small orbital maneuvers that are precise to ˜1 mm/s, close-up operations in a captured orbit about an asteroid that is small in size and mass, and planning and orbit phasing to revisit the same spot on Bennu in similar lighting conditions. After preliminary surveys and close approach flyovers of Bennu, the sample site will be scientifically characterized and selected. A robotic shock-absorbing arm with an attached sample collection head mounted on the main spacecraft bus acquires the sample, requiring navigation to Bennu's surface. A touch-and-go sample acquisition maneuver will result in the retrieval of at least 60 grams of regolith, and up to several kilograms. The flight activity concludes with a return cruise to Earth and delivery of the sample return capsule (SRC) for landing and sample recovery at the Utah Test and Training Range (UTTR).

  8. Advanced Curation of Current and Future Extraterrestrial Samples

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2013-01-01

    Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. Curation includes documentation, preservation, preparation, and distribution of samples. The current collections of extraterrestrial samples include: Lunar rocks / soils collected by the Apollo astronauts Meteorites, including samples of asteroids, the Moon, and Mars "Cosmic dust" (asteroid and comet particles) collected by high-altitude aircraft Solar wind atoms collected by the Genesis spacecraft Comet particles collected by the Stardust spacecraft Interstellar dust collected by the Stardust spacecraft Asteroid particles collected by the Hayabusa spacecraft These samples were formed in environments strikingly different from that on Earth. Terrestrial contamination can destroy much of the scientific significance of many extraterrestrial materials. In order to preserve the research value of these precious samples, contamination must be minimized, understood, and documented. In addition the samples must be preserved - as far as possible - from physical and chemical alteration. In 2011 NASA selected the OSIRIS-REx mission, designed to return samples from the primitive asteroid 1999 RQ36 (Bennu). JAXA will sample C-class asteroid 1999 JU3 with the Hayabusa-2 mission. ESA is considering the near-Earth asteroid sample return mission Marco Polo-R. The Decadal Survey listed the first lander in a Mars sample return campaign as its highest priority flagship-class mission, with sample return from the South Pole-Aitken basin and the surface of a comet among additional top priorities. The latest NASA budget proposal includes a mission to capture a 5-10 m asteroid and return it to the vicinity of the Moon as a target for future sampling. Samples, tools, containers, and contamination witness materials from any of these missions carry unique requirements for acquisition and curation. Some of these requirements represent significant advances over methods currently used. New analytical and screening techniques will increase the value of current sample collections. Improved web-based tools will make information on all samples more accessible to researchers and the public. Advanced curation of current and future extraterrestrial samples includes: Contamination Control - inorganic / organic Temperature of preservation - subfreezing / cryogenic Non-destructive preliminary examination - X-ray tomography / XRF mapping / Raman mapping Microscopic samples - handling / sectioning / transport Special samples - unopened lunar cores Informatics - online catalogs / community-based characterization.

  9. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  10. A Quick Test on Rotation Period Clustering for the Small Members of the Koronis Family

    NASA Astrophysics Data System (ADS)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen

    2016-01-01

    Rotation period clustering in prograde/retrograde rotators might be the preliminary indication of the Slivan state in the Koronis family as a result of the Yarkovsky-O’Keefe-Radzievskii-Paddack effect. We follow the general scenario of dispersion in the semimajor axis of the asteroid family members to separate prograde and retrograde rotators in the Koronis family. From the available rotation periods obtained from PTF/iPTF, we were unable to find the rotation period clustering of objects with H ≳ 12 mag in the Koronis family. This could be the result of the intermittent collisional process of small asteroids (D ≲ 20 km) which leads to astray Yarkovsky drifting. Measurement of the pole orientations of our sample will verify our preliminary result and validate our method.

  11. OSIRIS-REx Touch-And-Go (TAG) Mission Design and Analysis

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Sutter, Brian; May, Alex; Williams, Ken; Barbee, Brent W.; Beckman, Mark; Williams, Bobby

    2013-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the near-Earth asteroid (101955) 1999 RQ36 in late 2018. After several months in formation with and orbit about the asteroid, OSIRIS-REx will fly a Touch-And-Go (TAG) trajectory to the asteroid s surface to obtain a regolith sample. This paper describes the mission design of the TAG sequence and the propulsive maneuvers required to achieve the trajectory. This paper also shows preliminary results of orbit covariance analysis and Monte-Carlo analysis that demonstrate the ability to arrive at a targeted location on the surface of RQ36 within a 25 meter radius with 98.3% confidence.

  12. STARDUST and HAYABUSA: Sample Return Missions to Small Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    2005-01-01

    There are currently two active spacecraft missions designed to return samples to Earth from small bodies in our Solar System. STARDUST will return samples from the comet Wild 2, and HAYABUSA will return samples from the asteroid Itokawa. On January 3,2004, the STARDUST spacecraft made the closest ever flyby (236 km) of the nucleus of a comet - Comet Wild 2. During the flyby the spacecraft collected samples of dust from the coma of the comet. These samples will be returned to Earth on January 15,2006. After a brief preliminary examination to establish the nature of the returned samples, they will be made available to the general scientific community for study. The HAYABUSA spacecraft arrived at the Near Earth Asteroid Itokawa in September 2005 and is currently involved in taking remote sensing data from the asteroid. Several practice landings have been made and a sample collection landing will be made soon. The collected sample will be returned to Earth in June 2007. During my talk I will discuss the scientific goals of the STARDUST and HAYABUSA missions and provide an overview of their designs and flights to date. I will also show some of the exciting data returned by these spacecraft during their encounters with their target objects.

  13. Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET) and the Astromaterial Curation Facility at JAXA/ISAS

    NASA Astrophysics Data System (ADS)

    Yano, H.; Fujiwara, A.

    After the successful launch in May 2003, the Hayabusa (MUSES-C) mission of JAXA/ISAS will collect surface materials (e.g., regolith) of several hundred mg to several g in total from the S-type near Earth asteroid (25143) Itokawa in late 2005 and bring them back to ground laboratories in the summer of 2007. The retrieved samples will be given initial analysis at the JAXA/ISAS astromaterial curation facility, which is currently in the preparation for its construction, by the Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). HASPET is consisted of the ISAS Hayabusa team, the international partners from NASA and Australia and all-Japan meteoritic scientists to be selected as outsourcing parts of the initial analyses. The initial analysis to characterize general aspects of returned samples can consume only 15 % of its total mass and must complete the whole analyses including the database building before international AO for detailed analyses within the maximum of 1 year. Confident exercise of non-destructive, micro-analyses whenever possible are thus vital for the HASPET analysis. In the purpose to survey what kinds and levels of micro-analysis techniques in respective fields, from major elements and mineralogy to trace and isotopic elements and organics, are available in Japan at present, ISAS has conducted the HASPET open competitions in 2000-01 and 2004. The initial evaluation was made by multiple domestic peer reviews. Applicants were then provided two kinds of unknown asteroid sample analogs in order to conduct proposed analysis with self-claimed amount of samples in self-claimed duration. After the completion of multiple, international peer reviews, the Selection Committee compiled evaluations and recommended the finalists of each round. The final members of the HASPET will be appointed about 2 years prior to the Earth return. Then they will conduct a test-run of the whole initial analysis procedures at the ISAS astromaterial curation facility and their respective analysis facilities. This talk also summarizes the curation facility design and plans of initial analysis procedure flow.

  14. In-Situ Water Vapor Probe for a Robot Arm-Mounted, Compact Water Vapor Analyzer: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Cabiran, Mike; Rossi, Chris; Sun, Tao

    2013-01-01

    This work describes the ongoing development of an instrument package for the in-situ detection and isotopic analysis of water (from ice, icy soils, and hydrated minerals) on future lunar, asteroid, or martian exploration missions. This instrument is intended to be mounted on a robotic arm and be brought to the sample, rather than necessitating expensive and complicated sample handling to bring the sample to the instrument.

  15. The OSIRIS-REx Asteroid Sample Return Mission Operations Design

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan S.; Cheuvront, Allan

    2015-01-01

    OSIRIS-REx is an acronym that captures the scientific objectives: Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer. OSIRIS-REx will thoroughly characterize near-Earth asteroid Bennu (Previously known as 1019551999 RQ36). The OSIRIS-REx Asteroid Sample Return Mission delivers its science using five instruments and radio science along with the Touch-And-Go Sample Acquisition Mechanism (TAGSAM). All of the instruments and data analysis techniques have direct heritage from flown planetary missions. The OSIRIS-REx mission employs a methodical, phased approach to ensure success in meeting the mission's science requirements. OSIRIS-REx launches in September 2016, with a backup launch period occurring one year later. Sampling occurs in 2019. The departure burn from Bennu occurs in March 2021. On September 24, 2023, the Sample Return Capsule (SRC) lands at the Utah Test and Training Range (UTTR). Stardust heritage procedures are followed to transport the SRC to Johnson Space Center, where the samples are removed and delivered to the OSIRIS-REx curation facility. After a six-month preliminary examination period the mission will produce a catalog of the returned sample, allowing the worldwide community to request samples for detailed analysis. Traveling and returning a sample from an Asteroid that has not been explored before requires unique operations consideration. The Design Reference Mission (DRM) ties together spacecraft, instrument and operations scenarios. Asteroid Touch and Go (TAG) has various options varying from ground only to fully automated (natural feature tracking). Spacecraft constraints such as thermo and high gain antenna pointing impact the timeline. The mission is sensitive to navigation errors, so a late command update has been implemented. The project implemented lessons learned from other "small body" missions. The key lesson learned was 'expect the unexpected' and implement planning tools early in the lifecycle. This paper summarizes the ground and spacecraft design as presented at OSIRIS-REx Critical Design Review(CDR) held April 2014.

  16. The OSIRIS-Rex Asteroid Sample Return: Mission Operations Design

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Cheuvront, Allan

    2014-01-01

    The OSIRIS-REx mission employs a methodical, phased approach to ensure success in meeting the missions science requirements. OSIRIS-REx launches in September 2016, with a backup launch period occurring one year later. Sampling occurs in 2019. The departure burn from Bennu occurs in March 2021. On September 24, 2023, the SRC lands at the Utah Test and Training Range (UTTR). Stardust heritage procedures are followed to transport the SRC to Johnson Space Center, where the samples are removed and delivered to the OSIRIS-REx curation facility. After a six-month preliminary examination period the mission will produce a catalog of the returned sample, allowing the worldwide community to request samples for detailed analysis.Traveling and returning a sample from an Asteroid that has not been explored before requires unique operations consideration. The Design Reference Mission (DRM) ties together space craft, instrument and operations scenarios. The project implemented lessons learned from other small body missions: APLNEAR, JPLDAWN and ESARosetta. The key lesson learned was expected the unexpected and implement planning tools early in the lifecycle. In preparation to PDR, the project changed the asteroid arrival date, to arrive one year earlier and provided additional time margin. STK is used for Mission Design and STKScheduler for instrument coverage analysis.

  17. On the Trojan asteroid sample and return mission via solar-power sail -- an innovative engineering demonstration

    NASA Astrophysics Data System (ADS)

    Kawaguchi, J.; Mori, O.; Shirasawa, Y.; Yoshikawa, M.

    2014-07-01

    The science and engineering communities in the world are seeking what comes next. Especially for asteroids and comets, as those objects lie in relatively far area in our solar system, and new engineering solutions are essential to explore them. JAXA has studied the next-step mission since 2000, a solar-power sail demonstrator combining the use of photon propulsion with electric propulsion, ion thruster, targeting the untrodden challenge for the sample return attempt from a Trojan asteroid around the libration points in the Sun-Jupiter system. The Ikaros spacecraft was literally developed and launched as a preliminary technology demonstration. The mission will perform in-situ measurement and on-site analysis of the samples in addition to the sample return to the Earth, and will also deploy a small lander on the surface for collecting surface samples and convey them to the mother spacecraft. From a scientific point of view, there is an enormous reward in the most primitive samples containing information about the ancient solar system and also about the origin of life in our solar system. JAXA presently looks for international partners to develop and build the lander. The presentation will elaborate the current mission scenario as well as what we think the international collaboration will be.

  18. Spitzer IRS Spectra of Basaltic Asteroids: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nick; Stewart, Heather; Marchis, Frank

    2008-01-01

    We present preliminary results of a Spitzer program to observe the 5.2--38 micron spectra of small basaltic asteroids using the Spitzer IRS (Infrared Spectrograph). Our targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), four outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid (NEA) 4055 Magellan. We will compare the compositions and thermophysical properties of the non-Vestoid objects with those of the dynamical vestoids to provide insight on the extent of metal-silicate differentiation on planetsimals during the epoch of planet formation in the early Solar System. As of this writing, spectra of asteroids 10537 (1991 RY16) and 2763 Jeans have been returned. Analysis of these data are ongolng. Observations of 956 Elisa, 2653 Principia, 4215 Kamo, 7472 Kumakiri, and 1459 Magnya have been scheduled and are expected to be available by the time of the DPS meeting. NIR spectra and lightcurves o f the target asteroids are also being observed in support of this program.

  19. Delivery of organics to Mars through asteroid and comet impacts

    NASA Astrophysics Data System (ADS)

    Frantseva, K.; Mueller, M.; van der Tak, F. F. S.; ten Kate, I. L.; Greenstreet, S.

    2017-09-01

    Preliminary results show that the asteroid-borne organic flux on Mars is comparable to the IPD rate; asteroids certainly cannot be neglected. Comets, on the other hand, contribute only 0.01% of the IDP-borne rate and can be neglected in the process of organic delivery to Mars.

  20. Diogenite-like Features in the Spitzer IRS (5-35 micrometers) Spectrum of 956 ELISA

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2009-01-01

    We report preliminary results from the Spitzer Infrared Spectrograph (IRS) observations of the V-type asteroid 956 Elisa. Elisa was observed as part of a campaign to measure the 5.2-38 micron spectra of small basaltic asteroids with the Spitzer IRS. Targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vesroids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan.

  1. Computation of Asteroid Proper Elements: Recent Advances

    NASA Astrophysics Data System (ADS)

    Knežević, Z.

    2017-12-01

    The recent advances in computation of asteroid proper elements are briefly reviewed. Although not representing real breakthroughs in computation and stability assessment of proper elements, these advances can still be considered as important improvements offering solutions to some practical problems encountered in the past. The problem of getting unrealistic values of perihelion frequency for very low eccentricity orbits is solved by computing frequencies using the frequency-modified Fourier transform. The synthetic resonant proper elements adjusted to a given secular resonance helped to prove the existence of Astraea asteroid family. The preliminary assessment of stability with time of proper elements computed by means of the analytical theory provides a good indication of their poorer performance with respect to their synthetic counterparts, and advocates in favor of ceasing their regular maintenance; the final decision should, however, be taken on the basis of more comprehensive and reliable direct estimate of their individual and sample average deviations from constancy.

  2. DEEP-South: Preliminary Photometric Results from the KMTNet-CTIO

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Jin; Moon, Hong-Kyu; Choi, Young-Jun; Yim, Hong-Suh; Bae, Young-Ho; Roh, Dong-Goo; Park, Jin Tae; Moon, Bora

    2016-01-01

    Korea Astronomy and Space Science Institute (KASI) successfully completed the development of Korea Microlensing Telescope Network (KMTNet, Park et al. 2012) in mid-2015, following which it conducted test runs for several months. `DEep Ecliptic Patrol of the Southern sky' (DEEP-South, Moon et al. 2015), which will be used for asteroid and comet studies, will not only characterize targeted asteroids, carrying out blind surveys toward the sweet spots, but will also mine the data of such bodies using the KMTNet archive. We report preliminary lightcurves of four Potentially Hazardous Asteroids (PHAs) from test runs at KMTNet-CTIO in the February - May 2015 period.

  3. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1981-01-01

    Software to support all stages of asteroid radar observation and data analysis is developed. First-order analysis of all data in hand is complete. Estimates of radar cross sections, circular polarization ratios, and limb-to-limb echo spectral bandwidths for asteroids 7 Iris, 16 Psyche, 97 Klotho, 1862 Apollo, and 1915 Quetzalcoatl are reported. Radar observations of two previously unobserved asteroids were conducted. An Aten asteroid, 2100 Ra-Shalom, with the smallest known semimajor axis (0.83) was detected. Preliminary data reduction indicates a circular polarization ratio comparable to those of Apollo, Quetzalcoatl, and Toro.

  4. Constraints on Exposure Ages of Lunar and Asteroidal Regolith Particles

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P

    2014-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Exposure to the solar wind results in implantation effects that are preserved in the rims of grains (typically the outermost 100 nm), while impact processes result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. These processes are collectively referred to as space weathering. A critical element in the study of these processes is to determine the rate at which these effects accumulate in the grains during their space exposure. For small particulate samples, one can use the density of solar flare particle tracks to infer the length of time the particle was at the regolith surface (i.e., its exposure age). We have developed a new technique that enables more accurate determination of solar flare particle track densities in mineral grains <50 micron in size that utilizes focused ion beam (FIB) sample preparation combined with transmission electron microscopy (TEM) imaging. We have applied this technique to lunar soil grains from the Apollo 16 site (soil 64501) and most recently to samples from asteroid 25143 Itokawa returned by the Hayabusa mission. Our preliminary results show that the Hayabusa grains have shorter exposure ages compared to typical lunar soil grains. We will use these techniques to re-examine the track density-exposure age calibration from lunar samples reported by Blanford et al. (1975).

  5. A photometric survey of outer belt asteroids

    NASA Technical Reports Server (NTRS)

    Dimartino, M.; Gonano-Beurer, M.; Mottola, Stefano; Neukum, G.

    1992-01-01

    Since 1989, we have been conducting a research program devoted to the study of the Trojans and outer belt asteroids (Hilda and Cybele groups), in order to characterize their rotational properties and shapes. As an outcome of several observational campaigns, we determined rotational periods and lightcurve amplitudes for 23 distant asteroids, using both CCD and photoelectric photometry. In this paper, we compare the rotational properties of main belt asteroids and Trojans, based on the preliminary results of this survey.

  6. Spitzer IRS (8-30 micron) Spectra of Basaltic Asteroids 1459 Magnya and 956 Elisa: Mineralogy and Thermal Properties

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.

    2009-01-01

    We report preliminary results from Spitzer IRS (Infrared Spectrograph) spectroscopy of 956 Elisa, 1459 Magnya, and other small basaltic asteroids with the Spitzer IRS. Program targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan. The preliminary thermal model (STM) fit to the 5--35 micron spectrum of 956 Elisa gives a radius of 5.4 +/- 0.3 km and a subsolar- point temperature of 282.2 +/- 0.5 K. This temperature corresponds to eta approximately equals 1.06 +/- 0.02, which is substantially higher than the eta approximately equals 0.756 characteristic of large main-belt asteroids. Unlike 4 Vesta and other large asteroids, therefore, 956 Elisa has significant thermal inertia in its surface layer. The wavelength of the Christiansen feature (emissivity maximum near 9 micron), the positions and shapes of the narrow maxima (10 micron, 11 micron) within the broad 9--14 micron silicate band, and the 19--20 micron minimum are consistent with features found in the laboratory spectra of diogenites and of low-Ca pyroxenes of similar composition (Wo<5, En50-En75).

  7. Meteorite Dunite Breccia MIL 03443: A Probable Crustal Cumulate Closely Related to Diogenites from the HED Parent Asteroid

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    2008-01-01

    There are numerous types of differentiated meteorites, but most represent either the crusts or cores of their parent asteroids. Ureilites, olivine-pyroxene-graphite rocks, are exceptions; they are mantle restites [1]. Dunite is expected to be a common mantle lithology in differentiated asteroids. In particular, models of the eucrite parent asteroid contain large volumes of dunite mantle [2-4]. Yet dunites are very rare among meteorites, and none are known associated with the howardite, eucrite, diogenite (HED) suite. Spectroscopic measurements of 4 Vesta, the probable HED parent asteroid, show one region with an olivine signature [5] although the surface is dominated by basaltic and orthopyroxenitic material equated with eucrites and diogenites [6]. One might expect that a small number of dunitic or olivine-rich meteorites might be delivered along with the HED suite. The 46 gram meteoritic dunite MIL 03443 (Fig. 1) was recovered from the Miller Range ice field of Antarctica. This meteorite was tentatively classified as a mesosiderite because large, dunitic clasts are found in this type of meteorite, but it was noted that MIL 03443 could represent a dunite sample of the HED suite [7]. Here I will present a preliminary petrologic study of two thin sections of this meteorite.

  8. Methods of determination of periods in the motion of asteroids

    NASA Astrophysics Data System (ADS)

    Bien, R.; Schubart, J.

    Numerical techniques for the analysis of fundamental periods in asteroidal motion are evaluated. The specific techniques evaluated were: the periodogram analysis procedure of Wundt (1980); Stumpff's (1937) system of algebraic transformations; and Labrouste's procedure. It is shown that the Labrouste procedure permitted sufficient isolation of single oscillations from the quasi-periodic process of asteroidal motion. The procedure was applied to the analysis of resonance in the motion of Trojan-type and Hilda-type asteroids, and some preliminary results are discussed.

  9. Shape and spin of asteroid 967 Helionape

    NASA Astrophysics Data System (ADS)

    Apostolovska, G.; Kostov, A.; Donchev, Z.; Bebekovska, E. Vchkova; Kuzmanovska, O.

    2018-04-01

    Knowledge of the spin and shape parameters of the asteroids is very important for understanding of the conditions during the creation of our planetary system and formation of asteroid populations. The main belt asteroid and Flora family member 967 Helionape was observed during five apparitions. The observations were made at the Bulgarian National Astronomical Observatory (BNAO) Rozhen, since March 2006 to March 2016. Lihtcurve inversion method (Kaasalainen et al. (2001)), applied on 12 relative lightcurves obtained at various geometric conditions of the asteroid, reveals the spin vector, the sense of rotation and the preliminary shape model of the asteroid. Our aim is to contribute in increasing the set of asteroids with known spin and shape parameters. This could be done with dense lightcurves, obtained during small number of apparitions, in combination with sparse data produced by photometric asteroid surveys such as the Gaia satellite (Hanush (2011)).

  10. Lessons Learned from OSIRIS-Rex Autonomous Navigation Using Natural Feature Tracking

    NASA Technical Reports Server (NTRS)

    Lorenz, David A.; Olds, Ryan; May, Alexander; Mario, Courtney; Perry, Mark E.; Palmer, Eric E.; Daly, Michael

    2017-01-01

    The Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (Osiris-REx) spacecraft is scheduled to launch in September, 2016 to embark on an asteroid sample return mission. It is expected to rendezvous with the asteroid, Bennu, navigate to the surface, collect a sample (July 20), and return the sample to Earth (September 23). The original mission design called for using one of two Flash Lidar units to provide autonomous navigation to the surface. Following Preliminary design and initial development of the Lidars, reliability issues with the hardware and test program prompted the project to begin development of an alternative navigation technique to be used as a backup to the Lidar. At the critical design review, Natural Feature Tracking (NFT) was added to the mission. NFT is an onboard optical navigation system that compares observed images to a set of asteroid terrain models which are rendered in real-time from a catalog stored in memory on the flight computer. Onboard knowledge of the spacecraft state is then updated by a Kalman filter using the measured residuals between the rendered reference images and the actual observed images. The asteroid terrain models used by NFT are built from a shape model generated from observations collected during earlier phases of the mission and include both terrain shape and albedo information about the asteroid surface. As a result, the success of NFT is highly dependent on selecting a set of topographic features that can be both identified during descent as well as reliably rendered using the shape model data available. During development, the OSIRIS-REx team faced significant challenges in developing a process conducive to robust operation. This was especially true for terrain models to be used as the spacecraft gets close to the asteroid and higher fidelity models are required for reliable image correlation. This paper will present some of the challenges and lessons learned from the development of the NFT system which includes not just the flight hardware and software but the development of the terrain models used to generate the onboard rendered images.

  11. Airborne Observation of the Hayabusa Sample Return Capsule Re-Entry

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Jenniskens, Peter; Cassell, Alan M.; Albers, James; Winter, Michael W.

    2011-01-01

    NASA Ames Research Center and the SETI Institute collaborated on an effort to observe the Earth re-entry of the Japan Aerospace Exploration Agency's Hayabusa sample return capsule. Hayabusa was an asteroid exploration mission that retrieved a sample from the near-Earth asteroid Itokawa. Its sample return capsule re-entered over the Woomera Prohibited Area in southern Australia on June 13, 2010. Being only the third sample return mission following NASA's Genesis and Stardust missions, Hayabusa's return was a rare opportunity to collect aerothermal data from an atmospheric entry capsule returning at superorbital speeds. NASA deployed its DC-8 airborne laboratory and a team of international researchers to Australia for the re-entry. For approximately 70 seconds, spectroscopic and radiometric imaging instruments acquired images and spectra of the capsule, its wake, and destructive re-entry of the spacecraft bus. Once calibrated, spectra of the capsule will be interpreted to yield data for comparison with and validation of high fidelity and engineering simulation tools used for design and development of future atmospheric entry system technologies. A brief summary of the Hayabusa mission, the preflight preparations and observation mission planning, mission execution, and preliminary spectral data are documented.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, C. R.; Cutri, R. M.; Mainzer, A.

    We present preliminary diameters and albedos for 7956 asteroids detected in the first year of the NEOWISE Reactivation mission. Of those, 201 are near-Earth asteroids and 7755 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using the Near-Earth Object Wide-field Infrared Survey Explorer, or “NEOWISE” thermal measurements. Diameters are determined to an accuracy of ∼20% or better. If good-quality H magnitudes are available, albedos can be determined to within ∼40% or better.

  13. OSIRIS-REx and mission sample science: The return of at least 60 g of pristine regolith from asteroid Bennu

    NASA Astrophysics Data System (ADS)

    Connolly, H. C., Jr.; Lauretta, D. S.

    2014-07-01

    Introduction: The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission was selected by NASA in May 2011 as the third New Frontiers mission. The target, (101955) Bennu, is a B-type near-Earth asteroid (NEA), hypothesized to be similar to CI or CM carbonaceous chondrites. The key science objectives of the mission are summarized in [1]. To meet these science objectives, the science team is coordinated and governed by the Science Executive Council (SEC): A group of six persons that run various elements of mission science. Mission Sample Science (MSS) is charged with analysis of the returned sample. Mission Sample Science: MSS is run by a Mission Scientist and composed of the following working groups: Carbonaceous Meteorite Working Group (CMWG), Dynamical Evolution Working Group (DEWG), Regolith Development Working Group (RDWG), Sample Analysis Working Group (SampleWG), Sample Site Science Working Group (SSSWG), and TAGSAM Working Group (TAGSAMWG). CMWG works to define and create well-characterized test samples, both natural and synthetic, for the development of spectral test data. These data are used to verify the depth and accuracy of spectral analysis techniques for processing data collected by the OSIRIS-REx spectrometers (OVIRS and OTES). The DEWG is charged with constraining the history of asteroid Bennu from main-belt asteroid to NEA. They also work closely with the SampleWG to define the hypotheses for the dynamical evolution of Bennu through the analysis of the returned sample. The RDWG is focused on developing constraints on the origin and evolution of regolith on Bennu through investigations of the surface geology and, working with the SampleWG, test these hypotheses through sample analysis. RDWG is also focused on the analysis of the sampling event and reconstructing what occurred during the event. SampleWG is focused on documenting Contamination Knowledge, which is distinct but related to mission Contamination Control. The main deliverable for this working group is the Sample Analysis Plan, due in 2019. Furthermore, it is this working group that is responsible for constituting the Preliminary Examination Team (PET) and performing the analyses of the returned sample during the first six months after return. SSSWG has the main deliverable of providing to the project the Science Value Maps (SVMs), which are part of the sample site selection process. If we can deliver the spacecraft to candidate sample sites, if it is safe to sample at them, and if there is material that can be ingested, SVMs will be a semi-quantitative aid in picking the optimum site to meet mission science goals. Finally, TAGSAM (Touch And Go Sample Acquisition Mechanism) is the sampler for the mission and this working group is concerned primarily with characterizing TAGSAM capabilities against a range of regolith types. Mission Sample Science provides an over-arching structure to reconstruct the pre- and post-accretion history of Bennu from the formation of pre-solar grains, chondrules, up to geological activity within the asteroid to its final dynamical evolution through analysis of the returned sample using a wide range of disciplines and expertise.

  14. Recovery, Transportation and Acceptance to the Curation Facility of the Hayabusa Re-Entry Capsule

    NASA Technical Reports Server (NTRS)

    Abe, M.; Fujimura, A.; Yano, H.; Okamoto, C.; Okada, T.; Yada, T.; Ishibashi, Y.; Shirai, K.; Nakamura, T.; Noguchi, T.; hide

    2011-01-01

    The "Hayabusa" re-entry capsule was safely carried into the clean room of Sagamihara Planetary Sample Curation Facility in JAXA on June 18, 2010. After executing computed tomographic (CT) scanning, removal of heat shield, and surface cleaning of sample container, the sample container was enclosed into the clean chamber. After opening the sample container and residual gas sampling in the clean chamber, optical observation, sample recovery, sample separation for initial analysis will be performed. This curation work is continuing for several manths with some selected member of Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). We report here on the 'Hayabusa' capsule recovery operation, and transportation and acceptance at the curation facility of the Hayabusa re-entry capsule.

  15. Preliminary Results in Asteroid Mass Determination

    NASA Astrophysics Data System (ADS)

    Aslan, Z.; Gumerov, R. I.; Hudkova, L. A.; Ivantsov, A. V.; Khamitov, I.; Pinigin, G. I.

    2006-08-01

    Asteroid masses are extremely important for the determination of their bulk densities, especially for the discussed relatively high porosities in about 20 to 30% of the studied bodies. The problem will have some coverage in clarifying errors of both mass and volume determinations. We have used lists of encounters for massive and less massive asteroids, prepared by J.L. Hilton, which cover relatively contemporary period of optical observations, 1950-2005. These observations were taken from the MPC database of observations. The model of the motions uses integrations of relativistic equations for perturbing asteroids (Ceres, Pallas, Vesta, and others concerned), perturbed asteroid. Positions and velocities of the Sun and large planets are directly taken from the DE405. The necessary initial conditions were taken from the HORIZONS system. By the adjustment of dynamical model parameters (both initial conditions and perturbing masses for asteroids) there were determined preliminary masses (in 10^-10 of Sun mass) for seven asteroids: (7) Iris 0.090±0.008, (10) Hygiea 0.213±0.030, (24) Themis 0.010±0.024, (45) Eugenia 0.012±0.025, (52) Europa 0.362±0.041, (87) Sylvia 0.180±0.090, (165) Loreley 0.157±0.100. These masses were calculated from difficult cases, where the earlier study by some authors gave negative masses in the unweighted calculations. The values obtained were compared with other estimations. Both the two-fold increase in the number of observations up the present and the active boundary on the determined mass parameter or equivalent logarithm transform should have given physically meaningful values in any case.

  16. Asteroid Return Mission Feasibility Study

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Gershman, Robert; Landau, Damon; Polk, James; Porter, Chris; Yeomans, Don; Allen, Carlton; Williams, Willie; Asphaug, Erik

    2011-01-01

    This paper describes an investigation into the technological feasibility of finding, characterizing, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the International Space Station (ISS) for scientific investigation, evaluation of its resource potential, determination of its internal structure and other aspects important for planetary defense activities, and to serve as a testbed for human operations in the vicinity of an asteroid. Reasonable projections suggest that several dozen candidates NEAs in the size range of interest (approximately 2-m diameter) will be known before the end of the decade from which a suitable target could be selected. The conceptual mission objective is to return an approximately 10,000-kg asteroid to the ISS in a total flight time of approximately 5 years using a single Evolved Expendable Launch Vehicle. Preliminary calculations indicate that this could be accomplished using a solar electric propulsion (SEP) system with high-power Hall thrusters and a maximum power into the propulsion system of approximately 40 kW. The SEP system would be used to provide all of the post-launch delta V. The asteroid would have an unrestricted Earth return Planetary Protection categorization, and would be curated at the ISS where numerous scientific and resource utilization experiments would be conducted. Asteroid material brought to the ground would be curated at the NASA Johnson Space Center. This preliminary study identified several areas where additional work is required, but no show stoppers were identified for the approach that would return an entire 10,000-kg asteroid to the ISS in a mission that could be launched by the end of this decade.

  17. Asteroid search program

    NASA Astrophysics Data System (ADS)

    This document is dedicated first to the criteria used to select a candidate asteroid. It contains the known characteristics of this asteroid as well as the assumptions made about it. It ends with a preliminary study of other possible more favorable candidates which might be found in the near future. Special attention is paid to the possible existence of Earth-Sun Trojan asteroids. Second, there is a description of the current state of our limited knowledge about the asteroids, and of the instruments and techniques being used to improve this knowledge. The contribution to asteroid research which can be expected from the new instruments already in space or due to be launched in this decade is then discussed. The last part of this document gives a description of different ways of improving our knowledge about the asteroids, both quantitatively and qualitatively. A proposal requiring reasonable financing and manpower to improve asteroid research is presented. It is believed that the implementation of such a program would have a dramatic effect on asteroid research. For example, a significant increase in both the rate of discovery of asteroids and their corresponding orbital parameters would be obtained. This program could be fully operational 3 years after its implementation.

  18. Near-Earth Asteroid Returned Sample (NEARS)

    NASA Technical Reports Server (NTRS)

    Shoemaker, Eugene M.; Cheng, Andrew F.

    1994-01-01

    The concept of the Near-Earth Asteroid Returned Sample (NEARS) mission is to return to Earth 10-100 g from each of four to six sites on a near-Earth asteroid and to perform global characterization of the asteroid and measure mass, volume, and density to ten percent. The target asteroid for the mission is 4660 Nereus, probably a primitive C-type asteroid, with the alternate target being 1989ML, an extremely accessible asteroid of unknown type. Launch dates will be 1998, 2000, 2002, and 2004 on the Delta II-7925 launch vehicle. The mission objectives are three-fold. (1) Provide first direct and detailed petrological, chemical, age, and isotopic characterization of a near-Earth asteroid and relate it to terrestrial, lunar, and meteoritic materials. (2) Sample the asteroid regolith and characterize any exotic fragments. (3) Identify heterogeneity in the asteroid's isotopic properties, age, and elemental chemistry.

  19. Asteroid Pond Mineralogy: View from a Cognate Clast in LL3 NWA 8330

    NASA Technical Reports Server (NTRS)

    Zolensky, M.; Le, L.

    2017-01-01

    All asteroids surfaces imaged at the cm-scale reveal the presence of pond deposits. These ponds are important because it is likely all asteroid sample return missions will sample them, being the safest (very flat) places to touch down. Therefore, it is essential to understand the differences between the material at the pond surfaces and the host asteroid. Fortunately, some fine-grained cognate lithologies in chondrites show sedimentary features indicating that they sample asteroid ponds.

  20. Laboratory spectroscopy of HED meteorites

    NASA Astrophysics Data System (ADS)

    Farina, M.; Coradini, A.; Carli, C.; Ammannito, E.; Consolmagno, G.; De sanctis, M.; Di Iorio, T.; Turrini, D.

    2011-12-01

    4 Vesta is one of the largest and the most massive asteroid in the Main Asteroid Belt. This asteroid possesses a basaltic surface and apparently formed and differentiated very early in the history of the solar system. There are strong evidences that indicate Vesta as the parent body of Howardites, Diogenites and Eucrites (HEDs). HED meteorites are a subgroup of achondrite meteorites and they are a suite of rocks that formed at high temperature and experienced igneous processing similar to the magmatic rocks found on Earth. The visible and near-infrared (VNIR) reflectance spectra of Vesta's surface show high similarity with the laboratory spectra of HED meteorites. Vesta and HEDs spectra have two crystal field absorption bands close to 0.9 μm and 1.9 μm indicative of the presence of ferrous iron in pyroxenes. The HEDs differ from each other primarily based on variation in pyroxene composition and the pyroxene-plagioclase ratio as well as rocks texture characteristics (e.g., size of crystals). These differences suggest that a combined VNIR spectra studies of Vesta and HED meteorites might reveal the different characteristics of the surface compositions and shed new light on the origin and the thermal history of Vesta. Moreover the link between Vesta and HEDs could provide a test bed to understand the short-lived radionuclide-driven differentiation of planetary bodies. Here we present preliminary result of a study of spectral characteristics of different HED samples, provided to us by the Vatican Observatory. Bidirectional reflectance spectra of slabs of meteorites are performed in the VNIR, between (0.35/2.50) μm, using a Fieldspec spectrometer mounted on a goniometer, in use at the SLAB (Spectroscopy laboratory, INAF, Rome). The spectra are acquired in standard conditions with an incidence angle i=30o and an emission angle e=0o, measuring a spot with a diameter of 5 mm. Different Howardite, Diogenite and Eucrite samples are "mapped" considering several spots on the surface of the slabs to define their spectral variability between samples representing the different types of HEDs and to describe the spectral heterogeneity for each samples. A preliminary comparison with mineralogical and petrographic characteristics has been done describing hand samples and their thin sections. These data will be incorporated in a spectral library that could be an useful tool for the interpretation of data acquired by the Dawn mission in orbit on Vesta.

  1. Advanced Navigation Strategies for an Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Bauman, J.; Getzandanner, K.; Williams, B.; Williams, K.

    2011-01-01

    The proximity operations phases of a sample return mission to an asteroid have been analyzed using advanced navigation techniques derived from experience gained in planetary exploration. These techniques rely on tracking types such as Earth-based radio metric Doppler and ranging, spacecraft-based ranging, and optical navigation using images of landmarks on the asteroid surface. Navigation strategies for the orbital phases leading up to sample collection, the touch down for collecting the sample, and the post sample collection phase at the asteroid are included. Options for successfully executing the phases are studied using covariance analysis and Monte Carlo simulations of an example mission to the near Earth asteroid 4660 Nereus. Two landing options were studied including trajectories with either one or two bums from orbit to the surface. Additionally, a comparison of post-sample collection strategies is presented. These strategies include remaining in orbit about the asteroid or standing-off a given distance until departure to Earth.

  2. OSIRIS-REx Asteroid Sample Return Mission Image Analysis

    NASA Astrophysics Data System (ADS)

    Chevres Fernandez, Lee Roger; Bos, Brent

    2018-01-01

    NASA’s Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) mission constitutes the “first-of-its-kind” project to thoroughly characterize a near-Earth asteroid. The selected asteroid is (101955) 1999 RQ36 (a.k.a. Bennu). The mission launched in September 2016, and the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. The spacecraft that will travel to, and collect a sample from, Bennu has five integrated instruments from national and international partners. NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch-And-Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample and document asteroid sample stowage. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Analysis of spacecraft imagery acquired by the TAGCAMS during cruise to the target asteroid Bennu was performed using custom codes developed in MATLAB. Assessment of the TAGCAMS in-flight performance using flight imagery was done to characterize camera performance. One specific area of investigation that was targeted was bad pixel mapping. A recent phase of the mission, known as the Earth Gravity Assist (EGA) maneuver, provided images that were used for the detection and confirmation of “questionable” pixels, possibly under responsive, using image segmentation analysis. Ongoing work on point spread function morphology and camera linearity and responsivity will also be used for calibration purposes and further analysis in preparation for proximity operations around Bennu. Said analyses will provide a broader understanding regarding the functionality of the camera system, which will in turn aid in the fly-down to the asteroid, as it will allow the pick of a suitable landing and sample location.

  3. Laser Simulations of the Destructive Impact of Nuclear Explosions on Hazardous Asteroids

    NASA Astrophysics Data System (ADS)

    Aristova, E. Yu.; Aushev, A. A.; Baranov, V. K.; Belov, I. A.; Bel'kov, S. A.; Voronin, A. Yu.; Voronich, I. N.; Garanin, R. V.; Garanin, S. G.; Gainullin, K. G.; Golubinskii, A. G.; Gorodnichev, A. V.; Denisova, V. A.; Derkach, V. N.; Drozhzhin, V. S.; Ericheva, I. A.; Zhidkov, N. V.; Il'kaev, R. I.; Krayukhin, A. A.; Leonov, A. G.; Litvin, D. N.; Makarov, K. N.; Martynenko, A. S.; Malinov, V. I.; Mis'ko, V. V.; Rogachev, V. G.; Rukavishnikov, A. N.; Salatov, E. A.; Skorochkin, Yu. V.; Smorchkov, G. Yu.; Stadnik, A. L.; Starodubtsev, V. A.; Starodubtsev, P. V.; Sungatullin, R. R.; Suslov, N. A.; Sysoeva, T. I.; Khatunkin, V. Yu.; Tsoi, E. S.; Shubin, O. N.; Yufa, V. N.

    2018-01-01

    We present the results of preliminary experiments at laser facilities in which the processes of the undeniable destruction of stony asteroids (chondrites) in space by nuclear explosions on the asteroid surface are simulated based on the principle of physical similarity. We present the results of comparative gasdynamic computations of a model nuclear explosion on the surface of a large asteroid and computations of the impact of a laser pulse on a miniature asteroid simulator confirming the similarity of the key processes in the fullscale and model cases. The technology of fabricating miniature mockups with mechanical properties close to those of stony asteroids is described. For mini-mockups 4-10 mm in size differing by the shape and impact conditions, we have made an experimental estimate of the energy threshold for the undeniable destruction of a mockup and investigated the parameters of its fragmentation at a laser energy up to 500 J. The results obtained confirm the possibility of an experimental determination of the criteria for the destruction of asteroids of various types by a nuclear explosion in laser experiments. We show that the undeniable destruction of a large asteroid is possible at attainable nuclear explosion energies on its surface.

  4. Proposed NASA Budget Includes Asteroid Capture but Cuts Planetary Science and Education

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-04-01

    The Obama administration's proposed 17.7 billion budget for NASA for fiscal year (FY) 2014 provides 105 million for several asteroid-related initiatives, including preliminary studies for a potential mission that would capture an asteroid and drag it into orbit around the Moon. The agency's total proposed budget is down slightly compared to FY 2012 (see Table ; comparisons are to FY 2012 because government agencies had been operating on a continuing resolution for 2013 and final spending levels for 2013 were not available at the time the president released his proposed 2014 budget).

  5. Dormant Comets in the Near-Earth Asteroid Population

    NASA Astrophysics Data System (ADS)

    Mommert, Michael; Harris, Alan W.; Mueller, Michael; Hora, Joseph L.; Trilling, David E.; Knight, Matthew; Bottke, William F.; Thomas, Cristina; Delbo', Marco; Emery, Josh P.; Fazio, Giovanni; Smith, Howard A.

    2015-11-01

    The population of near-Earth objects comprises active comets and asteroids, covering a wide range of dynamical parameters and physical properties. Dormant (or extinct) comets, masquerading as asteroids, have long been suspected of supplementing the near-Earth asteroid (NEA) population. We present a search for asteroidal objects of cometary origin based on dynamical and physical considerations. Our study is based on albedos derived within the ExploreNEOs program and is extended by adding data from NEOWISE and the Akari asteroid catalog. We use a statistical approach to identify asteroids on orbits that resemble those of short-period near-Earth comets using the Tisserand parameter with respect to Jupiter, the aphelion distance, and the minimum orbital intersection distance with respect to Jupiter. We identify a total of 23 near-Earth asteroids from our sample that are likely to be dormant short-period near-Earth comets and, based on a de-biasing procedure applied to the cryogenic NEOWISE survey, estimate both magnitude-limited and size-limited fractions of the NEA population that are dormant short-period comets. We find that 0.3-3.3% of the NEA population with H <= 21, and 9(+2/-5)% of the population with diameters d >= 1 km, are dormant short-period near-Earth comets. We also present an observation program that utilizes the 1.8m Vatican Advanced Technology Telescope (VATT) on Mt. Graham, AZ, to identify dormant comet candidates and search for activity in these objects. Our targets are NEAs on comet-like orbits, based on the dynamical criteria derived in the above study, that are accessible with the VATT (V <= 22). We identify dormant comets based on their optical spectral slope, represented by V-R color measurements, as albedo measurements for most of these objects are not available. For each target we measure and monitor its V magnitude in order to reveal activity outbreaks. We also search for extended emission around our targets using deep imaging and a point-spread-function subtraction technique that allows us to obtain an upper limit on the dust production rate in each target. We present preliminary results from this program. This work is supported in part by funding from the Spitzer Science Center.

  6. Asteroid Redirect Mission: EVA and Sample Collection

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Stich, Steve

    2015-01-01

    Asteroid Redirect Mission (ARM) Overview (1) Notional Development Schedule, (2) ARV Crewed Mission Accommodations; Asteroid Redirect Crewed Mission (ARCM) Mission Summary; ARCM Accomplishments; Sample collection/curation plan (1) CAPTEM Requirements; SBAG Engagement Plan

  7. OSIRIS-REx Asteroid Sample-Return Mission

    NASA Astrophysics Data System (ADS)

    DellaGiustina, D. N.; Lauretta, D. S.

    2016-12-01

    Launching in September 2016, the primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission is to return a pristine sample of asteroid (101955) Bennu to Earth for sample analysis. Bennu is a carbonaceous primitive near-Earth object, and is expected to be rich in volatile and organic material leftover from the formation of the Solar System. OSIRIS-REx will return a minimum of 60 g of bulk surface material from this body using a novel "touch-and-go" sample acquisition mechanism. Analyses of these samples will provide unprecedented knowledge about presolar history, from the initial stages of planet formation to the origin of life. Before sample acquisition, OSIRIS-REx will perform global mapping of Bennu, detailing the asteroid's composition and texture, resolving surface features, revealing its geologic and dynamic history, and providing context for the returned samples. The mission will also document the sampling site in situ at sub-centimeter scales, as well as the asteroid sampling event. In addition, OSIRIS-REx will measure the Yarkovsky effect, a non-Keplerian force affecting the orbit of this potentially hazardous asteroid, and provide a ground truth data for the interpretation of telescopic observations of carbonaceous asteroids.

  8. Comet 81P/Wild 2 under a microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownlee, D; Tsou, P; Aleon, J

    2006-10-12

    The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixingmore » on the grandest scales. Stardust was the first mission to return solid samples from a specific astronomical body other than the Moon. The mission, part of the NASA Discovery program, retrieved samples from a comet that is believed to have formed at the outer fringe of the solar nebula, just beyond the most distant planet. The samples, isolated from the planetary region of the solar system for billions of years, provide new insight into the formation of the solar system. The samples provide unprecedented opportunities both to corroborate astronomical (remote sensing) and sample analysis information (ground truth) on a known primitive solar system body and to compare preserved building blocks from the edge of the planetary system with sample-derived and astronomical data for asteroids, small bodies that formed more than an order of magnitude closer to the Sun. The asteroids, parents of most meteorites, formed by accretion of solids in warmer, denser, more collisionally evolved inner regions of the solar nebula where violent nebular events were capable of flash-melting millimeter-sized rocks, whereas comets formed in the coldest, least dense region. The samples collected by Stardust are the first primitive materials from a known body, and as such they provide contextual insight for all primitive meteoritic samples. About 200 investigators around the world participated in the preliminary analysis of the returned samples, and the papers in this issue summarize their findings.« less

  9. Sample Return Science by Hayabusa Near-Earth Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Fujiwara, A.; Abe, M.; Kato, M.; Kushiro, I.; Mukai, T.; Okada, T.; Saito, J.; Sasaki, S.; Yano, H.; Yeomans, D.

    2004-01-01

    Assigning the material species to each asteroid spectral type and finding out the corresponding meteorite category is crucial to make the global material map in the whole asteroid belt and to understand the evolution of the asteroid belt. Recent direct observations by spacecrafts are revealing new intriguing aspects of asteroids which cannot be obtained solely from ground-based observations or meteorite studies. However identification of the real material species constituting asteroids and their corresponding meteorite analogs are still ambiguous. Space weathering makes difficult to identify the true material, and there is still a great gap between the remote sensing data on the global surface and the local microscopic data from meteorites. Sample return from asteroids are inevitable to solve these problems. For this purpose sample return missions to asteroids belonging to various spectral classes are required. The HAYABUSA spacecraft (prelaunch name is MUSESC) launched last year is the first attempt on this concept. This report presents outline of the mission with special stress on its science.

  10. Asteroid exploration and utilization: The Hawking explorer

    NASA Technical Reports Server (NTRS)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  11. Asteroid exploration and utilization: The Hawking explorer

    NASA Astrophysics Data System (ADS)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-12-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  12. A preliminary analysis of the orbit of the Mars Trojan asteroid (5261) Eureka

    NASA Technical Reports Server (NTRS)

    Mikkola, Seppo; Innanen, Kimmo; Muinonen, Karri; Bowell, Edward

    1994-01-01

    Observations and results of orbit determination of the first known Mars Trojan asteroid (5261) Eureka are presented. We have numerically calculated the evolution of the orbital elements, and have analyzed the behavior of the motion during the next 2 Myr. Strong perturbations by planets other than Mars seem to stabilize the eccentricity of the asteroid by stirring the high order resonances present in the elliptic restricted problem. As a result, the orbit appears stable at least on megayear timescales. The difference of the mean longitudes of Mars and Eureka and the semimajor axis of the asteroid form a pair of variables that essentially behave in an adiabatic manner, while the evolution of the other orbital elements is largely determined by the pertubations due to other planets.

  13. NASA's Asteroid Redirect Mission (ARM)

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2017-01-01

    Mission Description and Objectives: NASA's Asteroid Redirect Mission (ARM) consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), a robotic mission to visit a large (greater than approximately 100 meters diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will explore and investigate the boulder and return to Earth with samples. The ARRM is currently planned to launch at the end of 2021 and the ARCM is scheduled for late 2026.

  14. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; Mcmillan, C.

    1992-01-01

    During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.

  15. COMPASS Final Report: Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2009-01-01

    In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the NASA In-Space Propulsion Office. The objective of the study was to support technology development and assess the relative benefits of different electric propulsion systems on asteroid sample return design. The design uses a single, heritage Orion solar array (SA) (approx.6.5 kW at 1 AU) to power a single NASA Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle spirals back to Earth where it drops off the first sample s return capsule and performs an Earth flyby to assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New Frontier s (NF's) class mission.

  16. Multi-Wavelength Observations of Asteroid 2100 Ra-Shalom: Visible, Infrared, and Thermal Spectroscopy Results

    NASA Technical Reports Server (NTRS)

    Clark, Beth Ellen; Shepard, M.; Bus, S. J.; Vilas, F.; Rivkin, A. S.; Lim, L.; Lederer, S.; Jarvis, K.; Shah, S.; McConnochie, T.

    2004-01-01

    The August 2003 apparition of asteroid 2100 Ra-Shalom brought together a collaboration of observers with the goal of obtaining rotationally resolved multiwavelength spectra at each of 5 facilities: infrared spectra at the NASA Infrared Telescope Facility (Clark and Shepard), radar images at Arecibo (Shepard and Clark), thermal infrared spectra at Palomar (Lim, McConnochie and Bell), visible spectra at McDonald Observatory (Vilas, Lederer and Jarvis), and visible lightcurves at Ondrojev Observatory (Pravec). The radar data was to be used to develop a high spatial resolution physical model to be used in conjunction with spectral data to investigate compositional and textural properties on the near surface of Ra Shalom as a function of rotation phase. This was the first coordinated multi-wavelength investigation of any Aten asteroid. There are many reasons to study near-Earth asteroid (NEA) 2100 Ra-Shalom: 1) It has a controversial classification (is it a C- or K-type object)? 2) There would be interesting dynamical ramifications if Ra-Shalom is a K-type because most K-types come from the Eos family and there are no known dynamical pathways from Eos to the Aten population. 3) The best available spectra obtained previously may indicate a heterogeneous surface (most asteroids appear to be fairly homogeneous). 4) Ra-Shalom thermal observations obtained previously indicated a lack of regolith, minimizing the worry of space weathering effects in the spectra. 5) Radar observations obtained previously hinted at interesting surface structures. 6) Ra-Shalom is one of the largest Aten objects. And 7) Ra-Shalom is on a short list of proposed NEAs for spacecraft encounters and possible sample returns. Preliminary results from the visible, infrared, and thermal spectroscopy measurements will be presented here.

  17. Samples from Differentiated Asteroids; Regolithic Achondrites

    NASA Technical Reports Server (NTRS)

    Herrin J. S.; Ross, A. J.; Cartwright, J. A.; Ross, D. K.; Zolensky, Michael E.; Jenniskens, P.

    2011-01-01

    Differentiated and partially differentiated asteroids preserve a glimpse of planet formation frozen in time from the early solar system and thus are attractive targets for future exploration. Samples of such asteroids arrive to Earth in the form of achondrite meteorites. Many achondrites, particularly those thought to be most representative of asteroidal regolith, contain a diverse assortment of materials both indigenous and exogenous to the original igneous parent body intermixed at microscopic scales. Remote sensing spacecraft and landers would have difficulty deciphering individual components at these spatial scales, potentially leading to confusing results. Sample return would thus be much more informative than a robotic probe. In this and a companion abstract [1] we consider two regolithic achondrite types, howardites and (polymict) ureilites, in order to evaluate what materials might occur in samples returned from surfaces of differentiated asteroids and what sampling strategies might be prudent.

  18. Speckle interferometry of asteroids

    NASA Technical Reports Server (NTRS)

    Drummond, Jack D.; Hege, E. Keith

    1989-01-01

    Steward Observatory's two-dimensional power spectrum signature analysis of speckle interferometry observations is summarized. Results for six asteroids are presented. The poles and triaxial ellipsoid dimensions of 4 Vesta, 433 Eros, 511 Davida, and 532 Herculina have been previously reported. New results for 2 Pallas and 29 Amphitrite are given, as well as further results for Vesta. Image reconstruction is ultimately required to minimize biasing effects of asteroid surface features on the simpler power spectrum analysis. Preliminary imaging results have been achieved for Vesta and Eros, and images for these two are displayed. Speckle interferometry and radiometry diameters are compared, and diameters from the two occultations of Pallas are addressed.

  19. Preliminary performance analysis of an interplanetary navigation system using asteroid based beacons

    NASA Technical Reports Server (NTRS)

    Jee, J. Rodney; Khatib, Ahmad R.; Muellerschoen, Ronald J.; Williams, Bobby G.; Vincent, Mark A.

    1988-01-01

    A futuristic interplanetary navigation system using transmitters placed on selected asteroids is introduced. This network of space beacons is seen as a needed alternative to the overly burdened Deep Space Network. Covariance analyses on the potential performance of these space beacons located on a candidate constellation of eight real asteroids are initiated. Simplified analytic calculations are performed to determine limiting accuracies attainable with the network for geometric positioning. More sophisticated computer simulations are also performed to determine potential accuracies using long arcs of range and Doppler data from the beacons. The results from these computations show promise for this navigation system.

  20. Trojan Asteroid Lightcurves: Probing Internal Structure and the Origins

    NASA Astrophysics Data System (ADS)

    Ryan, E. L.

    2017-12-01

    Studies of the small bodies of the solar system reveal important clues about the condensation and formation of planetesimal bodies, and ultimately planets in planetary systems. Dynamics of small bodies have been utilized to model giant planet migration within our solar system, colors have been used to explore compositional gradients within the protoplanetary disk, & studies of the size-frequency distribution of main belt asteroids may reveal compositional dependences on planetesimal strength limiting models of planetary growth from collisional aggregration. Studies of the optical lightcurves of asteroids also yield important information on shape and potential binarity of asteroidal bodies. The K2 mission has allowed for the unprecedented collection of Trojan asteroid lightcurves on a 30 minute cadence for baselines of 10 days, in both the L4 and L5 Trojan clouds. Preliminary results from the K2 mission suggest that Trojan asteroids have bulk densities of 1 g/cc and a binary fraction ≤ 33 percent (Ryan et al., 2017, Astronomical Journal, 153, 116), however Trojan lightcurve data is actively being collected via the continued K2 mission. We will present updated results of bulk density and binary fraction of the Trojan asteroids and compare these results to other small body populations, including Hilda asteroids, transNeptunian objects and comet nuclei to test dynamical models of the origins of these populations.

  1. The Gaia Investigation of the Solar System

    NASA Astrophysics Data System (ADS)

    Delbo, Marco; Tanga, Paolo; Mignard, Francois; Cellino, Alberto; Hestroffer, Daniel

    2015-08-01

    The space mission Gaia of the European Space Agency (ESA) has begun its scientific whole-sky survey of all astrophysical sources with V<=20 in July 2014. The high precision astrometry is the main science driver for the mission, but Gaia will also obtain visible photometry and low-resolution spectroscopy of the observed sources, including solar system small bodies. Preliminary results show a good quality of the data, in general, in line with the expected pre-flight specifications. These data will consist a mine of information for a remote-sensing exploration of the small worlds of our Solar System. Indeed, ~250,000 asteroids will be observed by Gaia throughout its 5-years-long mission. After an update about the status of the mission and the on-going data analysis, including some preliminary results, we are going to present the plans for the data releases, the first foreseen at the end of 2016, and the general data treatment.We will show how Gaia spectroscopy will allow up to map the composition of about 100,000 asteroids throughout the Main Belt, with high signal to noise ratio. Given its advantage position outside the Earth's atmosphere, the blue part of the spectrum (roughly below 0.5 micron) will be observed for an unprecedented number of asteroids.Additionally, precise photometry and astrometry will also be important to reveal the physical nature of these small bodies. In particular, it is estimated that three-dimensional shapes, rotation, period and pole orientation will be derived for 10,000 asteroids. The masses of about 150 of the largest asteroids, will be determined from measurements of the orbital gravitational perturbations that these bodies will exert on small asteroids during mutual close approaches.Moreover, the combination of Gaia data (delivering masses and shapes) with infrared radiometric observations, e.g. from the NASA WISE mission (informing us about the size of the bodies), will allow precise asteroid bulk densities to be determined. The bulk density and the internal structure are among the most important characteristics of asteroids, that are currently some of the least constrained.

  2. Relative Terrain Imaging Navigation (RETINA) Tool for the Asteroid Redirect Robotic Mission (ARRM)

    NASA Technical Reports Server (NTRS)

    Wright, Cinnamon A.; Van Eepoel, John; Liounis, Andrew; Shoemaker, Michael; DeWeese, Keith; Getzandanner, Kenneth

    2016-01-01

    As a part of the NASA initiative to collect a boulder off of an asteroid and return it to Lunar orbit, the Satellite Servicing Capabilities Office (SSCO) and NASA GSFC are developing an on-board relative terrain imaging navigation algorithm for the Asteroid Redirect Robotic Mission (ARRM). After performing several flybys and dry runs to verify and refine the shape, spin, and gravity models and obtain centimeter level imagery, the spacecraft will descend to the surface of the asteroid to capture a boulder and return it to Lunar Orbit. The algorithm implements Stereophotoclinometry methods to register landmarks with images taken onboard the spacecraft, and use these measurements to estimate the position and orientation of the spacecraft with respect to the asteroid. This paper will present an overview of the ARRM GN&C system and concept of operations as well as a description of the algorithm and its implementation. These techniques will be demonstrated for the descent to the surface of the proposed asteroid of interest, 2008 EV5, and preliminary results will be shown.

  3. The Osiris-Rex Mission - Sample Acquisitions Strategy and Evidence for the Nature of Regolith on Asteroid (101955) 1999 RQ36

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Barucci, M. A.; Bierhaus, E. B.; Brucato, J. R.; Campins, H.; Christensen, P. R.; Clark, B. C.; Connolly, H. C.; Dotto, E.; Dworkin, J. P.; hide

    2012-01-01

    NASA selected the OSIRIS-REx Asteroid Sample Return Mission as the third New Frontiers mission in May 2011 [I]. The mission name is an acronym that captures the scientific objectives: Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer. OSIRIS-REx will characterize near-Earth asteroid (101955) 1999 RQ36, which is both the most accessible carbonaceous asteroid [2,3] and one of the most potentially hazardous asteroids known [4]. The primary objective of the mission is to return a pristine sample from this bod, to advance our understanding of the generation, evolution, and maturation of regolith on small bodies.

  4. Micro Asteroid Prospector Powered by Energetic Radioisotopes: MAPPER

    NASA Astrophysics Data System (ADS)

    Howe, Steven D.; Jackson, Gerald P.

    2005-02-01

    The solar system is an almost limitless store-house of resources. As humanity begins to expand into space, we can greatly reduce the cost and effort of exploration by using the resources from other orbiting bodies. The ability to extract volatile gases or structural materials from moons and other planetesimals will allow smaller ships, faster missions, and lower costs. Part of the problem, however, will be to locate the desired deposits from the billions of square miles of surface area present in the solar system. The asteroid belt between Mars and Jupiter is perhaps the most valuable and most overlooked of resource deposits in the solar system. The total mass of the Belt is estimated to be 1/1000 the mass of the Earth. The ultimate goal of this project is to identify and investigate an exploration architecture that would allow a hundreds of ultra-light-weight instrument packages to be sent to the Asteroid Belt. We have performed a preliminary analysis that has characterized the bodies in the Asteroid Belt, identified subsystems needed on the platform, and completed a preliminary optimization of the flight profile and propulsion characteristics to maximize the number of bodies that could be catalogued. The results showed that the mass and power of the platform is strongly dependent upon the average cruise velocity, the specific impulse of the thruster, and the time to accelerate up to speed. The preliminary optimization indicates that the best cruise velocity is around 0.5 km/s and the best Isp is 1500 s. Our conclusion is that platforms with near 100 kg total mass could be built relatively inexpensively. This many spacecraft would catalogue an area equivalent to 20% the area of the Earth's surface in a 20 year period.

  5. The Nature of C Asteroid Regolith from Meteorite Observations

    NASA Technical Reports Server (NTRS)

    Zolensky, M.; Mikouchi, T.; Hagiya, K.; Ohsumi, K.; Komatsu, M.; Jenniskens, P.; Le, L.; Yin, Q.-Z; Kebukawa, Y.; Fries, M.

    2013-01-01

    Regolith from C (and related) asteroid bodies are a focus of the current missions Dawn at Ceres, Hayabusa 2 and OSIRIS REx. An asteroid as large as Ceres is expected to be covered by a mature regolith, and as Hayabusa demonstrated, flat and therefore engineeringly-safe ponded deposits will probably be the sampling sites for both Hayabusa 2 and OSIRIS REx. Here we examine what we have learned about the mineralogy of fine-grained asteroid regolith from recent meteorite studies and the examination of the samples harvested from asteroid Itokawa by Hayabusa.

  6. The Gulliver Mission: A Short-Cut to Primitive Body and Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Britt, D. T.

    2003-05-01

    The Martian moon Deimos has extraordinary potential for future sample return missions. Deimos is spectrally similar to D-type asteroids and may be a captured primitive asteroid that originated in the outer asteroid belt. This capture probably took place in the earliest periods of Martian history, over 4.4 Gyrs ago [1], and Deimos has been accumulating material ejected from the Martian surface ever since. Analysis of Martian ejecta, material accumulation, capture cross-section, regolith over-turn, and Deimos's albedo suggest that Mars material may make up as much as 10% of Deimos's regolith. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. Deimos could be a repository of samples from ancient Mars, including the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. In addition to Martian ejecta, 90% of the Deimos sample will be spectral type D asteroidal material. D-type asteroids are thought to be highly primitive and are most common in the difficult to access outer asteroid belt and the Jupiter Trojans. The Gulliver Mission proposes to directly collect up to 10 kilograms of Deimos regolith and return it to Earth. This sample may contain up to 1000 grams of Martian material along with up to 9 kilograms of primitive asteroidal material. Because of stochastic processes of regolith mixing over 4.4 Gyrs, the rock fragments and grains will likely sample the diversity of the Martian ancient surface as well as the asteroid. In essence, Gulliver represents two shortcuts, to Mars sample return and to the outer asteroid belt. References: [1] Burns J. A. (1992) Mars (Kieffer H. H. et al., eds), 1283-1302.

  7. The Relationship Between Cosmic-Ray Exposure Ages And Mixing Of CM Chondrite Lithologies

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Takenouchi, A.; Gregory, T.; Nishiizumi, K.; Caffee, M.; Velbel, M. A.; Ross, K.; Zolensky, A.; Le, L.; Imae, N.; hide

    2017-01-01

    Carbonaceous (C) chondrites are primitive materials probably deriving from C, P and D asteroids, and as such potentially include samples and analogues of the target asteroids of the Dawn, Hayabusa2 and OSIRIS-Rex missions. Foremost among the C chondrites are the CM chondrites, the most common type, and which have experienced the widest range of early solar system processes including oxidation, hydration, metamorphism, and impact shock deformation, often repeatedly or cyclically [1]. To track the activity of these processes in the early solar system, it is critical to learn how many separate bodies are represented by the CMs. Nishiizumi and Caffee [2] have reported that the CMs are unique in displaying several distinct peaks for cosmic-ray exposure (CRE) age groups, and that excavation from significant depth and exposure as small entities in space is the best explanation for the observed radionuclide data. There are either 3 or 4 CRE groups for CMs (Fig.1). We decided to systematically characterize the petrography in each of the CRE age groups to determine whether the groups have significant petrographic differences with these reflecting different parent asteroid geological processing or multiple original bodies. We previously re-ported preliminary results of our work [3], however we have now reexamined these meteorites from the perspective of brecciation, with interesting new results.

  8. Asteroid Generated Tsunami Workshop: Summary of NASA/NOAA Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, David; Venkatapathy, Ethiraj

    2017-01-01

    A two-day workshop on tsunami generated by asteroid impacts in the ocean resulted in a broad consensus that the asteroid impact tsunami threat is not as great as previously thought, that airburst events in particular are unlikely to produce significant damage by tsunami, and that the tsunami contribution to the global ensemble impact hazard is substantially less than the contribution from land impacts. The workshop, led by Ethiraj Venkatapathy and David Morrison of NASA Ames, was organized into three sessions: 1) Near-field wave generation by the impact; 2) Long distance wave propagation; 3) Damage from coastal run-up and inundation, and associated hazard. Workshop approaches were to compare simulations to understand differences in the results and gain confidence in the modeling for both formation and propagation of tsunami from asteroid impacts, and to use this information for preliminary global risk assessment. The workshop focus was on smaller asteroids (diameter less than 250m), which represent the most frequent impacts.

  9. Rapid design and optimization of low-thrust rendezvous/interception trajectory for asteroid deflection missions

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Zhu, Yongsheng; Wang, Yukai

    2014-02-01

    Asteroid deflection techniques are essential in order to protect the Earth from catastrophic impacts by hazardous asteroids. Rapid design and optimization of low-thrust rendezvous/interception trajectories is considered as one of the key technologies to successfully deflect potentially hazardous asteroids. In this paper, we address a general framework for the rapid design and optimization of low-thrust rendezvous/interception trajectories for future asteroid deflection missions. The design and optimization process includes three closely associated steps. Firstly, shape-based approaches and genetic algorithm (GA) are adopted to perform preliminary design, which provides a reasonable initial guess for subsequent accurate optimization. Secondly, Radau pseudospectral method is utilized to transcribe the low-thrust trajectory optimization problem into a discrete nonlinear programming (NLP) problem. Finally, sequential quadratic programming (SQP) is used to efficiently solve the nonlinear programming problem and obtain the optimal low-thrust rendezvous/interception trajectories. The rapid design and optimization algorithms developed in this paper are validated by three simulation cases with different performance indexes and boundary constraints.

  10. Bayesian modeling of the mass and density of asteroids

    NASA Astrophysics Data System (ADS)

    Dotson, Jessie L.; Mathias, Donovan

    2017-10-01

    Mass and density are two of the fundamental properties of any object. In the case of near earth asteroids, knowledge about the mass of an asteroid is essential for estimating the risk due to (potential) impact and planning possible mitigation options. The density of an asteroid can illuminate the structure of the asteroid. A low density can be indicative of a rubble pile structure whereas a higher density can imply a monolith and/or higher metal content. The damage resulting from an impact of an asteroid with Earth depends on its interior structure in addition to its total mass, and as a result, density is a key parameter to understanding the risk of asteroid impact. Unfortunately, measuring the mass and density of asteroids is challenging and often results in measurements with large uncertainties. In the absence of mass / density measurements for a specific object, understanding the range and distribution of likely values can facilitate probabilistic assessments of structure and impact risk. Hierarchical Bayesian models have recently been developed to investigate the mass - radius relationship of exoplanets (Wolfgang, Rogers & Ford 2016) and to probabilistically forecast the mass of bodies large enough to establish hydrostatic equilibrium over a range of 9 orders of magnitude in mass (from planemos to main sequence stars; Chen & Kipping 2017). Here, we extend this approach to investigate the mass and densities of asteroids. Several candidate Bayesian models are presented, and their performance is assessed relative to a synthetic asteroid population. In addition, a preliminary Bayesian model for probablistically forecasting masses and densities of asteroids is presented. The forecasting model is conditioned on existing asteroid data and includes observational errors, hyper-parameter uncertainties and intrinsic scatter.

  11. Optimal design of near-Earth asteroid sample-return trajectories in the Sun-Earth-Moon system

    NASA Astrophysics Data System (ADS)

    He, Shengmao; Zhu, Zhengfan; Peng, Chao; Ma, Jian; Zhu, Xiaolong; Gao, Yang

    2016-08-01

    In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-km-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.

  12. Almahata Sitta and Brecciated Ureilites: Insights into the Heterogeneity of Asteroids and Implications for Sample Return

    NASA Technical Reports Server (NTRS)

    Ross, A. J.; Herrin, J. S.; Alexander, L.; Downes, H.; Smith, C. L.; Jenniskens, P.

    2011-01-01

    Analysis of samples returned to terrestrial laboratories enables more precise measurements and a wider range of techniques to be utilized than can be achieved with either remote sensing or rover instruments. Furthermore, returning samples to Earth allows them to be stored and re-examined with future technology. Following the success of the Hayabusa mission, returning samples from asteroids should be a high priority for understanding of early solar system evolution, planetary formation and differentiation. Meteorite falls provide us with materials and insight into asteroidal compositions. Almahata Sitta (AS) was the first meteorite fall from a tracked asteroid (2008 TC3) [1] providing a rare opportunity to compare direct geochemical observations with remote sensing data. Although AS is predominantly ureilitic, multiple chondritic fragments have been associated with this fall [2,3]. This is not unique, with chondritic fragments being found in many howardite samples (as described in a companion abstract [4]) and in brecciated ureilites, some of which are known to represent ureilitic regolith [5-7]. The heterogeneity of ureilite samples, which are thought to all originate from a single asteroidal ureilite parent body (UPB) [5], gives us information about both internal and external asteroidal variations. This has implications both for the planning of potential sample return missions and the interpretation of material returned to Earth. This abstract focuses on multiple fragments of two meteorites: Almahata Sitta (AS); and Dar al Gani (DaG) 1047 (a highly brecciated ureilite, likely representative of ureilite asteroidal regolith).

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gould, Andrew; Yee, Jennifer C., E-mail: gould@astronomy.ohio-state.edu, E-mail: jyee@astronomy.ohio-state.edu

    While of order of a million asteroids have been discovered, the number in rigorously controlled samples that have precise orbits and rotation periods, as well as well-measured colors, is relatively small. In particular, less than a dozen main-belt asteroids with estimated diameters D < 3 km have excellent rotation periods. We show how existing and soon-to-be-acquired microlensing data can yield a large asteroid sample with precise orbits and rotation periods, which will include roughly 6% of all asteroids with maximum brightness I < 18.1 and lying within 10 Degree-Sign of the ecliptic. This sample will be dominated by small andmore » very small asteroids, down to D {approx} 1 km. We also show how asteroid astrometry could turn current narrow-angle OGLE proper motions of bulge stars into wide-angle proper motions. This would enable one to measure the proper-motion gradient across the Galactic bar.« less

  14. Orbital evolution studies of planet-crossing asteroids

    NASA Astrophysics Data System (ADS)

    Hahn, Gerhard; Lagerkvist, Claes-Ingvar

    The orbits of 26 planet-crossing Aten-Apollo-Amor asteroids are predicted on the basis of numerical integrations covering 33,000 or 100,000 yrs; the values reported supplement the preliminary findings of Hahn and Lagerkvist (1987). A solar-system dynamics model accounting for the effects of all planets from Venus to Neptune is employed, along with the 15th-order integration algorithm RADAU (Everhart, 1985). The results are presented in extensive tables and graphs and discussed in detail.

  15. The DEEP-South: Preliminary Photometric Results from the KMTNet-CTIO

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Jin; Moon, Hong-Kyu; Choi, Young-Jun; Yim, Hong-Suh; Bae, Youngho; Roh, Dong-Goo; the DEEP-South Team

    2015-08-01

    The DEep Ecliptic Patrol of the Southern sky (DEEP-South) will not only conduct characterization of targeted asteroids and blind survey at the sweet spots, but also utilize data mining of small Solar System bodies in the whole KMTNet archive. As round-the-clock observation with the KMTNet is optimized for spin characterization of tumbling and slow-rotating bodies as it facilitates debiasing previously reported lightcurve observations. It is also most suitable for detection and rapid follow-up of Atens and Atiras, the “difficult objects” that are being discovered at lower solar elongations.For the sake of efficiency, we implemented an observation scheduler, SMART (Scheduler for Measuring Asteroids RoTation), designed to conduct follow-up observations in a timely manner. It automatically updates catalogs, generates ephemerides, checks priorities, prepares target lists, and sends a suite of scripts to site operators. We also developed photometric analysis software called ASAP (Asteroid Spin Analysis Package) that aids to find a set of appropriate comparison stars in an image, to derive spin parameters and reconstruct lightcurve simultaneously in a semi-automatic manner. In this presentation, we will show our preliminary results of time series analyses of a number of km-sized Potentially Hazardous Asteroids (PHAs), 5189 (1990 UQ), 12923 (1999 GK4), 53426 (1999 SL5), 136614 (1993 VA6), 385186 (1994 AW1), and 2000 OH from test runs in February and March 2015 at the KMTNet-CTIO.

  16. Integrated science and engineering for the OSIRIS-REx asteroid sample return mission

    NASA Astrophysics Data System (ADS)

    Lauretta, D.

    2014-07-01

    Introduction: The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission will survey near-Earth asteroid (101955) Bennu to understand its physical, mineralogical, and chemical properties, assess its resource potential, refine the impact hazard, and return a sample of this body to the Earth [1]. This mission is scheduled for launch in 2016 and will rendezvous with the asteroid in 2018. Sample return to the Earth follows in 2023. The OSIRIS-REx mission has the challenge of visiting asteroid Bennu, characterizing it at global and local scales, then selecting the best site on the asteroid surface to acquire a sample for return to the Earth. Minimizing the risk of exploring an unknown world requires a tight integration of science and engineering to inform flight system and mission design. Defining the Asteroid Environment: We have performed an extensive astronomical campaign in support of OSIRIS-REx. Lightcurve and phase function observations were obtained with UA Observatories telescopes located in southeastern Arizona during the 2005--2006 and 2011--2012 apparitions [2]. We observed Bennu using the 12.6-cm radar at the Arecibo Observatory in 1999, 2005, and 2011 and the 3.5-cm radar at the Goldstone tracking station in 1999 and 2005 [3]. We conducted near-infrared measurements using the NASA Infrared Telescope Facility at the Mauna Kea Observatory in Hawaii in September 2005 [4]. Additional spectral observations were obtained in July 2011 and May 2012 with the Magellan 6.5-m telescope [5]. We used the Spitzer space telescope to observe Bennu in May 2007 [6]. The extensive knowledge gained as a result of our telescopic characterization of Bennu was critical in the selection of this object as the OSIRIS-REx mission target. In addition, we use these data, combined with models of the asteroid, to constrain over 100 different asteroid parameters covering orbital, bulk, rotational, radar, photometric, spectroscopic, thermal, regolith, and asteroid environmental properties. We have captured this information in a mission configuration-controlled document called the Design Reference Asteroid. This information is used across the project to establish the environmental requirements for the flight system and for overall mission design. Maintaining a Pristine Sample: OSIRIS-REx is driven by the top-level science objective to return >60 g of pristine, carbonaceous regolith from asteroid Bennu. We define a "pristine sample" to mean that no foreign material introduced into the sample hampers our scientific analysis. Basically, we know that some contamination will take place --- we just have to document it so that we can subtract it from our analysis of the returned sample. Engineering contamination requirements specify cleanliness in terms of particle counts and thin- films residues --- scientists define it in terms of bulk elemental and organic abundances. After initial discussions with our Contamination Engineers, we agreed on known, albeit challenging, particle and thin-film contamination levels for the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) and the Sample Return Capsule. These levels are achieved using established cleaning procedures while minimizing interferences for sample analysis. Selecting a Sample Site: The Sample Site Selection decision is based on four key data products: Deliverability, Safety, Sampleability, and Science Value Maps. Deliverability quantifies the probability that the Flight Dynamics team can deliver the spacecraft to the desired location on the asteroid surface. Safety maps assess candidate sites against the capabilities of the spacecraft. Sampleability requires an assessment of the asteroid surface properties vs. TAGSAM capabilities. Scientific value maximizes the probability that the collected sample contains organics and volatiles and can be placed in a geological context definitive enough to determine sample history. Science and engineering teams work collaboratively to produce these key decision-making maps.

  17. Spectral Characterization of Analog Samples in Anticipation of OSIRIS-REx's Arrival at Bennu

    NASA Technical Reports Server (NTRS)

    Donaldson Hanna, K. L.; Schrader, D. L.; Bowles, N. E.; Clark, B. E.; Cloutis, E. A.; Connolly, H. C., Jr.; Hamilton, V. E.; Keller, L. P.; Lauretta, D. S.; Lim, L. F.; hide

    2017-01-01

    NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission successfully launched on September 8th, 2016. During its rendezvous with near-Earth asteroid (101955) Bennu beginning in 2018, OSIRIS-REx will characterize the asteroid's physical, mineralogical, and chemical properties in an effort to globally map the properties of Bennu, a primitive carbonaceous asteroid, and choose a sampling location [e.g. 1]. In preparation for these observations, we spectrally characterized a suite of analog samples across visible, near- and thermal-infrared wavelengths and used these in initial tests of phase detection and abundance determination software algorithms. Here we present the thermal infrared laboratory measurements of the analog sample suite measured under asteroidlike conditions, which are relevant to the interpretation of spectroscopic observations by the OSIRIS-REx Thermal Emission Spectrometer (OTES) [2, 3]. This suite of laboratory measurements of asteroid analogs under asteroid-like conditions is the first of their kind.

  18. Target selection for a hypervelocity asteroid intercept vehicle flight validation mission

    NASA Astrophysics Data System (ADS)

    Wagner, Sam; Wie, Bong; Barbee, Brent W.

    2015-02-01

    Asteroids and comets have collided with the Earth in the past and will do so again in the future. Throughout Earth's history these collisions have played a significant role in shaping Earth's biological and geological histories. The planetary defense community has been examining a variety of options for mitigating the impact threat of asteroids and comets that approach or cross Earth's orbit, known as near-Earth objects (NEOs). This paper discusses the preliminary study results of selecting small (100-m class) NEO targets and mission analysis and design trade-offs for validating the effectiveness of a Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, currently being investigated for a NIAC (NASA Advanced Innovative Concepts) Phase 2 study. In particular this paper will focus on the mission analysis and design for single spacecraft direct impact trajectories, as well as several mission types that enable a secondary rendezvous spacecraft to observe the HAIV impact and evaluate it's effectiveness.

  19. Penetrator Coring Apparatus for Cometary Surfaces

    NASA Technical Reports Server (NTRS)

    Braun, David F.; Heinrich, Michael; Ai, Huirong Anita; Ahrens, Thomas J.

    2004-01-01

    Touch and go impact coring is an attractive technique for sampling cometary nuclei and asteroidal surface on account of the uncertain strength properties and low surface gravities of these objects. Initial coring experiments in low temperature (approx. 153K polycrystalline ice) and porous rock demonstrate that simultaneous with impact coring, measurements of both the penetration strength and constraints on the frictional properties of surface materials can be obtained upon core penetration and core sample extraction. The method of sampling an asteroid, to be deployed, on the now launched MUSES-C mission, employs a small gun device that fires into the asteroid and the resulted impact ejecta is collected for return to Earth. This technique is well suited for initial sampling in a very low gravity environment and deployment depends little on asteroid surface mechanical properties. Since both asteroids and comets are believed to have altered surface properties a simple sampling apparatus that preserves stratigraphic information, such as impact coring is an attractive alternate to impact ejecta collection.

  20. OSIRIS-REx A NASA Mission to a Near Earth Asteroid!...and Other Recent Happenings in the Solar System

    NASA Technical Reports Server (NTRS)

    Moreau, Michael C.

    2015-01-01

    The OSIRIS-REx Mission launches in 2016 Arrives at Asteroid Bennu-2018 Returns a sample to Earth -2023 The mission, OSIRIS-REx, will visit an asteroid and return a sample from the early Solar System to help us understand how our Solar System formed.

  1. The global topography of Bennu: altimetry, photoclinometry, and processing

    NASA Astrophysics Data System (ADS)

    Perry, M. E.; Barnouin, O. S.; Daly, M. G.; Seabrook, J.; Palmer, E. E.; Gaskell, R. W.; Craft, K. L.; Roberts, J. H.; Philpott, L.; Asad, M. Al; Johnson, C. L.; Nair, A. H.; Espiritu, R. C.; Nolan, M. C.; Lauretta, D. S.

    2017-09-01

    The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission will spend two years observing (101955) Bennu and will then return pristine samples of carbonaceous material from the asteroid [1]. Launched in September 2016, OSIRISREx arrives at Bennu in August 2018, acquires a sample in July 2020, and returns the sample to Earth in September 2023. The instruments onboard OSIRIS-REx will measure the physical and chemical properties of this B-class asteroid, a subclass within the larger group of C-complex asteroids that might be organic-rich. At approximately 500m in average diameter [2], Bennu is sufficiently large to retain substantial regolith and as an Apollo asteroid with a low inclination (6°), it is one of the most accessible primitive near-Earth asteroid.

  2. Drilling, sampling, and sample-handling system for China's asteroid exploration mission

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Zhang, Wenming; Wang, Kang; Gao, Sheng; Hou, Liang; Ji, Jianghui; Ding, Xilun

    2017-08-01

    Asteroid exploration has a significant importance in promoting our understanding of the solar system and the origin of life on Earth. A unique opportunity to study near-Earth asteroid 99942 Apophis will occur in 2029 because it will be at its perigee. In the current work, a drilling, sampling, and sample-handling system (DSSHS) is proposed to penetrate the asteroid regolith, collect regolith samples at different depths, and distribute the samples to different scientific instruments for in situ analysis. In this system, a rotary-drilling method is employed for the penetration, and an inner sampling tube is utilized to collect and discharge the regolith samples. The sampling tube can deliver samples up to a maximum volume of 84 mm3 at a maximum penetration depth of 300 mm to 17 different ovens. To activate the release of volatile substances, the samples will be heated up to a temperature of 600 °C by the ovens, and these substances will be analyzed by scientific instruments such as a mass spectrometer, an isotopic analyzer, and micro-cameras, among other instruments. The DSSHS is capable of penetrating rocks with a hardness value of six, and it can be used for China's asteroid exploration mission in the foreseeable future.

  3. Asteroid Sample Return Mission Launches on This Week @NASA – September 9, 2016

    NASA Image and Video Library

    2016-09-09

    On Sept. 8, NASA launched the Origins, Spectral Interpretation, Resource Identification, Security - Regolith Explorer, or OSIRIS-REx mission from Cape Canaveral Air Force Station in Florida. OSIRIS-REx, the first U.S. mission to sample an asteroid, is scheduled to arrive at near-Earth asteroid Bennu in 2018. Mission plans call for the spacecraft to survey the asteroid, retrieve a small sample from its surface, and return the sample to Earth for study in 2023. Analysis of that sample is expected to reveal clues about the history of Bennu over the past 4.5 billion years, as well as clues about the evolution of our solar system. Also, Jeff Williams’ Record-Breaking Spaceflight Concludes, Next ISS Crew Prepares for Launch, Sample Return Robot Challenge, NASA X-Plane Gets its Wing, and Convergent Aeronautics Solutions Showcase!

  4. Asteroid exploration and utilization

    NASA Technical Reports Server (NTRS)

    Radovich, Brian M.; Carlson, Alan E.; Date, Medha D.; Duarte, Manny G.; Erian, Neil F.; Gafka, George K.; Kappler, Peter H.; Patano, Scott J.; Perez, Martin; Ponce, Edgar

    1992-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources possessed by asteroids have enormous potential for aiding and enhancing human space exploration as well as life on Earth. Project STONER (Systematic Transfer of Near Earth Resources) is based on mining an asteroid and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plan for humans to utilize asteroid resources. Project STONER is divided into two parts: asteroid selection and explorer spacecraft design. The spacecraft design team is responsible for the selection and integration of the subsystems: GNC, communications, automation, propulsion, power, structures, thermal systems, scientific instruments, and mechanisms used on the surface to retrieve and store asteroid regolith. The sample return mission scenario consists of eight primary phases that are critical to the mission.

  5. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Scoville, Zebulon; Sipila, Stephanie; Bowie, Jonathan

    2014-01-01

    NASA's Asteroid Redirect Crewed Mission (ARCM) is challenged with primary mission objectives of demonstrating deep space Extravehicular Activity (EVA) and tools, and obtaining asteroid samples to return to Earth for further study. Although the Modified Advanced Crew Escape Suit (MACES) is used for the EVAs, it has limited mobility which increases fatigue and decreases the crews' capability to perform EVA tasks. Furthermore, previous Shuttle and International Space Station (ISS) spacewalks have benefited from EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, some vehicle interfaces and tools can leverage heritage designs and experience. However, when the crew ventures onto an asteroid capture bag to explore the asteroid and collect rock samples, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as bunching of the fabric bag will complicate EVA translation, tool restraint and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the MACES suit. The proposed concept utilizes expandable booms and integrated features of the asteroid capture bag to position and restrain the crew at the asteroid worksite. These methods enable the capability to perform both finesse, and high load tasks necessary to collect samples for scientific characterization of the asteroid. This paper will explore the design trade space and options that were examined for EVA, the overall concept for the EVAs including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, the results of early development testing of potential EVA tasks, and extensibility of the EVA architecture to NASA's exploration missions.

  6. Exploration of the Eltanin Impact Area (Bellingshausen Sea): Expedition ANT XVIII5a

    NASA Technical Reports Server (NTRS)

    Gersonde, Rainer; Kyte, Frank T.

    2001-01-01

    The impact of the Eltanin asteroid into the Bellingshausen Sea (2.15 Ma) is the only known impact in a deep-ocean (approx. 5 km) basin. On 26 March 2001, the FS Polarstern returned to the impact area during expedition ANT XVIII/5a. Over a period of 14 days, this region was explored by detailed bathymetric mapping, acoustic profiling of sediment deposits, and direct sampling with 18 piston cores and four gravity cores. Preliminary shipboard examination of microfossils showed that sixteen of the piston cores and three gravity cores contained sediments at least as old as the impact event and have a high probability of containing a record of the disturbances caused by the impact. During the expedition, portions of eleven piston cores were opened for preliminary examination of the impact deposits. Visual examination of cores and microscopic identification of suspect impact melt particles were were used to identify ejecta and X-ray radiographs of the opened core segments permitted analysis of sediment structures. Impact deposits were found in nine of the eleven opened cores, and a similar success rate is anticipated in the seven cores remaining to be opened. These preliminary observations indicate that the highest concentrations of meteoritic ejecta and the largest particle sizes appear to occur in the region north of the San Martin seamounts. Recovered debris includes cm-sized melt rocks and a 2.5 cm meteorite. This expedition has confirmed the presence of high concentrations of meteoritic ejecta across a region at least as large as 10(exp 5) sq km. Quantitative analyses of ejecta distribution within this region will require further study, but previous estimates of 1 km for the minimum diameter of the Eltanin asteroid, appear safe.

  7. OSIRIS-REx, Returning the Asteroid Sample

    NASA Technical Reports Server (NTRS)

    Ajluni, Thomas, M.; Everett, David F.; Linn, Timothy; Mink, Ronald; Willcockson, William; Wood, Joshua

    2015-01-01

    This paper addresses the technical aspects of the sample return system for the upcoming Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission. The overall mission design and current implementation are presented as an overview to establish a context for the technical description of the reentry and landing segment of the mission.The prime objective of the OSIRIS-REx mission is to sample a primitive, carbonaceous asteroid and to return that sample to Earth in pristine condition for detailed laboratory analysis. Targeting the near-Earth asteroid Bennu, the mission launches in September 2016 with an Earth reentry date of September 24, 2023.OSIRIS-REx will thoroughly characterize asteroid Bennu providing knowledge of the nature of near-Earth asteroids that is fundamental to understanding planet formation and the origin of life. The return to Earth of pristine samples with known geologic context will enable precise analyses that cannot be duplicated by spacecraft-based instruments, revolutionizing our understanding of the early Solar System. Bennu is both the most accessible carbonaceous asteroid and one of the most potentially Earth-hazardous asteroids known. Study of Bennu addresses multiple NASA objectives to understand the origin of the Solar System and the origin of life and will provide a greater understanding of both the hazards and resources in near-Earth space, serving as a precursor to future human missions to asteroids.This paper focuses on the technical aspects of the Sample Return Capsule (SRC) design and concept of operations, including trajectory design and reentry retrieval. Highlights of the mission are included below.The OSIRIS-REx spacecraft provides the essential functions for an asteroid characterization and sample return mission: attitude control propulsion power thermal control telecommunications command and data handling structural support to ensure successful rendezvous with Bennu characterization of Bennus properties delivery of the sampler to the surface, and return of the spacecraft to the vicinity of the Earth sample collection, performed by the Touch-and-Go Sample Acquisition Mechanism (TAGSAM), to acquire a regolith sample from the surface Earth re-entry and SRC recovery. Following sample collection, OSIRIS-REx drifts away from Bennu until the Asteroid Departure Maneuver is commanded on March 4, 2021, sending OSIRIS-REx on a ballistic return cruise to Earth. No additional large deterministic maneuvers are required to return the SRC to Earth. During the cruise, tracking and trajectory correction maneuvers (TCMs) are performed as necessary to precisely target the entry corridor. As OSIRIS-REx approaches Earth, the reentry plans are reviewed starting about a year before arrival, and preparations begin. The spacecraft is targeted away from the Earth until 7 days before entry. The final two trajectory correction maneuvers bring the spacecraft on target toward the Utah Test and Training Range (UTTR), with sufficient time for contingency resolution. The SRC releases 4 hours prior to atmospheric entry interface and, using the Stardust capsule heritage design, employs a traditional drogue and main parachute descent system for a soft touchdown.

  8. Towards understanding the dynamical evolution of asteroid 25143 Itokawa: constraints from sample analysis

    NASA Astrophysics Data System (ADS)

    Connolly, Harold C.; Lauretta, Dante S.; Walsh, Kevin J.; Tachibana, Shogo; Bottke, William F.

    2015-01-01

    The data from the analysis of samples returned by Hayabusa from asteroid 25143 Itokawa are used to constrain the preaccretion history, the geological activity that occurred after accretion, and the dynamical history of the asteroid from the main belt to near-Earth space. We synthesize existing data to pose hypotheses to be tested by dynamical modeling and the analyses of future samples returned by Hayabusa 2 and OSIRIS-REx. Specifically, we argue that the Yarkosky-O'Keefe-Radzievskii-Paddack (YORP) effect may be responsible for producing geologically high-energy environments on Itokawa and other asteroids that process regolith and essentially affect regolith gardening.

  9. The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu

    NASA Astrophysics Data System (ADS)

    Reuter, D. C.; Simon, A. A.; Hair, J.; Lunsford, A.; Manthripragada, S.; Bly, V.; Bos, B.; Brambora, C.; Caldwell, E.; Casto, G.; Dolch, Z.; Finneran, P.; Jennings, D.; Jhabvala, M.; Matson, E.; McLelland, M.; Roher, W.; Sullivan, T.; Weigle, E.; Wen, Y.; Wilson, D.; Lauretta, D. S.

    2018-03-01

    The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000-2300 cm-1). Its primary purpose is to map the surface composition of the asteroid Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission. The information it returns will help guide the selection of the sample site. It will also provide global context for the sample and high spatial resolution spectra that can be related to spatially unresolved terrestrial observations of asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W average), and robust instrument with the sensitivity needed to detect a 5% spectral absorption feature on a very dark surface (3% reflectance) in the inner solar system (0.89-1.35 AU). It, in combination with the other instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an asteroid's surface.

  10. Hayabusa2 Sampler: Collection of Asteroidal Surface Material

    NASA Astrophysics Data System (ADS)

    Sawada, Hirotaka; Okazaki, Ryuji; Tachibana, Shogo; Sakamoto, Kanako; Takano, Yoshinori; Okamoto, Chisato; Yano, Hajime; Miura, Yayoi; Abe, Masanao; Hasegawa, Sunao; Noguchi, Takaaki

    2017-07-01

    Japan Aerospace Exploration Agency (JAXA) launched the asteroid exploration probe "Hayabusa2" in December 3rd, 2014, following the 1st Hayabusa mission. With technological and scientific improvements from the Hayabusa probe, we plan to visit the C-type asteroid 162137 Ryugu (1999 JU3), and to sample surface materials of the C-type asteroid that is likely to be different from the S-type asteroid Itokawa and contain more pristine materials, including organic matter and/or hydrated minerals, than S-type asteroids. We developed the Hayabusa2 sampler to collect a minimum of 100 mg of surface samples including several mm-sized particles at three surface locations without any severe terrestrial contamination. The basic configuration of the sampler design is mainly as same as the 1st Hayabusa (Yano et al. in Science, 312(5778):1350-1353, 2006), with several minor but important modifications based on lessons learned from the Hayabusa to fulfill the scientific requirements and to raise the scientific value of the returned samples.

  11. Cat Mountain: A meteoritic sample of an impact-melted chondritic asteroid

    NASA Technical Reports Server (NTRS)

    Kring, David A.

    1993-01-01

    Although impact cratering and collisional disruption are the dominant geologic processes affecting asteroids, samples of impact melt breccias comprise less than 1 percent of ordinary chondritic material and none exist among enstatite and carbonaceous chondrite groups. Because the average collisional velocity among asteroids is sufficiently large to produce impact melts, this paucity of impact-melted material is generally believed to be a sampling bias, making it difficult to determine the evolutionary history of chondritic bodies and how impact processes may have affected the physical properties of asteroids (e.g., their structural integrity and reflectance spectra). To help address these and related issues, the first petrographic description of a new chondritic impact melt breccia sample, tentatively named Cat Mountain, is presented.

  12. Impact Record of a Asteroid Regolith Recorded in a Carbonaceous Chrondrite

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Komatsu, Mutsumi; Chan, Queenie H. S.; Le, Loan; Kring, David; Cato, Michael; Fagan, Amy L.; hide

    2017-01-01

    C-class asteroids frequently exhibit reflectance spectra consistent with thermally metamor-phosed carbonaceous chondrites [1], or a mixture of phyllosilicate-rich material along with regions where they are absent [2]. One particularly important example appears to be asteroid 162173 Ryugu, the target of the Hayabusa 2 mission [1], although most spectra of Ryugu are featureless, suggesting a heterogeneous regolith [3]. Here we explore an alternative cause of dehydration of regolith of C-class asteroids - impact shock melting. Impact shock melting has been proposed to ex-plain some mineralogical characteristics of CB chondrites [4], but has rarely been considered a major process for hydrous carbonaceous chondrites [5]. Jbilet Winselwan (JW) is a very fresh CM breccia from Morocco, with intriguing characteristics. While some lithologies are typical of CM2s (Figure 1, top), other clasts show evidence of brief, though significant impact brecciation and heating. The first evidence for this came from preliminary petrographic and stable isotope studies [6,7]. We contend that highly-brecciated, partially-shocked, and dehydrated lithologies like those in JW dominate C-class asteroid regolith.

  13. Laboratory Simulations of Space Weathering of Asteroid Surfaces by Solar Wind Ions.

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth A.; De Ruette, Nathalie; Harlow, George; Domingue, Deborah L.; Savin, Daniel Wolf

    2014-06-01

    Studies into the formation of the terrestrial planets rely on the analysis of asteroids and meteorites. Asteroids are solar system remnants from the planetary formation period. By characterizing their mineralogical composition we can better constrain the formation and evolution of the inner planets.Remote sensing is the primary means for studying asteroids. Sample return missions, such as Hayabusa, are complex and expensive, hence we rely on asteroid reflectance spectra to determine chemical composition. Links have been made and debated between meteorite classes and asteroid types [1, 2]. If such relationships can be confirmed, then meteorites would provide a low cost asteroid sample set for study. However, a major issue in establishing this link is the spectral differences between meteorite samples and asteroid surfaces. The most commonly invoked explanation for these differences is that the surfaces of asteroids are space weathered [2, 3]. The dominant mechanism for this weathering is believed to be solar-wind ion irradiation [2, 4, 5]. Laboratory simulations of space weathering have demonstrated changes in the general direction required to alter spectra from unweathered meteorite samples to asteroid observations [3, 6 -10], but many open questions remain and we still lack a comprehensive understanding. We propose to explore the alleged connection of ordinary chondrite (OC) meteorites to S-type asteroids through a series of systematic laboratory simulations of solar-wind space weathering of asteroid surface materials. Here we describe the issue in more detail and describe the proposed apparatus. [1] Chapman C. R. (1996) Meteorit. Planet. Sci., 31, 699-725. [2] Chapman C. R. (2004), Annu. Rev. Earth Planet. Sci., 32, 539-567. [3] Hapke B. (2001) J. Ge-ophys. Res., 106, 10039-10074. [4] Pieters C.M. et al. (2000) Meteorit. Planet. Sci., 35, 1101-1107. [5] Ver-nazza P. et al. (2009) Nature, 458, 993-995. [6] Stra-zulla G. et al. (2005) Icarus, 174, 31-35 (2005). [7] Brunetto R and Strazzulla G (2005) Icarus, 179, 265-273. [8] Marchi S et al. (2005) Astron. Astrophys., 443, 769-775. [9] Loeffler M. J. et al. (2009) J. Geo-phys. Res., 114, E03003. [10] Fu X. et al. (2012) Ica-rus, 219, 630-640

  14. Asteroid 2008 TC3 Breakup and Meteorite Fractions

    NASA Technical Reports Server (NTRS)

    Goodrich, C.; Jenniskens, P.; Shaddad, M. H.; Zolensky, M. E.; Fioretti, A. M.

    2017-01-01

    The recovery of meteorites from the impact of asteroid 2008 TC3 in the Nubian Desert of Sudan on October 7, 2008, marked the first time meteorites were collected from an asteroid observed in space by astronomical techniques before impacting. Search teams from the University of Khartoum traced the location of the strewn field and collected about 660 meteorites in four expeditions to the fall region, all of which have known fall coordinates. Upon further study, the Almahata Sitta meteorites proved to be a mixed bag of mostly ureilites (course grained, fine grained, and sulfide-metal assemblages), enstatite chondrites (EL3-6, EH3, EH5, breccias) and ordinary chondrites (H5-6, L4-5). One bencubbinite-like carbonaceous chondrite was identified, as well as one unique Rumuruti-like chondrite and an Enstatite achondrite. New analysis: The analysed meteorites so far suggest a high 30-40 percent fraction of non-ureilites among the recovered samples, but that high fraction does not appear to be in agreement with the meteorites in the University of Khartoum (UoK) collection. Ureilites dominate the meteorites that were recovered by the Sudanese teams. To better understand the fraction of recovered materials that fell to Earth, a program has been initiated to type the meteorites in the UoK collection in defined search areas. At this meeting, we will present some preliminary results from that investigation.

  15. A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Berger, Eve L.

    2014-01-01

    The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques

  16. Roadmap of next generation minor body explorations in Japan

    NASA Astrophysics Data System (ADS)

    Yano, H.

    As of the early 2004, more than 250,000 minor bodies in the solar system have been detected. Among them, several thousands of asteroids are determined orbital elements well and even multi-band spectroscopic observation from ground enables us to classify taxonomy of them in statistically valid numbers. On the other hand, there have been several 10,000s of meteorite and cosmic dust samples already collected in the terrestrial environment. Thus, asteroid studies in statistical manners are practically conducted by ground observation and meteoritic analyses. It is a unique contribution of planetary exploration to provide the ground truth which bridges between abundant database of the ground observation and that of the meteoritic analyses, by bringing samples back to the Earth from a particular asteroid investigated in-situ. In May 2003, JAXA/ISAS successfully launched the Hayabusa (MUSES-C) spacecraft as the first kind of such minor body exploration, which will bring surface samples of an S-type NEO back to the Earth in mid 2007. Many of Japanese planetary scientists hope to advance such sample return strategies as their new expertise in the post-Hayabusa era. Now the ISAS new minor body exploration working group is about to start. Mission candidates include multiple sample returns from known spectra asteroids, in order to complete the asteroid taxonomy-meteoritic connection issue as early as possible (next 10-20 years) with possible international collaborations. One of such ideas is the multiple rendezvous sample return mission to known spectra NEOs of both primitive types (i.e., C, P/D) and differentiated types (e.g., V, M). Another is fly-by investigation and sample collection of multiple asteroids that belong to a single main-belt family. It will provide direct information of the interior as well as collisional history of their parent body, a refractory planetesimal disrupted by mutual collisions in the early stage of the Solar System evolution. One scenario targets the Koronis family including the Ida-Gaspra system, the only family asteroid visited by spacecraft in the past, and its dust band. Another aims the Nysa-Polana Family, which has several spectral types. Also what ISAS is planning is the solar powered sail mission which will make fly-by observations of main belt asteroids as well as Jovian Trojan asteroids, most of which are D-type asteroids with the absence of water absorption lines. Understanding generic connections among the Trojans, short-period cometary nucleus and the outermost D-type asteroids in the main belt may be a clue of how to distinguish between asteroids and comets, depending upon where they originated with respect to heliocentric distance in the early solar system.

  17. Small D-type asteroids in the NEO population: new targets for space missions

    NASA Astrophysics Data System (ADS)

    Barucci, Maria Antonietta; Perna, D.; Popescu, M.; Fornasier, S.; Doressoundiram, A.; Lantz, C.; Merlin, F.; Fulchignoni, M.; Dotto, E.; Kanuchova, S.

    2018-06-01

    In the framework of the Near Earth Objects (NEOs) observational campaign carried out within the NEOShield-2 project, we identify nine new small D-type asteroids with estimated diameter less than 600 m. The link with meteorites for this class of asteroids is weak and the best fit obtained is with the Tagish Lake meteorite for seven of them. D-type asteroids are believed to contain the most pristine material of the Solar system and could have delivered the pre-biotic material to the Earth. Our results double the known sample of the D-types in the NEO population and triple the candidates of this class for a sample-return mission (at very low ΔV). Our finding increases considerably the number of targets for sample-return mission. A sample-return mission to a D-type asteroid will provide a major progress in understanding the early history of the Solar system and to investigate the origin of life on the Earth.

  18. Comet/Asteroid Protection System (CAPS): Preliminary Space-Based Concept and Study Results

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Roithmayr, Carlos M.; Antol, Jeffrey; Park, Sang-Young; Koons, Robert H.; Bremer, James C.; Murphy, Douglas G.; Hoffman, James A.; Kumar, Renjith R.; Seywald, Hans

    2005-01-01

    There exists an infrequent, but significant hazard to life and property due to impacting asteroids and comets. There is currently no specific search for long-period comets, smaller near-Earth asteroids, or smaller short-period comets. These objects represent a threat with potentially little or no warning time using conventional ground-based telescopes. These planetary bodies also represent a significant resource for commercial exploitation, long-term sustained space exploration, and scientific research. The Comet/Asteroid Protection System (CAPS) is a future space-based system concept that provides permanent, continuous asteroid and comet monitoring, and rapid, controlled modification of the orbital trajectories of selected bodies. CAPS would expand the current detection effort to include long-period comets, as well as small asteroids and short-period comets capable of regional destruction. A space-based detection system, despite being more costly and complex than Earth-based initiatives, is the most promising way of expanding the range of detectable objects, and surveying the entire celestial sky on a regular basis. CAPS would provide an orbit modification system capable of diverting kilometer class objects, and modifying the orbits of smaller asteroids for impact defense and resource utilization. This Technical Memorandum provides a compilation of key related topics and analyses performed during the CAPS study, which was performed under the Revolutionary Aerospace Systems Concepts (RASC) program, and discusses technologies that could enable the implementation of this future system.

  19. Measuring the Shock Stage of Asteroid Regolith Grains by Electron Back-Scattered Diffraction

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Martinez, James; Sitzman, Scott; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Ozawa, Hikaru; hide

    2018-01-01

    We have been analyzing Itokawa samples in order to definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by electron and X-ray diffraction. These techniques would then be available for samples returned from other asteroid regoliths.

  20. Meteorite WIS91600: A New Sample Related to a D- or T-type Asteroid

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Tonui, E.; Pieters, C. M.; Zolensky, M. E.; Ueda, Y.; Miyamoto, M.; Sasaki, S.

    2005-01-01

    Since the Tagish Lake meteorite fell in January 2000, the assumed one-of-the-kind meteorite has become the hottest issue among a diversity of scientists. Meanwhile, as the physical origin of the meteorite in our solar system, D or T asteroids have been suggested by Hiroi et al. based on comparison of their visible-near-infrared (VNIR) reflectance spectra. While it is probably still true that the Tagish Lake meteorite is possibly the first recovered sample from a D or T asteroid as a meteorite fall, we report in this paper that the meteorite WIS91600 may actually be the first recovered sample from one of those asteroids as a meteorite find.

  1. TNO/Centaurs grouping tested with asteroid data sets

    NASA Astrophysics Data System (ADS)

    Fulchignoni, M.; Birlan, M.; Barucci, M. A.

    2001-11-01

    Recently, we have discussed the possible subdivision in few groups of a sample of 22 TNO and Centaurs for which the BVRIJ photometry were available (Barucci et al., 2001, A&A, 371,1150). We obtained this results using the multivariate statistics adopted to define the current asteroid taxonomy, namely the Principal Components Analysis and the G-mode method (Tholen & Barucci, 1989, in ASTEROIDS II). How these methods work with a very small statistical sample as the TNO/Centaurs one? Theoretically, the number of degrees of freedom of the sample is correct. In fact it is 88 in our case and have to be larger then 50 to cope with the requirements of the G-mode. Does the random sampling of the small number of members of a large population contain enough information to reveal some structure in the population? We extracted several samples of 22 asteroids out of a data-base of 86 objects of known taxonomic type for which BVRIJ photometry is available from ECAS (Zellner et al. 1985, ICARUS 61, 355), SMASS II (S.W. Bus, 1999, PhD Thesis, MIT), and the Bell et al. Atlas of the asteroid infrared spectra. The objects constituting the first sample were selected in order to give a good representation of the major asteroid taxonomic classes (at least three samples each class): C,S,D,A, and G. Both methods were able to distinguish all these groups confirming the validity of the adopted methods. The S class is hard to individuate as a consequence of the choice of I and J variables, which imply a lack of information on the absorption band at 1 micron. The other samples were obtained by random choice of the objects. Not all the major groups were well represented (less than three samples per groups), but the general trend of the asteroid taxonomy has been always obtained. We conclude that the quoted grouping of TNO/Centaurs is representative of some physico-chemical structure of the outer solar system small body population.

  2. The OSIRIS-REx Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Beshore, Edward; Lauretta, Dante; Boynton, William; Shinohara, Chriss; Sutter, Brian; Everett, David; Gal-Edd, Jonathan S.; Mink, Ronald G.; Moreau, Michael; Dworkin, Jason

    2015-01-01

    Interpretation, Resource Identification, Security, Regolith EXplorer) spacecraft will depart for asteroid (101955) Bennu, and when it does, humanity will turn an important corner in the exploration of the Solar System. After arriving at the asteroid in the Fall of 2018, it will undertake a program of observations designed to select a site suitable for retrieving a sample that will be returned to the Earth in 2023..

  3. Testing Dark Energy with the Advanced Liquid-Mirror Probe of Asteroids, Cosmology and Astrophysics

    NASA Astrophysics Data System (ADS)

    LoVerde, M.; Corasaniti, P. S.; Crotts, A.; Blake, C.

    2006-06-01

    The Advanced Liquid-Mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-meter liquid mirror telescope surveying ˜ 1000 deg2 of the southern-hemisphere sky. It will be a remarkably simple and inexpensive telescope that will nonetheless deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consists of nightly, high signal-to-noise, multiband light curves of SN Ia. At the end of the three-year run ALPACA is expected to collect ˜ 100,000 SN Ia up to z ˜ 1. This will allow accurate calibration of the standard-candle relation and reduce the systematic uncertainties. The survey will also provide several other datasets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak lensing measurements. In this preliminary analysis we forecast constraints on dark energy parameters from SN Ia and baryon acoustic oscillations. The combination of these two datasets will provide competitive constraints on the dark energy parameters with minimal prior assumptions. Further studies are needed to address the accuracy of weak lensing measurements.

  4. Thermal History of Near-Earth Asteroids: Implications for OSIRIS-REx Asteroid Sample Return

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Lauretta, Dante S.

    2016-10-01

    The connection between orbital and temperature history of small Solar System bodies has only been studied through modeling. The upcoming OSIRIS-REx asteroid sample return mission provides an opportunity to connect thermal modeling predictions with laboratory studies of meteorites to predict past heating and thus dynamical histories of bodies such as OSIRIS-REx mission target asteroid (101955) Bennu. Bennu is a desirable target for asteroid sample return due to its inferred primitive nature, likely 4.5 Gyr old, with chemistry and mineralogy established in the first 10 Myr of solar system history (Lauretta et al. 2015). Delbo & Michel (2011) studied connections between the temperature and orbital history of Bennu. Their results suggest that the surface of Bennu (assuming no regolith turnover) has a 50% probability of being heated to 500 K in the past. Further, the Delbo & Michel simulations show that the temperature within the asteroid below the top layer of regolith could remain at temperatures ~100 K below that of the surface. The Touch-And-Go Sample Acquisition Mechanism on OSIRIS-REx could access both the surface and near surface regolith, collecting primitive asteroid material for study in Earth-based laboratories in 2023. To quantify the effects of thermal metamorphism on the Bennu regolith, laboratory heating experiments on carbonaceous chondrite meteorites with compositions likely similar to that of Bennu were conducted from 300-1200 K. These experiments show mobilization and volatilization of a suite of labile elements (sulfur, mercury, arsenic, tellurium, selenium, antimony, and cadmium) at temperatures that could be reached by asteroids that cross Mercury's orbit. We are able to quantify element loss with temperature for several carbonaceous chondrites and use these results to constrain past orbital histories of Bennu. When OSIRIS-REx samples arrive for analysis we will be able to measure labile element loss in the material, determine maximum past temperature of the samples, and predict the past orbital and thermal history of Bennu.

  5. Unique View of C Asteriod Regolith from the Jbilet Winselwan CM Chondrite

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Komatsu, Mutsumi; Chan, Queenie H. S.; Le, Loan; Kring, David; Cato, Michael; Fagan, Amy L.; hide

    2016-01-01

    C-class asteroids frequently exhibit reflectance spectra consistent with thermally metamor-phosed carbonaceous chondrites, or a mixture of phyllosilicate-rich material along with regions where they are absent. One particularly important example appears to be asteroid 162173 Ryugu, the target of the Hayabusa 2 mission, although most spectra of Ryugu are featureless, suggesting a heterogeneous regolith. Here we explore an alternative cause of dehydration of regolith of C-class asteroids impact shock melting. Impact shock melting has been proposed to explain some mineralogical characteristics of CB chondrites, but has rarely been considered a major process for hydrous carbonaceous chondrites. Jbilet Winselwan (JW) is a very fresh CM breccia from Morocco, with intriguing characteristics. While some lithologies are typical of CM2s, other clasts show evidence of brief, though significant impact brecciation and heating. The first evidence for this came from preliminary petrographic and stable isotope studies. We contend that highly-brecciated, partially-shocked, and dehydrated lithologies like those in JW dominate C-class asteroid regolith.

  6. The Double Asteroid Redirection Test (DART)

    NASA Astrophysics Data System (ADS)

    Rivkin, A.; Cheng, A. F.; Stickle, A. M.; Richardson, D. C.; Barnouin, O. S.; Thomas, C.; Fahnestock, E.

    2017-12-01

    The Double Asteroid Redirection Test (DART) will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. DART is currently in Preliminary Design Phase ("Phase B"), and is part of the Asteroid Impact and Deflection Assessment (AIDA), a joint ESA-NASA cooperative project. The AIDA target is the near-Earth binary asteroid 65803 Didymos, an S-class system that will make a close approach to Earth in fall 2022. The DART spacecraft is designed to impact the Didymos secondary at 6 km/s and demonstrate the ability to modify its trajectory through momentum transfer. The primary goals of AIDA are (1) perform a full-scale demonstration of the spacecraft kinetic impact technique for deflection of an asteroid; (2) measure the resulting asteroid deflection, by targeting the secondary member of a binary NEO and measuring the resulting changes of the binary orbit; and (3) study hyper-velocity collision effects on an asteroid, validating models for momentum transfer in asteroid impacts. The DART impact on the Didymos secondary will change the orbital period of the binary by several minutes, which can be measured by Earth-based optical and radar observations. The baseline DART mission launches in late 2020 to impact the Didymos secondary in 2022 near the time of its close pass of Earth, which enables an array of ground- and space-based observatories to participate in gathering data. The AIDA project will provide the first measurements of momentum transfer efficiency from hyper-velocity kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are characterized or constrained. The DART kinetic impact is predicted to make a crater of 6 to 17 meters diameter, depending on target physical properties, but will also release a large volume of particulate ejecta that may be directly observable from Earth or even resolvable as a coma or an ejecta tail by ground-based telescopes.

  7. The Spaceguard Survey: Report of the NASA International Near-Earth-Object Detection Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, David (Editor)

    1992-01-01

    Impacts by Earth-approaching asteroids and comets pose a significant hazard to life and property. Although the annual probability of the Earth being struck by a large asteroid or comet is extremely small, the consequences of such a collision are so catastrophic that it is prudent to assess the nature of the threat and to prepare to deal with it. The first step in any program for the prevention or mitigation of impact catastrophes must involve a comprehensive search for Earth-crossing asteroids and comets and a detailed analysis of their orbits. At the request of the U.S. Congress, NASA has carried out a preliminary study to define a program for dramatically increasing the detection rate of Earth-crossing objects, as documented in this workshop report.

  8. Scenarios which may lead to the rise of an asteroid-based technical civilisation

    NASA Astrophysics Data System (ADS)

    Kecskes, Csaba

    2002-05-01

    In a previous paper, the author described a hypothetical development path of technical civilisations which has the following stages: planet dwellers, asteroid dwellers, interstellar travellers, interstellar space dwellers. In this paper, several scenarios are described which may cause the rise of an asteroid-based technical civilisation. Before such a transition may take place, certain space technologies must be developed fully (now these exist only in very preliminary forms): closed-cycle biological life support systems, space manufacturing systems, electrical propulsion systems. After mastering these technologies, certain events may provide the necessary financial means and social impetus for the foundation of the first asteroid-based colonies. In the first scenario, a rich minority group becomes persecuted and they decide to leave the Earth. In the second scenario, a "cold war"-like situation exists and the leaders of the superpowers order the creation of asteroid-based colonies to show off their empires' technological (and financial) grandiosity. In the third scenario, the basic situation is similar to the second one, but in this case the asteroids are not just occupied by the colonists. With several decades of hard work, an asteroid can be turned into a kinetic energy weapon which can provide the same (or greater) threat as the nuclear arsenal of a present superpower. In the fourth scenario, some military asteroids are moved to Earth-centred orbits and utilised as "solar power satellites" (SPS). This would be a quite economical solution because a "military asteroid" already contains most of the important components of an SPS (large solar collector arrays, power distribution devices, orbit modifying rocket engine), one should add only a large microwave transmitter.

  9. Scenarios which may lead to the rise of an asteroid-based technical civilisation.

    PubMed

    Kecskes, Csaba

    2002-05-01

    In a previous paper, the author described a hypothetical development path of technical civilisations which has the following stages: planet dwellers, asteroid dwellers, interstellar travellers, interstellar space dwellers. In this paper, several scenarios are described which may cause the rise of an asteroid-based technical civilisation. Before such a transition may take place, certain space technologies must be developed fully (now these exist only in very preliminary forms): closed-cycle biological life support systems, space manufacturing systems, electrical propulsion systems. After mastering these technologies, certain events may provide the necessary financial means and social impetus for the foundation of the first asteroid-based colonies. In the first scenario, a rich minority group becomes persecuted and they decide to leave the Earth. In the second scenario, a "cold war"-like situation exists and the leaders of the superpowers order the creation of asteroid-based colonies to show off their empires' technological (and financial) grandiosity. In the third scenario, the basic situation is similar to the second one, but in this case the asteroids are not just occupied by the colonists. With several decades of hard work, an asteroid can be turned into a kinetic energy weapon which can provide the same (or greater) threat as the nuclear arsenal of a present superpower. In the fourth scenario, some military asteroids are moved to Earth-centred orbits and utilised as "solar power satellites" (SPS). This would be a quite economical solution because a "military asteroid" already contains most of the important components of an SPS (large solar collector arrays, power distribution devices, orbit modifying rocket engine), one should add only a large microwave transmitter. c2002 Elsevier Science Ltd. All rights reserved.

  10. Asteroid Deflection: How, Where and When?

    NASA Astrophysics Data System (ADS)

    Fargion, D.

    2008-10-01

    To deflect impact-trajectory of massive and spinning km^3 asteroid by a few terrestrial radiuses one need a large momentum exchange. The dragging of huge spinning bodies in space by external engine seems difficult or impossible. Our solution is based on the landing of multi screw-rockets, powered by mini-nuclear engines, on the body, that dig a small fraction of the soil surface to use as an exhaust propeller, ejecting it vertically in phase among themselves. Such a mass ejection increases the momentum exchange, their number redundancy guarantees the stability of the system. The slow landing (below ≃ 40 cm s^{-1}) of each engine-unity at those very low gravity field, may be achieved by safe rolling and bouncing along the surface. The engine array tuned activity, overcomes the asteroid angular velocity. Coherent turning of the jet heads increases the deflection efficiency. A procession along its surface may compensate at best the asteroid spin. A small skin-mass (about 2×10^4 tons) may be ejected by mini-nuclear engines. Such prototypes may also build first safe galleries for humans on the Moon. Conclusive deflecting tests might be performed on remote asteroids. The incoming asteroid 99942 Apophis (just 2% of km^3) may be deflected safely a few Earth radiuses. Its encounter maybe not just a hazard but an opportunity, learning how to land, to dig, to build and also to nest safe human station inside. Asteroids amplified deflections by gravity swing may be driven into longest planetary journeys, beginning i.e. with the preliminary landing of future missions on Mars' moon-asteroid Phobos or Deimos.

  11. The kilometer-sized Main Belt asteroid population revealed by Spitzer

    NASA Astrophysics Data System (ADS)

    Ryan, E. L.; Mizuno, D. R.; Shenoy, S. S.; Woodward, C. E.; Carey, S. J.; Noriega-Crespo, A.; Kraemer, K. E.; Price, S. D.

    2015-06-01

    Aims: Multi-epoch Spitzer Space Telescope 24 μm data is utilized from the MIPSGAL and Taurus Legacy surveys to detect asteroids based on their relative motion. Methods: Infrared detections are matched to known asteroids and average diameters and albedos are derived using the near Earth asteroid thermal model (NEATM) for 1865 asteroids ranging in size from 0.2 to 169 km. A small subsample of these objects was also detected by IRAS or MSX and the single wavelength albedo and diameter fits derived from these data are within the uncertainties of the IRAS and/or MSX derived albedos and diameters and available occultation diameters, which demonstrates the robustness of our technique. Results: The mean geometric albedo of the small Main Belt asteroids in this sample is pV = 0.134 with a sample standard deviation of 0.106. The albedo distribution of this sample is far more diverse than the IRAS or MSX samples. The cumulative size-frequency distribution of asteroids in the Main Belt at small diameters is directly derived and a 3σ deviation from the fitted size-frequency distribution slope is found near 8 km. Completeness limits of the optical and infrared surveys are discussed. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A42

  12. Small Main-Belt Asteroid Lightcurve Survey

    NASA Technical Reports Server (NTRS)

    Binzel, Richard P.; Xu, Shui; Bus, Schelte J.; Bowell, Edward

    1992-01-01

    The Small Main-Belt Asteroid Lightcurve Survey is the first to measure main-belt asteroid lightcurve properties for bodies with diameters smaller than 5 km. Attention is given to CCD lightcurves for 32 small main-belt asteroids. The objects of this sample have a mean rotational frequency which is faster than that of larger main-belt asteroids. All lightcurves were investigated for nonperiodic variations ascribable to free precession; no conclusive detection of this phenomenon has been made, however.

  13. THE ORIGIN OF ASTEROID 162173 (1999 JU{sub 3})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campins, Humberto; De Leon, Julia; Morbidelli, Alessandro

    Near-Earth asteroid (162173) 1999 JU{sub 3} (henceforth JU{sub 3}) is a potentially hazardous asteroid and the target of the Japanese Aerospace Exploration Agency's Hayabusa-2 sample return mission. JU{sub 3} is also a backup target for two other sample return missions: NASA's OSIRIS-REx and the European Space Agency's Marco Polo-R. We use dynamical information to identify an inner-belt, low-inclination origin through the {nu}{sub 6} resonance, more specifically, the region with 2.15 AU < a < 2.5 AU and i < 8 Degree-Sign . The geometric albedo of JU{sub 3} is 0.07 {+-} 0.01, and this inner-belt region contains four well-defined low-albedomore » asteroid families (Clarissa, Erigone, Polana, and Sulamitis), plus a recently identified background population of low-albedo asteroids outside these families. Only two of these five groups, the background and the Polana family, deliver JU{sub 3}-sized asteroids to the {nu}{sub 6} resonance, and the background delivers significantly more JU{sub 3}-sized asteroids. The available spectral evidence is also diagnostic; the visible and near-infrared spectra of JU{sub 3} indicate it is a C-type asteroid, which is compatible with members of the background, but not with the Polana family because it contains primarily B-type asteroids. Hence, this background population of low-albedo asteroids is the most likely source of JU{sub 3}.« less

  14. Asteroid (Flora and Eros) sample-return missions via solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.

    1971-01-01

    The characteristics and capabilities of solar electric propulsion for performing sample-return missions to the asteroids Flora and Eros are considered. Trajectory/payload analysis and mission design tradeoff options are emphasized.

  15. Optimal nodal flyby with near-Earth asteroids using electric sail

    NASA Astrophysics Data System (ADS)

    Mengali, Giovanni; Quarta, Alessandro A.

    2014-11-01

    The aim of this paper is to quantify the performance of an Electric Solar Wind Sail for accomplishing flyby missions toward one of the two orbital nodes of a near-Earth asteroid. Assuming a simplified, two-dimensional mission scenario, a preliminary mission analysis has been conducted involving the whole known population of those asteroids at the beginning of the 2013 year. The analysis of each mission scenario has been performed within an optimal framework, by calculating the minimum-time trajectory required to reach each orbital node of the target asteroid. A considerable amount of simulation data have been collected, using the spacecraft characteristic acceleration as a parameter to quantify the Electric Solar Wind Sail propulsive performance. The minimum time trajectory exhibits a different structure, which may or may not include a solar wind assist maneuver, depending both on the Sun-node distance and the value of the spacecraft characteristic acceleration. Simulations show that over 60% of near-Earth asteroids can be reached with a total mission time less than 100 days, whereas the entire population can be reached in less than 10 months with a spacecraft characteristic acceleration of 1 mm/s2.

  16. Basalt or Not? Near-infrared Spectra, Surface Mineralogical Estimates, and Meteorite Analogs for 33 Vp-type Asteroids

    NASA Astrophysics Data System (ADS)

    Hardersen, Paul S.; Reddy, Vishnu; Cloutis, Edward; Nowinski, Matt; Dievendorf, Margaret; Genet, Russell M.; Becker, Savan; Roberts, Rachel

    2018-07-01

    Investigations of the main asteroid belt and efforts to constrain that population’s physical characteristics involve the daunting task of studying hundreds of thousands of small bodies. Taxonomic systems are routinely employed to study the large-scale nature of the asteroid belt because they utilize common observational parameters, but asteroid taxonomies only define broadly observable properties and are not compositionally diagnostic. This work builds upon the results of work by Hardersen et al., which has the goal of constraining the abundance and distribution of basaltic asteroids throughout the main asteroid belt. We report on the near-infrared (NIR: 0.7 to 2.5 μm) reflectance spectra, surface mineralogical characterizations, analysis of spectral band parameters, and meteorite analogs for 33 Vp asteroids. NIR reflectance spectroscopy is an effective remote sensing technique to detect most pyroxene group minerals, which are spectrally distinct with two very broad spectral absorptions at ∼0.9 and ∼1.9 μm. Combined with the results from Hardersen et al., we identify basaltic asteroids for ∼95% (39/41) of our inner-belt Vp sample, but only ∼25% (2/8) of the outer-belt Vp sample. Inner-belt basaltic asteroids are most likely associated with (4) Vesta and represent impact fragments ejected from previous collisions. Outer-belt Vp asteroids exhibit disparate spectral, mineralogical, and meteorite analog characteristics and likely originate from diverse parent bodies. The discovery of two additional likely basaltic asteroids provides additional evidence for an outer-belt basaltic asteroid population.

  17. Priority Science Targets for Future Sample Return Missions within the Solar System Out to the Year 2050

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Allton, J. H.; Barnes, J. J.; Boyce, J. W.; Burton, A. S.; Draper, D. S.; Evans, C. A.; Fries, M. D.; Jones, J. H.; Keller, L. P.; hide

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. JSC presently curates 9 different astromaterials collections: (1) Apollo samples, (2) LUNA samples, (3) Antarctic meteorites, (4) Cosmic dust particles, (5) Microparticle Impact Collection [formerly called Space Exposed Hardware], (6) Genesis solar wind, (7) Star-dust comet Wild-2 particles, (8) Stardust interstellar particles, and (9) Hayabusa asteroid Itokawa particles. In addition, the next missions bringing carbonaceous asteroid samples to JSC are Hayabusa 2/ asteroid Ryugu and OSIRIS-Rex/ asteroid Bennu, in 2021 and 2023, respectively. The Hayabusa 2 samples are provided as part of an international agreement with JAXA. The NASA Curation Office plans for the requirements of future collections in an "Advanced Curation" program. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envisioned by NASA exploration goals. Here we review the science value and sample curation needs of some potential targets for sample return missions over the next 35 years.

  18. Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1 - Preliminary results

    NASA Astrophysics Data System (ADS)

    Vereš, Peter; Jedicke, Robert; Fitzsimmons, Alan; Denneau, Larry; Granvik, Mikael; Bolin, Bryce; Chastel, Serge; Wainscoat, Richard J.; Burgett, William S.; Chambers, Kenneth C.; Flewelling, Heather; Kaiser, Nick; Magnier, Eugen A.; Morgan, Jeff S.; Price, Paul A.; Tonry, John L.; Waters, Christopher

    2015-11-01

    We present the results of a Monte Carlo technique to calculate the absolute magnitudes (H) and slope parameters (G) of ∼240,000 asteroids observed by the Pan-STARRS1 telescope during the first 15 months of its 3-year all-sky survey mission. The system's exquisite photometry with photometric errors ≲ 0.04mag , and well-defined filter and photometric system, allowed us to derive accurate H and G even with a limited number of observations and restricted range in phase angles. Our Monte Carlo method simulates each asteroid's rotation period, amplitude and color to derive the most-likely H and G, but its major advantage is in estimating realistic statistical + systematic uncertainties and errors on each parameter. The method was tested by comparison with the well-established and accurate results for about 500 asteroids provided by Pravec et al. (Pravec, P. et al. [2012]. Icarus 221, 365-387) and then applied to determining H and G for the Pan-STARRS1 asteroids using both the Muinonen et al. (Muinonen, K. et al. [2010]. Icarus 209, 542-555) and Bowell et al. (Bowell, E. et al. [1989]. Asteroids III, Chapter Application of Photometric Models to Asteroids. University of Arizona Press, pp. 524-555) phase functions. Our results confirm the bias in MPC photometry discovered by Jurić et al. (Jurić, M. et al. [2002]. Astrophys. J. 124, 1776-1787).

  19. Identifying the Parent Body of the Tagish Lake Meteorite and Characterizing its Internal Heating History and Surface Processes

    NASA Technical Reports Server (NTRS)

    Hiroi, Takahiro

    2004-01-01

    This short (1-year) funded research encompassed laboratory measurements of the Tagish Lake meteorite samples, experiments of simulated space weathering on them, and comparison with D, T, and P asteroids in reflectance spectrum. In spite of its limited funding and period, we have performed said experiments here at Brown University and at University of Tokyo. Some of the major results were reported at the Lunar and Planetary Science Conference held in Houston in March, 2004. The Tagish Lake meteorite shows a unique visible reflectance spectrum identical to that of the D and T type asteroids. After the present heating experiments at even the lowest temperature of 100 C, the characteristic spectral slope of the Tagish Lake meteorite sample increased. On the other hand, after irradiating its pellet sample with pulse laser, the slope decreased. As the result, the Tagish Lake meteorite and its processed samples have come to cover a wide range of visible reflectance spectra in slope from the C-type asteroids to some extreme T/D-type asteroids, including the P-type asteroids in between. Therefore, logically speaking, our initial affirmation that the Tagish Lake meteorite must have come from one of the D-type asteroids can be wrong if such a meteoritic material is hidden under a space-weathered surface regolith of a C-type asteroid. However, such a case is likely to have a small probability in general. Other major hits of this research includes the first spectral fitting of the P-type asteroids using reflectance spectra derived from the present research. This topic needs more experiments and analysis to be addressed uniquely, and thus further efforts will be proposed.

  20. Visible spectroscopy of the Polana-Eulalia family complex: Spectral homogeneity

    NASA Astrophysics Data System (ADS)

    de León, J.; Pinilla-Alonso, N.; Delbo, M.; Campins, H.; Cabrera-Lavers, A.; Tanga, P.; Cellino, A.; Bendjoya, P.; Gayon-Markt, J.; Licandro, J.; Lorenzi, V.; Morate, D.; Walsh, K. J.; DeMeo, F.; Landsman, Z.; Alí-Lagoa, V.

    2016-03-01

    The Polana-Eulalia family complex is located in the inner part of the asteroid belt, bounded by the ν6 and the 3:1 resonances, where we can find another three collisional families of primitive asteroids (Erigone, Clarissa, and Sulamitis), and a low-albedo population of background objects. This region of the belt is believed to be the most likely origin of the two primitive near-Earth asteroids that are the current targets of two sample return missions: NASA's OSIRIS-REx and JAXA's Hayabusa 2 to Asteroids (101955) Bennu and (162173) Ryugu (also known as 1999 JU3), respectively. Therefore, understanding these families will enhance the scientific return of these missions. We present the results of a spectroscopic survey of asteroids in the region of the Polana-Eulalia family complex, and also asteroids from the background population of low-albedo, low-inclination objects. We obtained visible spectra of a total of 65 asteroids, using the 10.4 m Gran Telescopio Canarias (GTC) and the 3.6 m Telescopio Nazionale Galileo (TNG), both located at the El Roque de Los Muchachos Observatory, in the island of La Palma (Spain), and the 3.6 m New Technology Telescope (NTT), located at the European Southern Observatory of La Silla, in Chile. From the spectral analysis of our sample we found that, in spite of the presence of distinct dynamical groups, the asteroids in this region present spectral homogeneity at visible wavelengths, showing a continuum of spectral slopes, from blue to moderately red, typical of primitive asteroids classified as B- and C-types. We conclude that visible spectra cannot be used to distinguish between members of the Polana and the Eulalia families, or members of the background population. The visible spectra of the two targets of sample return missions, Asteroids Bennu and Ryugu, are compatible with the spectra of the asteroids in this region, supporting previous studies that suggested either the Polana family or the background population as the most likely origins of these NEAs.

  1. Osiris-Rex and Hayabusa2 Sample Cleanroom Design and Construction Planning at NASA-JSC

    NASA Technical Reports Server (NTRS)

    Righter, Kevin; Pace, Lisa F.; Messenger, Keiko

    2018-01-01

    Final Paper and not the abstract is attached. The OSIRIS-REx asteroid sample return mission launched to asteroid Bennu September 8, 2016. The spacecraft will arrive at Bennu in late 2019, orbit and map the asteroid, and perform a touch and go (TAG) sampling maneuver in July 2020. After confirma-tion of successful sample stowage, the spacecraft will return to Earth, and the sample return capsule (SRC) will land in Utah in September 2023. Samples will be recovered from Utah and then transported and stored in a new sample cleanroom at NASA Johnson Space Center in Houston. All curation-specific ex-amination and documentation activities related to Ben-nu samples will be conducted in the dedicated OSIRIS-REx sample cleanroom to be built at NASA-JSC.

  2. Injecting asteroid fragments into resonances

    NASA Technical Reports Server (NTRS)

    Farinella, Paolo; Gonczi, R.; Froeschle, Christiane; Froeschle, Claude

    1992-01-01

    We have quantitatively modeled the chance insertion of asteroid collisional fragments into the 3:1 and g = g(sub 6) resonances, through which they can achieve Earth-approaching orbits. Although the results depend on some poorly known parameters, they indicate that most meteorites and near-earth asteroids probably come from a small and non-representative sample of asteroids, located in the neighborhood of the two resonances.

  3. Investigating the Geological History of Asteroid 101955 Bennu Through Remote Sensing and Returned Sample Analyses

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.

    2014-01-01

    The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.

  4. Trojan and Hilda asteroid lightcurves. I - Anomalously elongated shapes among Trojans (and Hildas?)

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.; Binzel, Richard P.; Tholen, David J.; Cruikshank, Dale P.; Goguen, Jay

    1988-01-01

    A comparison of the available sample of lightcurves for 26 Trojan and Hilda asteroids with belt asteroid lightcurves shows the former to be distinguished by a higher incidence of high amplitudes rgan belt asteroids of comparable size, suggesting more elongated shapes; they currently have, moreover, only a few percent of the main-belt asteroids' collision frequency. A more modest collisional evolution that may have affected the relative degree of fragmentation of these bodies, and thus their shapes, is inferred.

  5. NASA's Human Mission to a Near-Earth Asteroid: Landing on a Moving Target

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Lincoln, William P.; Weisbin, Charles R.

    2011-01-01

    This paper describes a Bayesian approach for comparing the productivity and cost-risk tradeoffs of sending versus not sending one or more robotic surveyor missions prior to a human mission to land on an asteroid. The expected value of sample information based on productivity combined with parametric variations in the prior probability an asteroid might be found suitable for landing were used to assess the optimal number of spacecraft and asteroids to survey. The analysis supports the value of surveyor missions to asteroids and indicates one launch with two spacecraft going simultaneously to two independent asteroids appears optimal.

  6. An age-colour relationship for main-belt S-complex asteroids.

    PubMed

    Jedicke, Robert; Nesvorný, David; Whiteley, Robert; Ivezić Z, Zeljko; Jurić, Mario

    2004-05-20

    Asteroid collisions in the main belt eject fragments that may eventually land on Earth as meteorites. It has therefore been a long-standing puzzle in planetary science that laboratory spectra of the most populous class of meteorite (ordinary chondrites, OC) do not match the remotely observed surface spectra of their presumed (S-complex) asteroidal parent bodies. One of the proposed solutions to this perplexing observation is that 'space weathering' modifies the exposed planetary surfaces over time through a variety of processes (such as solar and cosmic ray bombardment, micro-meteorite bombardment, and so on). Space weathering has been observed on lunar samples, in Earth-based laboratory experiments, and there is good evidence from spacecraft data that the process is active on asteroid surfaces. Here, we present a measurement of the rate of space weathering on S-complex main-belt asteroids using a relationship between the ages of asteroid families and their colours. Extrapolating this age-colour relationship to very young ages yields a good match to the colour of freshly cut OC meteorite samples, lending strong support to a genetic relationship between them and the S-complex asteroids.

  7. A preliminary assessment of asteroid shapes produced by impact disruption and re-creation: Application to the AIDA target.

    NASA Astrophysics Data System (ADS)

    Barnouin, Olivier; Michel, Patrick; Richardson, Derek

    2016-04-01

    In order to understand the origin of the 65803 Didymos, the target of the Asteroid Impact and Deflection Assessment mission, and gain insights on the origin and evolution of the asteroid's162173 Ryugu and 101955 Bennu, we investigate systematically the shapes of all re-accumulated fragments produced by the catastrophic disruption of a parent body that is 1 km in diameter or larger. These new fragments eventually become new asteroids of the size that current sample-return missions plan to explore. We choose a range of impact conditions by varying the parent bodies' strength, size and porosity, and the velocity and size of the projectile. Impact conditions range from near the catastrophic threshold, usually designated by Q*, where half of the target's mass escapes, to far greater values above this threshold. Our numerical investigations of the catastrophic disruption, which are undertaken using an SPH hydrocode, include a model of fragmentation for porous materials. The gravitationally dominated phase of reaccumulation of our asteroids is computed using the N-body code pkdgrav. At sufficiently slow impact speeds in the N-body model, particles are permitted to stick, forming irregular, competent pieces that can gather into non-idealized rubble piles as a result of re-accumulation. Shape and spin information of re-accumulated bodies are thus preserved. Due to numerical expense, this first study uses what we call a hard-sphere model, rather than a soft-sphere spring and dashpot model. This latter model is more commonly used in granular flow simulations for which detailed treatment of the multicontact physics is needed, which is not the case here, and comes at the expense of much smaller timesteps. With the hard-sphere model, there are three supported collision outcomes for bonded aggregates: sticking on contact (to grow the aggregate); bouncing (computed for these generally non-central impacts); and fragmentation (wherein the particles involved become detached from their respective aggregates and proceed to bounce as rigid spheres, possibly releasing more particles). We adjusted the strength of the forming aggregates to the measured strength of materials in the lab, scaled to the aggregate size, by using strength size scaling rules. In the future we expect to compare our hard-sphere models to a few soft-sphere for reasonable granular materials to best characterize differences between the two approaches, if any. Our results indicate that while 25143 Itokawa-like potato-shaped asteroids are typically the outcome of disruption, often more spherical or "top-shaped" asteroids can also be produced. Our results confirm what others have already noted, namely that a "top-shaped" or diamond shaped asteroid is not necessarily the result of the formation of YORP spin-up. Other criteria besides just shape need to be developed to determine whether or not the evolution of an asteroid and its surface geology have been dominated by YORP-related processes or by impact-derived re-accretion.

  8. Mission options for rendezvous with the most accessible Near-Earth Asteroid - 1989 ML

    NASA Technical Reports Server (NTRS)

    Mcadams, Jim V.

    1992-01-01

    The recent discovery of the Amor-class 1989 ML, the most accessible known asteroid for minimum-energy rendezvous missions, has expedited the search for frequent, low-cost Near-Earth Asteroid rendezvous and round-trip missions. This paper identifies trajectory characteristics and assesses mass performance for low Delta V ballistic rendezvous opportunities to 1989 ML during the period 1996-2010. This asteroid also offers occasional unique extended mission opportunities, such as the lowest known Delta V requirement for any asteroid sample return mission as well as pre-rendezvous asteroid flyby and post-rendezvous comet flyby opportunities requiring less than 5.25 km/sec total Delta V. This paper also briefly comments concerning mission opportunities for asteroid 1991 JW, which recently replaced other known asteroids as the most accessible Near-Earth Asteroid for fast rendezvous and round-trip missions.

  9. Advanced Navigation Strategies For Asteroid Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Getzandanner, K.; Bauman, J.; Williams, B.; Carpenter, J.

    2010-01-01

    Flyby and rendezvous missions to asteroids have been accomplished using navigation techniques derived from experience gained in planetary exploration. This paper presents analysis of advanced navigation techniques required to meet unique challenges for precision navigation to acquire a sample from an asteroid and return it to Earth. These techniques rely on tracking data types such as spacecraft-based laser ranging and optical landmark tracking in addition to the traditional Earth-based Deep Space Network radio metric tracking. A systematic study of navigation strategy, including the navigation event timeline and reduction in spacecraft-asteroid relative errors, has been performed using simulation and covariance analysis on a representative mission.

  10. The Potential of AutoClass as an Asteroidal Data Mining Tool

    NASA Astrophysics Data System (ADS)

    Walker, Matthew; Ziffer, J.; Harvell, T.; Fernandez, Y. R.; Campins, H.

    2011-05-01

    AutoClass-C, an artificial intelligence program designed to classify large data sets, was developed by NASA to classify stars based upon their infrared colors. Wanting to investigate its ability to classify asteroidal data, we conducted a preliminary test to determine if it could accurately reproduce the Tholen taxonomy using the data from the Eight Color Asteroid Survey (ECAS). For our initial test, we limited ourselves to those asteroids belonging to S, C, or X classes, and to asteroids with a color difference error of less than +/- 0.05 magnitudes. Of those 406 asteroids, AutoClass was able to confidently classify 85%: identifying the remaining asteroids as belonging to more than one class. Of the 346 asteroids that AutoClass classified, all but 3 (<1%) were classified as they had been in the Tholen classification scheme. Inspired by our initial success, we reran AutoClass, this time including IRAS albedos and limiting the asteroids to those that had also been observed and classified in the Bus taxonomy. Of those 258 objects, AutoClass was able to classify 248 with greater than 75% certainty, and ranked albedo, not color, as the most influential factor. Interestingly, AutoClass consistently put P type objects in with the C class (there were 19 P types and 7 X types mixed in with the other 154 C types), and omitted P types from the group associated with the other X types (which had only one rogue B type in with its other 49 X-types). Autoclass classified the remaining classes with a high accuracy: placing one A and one CU type in with an otherwise perfect S group; placing three P type and one T type in an otherwise perfect D group; and placing the four remaining asteroids (V, A, R, and Q) into a class together.

  11. Experiments on asteroids using hard landers

    NASA Technical Reports Server (NTRS)

    Turkevich, A.; Economou, T.

    1978-01-01

    Hard lander missions to asteroids are examined using the Westphal penetrator study as a basis. Imagery and chemical information are considered to be the most significant science to be obtained. The latter, particularly a detailed chemical analysis performed on an uncontaminated sample, may answer questions about the relationships of asteroids to meteorites and the place of asteroids in theories of the formation of the solar system.

  12. The NEOTωIST mission (Near-Earth Object Transfer of angular momentum spin test)

    NASA Astrophysics Data System (ADS)

    Drube, Line; Harris, Alan W.; Engel, Kilian; Falke, Albert; Johann, Ulrich; Eggl, Siegfried; Cano, Juan L.; Ávila, Javier Martín; Schwartz, Stephen R.; Michel, Patrick

    2016-10-01

    We present a concept for a kinetic impactor demonstration mission, which intends to change the spin rate of a previously-visited asteroid, in this case 25143 Itokawa. The mission would determine the efficiency of momentum transfer during an impact, and help mature the technology required for a kinetic impactor mission, both of which are important precursors for a future space mission to deflect an asteroid by collisional means in an emergency situation. Most demonstration mission concepts to date are based on changing an asteroid's heliocentric orbit and require a reconnaissance spacecraft to measure the very small orbital perturbation due to the impact. Our concept is a low-cost alternative, requiring only a single launch. Taking Itokawa as an example, an estimate of the order of magnitude of the change in the spin period, δP, with such a mission results in δP of 4 min (0.5%), which could be detectable by Earth-based observatories. Our preliminary study found that a mission concept in which an impactor produces a change in an asteroid's spin rate could provide valuable information for the assessment of the viability of the kinetic-impactor asteroid deflection concept. Furthermore, the data gained from the mission would be of great benefit for our understanding of the collisional evolution of asteroids and the physics behind crater and ejecta-cloud development.

  13. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Sipila, Stephanie A.; Scoville, Zebulon C.; Bowie, Jonathan T.; Buffington, Jesse A.

    2014-01-01

    One of the challenging primary objectives associated with NASA's Asteroid Redirect Crewed Mission (ARCM) is to demonstrate deep space Extravehicular Activity (EVA) and tools and to obtain asteroid samples to return to Earth for further study. Prior Shuttle and International Space Station (ISS) spacewalks have benefited from engineered EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as behavior of the asteroid capture mechanism will complicate EVA translation, tool restraint, and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the Modified Advanced Crew Escape Suit (MACES) suit. This paper will summarize the overall operational concepts for conducting EVAs for the ARCM mission including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, and the results of early development testing of potential EVA tasks.

  14. First Galileo image of asteroid 243 Ida

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Belton, M. J. S.; Veverka, J.; Neukum, G.; Head, J.; Greeley, Ronald; Klaasen, K.; Morrison, D.

    1994-01-01

    The second spacecraft encounter with an asteroid has yielded an unprecedentedly high resolution portrait of 243 Ida. On 28 Aug. 1993, Galileo obtained an extensive data set on this small member of the Koronis family. Most of the data recorded on the tape recorder will be returned to Earth in spring 1994. A five-frame mosaic of Ida was acquired with good illumination geometry a few minutes before closest approach; it has a resolution of 31 to 38 m/pixel amd was played back during Sept. 1993. Preliminary analyses of this single view of Ida are summarized.

  15. Deep Space Gateway "Recycler" Mission

    NASA Astrophysics Data System (ADS)

    Graham, L.; Fries, M.; Hamilton, J.; Landis, R.; John, K.; O'Hara, W.

    2018-02-01

    Use of the Deep Space Gateway provides a hub for a reusable planetary sample return vehicle for missions to gather star dust as well as samples from various parts of the solar system including main belt asteroids, near-Earth asteroids, and Mars moon.

  16. Spectral Characterization of Analog Samples in Anticipation of OSIRIS-REx's Arrival at Bennu

    NASA Technical Reports Server (NTRS)

    Donaldson Hanna, K. L.; Schrader, D. L.; Bowles, N. E.; Clark, B. E.; Cloutis, E. A.; Connolly, H. C., Jr.; Hamilton, V. E.; Keller, L. P.; Lauretta, D. S.; Lim, L. F.; hide

    2017-01-01

    NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission successfully launched on September 8th, 2016. During its rendezvous with near-Earth asteroid (101955) Bennu beginning in 2018, OSIRIS-REx will characterize the asteroid's physical, mineralogical, and chemical properties in an effort to globally map the properties of Bennu, a primitive carbonaceous asteroid, and choose a sampling location]. In preparation for these observations, analog samples were spectrally characterized across visible, near- and thermal-infrared wavelengths and were used in initial tests on mineral-phase-detection and abundance-determination software algorithms.

  17. Autonomous NanoTechnology Swarm (ANTS) Prospecting Asteroid Mission (PAM), Asteroid Proximity Operations

    NASA Technical Reports Server (NTRS)

    Marr, Greg; Cooley, Steve; Roithmayr, Carlos; Kay-Bunnell, Linda; Williams, Trevor

    2004-01-01

    The Autonomous NanoTechnology Swarm (ANTS) is a generic mission architecture based on spatially distributed spacecraft, autonomous and redundant components, and hierarchical organization. The ANTS Prospecting Asteroid Mission (PAM) is an ANTS application which will nominally use a swarm of 1000 spacecraft. There would be 10 types of "specialists" with common spacecraft buses. There would be 10 subswarms of approximately 100 spacecraft each or approximately 10 of each specialist in each swarm. The ANTS PAM primary objective is the exploration of the asteroid belt in search of resources and material with astrobiologically relevant origins and signatures. The ANTS PAM spacecraft will nominally be released from a station in an Earth-Moon L1 libration point orbit, and they will use Solar sails for propulsion. The sail structure would be highly flexible, capable of changing morphology to change cross-section for capture of sunlight or to form effective "tip vanes" for attitude control. ANTS PAM sails would be capable of full to partial deployment, to change effective sail area and center of pressure, and thus allow attitude control. Results of analysis of a transfer trajectory from Earth to a sample target asteroid will be presented. ANTS PAM will require continuous coverage of different asteroid locations as close as one to two asteroid "diameters" from the surface of the asteroid for periods of science data collection during asteroid proximity operations. Hovering spacecraft could meet the science data collection objectives. The results of hovering analysis will be presented. There are locations for which hovering is not possible, for example on the illuminated side of the asteroid. For cases where hovering is not possible, the results of utilizing asteroid formations to orbit the asteroid and achieve the desired asteroid viewing will be presented for sample asteroids. The ability of ANTS PAM to reduce the area of the solar sail during asteroid proximity operations is critical to the maintenance of orbiting formations for a period of time. Results of analysis of potential "traffic" problems during asteroid proximity operations will be presented.

  18. OSIRIS-REx Asterod Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Nakamura-Messinger, Keiki; Connolly, Harold C. Jr.; Messenger, Scott; Lauretta, Dante S.

    2017-01-01

    OSIRIS-REx is NASA's third New Frontiers Program mission, following New Horizons that completed a flyby of Pluto in 2015 and the Juno mission to Jupiter that has just begun science operations. The OSIRIS-REx mission's primary objective is to collect pristine surface samples of a carbonaceous asteroid and return to Earth for analysis. Carbonaceous asteroids and comets are 'primitive' bodies that preserved remnants of the Solar System starting materials and through their study scientists can learn about the origin and the earliest evolution of the Solar System. The OSIRIS-REx spacecraft was successfully launched on September 8, 2016, beginning its seven year journey to asteroid 101955 Bennu. The robotic arm will collect 60-2000 grams of material from the surface of Bennu and will return to Earth in 2023 for worldwide distribution by the Astromaterials Curation Facility at NASA Johnson Space Center. The name OSIRIS-REx embodies the mission objectives (1) Origins: Return and analyze a sample of a carbonaceous asteroid, (2) Spectral Interpretation: Provide ground-truth for remote observation of asteroids, (3) Resource Identification: Determine the mineral and chemical makeup of a near-Earth asteroid (4) Security: Measure the non-gravitational that changes asteroidal orbits and (5) Regolith Explorer: Determine the properties of the material covering an asteroid surface. Asteroid Bennu may preserve remnants of stardust, interstellar materials and the first solids to form in the Solar System and the molecular precursors to the origin of life and the Earth's oceans. Bennu is a potentially hazardous asteroid, with an approximately 1 in 2700 chance of impacting the Earth late in the 22nd century. OSIRIS-REx collects from Bennu will help formulate the types of operations and identify mission activities that astronauts will perform during their expeditions. Such information is crucial in preparing for humanity's next steps beyond low Earthy orbit and on to deep space destinations.

  19. MarcoPolo-R: Mission and Spacecraft Design

    NASA Astrophysics Data System (ADS)

    Peacocke, L.; Kemble, S.; Chapuy, M.; Scheer, H.

    2013-09-01

    The MarcoPolo-R mission is a candidate for the European Space Agency's medium-class Cosmic Vision programme, with the aim to obtain a 100 g sample of asteroid surface material and return it safely to the Earth. Astrium is one of two industrial contractors currently studying the mission to Phase A level, and the team has been working on the mission and spacecraft design since January 2012. Asteroids are some of the most primitive bodies in our solar system and are key to understanding the formation of the Earth, Sun and other planetary bodies. A returned sample would allow extensive analyses in the large laboratory-sized instruments here on Earth that are not possible with in-situ instruments. This analysis would also increase our understanding of the composition and structure of asteroids, and aid in plans for asteroid deflection techniques. In addition, the mission would be a valuable precursor for missions such as Mars Sample Return, demonstrating a high speed Earth re-entry and hard landing of an entry capsule. Following extensive mission analysis of both the baseline asteroid target 1996 FG3 and alternatives, a particularly favourable trajectory was found to the asteroid 2008 EV5 resulting in a mission duration of 4.5 to 6 years. In October 2012, the MarcoPolo-R baseline target was changed to 2008 EV5 due to its extremely primitive nature, which may pre-date the Sun. This change has a number of advantages: reduced DeltaV requirements, an orbit with a more benign thermal environment, reduced communications distances, and a reduced complexity propulsion system - all of which simplify the spacecraft design significantly. The single spacecraft would launch between 2022 and 2024 on a Soyuz-Fregat launch vehicle from Kourou. Solar electric propulsion is necessary for the outward and return transfers due to the DeltaV requirements, to minimise propellant mass. Once rendezvous with the asteroid is achieved, an observation campaign will begin to characterise the asteroid properties and map the surface in detail. Five potential sampling sites will be selected and closely observed in a local characterisation phase, leading to a single preferred sampling site being identified. The baseline instruments are a Narrow Angle Camera, a Mid-Infrared Spectrometer, a Visible Near-Infrared Spectrometer, a Radio Science Experiment, and a Close-up Camera. For the sampling phase, the spacecraft will perform a touch-and-go manoeuvre. A boom with a sampling mechanism at the end will be deployed, and the spacecraft will descend using visual navigation to touch the asteroid for some seconds. The rotary brush sampling mechanism will be activated on touchdown to obtain a good quality sample comprising regolith dust and pebbles. Low touchdown velocities and collision avoidance are critical at this point to prevent damage to the spacecraft and solar arrays. The spacecraft will then move away, returning to a safe orbit, and the sample will be transferred to an Earth Re-entry Capsule. After a final post-sampling characterisation campaign, the spacecraft will perform the return transfer to Earth. The Earth Re-entry Capsule will be released to directly enter the Earth's atmosphere, and is designed to survive a hard landing with no parachute deceleration. Once recovered, the asteroid sample would be extracted in a sample curation facility in preparation for the full analysis campaign. This presentation will describe Astrium's MarcoPolo-R mission and spacecraft design, with a focus on the innovative aspects of the design.

  20. Mineralogy and petrography of C asteroid regolith: The Sutter's Mill CM meteorite

    NASA Astrophysics Data System (ADS)

    Zolensky, Michael; Mikouchi, Takashi; Fries, Marc; Bodnar, Robert; Jenniskens, Peter; Yin, Qing-zhu; Hagiya, Kenji; Ohsumi, Kazumasa; Komatsu, Mutsumi; Colbert, Matthew; Hanna, Romy; Maisano, Jessie; Ketcham, Richard; Kebukawa, Yoko; Nakamura, Tomoki; Matsuoka, Moe; Sasaki, Sho; Tsuchiyama, Akira; Gounelle, Matthieu; Le, Loan; Martinez, James; Ross, Kent; Rahman, Zia

    2014-11-01

    Based upon our characterization of three separate stones by electron and X-ray beam analyses, computed X-ray microtomography, Raman microspectrometry, and visible-IR spectrometry, Sutter's Mill is a unique regolith breccia consisting mainly of various CM lithologies. Most samples resemble existing available CM2 chondrites, consisting of chondrules and calcium-aluminum-rich inclusion (CAI) set within phyllosilicate-dominated matrix (mainly serpentine), pyrrhotite, pentlandite, tochilinite, and variable amounts of Ca-Mg-Fe carbonates. Some lithologies have witnessed sufficient thermal metamorphism to transform phyllosilicates into fine-grained olivine, tochilinite into troilite, and destroy carbonates. One finely comminuted lithology contains xenolithic materials (enstatite, Fe-Cr phosphides) suggesting impact of a reduced asteroid (E or M class) onto the main Sutter's Mill parent asteroid, which was probably a C class asteroid. One can use Sutter's Mill to help predict what will be found on the surfaces of C class asteroids such as Ceres and the target asteroids of the OSIRIS-REx and Hayabusa 2 sample return missions (which will visit predominantly primitive asteroids). C class asteroid regolith may well contain a mixture of hydrated and thermally dehydrated indigenous materials as well as a significant admixture of exogenous material would be essential to the successful interpretation of mineralogical and bulk compositional data.

  1. NEOCAM: Near Earth Object Chemical Analysis Mission: Bridging the Gulf between Telescopic Observations and the Chemical and Mineralogical Compositions of Asteroids or Diogenes A: Diagnostic Observation of the Geology of Near Earth Spectrally-Classified Asteroids

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.

    2009-01-01

    Studies of meteorites have yielded a wealth of scientific information based on highly detailed chemical and isotopic studies possible only in sophisticated terrestrial laboratories. Telescopic studies have revealed an enormous (greater than 10(exp 5)) number of physical objects ranging in size from a few tens of meters to several hundred kilometers, orbiting not only in the traditional asteroid belt between Mars and Jupiter but also throughout the inner solar system. Many of the largest asteroids are classed into taxonomic groups based on their observed spectral properties and are designated as C, D. X, S or V types (as well as a wide range in sub-types). These objects are certainly the sources far the meteorites in our laboratories, but which asteroids are the sources for which meteorites? Spectral classes are nominally correlated to the chemical composition and physical characteristics of the asteroid itself based on studies of the spectral changes induced in meteorites due to exposure to a simulated space environment. While laboratory studies have produced some notable successes (e.g. the identification of the asteroid Vesta as the source of the H, E and D meteorite classes), it is unlikely that we have samples of each asteroidal spectral type in our meteorite collection. The correlation of spectral type and composition for many objects will therefore remain uncertain until we can return samples of specific asteroid types to Earth for analyses. The best candidates for sample return are asteroids that already come close to the Earth. Asteroids in orbit near 1 A.U. have been classified into three groups (Aten, Apollo & Amor) based on their orbital characteristics. These Near Earth Objects (NEOs) contain representatives of virtually all spectral types and sub-types of the asteroid population identified to date. Because of their close proximity to Earth, NEOs are prime targets for asteroid missions such as the NEAR-Shoemaker NASA Discovery Mission to Eros and the Japanese Hyabusa Mission to Itokawa. Also due to their close proximity to Earth, NEOs constitute the most likely set of celestial objects that will impact us in the relatively near future.

  2. A Wide-Angle Camera for the Mobile Asteroid Surface Scout (MASCOT) on Hayabusa-2

    NASA Astrophysics Data System (ADS)

    Schmitz, N.; Koncz, A.; Jaumann, R.; Hoffmann, H.; Jobs, D.; Kachlicki, J.; Michaelis, H.; Mottola, S.; Pforte, B.; Schroeder, S.; Terzer, R.; Trauthan, F.; Tschentscher, M.; Weisse, S.; Ho, T.-M.; Biele, J.; Ulamec, S.; Broll, B.; Kruselburger, A.; Perez-Prieto, L.

    2014-04-01

    JAXA's Hayabusa-2 mission, an asteroid sample return mission, is scheduled for launch in December 2014, for a rendezvous with the C-type asteroid 1999 JU3 in 2018. MASCOT, the Mobile Asteroid Surface Scout [1], is a small lander, designed to deliver ground truth for the orbiter remote measurements, support the selection of sampling sites, and provide context for the returned samples.MASCOT's main objective is to investigate the landing site's geomorphology, the internal structure, texture and composition of the regolith (dust, soil and rocks), and the thermal, mechanical, and magnetic properties of the surface. MASCOT comprises a payload of four scientific instruments: camera, radiometer, magnetometer and hyper-spectral microscope. The camera (MASCOT CAM) was designed and built by DLR's Institute of Planetary Research, together with Airbus DS Germany.

  3. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  4. Collision rates and impact velocities in the Main Asteroid Belt

    NASA Technical Reports Server (NTRS)

    Farinella, Paolo; Davis, Donald R.

    1992-01-01

    Wetherill's (1967) algorithm is presently used to compute the mutual collision probabilities and impact velocities of a set of 682 asteroids with large-than-50-km radius representative of a bias-free sample of asteroid orbits. While collision probabilities are nearly independent of eccentricities, a significant decrease is associated with larger inclinations. Collisional velocities grow steeply with orbital eccentricity and inclination, but with curiously small variation across the asteroid belt. Family asteroids are noted to undergo collisions with other family members 2-3 times more often than with nonmembers.

  5. Touch And Go Camera System (TAGCAMS) for the OSIRIS-REx Asteroid Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Bos, B. J.; Ravine, M. A.; Caplinger, M.; Schaffner, J. A.; Ladewig, J. V.; Olds, R. D.; Norman, C. D.; Huish, D.; Hughes, M.; Anderson, S. K.; Lorenz, D. A.; May, A.; Jackman, C. D.; Nelson, D.; Moreau, M.; Kubitschek, D.; Getzandanner, K.; Gordon, K. E.; Eberhardt, A.; Lauretta, D. S.

    2018-02-01

    NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch And Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample, and document asteroid sample stowage. The cameras were designed and constructed by Malin Space Science Systems (MSSS) based on requirements developed by Lockheed Martin and NASA. All three of the cameras are mounted to the spacecraft nadir deck and provide images in the visible part of the spectrum, 400-700 nm. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. Their boresights are aligned in the nadir direction with small angular offsets for operational convenience. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Its boresight is pointed at the OSIRIS-REx sample return capsule located on the spacecraft deck. All three cameras have at their heart a 2592 × 1944 pixel complementary metal oxide semiconductor (CMOS) detector array that provides up to 12-bit pixel depth. All cameras also share the same lens design and a camera field of view of roughly 44° × 32° with a pixel scale of 0.28 mrad/pixel. The StowCam lens is focused to image features on the spacecraft deck, while both NavCam lens focus positions are optimized for imaging at infinity. A brief description of the TAGCAMS instrument and how it is used to support critical OSIRIS-REx operations is provided.

  6. A photoelectric lightcurve survey of small main belt asteroids

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Mulholland, J. D.

    1983-01-01

    A survey to obtain photoelectric lightcurves of small main-belt asteroids was conducted from November 1981 to April 1982 using the 0.91- and 2.1-m telescopes at the University of Texas McDonald Observatory. A total of 18 main-belt asteroids having estimated dimaters under 30 km were observed with over half of these being smaller than 15 km. Rotational periods were determined or estimated from multiple nights of observation for nearly all of these yielding a sample of 17 small main-belt asteroids which is believed to be free of observational selection effects. All but two of these objects were investigated for very short periods in the range of 1 min to 2 hr using power spectrum analysis of a continuous set of integrations. No evidence for such short periods was seen in this sample. Rotationally averaged B(1,0) magnitudes were determined for most of the surveyed asteroids, allowing diameter estimates to be made. Imposing the suspected selection effects of photogaphic photometry on the results of this survey gives excellent agreement with the results from that technique. This shows that the inability of photographic photometry to obtain results for many asteroids is indeed due to the rotational parameter of those asteroids.

  7. Compositional study of asteroids in the Erigone collisional family using visible spectroscopy at the 10.4m GTC

    NASA Astrophysics Data System (ADS)

    Morate, David; de León, Julia; De Prá, Mário; Licandro, Javier; Cabrera-Lavers, Antonio; Campins, Humberto; Pinilla-Alonso, Noemí; Alí-Lagoa, Víctor

    2015-11-01

    Asteroid families are formed by the fragments produced by the disruption of a common parent body (Bendjoya & Zappalà 2002). Primitive asteroids in the solar system are believed to have undergone less thermal processing than the S-complex asteroids. Thus, study of primitive asteroid families provides information about the solar system formation period. The Erigone collisional family, together with other three families (Polana, Clarissa and Sulamitis), are believed to be the origin of the two primitive Near-Earth asteroids that are the main targets of the NASA’s OSIRIS-REx ((101955) Bennu) and JAXA’s Hayabusa 2 ((162173) 1999 JU3) missions (Campins et al. 2010; Campins et al. 2013; Lauretta et al. 2010; Tsuda et al. 2013). These spacecrafts will visit the asteroids, and a sample of their surface material will be returned to Earth. Understanding of the families that are considered potential sources will enhance the scientific return of the missions. The main goal of the work presented here is to characterize the Erigone collisional family. Asteroid (163) Erigone has been classified as a primitive object (Bus 1999; Bus & Binzel 2002), and we expect the members of this family to be consistent with the spectral type of the parent body. We have obtained visible spectra (0.5-0.9 μm) for 101 members of the Erigone family, using the OSIRIS instrument at the 10.4m Gran Telescopio Canarias. We performed a taxonomical classification of these asteroids, finding that the number of primitive objects in our sample is in agreement with the hypothesis of a common parent body. In addition, we have found a significant fraction of asteroids in our sample that present evidences of aqueous alteration. Study of aqueous alterations is important, as it can give information on the heating processes of the early Solar System, and for the associated astrobiological implications (it has been suggested that the Earth’s present water supply was brought here by asteroids, instead of comets, in opposition to previous explanations (Morbidelli et al. 2000).

  8. Flyght Dynamics of Artificial Satellite of the Minor Asteroid

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander; Eismont, Natan; Ledkov, Anton; Simonov, Alexander; Pol, Vadim

    During last years the scientific interest to the asteroid is constantly growing. It may be explained by different reasons. One of the most important from them is confirmation of the fact that the asteroids present the real hazard to the Earth. The Chelyabinsk event demonstrates strong in support of this statement. Besides, the asteroids exploration promises to supply new data for understanding of the solar system origin and evolution. And the projects aimed to reach this goal have begun from the NASA NEAR mission to Eros. It was the first one when the spacecraft was landed on the surface of the asteroid. The other successive mission was fulfilled by JAXA with Hayabusa spacecraft which has returned to the Earth soil samples of Itokawa asteroid. In the nearest future the mission to RQ 36 asteroid is planned supposing landing and soil samples return. Unavoidable phase of such missions is the spacecraft flight in vicinity of the target asteroid, for example on the asteroid satellite orbit. It should be mentioned that quite visible number of asteroids has geometric form which is far from being sphere. Accordingly the gravity field of such asteroid cannot be presented as the one close to sphere. The problem is that prior to the mission to the asteroid one cannot receive good enough knowledge of its gravity field and even its gravity field constant. In the paper the flight dynamics problem of spacecraft moving along asteroid satellite orbit is explored. It is supposed that the asteroid is comparatively small with diameter (maximum size) about 300 m, like Apophis asteroid has, or less. To approximate the gravity field of asteroid the last is considered as totality of mass points. We assume such approach as more simple and effective as compared with the commonly accepted use of Legendre polynomial expansion. Different orbits near asteroid are analyzed with the sets of orbital parameters determining the size of orbit, its shape and position with respect to the Sun. The goal of this analysis is to understand what initial orbital parameters deliver stability of the orbit in terms of avoiding the collision with the asteroid surface. The orbital heights are calculated which allow to consider the asteroid gravity field as close to the spherical one de-pending on the shape of asteroid. Also maneuvers are estimated necessary for keeping the spacecraft on asteroid satellite orbit and for changing orbital parameters. Taking into account that gravity field parameters of the target asteroids may have pure accuracy it is supposed that spacecraft starts its motion in vicinity of the asteroid from the high enough orbit and then after processing of the tracking data maneuvers are executed to decrease spacecraft altitude. Methods of this procedure optimization are explored.

  9. Spin Rate Distribution of Small Asteroids Shaped by YORP Effect

    NASA Astrophysics Data System (ADS)

    Pravec, Petr

    2008-09-01

    We studied a distribution of spin rates of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km using data obtained within the Photometric Survey of Asynchronous Binary Asteroids (Pravec et al. 2008). We found that the spin distribution of the small asteroids is uniform in the range from f = 1 to 9.5 d-1, and there is an excess of slow rotators with f < 1 d-1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of 0.022 d-1/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d-1 is 45 Myr), thus the residence time of slowed down asteroids in the excess is 110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km ( 5-times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f = 9-10 d-1. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids. Reference: Pravec, P., and 30 colleagues, 2008. Spin rate distribution of small asteroids. Icarus, in press. DOI: http://dx.doi.org/10.1016/j.icarus.2008.05.012

  10. Maneuver Strategy for OSIRIS-REx Proximity Operations

    NASA Technical Reports Server (NTRS)

    Wibben, Daniel R.; Williams, Kenneth E.; McAdams, James V.; Antreasian, Peter G.; Leonard, Jason M.; Moreau, Michael C.

    2017-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) asteroid sample return mission will study and observe asteroid (101955) Bennu (previously known as 1999 RQ36) and subsequently collect and return a sample from the asteroid to Earth for further detailed analysis. After a successful launch in September 2016, the spacecraft will be in cruise phase for two years until arrival at asteroid Bennu in late 2018. At that time, aseries of critical maneuvers will provide an initial characterization of Bennu and the dynamical environment surrounding it, ultimately concluding with a successful capture into orbit about the small asteroid. This paper discusses some of the unique navigation challenges presented by these early operational phases in close proximity to Bennu and shares key observations and results from operational tests that have prepared the operations team and help mitigate the risks posed by these challenges.

  11. Cruise status of Hayabusa2: Round trip mission to asteroid 162173 Ryugu

    NASA Astrophysics Data System (ADS)

    Tsuda, Yuichi; Watanabe, Sei-ichiro; Saiki, Takanao; Yoshikawa, Makoto; Nakazawa, Satoru

    2017-07-01

    The Japan Aerospace Exploration Agency launched an asteroid sample return spacecraft "Hayabusa2" on December 3, 2014 by the Japanese H2A launch vehicle. Hayabusa2 aims at the round trip mission to the asteroid 162173 Ryugu. Hayabusa2 successfully conducted the Earth gravity assist on December 3, 2015, and now the spacecraft is flying toward Ryugu with the microwave discharge ion engine as the means of propulsion. As of September 2016, 1346 h of the ion engine operation has been achieved as planned. Three touch downs/sample collections, one kinetic impact/crater generation, four surface rovers deployment and many other in-situ observations are planned in the asteroid proximity phase. The operation team will perform extensive operation practice/rehearsal using a hardware-in-the-loop simulator in the year 2017 to be ready for the asteroid arrival in the summer 2018.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainzer, A.; Masiero, J.; Bauer, J.

    Enhancements to the science data processing pipeline of NASA's Wide-field Infrared Survey Explorer (WISE) mission, collectively known as NEOWISE, resulted in the detection of >158,000 minor planets in four infrared wavelengths during the fully cryogenic portion of the mission. Following the depletion of its cryogen, NASA's Planetary Science Directorate funded a four-month extension to complete the survey of the inner edge of the Main Asteroid Belt and to detect and discover near-Earth objects (NEOs). This extended survey phase, known as the NEOWISE Post-Cryogenic Survey, resulted in the detection of {approx}6500 large Main Belt asteroids and 86 NEOs in its 3.4more » and 4.6 {mu}m channels. During the Post-Cryogenic Survey, NEOWISE discovered and detected a number of asteroids co-orbital with the Earth and Mars, including the first known Earth Trojan. We present preliminary thermal fits for these and other NEOs detected during the 3-Band Cryogenic and Post-Cryogenic Surveys.« less

  13. A Mobile Asteroid Surface Scout (MASCOT) for the Hayabusa 2 Mission to 1999 JU3: The Scientific Approach

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf; Bibring, Jean-Piere; Glassmeier, Karl-Heiz; Grott, Mathias; Ho, Tra-Mi; Ulamec, Stefan; Schmitz, Nicole; Auster, Ulrich; Biele, Jens; Kuninaka, Hitoshi; Okada, Tatsuaki; Yoshikawa, Makoto; Watanabe, Sei-ichiro; Fujimoto, Masaki; Spohn, Tilman; Koncz, Aalexander; Hercik, Davis; Michaelis, Harald

    2015-04-01

    MASCOT, a Mobile Asteroid Surface Scout, will support JAXA's Hayabusa 2 mission to investigate the C-type asteroid 1999 JU3 (1). The German Aer-ospace Center (DLR) develops MASCOT with contributions from CNES (France) (2,3,4). Main objective is to in-situ map the asteroid's geomorphol-ogy, the intimate mixture, texture and composition of the regolith (dust, soil and rocks), and the thermal, mechanical, and magnetic properties of the sur-face in order to provide ground truth for the orbiter remote measurements, support the selection of sampling sites, and provide context information for the returned samples. MASCOT comprises a payload of four scientific in-struments: camera, radiometer, magnetometer and hyperspectral microscope. C- and D-type asteroids hold clues to the origin of the solar system, the for-mation of planets, the origins of water and life on Earth, the protection of Earth from impacts, and resources for future human exploration. C- and D-types are dark and difficult to study from Earth, and have only been glimpsed by spacecraft. While results from recent missions (e.g., Hayabusa, NEAR (5, 6, 7)) have dramatically increased our understanding of asteroids, important questions remain open. For example, characterizing the properties of asteroid regolith in-situ would deliver important ground truth for further understanding telescopic and orbital observations and samples of such asteroids. MASCOT will descend and land on the asteroid and will change its own position up to two times by hopping. This enables measurements during descent, at the landing and hopping positions #1-3, and during hopping. Hayabusa 2 together with MASCOT launched December 3rd 2014, will arrive at 1999JU3 in 2018 and return samples back to Earth in 2020. References: (1) Vilas, F., Astronomical J. 1101-1105, 2008; (2) Ulamec, S., et al., Acta Astronautica, Vol. 93, pp. 460-466; (3) Jaumann et al., 45th LPSC, #1812, Houston; (4) Ho et al., 45th LPSC, #2535, Houston; (5) Spe-cial Issue, Science, Vol. 312 no. 5778, 2006; (6) Special Issue Science, Vol. 333 no. 6046, 2011. (7) Bell, L., Mitton, J-., Cambridge Univ. Press, 2002.

  14. PHYS: Division of Physical Chemistry 258 - Properties and Origins of Cometary and Asteroidal Organic Matter Delivered to the Early Earth

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nguyen, Ann

    2017-01-01

    Comets and asteroids may have contributed much of the Earth's water and organic matter. The Earth accretes approximately 4x10(exp 7) Kg of dust and meteorites from these sources every year. The least altered meteorites contain complex assemblages of organic compounds and abundant hydrated minerals. These carbonaceous chondrite meteorites probably derive from asteroids that underwent hydrothermal processing within the first few million years after their accretion. Meteorite organics show isotopic and chemical signatures of low-T ion-molecule and grain-surface chemistry and photolysis of icy grains that occurred in cold molecular clouds and the outer protoplanetary disk. These signatures have been overprinted by aqueously mediated chemistry in asteroid parent bodies, forming amino acids and other prebiotic molecules. Comets are much richer in organic matter but it is less well characterized. Comet dust collected in the stratosphere shows larger H and N isotopic anomalies than most meteorites, suggesting better preservation of primordial organics. Rosetta studies of comet 67P coma dust find complex organic matter that may be related to the macromolecular material that dominates the organic inventory of primitive meteorites. The exogenous organic material accreting on Earth throughout its history is made up of thousands of molecular species formed in diverse processes ranging from circumstellar outflows to chemistry at near absolute zero in dark cloud cores and the formative environment within minor planets. NASA and JAXA are currently flying sample return missions to primitive, potentially organic-rich asteroids. The OSIRIS-REx and Hayabusa2 missions will map their target asteroids, Bennu and Ryugu, in detail and return regolith samples to Earth. Laboratory analyses of these pristine asteroid samples will provide unprecedented views of asteroidal organic matter relatively free of terrestrial contamination within well determined geological context. Studies of extraterrestrial materials and returned samples are essential to understand the origins of Solar System organic material and the roles of comets and asteroids to providing the starting materials for the emergence of life.

  15. Testing dark energy with the Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics

    NASA Astrophysics Data System (ADS)

    Corasaniti, Pier Stefano; LoVerde, Marilena; Crotts, Arlin; Blake, Chris

    2006-06-01

    The Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-m liquid-mirror telescope surveying ~1000deg2 of the Southern hemisphere sky. It will be a remarkably simple and inexpensive telescope that none the less will deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consist of nightly, high signal-to-noise ratio, multiband light curves of Type Ia supernovae (SNe Ia). At the end of the 3-yr run, ALPACA is expected to collect >~100000 SNe Ia up to z ~ 1. This will allow us to reduce present systematic uncertainties affecting the standard-candle relation. The survey will also provide several other data sets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak-lensing measurements. In this preliminary analysis, we forecast constraints on dark energy parameters from SNe Ia and baryon acoustic oscillations. The combination of these two data sets will provide competitive constraints on the dark energy parameters under minimal prior assumptions. Further studies are needed to address the accuracy of weak-lensing measurements.

  16. A Mobile Asteroid Surface Scout (MASCOT) on board the Hayabusa 2 Mission to the near Earth asteroid (162173) Ryugu

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Bibring, J. P.; Glassmeier, K. H.; Grott, M.; Ho, T. M.; Ulamec, S.; Schmitz, N.; Auster, H. U.; Biele, J.; Kuninaka, H.; Okada, T.; Yoshikawa, M.; Watanabe, S.; Spohn, T.; Koncz, A.; Hercik, D.; Michaelis, H.; Fujimoto, M.

    2016-12-01

    MASCOT is part of JAXA's Hayabusa 2 asteroid sample return mission that has been launched to asteroid (162173) Ryugu (1,2,3) on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth in 2020. The German Aerospace Center (DLR) developed the lander MASCOT with contributions from CNES (France) (2,3). Ryugu has been classified as a Cg-type (4), believed to be a primitive volatile-rich remnant from the early solar system. Its visible geometric albedo is 0.07±0.01with a diameter of 0.87±0.03 km (5). The thermal inertia indicates thick dust with a cm-sized, gravel-dominated surface layer (5,6). Ryugu shows a retrograde rotation with a period of 7.63±0.01h. Spectral observations indicate iron-bearing phyllosilicates (1) on parts of the surface, suggesting compositional heterogeneity. MASCOT will enable to in-situ map the asteroid's geomorphology, the intimate structure, texture and composition of the regolith (dust, soil and rocks), and its thermal, mechanical, and magnetic properties in order to provide ground truth for the orbiter remote measurements, support the selection of sampling sites, and provide context information for the returned samples (2,3). MASCOT comprises a payload of four scientific instruments: camera, radiometer, magnetometer and hyperspectral microscope (2,3). Characterizing the properties of asteroid regolith in-situ will deliver important ground truth for further understanding telescopic and orbital observations as well as samples of asteroids. MASCOT will descend and land on the asteroid and will change its position by hopping (3). (1) Vilas, F., Astro. J. 1101-1105, 2008; (2) Jaumann, R., et al., SSR, DOI 10.1007/s11214-016-0263-2, 2016; (3) Ho, T.-M. et al., SSR, DOI 10.1007/s11214-016-0251-6, 2016; (4) Bus, S.J., Binzel, R.P. Icarus 158, 2002; (5) Hasegawa, T.G., et al., Astron. Soc. Japan 60, 2008; (6) T.G. Müller, T.G., et al., doi 10.1051/0004-6361/201015599, 2011.

  17. Osiris-REx Spacecraft Current Status and Forward Plans

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Lauretta, Dante S.; Connolly, Harold C., Jr.

    2017-01-01

    The NASA New Frontiers OSIRIS-REx spacecraft executed a flawless launch on September 8, 2016 to begin its 23-month journey to near-Earth asteroid (101955). The primary objective of the OSIRIS-REx mission is to collect and return to Earth a pristine sample of regolith from the asteroid surface. The sampling event will occur after a two-year period of remote sensing that will ensure a high probability of successful sampling of a region on the asteroid surface having high science value and within well-defined geological context. The OSIRIS-REx instrument payload includes three high-resolution cameras (OCAMS), a visible and near-infrared spectrometer (OVIRS), a thermal imaging spectrometer (OTES), an X-ray imaging spectrometer (REXIS), and a laser altimeter (OLA). As the spacecraft follows its nominal outbound-cruise trajectory, the propulsion, power, communications, and science instruments have undergone basic functional tests, with no major issues. Outbound cruise science investigations include a search for Earth Trojan asteroids as the spacecraft approaches the Sun-Earth L4 Lagrangian point in February 2017. Additional instrument checkouts and calibrations will be carried out during the Earth gravity assist maneuver in September 2017. During the Earth-moon flyby, visual and spectral images will be acquired to validate instrument command sequences planned for Bennu remote sensing. The asteroid Bennu remote sensing campaign will yield high resolution maps of the temperature and thermal inertia, distributions of major minerals and concentrations of organic matter across the asteroid surface. A high resolution 3d shape model including local surface slopes and a high-resolution gravity field will also be determined. Together, these data will be used to generate four separate maps that will be used to select the sampling site(s). The Safety map will identify hazardous and safe operational regions on the asteroid surface. The Deliverability map will quantify the accuracy with which the navigation team can deliver the spacecraft to and from specific sites on the asteroid surface. The Sampleability map quantifies the regolith properties, providing an estimation of how much material would be sampled at different points on the surface. The final Science Value map synthesizes the chemical, mineralogical, and geological, observations to identify the areas of the asteroid surface with the highest science value. Here, priority is given to organic, water-rich regions that have been minimally altered by surface processes. Asteroid surface samples will be acquired with a touch-and-go sample acquisition system (TAGSAM) that uses high purity pressurized N2 gas to mobilize regolith into a stainless steel canister. Although the mission requirement is to collect at least 60 g of material, tests of the TAGSAM routinely exceeded 300 g of simulant in micro-gravity tests. After acquiring the sample, the spacecraft will depart Bennu in 2021 to begin its return journey, with the sample return capsule landing at the Utah Test and Training Range on September 23, 2023. The OSIRIS-REx science team will carry out a series of detailed chemical, mineralogical, isotopic, and spectral studies that will be used to determine the origin and history of Bennu and to relate high spatial resolution sample studies to the global geological context from remote sensing. The outline of the sample analysis plan is described in a companion abstract.

  18. Measurement of Cohesion in Asteroid Regolith Materials

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie E.; Gaier, James R.; Waters, Deborah L.; Harvey, Ralph; Zeszut, Zoe; Carreno, Brandon; Shober, Patrick

    2017-01-01

    A study has been initiated to examine cohesive forces in asteroid materials to contribute to a better understanding of low density bodies such as asteroids and Phobos, and assist in exploration missions involving interaction with their surface material. The test specimen used in this study was a lightly weathered CM2 meteorite which is spectroscopically similar to Type C (carbonaceous) asteroids, and thought to have representative surface chemistry. To account for sample heterogeneity, adhesion forces were measured between the CM2 sample and its five primary mineral phase components. These adhesive forces bound the range of cohesive force that can be expected for the bulk material. All materials were characterized using a variety of optical and spectroscopic methods. Adhesive forces on the order of 50 to 400 µN were measured using a torsion balance in an ultrahigh vacuum chamber. The mineral samples exhibited clearly different adhesive strengths in the following hierarchy: Serpentine > Siderite > Bronzite > Olivine ˜ Fe-Ni.

  19. Origin of igneous meteorites and differentiated asteroids

    NASA Astrophysics Data System (ADS)

    Scott, E.; Goldstein, J.; Asphaug, E.; Bottke, W.; Moskovitz, N.; Keil, K.

    2014-07-01

    Introduction: Igneously formed meteorites and asteroids provide major challenges to our understanding of the formation and evolution of the asteroid belt. The numbers and types of differentiated meteorites and non-chondritic asteroids appear to be incompatible with an origin by fragmentation of numerous Vesta-like bodies by hypervelocity impacts in the asteroid belt over 4 Gyr. We lack asteroids and achondrites from the olivine-rich mantles of the parent bodies of the 12 groups of iron meteorites and the ˜70 ungrouped irons, the 2 groups of pallasites and the 4--6 ungrouped pallasites. We lack mantle and core samples from the parent asteroids of the basaltic achondrites that do not come from Vesta, viz., angrites and the ungrouped eucrites like NWA 011 and Ibitira. How could core samples have been extracted from numerous differentiated bodies when Vesta's basaltic crust was preserved? Where is the missing Psyche family of differentiated asteroids including the complementary mantle and crustal asteroids [1]? Why are meteorites derived from far more differentiated parent bodies than chondritic parent bodies even though C and S class chondritic asteroids dominate the asteroid belt? New paradigm. Our studies of meteorites, impact modeling, and dynamical studies suggest a new paradigm in which differentiated asteroids accreted at 1--2 au less than 2 Myr after CAI formation [2]. They were rapidly melted by 26Al and disrupted by hit-and-run impacts [3] while still molten or semi-molten when planetary embryos were accreting. Metallic Fe-Ni bodies derived from core material cooled rapidly with little or no silicate insulation less than 4 Myr after CAI formation [4]. Fragments of differentiated planetesimals were subsequently tossed into the asteroid belt. Meteorite evidence for early disruption of differentiated asteroids. If iron meteorites were samples of Fe-Ni cores of bodies that cooled slowly inside silicate mantles over ˜50--100 Myr, irons from each core would have almost indistinguishable cooling rates as thermal gradients across cores would have been minimal. Irons in groups IIIAB, IVA, and IVB have chemical crystallization trends showing that they cooled in three separate bodies. However, each shows a wide range of cooling rates [4]. Group IVA irons cooled through 500°C at 6600--100 °C/Myr in a metallic body of radius 150 ± 50 km with scarcely any silicate insulation [5]. The Pb-Pb age of 4565.3 ± 0.1 Myr for a IVA iron [6] confirms that these irons cooled to ˜300°C only 2--3 Myr after CAI formation. Multiple hit-and-run impacts may have separated core and mantle material during accretion [7] as hypervelocity impacts do not efficiently separate cores from mantles. Thermal histories and magnetic properties of main group pallasites also require early catastrophic disruption of their primary parent body [8,9]. Conclusions. The anomalous properties of differentiated asteroids and meteorites cannot be explained by concealing differentiated planetesimals under chondritic crusts [10] as meteorite breccias and the apparent compositional homogeneity of asteroid families are inconsistent with this model. Like Burbine et al. [11], we attribute the lack of olivine mantle meteorites and asteroids to collisional grinding of weaker silicate and the preferential survival of stronger metallic Fe,Ni fragments. But we infer that asteroid break up occurred very early inside 2 au, not in the asteroid belt over 4 Gyr. Vesta may have preserved its crust due to early ejection into the asteroid belt. It is the smallest terrestrial planet --- not an archetypal differentiated asteroid.

  20. The Near-Earth Encounter of Asteroid 308635 (2005 YU55): Thermal IR Observations

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.; Busch, N. W.; Yang, B.; Granvik, M.

    2012-01-01

    The near-Earth approach (0.00217 AU, or 0.845 lunar distances) of the C-type asteroid 308635 (2005 YU55) in November 2011 presented a rare opportunity for detailed observations of a low-albedo NEA in this size range. As part of a multi-telescope campaign to measure visible and infrared spectra and photometry, we obtained mid-infrared (approx. 8 to 22 micron) photometry and spectroscopy of 2005 YU55 using Michelle on the Gemini North telescope on UT November 9 and 10,2011. An extensive radar campaign together with optical light-curves established the rotation state of YU55. In addition, the radar imaging resulted in a shape model for the asteroid, detection of numerous boulders on its surface, and a preliminary estimate of its equatorial diameter at 380 +/- 20 m. In a preliminary analysis, applying the radar and lightcurve-derived parameters to a rough-surface thermophysical model fit to the Gemini/Michelle thermal emission photometry results in a thermal inertia range of approximately 500 to 1500 J/sq m/0.5s/K, with the low-thermal-inertia solution corresponding to the small end of the radar size range and vice versa. Updates to these results will be presented and modeling of the thermal contribution to the measured near-infrared spectra from Palomar/Triplespec and IRTF/SpeX will also be discussed.

  1. G-mode analysis of the reflection spectra of 84 asteroids.

    NASA Astrophysics Data System (ADS)

    Birlan, M.; Barucci, M. A.; Fulchignoni, M.

    1996-01-01

    A revised version of the G-mode multivariate statistics (Coradini et al. 1977) has been used to analyse a sample of 84 asteroids. This sample of asteroids is described by 29 variables, namely 23 colours between 0.9 and 2.35 microns obtained from the data base collected by Bell et al. (Private communication), 5 colors between 0.3 and 0.85 microns from the ECAS survey (Zellner et al. 1985) and the revised IRAS albedo (Tedesco et al. 1992). The G-mode method allows the user to obtain an automatic classification of the asteroids in spectrally homogeneous groups. The role of the IR colours in separating the various groups is outlined, particularly with regard to the fine subdivision of S and C taxonomical types.

  2. Direct Characterization of Comets and Asteroids via Cosmic Dust Analysis from the Deep Space Gateway

    NASA Technical Reports Server (NTRS)

    Fries, M.; Fisher, K.

    2018-01-01

    The Deep Space Gateway (DSG) may provide a platform for direct sampling of a large number of comets and asteroids, through employment of an instrument for characterizing dust from these bodies. Every year, the Earth traverses through debris streams of dust and small particles from comets and asteroids in Earth-crossing orbits, generating short-lived outbursts of meteor activity commonly known as "meteor showers" (Figure 1). The material in each debris stream originates from a distinct parent body, many of which have been identified. By sampling this material, it is possible to quantitatively analyze the composition of a dozen or more comets and asteroids (See Figure 2, following page) without leaving cislunar space.

  3. Spin rate distribution of small asteroids

    NASA Astrophysics Data System (ADS)

    Pravec, P.; Harris, A. W.; Vokrouhlický, D.; Warner, B. D.; Kušnirák, P.; Hornoch, K.; Pray, D. P.; Higgins, D.; Oey, J.; Galád, A.; Gajdoš, Š.; Kornoš, L.; Világi, J.; Husárik, M.; Krugly, Yu. N.; Shevchenko, V.; Chiorny, V.; Gaftonyuk, N.; Cooney, W. R.; Gross, J.; Terrell, D.; Stephens, R. D.; Dyvig, R.; Reddy, V.; Ries, J. G.; Colas, F.; Lecacheux, J.; Durkee, R.; Masi, G.; Koff, R. A.; Goncalves, R.

    2008-10-01

    The spin rate distribution of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km is uniform in the range from f=1 to 9.5 d -1, and there is an excess of slow rotators with f<1 d -1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of ≈0.022 d/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d -1 is ≈45 Myr), thus the residence time of slowed down asteroids in the excess is ≈110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km (˜5 times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f=9-10 d. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids.

  4. A Mobile Asteroid Surface Scout (MASCOT) for the Hayabusa 2 Mission to 1999 JU3: The Scientific Approach

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf; Bibring, Jean-Pierre; Glassmeier, Karl-Heinz; Grott, Matthias; Ho, Tra-Mi; Ulamec, Stepahn; Schmitz, Nicole; Auster, Ulrich; Biele, Jens; Kuninaka, Hitoshi; Okada, Tatsuaki; Yoshikawa, Makoto; Watanabe, Sei-ichhiro; Fujimoto, Masaki; Spohn, Tilman; Koncz, Alexander; Michaelis, Harald

    2014-05-01

    MASCOT, a Mobile Asteroid Surface Scout, will support JAXA's Hayabusa 2 mission to investigate the C-type asteroid 1999 JU3 (1). The German Aer-ospace Center (DLR) develops MASCOT with contributions from CNES (France) (2,3). Main objective is to in-situ map the asteroid's geomorpholo-gy, the intimate structure, texture and composition of the regolith (dust, soil and rocks), and the thermal, mechanical, and magnetic properties of the sur-face in order to provide ground truth for the orbiter remote measurements, support the selection of sampling sites, and provide context information for the returned samples. MASCOT comprises a payload of four scientific in-struments: camera, radiometer, magnetometer and hyperspectral microscope. C- and D-type asteroids hold clues to the origin of the solar system, the for-mation of planets, the origins of water and life on Earth, the protection of Earth from impacts, and resources for future human exploration. C- and D-types are dark and difficult to study from Earth, and have only been glimpsed by spacecraft. While results from recent missions (e.g., Hayabusa, NEAR (4, 5, 6)) have dramatically increased our understanding of asteroids, important questions remain. For example, characterizing the properties of asteroid regolith in-situ would deliver important ground truth for further understanding telescopic and orbital observations and samples of such aster-oids. MASCOT will descend and land on the asteroid and will change its position two times by hopping. This enables measurements during descent, at the landing and hopping positions #1-3, and during hopping. References: (1) Vilas, F., Astronomical J. 1101-1105, 2008; (2) Ulamec, S., et al., Acta Astronautica, Vol. 93, pp. 460-466; (3) Jaumann et al., 45th LPSC, Houston; (4) Special Issue, Science, Vol. 312 no. 5778, 2006; (5) Special Issue Science, Vol. 333 no. 6046, 2011. (6) Bell, L., Mitton, J-., Cambridge Univ. Press, 2002.

  5. A Mobile Asteroid Surface Scout (MASCOT) for the Hayabusa 2 Mission to 1999 JU3: The Scientific Approach

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf; Bibring, Jean-Pierre; Glassmeier, Karl-Heinz; Grott, Matthias; Ho, Tra-Mie; Ulamec, Stephan; Schmitz, Nicole; Auster, Hans-Ulrich; Biele, Jens; Kuninaka, Hitoshi; Okada, Tatsuaki; Yoshikawa, Makoto; Watanabe, Sei-ichhiro; Fujimoto, Masaki; Spohn, Tilman

    2013-04-01

    Mascot, a Mobile Asteroid Surface Scout, will support JAXA's Hayabusa 2 mission to investigate the C-type asteroid 1999 JU3 (1). The German Aero-space Center (DLR) develops Mascot with contributions from CNES (France) (2). Main objective is to in-situ map the asteroid's geomorphology, the intimate structure, texture and composition of the regolith (dust, soil and rocks), and the thermal, mechanical, and magnetic properties of the surface in order to provide ground truth for the orbiter remote measurements, sup-port the selection of sampling sites, and provide context information for the returned samples. Mascot comprises a payload of four scientific instruments: camera, radiometer, magnetometer and hyperspectral microscope. C- and D-type asteroids hold clues to the origin of the solar system, the formation of planets, the origins of water and life on Earth, the protection of Earth from impacts, and resources for future human exploration. C- and D-types are dark and difficult to study from Earth, and have only been glimpsed by spacecraft. While results from recent missions (e.g., Hayabusa, NEAR (3, 4, 5)) have dramatically increased our understanding of asteroids, important questions remain. For example, characterizing the properties of asteroid reg-olith in-situ would deliver important ground truth for further understanding telescopic and orbital observations and samples of such asteroids. Mascot will descend and land on the asteroid and will change its position two times by hopping. This enables measurements during descent, at the landing and hopping positions #1-3, and during hopping. References: (1) Vilas, F., Astronomical J. 1101-1105, 2008; (2) Ulamec, S., et al., COSPAR, General Assembly, Mysore/India, 2012; (3) Special Issue, Science, Vol. 312 no. 5778, 2006; (4) Special Issue Science, Vol. 333 no. 6046, 2011; (5) Bell, L., Mitton, J-., Cambridge Univ. Press, 2002.

  6. Main-belt asteroid exploration - Mission options for the 1990s

    NASA Technical Reports Server (NTRS)

    Yen, C.-W. L.

    1982-01-01

    Mission configurations, propulsion systems, and target bodies for possible NASA asteroid exploration projects are examined. Noting that an announced delay in the development of a solar electric propulsion system has led to a consideration of chemical rocket systems, asteroid missions are grouped in terms of five potential areas for investigation, each successively further from the sun. The Shuttle-launched IUS is suggested as the prime candidate for boosting probes into trajectories for asteroid rendezvous with a number of the 3000 known asteroids. Planetary swingbys are mentioned as the only suitable method for satisfying the large energy requirements of the asteroid missions. Performance analyses are presented of the IUS 2-stage/Star-48 and Centaur vehicles, and sample missions to Fortuna, Anahita, and Urania in 1990 and further missions to the middle, outer, and Trojans asteroids are outlined.

  7. Mining The Sdss-moc Database For Main-belt Asteroid Solar Phase Behavior.

    NASA Astrophysics Data System (ADS)

    Truong, Thien-Tin; Hicks, M. D.

    2010-10-01

    The 4th Release of the Sloan Digital Sky Survey Moving Object Catalog (SDSS-MOC) contains 471569 moving object detections from 519 observing runs obtained up to March 2007. Of these, 220101 observations were linked with 104449 known small bodies, with 2150 asteroids sampled at least 10 times. It is our goal to mine this database in order to extract solar phase curve information for a large number of main-belt asteroids of different dynamical and taxonomic classes. We found that a simple linear phase curve fit allowed us to reject data contaminated by intrinsic rotational lightcurves and other effects. As expected, a running mean of solar phase coefficient is strongly correlated with orbital elements, with the inner main-belt dominated by bright S-type asteroids and transitioning to darker C and D-type asteroids with steeper solar phase slopes. We shall fit the empirical H-G model to our 2150 multi-sampled asteroids and correlate these parameters with spectral type derived from the SDSS colors and position within the asteroid belt. Our data should also allow us to constrain solar phase reddening for a variety of taxonomic classes. We shall discuss errors induced by the standard "g=0.15" assumption made in absolute magnitude determination, which may slightly affect number-size distribution models.

  8. OSIRIS-REx Touch-and-Go (TAG) Mission Design for Asteroid Sample Collection

    NASA Technical Reports Server (NTRS)

    May, Alexander; Sutter, Brian; Linn, Timothy; Bierhaus, Beau; Berry, Kevin; Mink, Ron

    2014-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in September 2016 to rendezvous with the near-Earth asteroid Bennu in October 2018. After several months of proximity operations to characterize the asteroid, OSIRIS-REx flies a Touch-And-Go (TAG) trajectory to the asteroid's surface to collect at least 60 g of pristine regolith sample for Earth return. This paper provides mission and flight system overviews, with more details on the TAG mission design and key events that occur to safely and successfully collect the sample. An overview of the navigation performed relative to a chosen sample site, along with the maneuvers to reach the desired site is described. Safety monitoring during descent is performed with onboard sensors providing an option to abort, troubleshoot, and try again if necessary. Sample collection occurs using a collection device at the end of an articulating robotic arm during a brief five second contact period, while a constant force spring mechanism in the arm assists to rebound the spacecraft away from the surface. Finally, the sample is measured quantitatively utilizing the law of conservation of angular momentum, along with qualitative data from imagery of the sampling device. Upon sample mass verification, the arm places the sample into the Stardust-heritage Sample Return Capsule (SRC) for return to Earth in September 2023.

  9. The S(IV)-type Asteroids as Ordinary Chondrite Parent Body Candidates: Implications for the Completeness of the Meteorite Sample of Asteroids

    NASA Astrophysics Data System (ADS)

    Gaffey, M. J.

    1995-09-01

    The discrepancy between the abundance of ordinary chondrites (OCs) among the meteorites and the rarity of unambiguously similar assemblages in the asteroid belt has been a major point of discussion within and between the asteroid and meteorite communities. Various resolutions to this apparent paradox have been proposed [e.g., 1-5], including: 1) interpretations of S-type asteroid spectra are incorrect due to space weathering effects; 2) ordinary chondrites derive from a few rare but favorably situated parent bodies; 3) OCs come from a residual population of small unheated mainbelt asteroids; 4) shock effects darken OC parent body surfaces disguising them as C-type asteroids, and 5) OCs come from inner solar system planetesimals ejected to the Oort cloud which have been recently perturbed into Earth-crossing orbits. Although none of these possibilities has yet been rigorously excluded, recent investigations suggest that the resolution of the apparent paradox lies in some combination of the first three options. For option 3, the discovery of a small mainbelt asteroid with an OC-like spectrum indicates OC-assemblages among the smaller mainbelt asteroids [6], although their abundance is still low in the current sample [7]. For option 2, the mineralogical survey indicated that while most S-asteroids could be rigorously excluded on mineralogical criteria, the S(IV) subtype of this class has silicate compositions within the OC range [8]. The S(IV)-objects are concentrated near the 3:1 secular resonance at 2.5 AU providing an efficient escape into Earth-crossing orbits. Unfortunately for a simple resolution of the OC parent body question, S(IV) spectra still exhibit weaker silicate features and redder spectral slopes than OC assemblages. Although significant uncertainties remain, optical alteration of asteroid surfaces interpreted from the Galileo images of Ida and Gaspra may reconcile the mismatch between OC and S(IV) spectra [option 1]. Although only a subset of the S(IV) objects are viable OC-parent bodies [3 Juno, 6 Hebe, and 7 Iris are the leading candidates], their proximity to the 3:1 chaotic zone would allow them to contribute a significant portion of the ordinary chondrites. In particular, dynamical models suggest that Hebe should be a major contributor to the terrestrial meteorite flux [9]. Each leading contender is currently undergoing detailed spectral evaluation as a potential OC source. From both asteroid observational constraints and from chemical and isotopic studies of meteorites, the ordinary chondrites appear to represent an extensive and relatively complete (by meteoritic standards) sample of a few asteroid source bodies. In a similar fashion, the Howardite-Eucrite-Diogenite suite sample a single primary parent body (Vesta) and are over-represented in meteorite collections due to a fortuitous (and temporary on a solar system timescale) emplacement of Vesta ejecta fragments close to the 3:1 resonance. This suggests that the particular value of the ordinary chondrites lies in the good sample provided for each source body rather than as representatives of an abundant asteroid type. Acknowledgments: Various portions of this research were supported by NASA Planetary Geology and Geophysics grant NAGW-642 and NSF Planetary Astronomy grant AST-9012180. References: [1] Wetherill G. W. and Chapman C. R. (1988) in Meteorites and the Early Solar System, pp. 35-67, Univ. of Arizona. [2] Bell J. F. et al. (1989) in Asteroids II, pp. 921-945, Univ. of Arizona. [3] Gaffey M. J. et al. (1989) in Asteroids II, pp. 98-127, Univ. of Arizona. [4] Britt D. T. and Pieters C. M. (1991) LPS XXII, 141-142. [5] Gaffey M. J. (1984) Icarus, 60, 83-114. [6] Binzel R. P. et al. (1993) Science, 262, 1541-1543. [7] Shui X. et al. (1995) Icarus, 115, 1-35. [8] Gaffey M. J. et al. (1993) Icarus, 106, 573-602. [9] Farinella P. et al. (1993) Icarus, 101, 174-187.

  10. SURVEY SIMULATIONS OF A NEW NEAR-EARTH ASTEROID DETECTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainzer, A.; Bauer, J.; Giorgini, J.

    We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth–Sun L1 Lagrange point, and one in a Venus-trailing orbit. A sample cadence was formulated and tested, allowing for the self-follow-up necessary for objects discovered in the daytime sky on Earth. Synthetic populations of NEAs with sizes as small as 140 m in effective spherical diameter were simulated using recent determinationsmore » of their physical and orbital properties. Estimates of the instrumental sensitivity, integration times, and slew speeds were included for both architectures assuming the properties of newly developed large-format 10 μm HgCdTe detector arrays capable of operating at ∼35 K. Our simulation included the creation of a preliminary version of a moving object processing pipeline suitable for operating on the trial cadence. We tested this pipeline on a simulated sky populated with astrophysical sources such as stars and galaxies extrapolated from Spitzer Space Telescope and Wide-field Infrared Explorer data, the catalog of known minor planets (including Main Belt asteroids, comets, Jovian Trojans, planets, etc.), and the synthetic NEA model. Trial orbits were computed for simulated position-time pairs extracted from the synthetic surveys to verify that the tested cadence would result in orbits suitable for recovering objects at a later time. Our results indicate that the Earth–Sun L1 and Venus-trailing surveys achieve similar levels of integral completeness for potentially hazardous asteroids larger than 140 m; placing the telescope in an interior orbit does not yield an improvement in discovery rates. This work serves as a necessary first step for the detailed planning of a next-generation NEA survey.« less

  11. Minerology and Crystallography of Some Itokawa Particles Returned by the Hayabusa Mission

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Komatsu, M.; Hagiya, K.; Ohsumi, K.; Zolensky, M.; Hoffmann, V.; Martinez, J.; Hochleitner, R.; Kaliwoda, M.; Terada, Y.; hide

    2014-01-01

    JAXA Hayabusa mission success-fully returned particles of the asteroid Itokawa to the earth in 2010. The recovered particles were carefully studied by the preliminary examination (PE) team and the obtained results are providing significant and unique information about the formation and evolution of meteorite parent bodies [1-6]. These particles further revealed that their mineral compositions and oxygen isotopes are close to those of equilibrated LL chon-drites [1,2], which matches with the observation at the orbit [7]. After the PE, JAXA distributed the samples as international AO study and we received 4 new and 3 PE particles. The new samples may contain some exot-ic components that have not been found by the PE study, and are of special interest. We have performed a detailed mineralogical and crystallographic study on these particles and here report the results.

  12. Reanalysis of Asteroid Families Structure Through Visible Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mothé-Diniz, T.; Carvano, J.; Roig, F.; Lazzaro, D.

    In this work we re-analyse the presence of interlopers in asteroid families based on a larger spectral database and on a family determination which makes use of a larger set of proper elements. The asteroid families were defined using the HCM method (Zappalà et al. 1995) on the set of proper elements for 110,000 asteroids available at the Asteroid Dynamic Site (AstDyS http://hamilton.dm.unipi.it/astdys )). The spectroscopic analysis is performed using spectra on the 0.44-0.92 μ m range observed by the SMASS Xu et al. 1995, SMASSII (Bus and Binzel, 2002) and 3OS2 (Lazzaro et al. 2002) surveys, which together total around 2140 asteroids with observed spectra. The asteroid taxonomy used is the Bus taxonomy (Bus et al. 2000). A total of 22 two families were analysed . The families of Vesta, Eunomia, Hoffmeister, Dora, Merxia, Agnia, and Koronis were found to be spectrally homogeneous, which confirms previous studies. The Veritas family, on the other hand, which is quoted in the literature as an heterogeneous family was found to be quite homogeneous in the present work. The Eos family is noteworthy for being at one time spectrally heterogeneous and quite different from the background population. References Bus, S. J., and R. P. Binzel 2002. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey - The Observations. Icarus 158, 106-145. Bus, S. J., R. P. Binzel, and T. H. Burbine 2000. A New Generation of Asteroid Taxonomy. Meteoritics and Planetary Science, vol. 35, Supplement, p.A36 35, 36 +. Lazzaro, D., C. A. Angeli, T. Mothe-Diniz, J. M. Carvano, R. Duffard, and M. Florczak 2002. The superficial characterization of a large sample of asteroids: the S3OS2. Bulletin of the American Astronomical Society 34, 859 +. Xu, S., R. P. Binzel, T. H. Burbine, and S. J. Bus 1995. Small main-belt asteroid spectroscopic survey: Initial results. Icarus 115, 1-35. Zappala, V., P. Bendjoya, A. Cellino, P. Farinella, and C. Froeschle 1995. Asteroid families: Search of a 12,487-asteroid sample using two different clustering techniques. Icarus 116, 291-314.

  13. Laplacean Ideology for Preliminary Orbit Determination and Moving Celestial Body Identification in Virtual Epoch

    NASA Astrophysics Data System (ADS)

    Bykov, O. P.

    Any CCD frames with stars or galaxies or clusters and other images must be studied for a searching of moving celestial objects, namely asteroids, comets, artificial Earth satellites inside them. At Pulkovo Astronomical Observatory, new methods and software were elaborated to solve this problem.

  14. Space Weathering Rates in Lunar and Itokawa Samples

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.

    2017-01-01

    Space weathering alters the chemistry, microstructure, and spectral proper-ties of grains on the surfaces of airless bodies by two major processes: micrometeorite impacts and solar wind interactions. Investigating the nature of space weathering processes both in returned samples and in remote sensing observations provides information fundamental to understanding the evolution of airless body regoliths, improving our ability to determine the surface composition of asteroids, and linking meteorites to specific asteroidal parent bodies. Despite decades of research into space weathering processes and their effects, we still know very little about weathering rates. For example, what is the timescale to alter the reflectance spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope from an S-type asteroid? One approach to answering this question has been to determine ages of asteroid families by dynamical modeling and determine the spectral proper-ties of the daughter fragments. However, large differences exist between inferred space weathering rates and timescales derived from laboratory experiments, analysis of asteroid family spectra and the space weathering styles; estimated timescales range from 5000 years up to 108 years. Vernazza et al. concluded that solar wind interactions dominate asteroid space weathering on rapid timescales of 10(exp 4)-10(exp 6) years. Shestopalov et al. suggested that impact-gardening of regolith particles and asteroid resurfacing counteract the rapid progress of solar wind optical maturation of asteroid surfaces and proposed a space weathering timescale of 10(exp 5)-10(exp 6) years.

  15. Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) II: Spectral Homogeneity Among Hungaria Family Asteroids

    NASA Astrophysics Data System (ADS)

    Lucas, Michael P.; Emery, Joshua; Pinilla-Alonso, Noemi; Lindsay, Sean S.; MacLennan, Eric M.; Cartwright, Richard; Reddy, Vishnu; Sanchez, Juan A.; Thomas, Cristina A.; Lorenzi, Vania

    2017-10-01

    Spectral observations of asteroid family members provide valuable information regarding parent body interiors, the source regions of near-Earth asteroids, and the link between meteorites and their parent bodies. Hungaria family asteroids constitute the closest samples to the Earth from a collisional family (~1.94 AU), permitting observations of smaller fragments than accessible for Main Belt families. We have carried out a ground-based observational campaign - Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) - to record reflectance spectra of these preserved samples from the inner-most primordial asteroid belt. During HARTSS phase one (Lucas et al. [2017]. Icarus 291, 268-287) we found that ~80% of the background population is comprised of stony S-complex asteroids that exhibit considerable spectral and mineralogical diversity. In HARTSS phase two, we turn our attention to family members and hypothesize that the Hungaria collisional family is homogeneous. We test this hypothesis through taxonomic classification, albedo estimates, and spectral properties.During phase two of HARTSS we acquired near-infrared (NIR) spectra of 50 new Hungarias (19 family; 31 background) with SpeX/IRTF and NICS/TNG. We analyzed X-type family spectra for NIR color indices (0.85-J J-K), and a subtle ~0.9 µm absorption feature that may be attributed to Fe-poor orthopyroxene. Surviving fragments of an asteroid collisional family typically exhibit similar taxonomies, albedos, and spectral properties. Spectral analysis of X-type Hungaria family members and independently calculated WISE albedo determinations for 428 Hungaria asteroids is consistent with this scenario. Furthermore, ~1/4 of the background population exhibit similar spectral properties and albedos to family X-types.Spectral observations of 92 Hungaria region asteroids acquired during both phases of HARTSS uncover a compositionally heterogeneous background and spectral homogeneity down to ~2 km for collisional family members. Taxonomy, albedos, and spectral properties reveal that the Hungaria family progenitor was an igneous body that formed under reduced conditions, and was compositionally consistent with the enstatite achondrite (i.e., aubrite) meteorite group.

  16. UV Reflectance of Jupiter's Moon Europa and Asteroid (16) Psyche

    NASA Astrophysics Data System (ADS)

    Becker, T. M.; Retherford, K. D.; Roth, L.; Hendrix, A.; McGrath, M. A.; Cunningham, N.; Feaga, L. M.; Saur, J.; Elkins-Tanton, L. T.; Walhund, J. E.; Molyneux, P.

    2017-12-01

    Surface reflectance observations of solar system objects in the UV are not only complimentary to longer wavelength observations for identifying surface composition, but can also reveal new and meaningful information about the surfaces of those bodies. On Europa, far-UV (FUV) spectral observations made by the Hubble Space Telescope (HST) show that the surface lacks a strong water ice absorption edge near 165 nm, which is intriguing because such a band has been detected on most icy satellites. This may suggest that radiolytic processing by Jupiter's magnetosphere has altered the surface, causing absorption at wavelengths longward of the H2O edge, masking this feature. Additionally, the FUV spectra are blue (increasing albedo with shorter wavelengths), and regions that are observed to be dark in the visible appear bright in the FUV. This spectral inversion, also observed on the Moon and some asteroids, may provide insight into the properties of the surface material and how they are processed.We also explore the UV reflectance spectra of the main belt asteroid (16) Psyche. This asteroid is believed to be the metallic remnant core of a differentiated asteroid, stripped of its mantle through collisions. However, there is speculation that the asteroid could have formed as-is from highly reduced metal-rich material near the Sun early in the formation of the solar system. Further, spectral observations in the infrared have revealed pyroxene and hydroxyl on the asteroid's surface, complicating the interpretation that (16) Psyche is a pure metallic object. Laboratory studies indicate that there are diagnostic spectral features in the UV that could be useful for determining the surface composition. We obtained HST observations of Psyche from 160 - 300 nm. Preliminary results show a featureless, red-sloped spectrum, inconsistent with significant amounts of pyroxene on the surface. We will present the spectra of Europa and the asteroid (16) Psyche and discuss the unique details unveiled by studies of these objects in the UV.

  17. An initial perspective of S-asteroid subtypes within asteroid families

    NASA Technical Reports Server (NTRS)

    Kelley, M. S.; Gaffey, M. J.

    1993-01-01

    Many main belt asteroids cluster around certain values of semi-major axis (a), inclination (i), and eccentricity (e). Hirayama was the first to notice these concentrations which he interpreted as evidence of disruptions of larger parent bodies. He called these clusters 'asteroid families'. The term 'families' is increasingly reserved for genetic associations to distinguish them from clusters of unknown or purely dynamical origin (e.g. the Phocaea cluster). Members of a genetic asteroid family represent fragments derived from various depths within the original parent planetesimal. Thus, family members offer the potential for direct examination of the interiors of parent bodies which have undergone metamorphism and differentiation similar to that occurring in the inaccessible interiors of terrestrial planets. The differentiation similar to that occurring in the inaccessible interiors of terrestrial planets. The condition that genetic family members represent the fragments of a parent object provides a critical test of whether an association (cluster in proper element space) is a genetic family. Compositions (types and relative abundances of materials) of family members must permit the reconstruction of a compositionally plausible parent body. The compositions of proposed family members can be utilized to test the genetic reality of the family and to determine the type and degree of internal differentiation within the parent planetesimal. The interpretation of the S-class mineralogy provides a preliminary evaluation of family memberships. Detailed mineralogical and petrological analysis was done based on the reflectance spectra of 39 S-type asteroids. The result is a division of the S-asteroid class into seven subtypes based on compositional differences. These subtypes, designated S(I) to S(VII), correspond to surface silicate assemblages ranging from monomineralic olivine (dunites) through olivine-pyroxene mixtures to pure pyroxene or pyroxene-feldspar mixtures (basalts). The most general conclusion is that the S-asteroids cannot be treated as a single group of objects without greatly oversimplifying their properties. Each S-subtype needs to be treated as an independent group with a distinct evolutionary history.

  18. OSIRIS-REx: Sample Return from Asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Lauretta, D. S.; Balram-Knutson, S. S.; Beshore, E.; Boynton, W. V.; Drouet d'Aubigny, C.; DellaGiustina, D. N.; Enos, H. L.; Golish, D. R.; Hergenrother, C. W.; Howell, E. S.; Bennett, C. A.; Morton, E. T.; Nolan, M. C.; Rizk, B.; Roper, H. L.; Bartels, A. E.; Bos, B. J.; Dworkin, J. P.; Highsmith, D. E.; Lorenz, D. A.; Lim, L. F.; Mink, R.; Moreau, M. C.; Nuth, J. A.; Reuter, D. C.; Simon, A. A.; Bierhaus, E. B.; Bryan, B. H.; Ballouz, R.; Barnouin, O. S.; Binzel, R. P.; Bottke, W. F.; Hamilton, V. E.; Walsh, K. J.; Chesley, S. R.; Christensen, P. R.; Clark, B. E.; Connolly, H. C.; Crombie, M. K.; Daly, M. G.; Emery, J. P.; McCoy, T. J.; McMahon, J. W.; Scheeres, D. J.; Messenger, S.; Nakamura-Messenger, K.; Righter, K.; Sandford, S. A.

    2017-10-01

    In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security- Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu's resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

  19. Mission Design and Optimal Asteroid Deflection for Planetary Defense

    NASA Technical Reports Server (NTRS)

    Sarli, Bruno V.; Knittel, Jeremy M.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    Planetary defense is a topic of increasing interest for many reasons, which has been mentioned in "Vision and Voyages for Planetary Science in the Decade 2013-2022''. However, perhaps one of the most significant rationales for asteroid studies is the number of close approaches that have been documented recently. A space mission with a planetary defense objective aims to deflect the threatening body as far as possible from Earth. The design of a mission that optimally deflects an asteroid has different challenges: speed, precision, and system trade-off. This work addresses such issues and develops a fast transcription of the problem that can be implemented into an optimization tool, which allows for a broader trade study of different mission concepts with a medium fidelity. Such work is suitable for a mission?s preliminary study. It is shown, using the fictitious asteroid impact scenario 2017 PDC, that the complete tool is able to account for the orbit sensitivity to small perturbations and quickly optimize a deflection trajectory. The speed in which the tool operates allows for a trade study between the available hardware. As a result, key deflection dates and mission strategies are identified for the 2017 PDC.

  20. Mission Design and Optimal Asteroid Deflection for Planetary Defense

    NASA Technical Reports Server (NTRS)

    Sarli, Bruno V.; Knittel, Jeremy M.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    Planetary defense is a topic of increasing interest for many reasons, which has been mentioned in "Vision and Voyages for Planetary Science in the Decade 2013-2022". However, perhaps one of the most significant rationales for asteroid studies is the number of close approaches that have been documented recently. A space mission with a planetary defense objective aims to deflect the threatening body as far as possible from Earth. The design of a mission that optimally deflects an asteroid has different challenges: speed, precision, and system trade-off. This work addresses such issues and develops a fast transcription of the problem that can be implemented into an optimization tool, which allows for a broader trade study of different mission concepts with a medium fidelity. Such work is suitable for a mission's preliminary study. It is shown, using the fictitious asteroid impact scenario 2017 PDC, that the complete tool is able to account for the orbit sensitivity to small perturbations and quickly optimize a deflection trajectory. The speed in which the tool operates allows for a trade study between the available hardware. As a result, key deflection dates and mission strategies are identified for the 2017 PDC.

  1. Possible Detection of Water in the Exosphere of (21) Lutetia

    NASA Astrophysics Data System (ADS)

    Wurz, P.; Altwegg, K.; Balsiger, H. R.; Jäckel, A.; Schläppi, B.; Hässig, M.; Hofer, L.; Mall, U. A.; Fiethe, B.; Gombosi, T. I.; Fuselier, S. A.; Reme, H.; Berthelier, J.; de Keyser, J. M.

    2010-12-01

    The Rosetta spacecraft performed a flyby at (21) Lutetia on 10 July 2010 with a closest approach of 3160 km. Among the scientific instruments on Rosetta is the ROSINA experiment, a suite of two mass spectrometers (DFMS and RTOF) and the pressure gauge, COPS. ROSINA successfully recorded data during the flyby. Most of the recorded signals were the result of spacecraft outgasing, arising from areas that were in shadow during the time proceeding the flyby and became illuminated (and therefore heated) when the spacecraft’s attitude was changed for the asteroid observations. These outgasing signals are well understood and are almost identical to the signals observed during the rehearsal manoeuvre in deep space performed in preparation for this flyby. In addition to these outgasing signals we identified a small water signal that has its likely origin in the asteroid. Preliminary analysis shows that Lutetia is losing water at the rate of Q = 1.4x10^26 H2O/s, within a factor 2. Finding water released from this asteroid makes it likely that Lutetia is a C-type asteroid, similar to the carbonaceous chondrites, which are know to contain water up to the percent level.

  2. Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer Planning (OSIRIS-REx)

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, Keiko; Messenger, Scott; Keller, Lindsay; Righter, Kevin

    2014-01-01

    Scientists at ARES are preparing to curate and analyze samples from the first U.S. mission to return samples from an asteroid. The Origins-Spectral Interpretation- Resource Identification-Security-Regolith Explorer, or OSIRIS-REx, was selected by NASA as the third mission in its New Frontiers Program. The robotic spacecraft will launch in 2016 and rendezvous with the near-Earth asteroid Bennu, in 2020. A robotic arm will collect at least 60 grams of material from the surface of the asteroid to be returned to Earth in 2023 for worldwide distribution by the NASA Astromaterials Curation Facility at ARES.

  3. Orbit Determination with Very Short Arcs: Admissible Regions

    NASA Astrophysics Data System (ADS)

    Gronchi, G. F.; Milani, A.; de'Michieli Vitturi, M.; Knezevic, Z.

    2004-05-01

    Contemporary observational surveys provide a huge number of detections of small solar system bodies, in particular of asteroids. These have to be reduced in real time in order to optimize the observational strategy and to select the targets for the follow-up and for the subsequent determination of an orbit. Typically, reported astrometry consists of few positions over a short time span, and this information is often not enough to compute a preliminary orbit and perform an identification. Classical methods for preliminary orbit determination based on three observations fail in such cases, and a new approach is necessary to cope with the problem. We introduce the concept of attributable, which is a vector composed by two angles and two angular velocities at a given time. It is then shown that the missing values (geocentric range and range rate), necessary for the computation of an orbit, can be constrained to a compact set that we call admissible region (AR). The latter is defined on the basis of requirements that the body belongs to the solar system, that it is not a satellite of the Earth, and that it is not a "shooting star" (very close and very small). A mathematical description of the AR is given, together with the proof of its topological properties: it turns out that the AR cannot have more than two connected components. A sampling of the AR can be performed by means of a Delaunay triangulation. A finite number of six-parameter sets of initial conditions are thus defined, with each node of triangulation representing a Virtual Asteroid for which it is possible to propagate the corresponding orbit and to predict ephemerides.

  4. Geochemistry of Pallasite Olivines and the Origin of Main-Group Pallasites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Rumble, D., III

    2006-01-01

    Main-group pallasites (PMG) are mixtures of iron-nickel metal and magnesian olivine thought to have been formed at the core-mantle boundary of an asteroid [1]. Some have anomalous metal compositions (PMG-am) and a few have atypically ferroan olivines (PMG-as) [2]. PMG metal is consistent with an origin as a late fractionate of the IIIAB iron core [2]. Most PMG olivines have very similar Fe/Mg ratios, likely due to subsolidus redox reaction with the metal [3]. In contrast, minor and trace elements show substantial variation, which may be explained by either: (i) PMG were formed at a range of depths in the parent asteroid; the element variations reflect variations in igneous evolution with depth, (ii) the pallasite parent asteroid was chemically heterogeneous; the heterogeneity partially survived igneous processing, or (iii) PMG represent the core-mantle boundaries of several distinct parent asteroids [4, 5]. We have continued doing major, minor and trace elements by EMPA and INAA on a wider suite of PMG olivines, and have begun doing precise oxygen isotope analyses to test these hypotheses. Manganese is homologous with Fe(2+), and can be used to distinguish between magmatic and redox processes as causes for Fe/Mg variations. PMG olivines have a range in molar 1000*Mn/Mg of 2.3-4.6 indicating substantial igneous fractionation in olivines with very similar Fe/Mg (0.138-0.148). The Mg-Mn-Fe distributions can be explained by a fractional crystallization-reduction model; higher Mn/Mg ratios reflect more evolved olivines while Fe/Mg is buffered by redox reactions with the metal. There is a positive association between Mn/Mg and Sc content that is consistent with igneous fractionation. However, most PMG olivines fall within a narrow Mn/Mg range (3.0-3.6), but these show a substantial range in Sc (1.00-2.29 micro-g/g). Assuming fractional crystallization, this Sc range could have resulted from approx.65% crystallization of an ultramafic magma. This is inconsistent with formation at the core-mantle boundary of a single asteroid [4]. One alternative is that the PMG are fragments of several asteroids, and these could have had different initial Sc contents, Mn/Mg and differences in igneous history. Our preliminary O isotope data and those of [6, 7] do not support this, although the coverage of PMG olivines is incomplete. The PMG-as Springwater is not easily fit in any scenario. Its olivine has among the highest Mn/Mg suggesting it is one of the most evolved, but the lowest Sc content suggesting it is the least evolved. The O isotopic composition of Springwater olivine is the same as that of other PMG. Thus there is no indication that it represents a distinct parent asteroid. Our preliminary O isotopic data favor a single PMG parent asteroid. In this case, the olivines are more likely melt-residues, and that the parent asteroid was initially heterogeneous in chemical, but not isotopic, composition.

  5. A three-parameter asteroid taxonomy

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.; Williams, James G.; Matson, Dennis L.; Veeder, Glenn J.; Gradie, Jonathan C.

    1989-01-01

    Broadband U, V, and x photometry together with IRAS asteroid albedos have been used to construct an asteroid classification system. The system is based on three parameters (U-V and v-x color indices and visual geometric albedo), and it is able to place 96 percent of the present sample of 357 asteroids into 11 taxonomic classes. It is noted that all but one of these classes are analogous to those previously found using other classification schemes. The algorithm is shown to account for the observational uncertainties in each of the classification parameters.

  6. On the concept of material strength and first simulations of asteroid disruption with explicit formation of spinning aggregates in the gravity regime

    NASA Astrophysics Data System (ADS)

    Michel, P.; Richardson, D. C.

    2007-08-01

    During their evolutions, the small bodies of our Solar System are affected by several mechanisms which can modify their properties. While dynamical mechanisms are at the origin of their orbital variations, there are other mechanisms which can change their shape, spin, and even their size when their strength threshold is reached, resulting in their disruption. Such mechanisms have been identified and studied, both by analytical and numerical tools. The main mechanisms that can result in the disruption of a small body are collisional events, tidal perturbations, and spin-ups. However, the efficiency of these mechanisms depends on the strength of the material constituing the small body, which also plays a role in its possible equilibrium shape. We will present several important aspects of material strength that are believed to be adapted to Solar System small bodies and briefly review the most recent studies of the different mechanisms that can be at the origin of the disruption of these bodies. In particular, we have recently made a major improvement in the simulations of asteroid disruption by computing explicitly the formation of aggregates during the gravitational reaccumulation of small fragments, allowing us to obtain information on their spin, the number of boulders composing them or lying on their surface, and their shape.We will present the first and preliminary results of this process taking as examples some asteroid families that we reproduced successfully with our previous simulations (Michel et al. 2001, 2002, 2003, 2004a,b), and their possible implications on the properties of asteroids generated by a disruption. Such information can for instance be compared with data provided by the Japanese space mission Hayabusa of the asteroid Itokawa, a body now understood to be a fragment of a larger parent body. It is also clear that future space missions to small bodies devoted to precise in-situ analysis and sample return will allow us to improve our understanding on the physical properties of these objects, and to check whether our theoretical and numerical works are valid. References Michel P., BenzW., Tanga P., Richardson D.C. 2001. Collisions and gravitational reaccumulation: forming asteroid families and satellites. Science 294 1696-1700 (+cover of the journal). Michel P., Benz W., Tanga P., Richardson D.C. 2002. Formation of asteroid families by catastrophic disruption: simulations with fragmentation and gravitational reaccumulation. Icarus 160, 10-23. Michel P., Benz W., Richardson D.C. 2003. Fragmented parent bodies as the origin of asteroid families. Nature 421, 608-611 (+cover of the journal). Michel P., BenzW., Richardson D.C. 2004a. Disruption of pre-shattered parent bodies. Icarus 168, 420-432. Michel P., Benz W., Richardson D.C. 2004b. Catastrophic disruptions and family formation: a review of numerical simulations including both fragmentation and gravitational reaccumulations. Planet. Space. Sci. 52, 1109-1117.

  7. Strata-1: An International Space Station Experiment into Fundamental Regolith Processes in Microgravity

    NASA Technical Reports Server (NTRS)

    Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.; hide

    2016-01-01

    The Strata-1 experiment will study the evolution of asteroidal regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies are subjected to a variety of forces and will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. Our understanding of this dynamical evolution and the inter-particle forces involved would benefit from long-term observations of granular materials exposed to small vibrations in microgravity. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples collected by missions such as OSIRIS-REx and Hayabusa 1 and 2, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Understanding regolith dynamics will inform designs of how to land and set anchors, safely sample/move material on asteroidal surfaces, process large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predict behavior of large and small particles on disturbed asteroid surfaces.

  8. Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Walker, Robert M.

    2015-01-01

    Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.

  9. The Tagish Lake meteorite: a possible sample from a D-type asteroid.

    PubMed

    Hiroi, T; Zolensky, M E; Pieters, C M

    2001-09-21

    A new type of carbonaceous chondrite, the Tagish Lake meteorite, exhibits a reflectance spectrum similar to spectra observed from the D-type asteroids, which are relatively abundant in the outer solar system beyond the main asteroid belt and have been inferred to be more primitive than any known meteorite. Until the Tagish Lake fall, these asteroids had no analog in the meteorite collections. The Tagish Lake meteorite is a carbon-rich (4 to 5 weight %), aqueously altered carbonaceous chondrite and contains high concentrations of presolar grains and carbonate minerals, which is consistent with the expectation that the D-type asteroids were originally made of primitive materials and did not experience any extensive heating.

  10. A stability study of asteroid families near the 3:1 and 5:2 resonance with Jupiter

    NASA Astrophysics Data System (ADS)

    Hahn, G.; Lagerkvist, C.-I.; Lindblad, B. A.

    1993-06-01

    The stability and homogeneity of three asteroid families from Lindblad's list (1992) are studied using numerical integration techniques. These families include the Maria family, which lies close to the 3:1 mean motion resonance with Jupiter, the Oppavia-Gefion, and Dora families which are close to the 5:2 resonance. The study is based on a simplified solar system model, which takes into account the perturbations only by Jupiter and Saturn, and Everhart's variable stepsize integrator RA15. Preliminary results indicate that the stability of the orbits of all family members are not affected by the proximity to the 3:1 and 5:2 mean motion resonance with Jupiter.

  11. JHK photometry of selected Trojan and Hilda asteroids

    NASA Technical Reports Server (NTRS)

    Smith, Dale W.; Johnson, Paul E.; Buckingham, William L.; Shorthill, Richard W.

    1992-01-01

    No entirely satisfactory match has been established between the present JHK photometry of selected Hilda and Trojan asteroids and photometry for both main belt asteroids and laboratory samples. It is noted that while the leading Trojans and Hildas exhibit similar and homogeneous JHK colors, the trailing Trojans appear to be more heterogeneous. Charcoal and magnetite provide the best match in terms of JHK colors.

  12. The U.S. Rosetta Project at Its First Science Target: Asteroid (2867) Steins, 2008

    NASA Technical Reports Server (NTRS)

    Alexander, C.; Sweetnam, D.; Gulkis, S.; Weissman, P.; Holmes, D.; Parker, J.; Burch, J.; Goldstein, R.; Mokashi, P.; Fuselier, S.; hide

    2010-01-01

    On September 5, 2008, the International Rosetta Mission encountered its first formal science target of the mission, asteroid (2867) Steins. We report preliminary results from the U.S. experiments. NASA's contribution to the Rosetta mission consists of an ultraviolet (UV) spectrometer, a microwave spectrometer, a plasma instrument, and a portion of the electronics package for a mass spectrometer. The UV spectrometer (Alice) was used to obtain the first far-ultraviolet (FUV) spectrum of an asteroid. A ten-minute integration, surrounding the time of closest approach, averaging over a variety of geometries, showed very good signal from 850 Angstroms to 2000 Angstroms in the FUV. The microwave instrument (MIRO) obtained a high signal to noise measurement at both observing frequencies, enabling key thermal parameters to be derived. The plasma instrument (IES) obtained a brief measurement of the solar wind, and the Double Focusing Mass Spectrometer (DFMS) of the ROSINA instrument obtained a signal just at closest approach. Laboratory work with analogue materials was begun.

  13. Spectrophotometry of planets, asteroids and satellites from the international ultraviolet explorer satellite

    NASA Technical Reports Server (NTRS)

    Tomasko, M. G.; Zellner, B.; Martinek, S.; Gehrels, T.

    1981-01-01

    A total of 14 8 hour I.U.E. observing sessions resulted in 39 spectra of 11 asteroids and 9 solar type stars as well as 57 spectra at various locations on the disk of Jupiter. The Jupiter observations include a total of 5 center to limb series of spectra at various latitudes and a North South series along the central meridian. In the range from 2000-3000 A, the planet shows a striking decrease in brightness at latitudes greater than about 30 degrees, and exhibits limb brightening at low latitudes and limb darkening at high latitudes. Preliminary results indicate that about 6 km-amagats of clean hydrogen are required above a haze of absorbing aerosols to reproduce the limb brightening observed at 2500 A in the equatorial regions. At higher latitudes, the aerosols extend to even higher levels of the atmosphere. Comparison of the Jovian data with detailed model calculations and the analyses of the asteroid spectra are still in progress with other support.

  14. Near-infrared reflectance spectra-applications to problems in asteroid-meteorite relationships

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy A.; Chamberlin, Alan; Vilas, Faith

    1991-01-01

    Near-infrared spectral reflectance data were collected at the Infrared Telescope Facility (IRTF) at Mauna Kea Observatories in 1985 and 1986 for the purpose of searching the region near the 3:1 Kirkwood gap for asteroids with the spectral signatures of ordinary chondrite parent bodies. Twelve reflectance spectra are observed. The presence of ordinary chondrite parent bodies among this specific set of observed asteroids is not obvious, though the sample is biased towards the larger asteroids in the region due to limitations imposed by detector sensitivity. The data set, which was acquired with the same instrumentation used for the 52-color asteroid survey (Bell et al., 1987), also presents some additional findings. The range of spectral characteristics that exist among asteroids of the same taxonomic type is noted. Conclusions based on the findings are discussed.

  15. Precise Distances for Main-belt Asteroids in Only Two Nights

    NASA Astrophysics Data System (ADS)

    Heinze, Aren N.; Metchev, Stanimir

    2015-10-01

    We present a method for calculating precise distances to asteroids using only two nights of data from a single location—far too little for an orbit—by exploiting the angular reflex motion of the asteroids due to Earth’s axial rotation. We refer to this as the rotational reflex velocity method. While the concept is simple and well-known, it has not been previously exploited for surveys of main belt asteroids (MBAs). We offer a mathematical development, estimates of the errors of the approximation, and a demonstration using a sample of 197 asteroids observed for two nights with a small, 0.9-m telescope. This demonstration used digital tracking to enhance detection sensitivity for faint asteroids, but our distance determination works with any detection method. Forty-eight asteroids in our sample had known orbits prior to our observations, and for these we demonstrate a mean fractional error of only 1.6% between the distances we calculate and those given in ephemerides from the Minor Planet Center. In contrast to our two-night results, distance determination by fitting approximate orbits requires observations spanning 7-10 nights. Once an asteroid’s distance is known, its absolute magnitude and size (given a statistically estimated albedo) may immediately be calculated. Our method will therefore greatly enhance the efficiency with which 4m and larger telescopes can probe the size distribution of small (e.g., 100 m) MBAs. This distribution remains poorly known, yet encodes information about the collisional evolution of the asteroid belt—and hence the history of the Solar System.

  16. Radioisotope Electric Propulsion (REP) for Selected Interplanetary Science Missions

    NASA Technical Reports Server (NTRS)

    Oh, David; Bonfiglio, Eugene; Cupples, Mike; Belcher, Jeremy; Witzberger, Kevin; Fiehler, Douglas; Artis, Gwen

    2005-01-01

    This viewgraph presentation analyzes small body targets (Trojan Asteroids), Medium Outer Planet Class (Jupiter Polar Orbiter with Probes), and Main Belt Asteroids and Comets (Comet Surface Sample Return), for Radioisotope Electric Propulsion (REP).

  17. Asteroids and Comets Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Contents include various different animations in the area of Asteroids and Comets. Titles of the short animated clips are: STARDUST Mission; Asteroid Castallia Impact Simulation; Castallia, Toutatis and the Earth; Simulation Asteroid Encounter with Earth; Nanorover Technology Task; Near Earth Asteroid Tracking; Champollian Anchor Tests; Early Views of Comets; Exploration of Small Bodies; Ulysses Resource Material from ESA; Ulysses Cometary Plasma Tail Animation; and various discussions on the Hale-Bopp Comet. Animation of the following are seen: the Stardust aerogel collector grid collecting cometary dust particles, comet and interstellar dust analyzer, Wiper-shield and dust flux monitor, a navigation camera, and the return of the sample to Earth; a comparison of the rotation of the Earth to the Castallia and Tautatis Asteroids; an animated land on Tautatis and the view of the motion of the sky from its surface; an Asteroid collision with the Earth; the USAF Station in Hawaii; close-up views of asteroids; automatic drilling of the Moon; exploding Cosmic Particles; and the dropping off of the plasma tail of a comet as it travels near the sun.

  18. A Breccia of Ureilitic and C2 Carbonaceous Chondrite Materials from Almahata Sitta: Implications for the Regolith of Urelitic Asteroids

    NASA Technical Reports Server (NTRS)

    Goodrich, C. A.; Fioretti, A. M.; Zolensky, M.; Fries, M.; Shaddad, M.; Kohl, I.; Young, E.; Jenniskens, P.

    2017-01-01

    The Almahata Sitta (AhS) polymict ureilite is the first meteorite to originate from a spectrally classified asteroid (2008 TC3) [1-3], and provides an unprecedented opportunity to correlate properties of meteorites with those of their parent asteroid. AhS is also unique because its fragments comprise a wide variety of meteorite types. Of approximately140 stones studied to-date, 70% are ureilites (carbon-rich ultramafic achondrites) and 30% are various types of chondrites [4,5]. None of these show contacts between ureilitic and chondritic lithologies. It has been inferred that 2008 TC3 was loosely aggregated, so that it disintegrated in the atmosphere and only its most coherent clasts fell as individual stones [1,3,5]. Understanding the structure and composition of this asteroid is critical for missions to sample asteroid surfaces. We are studying [6] the University of Khartoum collection of AhS [3] to test hypotheses for the nature of 2008 TC3. We describe a sample that consists of both ureilitic and chondritic materials.

  19. Rotation Properties of Small Jovian Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; James, David; Coley, Daniel R.; Warner, Brian D.; Rohl, Derrick

    2016-10-01

    Jovian Trojan asteroids are of interest both as objects in their own right (we have no spectral analogs among meteorite samples) and as possible relics of Solar System formation. Asteroid lightcurves can give information about processes that have affected a group of asteroids; they can also give information about the density of the objects when enough lightcurves have been collected. We have been carrying out a survey of Trojan lightcurve properties for comparison with small asteroids and with comets. In a recent paper (French et al. 2015) we presented evidence that a significant number of Trojans have rotation periods greater than 24 hours. We will report our latest results and compare them with results of sparsely-sampled lightcurves from the Palomar Transient Factory (Waszczak et al. 2015). LF, RS, and DR were visiting astronomers at Cerro Tololo Interamerican Observatory, operated by AURA under contract with the NSF, and with the SMARTS Consortium at CTIO. This research was sponsored by NSF Planetary Astronomy grant 1212115.ReferencesFrench, L.M. et al. 2015. Icarus 254, pp. 1-17.Waszczak, A. et al. 2015. A.J. 150, Issue 3, I.D. 35.

  20. Adaption of G-TAG Software for Validating Touch and Go Asteroid Sample Return Design Methodology

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars James C.; Acikmese, Behcet; Mandic, Milan

    2012-01-01

    A software tool is used to demonstrate the feasibility of Touch and Go (TAG) sampling for Asteroid Sample Return missions. TAG is a concept whereby a spacecraft is in contact with the surface of a small body, such as a comet or asteroid, for a few seconds or less before ascending to a safe location away from the small body. Previous work at JPL developed the G-TAG simulation tool, which provides a software environment for fast, multi-body simulations of the TAG event. G-TAG is described in Multibody Simulation Software Testbed for Small-Body Exploration and Sampling, (NPO-47196) NASA Tech Briefs, Vol. 35, No. 11 (November 2011), p.54. This current innovation adapts this tool to a mission that intends to return a sample from the surface of an asteroid. In order to demonstrate the feasibility of the TAG concept, the new software tool was used to generate extensive simulations that demonstrate the designed spacecraft meets key requirements. These requirements state that contact force and duration must be sufficient to ensure that enough material from the surface is collected in the brushwheel sampler (BWS), and that the spacecraft must survive the contact and must be able to recover and ascend to a safe position, and maintain velocity and orientation after the contact.

  1. Adventures in near-Earth object exploration.

    PubMed

    Asphaug, Erik

    2006-06-02

    Asteroids, because of the hazard they pose to Earth, are compelling targets for robotic and human space exploration. Yet because of their exotic low-gravity environment, simply landing on an asteroid appears to be much more challenging than we had appreciated 5 or 10 years ago. Thanks to a bold new mission from Japan that has made the first asteroid sample return attempt, this goal is now within our reach.

  2. Rotation Studies of Jovian Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; Wasserman, Lawrence H.; Lederer, Susan M.; Rohl, Derrick A.

    2011-08-01

    The Jovian Trojan asteroids appear to be fundamentally different from main belt asteroids. They formed further from the sun, they are of different composition, and their collisional history is different. Lightcurve studies provide information about the distribution of rotation frequencies of a group of asteroids. For main belt asteroids larger than about 40 km in diameter, the distribution of rotation frequencies is Maxwellian (Pravec et al. 2000). This suggests that collisions determine their rotation properties. Smaller main belt asteroids, however, show a predominance of both fast and slow rotators, with the observed spin distribution apparently controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect (Pravec et al. 2008). The Trojans larger than 100 km in diameter have been almost completely sampled, but lightcurves for smaller Trojans have been less well studied due to their low albedos and greater solar distances. We propose to investigate the rotation periods of 4-6 small (D < 50 km) Trojan asteroids and 6-9 Trojans in the 50-100 km size range.

  3. Ground-based observation of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1992-01-01

    An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.

  4. Geo-Statistical Approach to Estimating Asteroid Exploration Parameters

    NASA Technical Reports Server (NTRS)

    Lincoln, William; Smith, Jeffrey H.; Weisbin, Charles

    2011-01-01

    NASA's vision for space exploration calls for a human visit to a near earth asteroid (NEA). Potential human operations at an asteroid include exploring a number of sites and analyzing and collecting multiple surface samples at each site. In this paper two approaches to formulation and scheduling of human exploration activities are compared given uncertain information regarding the asteroid prior to visit. In the first approach a probability model was applied to determine best estimates of mission duration and exploration activities consistent with exploration goals and existing prior data about the expected aggregate terrain information. These estimates were compared to a second approach or baseline plan where activities were constrained to fit within an assumed mission duration. The results compare the number of sites visited, number of samples analyzed per site, and the probability of achieving mission goals related to surface characterization for both cases.

  5. Radar observations of near-Earth asteroids from Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Zambrano Marin, Luisa Fernanda; Virkki, Anne; Aponte Hernandez, Betzaida

    2016-10-01

    The Arecibo S-Band (2.38 GHz, 12.6 cm, 1 MW) planetary radar system at the 305-m William E. Gordon Telescope in Arecibo, Puerto Rico is the most active and most sensitive planetary radar facility in the world. Since October 2015, we have detected 56 near-Earth asteroids, of which 17 are classified as potentially hazardous to Earth and 22 are compliant with the Near-Earth Object Human Space Flight Accessible Target Study (NHATS) as possible future robotic- or human-mission destinations. We will present a sampling of the asteroid zoo observed by the Arecibo radar since the 2015 DPS meeting. This includes press-noted asteroids 2015 TB145, the so-called "Great Pumpkin", and 2003 SD220, the so-called "Christmas Eve asteroid".

  6. Spectral properties of binary asteroids

    NASA Astrophysics Data System (ADS)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  7. Solar-phase-angle effects on the taxonomic classification of asteroids

    NASA Astrophysics Data System (ADS)

    Carvano, J.; Davallos, J.

    2014-07-01

    Asteroid taxonomy is the effort of grouping asteroids into classes based on similarities of a number of their observational properties. The most used properties include measurements of their spectral reflectance (by means of low-resolution spectra, spectro-photometry, or colors), and geometric albedo. The usefulness of asteroid taxonomic classes derived in this way relies on the assumption that the classes bear some correspondence to the mineralogy of the asteroids, and on the fact that such classification can be made using types of observations that presently are available to a large number of asteroids. Therefore, asteroid taxonomy can be used to infer trends in the distribution of compositions in the main belt and other populations, as an additional parameter in defining asteroid families, and as a selection tool to identify candidates for more detailed observations. However, the fact that the correspondence between taxonomic class and composition is far from perfect is still sometimes overlooked in the literature. Indeed, although a taxonomic classification narrows down the possible mineralogies of a given asteroid, it will seldom point univocally to one particular mineralogy. This happens for a number of reasons, some linked to the intrinsic difficulty involved in the remote characterization of the mineralogy of an asteroid, since it depends on the presence of absorption bands in its reflectance spectrum which may be absent or not completely sampled by the observations used to derive taxonomy. Other problem here is the exposure of the material on the surface of the asteroid to space-weathering effects, such as solar wind implantation and micro-meteorite bombardment, which can change the optical properties of the material. Finally, the overall shape of the reflectance spectrum of an asteroid is also affected by the geometry of the observation, as well as by its shape. In this work, we analyze how the classification of asteroids observed by the Sloan Digital Sky Survey is affected by the solar phase angle of the observation. It is found that the number of observations assigned to several taxonomic classes has a clear dependency on the solar phase angle of the asteroid at the moment of the observation. In order to understand how variations of phase angles affect the reflectance spectra of the individual asteroids listed in the SDSS with multiple observations, we use the reflectance spectra derived from the SDSS colors to define two parameters, which measure the spectral slope in the visible and the depth of the 1-micron band, if present. It is found that most asteroids in the sample tend to be redder at higher phase angles, and that, for the classes showing a 1-μ m band, most show increasing band depth with increasing phase angle. This predominance of positive correlations for both band depth and spectral slope might suffice to explain the offsets in the distribution of classes. However, for both parameters there is a significant fraction in each sample for which there seem to be no correlation at all, and a comparable number seem to display anti-correlation between the parameters and the phase angle. Therefore, although phase-reddening effects, as currently understood in the literature, can account for the offsets in the distribution of taxonomic classes with phase angle, it cannot explain all variability seen in the SDSS data. There is also a dependency on composition and also shape effects involved, which can be reproduced using Hapke reflectance models.

  8. Small main-belt asteroid spectroscopic survey: Initial results

    NASA Technical Reports Server (NTRS)

    Xu, Shui; Binzel, Richard P.; Burbine, Thomas H.; Bus, Schelte J.

    1995-01-01

    The spectral characterization of small asteroids is important for understanding the evolution of their compositional and mineralogical properties. We report the results of a CCD spectroscopic survey of small main-belt asteroids which we call the Small Main-belt Asteroid Spectroscopic Survey (SMASS). Spectra of 316 asteroids were obtained, with wavelength coverage ranging from 4000 to 10000 A (0.4 to 1 micrometers). More than half of the objects in our survey have diameters less than 20 km. Survey results include the identification of the first object resembling ordinary chondrite meteorites among the main-belt asteroids (Binzel, R. P., et al, 1993) and observations of more than 20 asteroids showing basaltic achondrite spectral absorption features that strongly link Vesta as the parent body for the basaltic achondrite meteorites (Binzel, R. P., and S. Xu 1993). A potential Mars-crossing asteroid analog to ordinary chondrite meteorites (H chondrites), 2078 Nanking, is reported here. Through a principal component analysis, we have assigned classifications to the members of our sample. The majority of the small main-belt asteroids belong to S and C classes, similar to large asteroids. Our analysis shows that two new classes are justified which we label as J and O. Small asteroids display more diversity in spectral absorption features than the larger ones, which may indicate a greater variation of compositions in the small asteroid population. We found a few candidates for olivine-rich asteroids within the S class. Although the total number of olivine-rich candidates is relatively small, we present evidence suggesting that such objects are more prevalent at smaller sizes.

  9. The Asteroid Impact and Deflection Assessment Mission and its Potential Contributions to Human Exploration of Asteroids

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Rivkin, Andy S.

    2014-01-01

    The joint ESA and NASA Asteroid Impact and Deflection Assessment (AIDA) mission will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission, involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. AIDA's primary objective is to demonstrate a kinetic impact deflection and characterize the binary NEA Didymos. The science and technical data obtained from AIDA will aid in the planning of future human exploration missions to NEAs and other small bodies. The dual robotic missions of AIDA, ESA's Asteroid Impact Monitor (AIM) and NASA's Double Asteroid Redirection Test (DART), will provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of the binary target Didymos both prior to and after the kinetic impact demonstration. The knowledge gained from this mission will help identify asteroidal physical properties in order to maximize operational efficiency and reduce mission risk for future small body missions. The AIDA data will help fill crucial strategic knowledge gaps concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations.

  10. Visible Spectroscopic Observation Of Asteroid 162173 (1999ju3) With The Gemini-s Telescope

    NASA Astrophysics Data System (ADS)

    Sugita, Seiji; Kuroda, D.; Kameda, S.; Hasegawa, S.; Kamata, S.; Abe, M.; Ishiguro, M.; Takato, N.; Yoshikawa, M.

    2012-10-01

    Asteroid 162173 (1999JU3; hereafter JU3) is the target of the Hayabusa-2 mission. Its visible reflectance spectra have been observed a few times [1,2], and obtained spectra exhibit a wide variety of spectral patterns ranging from a spectra with absorption in the UV region (May 1999) to a flat spectrum with a faint broad absorption centered around 0.6 microns (September 2007) and that with UV absorption and strong broad absorption centered around 0.7 micron (July 2007). The apparent large spectral variation may be due to variegation on the asteroid surface. Such variegation would make a large influence on remote sensing strategy for Hayabusa-2 before its sampling operations. In order to better constraint the spectral properties of JU3, we conducted visible spectroscopic observations at the GEMINI-South observatory 8.1-m telescope with the GMOS instrument. We could obtain three different sets of data in June and July 2012. Although the JU3 rotation phases of two of the observation are close to each other, the other is about 120 degrees away from the two. Our preliminary analyses indicate that these three spectra are slightly reddish but generally flat across the observed wavelength range (0.47 - 0.89 microns). The observed flat spectra are most similar to the spectrum obtained in September 2007, which probably has the highest signal-to-noise ratio among the previous three spectra. This result suggests that material with a flat spectrum probably covers a dominant proportion of the JU3 surface and that the other two types of previously obtained spectra may not cover a very large fraction of the JU3 surface. [1] Binzel, R. P. et al. (2001) Icarus, 151, 139-149; [2] Vilas, F. (2008) AJ, 135, 1101-1105.

  11. Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew; Merrill, Raymond G.; Qu, Min; Naasz, Bo J.

    2014-01-01

    The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and or by rendezvousing with a sample-return spacecraft launched from the surface of Mars.

  12. Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew; Naasz, Bo; Merill, Raymond G.; Qu, Min

    2014-01-01

    The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and/or by rendezvousing with a sample-return spacecraft launched from the surface of Mars.

  13. Investigation of Shapes and Spins of Reaccumulated Remnants from Asteroid Disruption Simulations

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Ballouz, R.; Richardson, D. C.; Schwartz, S. R.

    2012-10-01

    Evidence that asteroids larger than a few hundred meters diameter can be gravitational aggregates of smaller, cohesive pieces comes, for instance, from images returned by the Hayabusa spacecraft of asteroid 25143 Itokawa (Fujiwara et al., 2006, Science 312, 1330). These images show an irregular 500-meter-long body with a boulder-strewn surface, as might be expected from reaccumulation following catastrophic disruption of a larger parent asteroid (Michel et al., 2001, Science 294, 1696). However, numerical simulations of this process to date essentially focus on the size/mass and velocity distributions of reaccumulated fragments, matching asteroid families. Reaccumulation was simplified by merging the objects into growing spheres. However, understanding shapes, spins and surface properties of gravitational aggregates formed by reaccumulation is required to interpret information from ground-based observations and space missions. E.g., do boulders on Itokawa originate from reaccumulation of material ejected from a catastrophic impact or from other processes (such as the Brazil-nut effect)? How does reaccumulation affect the observed shapes? A model was developed (Richardson et al., 2009, Planet. Space Sci. 57, 183) to preserve shape and spin information of reaccumulated bodies in simulations of asteroid disruption, by allowing fragments to stick on contact (and optionally bounce or fragment further, depending on user-selectable parameters). Such treatments are computationally expensive, and we could only recently start to explore the parameter space. Preliminary results will be presented, showing that some observed surface and shape features may be explained by how fragments produced by a disruption reaccumulate. Simulations of rubble pile collisions without particle cohesion, and an investigation of the influence of initial target rotation on the outcome will also be shown. We acknowledge the National Science Foundation (AST1009579) and NASA (NNX08AM39G).

  14. HST/FGS High Angular Resolution Observations of Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Hestroffer, Daniel; Tanga, P.; Cellino, A.; Kaasalainen, M.; Torppa, J.; Marchis, F.; Richardson, D. C.; Elankumaran, P.; Berthier, J.; Colas, F.; Lounis, S.

    2006-09-01

    Binary or multiple asteroids are important bodies that provide insight into the physical properties of asteroids in general. The knowledge of the components orbit in a binary provides the total mass with high accuracy and generally permits a rough bulk-density estimate [1,2]. We have observed 10 selected binary or multiple asteroids (22 Kalliope, 45 Eugenia, 87 Sylvia, 90 Antiope, 107 Camilla, 121 Hermione, 283 Emma, 379 Huenna, 617 Patroclus, 762 Pulcova) with the HST/FGS interferometer in order to obtain high resolution data on the size and shape of their primaries (HST proposal ID 10614). All these systems except the Jupiter Trojan 617 Patroclus are located in the main-belt of asteroids. Combining these HST/FGS data to topographic models obtained from lightcurve inversion [3,4] yields the volume and hence the bulk density of these bodies with unprecedented accuracy [5]. This work will allow us to obtain important information on their internal structure, and insight into the possible gravitational re-accumulation process after a catastrophic disruptive collision [e.g. 6,7,8].In particular, one can see whether or not the surfaces of theses bodies closely follow an effective equipotential surface, and under what circumstances such a correspondence is or is not attained . We will present the preliminary results for the data reduction and the size and bulk density determination. [1] Merline et al. (2003). In: Asteroids III, pp 289. [2] Marchis et al. (2005) ACM 2005, Buzios, Brazil. [3] Kaasalainen et al. (2002) Icarus 159, 359. [4] Torppa et al. (2003) Icarus 164, 346. [5] Hestroffer et al. (2003) ACM 2002, ESA-SP 500, 493. [6] Michel et al. (2004) P&SS 52, 1109. [7] Durda et al. (2004) Icarus 167, 342. [8] Paolicchi et al. (1993) Cel. Mech., 57, 49.

  15. Studies of Itokawa's Surface Exposure by Measurements of Cosmic-ray Produced Nuclides

    NASA Technical Reports Server (NTRS)

    Caffee, M. W.; Nishiizumi, K.; Tsuchiyama, A.; Uesugi, M.; Zolensky, M. E.

    2014-01-01

    We plan to investigate the evolutionary history of surface materials from 25143 Itokawa, the Hayabusa samples. Our studies are based on the measurement of nuclides produced in asteroidal surface materials by cosmic rays. Cosmogenic radionuclides are used to determine the duration and nature of the exposure of materials to energetic particles. Our goals are to understand both the fundamental processes on the asteroidal surface and the evolutionary history of its surface materials. They are also key to understanding the history of Itokawa's surface and asteroid-meteoroid evolutionary dynamics. To achieve our key goals, in particular reconstructing the evolutionary histories of the asteroidal surface, we proposed: (1) characterizing Itokawa particles using SXCT, SXRD, and FE-SEM without modification of the sample; (2) embedding each particle in acrylic resin, then slicing a small corner with an ultra-microtome and examining it using super-STEM and SIMS for characterizing surface morphology, space weathering, and oxygen three-isotope analysis; and finally (3) measuring small amounts of cosmogenic radionuclides (104-105 atoms) in Hayabusa samples by AMS. However, we have to modify our plan due to unexpected situation.

  16. The composition and origin of the C, P, and D asteroids - Water as a tracer of thermal evolution in the outer belt

    NASA Technical Reports Server (NTRS)

    Jones, Thomas D.; Lebofsky, Larry A.; Lewis, John S.; Marley, Mark S.

    1990-01-01

    A telescopic and laboratory investigation of water distribution among low albedo asteroids in the outer belt, using the 3-micron reflectance absorption of molecular H2O and structural OH ions (coincident with the 3-micron spectral signature of meteorite and asteroid hydrated silicates) shows that 66 percent of the C-class asteroids in the sample have hydrated silicate surfaces. In conjunction with the apparently anhydrous P and D surfaces, this pronounced hydration difference between C-class asteroids and the more distant P and D classes points to an original outer belt asteroid composition of anhydrous silicates, water ice, and complex organic material. Early solar-wind induction heating of protoasteroids, declining in intensity with distance from the sun, is conjectured to have produced the observed diminution of hydrated silicate abundance.

  17. Low Cost Multiple Near Earth Object Missions

    NASA Astrophysics Data System (ADS)

    Smith, D. B.; Klaus, K.; Kaplan, M.

    2009-12-01

    Commercial spacecraft are available with efficient high power solar arrays and hybrid propulsion systems (Chemical and Solar Electric) that make possible multiple Near Earth Object Missions within Discovery budget limits. Our analysis is based on the Geosynchronous Transfer Orbit Capability (GTOC-3) solution. GTOC-3 assumptions: - Escape from Earth, rendezvous with 3 asteroids, then rendezvous with Earth - Departure velocity below 0.5 km/s - Launch between 2016 and 2025 - Total trip time less than 10 years - Minimum stay time of 60 days at each asteroid - Initial spacecraft mass of 2,000 kg - Thrust of 0.15 N and Isp of 3,000 s - Only Earth GAMs allowed (Rmin = 6,871 km) Preliminary results indicate that for mission objectives we can visit Apophis and any other 2 asteroids on this list or any other 3 asteroids listed. We have considered two spacecraft approaches to accomplish mission objectives: - Case 1: Chemical engine burn to the 1st target, and then solar electric to the 2nd and 3rd targets, or - Case 2: Solar electric propulsion to all 3 targets For both Cases, we assumed an instrument mass of up to 100 kg, power up to 100 W, and s/c bus pointing as good as 12 arc sec.Multi-NEO Mission Candidates

  18. Regolith Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug

    2000-01-01

    The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases liberated from heated soil samples; (2) Identification of the asteroid soil mineralogy to aid in the selection process for returned samples; (3) Existence of oxygen in the asteroid soil and the potential for in-situ resource utilization (ISRU); and (4) Existence of water and other volatiles in the asteroid soil. Additional information is contained in the original extended abstract.

  19. Photometry of Main Belt and Trojan asteroids with K2

    NASA Astrophysics Data System (ADS)

    Szabó, Gyula; Kiss, Csaba; Pal, Andras; Szabo, Robert

    2016-10-01

    Due to the failure of the second reaction wheel, a new mission was conceived for the otherwise healthy Kepler space telescope. In the course of the K2 Mission, the telescope is staring at the plane of the Ecliptic, hence thousands of Solar System bodies cross the K2 fields, usually causing extra noise in the highly accurate photometric data.We could measure the first continuous asteroid light curves, covering several days wthout interruption, that has been unprecedented to date. We studied the K2 superstamps covering the M35 and Neptune/Nereid fields observed in the long cadence (29.4-min sampling) mode. Asteroid light curves are generated by applying elongated apertures. We investigated the photometric precision that the K2 Mission can deliver on moving Solar System bodies, and determined the first uninterrupted optical light curves of main-belt and Trojan asteroids. We use thed Lomb-Scargle method to find periodicities due to rotation.We derived K2 light curves of 924 main-belt asteroids in the M35 field, and 96 in the path of Neptune and Nereid. Due to the faintness of the asteroids and the high density of stars in the M35 field, 4.0% of the asteroids with at least 12 data points show clear periodicities or trend signalling a long rotational period, as opposed to 15.9% in the less crowded Neptune field. We found that the duty cycle of the observations had to reach ˜ 60% in order to successfully recover rotational periods.The derived period-amplitude diagram is consistent to the known distribution of Main Belt asteroids. For Trojan asteroids, the contribution of our 56 objects with newly determined precise period and amplitude is in the order of all previously known asteroids. The comparison with earth-based determinations showed a previous bias toward short periods and has also proven that asteroid periods >20 hour can be unreliable in a few cases because of daylight time and diurnal calibrations. These biases are avoided from the space. We present an unbiased sample of rotation periods and identify a higher rate of slow rotators. We also found multiple periods of large asteroids that has not been observed earlier and still needs explanation.

  20. Initial analysis and curation plans for MUSES-C asteroidal samples

    NASA Astrophysics Data System (ADS)

    Yano, H.; Kushiro, I.; Fujiwara, A.

    In the MUSES-C mission, sample return of several hundred mg to several g in to- tal is expected from the surface of the S-type near Earth asteroid 1998SF36 in 2007. The MUSES-C samples are expected to be more similar to micrometeorites than large pieces of rocks. Also the initial analysis to characterize general aspects of returned samples can consume only 15 % of its total mass and must complete the whole anal- yses including the database building before international AO for detailed analyses opens in less than a year. Confident exercise of non-destructive, micro-analyses when- ever possible are thus vital for the SMUSES-C Asteroidal Sample Preliminary Exam- ination Team (MASPET)T, which will be formed by the ISAS MUSES-C team, the international partners from NASA and Australia and Sall-JapanT meteoritic scientists to be selected as outsourcing parts of the initial analyses. In 2000-2001, in the pur- pose to survey what kinds and levels of micro-analysis techniques in respective fields, from major elements and mineralogy to trace and isotopic elements and organics, are available in Japan at present, ISAS welcomed a total of 11 applications to the first round open competition for the MASPET candidates. The initial evaluation was made by multiple domestic peer reviews. Nine out of 11 were then provided two kinds of Sasteroid sample analogsT that no applicant knew what they were in advance by the Selection Committee (chair: I. Kushiro) in order to conduct proposed analysis with self-claimed amount of samples (100 mg max) in self-claimed duration (6 months max). The proponents must demonstrate how much their technical capabilities, ana- lytical precision, and usefulness of the derived results for subsequent detailed analyses are worth being included in the MASPET studies. After the completion of multiple, international peer reviews, the Selection Committee compiled evaluations and recom- mended the finalists of this round competition. However, it is also recognized that there are a few more areas of expertise still lacked within the recommended members. Thus, the competition shall be repeated one or two more times (in early 2003 after the launch, and possibly in 2005 after in-situ data is obtained) in order to collect the best Japanese experts in the whole range of different types of analyses at the time of the sample return. The final members of the MASPET will be appointed about 2 years prior to the Earth return. Then they will conduct a Stest runT of the whole initial analysis procedures at the ISAS asteromaterial curation facility, to be newly created in next a few years, and their respective analysis facilities. This talk also covers the current concepts of the facility and plans of analysis procedure flow.

  1. Petrology and Composition of HED Polymict Breccias

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Herrin, J. S.; Mertzman, S. A.; Mertzman, K. R.

    2010-01-01

    The howardite, eucrite and diogenite (HED) clan of meteorites forms the largest suite of achondrites with over 900 named members. The HEDs are igneous rocks and breccias of igneous rocks from a differentiated asteroid [1]. The consensus view is that these rocks hail from the asteroid 4 Vesta, which will be the first target of NASA's Dawn mission. When Dawn arrives at Vesta, she will begin remote imagery and spectroscopy of the surface. The surface she will observe will be dominated by rocks and soils mixed through impact gardening. To help with the interpretation of the remotely sensed data, we have begun a project on the petrologic and compositional study of a suite of HED polymict breccias. Here we report on the preliminary findings of this project.

  2. The GTC mid-infrared spectroscopic program of primitive outer-belt asteroids

    NASA Astrophysics Data System (ADS)

    Licandro, J.; Alvarez-Iglesias, C. Carlos; Cabrera-Lavers, A.; Ali-Lagoa, V.; Pinilla-Alonso, N.; Campins, H.; de Leon, J.; Kelley, M.

    2014-07-01

    Asteroids in the outer edge of the asteroid belt (Cybeles, Hildas, and Jupiter Trojans) may provide a number of clues to the origin and evolution of the asteroid belt and the formation of our planetary system. They have a pristine composition, experienced little heating and may contain a significant fraction of ice in their interiors. The origin of these populations is still under debate. Levison et al. (2009) suggested that a large fraction of these bodies are transneptunian objects (TNOs) moved to these resonances in an early epoch of the Solar System called the ''Late Heavy Bombardment'' (LHB). To compare the physical properties of these asteroid populations with TNOs and comets is thus a strong test of dynamical models. In mid 2013, we started a mid-infrared photometric and spectroscopic program in the N-band using the CANARICAM camera-spectrograph at the 10.4-m GTC telescope at the ''Roque de los Muchachos'' Obserbatory (Canary Islands, Spain). We aim to study the surface composition and key properties such as radius, albedo, and thermal inertia based on their low-resolution 8--13-micron spectra and N-band photometry. We already obtained the spectra of 5 objects, that of (225) Henrieta is shown as an example in the Figure. The three published spectra of Trojan asteroids (Emery et al. 2006) and of (65) Cybele (Licandro et al. 2011) exhibit clear emissivity features from which the compositional and physical properties can be inferred. The spectra of these objects strongly resemble one another, presenting an emission plateau due to silicates at about 9.1-11.5 microns (the Si-O stretch fundamental). Fine-grained silicates in a very porous (fairly castle) structure, and no other mineral group (Emery et al. 2006, Vernazza et al. 2012), reproduce the major features of the Trojans and Cybele asteroid spectra. In this work, we present the preliminary results of our observational program including the N-band spectra, size, and albedo of the already observed 5 asteroids, and discuss the potential of such observations.

  3. Impact simulations on the rubble pile asteroid (2867) Steins

    NASA Astrophysics Data System (ADS)

    Deller, Jakob; Lowry, Stephen; Snodgrass, Colin; Price, Mark; Sierks, Holger

    2015-04-01

    Images from the OSIRIS camera system on board the Rosetta spacecraft (Keller et al. 2010) have revealed several interesting features on asteroid (2867) Steins. Its macro porosity of 40%, together with the shape that looks remarkably like a YORP evolved body, both indicate a rubble pile structure. A large crater on the southern pole is evidence for collisional evolution of this rubble pile asteroid. We have developed a new approach for simulating impacts on asteroid bodies that connects formation history to their collisional evolution. This is achieved by representing the interior as a 'rubble pile', created from the gravitational aggregation of spherical 'pebbles' that represent fragments from a major disruption event. These 'pebbles' follow a power-law size function and constitute the building blocks of the rubble pile. This allows us to explicitly model the interior of rubble pile asteroids in hyper-velocity impact simulations in a more realistic way. We present preliminary results of a study validating our approach in a large series of simulated impacts on a typical small main-belt rubble pile asteroid using the Smoothed Particle Hydrodynamics solver in LS-DYNA. We show that this approach allows us to explicitly follow the behavior of a single 'pebble', while preserving the expected properties of the bulk asteroid as known from observations and experiments (Holsapple 2009). On the example of Steins, we use this model to relate surface features like the northern hill at 75/100 degrees lon/lat distance to the largest crater (Jorda et al. 2012), or the catena of depletion pits, to the displacement of large fragments in the interior of the asteroid during the impact. We do this by following the movement of pebbles below the surface feature in simulations that recreate the shape of the impact crater. We show that while it is not straightforward to explain the formation of the hill-like structure, the formation of cracks possibly leading to depletion zones can be observed. References: Keller et al., 2010, Science, 327(5962), pp. 190-193; Jorda et al., 2012, Icarus, vol. 221 (2) pp. 1089-1100; Holsapple, 2009, PSS, 57(2), 127-141.

  4. Impact Simulations on the Rubble Pile Asteroid (2867) Steins

    NASA Astrophysics Data System (ADS)

    Deller, Jakob; Snodgrass, Colin; Lowry, Stephen C.; Price, Mark C.; Sierks, Holger

    2014-11-01

    Images from the OSIRIS camera system on board the Rosetta spacecraft (Keller et al. 2010) has revealed several interesting features on asteroid (2867) Steins. Its macro porosity of 40%, together with the shape that looks remarkably like a YORP evolved body, both indicate a rubble pile structure. A large crater on the southern pole is evidence for collisional evolution of this rubble pile asteroid. We have developed a new approach for simulating impacts on asteroid bodies that connects formation history to their collisional evolution. This is achieved by representing the interior as a ‘rubble pile’, created from the gravitational aggregation of spherical ‘pebbles’ that represent fragments from a major disruption event. These ‘pebbles’ follow a power law size function and constitute the building blocks of the rubble pile. This allows us to explicitly model the interior of rubble pile asteroids in hyper-velocity impact simulations in a more realistic way. We present preliminary results of a study validating our approach in a large series of simulated impacts on a typical small main belt rubble pile asteroid using the Smoothed Particle Hydrodynamics solver in Autodyn. We show that this approach allows us to explicitly follow the behavior of a single ‘pebble’, while preserving the expected properties of the bulk asteroid as known from observations and experiments (Holsapple 2009). On the example of Steins, we use this model to investigate if surface features like the northern hill at 75/100 degrees lon/lat distance to the largest crater (Jorda et al. 2012), or the catena of depletion pits, can be explained by the displacement of large fragments in the interior of the asteroid during the impact. We do this by following the movement of pebbles below the surface feature in simulations that recreate the shape of the impact crater.Acknowledgements: Jakob Deller thanks the Planetary Science Institute for a Pierazzo International Student Travel Award that funds his attendance at this conference. References: Keller et al., 2010, Science, 327(5962), pp. 190-193 Jorda et al., 2012, Icarus, vol. 221 (2) pp. 1089-1100; Holsapple, 2009, PSS, 57(2), 127-141.

  5. THE ASTEROID DISTRIBUTION IN THE ECLIPTIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Erin Lee; Woodward, Charles E.; Dipaolo, Andrea

    2009-06-15

    We present analysis of the asteroid surface density distribution of main-belt asteroids (mean perihelion {delta} {approx_equal} 2.404 AU) in five ecliptic latitude fields, -17 {approx}> {beta}({sup 0}) {approx}< +15, derived from deep Large Binocular Telescope V-band (85% completeness limit V = 21.3 mag) and Spitzer Space Telescope IRAC 8.0 {mu}m (80% completeness limit {approx}103 {mu}Jy) fields enabling us to probe the 0.5-1.0 km diameter asteroid population. We discovered 58 new asteroids in the optical survey as well as 41 new bodies in the Spitzer fields. The derived power-law slopes of the number of asteroids per square degree are similar withinmore » each {approx}5{sup 0} ecliptic latitude bin with a mean value of -0.111 {+-} 0.077. For the 23 known asteroids detected in all four IRAC channels mean albedos range from 0.24 {+-} 0.07 to 0.10 {+-} 0.05. No low-albedo asteroids (p{sub V} {approx}< 0.1) were detected in the Spitzer FLS fields, whereas in the SWIRE fields they are frequent. The SWIRE data clearly samples asteroids in the middle and outer belts providing the first estimates of these km-sized asteroids' albedos. Our observed asteroid number densities at optical wavelengths are generally consistent with those derived from the Standard Asteroid Model within the ecliptic plane. However, we find an overdensity at {beta} {approx}> 5{sup 0} in our optical fields, while the infrared number densities are underdense by factors of 2 to 3 at all ecliptic latitudes.« less

  6. Spectral properties of binary asteroids

    NASA Astrophysics Data System (ADS)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-07-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15 per cent of all small asteroids). For that, an analysis of 0.8-2.5 µm near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF (Infrared Telescope Facility) is presented. Taxonomic class and meteorite analogue is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21 per cent. Most binary systems are bound in the S, X, and C classes, followed by Q and V types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C types which are under-represented among binaries.

  7. In-Situ Resource Utilization Experiment for the Asteroid Redirect Crewed Mission

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Fries, M.; Love, S.; Sellar, R. G.; Voecks, G.; Wilson, D.

    2015-10-01

    The Asteroid Redirect Crewed Mission (ARCM) represents a unique opportunity to perform in-situ testing of concepts that could lead to full-scale exploitation of asteroids for their valuable resources [1]. This paper describes a concept for an astronautoperated "suitcase" experiment to would demonstrate asteroid volatile extraction using a solar-heated oven and integral cold trap in a configuration scalable to full-size asteroids. Conversion of liberated water into H2 and O2 products would also be demonstrated through an integral processing and storage unit. The plan also includes development of a local prospecting system consisting of a suit-mounted multi-spectral imager to aid the crew in choosing optimal samples, both for In-Situ Resource Utilization (ISRU) and for potential return to Earth.

  8. IRAS asteroid families

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.; Williams, J. G.; Tedesco, E. F.; Matson, D. L.

    1991-01-01

    The Infrared Astronomical Satellite (IRAS) sampled the entire asteroid population at wavelengths from 12 to 100 microns during its 1983 all sky survey. The IRAS Minor Planet Survey (IMPS) includes updated results for more recently numbered as well as other additional asteroids with reliable orbital elements. Albedos and diameters were derived from the observed thermal emission and assumed absolute visual magnitudes and then entered into the IMPS database at the Infrared Processing and Analysis Center (IPAC) for members of the Themis, Eos, Koronis and Maria asteroid families and compared with their visual colors. The IMPS results for the small (down to about 20 km) asteroids within these major families confirm trends previously noted for their larger members. Each of these dynamical families which are defined by their similar proper elements appears to have homogeneous physical properties.

  9. NASA's Asteroid Redirect Mission: The Boulder Capture Option

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (approximately 4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (approximately 1-5 m) via robotic manipulators from the surface of a larger (approximately 100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA's ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more certainty of the target NEA's physical characteristics and reduces mission risk. This increases the return on investment for NASA's future activities with respect to science, human exploration, resource utilization, and planetary defense

  10. NASA’s Asteroid Redirect Mission: The Boulder Capture Option

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Nuth, Joseph A.; Mazanek, Dan D.; Merrill, Raymond G.; Reeves, David M.; Naasz, Bo J.

    2014-11-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (˜4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (˜1-5 m) via robotic manipulators from the surface of a larger (˜100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa’s target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA’s OSIRIS REx and JAXA’s Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA’s ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more certainty of the target NEA’s physical characteristics and reduces mission risk. This increases the return on investment for NASA’s future activities with respect to science, human exploration, resource utilization, and planetary defense.

  11. ASTEROID LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY SURVEY: ROTATION PERIODS AND PHASE FUNCTIONS FROM SPARSE PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waszczak, Adam; Chang, Chan-Kao; Cheng, Yu-Chi

    We fit 54,296 sparsely sampled asteroid light curves in the Palomar Transient Factory survey to a combined rotation plus phase-function model. Each light curve consists of 20 or more observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find that the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude, and other light-curve attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining ∼53,000 fitted periods. By this method we findmore » that 9033 of our light curves (of ∼8300 unique asteroids) have “reliable” periods. Subsequent consideration of asteroids with multiple light-curve fits indicates a 4% contamination in these “reliable” periods. For 3902 light curves with sufficient phase-angle coverage and either a reliable fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than ∼2 g cm{sup −3}, while C types have a lower limit of between 1 and 2 g cm{sup −3}. These results are in agreement with previous density estimates. For 5–20 km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types’ differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes (and apparent-magnitude residuals) to those of the Minor Planet Center’s nominal (G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting reduces asteroid photometric rms scatter by a factor of ∼3.« less

  12. Compositional studies of primitive asteroids

    NASA Technical Reports Server (NTRS)

    Vilas, Faith

    1991-01-01

    The aqueous alteration history in the solar system are studied through acquiring additional CCD reflectance spectra in the blue-UV through near-IR spectral region and analyzing these spectra for information about iron oxides in phyllosilicates identified in the CM and CI carbonaceous chondrites. Emphasis is on the main-belt and Cybele primitive asteroids, as these asteroids show spectral diversity and are also spectral analogues for known meteorite samples. The porphyrin bands found in organics near 0.4 micron is also sought.

  13. Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites. Part 1

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W. (Editor); Papike, J. J. (Editor)

    1996-01-01

    This volume contains papers that have been accepted for presentation at the Workshop. Topics considered include: On the sample return from Vesta by low-thrust spacecraft; Astronomical evidence linking Vesta to the HED meteorites; Geologic mapping of Vesta with the Hubble Space Telescope; A space mission to Vesta; Asteroid spectroscopy; The thermal history of asteroid 4 Vesta, based on radionuclide and collision heating; Mineralogical records of early planetary processes on Vesta.

  14. Regolith X-Ray Imaging Spectrometer (REXIS) Aboard the OSIRIS-REx Asteroid Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Masterson, R. A.; Chodas, M.; Bayley, L.; Allen, B.; Hong, J.; Biswas, P.; McMenamin, C.; Stout, K.; Bokhour, E.; Bralower, H.; Carte, D.; Chen, S.; Jones, M.; Kissel, S.; Schmidt, F.; Smith, M.; Sondecker, G.; Lim, L. F.; Lauretta, D. S.; Grindlay, J. E.; Binzel, R. P.

    2018-02-01

    The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA's OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid's surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun's variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid's most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid's surface using the asteroid's rotation as well as the spacecraft's orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master's and Ph.D. theses and other student publications.

  15. Near-Earth Asteroid Sample Return Workshop

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This volume contains abstracts that have been accepted for presentation at the Near-Earth Asteroid Sample Return Workshop, 11-12 Dec 2000. The Steering Committee consisted of Derek Sears, Chair, Dan Britt, Don Brownlee, Andrew Cheng, Benton Clark, Leon Gefert, Steve Gorevan, Marilyn Lindstrom, Carle Pieters, Jeff Preble, Brian Wilcox, and Don Yeomans. Logistical, administrative, and publications support were provided by the Publications and Program Services Department of the Lunar and Planetary Institute.

  16. Mineralogical characterization of asteroid (1951) Lick

    NASA Astrophysics Data System (ADS)

    de Leon, J.; Duffard, R.; Licandro, J.; Lazzaro, D.

    A-type asteroids are usually found in the main asteroid belt and their spectra are very similar to spectra of the silicate mineral olivine (Cruikshank and Hartmann 1984). The existence of olivine-rich asteroids is a result of differentiation, those being the pieces of the mantle of a larger parent body. Extraterrestrial sources of such material must exist because we have meteorites that are nearly pure olivine (dunites). There is a limited number of observed asteroids classified as A-type, all of them belonging to the Main Belt and the study of such objects is crucial to better understand their origin and formation and their relation with dunites. We have obtained visible and near infrared reflectance spectra of asteroid (1951) Lick using the telescopes located at Observatorio del Roque de los Muchachos (Canary Islands, Spain). According to its spectral characteristics in the visible region, this object has been classified as an A-type asteroid by Bus and Binzel (2002). Although considered an Amor object by several authors, according to its orbital parameters (a = 1.390 AU, e = 0.061, i = 39.093 deg, q = 1.304) this object is just in the limit that separates Amors from Mars Crossers (q = 1.3). Whether it is classified as an Amor or a Mars Crosser, (1951) Lick is the first object with such orbital characteristics classified as an A-type asteroid. Here we present a mineralogical analysis of the reflectance spectra obtained for (1951) Lick. We calculate several parameters that are extracted from the spectrum of the asteroid and that give relevant information about its mineralogical composition, using the method defined by Gaffey et al. (1993). We also present results obtained by a preliminary fit to the absorption band associated to the presence of the olivine mineral using the Modified Gaussian Model method (MGM) developed by Sunshine et al.(1990). References Bus, J. S. and Binzel, R. P. 2002. Icarus, 158, 146 Cuikshank, D. P. and Hartmann, W. K. 1984. Science, 223, 281 Gaffey, M. J., Bell, J. F., Brown, R. H., Burbine, T. H., Piatek, J. L., Reed, K. L. and Chaky, D. A. 1993. Icarus, 106, 573 Sunshine, J. M., Pieters, C. M. and Pratt, S. F. 1990. JGR, 95, B5, 6955

  17. Shape models of asteroids reconstructed from WISE data and sparse photometry

    NASA Astrophysics Data System (ADS)

    Durech, Josef; Hanus, Josef; Ali-Lagoa, Victor

    2017-10-01

    By combining sparse-in-time photometry from the Lowell Observatory photometry database with WISE observations, we reconstructed convex shape models for about 700 new asteroids and for other ~850 we derived 'partial' models with unconstrained ecliptic longitude of the spin axis direction. In our approach, the WISE data were treated as reflected light, which enabled us to directly join them with sparse photometry into one dataset that was processed by the lightcurve inversion method. This simplified treatment of thermal infrared data turned out to provide correct results, because in most cases the phase offset between optical and thermal lightcurves was small and the correct sidereal rotation period was determined. The spin and shape parameters derived from only optical data and from a combination of optical and WISE data were very similar. The new models together with those already available in the Database of Asteroid Models from Inversion Techniques (DAMIT) represent a sample of ~1650 asteroids. When including also partial models, the total sample is about 2500 asteroids, which significantly increases the number of models with respect to those that have been available so far. We will show the distribution of spin axes for different size groups and also for several collisional families. These observed distributions in general agree with theoretical expectations proving that smaller asteroids are more affected by YORP/Yarkovsky evolution. In asteroid families, we see a clear bimodal distribution of prograde/retrograde rotation that correlates with the position to the right/left from the center of the family measured by the semimajor axis.

  18. The Physical, Geological, and Dynamical Nature of Asteroid (101955) Bennu - Target of OSIRIS-REx

    NASA Astrophysics Data System (ADS)

    Lauretta, Dante

    2014-11-01

    OSIRIS-REx will survey asteroid (101955) Bennu to understand its properties, assess its resource potential, refine the impact hazard, and return a sample to Earth. This mission launches in 2016. Bennu is different from all other near-Earth asteroids previously visited by spacecraft. (433) Eros, target of the NEAR-Shoemaker mission, and (25143) Itokawa, target of Hayabusa, are both high-albedo, S-type asteroids with irregular shapes. In contrast, Bennu has a low albedo, is a B-type asteroid, and has a distinct spheroidal shape. While Eros and Itokawa are similar to ordinary chondrites, Bennu is likely related to carbonaceous chondrites, meteorites that record the history of volatiles and organic compounds in the early Solar System.We performed an extensive campaign to determine the properties of Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. Combining these data with cosmochemical and dynamical models yields a hypothetical timeline for Bennu’s formation and evolution. Bennu is an ancient object that has witnessed over 4.5 Gyr of Solar System history. Its chemistry and mineralogy were established within the first 10 Myr of the Solar System. It likely originated as a discrete asteroid in the main belt ~0.7 - 2 Gyr ago as a fragment from the catastrophic disruption of a large, carbonaceous asteroid. It was delivered to near-Earth space via a combination of Yarkovsky-induced drift and interaction with giant-planet resonances. During its journey, YORP processes and planetary encounters modified Bennu’s spin state, potentially reshaping and resurfacing the asteroid. Bennu is a Potentially Hazardous Asteroids with an ~1-in-2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner Solar System after a close encounter with Jupiter. OSIRIS-REx will return samples from this intriguing asteroid in September 2023.

  19. Hazards on Hazards, Ensuring Spacecraft Safety While Sampling Asteroid Surface Materials

    NASA Astrophysics Data System (ADS)

    Johnson, C. A.; DellaGiustina, D. N.

    2016-12-01

    The near-Earth object Bennu is a carbonaceous asteroid that is a remnant from the earliest stages of the solar-system formation. It is also a potentially hazardous asteroid with a relatively high probability of impacting Earth late in the 22nd century. While the primary focus of the NASA funded OSIRIS-REx mission is the return of pristine organic material from the asteroid's surface, information about Bennu's physical and chemical properties gleaned throughout operations will be critical for a possible future impact mitigation mission. In order to ensure a regolith sample can be successfully acquired, the sample site and surrounding area must be thoroughly assessed for any potential hazards to the spacecraft. The OSIRIS-REx Image Processing Working Group has been tasked with generating global and site-specific hazard maps using mosaics and a trio of fea­­­ture identification techniques. These techniques include expert-lead manual classification, internet-based amateur classification using the citizen science platform CosmoQuest, and automated classification using machine learning and computer vision tools. Because proximity operations around Bennu do not begin until the end of 2018, we have an opportunity to test t­­­he performance of our software on analogue surfaces of other asteroids from previous NASA and other space agencies missions. The entire pipeline from image processing and mosaicking to hazard identification, analysis and mapping will be performed on asteroids of varying size, shape and surface morphology. As a result, upon arrival at Bennu, we will have the software and processes in place to quickly and confidently produce the hazard maps needed to ensure the success of our mission.

  20. Initial Results on the Meteoritic Component of new Sediment Cores Containing Deposits of the Eltanin Impact Event

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Gersonde, Rainer; Kuhn, Gerhard

    2002-01-01

    The late Pliocene impact of the Eltanin asteroid is the only known asteroid impact in a deep- ocean (-5 km) basin . This was first discovered in 1981 as an Ir anomaly in sediment cores collected by the USNS Eltanin in 1965. In 1995, Polarstern expedition ANT XII/4 made the first geological survey of the suspected impact region. Three sediment cores sampled around the San Martin seamounts (approx. 57.5 S, 91 W) contained well-preserved impact deposits that include disturbed ocean sediments and meteoritic impact ejecta. The latter is composed of shock-melted asteroidal materials and unmelted meteorites. In 2001, the FS Polarstern returned to the impact area during expedition ANT XVIIU5a. At least 16 cores were recovered that contain ejecta deposits. These cores and geophysical data from the expedition can be used to map the effects of the impact over a region of about 80,000 square km. To date we have measured Ir concentrations in sediments from seven of the new cores and preliminary data should be available for a few more by the time of the meeting. Our initial interpretation of these data is that there is a region in the vicinity of the San Martin Seamounts comprising at least 20,000 square km in which the average amount of meteoritic material deposited was more than 1 g per square cm. This alone is enough material to support a 500 m asteroid. Beyond this is a region of about 60,000 square km, mostly to the north and west, where the amount of ejecta probably averages about 0.2 g per square cm. Another 400 km to the east, USNS Eltanin core E10-2 has about 0.05 g per square cm, so we know that ejecta probably occurs across more than a million square km of ocean floor. A key to future exploration of this impact is to find evidence of the ejecta at more sites distant from the seamounts. We currently have almost no data from regions to the west or south of the San Martin seamounts.

  1. Trajectory design for a rendezvous mission to Earth's Trojan asteroid 2010 TK7

    NASA Astrophysics Data System (ADS)

    Lei, Hanlun; Xu, Bo; Zhang, Lei

    2017-12-01

    In this paper a rendezvous mission to the Earth's Trojan asteroid 2010 TK7 is proposed, and preliminary transfer trajectories are designed. Due to the high inclination (∼ 20.9°) of the target asteroid relative to the ecliptic plane, direct transfers usually require large amounts of fuel consumption, which is beyond the capacity of current technology. As gravity assist technique could effectively change the inclination of spacecraft's trajectory, it is adopted to reduce the launch energy and rendezvous velocity maneuver. In practical computation, impulsive and low-thrust, gravity-assisted trajectories are considered. Among all the trajectories computed, the low-thrust gravity-assisted trajectory with Venus-Earth-Venus (V-E-V) swingby sequence performs the best in terms of propellant mass. For a spacecraft with initial mass of 800 kg , propellant mass of the best trajectory is 36.74 kg . Numerical results indicate that both the impulsive and low-thrust, gravity-assisted trajectories corresponding to V-E-V sequence could satisfy mission constraints, and can be applied to practical rendezvous mission.

  2. Implications from Near-Shoemaker Imaging of Eros for Small-Scale Structure and Surface Sampling

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.

    2000-01-01

    What we know about asteroids has always been bifurcated by the enormous gap between astronomical studies of small, distant bodies, and the close-up laboratory measurements of hand-sample sized meteorites. The gulf has been narrowed somewhat by improvements in Earth-based astronomical techniques (e.g. Hubble Space Telescope, radar, adaptive optics) and especially by spacecraft fly-bys of asteroids. But the Near Earth Asteroid Rendezvous (NEAR)-Shoemaker mission has gone considerably more in the direction of bridging the gap. Any consideration of intelligent sample-return from an asteroid must be based on the best possible knowledge of the asteroid at the spatial scales pertinent to operations at the asteroid and of the sample/s. Otherwise, we are in danger of succumbing to the 'Martian Horror Story' that Bruce Murray, in the 1960's, envisioned might impair our exploration of the surface of the red planet if we tried to land on it without first bolstering the information content of our database about Mars, especially at high resolutions. NEAR-Shoemaker is helping to bridge that gap in the case of Eros. The best resolution obtained by the Galileo spacecraft on Ida was 25 m/pixel. As of this writing, NEAR has already obtained images with resolutions at least five times better (information content 25 times better) and vastly better images may be available at the time of this Workshop from the late October low flyby. Already, we are seeing that the Martian horror story looks tame compared with Eros. Everywhere we have landed on Mars, the surface has been covered with rocks and boulders, with much higher spatial coverage than seen anywhere on the lunar surface. We have, in fact, been rather lucky that none of our Martian landers have tipped over so far, and there were justified fears in the early aftermath of last year's failure of Mars Polar Lander that it had suffered from inadequate high-resolution characterization of polar regions on Mars (the failure is now known to have had another cause). Eros looks potentially even more terrifying. Additional information is contained in the original extended abstract.

  3. Sensitivity of Asteroid Impact Risk to Uncertainty in Asteroid Properties and Entry Parameters

    NASA Astrophysics Data System (ADS)

    Wheeler, Lorien; Mathias, Donovan; Dotson, Jessie L.; NASA Asteroid Threat Assessment Project

    2017-10-01

    A central challenge in assessing the threat posed by asteroids striking Earth is the large amount of uncertainty inherent throughout all aspects of the problem. Many asteroid properties are not well characterized and can range widely from strong, dense, monolithic irons to loosely bound, highly porous rubble piles. Even for an object of known properties, the specific entry velocity, angle, and impact location can swing the potential consequence from no damage to causing millions of casualties. Due to the extreme rarity of large asteroid strikes, there are also large uncertainties in how different types of asteroids will interact with the atmosphere during entry, how readily they may break up or ablate, and how much surface damage will be caused by the resulting airbursts or impacts.In this work, we use our Probabilistic Asteroid Impact Risk (PAIR) model to investigate the sensitivity of asteroid impact damage to uncertainties in key asteroid properties, entry parameters, or modeling assumptions. The PAIR model combines physics-based analytic models of asteroid entry and damage in a probabilistic Monte Carlo framework to assess the risk posed by a wide range of potential impacts. The model samples from uncertainty distributions of asteroid properties and entry parameters to generate millions of specific impact cases, and models the atmospheric entry and damage for each case, including blast overpressure, thermal radiation, tsunami inundation, and global effects. To assess the risk sensitivity, we alternately fix and vary the different input parameters and compare the effect on the resulting range of damage produced. The goal of these studies is to help guide future efforts in asteroid characterization and model refinement by determining which properties most significantly affect the potential risk.

  4. A unique basaltic micrometeorite expands the inventory of solar system planetary crusts

    PubMed Central

    Gounelle, Matthieu; Chaussidon, Marc; Morbidelli, Alessandro; Barrat, Jean-Alix; Engrand, Cécile; Zolensky, Michael E.; McKeegan, Kevin D.

    2009-01-01

    Micrometeorites with diameter ≈100–200 μm dominate the flux of extraterrestrial matter on Earth. The vast majority of micrometeorites are chemically, mineralogically, and isotopically related to carbonaceous chondrites, which amount to only 2.5% of meteorite falls. Here, we report the discovery of the first basaltic micrometeorite (MM40). This micrometeorite is unlike any other basalt known in the solar system as revealed by isotopic data, mineral chemistry, and trace element abundances. The discovery of a new basaltic asteroidal surface expands the solar system inventory of planetary crusts and underlines the importance of micrometeorites for sampling the asteroids' surfaces in a way complementary to meteorites, mainly because they do not suffer dynamical biases as meteorites do. The parent asteroid of MM40 has undergone extensive metamorphism, which ended no earlier than 7.9 Myr after solar system formation. Numerical simulations of dust transport dynamics suggest that MM40 might originate from one of the recently discovered basaltic asteroids that are not members of the Vesta family. The ability to retrieve such a wealth of information from this tiny (a few micrograms) sample is auspicious some years before the launch of a Mars sample return mission. PMID:19366660

  5. Asteroid spectral reflectivities.

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Mccord, T. B.; Johnson, T. V.

    1973-01-01

    We measured spectral reflectivities (0.3-1.1 micron) for 32 asteroids. There are at least 14 different curve types. Common types are: (a) reddish curves with 10% absorptions near 0.95 micron or beyond 1.0 micron, due to Fe(2+) in minerals such as pyroxenes; (b) flat curves in the visible and near-IR with sharp decreases in the UV and (c) flat curves even into the UV. Several asteroids show probable color variations with rotation, especially 6 Hebe. A sample of 102 asteroids with reliably known colors is derived from the reflectivities and from earlier colorimetry. Several correlations of colors and spectral curve types with orbital and physical parameters are examined: (1) asteroids with large aphelia have flat reflectivities while those with small perihelia are mostly reddish, (2) curve types show evidence for clustering on an a vs e plot, with 0.95 micron bands occuring mainly for Mars-approaching asteroids, (3) no strong correlation exists between color and either proper eccentricity or proper inclination.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Q.-Z., E-mail: tom6740@gmail.com

    We present the results of BVRI photometry and classification of 53 unusual asteroids, including 35 near-Earth asteroids (NEAs), 6 high eccentricity/inclination asteroids, and 12 recently identified asteroid-pair candidates. Most of these asteroids were not classified prior to this work. For the few asteroids that have been previously studied, the results are generally in agreement. In addition to observing and classifying these objects, we merge the results from severalphotometric/spectroscopic surveys to create the largest-ever sample with 449 spectrally classified NEAs for statistical analysis. We identify a 'transition point' of the relative number of C/X-like and S-like NEAs at H {approx} 18more » {r_reversible} D {approx} 1 km with confidence level at {approx}95% or higher. We find that the C/X-like:S-like ratio for 18 {<=} H < 22 is about twice as high as that of H < 18 (0.33 {+-} 0.04 versus 0.17 {+-} 0.02), virtually supporting the hypothesis that smaller NEAs generally have less weathered surfaces (therefore less reddish appearance) due to younger collision ages.« less

  7. The Miniaturized Mossbauer Spectrometer MIMOS II for the Asteroid Redirect Mission (ARM): Quantitative Iron Mineralogy and Oxidation States

    NASA Technical Reports Server (NTRS)

    Schroder, Christian; Klingelhofer, Gostar; Morris, Richard V.; Yen, Albert S.; Renz, Franz; Graff, Trevor G.

    2016-01-01

    The miniaturized Mossbauer spectrometer MIMOS II is an off-the-shelf instrument, which has been successfully deployed during NASA's Mars Exploration Rover (MER) mission and was on-board the ESA/UK Beagle 2 Mars lander and the Russian Phobos-Grunt sample return mission. We propose to use a fully-qualified flight-spare MIMOS II instrument available from these missions for in situ asteroid characterization with the Asteroid Redirect Robotic Mission (ARRM).

  8. Surface Exposure Ages of Space-Weathered Grains from Asteroid 25143 Itokawa

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.; Christoffersen, R.

    2015-01-01

    Space weathering processes such as solar wind ion irradiation and micrometeorite impacts are widely known to alter the properties of regolith materials exposed on airless bodies. The rates of space weathering processes however, are poorly constrained for asteroid regoliths, with recent estimates ranging over many orders of magnitude. The return of surface samples by JAXA's Hayabusa mission to asteroid 25143 Itokawa, and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering processes on airless bodies.

  9. DEEP-South: Preliminary Lightcurves of Potentially Hazardous Asteroids from the First Year Operation

    NASA Astrophysics Data System (ADS)

    Moon, Hong-Kyu; Kim, Myung-Jin; Choi, Young-Jun; Yim, Hong-Suh; Park, Jintae; Roh, Dong-Goo; Lee, Hee-Jae; Oh, Young-Seok; Bae, Young-Ho

    2016-10-01

    Deep Ecliptic Patrol of the Southern Sky (DEEP-South) observation is being made during the off-season for exoplanet search. It started in October 2015, using Korea Microlensing Telescope Network (KMTNet), a network of three identical telescopes with 1.6 m aperture equipped with 18K × 18K CCDs located in Chile (CTIO), South Africa (SAAO), and Australia (SSO). The combination of KMTNet's prime focus optics and the 340 million pixel CCD provides four square degree field of view with 0.4 arcsec/pixel plate scale.Most of the allocated time for DEEP-South is devoted to targeted photometry of PHAs and NEAs to increase the number of those objects with known physical properties. It is efficiently achieved by multiband, time series photometry. This Opposition Census (OC) mode targets objects near their opposition, with km-sized PHAs in early stage and goes down to sub-km objects. Continuous monitoring of the sky with KMTNEt is optimized for spin characterization of various kinds of asteroids, including binaries, slow/fast- and non-principal axis- rotators, and hence expected to facilitate the debiasing of previously reported lightcurve observations. We present the preliminary lightcurves of PHAs from year one of the DEEP-South Project.

  10. The Miniaturized Moessbauer Spectrometer MIMOS II for the Asteroid Redirect Mission(ARM): Quantative Iron Mineralogy And Oxidation States

    NASA Technical Reports Server (NTRS)

    Schroeder, C.; Klingelhoefer, G; Morris, R. V.; Yen, A. S.; Renz, F.; Graff, T. G.

    2016-01-01

    The miniaturized Moessbauer spectrometer MIMOS II is an off-the-shelf instrument with proven flight heritage. It has been successfully deployed during NASA’s Mars Exploration Rover (MER) mission and was on-board the UK-led Beagle 2 Mars lander and the Russian Phobos-Grunt sample return mission. A Moessbauer spectrometer has been suggested for ASTEX, a DLR Near-Earth Asteroid (NEA) mission study, and the potential payload to be hosted by the Asteroid Redirect Mission (ARM). Here we make the case for in situ asteroid characterization with Moessbauer spectroscopy on the ARM employing one of three available fully-qualified flight-spare Moessbauer instruments.

  11. Insights into Regolith Dynamics from the Irradiation Record Preserved in Hayabusa Samples

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Berger, E. L.

    2014-01-01

    The rates of space weathering processes are poorly constrained for asteroid surfaces, with recent estimates ranging over 5 orders of magnitude. The return of the first surface samples from a space-weathered asteroid by the Hayabusa mission and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering. We determine the rates of space weathering on Itokawa by measuring solar flare track densities and the widths of solar wind damaged rims on grains. These measurements are made possible through novel focused ion beam (FIB) sample preparation methods.

  12. 77 FR 3102 - Procedures for Implementing the National Environmental Policy Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... from solar system bodies (such as asteroids, comets, planets, dwarf planets, and planetary moons.../program which would return samples to Earth from solar system bodies (such as asteroids, comets, planets, dwarf planets, and planetary moons), which would likely receive a Restricted Earth Return categorization...

  13. Strategy for Ranking the Science Value of the Surface of Asteroid 101955 Bennu for Sample Site Selection for Osiris-REx

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Connolly, H. C., Jr.; Lauretta, D. S.

    2014-01-01

    OSRIS-REx is NASA's New Frontiers 3 sample return mission that will return at least 60 g of pristine surface material from near-Earth asteroid 101955 Bennu in September 2023. The scientific value of the sample increases enormously with the amount of knowledge captured about the geological context from which the sample is collected. The OSIRIS-REx spacecraft is highly maneuverable and capable of investigating the surface of Bennu at scales down to the sub-cm. The OSIRIS-REx instruments will characterize the overall surface geology including spectral properties, microtexture, and geochemistry of the regolith at the sampling site in exquisite detail for up to 505 days after encountering Bennu in August 2018. The mission requires at the very minimum one acceptable location on the asteroid where a touch-and-go (TAG) sample collection maneuver can be successfully per-formed. Sample site selection requires that the follow-ing maps be produced: Safety, Deliverability, Sampleability, and finally Science Value. If areas on the surface are designated as safe, navigation can fly to them, and they have ingestible regolith, then the scientific value of one site over another will guide site selection.

  14. Hungaria asteroid region telescopic spectral survey (HARTSS) I: Stony asteroids abundant in the Hungaria background population

    NASA Astrophysics Data System (ADS)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2017-07-01

    The Hungaria asteroids remain as survivors of late giant planet migration that destabilized a now extinct inner portion of the primordial asteroid belt and left in its wake the current resonance structure of the Main Belt. In this scenario, the Hungaria region represents a ;purgatory; for the closest, preserved samples of the asteroidal material from which the terrestrial planets accreted. Deciphering the surface composition of these unique samples may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) reflectance spectra in order to characterize their taxonomy, surface mineralogy, and potential meteorite analogs. The overall objective of HARTSS is to evaluate the compositional diversity of asteroids located throughout the Hungaria region. This region harbors a collisional family of Xe-type asteroids, which are situated among a background (i.e., non-family) of predominantly S-complex asteroids. In order to assess the compositional diversity of the Hungaria region, we have targeted background objects during Phase I of HARTSS. Collisional family members likely reflect the composition of one original homogeneous parent body, so we have largely avoided them in this phase. We have employed NIR instruments at two ground-based telescope facilities: the NASA Infrared Telescope Facility (IRTF), and the Telescopio Nazionale Galileo (TNG). Our data set includes the NIR spectra of 42 Hungaria asteroids (36 background; 6 family). We find that stony S-complex asteroids dominate the Hungaria background population (29/36 objects; ∼80%). C-complex asteroids are uncommon (2/42; ∼5%) within the Hungaria region. Background S-complex objects exhibit considerable spectral diversity as band parameter measurements of diagnostic absorption features near 1- and 2-μm indicate that several different S-subtypes are represented therein, which translates to a variety of surface compositions. We identify the Gaffey S-subtype (Gaffey et al. [1993]. Icarus 106, 573-602) and potential meteorite analogs for 24 of these S-complex background asteroids. Additionally, we estimate the olivine and orthopyroxene mineralogy for 18 of these objects using spectral band parameter analysis established from laboratory-based studies of ordinary chondrite meteorites. Nine of the asteroids have band parameters that are not consistent with ordinary chondrites. We compared these to the band parameters measured from laboratory VIS+NIR spectra of six primitive achondrite (acapulcoite-lodranite) meteorites. These comparisons suggest that two main meteorite groups are represented among the Hungaria background asteroids: unmelted, nebular L- (and possibly LL-ordinary chondrites), and partially-melted primitive achondrites of the acapulcoite-lodranite meteorite clan. Our results suggest a source region for L chondrite like material from within the Hungarias, with delivery to Earth via leakage from the inner boundary of the Hungaria region. H chondrite like mineralogies appear to be absent from the Hungaria background asteroids. We therefore conclude that the Hungaria region is not a source for H chondrite meteorites. Seven Hungaria background asteroids have spectral band parameters consistent with partially-melted primitive achondrites, but the probable source region of the acapulcoite-lodranite parent body remains inconclusive. If the proposed connection with the Hungaria family to fully-melted enstatite achondrite meteorites (i.e., aubrites) is accurate (Gaffey et al. [1992]. Icarus 100, 95-109; Kelley and Gaffey [2002]. Meteorit. Planet. Sci. 37, 1815-1827), then asteroids in the Hungaria region exhibit a full range of petrologic evolution: from nebular, unmelted ordinary chondrites, through partially-melted primitive achondrites, to fully-melted igneous aubrite meteorites.

  15. Mapping the Solar System with LSST

    NASA Astrophysics Data System (ADS)

    Ivezic, Z.; Juric, M.; Lupton, R.; Connolly, A.; Kubica, J.; Moore, A.; Harris, A.; Bowell, T.; Bernstein, G.; Stubbs, C.; LSST Collaboration

    2004-12-01

    The currently considered LSST cadence, based on two 10 sec exposures, may result in orbital parameters, light curves and accurate colors for over a million main-belt asteroids (MBA), and about 20,000 trans-Neptunian objects (TNO). Compared to the current state-of-the-art, this sample would represent a factor of 5 increase in the number of MBAs with known orbits, a factor of 20 increase in the number of MBAs with known orbits and accurate color measurements, and a factor of 100 increase in the number of MBAs with measured variability properties. The corresponding sample increase for TNOs is 10, 100, and 1000, respectively. The LSST MBA and TNO samples will enable detailed studies of the dynamical and chemical history of the solar system. For example, they will constrain the MBA size distribution for objects larger than 100 m, and TNO size distribution for objects larger than 100 km, their physical state through variability measurements (solid body vs. a rubble pile), as well as their surface chemistry through color measurements. A proposed deep TNO survey, based on 1 hour exposures, may result in a sample of about 100,000 TNOs, while spending only 10% of the LSST observing time. Such a deep TNO survey would be capable of discovering Sedna-like objects at distances beyond 150 AU, thereby increasing the observable Solar System volume by about a factor of 7. The increase in data volume associated with LSST asteroid science will present many computational challenges to how we might extract tracks and orbits of asteroids from the underlying clutter. Tree-based algorithms for multihypothesis testing of asteroid tracks can help solve these challenges by providing the necessary 1000-fold speed-ups over current approaches while recovering 95% of the underlying asteroid populations.

  16. Astrometric Research of Asteroidal Satellites

    NASA Astrophysics Data System (ADS)

    Kikwaya, J.-B.; Thuillot, W.; Rocher, P.; Vieira Martins, R.; Arlot, J.-E.; Angeli, Cl.

    2002-09-01

    Several observational methods have been applied in order to detect asteroidal satellites. Some of them were rather successful, such as the stellar occultations and mutual eclipse methods. Recently other techniques such as the space imaging, the adaptive optics and the radar imaging inferred a great improvement in the search for these objects. However several limitations appear in the type of data that each of them allow us to access. We propose to apply an astrometric method in order as well to detect new asteroidal satellites as to get complementary data of some already detected objects (mainly their orbital period). This method is founded on the search of the reflex effect of the primary object due to the orbital motion of a possible satellite. Such an astrometric signature, already searched by Monet & Monet (1998), may reach several tens of MAS. Only a spectral analysis could then detect this signal under good conditions of signal/noise ratio and thanks to high quality astrometric measurements and coverage by different sites of observation. We have applied such a method for several asteroids. A preliminary result is obtained thanks to 377 CCD observations of 146 Lucina made at the Haute-Provence Observatory in South of France. A periodical signal appears in this analysis, leading to data compatible with a first detection of a probable satellite made previously (Arlot et al. 1985) by the occultation method.

  17. Thermal Emission Spectroscopy (5.2 To 38 Microns) And Analysis Of 10 Near-earth Asteroids

    NASA Astrophysics Data System (ADS)

    Dave, Riddhi; Emery, J.; Cruikshank, D.; Mueller, M.; Delbo, M.; Trilling, D. E.; Mommert, M.

    2010-10-01

    Near Earth Asteroids (NEAs- 0.983AU

  18. Shape and spin determination of Barbarian asteroids

    NASA Astrophysics Data System (ADS)

    Devogèle, M.; Tanga, P.; Bendjoya, P.; Rivet, J. P.; Surdej, J.; Hanuš, J.; Abe, L.; Antonini, P.; Artola, R. A.; Audejean, M.; Behrend, R.; Berski, F.; Bosch, J. G.; Bronikowska, M.; Carbognani, A.; Char, F.; Kim, M.-J.; Choi, Y.-J.; Colazo, C. A.; Coloma, J.; Coward, D.; Durkee, R.; Erece, O.; Forne, E.; Hickson, P.; Hirsch, R.; Horbowicz, J.; Kamiński, K.; Kankiewicz, P.; Kaplan, M.; Kwiatkowski, T.; Konstanciak, I.; Kruszewki, A.; Kudak, V.; Manzini, F.; Moon, H.-K.; Marciniak, A.; Murawiecka, M.; Nadolny, J.; Ogłoza, W.; Ortiz, J. L.; Oszkiewicz, D.; Pallares, H.; Peixinho, N.; Poncy, R.; Reyes, F.; de los Reyes, J. A.; Santana-Ros, T.; Sobkowiak, K.; Pastor, S.; Pilcher, F.; Quiñones, M. C.; Trela, P.; Vernet, D.

    2017-11-01

    Context. The so-called Barbarian asteroids share peculiar, but common polarimetric properties, probably related to both their shape and composition. They are named after (234) Barbara, the first on which such properties were identified. As has been suggested, large scale topographic features could play a role in the polarimetric response, if the shapes of Barbarians are particularly irregular and present a variety of scattering/incidence angles. This idea is supported by the shape of (234) Barbara, that appears to be deeply excavated by wide concave areas revealed by photometry and stellar occultations. Aims: With these motivations, we started an observation campaign to characterise the shape and rotation properties of Small Main-Belt Asteroid Spectroscopic Survey (SMASS) type L and Ld asteroids. As many of them show long rotation periods, we activated a worldwide network of observers to obtain a dense temporal coverage. Methods: We used light-curve inversion technique in order to determine the sidereal rotation periods of 15 asteroids and the convergence to a stable shape and pole coordinates for 8 of them. By using available data from occultations, we are able to scale some shapes to an absolute size. We also study the rotation periods of our sample looking for confirmation of the suspected abundance of asteroids with long rotation periods. Results: Our results show that the shape models of our sample do not seem to have peculiar properties with respect to asteroids with similar size, while an excess of slow rotators is most probably confirmed. The light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A119

  19. Star Observations by Asteroid Multiband Imaging Camera (AMICA) on Hayabusa (MUSES-C) Cruising Phase

    NASA Astrophysics Data System (ADS)

    Saito, J.; Hashimoto, T.; Kubota, T.; Hayabusa AMICA Team

    Muses-C is the first Japanese asteroid mission and also a technology demonstration one to the S-type asteroid, 25143 Itokawa (1998SF36). It was launched at May 9, 2003, and renamed Hayabusa after the spacecraft was confirmed to be on the interplanetary orbit. This spacecraft has the event of the Earth-swingby for gravitational assist in the way to Itokawa on 2004 May. The arrival to Itokawa is scheduled on 2005 summer. During the visit to Itokawa, the remote-sensing observation with AMICA, NIRS (Near Infrared Spectrometer), XRS (X-ray Fluorescence Spectrometer), and LIDAR are performed, and the spacecraft descends and collects the surface samples at the touch down to the surface. The captured asteroid sample will be returned to the Earth in the middle of 2007. The telescopic optical navigation camera (ONC-T) with seven bandpass filters (and one wide-band filter) and polarizers is called AMICA (Asteroid Multiband Imaging CAmera) when ONC-T is used for scientific observations. The AMICA's seven bandpass filters are nearly equivalent to the seven filters of the ECAS (Eight Color Asteroid Survey) system. Obtained spectroscopic data will be compared with previously obtained ECAS observations. AMICA also has four polarizers, which are located on one edge of the CCD chip (covering 1.1 x 1.1 degrees each). Using the polarizers of AMICA, we can obtain polarimetric information of the target asteroid's surface. Since last November, we planned the test observations of some stars and planets by AMICA and could successfully obtain these images. Here, we briefly report these observations and its calibration by the ground-based observational data. In addition, we also present a current status of AMICA.

  20. Candidate Binary Trojan and Hilda Asteroids from Rotational Light Curves

    NASA Astrophysics Data System (ADS)

    Sonnett, Sarah M.; Mainzer, Amy K.; Grav, Tommy; Masiero, Joseph R.; Bauer, James M.; Kramer, Emily A.

    2017-10-01

    Jovian Trojans (hereafter, Trojans) are asteroids in stable orbits at Jupiter's L4 and L5 Lagrange points, and Hilda asteroids are inwards of the Trojans in 3:2 mean-motion resonance with Jupiter. Due to their special dynamical properties, observationally constraining the formation location and dynamical histories of Trojans and HIldas offers key input for giant planet migration models. A fundamental parameter in assessing formation location is the bulk density - with low-density objects associated with an ice-rich formation environment in the outer solar system and high-density objects typically linked to the warmer inner solar system. Bulk density can only be directly measured during a close fly-by or by determining the mutual orbits of binary asteroid systems. With the aim of determining densities for a statistically significant sample of Trojans and Hildas, we are undertaking an observational campaign to confirm and characterize candidate binary asteroids published in Sonnett et al. (2015). These objects were flagged as binary candidates because their large NEOWISE brightness variations imply shapes so elongated that they are not likely explained by a singular equilibrium rubble pile and instead may be two elongated, gravitationally bound asteroids. We are obtaining densely sampled rotational light curves of these possible binaries to search for light curve features diagnostic of binarity and to determine the orbital properties of any confirmed binary systems by modeling the light curve. We compare the We present an update on this follow-up campaign and comment on future steps.

  1. Spectral evidence of size dependent space weathering processes on asteroid surfaces

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.; Bell, J. F.; Brown, R. H.; Burbine, T. H.; Piatek, J. L.; Reed, K. L.; Chaky, D. A.

    1993-01-01

    Most compositional characterizations of the minor planets are derived from analysis of visible and near-infrared reflectance spectra. However, such spectra are derived from light which has only interacted with a very thin surface layer. Although regolith processes are assumed to mix all near-surface lithologic units into this layer, it has been proposed that space weathering processes can alter this surface layer to obscure the spectral signature of the bedrock lithology. It has been proposed that these spectral alteration processes are much less pronounced on asteroid surfaces than on the lunar surface, but the possibility of major spectral alteration of asteroidal optical surfaces has been invoked to reconcile S-asteroids with ordinary chondrites. The reflectance spectra of a large subset of the S-asteroid population have been analyzed in a systematic investigation of the mineralogical diversity within the S-class. In this sample, absorption band depth is a strong function of asteroid diameter. The S-asteroid band depths are relatively constant for objects larger than 100 km and increase linearly by factor of two toward smaller sizes (approximately 40 km). Although the S-asteroid surface materials includes a diverse variety of silicate assemblages, ranging from dunites to basalts, all compositional subtypes of the S-asteroids conform to this trend. The A-, R-, and V-type asteroids which are primarily silicate assemblages (as opposed to the metal-silicate mixtures of most S-asteroids) follow a parallel but displaced trend. Some sort of textural or regolith equilibrium appears to have been attained in the optical surfaces of asteroids larger than about 100 km diameter but not on bodies below this size. The relationships between absorption band depth, spectral slope, surface albedo and body size provide an intriguing insight into the nature of the optical surfaces of the S-asteroids and space weathering on these objects.

  2. OSIRIS-REx Orbit Determination Covariance Studies at Bennu

    NASA Technical Reports Server (NTRS)

    Antreasian, P. G.; Moreau, M.; Jackman, C.; Williams, K.; Page, B.; Leonard, J. M.

    2016-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the small, Earth-crossing asteroid (101955) Bennu in late 2018, and ultimately return a sample of regolith to Earth. Approximately 3 months before the encounter with Bennu, the asteroid finally becomes detectable in the narrow field PolyCam imager. The spacecraft's rendezvous with Bennu begins with a series of four Asteroid Approach Maneuvers, which slow the spacecraft's speed relative to Bennu beginning two and a half months prior to closest approach, ultimately delivering the spacecraft to a point 18 km from Bennu on Nov 18, 2018. An extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site will follow. This paper will discuss the challenges of navigating near a small 500-m diameter asteroid. The navigation at close proximity is dependent on the accurate mathematical model or digital terrain map of the asteroids shape. Predictions of the spacecraft state are very sensitive to spacecraft small forces, solar radiation pressure, and mis-modeling of Bennu's gravity field. Uncertainties in the physical parameters of the central body Bennu create additional challenges. The navigation errors are discussed and their impact on science planning will be presented.

  3. OSIRIS-REx Orbit Determination Covariance Studies at Bennu

    NASA Technical Reports Server (NTRS)

    Antreasian, P. G.; Moreau, M.; Jackman, C.; Williams, K.; Page, B.; Leonard, J. M.

    2016-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the small, Earth-crossing asteroid (101955) Bennu in late 2018, ultimately returning a sample of regolith to Earth. Approximately three months before the encounter with Bennu, the asteroid becomes detectable in the narrow field PolyCam imager. The spacecraft's rendezvous with Bennu begins with a series of four Asteroid Approach Maneuvers, slowing the spacecraft's speed relative to Bennu beginning two and a half months prior to closest approach, ultimately delivering the spacecraft to a point 18 km from Bennu in Nov, 2018. An extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site will follow. This paper will discuss the challenges of navigating near a small 500-m diameter asteroid. The navigation at close proximity is dependent on the accurate mathematical model or digital terrain map of the asteroid's shape. Predictions of the spacecraft state are very sensitive to spacecraft small forces, solar radiation pressure, and mis-modeling of Bennu's gravity field. Uncertainties in the physical parameters of the central body Bennu create additional challenges. The navigation errors are discussed and their impact on science planning will be presented.

  4. Thermal-infrared imager TIR on Hayabusa2: Result of ground calibration

    NASA Astrophysics Data System (ADS)

    Okada, T.; Fukuhara, T.; Tanaka, S.; Taguchi, M.; Arai, T.; Imamura, T.; Senshu, H.; Sekiguchi, T.; Ogawa, Y.; Demura, H.; Sakatani, N.; Horikawa, Y.; Helbert, J.; Mueller, T.; Hagermann, A.; H. TIR-Team

    2014-07-01

    Thermal-infrared imager TIR on Hayabusa2 will image C-class NEA (162173)1999JU3 in 8-12 micrometer band. TIR observation is not only for scientific investigation of asteroid thermo-physical properties, but also for assessment of landing site selection and safety descent operation. Hayabusa2 is the follow-on mission after Hayabusa that accomplished the first asteroid sample-return in 2010. Hayabusa2 is primarily an asteroid sample-return mission, but remote sensing of the asteroid is also essential to understand the global nature of asteroid, complementary to returned samples. Active impact experiment using SCI (Small Carry-on Impactor) and surface measurements using MASCOT lander which carries camera, NIR imaging microscope, radiator, and magnetometer, as well as hopping rover MINERVA are also planned in this mission. A thermal-infrared imager is to image the surface temperature profile and its temporal variation by asteroid rotation. TIR adopts a non- cooled bolometer array NEC 320A with 328×248 effective pixels. Its fields of view covers 16°×12° with 0.05° per pixel. The image can be taken at 60 Hz, and summation onboard can be set from 1 to 128 to improve signal-to-background ratio. The imaging is interlaced with the shutter open and close. The subtraction of shutter-close image (bias data) from shutter-open image (biased image) produces the realistic thermal images. To improve more accurate data in radiation intensity, those realistic thermal images can be summed by onboard software. Data compression is also conducted by onboard software[1]. TIR is based on LIR on Akatsuki Venus climate orbiter [2]. We know something about C-type meteorites but little about C-class asteroids. We know little about asteroid 1999JU3 but it is considered as something like low-dense and huge-cratered as asteroid 253 Mathilde, or like rubble-piled, sedimented small asteroid 25143 Itokawa. To investigate the nature of asteroid and its formation processes, thermo-physical properties of boulders or materials inside huge crates are important targets to observe. Evident thermal measurements are conducted to compare them with thermal model for ground observation, and to investigate Yarkovsky or YORP effects. If the orbiting satellites or dust clouds exist at the surroundings, asteroid mass or dust properties will be determined. Cooperative observation with radiometer on MASCOT is also important to determine the thermo-physical properties precisely. We conducted radiometric and geometric calibration for TIR. We use the cavity black-body and oil-bath based black-body plates for calibration at higher temperature from 25 to 150 °C. We also use the black-body plate inside the vacuum chamber for lower temperature from -40 to +50 °C. Both of appratuses share the temperature region from 25 to 50 °C. For geometrical correction, collimator is used measure the square-shaped target. For cross-calibration, the same targets are used for other instruments: 30 cm diameter serpentine target plate with heater is shared with MARA radiometer on MASCOT, and the same meteorite samples (Murchison CM2 meteorites, Murray CM2 meteorites) are shared with NIRS3 spectrometer and ONC camera. The landscape and the walls of test sites were imaged for demonstration. TIR is able to measure the surface temperature from -40 to 150 °C at the central region of images (a little wider range but less resolution at non-central region). The absolute temperature is less than 2 °C, and the resolution (NETD) is less than 0.3 °C for most of conditions. TIR is well calibrated thermal-infrared imager to take thermal images of asteroid and investigate its thermo-physical properties. This type of instruments will be used in other future missions for scientific and operational purposes.

  5. Uninterrupted optical light curves of main-belt asteroids from the K2 mission

    NASA Astrophysics Data System (ADS)

    Szabó, R.; Pál, A.; Sárneczky, K.; Szabó, Gy. M.; Molnár, L.; Kiss, L. L.; Hanyecz, O.; Plachy, E.; Kiss, Cs.

    2016-11-01

    Context. Because the second reaction wheel failed, a new mission was conceived for the otherwise healthy Kepler space telescope. In the course of the K2 mission, the telescope is staring at the plane of the Ecliptic. Thousands of solar system bodies therefore cross the K2 fields and usually cause additional noise in the highly accurate photometric data. Aims: We here follow the principle that some person's noise is another person's signal and investigate the possibility of deriving continuous asteroid light curves. This is the first such endeavor. In general, we are interested in the photometric precision that the K2 mission can deliver on moving solar system bodies. In particular, we investigate space photometric optical light curves of main-belt asteroids. Methods: We studied the K2 superstamps that cover the fields of M35, and Neptune together with Nereid, which were observed in the long-cadence mode (29.4 min sampling). Asteroid light curves were generated by applying elongated apertures. We used the Lomb-Scargle method to determine periodicities that are due to rotation. Results: We derived K2 light curves of 924 main-belt asteroids in the M35 field and 96 in the path of Neptune and Nereid. The light curves are quasi-continuous and several days long. K2 observations are sensitive to longer rotational periods than typical ground-based surveys. Rotational periods are derived for 26 main-belt asteroids for the first time. The asteroid sample is dominated by faint objects (>20 mag). Owing to the faintness of the asteroids and the high density of stars in the M35 field, only 4.0% of the asteroids with at least 12 data points show clear periodicities or trends that signal a long rotational period, as opposed to 15.9% in the less crowded Neptune field. We found that the duty cycle of the observations had to reach 60% to successfully recover rotational periods. Full Tables 1-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A40

  6. The Near-Earth Encounter of Asteroid 308635 (2005 YU55): Thermal IR Observations

    NASA Astrophysics Data System (ADS)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.; Busch, M. W.; Yang, B.; Granvik, M.

    2012-10-01

    The near-Earth approach (0.00217 AU, or 0.845 lunar distances) of the C-type asteroid 308635 (2005 YU55) in November 2011 presented a rare opportunity for detailed observations of a low-albedo NEA in this size range. As part of a multi-telescope campaign to measure visible and infrared spectra and photometry, we obtained mid-infrared ( 8 to 22 micron) photometry and spectroscopy of 2005 YU55 using Michelle [1] on the Gemini North telescope on UT November 9 and 10, 2011. An extensive radar campaign [2] together with optical lightcurves [3,4] established the rotation state of YU55. In addition, the radar imaging resulted in a shape model for the asteroid, detection of numerous boulders on its surface, and a preliminary estimate of its equatorial diameter at 380 +/- 20 m. In a preliminary analysis, applying the radar and lightcurve-derived parameters to a rough-surface thermophysical model fit to the Gemini/Michelle thermal emission photometry results in a thermal inertia range of approximately 500 to 1500 J m-2 s-1/2 K-1, with the low-thermal-inertia solution corresponding to the small end of the radar size range and vice versa. Updates to these results will be presented and modeling of the thermal contribution to the measured near-infrared spectra from Palomar/Triplespec and IRTF/SpeX will also be discussed. The authors gratefully acknowledge the assistance of observatory staff and the support of the NASA NEOO program (LFL and JPE), the Carnegie fellowship (NAM), and NASA AES, NSF, and the NRAO Jansky Fellowship (MWB). [1] De Buizer, J. and R. Fisher, Proc. Hris (2005), pp. 84-87. [2] Busch, M.W. et al., ACM (2012), abstract #6179. [3] Warner, B., MPBull 39 (2), 84 [4] Pravec, P.

  7. The OSIRIS-REx Sample Return Mission from Asteroid Bennu

    NASA Astrophysics Data System (ADS)

    Lauretta, Dante; Clark, Benton

    2016-07-01

    The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security‒Regolith Explorer (OSIRIS-REx) mission is to return and analyze a sample of pristine regolith from asteroid 101955 Bennu, a primitive carbonaceous asteroid and also a potentially hazardous near-Earth object. Returned samples are expected to contain primitive ancient Solar System materials formed in planetary, nebular, interstellar, and circumstellar environments. In addition, the OSIRIS-REx mission will obtain valuable information on sample context by imaging the sample site; characterize its global geology; map global chemistry and mineralogy; investigate dynamic history by measuring the Yarkovsky effect; and advance asteroid astronomy by characterizing surface properties for direct comparison with ground-based telescopic observations of the entire asteroid population. Following launch in September 2016, the spacecraft will encounter Bennu in August 2018, then embark on a systematic study of geophysical and morphological characteristics of this ~500-meter-diameter object, including a systematic search for satellites and plumes. For determination of context, composition, and sampleability of various candidate sites, advanced instruments for remote global observations include OVIRS (visible to mid-IR spectrometric mapper), OTES (mid- to far-IR mineral and thermal emission mapper), OLA (mapping laser altimeter), and a suite of scientific cameras (OCAMS) with sub-cm pixel size from low-altitude Reconnaissance passes. A unique sample acquisition mechanism (SAM) capable of collecting up to one liter of regolith under ideal conditions (abundant small particulates < 2 cm) is expected to obtain at least 60 g of bulk regolith as well as surface grains on contact pads for analysis upon return to Earth. Using touch-and-go (TAG), a few seconds of contact is adequate for the gas-driven collection technique to acquire sample. This TAGSAM system has been developed and extensively tested in ground tests, and also on reduced-gravity airplane flights, to evaluate collection efficiency for various surfaces. Special cleaning techniques and contamination monitoring with in-flight witness plates are employed to assure a pristine sample. In September 2023, the entire TAGSAM end-effector stowed inside a Stardust-heritage Sample Return Capsule (SRC) will land on the Utah Test and Training Range (UTTR). The samples will then be transported to the NASA Johnson Space Center (JSC) curatorial facility for analysis and distribution to laboratories worldwide.

  8. Japanese Exploration to Solar System Small Bodies: Rewriting a Planetary Formation Theory with Astromaterial Connection (Invited)

    NASA Astrophysics Data System (ADS)

    Yano, H.

    2013-12-01

    Three decades ago, Japan's deep space exploration started with Sakigake and Suisei, twin flyby probes to P/Halley. Since then, the Solar System small bodies have been one of focused destinations to the Japanese solar system studies even today. Only one year after the Halley armada launch, the very first meeting was held for an asteroid sample return mission at ISAS, which after 25 years, materialized as the successful Earth return of Hayabusa , an engineering verification mission for sample return from surfaces of an NEO for the first time in the history. Launched in 2003 and returned in 2010, Hayabusa became the first to visit a sub-km, rubble-pile potentially hazardous asteroid in near Earth space. Its returned samples solved S-type asteroid - ordinary chondrite paradox by proving space weathering evidences in sub-micron scale. Between the Halley missions and Hayabusa, SOCCER concept by M-V rocket was jointly studied between ISAS and NASA; yet it was not realized due to insufficient delta-V for intact capture by decelerating flyby/encounter velocity to a cometary coma. The SOCCER later became reality as Stardust, NASA Discovery mission for cometary coma dust sample return in1999-2006. Japan has collected the second largest collection of the Antarctic meteorites and micrometeorites of the world and asteromaterial scientists are eager to collaborate with space missions. Also Japan enjoyed a long history of collaborations between professional astronomers and high-end amateur observers in the area of observational studies of asteroids, comets and meteors. Having these academic foundations, Japan has an emphasis on programmatic approach to sample returns of Solar System small bodies in future prospects. The immediate follow-on to Hayabusa is Hayabusa-2 mission to sample return with an artificial impactor from 1999 JU3, a C-type NEO in 2014-2020. Following successful demonstration of deep space solar sail technique by IKAROS in 2010-2013, the solar power sail is a deep space probe with hybrid propulsion of solar photon sail and ion engine system that will enable Japan to reach out deep interplanetary space beyond the main asteroid belt. Since 2002, Japanese scientists and engineers have been investigating the solar power sail mission to Jupiter Trojans and interdisciplinary cruising science, such as infrared observation of zodiacal light due to cosmic dust, which at the same time hit a large cross section of the solar sail membrane dust detector, concentrating inside the main asteroid belt. Now the mission design has extended from cruising and fly-by only to rendezvous and sample return options from Jupiter Trojan asteroids. Major scientific goal of Jupiter Trojan exploration is to constrain its origin between two competing hypothesis such as remnants of building blocks the Jovian system as the classic model and the second generation captured EKBOs as the planetary migration models, in which several theories are in deep discussion. Also important is to better understand mixing process of material and structure of the early Solar System just beyond snow line. The current plan involves its launch and both solar photon and IES accelerations combined with Earth and Jupiter gravity assists in 2020's, detailed rendezvous investigation of a few 10-km sized D-type asteroid among Jupiter Trojans in early 2030's and an optional sample return of its surface materials to the Earth in late 2030's.

  9. Silicate Phases on the Surfaces of Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.

    2017-10-01

    Determining the origin of asteroids provides an effective means of constraining the solar system’s dynamic past. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the amount of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and are spectrally featureless in the near infrared. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 μm region exhibits strong features due to the Si-O fundamental molecular vibrations. Silicates that formed in the inner solar system likely underwent thermal annealing, and thus are crystalline, whereas silicates that accreted in the outer solar system experienced less thermal processing, and therefore are more likely to have remained in an amorphous phase. We hypothesize that the Trojans formed in the outer solar system (i.e., the Kuiper Belt), and therefore will have a more dominant amorphous spectral silicate component. With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 μm feature with sharp cutoffs between about 9 μm and 12 μm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Preliminary results indicate that the surfaces of analyzed Trojans contain primarily amorphous silicates. Emissivity spectra of asteroids 1986 WD and 4709 Ennomos include small peaks in the 10 μm region, diagnostic of small amounts of crystalline olivine. One explanation is that Trojans formed in the same region as Kuiper Belt objects, and when giant planet migration ensued, they were swept into Jupiter’s stable Lagrange points where they are found today. As such, it is possible that an ancestral group of Kuiper Belt objects were separated from Trojans during large planet migration.

  10. Preliminary Design Considerations for Access and Operations in Earth-Moon L1/L2 Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Pavlak, Thomas A.; Haapala, Amanda F.; Howell, Kathleen C.

    2013-01-01

    Within the context of manned spaceflight activities, Earth-Moon libration point orbits could support lunar surface operations and serve as staging areas for future missions to near-Earth asteroids and Mars. This investigation examines preliminary design considerations including Earth-Moon L1/L2 libration point orbit selection, transfers, and stationkeeping costs associated with maintaining a spacecraft in the vicinity of L1 or L2 for a specified duration. Existing tools in multi-body trajectory design, dynamical systems theory, and orbit maintenance are leveraged in this analysis to explore end-to-end concepts for manned missions to Earth-Moon libration points.

  11. Mineralogy of dark asteroids: Detection of phyllosilicate features in the mid-infrared

    NASA Astrophysics Data System (ADS)

    McAdam, Margaret; Sunshine , Jessica Sunshine M.; Kelley, Michael S.

    2014-11-01

    Dark asteroids (C- and related types) have been shown to have phyllosilicates on their surfaces by the presence of the 0.7-µm charge transfer band in the visible/near-infrared (VIS/NIR) spectral region (e.g. [1], [2]). Observations of asteroids in the 2.5-5-µm have also indicated the presence of water [3, 4] and phyllosilicates [5, 6]. Phyllosilicates also have spectral features in the 8-30-µm [7]. The results of a coordinated spectral-mineralogical study of aqueously altered meteorites [8] can be used to both remotely identify the presence of aqueous alteration and determine the degree of alteration on asteroids. Two main regions have strong features related to the mineralogy and degree of alteration: the 10-13-µm and the 16-25-µm region. Alteration features change continuously in these regions between less 60%) and highly 90%) altered meteorites. These features have been identified in the spectra of some dark asteroids [8, 9, 10]. Additionally, no trends are found between 0.7-µm charge transfer band and degree of alteration. While all meteorites with a 0.7-µm band have phyllosilicates, the absence of a 0.7-µm band is not indicative of the absence of alteration. Altered meteorites always exhibit MIR features that are directly related to their degree of alteration whether or not they have a 0.7-µm band. Here, we present preliminary results of a survey of archived Spitzer Space Telescope data of asteroids in the 10-13-µm region and the 16-25-µm region (where data is available) including comparisons to published VIS/NIR spectra of the same dark asteroids without VIS/NIR features. Possible effects in comparing laboratory measurements of meteorite powders under ambient conditions to telescopic spectra of asteroid regoliths are considered. [1] Vilas and Gaffey, (1989) Nature, 246, 790-792. [2] Barucci et al (1998) Icarus, 132, 388-396. [3] Campins et al., (2010), Nature Letters, 464, 1320-1321. [4] Rivkin & Emery (2010) Nature Letters, 464, 1322-1323. [5] Hargrove, et al. (2012), Icarus, 221, 453-455. [6] Takir and Emery (2012) Icarus, 219, 641-654. [7] Calvin & King, (1997), Met. & Plan. Sci., 32, 693-701. [8] McAdam et al, Icarus, in review. [9] McAdam, et al (2013) DPS abs. [10] McAdam et al, ACM abs.

  12. Spectral Characteristics of Hayabusa 2 Near-Earth Asteroid Targets 162173 1999 JU3 and 2001 QC34

    NASA Astrophysics Data System (ADS)

    Vilas, Faith

    2008-04-01

    Reflectance spectra of C-type near-Earth asteroid 162173 1999 JU3 were acquired on UT 2007 July 11, September 10 and 11. An absorption feature centered near 0.7 μm, and associated with the presence of iron-bearing phyllosilicates, is seen in the 2007 July 11 spectrum. The 2007 September spectrum shows a shallow absorption feature centered near 0.6 μm. In contrast, the reflectance spectrum of 162173 1999 JU3 obtained during its discovery apparition has no absorption feature, suggesting that the asteroid's surface covers the conjunction of two different geological units. The variation in the presence and absence of these features in reflectance spectra of the surface material of C-type asteroids is observed among main-belt asteroids. As the target for the planned Japanese mission Hayabusa 2, 162173 1999 JU3 could represent a sample of aqueously altered early solar system material. An alternative target for Hayabusa 2, 2001 QC34, was observed spectrally for the first time. Its reflectance spectrum has characteristics of a Q-class or O-class asteroid.

  13. Modeling and experimental validation of sawing based lander anchoring and sampling methods for asteroid exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Dong, Chengcheng; Zhang, Hui; Li, Song; Song, Aiguo

    2018-05-01

    This paper presents a novel lander anchoring system based on sawing method for asteroid exploration. The system is composed of three robotic arms, three cutting discs, and a control system. The discs mounted at the end of the arms are able to penetrate into the rock surface of asteroids. After the discs cut into the rock surface, the self-locking function of the arms provides forces to fix the lander on the surface. Modeling, trajectory planning, simulations, mechanism design, and prototype fabrication of the anchoring system are discussed, respectively. The performances of the system are tested on different kinds of rocks, at different sawing angles, locations, and speeds. Results show that the system can cut 15 mm deep into granite rock in 180 s at sawing angle of 60°, with the average power of 58.41 W, and the "weight on bit" (WOB) of 8.637 N. The 7.8 kg anchoring system is capable of providing omni-directional anchoring forces, at least 225 N normal and 157 N tangent to the surface of the rock. The system has the advantages of low-weight, low energy consumption and balance forces, high anchoring efficiency and reliability, and could enable the lander to move and sample or assist astronauts and robots in walking and sampling on asteroids.

  14. Asteroid families - An initial search

    NASA Technical Reports Server (NTRS)

    Williams, James G.

    1992-01-01

    A stereo examination was conducted for clusters in three-dimensional proper element space within a sample of both numbered and faint Palomar-Leiden Survey (PLS) asteroids. The clusters were then objectively filtered for small Poisson probability of chance occurrence; 104 were accepted as families with 4- to 12-member populations, and are interpreted as impact-generated. Structure is common in the well-populated families: the better-sampled families are accordingly discussed in terms of their geometry and taxonomy. Some families are very rich in faint PLS members.

  15. Meteorite-asteroid spectral comparison - The effects of comminution, melting, and recrystallization

    NASA Technical Reports Server (NTRS)

    Clark, Beth E.; Fanale, Fraser P.; Salisbury, John W.

    1992-01-01

    The present laboratory simulation of possible spectral-alteration effects on the optical surface of ordinary chondrite parent bodies duplicated regolith processes through comminution of the samples to finer rain sizes. After reflectance spectra characterization, the comminuted samples were melted, crystallized, recomminuted, and again characterized. While individual spectral characteristics could be significantly changed by these processes, no combination of the alteration procedures appeared capable of affecting all relevant parameters in a way that improved the match between chondritic meteorites and S-class asteroids.

  16. Antarctic and Sub-Antarctic Asteroidea database.

    PubMed

    Moreau, Camille; Mah, Christopher; Agüera, Antonio; Améziane, Nadia; David Barnes; Crokaert, Guillaume; Eléaume, Marc; Griffiths, Huw; Charlène Guillaumot; Hemery, Lenaïg G; Jażdżewska, Anna; Quentin Jossart; Vladimir Laptikhovsky; Linse, Katrin; Neill, Kate; Sands, Chester; Thomas Saucède; Schiaparelli, Stefano; Siciński, Jacek; Vasset, Noémie; Bruno Danis

    2018-01-01

    The present dataset is a compilation of georeferenced occurrences of asteroids (Echinodermata: Asteroidea) in the Southern Ocean. Occurrence data south of 45°S latitude were mined from various sources together with information regarding the taxonomy, the sampling source and sampling sites when available. Records from 1872 to 2016 were thoroughly checked to ensure the quality of a dataset that reaches a total of 13,840 occurrences from 4,580 unique sampling events. Information regarding the reproductive strategy (brooders vs. broadcasters) of 63 species is also made available. This dataset represents the most exhaustive occurrence database on Antarctic and Sub-Antarctic asteroids.

  17. Tidal and Dynamical Evolution of Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2009-05-01

    We derive a realistic model for the evolution of a tidally perturbed binary, using classical theory, to examine the system just after a spin-up fission event. The spin rate of an asteroid can be increased by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect -- thermal re-radiation from an asymmetric body, which induces torques that can rotationally accelerate the body. If the asteroid is modeled as a "rubble pile", a collection of gravitationally bound gravel with no tensile strength, increasing the spin rate will lead to a fission process that would resemble that of a viscous fluidic body [Holsapple 2007]. However, high-resolution imagery of an asteroid's constituents indicates that there is a significant distribution of size scales. A specific example is the asteroid Itokawa, which appears to be two such rubble piles in contact with each other [Fujiwara 2006]. The shape of these bodies will be irregular (modeled as tri-axial ellipsoids with a gravitational potential expanded up to second order). Their motions will raise tides on the opposing body. These tides will dissipate energy, potentially providing enough energy loss for the system to settle into a stable orbit. Fissioned binary systems are always initially unstable [Scheeres 2009, 2008]. We expect tidal dissipation rates to vary widely during the initial evolution of the system, due to this instability. The model applies instantaneous tidal torques to determine energy loss. Our preliminary results indicate that tidal energy dissipation could relax the system to a state of relative equilibrium on order 100,000 years, creating systems similar to those observed. Holsapple, K. A., Icarus, 187, 2007. Fujiwara, A., Science, 312, 2006. Scheeres, D., CMDA, 2009 (Accepted Jan 10, 2009). Scheeres, D., AAS, DDA meeting #39, #9.01, 2008.

  18. V-type candidates and Vesta family asteroids in the Moving Objects VISTA (MOVIS) catalogue

    NASA Astrophysics Data System (ADS)

    Licandro, J.; Popescu, M.; Morate, D.; de León, J.

    2017-04-01

    Context. Basaltic asteroids (spectrally classified as V-types) are believed to be fragments of large differentiated bodies. The majority of them are found in the inner part of the asteroid belt, and are current or past members of the Vesta family. Recently, some V-type asteroids have been discovered far from the Vesta family supporting the hypothesis of the presence of multiple basaltic asteroids in the early solar system. The discovery of basaltic asteroids in the outer belt challenged the models of the radial extent and the variability of the temperature distribution in the early solar system. Aims: We aim to identify new basaltic V-type asteroids using near-infrared colors of 40 000 asteroids observed by the VHS-VISTA survey and compiled in the MOVIS-C catalogue. We also want to study their near-infrared colors and to study the near-infrared color distribution of the Vesta dynamical family. Methods: We performed a search in the MOVIS-C catalogue of all the asteroids with (Y-J) and (J-Ks) in the range (Y-J) ≥ 0.5 and (J-Ks) ≤ 0.3, associated with V-type asteroids, and studied their color distribution. We have also analyzed the near-infrared color distribution of 273 asteroid members of the Vesta family and compared them with the albedo and visible colors from WISE and SDSS data. We determined the fraction of V-type asteroids in the family. Results: We found 477 V-type candidates in MOVIS-C, 244 of them outside the Vesta dynamical family. We identified 19 V-type asteroids beyond the 3:1 mean motion resonance, 6 of them in the outer main belt, and 16 V-types in the inner main belt with proper inclination Ip ≤ 3.0°, well below the inclination of the Vesta family. We computed that 85% of the members of the Vesta dynamical family are V-type asteroids, and only 1-2% are primitive class asteroids and unlikely members of the family. Conclusions: This work almost doubles the sample of basaltic asteroid candidates in regions outside the Vesta family. Spectroscopic studies in the near-infrared and dynamical studies are needed to confirm their basaltic composition and to determine their origin.

  19. Asteroid-comet continuum objects in the solar system.

    PubMed

    Hsieh, Henry H

    2017-07-13

    In this review presented at the Royal Society meeting, 'Cometary science after Rosetta', I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as 'transition objects', these bodies are perhaps more appropriately described as 'continuum objects', to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g. relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  20. Asteroid family dynamics in the inner main belt

    NASA Astrophysics Data System (ADS)

    Dykhuis, Melissa Joy

    The inner main asteroid belt is an important source of near-Earth objects and terrestrial planet impactors; however, the dynamics and history of this region are challenging to understand, due to its high population density and the presence of multiple orbital resonances. This dissertation explores the properties of two of the most populous inner main belt family groups --- the Flora family and the Nysa-Polana complex --- investigating their memberships, ages, spin properties, collision dynamics, and range in orbital and reflectance parameters. Though diffuse, the family associated with asteroid (8) Flora dominates the inner main belt in terms of the extent of its members in orbital parameter space, resulting in its significant overlap with multiple neighboring families. This dissertation introduces a new method for membership determination (the core sample method) which enables the distinction of the Flora family from the background, permitting its further analysis. The Flora family is shown to have a signature in plots of semimajor axis vs. size consistent with that expected for a collisional family dispersed as a result of the Yarkovsky radiation effect. The family's age is determined from the Yarkovsky dispersion to be 950 My. Furthermore, a survey of the spin sense of 21 Flora-region asteroids, accomplished via a time-efficient modification of the epoch method for spin sense determination, confirms the single-collision Yarkovsky-dispersed model for the family's origin. The neighboring Nysa-Polana complex is the likely source region for many of the carbonaceous near-Earth asteroids, several of which are important targets for spacecraft reconnaissance and sample return missions. Family identification in the Nysa-Polana complex via the core sample method reveals two families associated with asteroid (135) Hertha, both with distinct age and reflectance properties. The larger of these two families demonstrates a correlation in semimajor axis and eccentricity indicating that its family-forming collision occurred near the parent body's aphelion. In addition, the Eulalia family is connected with a possible second component, suggesting an anisotropic distribution of ejecta from its collision event.

  1. Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science

    NASA Astrophysics Data System (ADS)

    Mainzer, A.; Bauer, J.; Grav, T.; Masiero, J.; Cutri, R. M.; Dailey, J.; Eisenhardt, P.; McMillan, R. S.; Wright, E.; Walker, R.; Jedicke, R.; Spahr, T.; Tholen, D.; Alles, R.; Beck, R.; Brandenburg, H.; Conrow, T.; Evans, T.; Fowler, J.; Jarrett, T.; Marsh, K.; Masci, F.; McCallon, H.; Wheelock, S.; Wittman, M.; Wyatt, P.; DeBaun, E.; Elliott, G.; Elsbury, D.; Gautier, T., IV; Gomillion, S.; Leisawitz, D.; Maleszewski, C.; Micheli, M.; Wilkins, A.

    2011-04-01

    The Wide-field Infrared Survey Explorer (WISE) has surveyed the entire sky at four infrared wavelengths with greatly improved sensitivity and spatial resolution compared to its predecessors, the Infrared Astronomical Satellite and the Cosmic Background Explorer. NASA's Planetary Science Division has funded an enhancement to the WISE data processing system called "NEOWISE" that allows detection and archiving of moving objects found in the WISE data. NEOWISE has mined the WISE images for a wide array of small bodies in our solar system, including near-Earth objects (NEOs), Main Belt asteroids, comets, Trojans, and Centaurs. By the end of survey operations in 2011 February, NEOWISE identified over 157,000 asteroids, including more than 500 NEOs and ~120 comets. The NEOWISE data set will enable a panoply of new scientific investigations.

  2. Navigation for the new millennium: Autonomous navigation for Deep Space 1

    NASA Technical Reports Server (NTRS)

    Reidel, J. E.; Bhaskaran, S.; Synnott, S. P.; Desai, S. D.; Bollman, W. E.; Dumont, P. J.; Halsell, C. A.; Han, D.; Kennedy, B. M.; Null, G. W.; hide

    1997-01-01

    The autonomous optical navigation system technology for the Deep Space 1 (DS1) mission is reported on. The DS1 navigation system will be the first to use autonomous navigation in deep space. The systems tasks are to: perform interplanetary cruise orbit determination using images of distant asteroids; control and maintain the orbit of the spacecraft with an ion propulsion system and conventional thrusters, and perform late knowledge updates of target position during close flybys in order to facilitate high quality data return from asteroid MaAuliffe and comet West-Kohoutek-Ikemura. To accomplish these tasks, the following functions are required: picture planning; image processing; dynamical modeling and integration; planetary ephemeris and star catalog handling; orbit determination; data filtering and estimation; maneuver estimation, and spacecraft ephemeris updating. These systems and functions are described and preliminary performance data are presented.

  3. Measurements of Shock Effects Recorded by Hayabusa Samples

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Martinez, James; Komatsu, Mutsumi; Chan, Queenie H-.S.

    2015-01-01

    We requested and have been approved for 5 Hayabusa samples in order definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by synchrotron X-ray diffraction (SXRD), and degree of crystallinity as determined by electron back-scattered diffraction (EBSD) [1,2]. As of the writing of this abstract we are awaiting the approved samples. We propose measurements of astromaterial crystal structures and regolith processes. The proposed research work will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results of the proposed research will directly enrich the ongoing asteroid and comet exploration missions by NASA, JAXA and ESA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith.

  4. Measurements of Shock Effects Recorded by Itokawa Samples

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Martinez, James; Komatsu, Mutsumi; Chan, Queenie H-.S.

    2016-01-01

    We requested and have been approved for 5 Hayabusa samples in order definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by synchrotron X-ray diffraction (SXRD), and degree of crystallinity as determined by electron back-scattered diffraction (EBSD). As of the writing of this abstract we are awaiting the approved samples. We propose measurements of astromaterial crystal structures and regolith processes. The proposed research work will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results of the proposed research will directly enrich the ongoing asteroid and comet exploration missions by NASA, JAXA and ESA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith.

  5. The OVIRS Visible/IR Spectrometer on the OSIRIS-Rex Mission

    NASA Technical Reports Server (NTRS)

    Reuter, D. C.; Simon-Miller, A. A.

    2012-01-01

    The OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security Regolith Explorer) Mission is a planetary science mission to study, and return a sample from, the carbonaceous asteroid 1999 RQ-36. The third mission selected under NASA's New Frontiers Program, it is scheduled to be launched in 2016. It is led by PI Dante Lauretta at the University of Arizona and managed by NASA's Goddard Space Flight Center. The spacecraft and the asteroid sampling mechanism, TAGSAM (Touch-And-Go Sample Acquisition Mechanism) will be provided by Lockheed Martin Space Systems. Instrumentation for studying the asteroid include: OCAMS (the OSIRIS-REx Camera Suite), OLA (the OSIRIS-REx Laser Altimeter, a scanning LIDAR), OTES (The OSIRIS-REx Thermal Emission Spectrometer, a 4-50 micron point spectrometer) and OVIRS (the OSIRIS-REx Visible and IR Spectrometer, a 0.4 to 4.3 micron point spectrometer). The payload also includes REXIS (the Regolith X-ray Imaging Spectrometer) a student provided experiment. This paper presents a description of the OVIRS instrument.

  6. OSIRIS-REx Touch-And-Go (TAG) Navigation Performance

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Antreasian, Peter; Moreau, Michael C.; May, Alex; Sutter, Brian

    2015-01-01

    The Origins Spectral Interpretation Resource identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the near-Earth asteroid (101955) Bennu in late 2018. Following an extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site, OSIRIES-REx will fly a Touch-And-Go (TAG) trajectory to the asteroid's surface to obtain a regolith sample. The paper summarizes the mission design of the TAG sequence, the propulsive required to achieve the trajectory, and the sequence of events leading up to the TAG event. The paper will summarize the Monte-Carlo simulation of the TAG sequence and present analysis results that demonstrate the ability to conduct the TAG within 25 meters of the selected sample site and +-2 cms of the targeted contact velocity. The paper will describe some of the challenges associated with conducting precision navigation operations and ultimately contacting a very small asteroid.

  7. OSIRI-REx Touch and Go (TAG) Navigation Performance

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Antreasian, Peter; Moreau, Michael C.; May, Alex; Sutter, Brian

    2015-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the near-Earth asteroid (101955) Bennu in late 2018. Following an extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site, OSIRIS-REx will fly a Touch-And-Go (TAG) trajectory to the asteroid's surface to obtain a regolith sample. The paper summarizes the mission design of the TAG sequence, the propulsive maneuvers required to achieve the trajectory, and the sequence of events leading up to the TAG event. The paper also summarizes the Monte-Carlo simulation of the TAG sequence and presents analysis results that demonstrate the ability to conduct the TAG within 25 meters of the selected sample site and 2 cm/s of the targeted contact velocity. The paper describes some of the challenges associated with conducting precision navigation operations and ultimately contacting a very small asteroid.

  8. Do L chondrites come from the Gefion family?

    NASA Astrophysics Data System (ADS)

    McGraw, Allison M.; Reddy, Vishnu; Sanchez, Juan A.

    2018-05-01

    Ordinary chondrites (H, L, and LL chondrites) are the most common type of meteorites comprising 80 per cent of the meteorites that fall on Earth. The source region of these meteorites in the main asteroid belt has been a basis of considerable debate in the small bodies community. L chondrites have been proposed to come from the Gefion asteroid family, based on dynamical models. We present results from our observational campaign to verify a link between the Gefion asteroid family and L chondrite meteorites. Near-infrared spectra of Gefion family asteroids (1839) Ragazza, (2373) Immo, (2386) Nikonov, (2521) Heidi, and (3860) Plovdiv were obtained at the NASA Infrared Telescope Facility (IRTF). Spectral band parameters including band centres and the band area ratio were measured from each spectrum and used to constrain the composition of these asteroids. Based on our results, we found that some members of the Gefion family have surface composition similar to that of H chondrites, primitive achondrites, and basaltic achondrites. No evidence was found for L chondrites among the Gefion family members in our small sample study. The diversity of compositional types observed in the Gefion asteroid family suggests that the original parent body might be partially differentiated or that the three asteroids with non-ordinary chondrite compositions might be interlopers.

  9. Spacecraft Conceptual Design for Returning Entire Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Oleson, Steve

    2012-01-01

    In situ resource utilization (ISRU) in general, and asteroid mining in particular are ideas that have been around for a long time, and for good reason. It is clear that ultimately human exploration beyond low-Earth orbit will have to utilize the material resources available in space. Historically, the lack of sufficiently capable in-space transportation has been one of the key impediments to the harvesting of near-Earth asteroid resources. With the advent of high-power (or order 40 kW) solar electric propulsion systems, that impediment is being removed. High-power solar electric propulsion (SEP) would be enabling for the exploitation of asteroid resources. The design of a 40-kW end-of-life SEP system is presented that could rendezvous with, capture, and subsequently transport a 1,000-metric-ton near-Earth asteroid back to cislunar space. The conceptual spacecraft design was developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at the Glenn Research Center in collaboration with the Keck Institute for Space Studies (KISS) team assembled to investigate the feasibility of an asteroid retrieval mission. Returning such an object to cislunar space would enable astronaut crews to inspect, sample, dissect, and ultimately determine how to extract the desired materials from the asteroid. This process could jump-start the entire ISRU industry.

  10. Evidence for Impact Shock Melting in CM and CI Chondrite Regolith Samples

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Komatsu, Mutsumi; Le, Loan

    2014-01-01

    C class asteroids frequently exhibit reflectance spectra consistent with thermally metamorphosed carbonaceous chondrites, or a mixture of phyllosilicate-rich material along with regions where they are absent. One particularly important example appears to be near-Earth asteroid 1999 JU3, the target of the Hayabusa II sample return mission [1], although not all spectra indicate this. In fact most spectra of 1999 JU3 are featureless, suggesting a heterogeneous regolith. Here we explore an alternative cause of dehydration of regolith of C class asteroids - impact shock melting. Impact shock melting has been proposed to explain some mineralogical characteristics of CB chondrites, but has not been considered a major process for hydrous carbonaceous chondrites. What evidence is there for significant shock melting in the very abundant CMs, or less abundant but still important CI chondrites?

  11. Pathways Intern Report

    NASA Technical Reports Server (NTRS)

    Bell, Evan A.

    2015-01-01

    During my time at NASA, I worked with the Granular Mechanics and Regolith Organization (GMRO), better known as Swamp Works. The goal of the lab is to find ways to utilize resources found after the astronaut or robot has landed on another planet or asteroid. This concept is known as in-situ resource utilization and it is critical to long term missions such as those to Mars. During my time here I worked on the Asteroid and Lava Tube Free Flyer project (ALTFF). A lava tube, such as the one shown in figure 1, is a long tear drop shaped cavern that is produced when molten lava tunnels through the surrounding rock creating large unground pathways. Before mining for resources on Mars or on asteroids, a sampling mission must be done to scout out useful resource deposits. ALTFF's goal is to provide a low cost, autonomous scout robot that can sample the surface and return to the mother ship or lander for further processing of the samples. The vehicle will be looking for water ice in the regolith that can be processed into either potable water, hydrogen and oxygen fuel, or a binder material for 3D printing. By using a low cost craft to sample, there is much less risk to the more expensive mother ship or lander. While my main task was the construction of a simulation environment to test control code in and the construction of the asteroid free flyer prototype, there were other tasks that I performed relating to the ALTFF project.

  12. Boulder Capture System Design Options for the Asteroid Robotic Redirect Mission Alternate Approach Trade Study

    NASA Technical Reports Server (NTRS)

    Belbin, Scott P.; Merrill, Raymond G.

    2014-01-01

    This paper presents a boulder acquisition and asteroid surface interaction electromechanical concept developed for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger Near Earth Asteroid (NEA). It details the down select process and ranking of potential boulder capture methods, the evolution of a simple yet elegant articulating spaceframe, and ongoing risk reduction and concept refinement efforts. The capture system configuration leverages the spaceframe, heritage manipulators, and a new microspine technology to enable the ARRM boulder capture. While at the NEA it enables attenuation of terminal descent velocity, ascent to escape velocity, boulder collection and restraint. After departure from the NEA it enables, robotic inspection, sample caching, and crew Extra Vehicular Activities (EVA).

  13. A successful search for hidden Barbarians in the Watsonia asteroid family

    NASA Astrophysics Data System (ADS)

    Cellino, A.; Bagnulo, S.; Tanga, P.; Novaković, B.; Delbò, M.

    2014-03-01

    Barbarians, so named after the prototype of this class (234) Barbara, are a rare class of asteroids exhibiting anomalous polarimetric properties. Their very distinctive feature is that they show negative polarization at relatively large phase angles, where all `normal' asteroids show positive polarization. The origin of the Barbarian phenomenon is unclear, but it seems to be correlated with the presence of anomalous abundances of spinel, a mineral usually associated with the so-called calcium-aluminium-rich inclusions (CAIs) on meteorites. Since CAIs are samples of the oldest solid matter identified in our Solar system, Barbarians are very interesting targets for investigations. Inspired by the fact that some of the few known Barbarians are members of, or very close to, the dynamical family of Watsonia, we have checked whether this family is a major repository of Barbarians, in order to obtain some hints about their possible collisional origin. We have measured the linear polarization of a sample of nine asteroids which are members of the Watsonia family within the phase-angle range 17°-21°. We found that seven of them exhibit the peculiar Barbarian polarization signature, and we conclude that the Watsonia family is a repository of Barbarian asteroids. The new Barbarians identified in our analysis will be important to confirm the possible link between the Barbarian phenomenon and the presence of spinel on the surface.

  14. A radar survey of M- and X-class asteroids. III. Insights into their composition, hydration state, & structure

    NASA Astrophysics Data System (ADS)

    Shepard, Michael K.; Taylor, Patrick A.; Nolan, Michael C.; Howell, Ellen S.; Springmann, Alessondra; Giorgini, Jon D.; Warner, Brian D.; Harris, Alan W.; Stephens, Robert; Merline, William J.; Rivkin, Andrew; Benner, Lance A. M.; Coley, Dan; Clark, Beth Ellen; Ockert-Bell, Maureen; Magri, Christopher

    2015-01-01

    Using the S-band radar at Arecibo Observatory, we observed thirteen X/M-class asteroids; nine were previously undetected and four were re-observed, bringing the total number of Tholen X/M-class asteroids observed with radar to 29. Of these 29M-class asteroids, 13 are also W-class, defined as M-class objects that also display a 3-μm absorption feature which is often interpreted as the signature of hydrated minerals (Jones, T.D., Lebofsky, L.A., Lewis, J.S., Marley, M.S. [1990]. Icarus 88, 172-192; Rivkin, A.S., Howell, E.S., Britt, D.T., Lebofsky, L.A., Nolan, M.C., Branston, D.D. [1995]. Icarus 117, 90-100; Rivkin, A.S., Howell, E.S., Lebofsky, L.A., Clark, B.E., Britt, D.T. [2000]. Icarus 145, 351-368). Consistent with our previous work (Shepard, M.K. et al. [2008]. Icarus 195, 184-205; Shepard, M.K., Harris, A.W., Taylor, P.A., Clark, B.E., Ockert-Bell, M., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M. [2011]. Icarus 215, 547-551), we find that 38% of our sample (11 of 29) have radar albedos consistent with metal-dominated compositions. With the exception of 83 Beatrix and 572 Rebekka, the remaining objects have radar albedos significantly higher than the mean S- or C-class asteroid (Magri, C., Nolan, M.C., Ostro, S.J., Giorgini, J.D. [2007]. Icarus 186, 126-151). Seven of the eleven high-radar-albedo asteroids, or 64%, also display a 3-μm absorption feature (W-class) which is thought to be inconsistent with the formation of a metal dominated asteroid. We suggest that the hydration absorption could be a secondary feature caused by low-velocity collisions with hydrated asteroids, such as CI or CM analogs, and subsequent implantation of the hydrated minerals into the upper regolith. There is recent evidence for this process on Vesta (Reddy, V. et al. [2012]. Icarus 221, 544-559; McCord, T.B. et al. [2012]. Nature 491, 83-86; Prettyman, T.H. et al. [2012]. Science 338, 242-246; Denevi, B.W. et al. [2012]. Science 338, 246-249). Eleven members of our sample show bifurcated radar echoes at some rotation phases; eight of these are high radar albedo targets. One interpretation of a bifurcated echo is a contact binary, like 216 Kleopatra, and several of our sample are contact binary candidates. However, evidence for other targets indicates they are not contact binaries. Instead, we hypothesize that these asteroids may have large-scale variations in surface bulk density, i.e. isolated patches of metal-rich and silicate-rich regions at the near-surface, possibly the result of collisions between metal and silicate-rich asteroids.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masiero, Joseph R.; Mainzer, A. K.; Bauer, J. M.

    We present initial results from the Wide-field Infrared Survey Explorer (WISE), a four-band all-sky thermal infrared survey that produces data well suited for measuring the physical properties of asteroids, and the NEOWISE enhancement to the WISE mission allowing for detailed study of solar system objects. Using a NEATM thermal model fitting routine, we compute diameters for over 100,000 Main Belt asteroids from their IR thermal flux, with errors better than 10%. We then incorporate literature values of visible measurements (in the form of the H absolute magnitude) to determine albedos. Using these data we investigate the albedo and diameter distributionsmore » of the Main Belt. As observed previously, we find a change in the average albedo when comparing the inner, middle, and outer portions of the Main Belt. We also confirm that the albedo distribution of each region is strongly bimodal. We observe groupings of objects with similar albedos in regions of the Main Belt associated with dynamical breakup families. Asteroid families typically show a characteristic albedo for all members, but there are notable exceptions to this. This paper is the first look at the Main Belt asteroids in the WISE data, and only represents the preliminary, observed raw size, and albedo distributions for the populations considered. These distributions are subject to survey biases inherent to the NEOWISE data set and cannot yet be interpreted as describing the true populations; the debiased size and albedo distributions will be the subject of the next paper in this series.« less

  16. Encircling the dark, a simple method to decipher the cosmos

    NASA Astrophysics Data System (ADS)

    Quirico, Eric

    2017-09-01

    Asteroids are relics of Solar System formation and host insightful information on physical, chemical, chronological and dynamical conditions that operated, since the formation of the first solids until the Late Heavy Bombardment. Since 2000, our view on these small objects has been deeply transformed due to several space missions and advances in ground-based observations. Near, Dawn (NASA) and Hayabusa 1 (JAXA) have provided extensive characterizations of the surface and interior of asteroids 433Eros, Itokawa, Vesta and Ceres, and revealed a complex morphology driven by collisions and/or internal activity. The samples returned to Earth by Hayabusa 1 provided a firm evidence of the genetic link between S-type asteroids and ordinary chondrites, and valuable clues on the first stage of space weathering. Meanwhile, ground-based observations, dynamical theory and meteoritics have drawn a big picture pointing to a continuum between asteroids and comets. Hopefully, the forthcoming missions Hayabusa2 and Osiris ReX will explore for the first time two C-type asteroids in the next years.

  17. Evidence for a Single Ureilite Parent Asteroid from a Petrologic Study of Polymict Ureilites

    NASA Technical Reports Server (NTRS)

    Downes, Hilary; Mittlefehldt, David W.

    2006-01-01

    Ureilites are ultramafic achondrites composed of olivine and pyroxene, with minor elemental C, mostly as graphite [1]. The silicate composition indicates loss of a basaltic component through igneous processing, yet the suite is very heterogeneous in O isotopic composition inherited from nebular processes [2]. Because of this, it has not yet been established whether ureilites were derived from a single parent asteroid or from multiple parents. Most researchers tacitly assume a single parent asteroid, but the wide variation in mineral and oxygen isotope compositions could be readily explained by an origin in multiple parent asteroids that had experienced a similar evolution. Numerous ureilite meteorites have been found in Antarctica, among them several that are clearly paired (Fig. 1) and two that are strongly brecciated (EET 83309, EET 87720). We have begun a detailed petrologic study of these latter two samples in order to characterize the range of materials in them. One goal is to attempt to determine whether ureilites were derived from a single parent asteroid.

  18. Comparison of visible and near-infrared reflectance spectra of CM2 carbonaceous chondrites and primitive asteroids

    NASA Technical Reports Server (NTRS)

    Vilas, F.; Hiroi, T.; Zolensky, M. E.

    1993-01-01

    Spectra of primitive asteroids (defined as C, P, and D classes and associated subclasses) were compared to the limited number of spectra of CM2 carbonaceous chondrites. An absorption feature located at 0.7 microns attributed to an Fe(+2) - Fe(+3) charge transfer absorption in iron oxides in phyllosilicates is apparent in some of the CM2 carbonaceous chondrite spectra and many of the asteroid spectra. Sawyer found a correlation between the area of the 0.7 micron feature and the mean semimajor axis of the asteroids. Spectra of a larger sample of carbonaceous chondrites, including 7 CM2 chondrites, covering a spectral interval of 0.30-2.5 microns were recently obtained using the Relab instrument at Brown University. These spectra were compared with spectrophotometric asteroid observations in a separate abstract. Those spectra of CM2 chondrites were isolated into the UV, visible and near-infrared spectral regions in order to compare them with high-quality narrowband reflectance spectra.

  19. Arecibo Radar Observations of Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Virkki, Anne; Saran Bhiravarasu, Sriram; Venditti, Flaviane; Zambrano-Marin, Luisa Fernanda; Aponte-Hernandez, Betzaida

    2017-10-01

    The Arecibo S-Band (2.38 GHz, 12.6 cm; 1 MW) planetary radar system at the 305-m William E. Gordon Telescope in Arecibo, Puerto Rico is the most active, most powerful, and most sensitive planetary radar facility in the world. As such, Arecibo is vital for post-discovery characterization and orbital refinement of near-Earth asteroids. Since August 2016, the program has observed 100 near-Earth asteroids (NEAs), of which 38 are classified as potentially hazardous to Earth and 31 are compliant with the NASA Near-Earth Object Human Space Flight Accessible Targets Study (NHATS). Arecibo observations are critical for identifying NEAs that may be on a collision course with Earth in addition to providing detailed physical characterization of the objects themselves in terms of size, shape, spin, and surface properties, which are valuable for assessing impact mitigation strategies. Here, we will present a sampling of the asteroid zoo observed by Arecibo, including press-noted asteroids 2014 JO25 and the (163693) Atira binary system.

  20. Detection of silicate emission features in the 8- to 13-micron spectra of main belt asteroids

    NASA Technical Reports Server (NTRS)

    Feierberg, M. A.; Witteborn, F. C.; Lebofsky, L. A.

    1983-01-01

    A presentation is given of 8.0-13.0 micron spectra (Delta lambda/lambda = 0.02-0.03) for six main belt asteroids, which range from 58 to 220 km in diameter and sample the five principal taxonomic classes (C, S, M, R and E). Narrow, well-defined silicate emission features are present on two of the asteroids, the C-type 19 Fortuna and the M-type 21 Lutetia. No comparable emission features are observed on the S-types 11 Parthenope and 14 Irene, the R-type 349 Dembowska or the E-type 64 Angelina.

  1. Thermal Infrared Imager on Hayabusa2: Science and Development

    NASA Astrophysics Data System (ADS)

    Okada, Tatsuaki

    2015-04-01

    Thermal Infrared Imager TIR was developed and calibrated for Haya-busa2 asteroid explorer, aiming at the investigation of thermo-physical properties of C-class near-Earth sub-km sized asteroid (162173) 1999JU3. TIR is based on the 2D micro-bolometer array with germani-um lens to image the surface of asteroid in 8 to 12 μm wavelength (1), measuring the thermal emission off the asteroid surface. Its field of view is 16° x 12° with 328 x 248 pixels. At least 40 (up to 100) images will be taken during asteroid rotation once a week, mainly from the Home Position which is about 20km sunward from asteroid surface. Therefore TIR will image the whole asteroid with spatial resolution of < 20m per pixel, and the temperature profile of each site on the asteroid will be traced from dawn to dusk regions by asteroid rotation. The scien-tific objectives of TIR include the mapping of asteroid surface condi-tions (regional distribution of thermal inertia), since the surface physical conditions are strongly correlated with thermal inertia. It is so informa-tive on understanding the re-accretion or surface sedimentation process-es of the asteroid to be the current form. TIR data will be used for searching for those sites having the typical particle size of 1mm for best sample collection, and within the proper thermal condition for space-craft safe operation. After launch of Hayabusa2, TIR has been tested successfully, covering from -100 to 150 °C using a single parameter settings (2). This implies that TIR is actually able to map the surface other than the sunlit areas. Performance of TIR was found basically the same as those in the pre-launch test, when the temperature of TIR is well controlled. References: (1) Fukuhara T. et al., (2011) Earth Planet. Space 63, 1009-1018; (2) Okada T. et al., (2015) Lunar Planet. Sci. Conf. 46, #1331.

  2. Ground-based Characterization of Hayabusa2 Mission Target Asteroid 162173 Ryugu

    NASA Astrophysics Data System (ADS)

    Le Corre, Lucille; Reddy, Vishnu; Sanchez, Juan A.; Takir, Driss; Cloutis, Edward; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri

    2017-10-01

    In preparation for the arrival of the Japanese Space Agency’s (JAXA) Hayabusa2 sample return mission to near-Earth asteroid (NEA) (162173) Ryugu, we took the opportunity to characterize the target with a ground-based telescope. We observed Ryugu using the SpeX instrument in Prism mode on NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on July, 12 2016 when the asteroid was 18.87 visual magnitude, at a phase angle of 13.3°. The NIR spectra were used to constrain Ryugu’s surface composition, meteorite analogs and spectral affinity to other asteroids. We also modeled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Masateru et al. (2014). Our spectrum of Ryugu has a broad absorption band at 1 µm, a slope change at 1.6 µm, and a second broad absorption band near 2.2 µm, but no well-defined absorption features over the 0.8-2.5 µm range. The two broad absorption features, if confirmed, are consistent with CO and CV chondrites. The shape of Ryugu’s spectrum matches very well those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regolith have similar composition. We also compared the spectrum of Ryugu with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as the source of Ryugu by Campins et al. (2013). We found that the spectrum of Clarissa shows significant differences with our NIR spectrum of Ryugu. Our analysis shows Ryugu’s spectrum best matches two CM2 carbonaceous chondrites, Mighei and ALH83100. We expect the surface regolith of Ryugu to be altered by a range of factors including temperature, contamination by exogenic material, and space weathering, posing challenges to link spacecraft and ground-based data, and sample site selection.

  3. Effective Scenarios for Exploring Asteroid Surfaces

    NASA Astrophysics Data System (ADS)

    Clark, Pamela E.; Clark, C.; Weisbin, C.

    2010-10-01

    In response to the proposal that asteroids be the next targets for exploration, we attempt to develop scenarios for exploring previously mapped asteroid 433 Eros, harnessing our recent experience gained planning such activity for return to the lunar surface. The challenges faced in planning Apollo led to the development of a baseline methodology for extraterrestrial field science. What `lessons learned’ can be applied for asteroids? Effective reconnaissance (advanced mapping at <0.5 m, photos with plotted routes as in-field reference maps), training/simulating/planning (highly interactive abundant field time for extended crew), and documentation (hands-free audio and visual systematic description) procedures are still valid. The use of Constant Scale Natural Boundary rather than standard projection maps eases the challenge of navigating and interpreting a highly irregular object. Lunar and asteroid surfaces are dominated by bombardment and space radiation/dust/charged particle/regolith interactions, with similar implications for sampling. Asteroid work stations are selected on the basis of impact-induced exposure of `outcrops’ from prominent ridges (e.g., Himeros, the noses) potentially representing underlying material, supplemented by sampling of areas of especially thin or deep regolith (ponds). Unlike the Moon, an asteroid lacks sufficient gravity and most likely the necessary stability to support `normal’ driving or walking. In fact, the crew delivery vehicle might not even be `tetherable’ and would most likely `station keep’ to maintain a position. The most convenient local mobility mechanism for astronauts/robots would be `hand over hand’ above the surface at a field station supplemented by a `tetherless’ (small rocket-pack) control system for changing station or return to vehicle. Thus, we assume similar mobility constraints (meters to hundreds of meters at a local station, kilometers between stations) as those used for Apollo. We also assume the vehicle could `station keep’ at more than one location separated by tens of kilometers distance.

  4. Science Experiments of a Jupiter Trojan asteroid in the Solar Power Sail Mission

    NASA Astrophysics Data System (ADS)

    Okada, T.; Kebukawa, Y.; Aoki, J.; Kawai, Y.; Ito, M.; Yano, H.; Okamoto, C.; Matsumoto, J.; Bibring, J. P.; Ulamec, S.; Jaumann, R.; Iwata, T.; Mori, O.; Kawaguchi, J.

    2017-12-01

    A Jupiter Trojan asteroid mission using a large area solar power sail (SPS) is under study in JAXA in collaboration with DLR and CNES. The asteroid will be investigated through remote sensing, followed by in situ in-depth observations on the asteroid with a lander. A sample-return is also studied as an option. LUCY has been selected as the NASA's future Discovery class mission which aims at understanding the diversity of Jupiter Trojans by multiple flybys, complementally to the SPS mission. The SPS is a candidate of the next medium class space science mission in Japan. The 1.4-ton spacecraft will carry a 100-kg class lander and 20-kg mission payloads on it. Its launch is expected in mid 2020s, and will take at least 11 years to visit a Jupiter Trojan asteroid. During the cruise phase, science experiments will be performed such as an infrared astronomy, a very long baseline gamma ray interferometry, and dust and magnetic field measurements. A classical static model of solar system suggests that the Jupiter Trojans were formed around the Jupiter region, while a dynamical model such as Nice model indicates that they formed at the far end of the solar system and then scattered inward due to a dynamical migration of giant planets. The physical, mineralogical, organics and isotopic distribution in the heliocentric distance could solve their origin and evolution of the solar system. A global mapping of the asteroid from the mothership will be conducted such as high-resolved imaging, NIR and TIR imaging spectrometry, and radar soundings. The lander will characterize the asteroid with geological, mineralogical, and geophysical observations using a panoramic camera, an infrared hyperspectral imager, a magnetometer, and a thermal radiometer. These samples will be measured by a high resolved mass spectrometer (HRMS) to investigate isotopic ratios of hydrogen, nitrogen, oxygen, as well as organic species.

  5. A possible YORP effect on C and S Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Carbognani, A.

    2011-01-01

    A rotating frequency analysis in a previous paper, showed that two samples of C and S-type asteroids belonging to the Main Belt, but not to any families, present two different values for the transition diameter to a Maxwellian distribution of the rotation frequency, respectively 48 and 33 km. In this paper, after a more detailed statistical analysis, aiming to verify that the result is physically relevant, we found a better estimate for the transition diameter, respectively D C = 44 ± 2 km and D S = 30 ± 1 km. The ratio between these estimated transition diameters, D C/ D S = 1.5 ± 0.1, can be supported with the help of the YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect, although other physical causes cannot be completely ruled out. In this paper we have derived a simple scaling law for YORP which, taking into account the different average heliocentric distance, the bulk density, the albedo and the asteroid "asymmetry surface factor", has enabled us to reasonably justify the ratio between the diameters transition of C-type and S-type asteroids. The same scaling law can be used to estimate a new ratio between the bulk densities of S and C asteroids samples (giving ρ S/ ρ C ≈ 2.9 ± 0.3), and can explain why the asteroids near the transition diameter have about the same absolute magnitude. For C-type asteroids, using the found density ratio and other estimates of S-type density, it is also possible to estimate an average bulk density equal to 0.9 ± 0.1 g cm -3, a value compatible with icy composition. The suggested explanation for the difference of the transition diameters is a plausible hypothesis, consistent with the data, but it needs to be studied more in depth with further observations.

  6. Electromagnetic Scattering Analysis of Large Size Asteroids/Comets for Reflection/Transmission Tomography (RTT)

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar

    2011-01-01

    A precise knowledge of the interior structure of asteroids, comets, and Near Earth Objects (NEO) is important to assess the consequences of their impacts with the Earth and develop efficient mitigation strategies. Knowledge of their interior structure also provides opportunities for extraction of raw materials for future space activities. Low frequency radio sounding is often proposed for investigating interior structures of asteroids and NEOs. For designing and optimizing radio sounding instrument it is advantageous to have an accurate and efficient numerical simulation model of radio reflection and transmission through large size bodies of asteroid shapes. In this presentation we will present electromagnetic (EM) scattering analysis of electrically large size asteroids using (1) a weak form formulation and (2) also a more accurate hybrid finite element method/method of moments (FEM/MOM) to help estimate their internal structures. Assuming the internal structure with known electrical properties of a sample asteroid, we first develop its forward EM scattering model. From the knowledge of EM scattering as a function of frequency and look angle we will then present the inverse scattering procedure to extract its interior structure image. Validity of the inverse scattering procedure will be presented through few simulation examples.

  7. What Hayabusa2 Will Find at Asteroid Ryugu, and What It Will Reveal About the Source of Earth's Water

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Martinez, James E.

    2017-01-01

    Water-rich carbonaceous chondrites contain evidence of aqueous alteration in the early solar system. To see this one must look carefully at the meteorites, and see past the later alteration which has generally obscured mineral textures. We suggest that these materials will dominate, be detectable, and be sampled on the surfaces of C-class asteroids, initially by the Hayabusa2 spacecraft. Thus, hydrous samples returned by this mission will help to reveal the source of water on earth.

  8. Nanoscale Analysis of Space-Weathering Features in Soils from Itokawa

    NASA Technical Reports Server (NTRS)

    Thompson, M. S.; Christoffersen, R.; Zega, T. J.; Keller, L. P.

    2014-01-01

    Space weathering alters the spectral properties of airless body surface materials by redden-ing and darkening their spectra and attenuating characteristic absorption bands, making it challenging to characterize them remotely [1,2]. It also causes a discrepency between laboratory analysis of meteorites and remotely sensed spectra from asteroids, making it difficult to associate meteorites with their parent bodies. The mechanisms driving space weathering include mi-crometeorite impacts and the interaction of surface materials with solar energetic ions, particularly the solar wind. These processes continuously alter the microchemical and structural characteristics of exposed grains on airless bodies. The change of these properties is caused predominantly by the vapor deposition of reduced Fe and FeS nanoparticles (npFe(sup 0) and npFeS respectively) onto the rims of surface grains [3]. Sample-based analysis of space weathering has tra-ditionally been limited to lunar soils and select asteroidal and lunar regolith breccias [3-5]. With the return of samples from the Hayabusa mission to asteroid Itoka-wa [6], for the first time we are able to compare space-weathering features on returned surface soils from a known asteroidal body. Analysis of these samples will contribute to a more comprehensive model for how space weathering varies across the inner solar system. Here we report detailed microchemical and microstructal analysis of surface grains from Itokawa.

  9. A Preliminary Shape Model of 27 Euterpe

    NASA Astrophysics Data System (ADS)

    Stephens, R.; Warner, B. D.; Megna, R.; Coley, D.

    2011-10-01

    We obtained dense rotational lightcurves for the Main-Belt asteroid (27) Euterpe during three apparitions in 2000, 2009 and 2010 with planned observations in the summer of 2011. These were combined with sparse lightcurve data from the USNO to determine a preliminary spin vector and model shape (see Durech et al. [2] for a discussion regarding the differences between dense and sparse data sets). The analysis suggests that Euterpe has albedo features making the determination of an unambiguous spin vector and model shape difficult. So far, Euterpe's near spherical shape, low inclination, pole within 30 degrees of the plane of the solar system, and possible albedo features cause multiple pole and shape solutions to be present.

  10. The Gulliver sample return mission to Deimos

    NASA Astrophysics Data System (ADS)

    Britt, D. T.; Robinson, M.; Gulliver Team

    The Martian moon Deimos presents a unique opportunity for a sample return mission. Deimos is spectrally analogous to type D asteroids, which are thought to be composed of highly primitive carbonaceous material that originated in the outer asteroid belt. It also is in orbit around Mars and has been accumulating material ejected from the Martian surface ever since the earliest periods of Martian history, over 4.4 Gyrs ago. There are a number of factors that make sample return from Deimos extremely attractive. It is Better: Deimos is a repository for two kinds of extremely significant and scientifically exciting ancient samples: (1) Primitive spectral D-type material that may have accreted in the outer asteroid belt and Trojan swarm. This material samples the composition of solar nebula well outside the zone of terrestrial planets and provides a direct sample of primitive material so common past 3 AU but so uncommon in the meteorite collection. (2) Ancient Mars, which could include the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. It is Closer: Compared to other primitive D-type asteroids, Deimos is by far the most accessible. Because of its orbit around Mars, Deimos is far closer than any other D asteroid. It is Safer: Deimos is also by far the safest small body for sample return yet imaged. It is an order of magnitude less rocky than Eros and the NEAR-Shoemaker mission succeeded in landing on Eros with a spacecraft not designed for landing and proximity maneuvering. Because of Viking imagery we already know a great deal about the surface roughness of Deimos. It is known to be very smooth and have moderate topography and gravitational slopes. It is Easier: Deimos is farther from Mars and smaller than Phobos. This location minimizes the delta-V penalties from entering the Martian gravity well; minimizes the energy requirements for sampling maneuvers; and minimizes Martian tidal effects on S/C operations. After initial processing these samples will be made available as soon as possible to the international cosmochemistry community for detailed analysis. The mission management team includes Lockheed Martin Astronautics (flight system, I&T) and JPL (payload, mission ops, and mission management).

  11. Space Resources Roundtable 2

    NASA Technical Reports Server (NTRS)

    Ignatiev, A.

    2000-01-01

    Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based Economy in CisLunar Space. Our Lunar Destiny: Creating a Lunar Economy. Cost-Effective Approaches to Lunar Passenger Transportation. Lunar Mineral Resources: Extraction and Application. Space Resources Development - The Link Between Human Exploration and the Long-term Commercialization of Space. Toward a More Comprehensive Evaluation of Space Information. Development of Metal Casting Molds by Sol-Gel Technology Using Planetary Resources. A New Concept in Planetary Exploration: ISRU with Power Bursts. Bold Space Ventures Require Fervent Public Support. Hot-pressed Iron from Lunar Soil. The Lunar Dust Problem: A Possible Remedy. Considerations on Use of Lunar Regolith in Lunar Constructions. Experimental Study on Water Production by Hydrogen Reduction of Lunar Soil Simulant in a Fixed Bed Reactor.

  12. News and Views: The biggest 3D map of the sky - so far! Just how round is the Sun? Students have chance to name that asteroid; Simulations suggest significant close dark matter

    NASA Astrophysics Data System (ADS)

    2012-10-01

    The Sloan Digital Sky Survey III has made public its latest dataset which includes the locations and distances of more than 1 million galaxies, images of 200 million and spectra of 1.35 million galaxies. Over a total volume equivalent to a cube of side 4 billion light-years. Surprisingly round, is the answer determined by researchers using a SDO instrument to track the shape of the Sun over time. This is in conflict with theories that suggest the Sun's shape should change in line with its 11-year magnetic cycle. NASA's asteroid sample-return mission OSIRIS-REx should launch in 2016 and head for asteroid (101955) 1999 RQ36 with the aim of bringing a sample back to Earth. Students are invited to give this asteroid a better name! The Milky Way galaxy has more dark matter than thought, when measured using a new technique. The data, useful for understanding what exactly dark matter is, also hint that the distribution of dark matter in our galaxy may not be the simple halo previously thought.

  13. Samples of Asteroid Surface Ponded Deposits in Chondritic Meteorites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Lee, R.; Le, L.

    2004-01-01

    One of the many unexpected observations of asteroid 433 Eros by the Near Earth Asteroid Rendezvous (NEAR) mission was the many ponds of fine-grained materials [1-3]. The ponds have smooth surfaces, and define equipotential surfaces up to 10's of meters in diameter [4]. The ponds have a uniformly sub-cm grain size and appear to be cohesive or indurated to some degree, as revealed by slumping. The ponds appear to be concentrated within 30 degrees of the equator of Eros, where gravity is lowest. There is some insight into the mineralogy and composition of the ponds surfaces from NEAR spectroscopy [2,4,5,6]. Compared to the bulk asteroid, ponds: (1) are distinctly bluer (high 550/760 nm ratio), (2) have a deeper 1um mafic band, (3) have reflectance elevated by 5%.

  14. Pigeonholing planetary meteorites: The lessons of misclassification of EET87521 and ALH84001

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Treiman, A. H.; Mittlefehldt, D. W.

    1994-01-01

    The last few years have provided two noteworthy examples of misclassifications of achondritic meteorites because the samples were new kinds of meteorites from planetary rather than asteroidal parent bodies. Basaltic lunar meteorite EET87521 was misclassified as a eucrite and SNC (martian) orthopyroxenite ALH84001 was misclassified as a diogenite. In classifying meteorites we find what we expect: we pigeonhole meteorites into known categories most of which were derived from the more common asteroidal meteorites. But the examples of EET8752 and ALH84001 remind us that planets are more complex than asteroids and exhibit a wider variety of rock types. We should expect variety in planetary meteorites and we need to know how to recognize them when we have them. Our intent here is to show that our asteroidal perspective is inappropriate for planetary meteorites.

  15. The Strata-l Experiment on Microgravity Regolith Segregation

    NASA Technical Reports Server (NTRS)

    Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.; hide

    2016-01-01

    The Strata-1 experiment studies the segregation of small-body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples from sample return missions, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Due to observation of rocky regions on asteorids such as Eros and Itokawa, it has been hypothesized that grain size distribution with depth on an asteroid may be inhomogeneous: specifically, that large boulders have been mobilized to the surface. In terrestrial environments, this size-dependent sorting to the surface of the sample is called the Brazil Nut Effect. The microgravity and acceleration environment on the ISS is similar that of a small asteroid. Thus, Strata-1 investigates size segregation of regolith in an environment analogous to that of small bodies. Strata-1 consists of four regolith simulants in evacuated tubes, as shown in Figure 1 (Top and Middle). The simulants are (1) a crushed and sieved ordinary chondrite meteorite to simulate an asteroidal surface, (2) a carbonaceous chondrite simulant with a mixture of fine and course particles, and two simplified silicate glass simulants; (3) one with angular and (4) another with spherical particles. These materials were chosen to span a range of granular complexity. The materials were sorted into three size species pre-launch, and maintained during launch and return by a device called the Entrapulator. The hypothesis under test is that the particles that constitute a granular medium in a micro-gravity environment, subjected to a known vibration environemnt, will segregate in accordance to modeled predictions. Strata-1 is currently operating on ISS, with cameras capturing images of simulant motion throughout the one year mission. Vibration data is recorded and downlinked, and the simulants will be analyzed after return to Earth.

  16. Building Blocks of the Terrestrial Planets: Mineralogy of Hungaria Asteroids

    NASA Astrophysics Data System (ADS)

    Lucas, Michael; Emery, J. P.

    2013-10-01

    Deciphering the mineralogy of the Hungaria asteroids has the potential to place constraints on the material from which the terrestrial planets accreted. Among asteroids with semi-major axes interior to the main-belt (e.g., Hungarias, Mars-crossers, and near-Earth asteroids), only the Hungarias are located in relatively stable orbital space. Hungaria asteroids have likely resided in this orbital space since the planets completed their migration to their current orbits. The accretion and igneous differentiation of primitive asteroids appears to be a function of chronology and heliocentric distance. However, differentiated bodies that originated in the terrestrial planet region were either accreted or scattered out of this region early in solar system history. Thus, the Hungaria asteroids represent the closest reservoir of in situ material to the terrestrial planet region from early in solar system history. We present VISNIR 0.45-2.45 µm) and NIR spectra 0.65-2.45 µm) spectra of 24 Hungaria group (objects in similar orbital space) asteroids. Our NIR data (17 objects) were acquired using the InfraRed Telescope Facility and was supplemented with available visible data. Spectra of seven objects were obtained from the MIT-UH-IRTF survey. We distinguish our sample between Hungaria family (presumed fragments of parent 434 Hungaria; 2 objects) and Hungaria background (group minus family 22 objects) asteroids using proper orbital elements. The classification of each asteroid is determined using the taxonomy of Bus-DeMeo. We find that S- and S-subtypes are prevalent among the Hungaria background population (17/22). Spectral band parameters measurements (i.e., Band I and Band II centers and depths, and Band Area Ratio) indicate that eight of these S-types are analogous with undifferentiated ordinary chondrites (SIV “boot” of S-subtypes plot). Mafic silicate mineral abundances and compositions derived for these SIV asteroids mainly correlate with L chondrites. However, one object is an SIII subtype (possible ureilite analog), while two asteroids are SVI subtypes (possible primitive achondrite analog). Family member 6447 Terrycole is a Xe-type, consistent with the taxonomic classification of the parent 434 Hungaria.

  17. Water in the Early Solar System: Infrared Studies of Aqueously Altered and Minimally Processed Asteroids

    NASA Astrophysics Data System (ADS)

    McAdam, Margaret M.

    This thesis investigates connections between low albedo asteroids and carbonaceous chondrite meteorites using spectroscopy. Meteorites and asteroids preserve information about the early solar system including accretion processes and parent body processes active on asteroids at these early times. One process of interest is aqueous alteration. This is the chemical reaction between coaccreted water and silicates producing hydrated minerals. Some carbonaceous chondrites have experienced extensive interactions with water through this process. Since these meteorites and their parent bodies formed close to the beginning of the Solar System, these asteroids and meteorites may provide clues to the distribution, abundance and timing of water in the Solar nebula at these times. Chapter 2 of this thesis investigates the relationships between extensively aqueously altered meteorites and their visible, near and mid-infrared spectral features in a coordinated spectral-mineralogical study. Aqueous alteration is a parent body process where initially accreted anhydrous minerals are converted into hydrated minerals in the presence of coaccreted water. Using samples of meteorites with known bulk properties, it is possible to directly connect changes in mineralogy caused by aqueous alteration with spectral features. Spectral features in the mid-infrared are found to change continuously with increasing amount of hydrated minerals or degree of alteration. Building on this result, the degrees of alteration of asteroids are estimated in a survey of new asteroid data obtained from SOFIA and IRTF as well as archived the Spitzer Space Telescope data. 75 observations of 73 asteroids are analyzed and presented in Chapter 4. Asteroids with hydrated minerals are found throughout the main belt indicating that significant ice must have been present in the disk at the time of carbonaceous asteroid accretion. Finally, some carbonaceous chondrite meteorites preserve amorphous iron-bearing materials that formed through disequilibrium condensation in the disk. These materials are readily destroyed in parent body processes so their presence indicates the meteorite/asteroid has undergone minimal parent body processes since the time of accretion. Presented in Chapter 3 is the spectral signature of meteorites that preserve significant amorphous iron-bearing materials and the identification of an asteroid, (93) Minerva, that also appears to preserve these materials.

  18. Why we need asteroid sample return mission?

    NASA Astrophysics Data System (ADS)

    Barucci, Maria Antonietta

    2016-07-01

    Small bodies retain evidence of the primordial solar nebula and the earliest solar system processes that shaped their evolution. They may also contain pre-solar material as well as complex organic molecules, which could have a major role to the development of life on Earth. For these reasons, asteroids and comets have been targets of interest for missions for over three decades. However, our knowledge of these bodies is still very limited, and each asteroid or comet visited by space mission has revealed unexpected scientific results, e.g. the structure and nature of comet 67P/Churyumov-Gerasimenko (67P/C-G) visited by the Rosetta mission. Only in the laboratory can instruments with the necessary precision and sensitivity be applied to individual components of the complex mixture of materials that forms a small body regolith, to determine their precise chemical and isotopic composition. Such measurements are vital for revealing the evidence of stellar, interstellar medium, pre-solar nebula and parent body processes that are retained in primitive material, unaltered by atmospheric entry or terrestrial contamination. For those reasons, sample return missions are considered a high priority by a number of the leading space agencies. Abundant within the inner Solar System and the main impactors on terrestrial planets, small bodies may have been the principal contributors of the water and organic material essential to create life on Earth. Small bodies can therefore be considered to be equivalent to DNA for unravelling our solar system's history, offering us a unique window to investigate both the formation of planets and the origin of life. A sample return mission to a primitive Near-Earth Asteroid (NEA) has been study at ESA from 2008 in the framework of ESA's Cosmic Vision (CV) programme, with the objective to answer to the fundamental CV questions "How does the Solar System work?" and "What are the conditions for life and planetary formations?". The returned material will allow us to study in terrestrial laboratories some of the most primitive materials available to investigate early solar system formation processes, to explore initial stages of habitable planet formation, to identify and characterize the organics and volatiles in a primitive asteroid. The ideal easy target body for such mission is a D type NEA. D types are the most abundant asteroids beyond the outer edge of the main belt. It is likely that they formed much further out in the Solar System, possibly as far as the transneptunian objects, and were subsequently captured in their present locations following the migration of the gas giants. Spectral features indicate that these bodies are organic rich, contain fine anhydrous minerals but also may be volatile rich and appear to be the most primitive rocky material present in the solar system. In addition to addressing the major science goals, sample return mission from a NEA also involved innovative European technologies. The key sample return capabilities, i.e. asteroid navigation, touch and go, sampling mechanism and the re-entry capsule have reached at ESA a validation status to enter implementation phase. The development of sample return technology represents in Europe a crucial element for planetary science and for the space technology development.

  19. Polarimetric survey of main-belt asteroids. IV. New results from the first epoch of the CASLEO survey

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.; Cellino, A.; Bendjoya, Ph.

    2014-09-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the Torino and CASPROF polarimeters at the 2.15m telescope. The Torino polarimeter is an instrument that allows simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 1995, and until 2012 data on a large sample of asteroids were obtained. We here present and analyze the unpublished results for 129 asteroids of different taxonomic types, 56 which were polarimetrically observed for the first time. We find that the asteroids (402) Chloe and (729) Watsonia are Barbarians, and asteroid (269) Justitia shows a phase - polarization curve that seems to have a small inversion angle. Data obtained in UBVRI colors allow us to sketch an analysis of the wavelength dependence of the degree of linear polarization for 31 asteroids, in spite of some large error bars in some cases. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A122

  20. Spectral decomposition of asteroid Itokawa based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho

    2018-01-01

    The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.

  1. The Mid-plane of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Cambioni, Saverio; Malhotra, Renu

    2018-03-01

    We measure the mid-plane of the main asteroid belt by using the observational data of a nearly complete and unbiased sample of asteroids and find that it has inclination \\bar{I}=0\\buildrel{\\circ}\\over{.} 93+/- 0\\buildrel{\\circ}\\over{.} 04 and longitude of ascending node \\bar{{{Ω }}}=87\\buildrel{\\circ}\\over{.} 6+/- 2\\buildrel{\\circ}\\over{.} 6 (in J2000 ecliptic-equinox coordinate system). This plane differs significantly from previously published measurements, and it is also distinctly different than the solar system’s invariable plane as well as Jupiter’s orbit plane. The mid-plane of the asteroid belt is theoretically expected to be a slightly warped sheet whose local normal is controlled by the gravity of the major planets. Specifically, its inclination and longitude of ascending node varies with semimajor axis and time (on secular timescales) and is defined by the forced solution of secular perturbation theory; the ν 16 nodal secular resonance is predicted to cause a significant warp of the mid-plane in the inner asteroid belt. We test the secular theory by measuring the current location of the asteroids’ mid-plane in finer semimajor axis bins. We find that the measured mid-plane in the middle and outer asteroid belt is consistent, within the 3σ confidence level, with the prediction of secular perturbation theory, but a notable discrepancy is present in the inner asteroid belt near ∼2 au.

  2. A Survey of Rotation Lightcurves of Small Jovian Trojan Asteroids in the L4 Cloud

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert; Warner, Brian; James, David; Rohl, Derrick; Connour, Kyle

    2017-10-01

    Jovian Trojan asteroids are of interest both as objects in their own right and as possible relics of Solar System formation. Several lines of evidence support a common origin for, and possible hereditary link between, Jovian Trojan asteroids and cometary nuclei. Asteroid lightcurves give information about processes that have affected a group of asteroids including their density. Due to their distance and low albedos, few comet-sized Trojans have been studied. We have been carrying out a survey of Trojan lightcurve properties comparing small Trojan asteroids with comets (French et al 2015). We present new lightcurve information for 39 Trojans less than about 35 km in diameter. We report our latest results and compare them with results from the sparsely-sampled lightcurves from the Palomar Transient Factory (Waszazak et al., Chang et al. 2015). The minimum densities for objects with complete lightcurves are estimated and are found to becomparable to those measured for cometary nuclei. A significant fraction (~40%) of thisobserved small Trojan population rotates slowly (P > 24 hours), with measured periods as over 500 hours (Waszczak et al 2015). The excess of slow rotators may be due to the YORP effect. Results of the Kolmogorov-Smirnov test suggest that the distribution of Trojan rotation rates is dissimilar to those of Main Belt Asteroids of the same size.

  3. The Gulliver mission: Sample return from Deimos

    NASA Astrophysics Data System (ADS)

    Britt, D.

    The Martian moon Deimos has been accumulating material ejected from the Martian surface ever since the earliest periods of Martian history, over 4.4 Gyrs ago. Analysis of Martian ejecta, material accumulation, capture cross-section, regolith overturn, and Deimos's albedo suggest that Mars material may make up as much as 5-10% of Deimos's regolith. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. Deimos is essentially a repository of samples from ancient Mars, which would include the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. The Gulliver Mission proposes to directly collect up to 10 kilograms of Deimos regolith and return it to Earth. This sample will contain up to 1000 grams of Martian material. Because of stochastic processes of regolith mixing over 4.4 Gyrs, the rock fragments, grains, and pebble-sized materials will likely sample the diversity of the Martian ancient surface. In addition to Martian ejecta, 90% of the Deimos sample will be spectral type D asteroidal material, thought to be highly primitive and originate in the outer asteroid belt. In essence, Gulliver represents two shortcuts, to Mars sample return and to the outer asteroid belt.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masiero, Joseph R.; Mainzer, A. K.; Bauer, J. M.

    We present preliminary diameters and albedos for 13511 Main Belt asteroids (MBAs) that were observed during the 3-Band Cryo phase of the Wide-field Infrared Survey Explorer (WISE; after the outer cryogen tank was exhausted) and as part of the NEOWISE Post-Cryo Survey (after the inner cryogen tank was exhausted). With a reduced or complete loss of sensitivity in the two long wavelength channels of WISE, the uncertainty in our fitted diameters and albedos is increased to {approx}20% for diameter and {approx}40% for albedo. Diameter fits using only the 3.4 and 4.6 {mu}m channels are shown to be dependent on themore » literature optical H absolute magnitudes. These data allow us to increase the number of size estimates for large MBAs which have been identified as members of dynamical families. We present thermal fits for 14 asteroids previously identified as the parents of a dynamical family that were not observed during the fully cryogenic mission.« less

  5. Geodynamic stability of the primary in the binary asteroid system 65803 Didymos

    NASA Astrophysics Data System (ADS)

    Barnouin, Olivier S.; Maurel, Clara; Richardson, Derek C.; Ballouz, Ronald-Louis; Schwartz, Stephen; Michel, Patrick

    2015-11-01

    The moon of the near-Earth binary asteroid 65803 Didymos is the target of the Asteroid Impact and Deflection Assessment (AIDA) mission. This mission is a joint concept between NASA and ESA to investigate the effectiveness of a kinetic impactor in deflecting an asteroid. The mission is composed of two components: the NASA-led Double Asteroid Redirect Test (DART) that will impact the Didymos moon, and the ESA-led Asteroid Impact Monitoring (AIM) mission that will characterize the Didymos system. In order to provide AIDA constraints on the physical character of the both objects in this binary system, we undertook preliminary numerical investigations to evaluate the stability of the shape of the primary using its rapid 2.26 h rotation. We modeled the primary as a rubble pile. Each model consisted of thousands of uniform rigid spheres collapsed together under their own gravity to form a spherical pile that was then carved to match the current radar-derived shape model of the primary, as well as other comparable shapes (e.g. asteroid 1999 KW4, spheres) that were scaled to match best estimates of the size of Didymos. Each model was given a starting rotation period of 6 h with the spin axis aligned to the pole. At each timestep the spin rate was increased by a small amount so that after about 1 million timesteps the spin would match the observed rotation of 2.26 h. We tested a range of bulk densities spanning the current observational uncertainty (mean 2.4 g/cc) using "gravel"-like material parameters that provide significant resistance to sliding and rolling. We find that at the upper range of the density uncertainty it is possible for Didymos to hold its shape and not lose mass at its nominal rotation period, without the need for cohesive forces. At lower densities or with smoother particles, significant shape change occurs and mass loss is possible. We conclude that based on the radar shape available at the time of this writing, Didymos is marginally stable as a rubble pile with bulk density close to 3 g/cc. Revisions to the radar shape in process may allow for stability at lower bulk densities without cohesion. These results suggest that the moon of Didymos may also not be heavily influenced by cohesion.

  6. Possible Thermal Metamorphism on the C Asteroids Seen from the 3-micrometer Hydration Band in Comparison with Heated CI/CM Meteorites

    NASA Astrophysics Data System (ADS)

    Hiroi, T.; Pieters, C. M.; Zolensky, M. E.; Lipschutz, M. E.

    1995-09-01

    Thermal metamorphism study of the C (including G, B, and F) asteroids [1] is revisited using their selected reflectance spectra (0.3-3.6 micrometers) [2]. Laboratory spectra of some carbonaceous chondrites and heated Murchison samples [3] have been also measured for comparison. Both CI1 and CM2 meteorites have a characteristic 3-micrometer hydration band [4] at various strengths, and most CM2 meteorites also have 0.7, 0.9, and 1.1-micrometer bands due to ferric/ferrous Fe in septechlorites (Fig. 1). The unusual CI/CM meteorites (Y-86720, B-7904, Y-82162, etc.) that have evidence of thermal metamorphism have no 0.7-micrometer band but still have a weak 3-micrometer band. The 3-micrometer band of heated Murchison samples is gradually reduced for samples heated up to 500 degrees C and gone around 600 degrees C. The 0.7-micrometer band is gone even before 400 degrees C. The 3-micrometer band strengths of the unusual CI/CM meteorites correspond to the heating temperature between 500 and 600 degrees C if the process was similar to the Murchison heating experiment. None of the C asteroids have both the 3-micrometer band strength and overall spectral profile comparable to the common CI/CM meteorites studied here. Among the seven selected asteroids, only two have a meteorite counterpart over this wavelength range. Asteroid 511 Davida and B-7904 are the best counterparts in both spectral shape and brightness (Fig. 1). Existence of the unusual CI/CM meteorites suggests that there were their parent bodies that contained water (ice) at appropriate temperatures over sufficient time to induce aqueous alteration and were subsequently heated up to 500-600 degrees C. It has been recently suggested that some dark inclusions of Vigarano (CV3) experienced extensive aqueous alteration followed by complete dehydration and recrystallization [5]. Since dark inclusions are common in all CV3 meteorites, aqueous alteration and late-stage heating may have been widespread on the CV3 parent bodies. Because common CI/CM meteorites are spectrally different from any of the observed asteroids, those meteorites must have come from another asteroid population, assuming the asteroid surfaces are not significantly altered by space weathering. CI/CM meteorites may have come from smaller unobservable asteroids or the lost outer portions of asteroids, which escaped extensive heating events. Acknowledgments: Antarctic meteorites were loaned from National Institute of Polar Research and Meteorite Working Group. Laboratory reflectance spectra were measured at RELAB operated under NASA grant NAGW-748. Asteroidal 3-micrometer reflectance spectra were taken from SOARD database. This research was supported in part by NASA grant NAG 9-48 to M. L. and the NASA Origins of Solar Systems Program to M. Z. References: [1] Hiroi T. et al. (1993) Science, 261, 1016-1018; Hiroi T. et al. (1994) Proc. NIPR Symp. Antarct. Meteorites, 7, 230-243. [2] Zellner B. et al. (1985) Icarus, 61, 355-416; Bell J. F. et al. (1988) LPS XIX, 57-58; Jones T. D. et al. (1990) Icarus, 88, 172-192. [3] Matza S. D. and Lipschutz M. E. (1977) Proc. LSC 8th, 161-176. [4] Miyamoto M. and Zolensky M. E. (1994) Meteoritics, 29, 849-853. [5] Kojima H. et al. (1993) Meteoritics, 28, 649-658.

  7. CM and CO chondrites: A common parent body or asteroidal neighbors? Insights from chondrule silicates

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Davidson, Jemma

    2017-10-01

    By investigating the petrology and chemical composition of type II (FeO-rich) chondrules in the Mighei-like carbonaceous (CM) chondrites we constrain their thermal histories and relationship to the Ornans-like carbonaceous (CO) chondrites. We identified FeO-rich relict grains in type II chondrules by their Fe/Mn ratios; their presence indicates chondrule recycling among type II chondrules. The majority of relict grains in type II chondrules are FeO-poor olivine grains. Consistent with previous studies, chemical similarities between CM and CO chondrite chondrules indicate that they had similar formation conditions and that their parent bodies probably formed in a common region within the protoplanetary disk. However, important differences such as mean chondrule size and the lower abundance of FeO-poor relicts in CM chondrite type II chondrules than in CO chondrites suggest CM and CO chondrules did not form together and they likely originate from distinct parent asteroids. Despite being aqueously altered, many CM chondrites contain pre-accretionary anhydrous minerals (i.e., olivine) that are among the least thermally metamorphosed materials in chondrites according to the Cr2O3 content of their ferroan olivine. The presence of these minimally altered pre-accretionary chondrule silicates suggests that samples to be returned from aqueously altered asteroids by the Hayabusa2 and OSIRIS-REx asteroid sample return missions, even highly hydrated, may contain silicates that can provide information about the pre-accretionary histories and conditions of asteroids Ryugu and Bennu, respectively.

  8. Reentry Capsule for Sample Return from Asteroids in the Planetary Exploration Missions

    NASA Astrophysics Data System (ADS)

    Inatani, Yoshifumi

    2018-04-01

    For carrying sample from the bodies of interplanetary space, a wide range of knowledge of reentry technology is needed. HAYABUSA(MUSES-C) was an asteroid explorer returned to the earth after the 7 years of voyage, and its capsule reenters into the Earth’s atmosphere, which was a good example of reentry technology implemented to the flight vehicle. It performed a safe reentry flight and recovery. For the design of the capsule, many considerations were made due to its higher entry velocity and higher aerodynamic heating than those of normal reentry from the low earth orbit. Taking into account the required functions throughout the orbital flight, reentry flight, and descent/recovery phase, the capsule was deigned, tested, manufactured and flight demonstrated finally. The paper presents the concept of the design and qualification approach of the small space capsule of the asteroid sample and return mission. And presented are how the reentry flight was performed and a brief overview of the post flight analysis primarily for these design validation purposes and for the better understanding of the flight results.

  9. Development and Testing of Harpoon-Based Approaches for Collecting Comet Samples

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd (Compiler); Nuth, Joseph (Compiler); Amatucci, Edward (Compiler); Wegel, Donald; Smith, Walter; Church, Joseph; Leary, James; Kee, Lake; Hill, Stuart; Grebenstein, Markus; hide

    2017-01-01

    Comets, having bright tails visible to the unassisted human eye, are considered to have been known about since pre-historic times. In fact 3,000-year old written records of comet sightings have been identified. In comparison, asteroids, being so dim that telescopes are required for observation, were not discovered until 1801. Yet, despite their later discovery, a space mission returned the first samples of an asteroid in 2010 and two more asteroid sample return missions have already been launched. By contrast no comet sample return mission has ever been funded, despite the fact that comets in certain ways are far more scientifically interesting than asteroids. Why is this? The basic answer is the greater difficulty, and consequently higher cost, of a comet sample return mission. Comets typically are in highly elliptical heliocentric orbits which require much more time and propulsion for Space Craft (SC) to reach from Earth and then return to Earth as compared to many asteroids which are in Earth-like orbits. It is also harder for a SC to maneuver safely near a comet given the generally longer communications distances and the challenge of navigating in the comet's, when the comet is close to perihelion, which turns out to be one of the most interesting times for a SC to get close to the comet surface. Due to the science value of better understanding the sublimation of volatiles near the comet surface, other contributions to higher cost as desire to get sample material from both the comet surface and a little below, to preserve the stratigraphy of the sample, and to return the sample in a storage state where it does not undergo undesirable alterations, such as aqueous. In response to these challenges of comet sample return missions, the NASA Goddard Space Flight Center (GFSC) has worked for about a decade (2006 to this time) to develop and test approaches for comet sample return that would enable such a mission to be scientifically valuable, while having acceptably low risk and an affordable cost. A harpoon-based approach for gathering comet samples appears to offer the most effective way of accomplishing this goal. As described below, with a decade of development, analysis, testing and refinement, the harpoon approach has evolved from a promising concept to a practical element of a realistic comet sample return mission. Note that the following material includes references to videos, all of which are contained in different sections of the video supplement identified in the references. Each video will be identified as "SS##", where "SS" means the supplement section and "##" will be the number of the section.

  10. Overview of a Preliminary Destination Mission Concept for a Human Orbital Mission to the Martial Moons

    NASA Technical Reports Server (NTRS)

    Mazanek, D. D.; Abell, P. A.; Antol, J.; Barbee, B. W.; Beaty, D. W.; Bass, D. S.; Castillo-Rogez, J. C.; Coan, D. A.; Colaprete, A.; Daugherty, K. J.; hide

    2012-01-01

    The National Aeronautics and Space Administration s Human Spaceflight Architecture Team (HAT) has been developing a preliminary Destination Mission Concept (DMC) to assess how a human orbital mission to one or both of the Martian moons, Phobos and Deimos, might be conducted as a follow-on to a human mission to a near-Earth asteroid (NEA) and as a possible preliminary step prior to a human landing on Mars. The HAT Mars-Phobos-Deimos (MPD) mission also permits the teleoperation of robotic systems by the crew while in the Mars system. The DMC development activity provides an initial effort to identify the science and exploration objectives and investigate the capabilities and operations concepts required for a human orbital mission to the Mars system. In addition, the MPD Team identified potential synergistic opportunities via prior exploration of other destinations currently under consideration.

  11. Ground-based characterization of Hayabusa2 mission target asteroid 162173 Ryugu: constraining mineralogical composition in preparation for spacecraft operations

    NASA Astrophysics Data System (ADS)

    Le Corre, Lucille; Sanchez, Juan A.; Reddy, Vishnu; Takir, Driss; Cloutis, Edward A.; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri

    2018-03-01

    Asteroids that are targets of spacecraft missions are interesting because they present us with an opportunity to validate ground-based spectral observations. One such object is near-Earth asteroid (NEA) (162173) Ryugu, which is the target of the Japanese Space Agency's (JAXA) Hayabusa2 sample return mission. We observed Ryugu using the 3-m NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on 2016 July 13 to constrain the object's surface composition, meteorite analogues, and link to other asteroids in the main belt and NEA populations. We also modelled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Ishiguro et al. Our spectral analysis has found a near-perfect match between our spectrum of Ryugu and those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regoliths have similar composition. We compared Ryugu's spectrum with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as a possible source of Ryugu by Campins et al. We found that the spectrum of Clarissa shows significant differences with our spectrum of Ryugu, but it is similar to the spectrum obtained by Moskovitz et al. The best possible meteorite analogues for our spectrum of Ryugu are two CM2 carbonaceous chondrites, Mighei and ALH83100.

  12. Lunar and Planetary Science XXXVI, Part 14

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Destruction of Presolar Silicates by Aqueous Alteration Observed in Murchison CM2 Chondrite. Generation of Chondrule Forming Shock Waves in Solar Nebula by X-Ray Flares. TEM and NanoSIMS Study of Hydrated/Anhydrous Phase Mixed IDPs: Cometary or Asteroidal Origin? Inflight Calibration of Asteroid Multiband Imaging Camera Onboard Hayabusa: Preliminary Results. Corundum and Corundum-Hibonite Grains Discovered by Cathodoluminescence in the Matrix of Acfer 094 Meteorite. Spatial Extent of a Deep Moonquake Nest A Preliminary Report of Reexamination. Modal Abundances of Carbon in Ureilites: Implications for the Petrogenesis of Ureilites. Trapped Noble Gas Components and Exposure History of the Enstatite Chondrite ALH84206. Deep-seated Crustal Material in Dhofar Lunar Meteorites: Evidence from Pyroxene Chemistry. Numerical Investigations of Kuiper Belt Binaries. Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold. Hecates Tholus, Mars: Nighttime Aeolian Activity Suggested by Thermal Images and Mesoscale Atmospheric Model Simulations. Are the Apollo 14 High-Al Basalts Really Impact Melts? Garnet in the Lunar Mantle: Further Evidence from Volcanic Glass Beads. The Earth/Mars Dichotomy in Mg/Si and Al/Si Ratios: Is It Real? Dissecting the Polar Asymmetry in the Non-Condensable Gas Enhancement on Mars: A Numerical Modeling Study. Cassini VIMS Preliminary Exploration of Titan s Surface Hemispheric Albedo Dichotomy. An Improved Instrument for Investigating Planetary Regolith Microstructure. Isotopic Composition of Oxygen in Lunar Zircons Preliminary Design of Visualization Tool for Hayabusa Operation. Size and Shape Distributions of Chondrules and Metal Grains Revealed by X-Ray Computed Tomography Data. Properties of Permanently Shadowed Regolith. Landslides in Interior Layered Deposits, Valles Marineris, Mars: Effects of Water and Ground Shaking on Slope Stability. Mars: Recent and Episodic Volcanic, Hydrothermal, and Glacial Activity Revealed by Mars Express High Resolution Stereo Camera (HRSC). The Cratering Record of the Saturnian Satellites Phoebe, Tethys, Dione and Iapetus in Comparison: First Results from Analysis of the Cassini ISS Imaging Data. Joint Crossover Solutions of Altimetry and Image Data on 433 Eros. The Martian Soil as a Geochemical Sink for.

  13. Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS): Stony Asteroids Abundant in the Background and Family Populations

    NASA Astrophysics Data System (ADS)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2016-10-01

    The Hungaria region represents a "purgatory" for the closest, preserved samples of the material from which the terrestrial planets accreted. The Hungaria region harbors a collisional family of Xe-type asteroids, which are situated among a background of predominantly S-complex asteroids. Deciphering their surface composition may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We hypothesize that planetesimals in the inner part of the primordial asteroid belt experienced partial- to full-melting and differentiation, the Hungaria region should retain any petrologically-evolved material that formed there.We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) spectra to characterize taxonomy, surface mineralogy, and potential meteorite analogs. We used NIR instruments at two ground-based facilities (NASA IRTF; TNG). Our data set includes spectra of 82 Hungaria asteroids (61 background; 21 family), 65 were observed during HARTSS. We compare S-complex background asteroids to calibrations developed via laboratory analyses of ordinary chondrites, and to our analyses (EPMA, XRD, VIS+NIR spectra) of 11 primitive achondrite (acapulcoite-lodranite clan) meteorites.We find that stony S-complex asteroids dominate the Hungaria background population (~80%). Background objects exhibit considerable spectral diversity, when quantified by spectral band parameter measurements, translates to a variety of surface compositions. Two main meteorite groups are represented within the Hungaria background: unmelted, nebular L chondrites (and/or L chondrites), and partially-melted primitive achondrites. H-chondrite mineralogies appear to be absent from the Hungaria background. Xe-type Hungaria family members exhibit spectral homogeneity, consistent with the hypothesis that the family was derived from the disruption of a parent body analogous to an enstatite achondrite (i.e., aubrite) composition. Hungaria region asteroids exhibit a full range of petrologic evolution, from nebular, unmelted ordinary chondrites, through partially-melted primitive achondrites, to fully-melted igneous aubrite meteorites.

  14. Sample Curation in Support of the OSIRIS-REx Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Righter, Kevin; Nakamura-Messenger, Keiko

    2017-01-01

    The OSIRIS-REx asteroid sample return mission launched to asteroid Bennu Sept. 8, 2016. The spacecraft will arrive at Bennu in late 2019, orbit and map the asteroid, and perform a touch and go (TAG) sampling maneuver in July 2020. After sample is stowed and confirmed the spacecraft will return to Earth, and the sample return capsule (SRC) will land in Utah in September 2023. Samples will be recovered from Utah [2] and then transported and stored in a new sample cleanroom at NASA Johnson Space Center in Houston [3]. The materials curated for the mission are described here. a) Materials Archive and Witness Plate Collection: The SRC and TAGSAM were built between March 2014 and Summer of 2015, and instruments (OTES,OVIRS, OLA, OCAMS, REXIS) were integrated from Summer 2015 until May 2016. A total of 395 items were received for the materials archive at NASA-JSC, with archiving finishing 30 days after launch (with the final archived items being related to launch operations)[4]. The materials fall into several general categories including metals (stainless steel, aluminum, titanium alloys, brass and BeCu alloy), epoxies, paints, polymers, lubricants, non-volatile-residue samples (NVR), sapphire, and various miscellaneous materials. All through the ATLO process (from March 2015 until late August 2016) contamination knowledge witness plates (Si wafer and Al foil) were deployed in the various cleanrooms in Denver and KSC to provide an additional record of particle counts and volatiles that is archived for current and future scientific studies. These plates were deployed in roughly monthly increments with each unit containing 4 Si wafers and 4 Al foils. We archived 128 individual witness plates (64 Si wafers and 64 Al foils); one of each witness plate (Si and Al) was analyzed immediately by the science team after archiving, while the remaining 3 of each are archived indefinitely. Information about each material archived is stored in an extensive database at NASA-JSC, and key summary information for each will be presented in an online catalog. b) Bulk Asteroid sample: The Touch and Go Sampling Mechanism (TAGSAM) head will contain up to 1.5 kg of asteroid material. Upon return to Earth, the TAGSAM head with the sample canister will be subjected to a nitrogen purge and then opened in a nitrogen cabinet in Houston. Once the TAGSAM head is removed from the canister, it will be dis-assembled slowly and carefully under nitrogen until the sample can be removed for processing in a dedicated nitrogen glovebox. Bennu surface samples are expected to be sub-cm sized, based on thermal infrared and radar polarization ratio measurements [1]. The upper limit on material collected by the TAGSAM head is 2 cm. Therefore, we will be prepared to handle, subdivide, and characterize materials of a wide grain size (from 10 ?m to 2 cm), and for both organic (UV fluorescence) and inorganic (SEM, FTIR, optical) properties. Representative portions of the bulk sample will be prepared for JAXA (0.5 %; see also [5]) and Canadian Space Agency (4%), with the remaining divided between the science team (<25%) and archived for future studies (NASA) (>75%). c) Contact Pad samples: The base of the TAGSAM head contains 24 contact pads that are designed to trap the upper surface layer of material and thus offer an opportunity to study asteroid samples that have resided at the very top surface of the regolith. Asteroid material is trapped on the pads in spring steel Velcro hooks, and material will have to be removed from these pads by curation specialists in the lab. d) Hardware: Some canister and SRC hardware items will contain information that will be important to understanding the collected samples, including the canister gas filter, temperature strips, flight witness plates, and the TAGSAM and canister parts that might have adhering dust grains. Some challenges remaining for both bulk sample and contact pad samples include: i) working with intermediate size range (200 to 500 micron) samples - a size range NASA has not previously worked in such detail; ii) techniques for removal of contact pad material from the spring steel hooks, iii) static electrical effects of dust sized particles during sample handling and curation is likely to be significant, and iv) the TAGSAM head and associated canister hardware will undoubtedly be coated with fine adhering dust grains from Bennu. In the case of collection of a large bulk sample mass, the adhering dust grains may be of lower priority. If a small sample mass is returned, the adhering dust may attain a higher priority, so recovery of adhering dust grains is an additional challenge to consider. In the year leading up to sample return we plan a variety of sample handling rehearsals that will enables the curation team to be prepared for many new aspects posed by this sample suite.

  15. The Fossilized Size Distribution of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Durda, D.; Nesvorny, D.; Jedicke, R.; Morbidelli, A.

    2003-05-01

    At present, we do not understand how the main asteroid belt evolved into its current state. During the planet formation epoch, the primordial main belt (PMB) contained several Earth masses of material, enough to allow the asteroids to accrete on relatively short timescales (e.g., Weidenschilling 1977). The present-day main belt, however, only contains 5e-4 Earth masses of material (Petit et al. 2002). Constraints on this evolution come from (i) the observed fragments of differentiated asteroids, (ii) meteorites collected from numerous differentiated parent bodies, (iii) the presence of ˜ 10 prominent asteroid families, (iv) the "wavy" size-frequency distribution of the main belt, which has been shown to be a by-product of substantial collisional evolution (e.g., Durda et al. 1997), and (v) the still-intact crust of (4) Vesta. To explain the contradictions in the above constraints, we suggest the PMB evolved in this fashion: Planetesimals and planetary embryos accreted (and differentiated) in the PMB during the first few Myr of the solar system. Gravitational perturbations from these embryos dynamically stirred the main belt, enough to initiate fragmentation. When Jupiter reached its full size, some 10 Myr after the solar system's birth, its perturbations, together with those of the embryos, dynamically depleted the main belt region of ˜ 99% of its bodies. Much of this material was sent to high (e,i) orbits, where it continued to pummel the surviving main belt bodies at high impact velocities for more than 100 Myr. While some differentiated bodies in the PMB were disrupted, most were instead scattered; only small fragments from this population remain. This period of comminution and dynamical evolution in the PMB created, among other things, the main belt's wavy size distribution, such that it can be considered a "fossil" from this violent early epoch. From this time forward, however, relatively little collisional evolution has taken place in the main belt, consistent with the surprising paucity of prominent asteroid families. Preliminary modeling results of this scenario and implications will be presented.

  16. Electrostatic Levitation of Fines on Asteroids

    NASA Astrophysics Data System (ADS)

    Lee, P.

    1995-09-01

    Electrostatic fields can develop at the surface of resistive asteroids exposed directly to solar radiation and to the solar wind. As on the Moon (e.g., [1-3]), the process may lead to the levitation and transport of charged grains, and contribute to winnowing asteroidal regoliths of their finest particle size fraction. Two commonly proposed mechanisms for the levitation of dust on the Moon are applied to asteroids. The first depends on global scale electrostatic fields and involves the development of a near-surface photoelectron layer over the asteroid's sunlit hemisphere [4,5] ; the second involves local fields near the terminator and particle charging by higher-energy photoelectron emission on the sunlit faces of blocks and other small-scale prominences [6,7]. Preliminary modeling results suggest that on a sufficiently resistive and slow-rotating asteroid at a heliocentric distance of 3 AU, the subsolar region evolves surface electrostatic fields of ~5 V/m^-1, while field intensities in the terminator zone may reach ~10^5 V/m^-1. Charged regolithic fines are easily levitated, their fate being a function of their charge and size. On a 20 km-radius chondritic main belt asteroid, particles up to ~100 microns across may be electro- statically accelerated to escape. Fines <=1 micron across are subject to radiation pressure and/or to solar wind drag as soon as they are lofted, and may be quickly entrained to escape even if initially launched at sub-escape velocities. Larger particles levitated in the sub-escape regime remain gravitationally bound to the asteroid and experience lateral transport along local electrostatic and gravity gradients. The particles may migrate across the asteroid's surface indefinitely or, more likely, until they settle in perenially shadowed areas and/or topographic lows (craters or grooves), thus smoothing the asteroid's topography and minimizing shadows. They will remain on the asteroid until ejected by impacts or until the particles are further comminuted by micrometeoritic sandblasting. Remote-sensing studies of asteroids and the examination of meteorite regolithic breccias indicate that, in comparison to the lunar regolith, asteroidal regoliths are generally deficient in fine-grained material <=100 microns across (i.e. in dust and agglutinates) (e.g., [8,9]). This characteristic, usually attributed to the preferential loss of smaller particles by micrometeoritic bombardment [10], may be in part due to electrostatic winnowing. Surface features on Phobos, Deimos and on asteroids 951 Gaspra and 243 Ida (regional albedo-topography relationships [11-13], dark-floored craters [11,14], grooves [11,15], blocks with possible basal debris aprons [16]) appear consistent with an electrophysical mobilization of fines. The inference from polarimetry [17] that the surfaces of M-type asteroids, which are thought to be metal-rich and thus unlikely to evolve strong fields, are finer-grained than most other types of asteroid surfaces suggests that the size of the smallest particles retained on asteroids may indeed be related to their electrophysical properties. Although many unknowns remain with regard to the actual electrophysical properties of asteroid surfaces and to the true effectiveness of the levitation mechanisms invoked, the available models predict interesting results. Electrostatic levitation offers an additional means of particle segregation, transport, and removal on asteroids. The process is expected to be more effective closer to the sun, on less massive objects, on asteroids with a slower spin rate, on the more resistive surfaces, over the more rugged terrain, for less dense particles, and for smaller grains. References: [1] Rennilson J. J. and Criswell D. R. (1974) Moon, 10, 121-142. [2] Berg O. E. et al. (1974) GRL, 1, 289. [3] Whipple E. C. (1981) Rept. Prog. Phys., 44, 1197-1250. [4] Singer S. F. and Walker E. H. (1962) Icarus, 1, 7-12. [5] Mendis D. A. et al. (1981) Astrophys. J., 249, 789-797. [6] Criswell D. R. (1973) in Photons and Particle Interactions with Surfaces in Space (R. Grard, ed.), 545-556. [7] De B. R. and Criswell D. R. (1977) JGR, 82, 999-1004. [8] McKay D. S. et al. (1989) in Asteroids II (R. Binzel et al., eds.), 617-642. [9] Bunch T. E. and Rajan R. S. (1988) in Meteorites and the Early Solar System (J. Kerridge and M. Matthews, eds.), 144-164. [10] Matson D. L. et al. (1977). Proc. LSC 8th, 1001-1011. [11] Thomas P. and Veverka J. (1979) in Asteroids (T. Gehrels, ed.), 628-651. [12] Helfenstein P. et al. (1994) Icarus, 107, 37-60. [13] Helfenstein P. et al. (1995) Icarus, submitted. [14] Sullivan R. et al. (1995) Icarus, submitted. [15] Veverka J. et al. (1994) Icarus, 107, 72-83. [16] Lee P. et al. (1995) Icarus, submitted. [17] Dollfus A. et al. (1989) in Asteroids II (R. Binzel et al., eds.), 594-616.

  17. Numerical simulations of regolith sampling processes

    NASA Astrophysics Data System (ADS)

    Schäfer, Christoph M.; Scherrer, Samuel; Buchwald, Robert; Maindl, Thomas I.; Speith, Roland; Kley, Wilhelm

    2017-07-01

    We present recent improvements in the simulation of regolith sampling processes in microgravity using the numerical particle method smooth particle hydrodynamics (SPH). We use an elastic-plastic soil constitutive model for large deformation and failure flows for dynamical behaviour of regolith. In the context of projected small body (asteroid or small moons) sample return missions, we investigate the efficiency and feasibility of a particular material sampling method: Brushes sweep material from the asteroid's surface into a collecting tray. We analyze the influence of different material parameters of regolith such as cohesion and angle of internal friction on the sampling rate. Furthermore, we study the sampling process in two environments by varying the surface gravity (Earth's and Phobos') and we apply different rotation rates for the brushes. We find good agreement of our sampling simulations on Earth with experiments and provide estimations for the influence of the material properties on the collecting rate.

  18. Data Report: A Search for Deposits of the Late Pliocene Impact of the Eltanin Asteroid in Rise Sediments from the Antarctic Peninsula, Site 1096

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2003-01-01

    Concentrations of Ir have been measured in 87 sediment samples from Ocean Drilling Program Site 1096 in search of evidence of fallout from the impact of the Eltanin asteroid, which occurred at 2.15 Ma, approx. 1300 km northwest of the site. An additional six samples were measured from a unique sand layer and adjacent sediments that are dated at approx. 1.6 Ma. These 93 sediment samples are all silts and muds that were deposited on a continental rise drift of the Antarctic Peninsula. No evidence of the Eltanin impact deposit was found in this study.

  19. Transmission Electron Microscopy of Itokawa Regolith Grains

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Berger, E. L.

    2013-01-01

    Introduction: In a remarkable engineering achievement, the JAXA space agency successfully recovered the Hayabusa space-craft in June 2010, following a non-optimal encounter and sur-face sampling mission to asteroid 25143 Itokawa. These are the first direct samples ever obtained and returned from the surface of an asteroid. The Hayabusa samples thus present a special op-portunity to directly investigate the evolution of asteroidal sur-faces, from the development of the regolith to the study of the effects of space weathering. Here we report on our preliminary TEM measurements on two Itokawa samples. Methods: We were allocated particles RA-QD02-0125 and RA-QD02-0211. Both particles were embedded in low viscosity epoxy and thin sections were prepared using ultramicrotomy. High resolution images and electron diffraction data were ob-tained using a JEOL 2500SE 200 kV field-emission scanning-transmission electron microscope. Quantitative maps and anal-yses were obtained using a Thermo thin-window energy-dispersive x-ray (EDX) spectrometer. Results: Both particles are olivine-rich (Fo70) with µm-sized inclusions of FeS and have microstructurally complex rims. Par-ticle RA-QD02-0125 is rounded and has numerous sub-µm grains attached to its surface including FeS, albite, olivine, and rare melt droplets. Solar flare tracks have not been observed, but the particle is surrounded by a continuous 50 nm thick, stuctur-ally disordered rim that is compositionally similar to the core of the grain. One of the surface adhering grains is pyrrhotite show-ing a S-depleted rim (8-10 nm thick) with nanophase Fe metal grains (<5 nm) decorating the outermost surface. The pyrrhotite displays a complex superstructure in its core that is absent in the S-depleted rim. Particle RA-QD02-0211 contains solar flare particle tracks (2x109 cm-2) and shows a structurally disordered rim 100 nm thick. The track density corresponds to a surface exposure of 103-104 years based on the track production rate of [1]. The dis-ordered rim is nanocrystalline with minor amorphous material between crystalline domains. Quantitative element maps show the outermost 10 nm of the disordered rim is Si-rich. Discussion and Conclusions: Both particles record the ef-fects of space weathering processes on Itokawa. Noguchi et al. [2] proposed that the disordered rims they observed on Itokawa particles largely result from solar wind radiation damage and we arrive at a similar conclusion for the two particles we analyzed. The microstructure of the S-depleted layer on the pyrrhotite grain in RA-QD02-0125 is similar to that observed in troilite irradiated with 1018 4 kV He+ [3, 4]. Prolonged irradiation has also been shown to disorder pyrrhotite such that the superstructure reflec-tions are lost [5].

  20. Reachable Sets for Multiple Asteroid Sample Return Missions

    DTIC Science & Technology

    2005-12-01

    reduce the number of feasible asteroid targets. Reachable sets are defined in a reduced classical orbital element space. The boundary of this...Reachable sets are defined in a reduced classical orbital element space. The boundary of this reduced space is obtained by extremizing a family of...aliasing problems. Other coordinate elements , such as equinoctial elements , can provide a set of singularity-free slowly changing variables, but

  1. Hayabusa2 NIRS3’s Investigation to Characterize and Select Sampling and Landing Sites on Asteroid (25143) Ryugu

    NASA Astrophysics Data System (ADS)

    Takir, Driss; Hibbitts, Charles A.; Le Corre, Lucille; Emery, Joshua P.; Kitazato, Kohei; Sugita, Seiji; Nakauchi, Yusuke

    2017-10-01

    Following the visit of the spacecraft Hayabusa to (25143) Itokawa in 2005, the Japanese Space Agency (JAXA) launched a second spacecraft, Hayabusa2, in 2014 to the near-Earth Apollo asteroid (162173) Ryugu, a C-complex asteroid. Hayabusa2 will arrive at Ryugu in 2018. Near-Earth asteroids (NEAs) are important objects to study because of their possible role in the delivery of water and complex organic molecules to early Earth, and their threats to impact the Earth at irregular and unpredictable periods in the future. Hayabusa2 mission will provide exceptional science with a primary objective to illuminate the origin, evolution, and distribution of volatiles and organics on the surface of Ryugu and in the Solar System. Here we present our Near Infrared Spectrometer(NIRS3)-related strategy and plan to help the science team to characterize and select sampling and landing sites to collect carbonaceous samples from Ryugu and bring them back to Earth in 2020. Our plan includes, (1) measuring spectra of various carbonaceous chondrites and end-member hydrated silicates under asteroid-like conditions (vacuum and elevated temperatures) to develop spectral parameters of minerals and chemical compounds that we expect to detect on Ryugu, particularly around 2.8 to 3.2 µm, and (2) thermally and photometrically correcting Ryugu’s spectra to create site-specific and global maps of the mineralogical and chemical relative abundances across Ryugu’s surface, in addition to creating various albedo maps, including the geometric and bolometric Bond albedo. Previous 3-µm spectroscopic studies were conducted in ambient terrestrial environments, and hence were contaminated by atmospheric water. In our work, however, chondrite reflectance and hydrated mineral spectra are measured under asteroid-like conditions to remove adsorbed water and accurately compute the spectral parameters that will be used for Ryugu’s mineralogical and chemical mapping.AcknowledgementsWe wish to thank the Japan Society for the Promotion of Science Core-to-Core program (International Network of Planetary Sciences) for supporting Yusuke Nakauchi. Part of this work has been supported by NASA Hayabusa2 Participating Scientist grant NNX17AL02G (PI: Takir).

  2. Initial inflight calibration for Hayabusa2 optical navigation camera (ONC) for science observations of asteroid Ryugu

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Yamada, M.; Kouyama, T.; Tatsumi, E.; Kameda, S.; Honda, R.; Sawada, H.; Ogawa, N.; Morota, T.; Honda, C.; Sakatani, N.; Hayakawa, M.; Yokota, Y.; Yamamoto, Y.; Sugita, S.

    2018-01-01

    Hayabusa2, the first sample return mission to a C-type asteroid was launched by the Japan Aerospace Exploration Agency (JAXA) on December 3, 2014 and will arrive at the asteroid in the middle of 2018 to collect samples from its surface, which may contain both hydrated minerals and organics. The optical navigation camera (ONC) system on board the Hayabusa2 consists of three individual framing CCD cameras, ONC-T for a telescopic nadir view, ONC-W1 for a wide-angle nadir view, and ONC-W2 for a wide-angle slant view will be used to observe the surface of Ryugu. The cameras will be used to measure the global asteroid shape, local morphologies, and visible spectroscopic properties. Thus, image data obtained by ONC will provide essential information to select landing (sampling) sites on the asteroid. This study reports the results of initial inflight calibration based on observations of Earth, Mars, Moon, and stars to verify and characterize the optical performance of the ONC, such as flat-field sensitivity, spectral sensitivity, point-spread function (PSF), distortion, and stray light of ONC-T, and distortion for ONC-W1 and W2. We found some potential problems that may influence our science observations. This includes changes in sensitivity of flat fields for all bands from those that were measured in the pre-flight calibration and existence of a stray light that arises under certain conditions of spacecraft attitude with respect to the sun. The countermeasures for these problems were evaluated by using data obtained during initial in-flight calibration. The results of our inflight calibration indicate that the error of spectroscopic measurements around 0.7 μm using 0.55, 0.70, and 0.86 μm bands of the ONC-T can be lower than 0.7% after these countermeasures and pixel binning. This result suggests that our ONC-T would be able to detect typical strength (∼3%) of the serpentine absorption band often found on CM chondrites and low albedo asteroids with ≥ 4σ confidence.

  3. Probabilistic Asteroid Impact Risk Assessment for the Hypothetical PDC17 Impact Exercise

    NASA Technical Reports Server (NTRS)

    Wheeler, Lorien; Mathias, Donovan

    2017-01-01

    Performing impact risk assessment for the 2017 Planetary Defense Conference (PDC17) hypothetical impact exercise, to take place at the PDC17 conference, May 15-20, 2017. Impact scenarios and trajectories are developed and provided by NASA's Near Earth Objects Office at JPL (Paul Chodas). These results represent purely hypothetical impact scenarios, and do not reflect any known asteroid threat. Risk assessment was performed using the Probabilistic Asteroid Impact Risk (PAIR) model developed by the Asteroid Threat Assessment Project (ATAP) at NASA Ames Research Center. This presentation includes sample results that may be presented or used in discussions during the various stages of the impact exercisecenter dot Some cases represent alternate scenario options that may not be used during the actual impact exercise at the PDC17 conference. Updates to these initial assessments and/or additional scenario assessments may be performed throughout the impact exercise as different scenario options unfold.

  4. New Insights on 216 Kleopatra Based on Images Collected with the SPHERE Extreme AO System

    NASA Astrophysics Data System (ADS)

    Marchis, F.; Vernazza, P.; Hanus, J.; Marsset, M.; Yang, B.; Carry, B.; Santana-Ros, T.; Birlan, M.

    2017-12-01

    ESO allocated to our Large Asteroid Survey with SPHERE (LASS) program 152 hours of observations over four semesters (PI: Pierre Vernazza, run ID: 199.C-0074) to carry out disk-resolved images of 38 large (D≥100 km) main-belt asteroids (sampling the four main compositional classes) at high angular- resolution with VLT/SPHERE throughout their rotation in order to derive their 3-D shape, the size distribution of the largest craters, and their density. Here we focus on the analysis of SPHERE data taken in July 2017 of the triple asteroid (216) Kleopatra. Two tiny moons (3 & 5 km diameter) were discovered in September 2008 around the large (equivalent radius 67.5±2.9 km) M-type asteroid orbiting very close to the irregularly shaped primary at 300 and 700 km respectively (Descamps et al. 2010). With these additional data, our goals are i) to refine the average density of this interesting M-type asteroid ii) estimate its interior structure by detecting precession effects between the satellites iii) detect the presence of an additional moon which was suspected in W.M. Keck AO observation taken back in 2008. We will present this new data set, their analysis and new conclusion on the origins and formation of this asteroid.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waszczak, Adam; Kulkarni, Shrinivas R.; Ofek, Eran O., E-mail: waszczak@caltech.edu

    We present ultraviolet (UV) photometry (near-UV (NUV) band, 180–280 nm) of 405 asteroids observed serendipitously by GALEX from 2003 to 2012. All asteroids in this sample were detected by GALEX at least twice. Unambiguous visible-color-based taxonomic labels (C type versus S type) exist for 315 of these asteroids; of these, thermal-infrared-based diameters are available for 245. We derive NUV − V color using two independent models to predict the visual magnitude V at each NUV-detection epoch. Both V models produce NUV − V distributions in which the S types are redder than C types with more than 8σ confidence. Thismore » confirms that the S types’ redder spectral slopes in the visible remain redder than the C types’ into the NUV, this redness being consistent with absorption by silica-containing rocks. The GALEX asteroid data confirm earlier results from the International Ultraviolet Explorer, which two decades ago produced the only other sizeable set of UV asteroid photometry. The GALEX-derived NUV − V data also agree with previously published Hubble Space Telescope (HST) UV observations of asteroids 21 Lutetia and 1 Ceres. Both the HST and GALEX data indicate that NUV band is less useful than u band for distinguishing subgroups within the greater population of visible-color-defined C types (notably, M types and G types)« less

  6. The Main Asteroid Belt: The Crossroads of the Solar System

    NASA Astrophysics Data System (ADS)

    Michel, Patrick

    2015-08-01

    Orbiting the Sun between Mars and Jupiter, main belt asteroids are leftover planetary building blocks that never accreted enough material to become planets. They are therefore keys to understanding how the Solar System formed and evolved. They may also provide clues to the origin of life, as similar bodies may have delivered organics and water to the early Earth.Strong associations between asteroids and meteorites emerged thanks to multi-technique observations, modeling, in situ and sample return analyses. Spacecraft images revolutionized our knowledge of these small worlds. Asteroids are stunning in their diversity in terms of physical properties. Their gravity varies by more orders of magnitude than its variation among the terrestrial planets, including the Moon. Each rendezvous with an asteroid thus turned our geological understanding on its head as each asteroid is affected in different ways by a variety of processes such as landslides, faulting, and impact cratering. Composition also varies, from ice-rich to lunar-like to chondritic.Nearly every asteroid we see today, whether of primitive or evolved compositions, is the product of a complex history involving accretion and one or more episodes of catastrophic disruption that sometimes resulted in families of smaller asteroids that have distinct and indicative petrogenic relationships. These families provide the best data to study the impact disruption process at scales far larger than those accessible in laboratory. Tens, perhaps hundreds, of early asteroids grew large enough to thermally differentiate. Their traces are scattered pieces of their metal-rich cores and, more rarely, their mantles and crusts.Asteroids represent stages on the rocky road to planet formation. They have great stories to tell about the formation and evolution of our Solar System as well as other planetary systems: asteroid belts seem common around Sun-like stars. We will review our current knowledge on their properties, their link to other populations in the different parts of the Solar System, and the space missions devoted to these tracers of our origins, which, for a small fraction, are also potentially hazardous.

  7. Comet/Asteroid Protection System: Concept Study Executive Summary

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.

    2005-01-01

    Many of the major issues have been identified for a futuristic capability to protect against impacting comets and asteroids, and a preliminary space-based concept has been envisioned. Some of the basic concept elements, approaches, methodologies, and features have been identified. When contemplating the ability to monitor comets and asteroids continuously, there are many trade-offs between orbiting observatories and detection systems on planetary bodies without an atmosphere. Future orbit modification techniques have the potential for rapid and controlled alteration of NEO orbits, provided that high-power, compatible thermal management systems are developed. Much additional work and analysis are required to identify a final system concept, and many trade studies need to be performed to select the best mix of system capability, reliability, maintainability, and cost. Finally, it is fully appreciated that at the present time space systems are much more costly than terrestrial-based systems. Hopefully, this will change in the future. Regardless, understanding what it would take to defend against a much wider range of the impact threat will foster ideas, innovations, and technologies that could one day enable the development of such a system. This understanding is vital to provide ways of reducing the costs and quantifying the benefits that are achievable with a system like CAPS.

  8. The OSIRIS-REx Contamination Control and Witness Strategy

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Adelman, L.; Ajluni, T. M.; Andronikov, A. V.; Ballou, D. M.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Boynton, W. V.; Brucato, J. R.; hide

    2015-01-01

    The OSIRIS-REx mission (Origins, Spectral Interpretation, Resource Identification, and Security Regolith Explorer) is the third NASA New Frontiers mission. It is scheduled for launch in 2016. The primary objective of the mission is to return at least 60 g of "pristine" material from the B-type near- Earth asteroid (101955) Bennu, which is spectrally similar to organic-rich CI or CM meteorites [1]. The study of these samples will advance our understanding of materials available for the origin of life on Earth or elsewhere. The spacecraft will rendezvous with Bennu in 2018 and spend at least a year characterizing the asteroid before executing a maneuver to recover a sample of regolith in the touch-and-go sample acquisition mechanism (TAGSAM). The TAGSAM and sample is stowed in the sample return capsule (SRC) and returned to Earth in 2023.

  9. Surface Experiments on a Jupiter Trojan Asteroid in the Solar Powered Sail Mission

    NASA Astrophysics Data System (ADS)

    Okada, Tatsuaki

    2016-04-01

    Introduction: A new mission to a Jupiter Trojan asteroid is under study us-ing a solar-powered sail (SPS), and a science lander is being investigated in the joint study between Japan and Europe [1]. We present here the key sci-entific objectives and the strawman payloads of science experiments on the asteroid. Science Objectives: Jupiter Trojan asteroids are located around the Sun-Jupiter Lagrange points (L4 or L5) and most of them are classified as D- or P-type in asteroid taxonomy, but their origin still remains unknown. A classi-cal (static) model of solar system evolution indicates that they were formed around the Jupiter region and survived until now as the outer end members of asteroids. A new (dynamical) model such as Nice model suggests that they were formed at the far end of the solar system and transferred inward due to dynamical migration of giant planets [2]. Therefore physical, miner-alogical, and isotopic studies of surface materials and volatile compounds could solve their origin, and then the solar system formation [3]. Strawman Payloads: The SPS orbiter will be able to carry a 100 kg class lander with 20 kg mission payloads. Just after landing of the lander, geolog-ical, mineralogical, and geophysical observations will be performed to char-acterize the site using a panoramic optical camera, an infrared hyperspectral imager, a magnetometer, and a thermal radiometer. The surface and subsur-face materials of the asteroid will be collected into a carousel by the bullet-type and the pneumatic drill type samplers, respectively. Samples in the carousel will be investigated by a visible and an infrared microscope, and transferred for performing high resolution mass spectrometry (HRMS). Mass resolution m/dm > 30,000 is expected to investigate isotopic ratios of D/H, 15N/14N, and 18O/16O, as well as molecules from organic matters. A set of strawman payloads are tentatively determined during the lander system study [4]. The constraints to select the strawman payloads have the total mass of 20 kg, and the total consumption energy of 600 WHr. In the SPS mission, the sample-return is also studied as an option, and the lander should bring the mechanisms for sample collection and sample transfer to the mother ship. [1] Mori O. et al. (2015) 11th Low-Cost Planetary Missions Conf., S3-10. [2] Morbidelli A. et al. (2005) Nature 435, 462-466. [3] Yano H. et al., (2014) CO-SPAR 2014, B0.4-2-14. [4] Mori O. et al., Lunar Planet. Sci. Conf., 47, #1822.

  10. A Howardite-Eucrite-Diogenite (HED) Meteorite Compendium: Summarizing Samples of ASteroid 4 Vesta in Preparation for the Dawn Mission

    NASA Technical Reports Server (NTRS)

    Garber, J. M.; Righter, K.

    2011-01-01

    The Howardite-Eucrite-Diogenite (HED) suite of achondritic meteorites, thought to originate from asteroid 4 Vesta, has recently been summarized into a meteorite compendium. This compendium will serve as a guide for researchers interested in further analysis of HEDs, and we expect that interest in these samples will greatly increase with the planned arrival of the Dawn Mission at Vesta in August 2011. The focus of this abstract/poster is to (1) introduce and describe HED samples from both historical falls and Antarctic finds, and (2) provide information on unique HED samples available for study from the Antarctic Meteorite Collection at JSC, including the vesicular eucrite PCA91007, the olivine diogenite EETA79002, and the paired ALH polymict eucrites.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terai, Tsuyoshi; Takahashi, Jun; Itoh, Yoichi, E-mail: tsuyoshi.terai@nao.ac.jp

    Main-belt asteroids have been continuously colliding with one another since they were formed. Their size distribution is primarily determined by the size dependence of asteroid strength against catastrophic impacts. The strength scaling law as a function of body size could depend on collision velocity, but the relationship remains unknown, especially under hypervelocity collisions comparable to 10 km s{sup –1}. We present a wide-field imaging survey at an ecliptic latitude of about 25° for investigating the size distribution of small main-belt asteroids that have highly inclined orbits. The analysis technique allowing for efficient asteroid detections and high-accuracy photometric measurements provides sufficientmore » sample data to estimate the size distribution of sub-kilometer asteroids with inclinations larger than 14°. The best-fit power-law slopes of the cumulative size distribution are 1.25 ± 0.03 in the diameter range of 0.6-1.0 km and 1.84 ± 0.27 in 1.0-3.0 km. We provide a simple size distribution model that takes into consideration the oscillations of the power-law slope due to the transition from the gravity-scaled regime to the strength-scaled regime. We find that the high-inclination population has a shallow slope of the primary components of the size distribution compared to the low-inclination populations. The asteroid population exposed to hypervelocity impacts undergoes collisional processes where large bodies have a higher disruptive strength and longer lifespan relative to tiny bodies than the ecliptic asteroids.« less

  12. The composition of the Eureka family of Martian Trojan asteroids

    NASA Astrophysics Data System (ADS)

    Borisov, Galin; Christou, Apostolos; Bagnulo, Stefano

    2016-10-01

    The so-called Martian Trojan asteroids orbit the Sun just inside the terrestrial planet region. They are thought to date from the earliest period of the solar system's history (Scholl et al, Icarus, 2005). Recently, Christou (Icarus, 2013) identified an orbital concentration of Trojans, named the "Eureka" cluster after its largest member, 5261 Eureka. This asteroid belongs to the rare olivine-rich A taxonomic class (Rivkin et al, Icarus, 2007; Lim et al, DPS/EPSC 2011). Unlike asteroids belonging to other taxonomies (e.g. C or S), no orbital concentrations or families of A-types are currently known to exist. These asteroids may represent samples of the building blocks that came together to form Mars and the other terrestrial planets but have since been destroyed by collisions (Sanchez et al, Icarus, 2014, and references therein).We have used the X-SHOOTER echelle spectrograph on the ESO VLT KUEYEN to obtain vis-NIR reflectance spectra of asteroids in the cluster and test their genetic relationship to Eureka. During the presentation we will show the spectra, compare them with available spectra for Eureka itself and discuss the implications for the origin of this cluster and for other olivine-dominated asteroids in the Main Belt.Based on observations made with ESO Telescopes at the La Silla-Paranal Observatory under programme ID 296.C-5030 (PI: A. Christou). Astronomical Research at Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).

  13. Rotational properties of the Maria asteroid family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M.-J.; Byun, Y.-I.; Choi, Y.-J.

    2014-03-01

    The Maria family is regarded as an old-type (∼3 ± 1 Gyr) asteroid family that has experienced substantial collisional and dynamical evolution in the main belt. It is located near the 3:1 Jupiter mean-motion resonance area that supplies near-Earth asteroids to the inner solar system. We carried out observations of Maria family asteroids during 134 nights from 2008 July to 2013 May and derived synodic rotational periods for 51 objects, including newly obtained periods of 34 asteroids. We found that there is a significant excess of fast and slow rotators in the observed rotation rate distribution. The one-sample Kolmogorov-Smirnov testmore » confirms that the spin rate distribution is not consistent with a Maxwellian at a 92% confidence level. From correlations among rotational periods, amplitudes of light curves, and sizes, we conclude that the rotational properties of Maria family asteroids have been changed considerably by non-gravitational forces such as the YORP effect. Using a light-curve inversion method, we successfully determined the pole orientations for 13 Maria members and found an excess of prograde versus retrograde spins with a ratio (N{sub p} /N{sub r} ) of 3. This implies that the retrograde rotators could have been ejected by the 3:1 resonance into the inner solar system since the formation of the Maria family. We estimate that approximately 37-75 Maria family asteroids larger than 1 km have entered near-Earth space every 100 Myr.« less

  14. Surface Composition of Trojan Asteroids from Thermal-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, A.; Emery, J. P.; Lindsay, S. S.

    2017-12-01

    Asteroid origins provide an effective means of constraining the events that dynamically shaped the solar system. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the extent of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and fall into two distinct spectral groups the near infrared (NIR). Though, featureless in this spectral region, NIR spectra of Trojans either exhibit a red or less-red slope. Typically, red-sloped spectra are associated with organics, but it has been shown that Trojans are not host to much, if any, organic material. Instead, the red slope is likely due to anhydrous silicates. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 µm region exhibits strong features due to the Si-O fundamental molecular vibrations. We hypothesize that the two Trojan spectral groups have different compositions (silicate mineralogy). With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids, five red and six less-red. Preliminary results from analysis of the 10 µm region indicate red-sloped Trojans have a higher spectral contrast compared to less-red-sloped Trojans. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 µm feature with sharp cutoffs between about 9 µm and 12 µm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Further spectral analysis in the 10 µm, 18 µm, and 30 µm band region will be performed for a more robust analysis. If all Trojans come from the same region, it is expected that they share spectral and compositional characteristics. Therefore, if spectral analysis in the TIR reinforce the NIR spectral slope dichotomy, it is likely that Trojans were sourced from two different regions of the solar system. This result would provide new constraints for dynamical models that explain giant planet migration.

  15. Stratospheric Sampling and In Situ Atmospheric Chemical Element Analysis During Meteor Showers: A Resource Study

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    2000-01-01

    Resources studies for asteroidal mining evaluation have depended historically on remote sensing analysis for chemical elements. During the November 1998 Leonids meteor shower, a stratospheric balloon and various low-density capture media were used to sample fragments from Comet Tempel-Tuttle debris during a peak Earth crossing. The analysis not only demonstrates how potential sampling strategies may improve the projections for metals or rare elements in astromining, but also benchmarks materials during low temperature (-60 F), high dessication environments as seen during atmospheric exposure. The results indicate high aluminum, magnesium and iron content for various sampled particles recovered, but generalization to the sporadic meteors expected from asteroidal sources will require future improvements in larger sampling volumes before a broad-use strategy for chemical analysis can be described. A repeat of the experimental procedure is planned for the November 1999 Leonids' shower, and various improvements for atmospheric sampling will be discussed.

  16. OCAMS: The OSIRIS-REx Camera Suite

    NASA Astrophysics Data System (ADS)

    Rizk, B.; Drouet d'Aubigny, C.; Golish, D.; Fellows, C.; Merrill, C.; Smith, P.; Walker, M. S.; Hendershot, J. E.; Hancock, J.; Bailey, S. H.; DellaGiustina, D. N.; Lauretta, D. S.; Tanner, R.; Williams, M.; Harshman, K.; Fitzgibbon, M.; Verts, W.; Chen, J.; Connors, T.; Hamara, D.; Dowd, A.; Lowman, A.; Dubin, M.; Burt, R.; Whiteley, M.; Watson, M.; McMahon, T.; Ward, M.; Booher, D.; Read, M.; Williams, B.; Hunten, M.; Little, E.; Saltzman, T.; Alfred, D.; O'Dougherty, S.; Walthall, M.; Kenagy, K.; Peterson, S.; Crowther, B.; Perry, M. L.; See, C.; Selznick, S.; Sauve, C.; Beiser, M.; Black, W.; Pfisterer, R. N.; Lancaster, A.; Oliver, S.; Oquest, C.; Crowley, D.; Morgan, C.; Castle, C.; Dominguez, R.; Sullivan, M.

    2018-02-01

    The OSIRIS-REx Camera Suite (OCAMS) will acquire images essential to collecting a sample from the surface of Bennu. During proximity operations, these images will document the presence of satellites and plumes, record spin state, enable an accurate model of the asteroid's shape, and identify any surface hazards. They will confirm the presence of sampleable regolith on the surface, observe the sampling event itself, and image the sample head in order to verify its readiness to be stowed. They will document Bennu's history as an example of early solar system material, as a microgravity body with a planetesimal size-scale, and as a carbonaceous object. OCAMS is fitted with three cameras. The MapCam will record color images of Bennu as a point source on approach to the asteroid in order to connect Bennu's ground-based point-source observational record to later higher-resolution surface spectral imaging. The SamCam will document the sample site before, during, and after it is disturbed by the sample mechanism. The PolyCam, using its focus mechanism, will observe the sample site at sub-centimeter resolutions, revealing surface texture and morphology. While their imaging requirements divide naturally between the three cameras, they preserve a strong degree of functional overlap. OCAMS and the other spacecraft instruments will allow the OSIRIS-REx mission to collect a sample from a microgravity body on the same visit during which it was first optically acquired from long range, a useful capability as humanity reaches out to explore near-Earth, Main-Belt and Jupiter Trojan asteroids.

  17. The OSIRIS-REx Laser Altimeter (OLA) Investigation and Instrument

    NASA Astrophysics Data System (ADS)

    Daly, M. G.; Barnouin, O. S.; Dickinson, C.; Seabrook, J.; Johnson, C. L.; Cunningham, G.; Haltigin, T.; Gaudreau, D.; Brunet, C.; Aslam, I.; Taylor, A.; Bierhaus, E. B.; Boynton, W.; Nolan, M.; Lauretta, D. S.

    2017-10-01

    The Canadian Space Agency (CSA) has contributed to the Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) spacecraft the OSIRIS-REx Laser Altimeter (OLA). The OSIRIS-REx mission will sample asteroid 101955 Bennu, the first B-type asteroid to be visited by a spacecraft. Bennu is thought to be primitive, carbonaceous, and spectrally most closely related to CI and/or CM meteorites. As a scanning laser altimeter, the OLA instrument will measure the range between the OSIRIS-REx spacecraft and the surface of Bennu to produce digital terrain maps of unprecedented spatial scales for a planetary mission. The digital terrain maps produced will measure ˜7 cm per pixel globally, and ˜3 cm per pixel at specific sample sites. In addition, OLA data will be used to constrain and refine the spacecraft trajectories. Global maps and highly accurate spacecraft trajectory estimates are critical to infer the internal structure of the asteroid. The global and regional maps also are key to gain new insights into the surface processes acting across Bennu, which inform the selection of the OSIRIS-REx sample site. These, in turn, are essential for understanding the provenance of the regolith sample collected by the OSIRIS-REx spacecraft. The OLA data also are important for quantifying any hazards near the selected OSIRIS-REx sample site and for evaluating the range of tilts at the sampling site for comparison against the capabilities of the sample acquisition device.

  18. Spacewatch Survey for Asteroids and Comets

    DTIC Science & Technology

    2005-11-01

    radar images. Relationship of Spacewatch to the WISE spacecraft mission: E. L. Wright of the UCLA Astronomy Dept. is the PI of the Wide-field Infrared ...Survey Explorer (WISE) MIDEX spacecraft mission. WISE will map the whole sky at thermal infrared wavelengths with 500 times more sensitivity than the...elongations. WISE=s detections in the thermal infrared will also provide a size-limited sample of asteroids instead of the brightness-limited surveys

  19. Prediction and Confirmation of V-type Asteroids Beyond 2.5 AU Based on SDSS Colors

    NASA Astrophysics Data System (ADS)

    Binzel, Richard P.; Masi, G.; Foglia, S.

    2006-09-01

    We apply a taxonomic classification system developed by Masi et al. (2006, submitted to Icarus) to identify C-, S-, and V-type asteroids present within the 3rd Release of the Sloan Digital Sky Survey Moving Object Catalog (SDSS MOC3). The classifications deduced by Masi et al. for 43,000 asteroids using SDSS colors are based on the taxonomy of Bus (1999; MIT Ph.D. thesis). To link SDSS colors to the Bus taxonomy, Masi et al. (2006) use 149 objects measured in common by both SDSS and the Small Main-Belt Asteroid Spectroscopic Survey (SMASS) (Bus and Binzel 2002, Icarus 158, 106). We report results of direct testing of SDSS V-type classification predictions for six objects, where the tests were performed by visible wavelength spectroscopy (Lazzaro et al. 2004, Icarus 172, 179) and target of opportunity near-infrared spectroscopy obtained using the NASA Infrared Telescope Facility (IRTF). Vesta-like spectra and a V-type taxonomy are confirmed for five of the six predicted V-type objects sampled. Most interestingly, the SDSS taxonomy correctly predicted the V-type spectral characteristics for asteroid (21238) 1995 WV7, a 6 km asteroid located far from Vesta across the 3:1 mean motion resonance at 2.54 AU. (Proper elements a,e,i: 2.54 AU, 0.14, and 10.8 deg.) Given the 2 km/sec ejection velocity required from Vesta to reach the current orbit, and the difficulty of migrating across the 3:1 resonance (at 2.5 AU) by a process such as Yarkovsky drift or via secular resonances (Carruba et al. 2005, Astron. Astrophys. 441, 819), asteroid 21238 may be a new candidate for a basaltic asteroid having no relationship to Vesta.

  20. Negative Searches for Evidence of Aqueous Alteration on Asteroid Surfaces

    NASA Technical Reports Server (NTRS)

    Vilas, F.

    2005-01-01

    Small bodies in the Solar System preserve evidence of the processes occurring during early Solar System formation, unlike the larger planets that undergo continuous churning of their surfaces. We study these bodies to understand what processes affected different stages of Solar System formation. The action of aqueous alteration (the alteration of material by the interaction of that material with liquid formed by the melting of incorporated ice) of near-subsurface material has been inferred to occur on many asteroids based on the spectrophotometric evidence of phyllosilicates and iron alteration minerals. The definitive indication of aqueous alteration is the 3.0- micron absorption feature attributed to structural hydroxyl (OH) and interlayer and adsorbed water (H2O) in phyllosilicates (clays) (hereafter water of hydration). A weak absorption feature centered near 0.7 microns attributed to an Fe (2+) right arrow Fe (3+) charge transfer transition in oxidized iron in phyllosilicates has been observed in the reflectance spectra and photometry of approximately 50% of the main-belt C-class asteroids. An approximately 85% correlation between this 0.7- micron feature and the 3.0- micron water of hydration absorption feature was found among the low-albedo asteroids. The feature is usually centered near 0.68 microns in asteroid spectra, and ranges in wavelength from approximately 0.57 to 0.83 microns. Serendipitously, three of the Eight Color Asteroid Survey filters the v (0.550 microns), w (0.701 microns), and x (0.853 microns)-bracket this feature well, and can be used to determine the presence of this feature in the reflectance properties of an asteroid, and probe the aqueous alteration history of larger samples of asteroid data. Two efforts to search for evidence of aqueous alteration based on the presence of this 0.7- micron absorption feature are presented here.

  1. In-Situ Sampling Analysis of a Jupiter Trojan Asteroid by High Resolution Mass Spectrometry in the Solar Power Sail Mission

    NASA Astrophysics Data System (ADS)

    Kebukawa, Y.; Aoki, J.; Ito, M.; Kawai, Y.; Okada, T.; Matsumoto, J.; Yano, H.; Yurimoto, H.; Terada, K.; Toyoda, M.; Yabuta, H.; Nakamura, R.; Cottin, H.; Grand, N.; Mori, O.

    2017-12-01

    The Solar Power Sail (SPS) mission is one of candidates for the upcoming strategic middle-class space exploration to demonstrate the first outer Solar System journey of Japan. The mission concept includes in-situ sampling analysis of the surface and subsurface (up to 1 m) materials of a Jupiter Trojan asteroid using high resolution mass spectrometry (HRMS). The candidates for the HRMS are multi-turn time-of-flight mass spectrometer (MULTUM) type and Cosmorbitrap type. We plan to analyze isotopic and elemental compositions of volatile materials from organic matter, hydrated minerals, and ice (if any), in order to understand origin and evolution of the Jupiter Trojan asteroids. It will provide insights into planet formation/migration theories, evolution and distribution of volatiles in the Solar System, and missing link between asteroids and comets on evolutional. The HRMS system allows to measure H, N, C, O isotopic compositions and elemental compositions of molecules prepared by various pre-MS procedures including stepwise heating up to 600ºC, gas chromatography (GC), and high-temperature pyrolysis with catalyst to decompose the samples into simple gaseous molecules (e.g., H2, CO, and N2) for isotopic ratio analysis. The required mass resolution should be at least 30,000 for analyzing isotopic ratios for simple gaseous molecules. For elemental compositions, mass accuracy of 10 ppm is required to determine elemental compositions for molecules with m/z up to 300 (as well as compound specific isotopic compositions for smaller molecules). Our planned analytical sequences consist of three runs for both surface and subsurface samples. In addition, `sniff mode' which simply introduces environmental gaseous molecules into a HRMS will be done by the system.

  2. Directed Energy Deflection Laboratory Measurements of Asteroids and Space Debris

    NASA Astrophysics Data System (ADS)

    Brashears, T.; Lubin, P. M.

    2016-12-01

    We report on laboratory studies of the effectiveness of directed energy planetary and space defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" or a space debris sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 µN/Woptical, though we assume a more conservative value of 80 µN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 µN/Woptical in our deflection modeling. Our measurements discussed here yield about 60 µN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainzer, A.; Masiero, J.; Hand, E.

    The NEOWISE data set offers the opportunity to study the variations in albedo for asteroid classification schemes based on visible and near-infrared observations for a large sample of minor planets. We have determined the albedos for nearly 1900 asteroids classified by the Tholen, Bus, and Bus-DeMeo taxonomic classification schemes. We find that the S-complex spans a broad range of bright albedos, partially overlapping the low albedo C-complex at small sizes. As expected, the X-complex covers a wide range of albedos. The multiwavelength infrared coverage provided by NEOWISE allows determination of the reflectivity at 3.4 and 4.6 {mu}m relative to themore » visible albedo. The direct computation of the reflectivity at 3.4 and 4.6 {mu}m enables a new means of comparing the various taxonomic classes. Although C, B, D, and T asteroids all have similarly low visible albedos, the D and T types can be distinguished from the C and B types by examining their relative reflectance at 3.4 and 4.6 {mu}m. All of the albedo distributions are strongly affected by selection biases against small, low albedo objects, as all objects selected for taxonomic classification were chosen according to their visible light brightness. Due to these strong selection biases, we are unable to determine whether or not there are correlations between size, albedo, and space weathering. We argue that the current set of classified asteroids makes any such correlations difficult to verify. A sample of taxonomically classified asteroids drawn without significant albedo bias is needed in order to perform such an analysis.« less

  4. Visible spectroscopy of the Sulamitis and Clarissa primitive families: a possible link to Erigone and Polana

    NASA Astrophysics Data System (ADS)

    Morate, David; de León, Julia; De Prá, Mário; Licandro, Javier; Cabrera-Lavers, Antonio; Campins, Humberto; Pinilla-Alonso, Noemí

    2018-02-01

    The low-inclination (i < 8∘) primitive asteroid families in the inner main belt, that is, Polana-Eulalia, Erigone, Sulamitis, and Clarissa, are considered to be the most likely sources of near-Earth asteroids (101955) Bennu and (162173) Ryugu. These two primitive NEAs will be visited by NASA OSIRIS-REx and JAXA Hayabusa 2 missions, respectively, with the aim of collecting samples of material from their surfaces and returning them back to Earth. In this context, the PRIMitive Asteroid Spectroscopic Survey (PRIMASS) was born, with the main aim to characterize the possible origins of these NEAs and constrain their dynamical evolution. As part of the PRIMASS survey we have already studied the Polana and Erigone collisional families in previously published works. The main goal of the work presented here is to compositionally characterize the Sulamitis and Clarissa families using visible spectroscopy. We have observed 97 asteroids (64 from Sulamitis and 33 from Clarissa) with the OSIRIS instrument (0.5-0.9 μm) at the 10.4 m Gran Telescopio Canarias (GTC). We found that about 60% of the sampled asteroids from the Sulamitis family show signs of aqueous alteration on their surfaces. We also found that the majority of the Clarissa members present no signs of hydration. The results obtained here show similarities between Sulamitis-Erigone and Clarissa-Polana collisional families. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A25

  5. Polarimetric survey of main-belt asteroids. V. The unusual polarimetric behavior of V-type asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.; López-Sisterna, C.; Calandra, M. F.

    2017-03-01

    Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the CASPROF and CASPOL polarimeters at the 2.15 m telescope. The CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation and CASPOL is a polarimeter based on a CCD detector, which allows us to observe fainter objects with better signal-to-noise ratio. Results: The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. We obtained 55 polarimetric measurements for 28 V-type main belt asteroids, all of them polarimetrically observed for the first time. The data obtained in this survey let us find polarimetric parameters for (1459) Magnya and for a group of 11 small V-type objects with similar polarimetric behavior. These polarization curves are unusual since they show a shallow minimum and a small inversion angle in comparison with (4) Vesta, although they have a steeper slope at α0. This polarimetric behavior could be explained by differences in the regoliths of these asteroids. The observations of (2579) Spartacus, and perhaps also (3944) Halliday, indicate a inversion angle larger than 24-25°. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  6. Unveiling Clues from Spacecraft Missions to Comets and Asteroids through Impact Experiments

    NASA Technical Reports Server (NTRS)

    Lederer, Susan M.; Jensen, Elizabeth; Fane, Michael; Smith, Douglas; Holmes, Jacob; Keller, Lindasy P.; Lindsay, Sean S.; Wooden, Diane H.; Whizin, Akbar; Cintala, Mark J.; hide

    2016-01-01

    The Deep Impact Spacecraft mission was the first to boldly face the challenge of impacting the surface of a comet, 9P/Tempel 1, to investigate surface and subsurface 'pristine' materials. The Stardust mission to Comet 81P/Wild 2 brought back an exciting surprise: shocked minerals which were likely altered during the comet's lifetime. Signatures of shock in meteorites also suggest that the violent past of the solar system has left our small bodies with signatures of impacts and collisions. These results have led to the question: How have impacts affected the evolutionary path taken by comets and asteroids, and what signatures can be observed? A future planetary mission to a near-Earth asteroid is proposing to take the next steps toward understanding small bodies through impacts. The mission would combine an ESA led AIM (Asteroid Impact Mission) with a JHU/APL led DART (Double Asteroid Redirect Mission) spacecraft to rendezvous with binary near-Earth asteroid 65803 Didymus (1996 G2). DART would impact the smaller asteroid, 'Didymoon' while AIM would characterize the impact and the larger Didymus asteroid. With these missions in mind, a suite of experiments have been conducted at the Experimental Impact Laboratory (EIL) at NASA Johnson Space Center to investigate the effects that collisions may have on comets and asteroids. With the new capability of the vertical gun to cool targets in the chamber through the use of a cold jacket fed by liquid nitrogen, the effects of target temperature have been the focus of recent studies. Mg-rich forsterite and enstatite (orthopyroxene), diopside (monoclinic pyroxene) and magnesite (Mg-rich carbonate) were impacted. Target temperatures ranged from 25 deg to -100 deg, monitored by connecting thermocouples to the target container. Impacted targets were analyzed with a Fourier Transform Infrared Spectrometer (FTIR) and Transmission Electron Microscope (TEM). Here we present the evidence for impact-induced shock in the minerals through both spectra and TEM imaging and compare with unshocked samples.

  7. Space Weathering in Olivine and the Mineralogy of (Some) M-Class Asteroids

    NASA Astrophysics Data System (ADS)

    Britt, Daniel; Kohout, Tomas; Schelling, Patrick; Consolmagno, Guy J.

    2014-11-01

    One aspect of space weathering of airless bodies is the production of nanophase iron (npFe0) from Fe bearing silicate minerals. The combined effects of low oxygen fugacity and solar-wind implanted H tend to result in strongly-reduced surfaces that can be chemically activated by heating due to micrometeorite impacts. The mineral kinetics of olivine makes it particularly vulnerable to reduction, decomposition, and npFe0 production. Kohout et al. has recently developed a new method of controlled npFe0 production on olivine powder grains that mimics the essential features of this weathering process and was developed to quantitatively evaluate spectral changes related to space weathering and presence of npFe0. Compared to fresh olivine the treated samples exhibit spectral characteristics of space weathering including spectral darkening, shallowing and attenuation of 1 µm olivine absorption band, and reddening. The attenuation of the 1 µm band significantly shrinks the band FWHM and shifts the much reduced band center to shorter wavelengths around 0.95 µm. These spectral changes are related to increasing amounts of npFe0 and the disruption of the crystal structure of the parent olivine. Significantly, the darkened, reddened, and band attenuated olivine spectra are a close match to a number of M-class asteroids. What is particularly interesting is the match with the weak absorption band near 0.95 µm seen in many M-class asteroids (i.e. 16 Psyche, 22 Kalliope, 55 Pandora to name a few). One of the major issues in asteroid science is the relative scarcity of olivine asteroids (the ”Great Dunite Shortage” coined by Bell et al in Asteroids II). One possibility worth further study is that asteroidal olivine may be hidden by the relative ease with which it weathers. The surface chemical and micrometeorite environment in the asteroid belt may produce over time a spectrum for an olivine-rich surface that is remarkably similar to that of an M-class asteroid.

  8. HUBBLE: ON THE ASTEROID TRAIL

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers Karl Stapelfeldt and Robin Evans have tracked down about 100 small asteroids by hunting through more than 28,000 archival images taken by the Hubble Space Telescope's Wide Field and Planetary Camera 2. Here is a sample of what they have found: four archival images that show the curved trails left by asteroids. [Top left]: Hubble captured a bright asteroid, with a visual magnitude of 18.7, roaming in the constellation Centaurus. Background stars are shown in white, while the asteroid trail is depicted in blue at top center. The trail has a length of 19 arc seconds. This asteroid has a diameter of one and one-quarter miles (2 kilometers), and was located 87 million miles from Earth and 156 million miles from the sun. Numerous orange and blue specks in this image and the following two images were created by cosmic rays, energetic subatomic particles that struck the camera's detector. [Top right]: Here is an asteroid with a visual magnitude of 21.8 passing a galaxy in the constellation Leo. The trail is seen in two consecutive exposures, the first shown in blue and the second in red. This asteroid has a diameter of half a mile (0.8 kilometers), and was located 188 million miles from Earth and 233 million miles from the sun. [Lower left]: This asteroid in the constellation Taurus has a visual magnitude of 23, and is one of the faintest seen so far in the Hubble archive. It moves from upper right to lower left in two consecutive exposures; the first trail is shown in blue and the second in red. Because of the asteroid's relatively straight trail, astronomers could not accurately determine its distance. The estimated diameter is half a mile (0.8 kilometers) at an Earth distance of 205 million miles and a sun distance of 298 million miles. [Lower right]: This is a broken asteroid trail crossing the outer regions of galaxy NGC 4548 in Coma Berenices. Five trail segments (shown in white) were extracted from individual exposures and added to a cleaned color image of the galaxy. The asteroid enters the image at top center and moves down toward the lower left. Large gaps in the trail occur because the telescope is orbiting the Earth and cannot continuously observe the galaxy. This asteroid has a visual magnitude of 20.8, a diameter of one mile (1.6 kilometers), and was seen at a distance of 254 million miles from Earth and 292 million miles from the sun. Credit: R. Evans and K. Stapelfeldt (Jet Propulsion Laboratory) and NASA

  9. Visible Wavelength Reflectance Spectra and Taxonomies of Near-Earth Objects from Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Hammergren, Mark; Brucker, Melissa J.; Nault, Kristie A.; Gyuk, Geza; Solontoi, Michael R.

    2015-11-01

    Near-Earth Objects (NEOs) are interesting to scientists and the general public for diverse reasons: their impacts pose a threat to life and property; they present important albeit biased records of the formation and evolution of the Solar System; and their materials may provide in situ resources for future space exploration and habitation.In January 2015 we began a program of NEO astrometric follow-up and physical characterization using a 17% share of time on the Astrophysical Research Consortium (ARC) 3.5-meter telescope at Apache Point Observatory (APO). Our 500 hours of annual observing time are split into frequent, short astrometric runs (see poster by K. A. Nault et. al), and half-night runs devoted to physical characterization (see poster by M. J. Brucker et. al for preliminary rotational lightcurve results). NEO surface compositions are investigated with 0.36-1.0 μm reflectance spectroscopy using the Dual Imaging Spectrograph (DIS) instrument. As of August 25, 2015, including testing runs during fourth quarter 2014, we have obtained reflectance spectra of 68 unique NEOs, ranging in diameter from approximately 5m to 8km.In addition to investigating the compositions of individual NEOs to inform impact hazard and space resource evaluations, we may examine the distribution of taxonomic types and potential trends with other physical and orbital properties. For example, the Yarkovsky effect, which is dependent on asteroid shape, mass, rotation, and thermal characteristics, is believed to dominate other dynamical effects in driving the delivery of small NEOs from the main asteroid belt. Studies of the taxonomic distribution of a large sample of NEOs of a wide range of sizes will test this hypothesis.We present a preliminary analysis of the reflectance spectra obtained in our survey to date, including taxonomic classifications and potential trends with size.Acknowledgements: Based on observations obtained with the Apache Point Observatory 3.5-meter telescope, which is owned and operated by the Astrophysical Research Consortium. We gratefully acknowledge support from NASA NEOO award NNX14AL17G, and thank the University of Chicago Department of Astronomy and Astrophysics for observing time in 2014.

  10. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  11. Incorporating Uncertainty into Spacecraft Mission and Trajectory Design

    NASA Astrophysics Data System (ADS)

    Juliana D., Feldhacker

    The complex nature of many astrodynamic systems often leads to high computational costs or degraded accuracy in the analysis and design of spacecraft missions, and the incorporation of uncertainty into the trajectory optimization process often becomes intractable. This research applies mathematical modeling techniques to reduce computational cost and improve tractability for design, optimization, uncertainty quantication (UQ) and sensitivity analysis (SA) in astrodynamic systems and develops a method for trajectory optimization under uncertainty (OUU). This thesis demonstrates the use of surrogate regression models and polynomial chaos expansions for the purpose of design and UQ in the complex three-body system. Results are presented for the application of the models to the design of mid-eld rendezvous maneuvers for spacecraft in three-body orbits. The models are shown to provide high accuracy with no a priori knowledge on the sample size required for convergence. Additionally, a method is developed for the direct incorporation of system uncertainties into the design process for the purpose of OUU and robust design; these methods are also applied to the rendezvous problem. It is shown that the models can be used for constrained optimization with orders of magnitude fewer samples than is required for a Monte Carlo approach to the same problem. Finally, this research considers an application for which regression models are not well-suited, namely UQ for the kinetic de ection of potentially hazardous asteroids under the assumptions of real asteroid shape models and uncertainties in the impact trajectory and the surface material properties of the asteroid, which produce a non-smooth system response. An alternate set of models is presented that enables analytic computation of the uncertainties in the imparted momentum from impact. Use of these models for a survey of asteroids allows conclusions to be drawn on the eects of an asteroid's shape on the ability to successfully divert the asteroid via kinetic impactor.

  12. Overview and Updated Status of the Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Mazanek, Daniel D.; Reeves, David M.; Chodas, Paul; Gates, Michele; Johnson, Lindley N.; Ticker, Ronald

    2016-10-01

    The National Aeronautics and Space Administration (NASA) is developing a mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder and regolith samples from its surface, demonstrate a planetary defense technique known as the enhanced gravity tractor, and return the asteroidal material to a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA's plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s and other destinations, as well as provide other broader benefits. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. Current plans are for the robotic mission to be launched in late 2021 with the crewed mission segment conducted using an Orion capsule via a Space Launch System rocket in 2026. In order to maximize the knowledge return from the mission, NASA is providing accommodations for payloads to be carried on the robotic segment of the mission and also organizing an ARM Investigation Team. The Investigation Team will be comprised of scientists, technologists, and other qualified and interested individuals from US industry, government, academia, and international institutions to help plan the implementation and execution of ARM. The presentation will provide a mission overview and the most recent update concerning the robotic and crewed segments of ARM, including the mission requirements, and potential NEA targets. Details about the mission operations for each segment will also be provided along with a discussion of the potential opportunities associated with the mission.

  13. No geochemical evidence for an asteroidal impact at late Devonian mass extinction horizon

    NASA Astrophysics Data System (ADS)

    McGhee, G. R., Jr.; Gilmore, J. S.; Orth, C. J.; Olsen, E.

    1984-04-01

    Three sedimentary sequences in New York State (Dunkirk Beach, Walnut Creek Gorge, and Mills Mills) and one sedimentary sequence in Belgium (Sinsin), that cross the Devonian Frasnian-Famennian boundary, were examined for an iridium (Ir) anomaly to determine whether the biotic extinctions at the end of the Cretaceous could have been caused by an asteroidal impact. The sampling at three of the four areas was on 2-cm center points, and 15 to 20 g of sample were collected. The instrumental neutron activation method required 5 g samples, and consequently the distance between samples was less than 1 cm. Though the Devonian samples studied had a high probability of locating an Ir anomaly, none was found. The highest Ir values were between 0.2 and 2 percent of those reported for the marine and terrestrial Ir analyses at the Cretaceous-Tertiary boundary, and Devonian pyrite-rich sediments did not exhibit high Ir concentrations.

  14. Automated Detection of Small Bodies by Space Based Observation

    NASA Astrophysics Data System (ADS)

    Bidstrup, P. R.; Grillmayer, G.; Andersen, A. C.; Haack, H.; Jorgensen, J. L.

    The number of known comets and asteroids is increasing every year. Up till now this number is including approximately 250,000 of the largest minor planets, as they are usually referred. These discoveries are due to the Earth-based observation which has intensified over the previous decades. Additionally larger telescopes and arrays of telescopes are being used for exploring our Solar System. It is believed that all near- Earth and Main-Belt asteroids of diameters above 10 to 30 km have been discovered, leaving these groups of objects as observationally complete. However, the cataloguing of smaller bodies is incomplete as only a very small fraction of the expected number has been discovered. It is estimated that approximately 1010 main belt asteroids in the size range 1 m to 1 km are too faint to be observed using Earth-based telescopes. In order to observe these small bodies, space-based search must be initiated to remove atmospheric disturbances and to minimize the distance to the asteroids and thereby minimising the requirement for long camera integration times. A new method of space-based detection of moving non-stellar objects is currently being developed utilising the Advanced Stellar Compass (ASC) built for spacecraft attitude determination by Ørsted, Danish Technical University. The ASC serves as a backbone technology in the project as it is capable of fully automated distinction of known and unknown celestial objects. By only processing objects of particular interest, i.e. moving objects, it will be possible to discover small bodies with a minimum of ground control, with the ultimate ambition of a fully automated space search probe. Currently, the ASC is being mounted on the Flying Laptop satellite of the Institute of Space Systems, Universität Stuttgart. It will, after a launch into a low Earth polar orbit in 2008, test the detection method with the ASC equipment that already had significant in-flight experience. A future use of the ASC based automated detection of small bodies is currently on a preliminary stage and known as the Bering project - a deep space survey to the asteroid Main-Belt. With a successful detection method, the Bering mission is expected to discover approximately 6 new small objects per day and 1 will thus during the course of a few years discover 5,000-10,000 new sub-kilometer asteroids. Discovery of new small bodies can: 1) Provide further links between groups of meteorites. 2) Constrain the cratering rate at planetary surfaces and thus allow significantly improved cratering ages for terrains on Mars and other planets. 3) Help determine processes that transfer small asteroids from orbits in the asteroid Main-Belt to the inner Solar System. 2

  15. Spitzer observations of two mission-accessible, tiny asteroids

    NASA Astrophysics Data System (ADS)

    Mommert, M.; Hora, J.; Farnocchia, D.; Chesley, S.; Vokrouhlicky, D.; Trilling, D.; Mueller, M.; Harris, A.; Smith, H.; Fazio, G.

    2014-07-01

    Small asteroids are most likely collisional fragments of larger objects and make up a large fraction of the near-Earth-object (NEO) population. Despite their abundance, little is known about the physical properties of these objects, which is mainly due to their faintness, which also impedes their discovery. We report on Spitzer Space Telescope observations of two small NEOs, both of which are of interest as potential spacecraft targets. We observed NEOs 2009 BD using 25 hrs and 2011 MD using ˜20 hrs of Spitzer Infrared Array Camera Channel 2 time. For each target, we have combined the data into maps in the moving frame of the target, minimizing the background confusion. We did not detect 2009 BD and place an upper limit on its flux density, but we detected 2011 MD as a 2.2σ detection. We have analyzed the data on both objects in a combined model approach, using an asteroid thermophysical model and a model of non-gravitational forces acting on the object. As a result, we are able to constrain the physical properties of both objects. In the case of 2009 BD (Mommert et al. 2014), a wealth of existing astrometry data significantly constrains the physical properties of the object. We find two physically possible solutions. The first solution shows 2009 BD as a 2.9±0.3 m-sized massive rock body (bulk density ρ=2.9±0.5 g cm^{-3}) with an extremely high albedo of 0.85_{-0.10}^{+0.20} that is covered with regolith-like material, causing it to exhibit a low thermal inertia (thermal inertia Γ=30_{-10}^{+20} SI units). The second solution suggests 2009 BD to be a 4±1 m-sized asteroid with p_{V}=0.45_{-0.15}^{+0.35} that consists of a collection of individual bare rock slabs (Γ = 2000±1000 SI units, ρ = 1.7_{-0.4}^{+0.7} g cm^{-3}). We are unable to rule out either solution based on physical reasoning. The preliminary analysis of 2011 MD shows this object as a ˜6 m-sized asteroid with an albedo of ˜0.3. Additional constraints on the physical properties of these objects will be available at the time of the conference (Mommert et al., in preparation). 2009 BD and 2011 MD are the smallest asteroids for which physical properties have been constrained, providing unique insights into a population of asteroids that gives rise to frequent impacts on the Earth and the Moon. Furthermore, both asteroids are among the most easily accessible objects in space.

  16. Low-thrust trajectory optimization of asteroid sample return mission with multiple revolutions and moon gravity assists

    NASA Astrophysics Data System (ADS)

    Tang, Gao; Jiang, FanHuag; Li, JunFeng

    2015-11-01

    Near-Earth asteroids have gained a lot of interest and the development in low-thrust propulsion technology makes complex deep space exploration missions possible. A mission from low-Earth orbit using low-thrust electric propulsion system to rendezvous with near-Earth asteroid and bring sample back is investigated. By dividing the mission into five segments, the complex mission is solved separately. Then different methods are used to find optimal trajectories for every segment. Multiple revolutions around the Earth and multiple Moon gravity assists are used to decrease the fuel consumption to escape from the Earth. To avoid possible numerical difficulty of indirect methods, a direct method to parameterize the switching moment and direction of thrust vector is proposed. To maximize the mass of sample, optimal control theory and homotopic approach are applied to find the optimal trajectory. Direct methods of finding proper time to brake the spacecraft using Moon gravity assist are also proposed. Practical techniques including both direct and indirect methods are investigated to optimize trajectories for different segments and they can be easily extended to other missions and more precise dynamic model.

  17. Human spaceflight and an asteroid redirect mission: Why?

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.

    2014-08-01

    The planning of human spaceflight programmes is an exercise in careful rationing of a scarce and expensive resource. Current NASA plans are to develop the new capability for human-rated launch into space to replace the Space Transportation System (STS), more commonly known as the Space Shuttle, combined with a heavy lift capability, and followed by an eventual Mars mission. As an intermediate step towards Mars, NASA proposes to venture beyond Low Earth Orbit to cis-lunar space to visit a small asteroid which will be captured and moved to lunar orbit by a separate robotic mission. The rationale for this and how to garner support from the scientific community for such an asteroid mission are discussed. Key points that emerge are that a programme usually has greater legitimacy when it emerges from public debate, mostly via a Presidential Commission, a report by the National Research Council or a Decadal Review of science goals etc. Also, human spaceflight missions need to have support from a wide range of interested communities. Accordingly, an outline scientific case for a human visit to an asteroid is made. Further, it is argued here that the scientific interest in an asteroid mission needs to be included early in the planning stages, so that the appropriate capabilities (here the need for drilling cores and carrying equipment to, and returning samples from, the asteroid) can be included.

  18. CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Browning, L. B.

    1994-01-01

    Recognition and characterization of the different CM lithologies as components in all meteorites could reveal details of the nature and chronology of alteration and brecciation events on hydrous asteroids. The CM chondrites are of particular interest, as they are the most common carbonaceous chondrites and are found as clasts within other types of meteorites, which suggests that the CM parent asteroids are (or were) widespread in the sections of the asteroid belt providing samples to Earth. Some CM2s, including EET 90047, ALH 83100, and Y 82042, are more 'extensively' altered, and are distinguished by a high proportion of Mg-rich phyllosilicates and Ca-Mg carbonates, frequently in rounded aggregates, and near absence of olivine or pyroxene. 'Completely' altered CMs, called CM1s, essentially lack olivine or pyroxene; these include EET 83334, ALH 88045, and the CM1 clasts in Kaidun. Cold Bokkeveld and EET 84034, both highly brecciated CMs, consist of both extensively and completely altered lithologies. We describe how these lithologies further cosntrain physicochemical conditions on hydrous asteroids. We conclude that CM chondrites exhibit the petrologic range 2 through 1, and that progressive alteration on the parent hydrous asteroid(s) was accompanied by significant increases in temperature (to a peak of approximately 450 C), fO2, water-rock ratio, and (locally) degree of chemical leaching, all well beyond the conditions recorded by CM2s.

  19. Three dimensional modelling for the target asteroid of HAYABUSA

    NASA Astrophysics Data System (ADS)

    Demura, H.; Kobayashi, S.; Asada, N.; Hashimoto, T.; Saito, J.

    Hayabusa program is the first sample return mission of Japan. This was launched at May 9 2003, and will arrive at the target asteroid 25143 Itokawa on June 2005. The spacecraft has three optical navigation cameras, which are two wide angle ones and a telescopic one. The telescope with a filter wheel was named AMICA (Asteroid Multiband Imaging CAmera). We are going to model a shape of the target asteroid by this telescope; expected resolution: 1m/pixel at 10 km in distanc, field of view: 5.7 squared degrees, MPP-type CCD with 1024 x 1000 pixels. Because size of the Hayabusa is about 1x1x1 m, our goal is shape modeling with about 1m in precision on the basis of a camera system with scanning by rotation of the asteroid. This image-based modeling requires sequential images via AMICA and a history of distance between the asteroid and Hayabusa provided by a Laser Range Finder. We established a system of hierarchically recursive search with sub-pixel matching of Ground Control Points, which are picked up with Susan Operator. The matched dataset is restored with a restriction of epipolar geometry, and the obtained a group of three dimensional points are converted to a polygon model with Delaunay Triangulation. The current status of our development for the shape modeling is displayed.

  20. Inner main belt asteroids in Slivan states?

    NASA Astrophysics Data System (ADS)

    Vraštil, J.; Vokrouhlický, D.

    2015-07-01

    Context. The spin state of ten asteroids in the Koronis family has previously been determined. Surprisingly, all four asteroids with prograde rotation were shown to have spin axes nearly parallel in the inertial space. All asteroids with retrograde rotation had large obliquities and rotation periods that were either short or long. The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect has been demonstrated to be able to explain all these peculiar facts. In particular, the effect causes the spin axes of the prograde rotators to be captured in a secular spin-orbit resonance known as Cassini state 2, a configuration dubbed "Slivan state". Aims: It has been proposed based on an analysis of a sample of asteroids in the Flora family that Slivan states might also exist in this region of the main belt. This is surprising because convergence of the proper frequency s and the planetary frequency s6 was assumed to prevent Slivan states in this zone. We therefore investigated the possibility of a long-term stable capture in the Slivan state in the inner part of the main belt and among the asteroids previously observed. Methods: We used the swift integrator to determine the orbital evolution of selected asteroids in the inner part of the main belt. We also implemented our own secular spin propagator into the swift code to efficiently analyze their spin evolution. Results: Our experiments show that the previously suggested Slivan states of the Flora-region asteroids are marginally stable for only a small range of the flattening parameter Δ. Either the observed spins are close to the Slivan state by chance, or additional dynamical effects that were so far not taken into account change their evolution. We find that only the asteroids with very low-inclination orbits (lower than ≃4°, for instance) could follow a similar evolution path as the Koronis members and be captured in their spin state into the Slivan state. A greater number of asteroids in the inner main-belt Massalia family, which are at a slightly larger heliocentric distance and at lower inclination orbits than in the Flora region, may have their spin in the Slivan state.

  1. The Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS)

    NASA Astrophysics Data System (ADS)

    Rivkin, A.; Cohen, B. A.; Barnouin, O. S.; Chabot, N. L.; Ernst, C. M.; Klima, R. L.; Helbert, J.; Sternovsky, Z.

    2015-12-01

    The asteroids preserve information from the earliest times in solar system history, with compositions in the population reflecting the material in the solar nebula and experiencing a wide range of temperatures. Today they experience ongoing processes, some of which are shared with larger bodies but some of which are unique to their size regime. They are critical to humanity's future as potential threats, resource sites, and targets for human visitation. However, over twenty years since the first spacecraft encounters with asteroids, they remain poorly understood. The mission we propose here, the Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS), explores the diversity of asteroids to understand our solar system's past history, its present processes, and future opportunities and hazards. MANTIS addresses many of NASA's highest priorities as laid out in its 2014 Science Plan and provides additional benefit to the Planetary Defense and Human Exploration communities via a low-risk, cost-effective tour of the near-Earth and inner asteroid belt. MANTIS visits the materials that witnessed solar system formation and its earliest history, addressing the NASA goal of exploring and observing the objects in the solar system to understand how they formed and evolve. MANTIS measures OH, water, and organic materials via several complementary techniques, visiting and sampling objects known to have hydrated minerals and addressing the NASA goal of improving our understanding of the origin and evolution of life on Earth. MANTIS studies the geology and geophysics of nine diverse asteroids, with compositions ranging from water-rich to metallic, representatives of both binary and non-binary asteroids, and sizes covering over two orders of magnitude, providing unique information about the chemical and physical processes shaping the asteroids, addressing the NASA goal of advancing the understanding of how the chemical and physical processes in our solar system operate, interact, and evolve. Finally, the set of measurements carried out by MANTIS at near-Earth and main-belt asteroids will by definition characterize objects in the solar system that pose threats to Earth or offer resources for human exploration, a final goal in the NASA Science Plan.

  2. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.

    PubMed

    Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank

    2008-01-25

    The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.

  3. Arecibo and Goldstone radar images of near-Earth Asteroid (469896) 2005 WC1

    NASA Astrophysics Data System (ADS)

    Lawrence, Kenneth J.; Benner, Lance A. M.; Brozovic, Marina; Ostro, Steven J.; Jao, Joseph S.; Giorgini, Jon D.; Slade, Martin A.; Jurgens, Raymond F.; Nolan, Michael C.; Howell, Ellen S.; Taylor, Patrick A.

    2018-01-01

    We report radar observations of near-Earth asteroid (469896) 2005 WC1 that were obtained at Arecibo (2380 MHz, 13 cm) and Goldstone (8560 MHz, 3.5 cm) on 2005 December 14-15 during the asteroid's approach within 0.020 au The asteroid was a strong radar target. Delay-Doppler images with resolutions as fine as 15 m/pixel were obtained with 2 samples per baud giving a correlated pixel resolution of 7.5 m. The radar images reveal an angular object with 100 m-scale surface facets, radar-dark regions, and an estimated diameter of 400 ± 50 m. The rotation of the facets in the images gives a rotation period of ∼2.6 h that is consistent with the estimated period of 2.582 h ± 0.002 h from optical lightcurves reported by Miles (private communication). 2005 WC1 has a circular polarization ratio of 1.12 ± 0.05 that is one of the highest values known, suggesting a structurally-complex near-surface at centimeter to decimeter spatial scales. It is the first asteroid known with an extremely high circular polarization ratio, relatively low optical albedo, and high radar albedo.

  4. Asteroidal Space Weathering: The Major Role of FeS

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Rahman, Z.; Hiroi, T.; Sasaki, S.; Noble, S. K.; Horz, F.; Cintala, M. J.

    2013-01-01

    Space weathering (SW) effects on the lunar surface are reasonably well-understood from sample analyses, remote-sensing data, and experiments, yet our knowledge of asteroidal SW effects are far less constrained. While the same SW processes are operating on asteroids and the Moon, namely solar wind irradiation, impact vaporization and condensation, and impact melting, their relative rates and efficiencies are poorly known, as are their effects on such vastly different parent materials. Asteroidal SW models based on remote-sensing data and experiments are in wide disagreement over the dominant mechanisms involved and their kinetics. Lunar space weathering effects observed in UVVIS-NIR spectra result from surface- and volume-correlated nanophase Fe metal (npFe(sup 0)) particles. In the lunar case, it is the tiny vapor-deposited npFe(sup 0) that provides much of the spectral reddening, while the coarser (largely melt-derived) npFe(sup 0) produce lowered albedos. Nanophase FeS (npFeS) particles are expected to modify reflectance spectra in much the same way as npFe(sup 0) particles. Here we report the results of experiments designed to explore the efficiency of npFeS production via the main space weathering processes operating in the asteroid belt.

  5. Integrated Attitude Control Strategy for the Asteroid Redirect Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; Price, Hoppy; San Martin, Miguel

    2014-01-01

    A deep-space mission has been proposed to redirect an asteroid to a distant retrograde orbit around the moon using a robotic vehicle, the Asteroid Redirect Vehicle (ARV). In this orbit, astronauts will rendezvous with the ARV using the Orion spacecraft. The integrated attitude control concept that Orion will use for approach and docking and for mated operations will be described. Details of the ARV's attitude control system and its associated constraints for redirecting the asteroid to the distant retrograde orbit around the moon will be provided. Once Orion is docked to the ARV, an overall description of the mated stack attitude during all phases of the mission will be presented using a coordinate system that was developed for this mission. Next, the thermal and power constraints of both the ARV and Orion will be discussed as well as how they are used to define the optimal integrated stack attitude. Lastly, the lighting and communications constraints necessary for the crew's extravehicular activity planned to retrieve samples from the asteroid will be examined. Similarly, the joint attitude control strategy that employs both the Orion and the ARV attitude control assets prior, during, and after each extravehicular activity will also be thoroughly discussed.

  6. Development of an electrostatic propulsion engine using sub-micron powders as the reaction mass

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Kendall, K. R.

    1991-01-01

    Asteroid sample return missions would benefit from development of an improved rocket engine. Chemical rockets achieve their large thrust with high mass consumption rate (dm/dt) but low exhaust velocity; therefore, a large fraction of their total mass is fuel. Present day ion thrusters are characterized by high exhaust velocity, but low dm/dt; thus, they are inherently low thrust devices. However, their high exhausy velocity is poorly matched to typical mission requirements and therefore, wastes energy. A better match would be intermediate between the two forms of propulsion. This could be achieved by electrostatically accelerating solid powder grains, raising the possibility that interplanetary material could be processed to use as reaction mass. An experiment to study the charging properties of sub-micron sized powder grains is described. If a suitable material can be identified, then it could be used as the reaction mass in an electrostatic propulsion engine. The experiment employs a time of flight measurement to determine the exhaust velocity (v) of various negatively charged powder grains that were charged and accelerated in a simple device. The purpose is to determine the charge to mass ratio that can be sustained for various substances. In order to be competitive with present day ion thrusters, a specific impulse (v/g) of 3000 to 5000 seconds is required. Preliminary results are presented. More speculatively, there are some mission profiles that would benefit from collection of reaction mass at the remote asteroid site. Experiments that examine the generation of sub-micron clusters by electrostatic self-disruption of geologically derived material are planned.

  7. NASA's asteroid redirect mission: Robotic boulder capture option

    NASA Astrophysics Data System (ADS)

    Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-07-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (˜4--10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (˜1--5 m) via robotic manipulators from the surface of a larger (˜100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU_3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense.

  8. The Small Carry-on Impactor (SCI) and the Hayabusa2 Impact Experiment

    NASA Astrophysics Data System (ADS)

    Saiki, T.; Imamura, H.; Arakawa, M.; Wada, K.; Takagi, Y.; Hayakawa, M.; Shirai, K.; Yano, H.; Okamoto, C.

    2017-07-01

    Hayabusa2 is a sample return mission of JAXA launched on 3 December 2014. Hayabusa2 is the successor of Hayabusa, which returned samples from the asteroid Itokawa to the Earth. Although the design of Hayabusa2 follows that of Hayabusa, the former is equipped with some new components. The small carry-on impactor (SCI) is one of those components. The SCI is a compact kinetic impactor designed to remove the asteroid surface regolith locally and create an artificial crater. One of the most important scientific objectives of Hayabusa2 is to investigate the chemical and physical properties of the internal materials and structures of the target body, asteroid Ryugu. Hayabusa2 will attempt to observe the resultant crater with some scientific instruments and to get samples from around the crater. High kinetic energy is required to create a meaningful crater, however, the impact system design needs to fit within strict constraints. Complicated functions, such as a guidance and control system, are not permitted. A special type of shaped charge is used for the acceleration of the impactor of the SCI in order to make system simpler. Using this explosion technique makes it possible to accelerate the impactor very quickly and to hit the asteroid without a guidance system. However, the impact operation will be complicated because the explosive is very powerful and it scatters high-speed debris at the detonation. This paper describes an overview of the SCI system, the results of the development testing and an outline of the impact experiment of the Hayabusa2 mission.

  9. SeisCube Instrument and Environment Considerations for the Didymos System Geophysical Exploration

    NASA Astrophysics Data System (ADS)

    Cadu, Alexandre; Murdoch, Naomi; Mimoun, David; Karatekin, Ozgur; Garica, Raphaël F.; Carrasco, Jose A.; De Quiros, Francisco G.; Vasseur, Hugues; Eubanks, Marshall; Radley, Charles; Ritter, Birgit; Dehant, Veronique

    2016-04-01

    In the context of the Asteroid Impact & Deviation Assessment (AIDA) mission proposed by ESA and NASA, the Asteroid Geophysical Explorer (AGEX) mission concept has been selected for a preliminary study phase. Two 3-Unit CubeSats are embedded into the AIM probe and released into the asteroid binary system [1]. SeisCube will be deployed close to the secondary to reach its surface at a low relative velocity in order to stay on the ground after several rebounds, in a similar way that is foreseen for Mascot-2. The purpose of SeisCube is to provide information about the surface, the sub-surface and the internal structure of the asteroid, by analyzing rebound acceleration profile and seismic activity [2]. We describe the considered instrumentation necessary to fulfill the science objectives (gravimeters, accelerometers, geophones, etc.) in terms of measurement dynamics, frequency ranges, acquisition methods and other common budgets for space equipment. We also present the environment considerations which have to be taken into account for the platform and payload designs. The thermal aspect will be particularly discussed since it is a major issue in the airless body exploration [3] [4]. It implies some modifications in the CubeSat structure, integration and thermal regulation to ensure survival and operations under extreme conditions at the asteroid surface. We then describe the platform subsystems needed to ensure the operations after the deployment and the associated budgets and accommodation. As a direct consequence of the previous topics, we will finally discuss the possible trades-off to satisfy the main science requirements and the associated concept of operations. [1] O. Karatekin, D. Mimoun, J. A. Carrasco, N. Murdoch, A. Cadu, R. F. Garcia, F. G. De Quiros, H. Vasseur, B. Ritter, M. Eubanks, C. Radley and V. Dehant, "The Asteroid Geophysical Explorer (AGEX): Proposal to explore Didymos system using Cubsats," in European Geophysical Union, 2016. [2] N. Murdoch, A. Cadu, D. Mimoun, O. Karatekin, R. F. Garcia, J. A. Carrasco, F. G. De Guiros, H. Vasseur, B. Ritter, M. Eubanks, C. Radley and V. Dehart, "Invertigating the surface and subsurface properties of the Didymos binary asteroid with a landed CubeSat," in European Geophysical Union, 2016. [3] J. De Lafontaine and D. Kassing, "Technologies and Concepts for Lunar Surface Exploration," Acta Astronautica, vol. 38, no. 2, pp. 125-129, 1996. [4] S. Ulamec, J. Biele and E. Trollope, "How to survive a Lunar night," Planetary and Space Science, vol. 58, no. 14-15, pp. 1985-1995, 2010.

  10. Real-time Transients from Palomar-QUEST Synoptic Sky Survey

    NASA Astrophysics Data System (ADS)

    Mahabal, Ashish A.; Drake, A.; Djorgovski, S. G.; Donalek, C.; Glikman, E.; Graham, M. J.; Williams, R.; Baltay, C.; Rabinowitz, D.; Bauer, A.; Ellman, N.; Lauer, R.; PQ Team Indiana

    2006-12-01

    The data from the driftscans of the Palomar-QUEST synoptic sky survey is now routinely processed in real-time. We describe here the various components of the pipeline. We search for both variable and transient objects, including supernovae, variable AGN, GRB orphan afterglows, cataclysmic variables, interesting stellar flares, novae, other types of variable stars, and do not exclude the possibility of even entirely new types of objects or phenomena. In order to flag as many asteroids as possible we have been doing two 4-hour scans of the same area covering 250 sq. deg and detect over a million sources. Flagging a source as a candidate transient requires detection in at least two filters besides its absence in fiducial sky constructed from past images. We use various software filters to eliminate instrument artifacts, and false alarms due to the proximity of bright, saturated stars which dominate the initial detection rate. This leaves up to a couple of hundred asteroids and genuine transients. Previously known asteroids are flagged through an automated comparison with a databases of known asteroids, and new ones through apparent motion. In the end, we have typically 10 20 astrophysical transients remaining per night, and we are currently working on their automated classification, and spectroscopic follow-up. We present preliminary results from real-time follow-up of a few candidates carried out with the Palomar 200-inch telescope as part of a pilot project. Finally we outline the plans for the much harder problem of classifying the transients more accurately for distribution through VOEventNet to astronomers interested only in specific types of transients, more details and overall setting of which is covered in our VOEventNet poster (Drake et al.)

  11. Chondrites, S asteroids, and space weathering: Thumping noises from the coffin?

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Clark, B. E.

    1993-01-01

    Most of the spectral characteristics of ordinary chondrites and S-asteroids in the visible and infrared can be reduced to three numerical values. These values represent the depth of the absorption band resulting from octahedrally coordinated Fe(sup 2+), the reflectance at 0.56 microns and the slope of the continuum (as measured according to convention). By plotting these three characteristics, it is possible to immediately compare the spectral characteristics of large numbers of ordinary chondrites and S-asteroids. Commonality of spectral characteristics between these populations can thus be evaluated on the basis of overlap in position on three two-coordinate systems: albedo vs. band depth, band depth vs. slope, and slope vs. albedo. In order to establish identity, members of the two populations must overlap on all three of these independent parameter spaces. In this coordinate system, spectra of 23 ordinary chondrites (representing all metamorphic grades), and 39 S-asteroids were compared. It was found that there was no overlap between the two populations in terms of the slope vs. band depth parameters, nor were most chondrites identical to the S-asteroids with respect to the other criteria. However, the controversial question remains: Where are the parent bodies of the chondrites? Perhaps an even more critical question is: Where are our samples of the S-asteroids? Considering the geography of the asteroid belt and the theory that early solar-system electromagnetic induction heating differentiated protoasteroids in the inner portion of the main belt, it was suggested that although S-asteroids and ordinary chondrites have very similar mineralogy, the S-asteroids are mixtures of metallic nickel iron and silicates which resulted from magmatism induced by electromagnetic heating whereas chondrites were only slightly metamorphosed nebular condensates. In this scenario chondrites would have been derived from a population of bodies with thermal lag times so short that they were not subjected to melting during the phase of the electromagnetic induction heating event but only to various degrees of pervasive metamorphism. Furthermore, these objects would then have been too small to be observed and systematically included in the library of asteroidal spectra. It was also suggested that the parametric distribution of S-asteroid spectra could be reproduced by mixing various proportions of NiFe meteorite and achondritic materials. This has also been demonstrated in the laboratory.

  12. Main-belt Asteroids in the K2 Uranus Field

    NASA Astrophysics Data System (ADS)

    Molnár, L.; Pál, A.; Sárneczky, K.; Szabó, R.; Vinkó, J.; Szabó, Gy. M.; Kiss, Cs.; Hanyecz, O.; Marton, G.; Kiss, L. L.

    2018-02-01

    We present the K2 light curves of a large sample of untargeted main-belt asteroids (MBAs) detected with the Kepler Space Telescope. The asteroids were observed within the Uranus superstamp, a relatively large, continuous field with a low stellar background designed to cover the planet Uranus and its moons during Campaign 8 of the K2 mission. The superstamp offered the possibility of obtaining precise, uninterrupted light curves of a large number of MBAs and thus determining unambiguous rotation rates for them. We obtained photometry for 608 MBAs, and were able to determine or estimate rotation rates for 90 targets, of which 86 had no known values before. In an additional 16 targets we detected incomplete cycles and/or eclipse-like events. We found the median rotation rate to be significantly longer than that of the ground-based observations, indicating that the latter are biased toward shorter rotation rates. Our study highlights the need and benefits of further continuous photometry of asteroids.

  13. Could G Asteroids be the Parent Bodies of the CM Chondrites?

    NASA Astrophysics Data System (ADS)

    Burbine, T. H.; Binzel, R. P.

    1995-09-01

    Since almost all meteorites are believed to be derived from asteroidal source bodies, the comparison of asteroid and meteorite spectra should allow for possible meteorite parent bodies to be identified. However only two asteroids with unique spectral characteristics, 4 Vesta with the basaltic achondrites [1] and near-Earth asteroid 3103 Eger with the aubrites [2], have been convincingly linked with any meteorite type. Farinella et al. [3] has done a study of 2355 numbered main-belt asteroids to determine which asteroids have the highest probability of having their fragments injected into the 3:1 mean motion and the nu6 secular resonance regions. Interestingly, asteroids with the third (19 Fortuna), tenth (1 Ceres) and eleventh (13 Egeria) highest theoretical total fragment delivery efficiencies are G-asteroids, a moderately rare type of asteroid with approximately ten known members. (Vesta has the fifth highest theoretical total fragment delivery efficiency.) G-asteroids tend to have the strongest ultraviolet, 0.7 micrometers and 3 micrometers absorption features of all C-type (B, C, F and G) asteroids, appearing to indicate that G-asteroids are at the upper range of the aqueous alteration sequence in the asteroid population. (The 0.7 micrometers feature is apparently due to iron oxides in hydrated silicates and the 3 micrometers feature is apparently due to hydrated minerals.) Meteorites that have reflectance spectra with a 3 micrometers feature of comparable intensity to those of the G-asteroids are the CI, CM and CR chondrites. However, G-asteroids (like all C-types) have ultraviolet absorption features that are weaker than previously measured meteorite spectra. Comparisons of reflectance spectra between Ceres and meteorite samples appear to indicate that Ceres is compositionally different from almost all known carbonaceous chondrites. Both Fortuna and Egeria have an absorption feature centered around 0.7 micrometers [4] that is similar in structure and strength to those found in many CM chondrites. The visible and near-infrared spectrum of Fortuna [5] matches very well the spectra of CM chondrites Murchison (bulk powder) [6] and LEW90500 (particle sizes less than 100 micrometers) [7]. However, the ultraviolet absorption feature is still weaker in Fortuna's spectrum. A spectrum of a bulk powder of LEW90500 does have an ultraviolet feature that matches Fortuna's feature, but this spectrum is substantially bluer than Fortuna in the near-infrared. Egeria's ultraviolet absorption feature also matches very well the ultraviolet feature in LEW90500Us (bulk powder) spectrum, but this spectrum is slightly redder than Egeria [5] in the near-infrared. The question is how unique is any postulated linkage between the CM chondrites and the G-asteroids. The problem is that approximately two-thirds of all C-type asteroids have 3 micrometers absorption features [8] and approximately three-fourths have 0.7 micrometers absorption features [4]. However of all observed C-type asteroids, Fortuna and Egeria appear to be two of the best spectral matches for the CM chondrites. Coupled with the high probability that these two asteroids are injecting large numbers of fragments into meteorite-supplying resonances, G-asteroids Fortuna and Egeria appear to be possible CM chondrite parent bodies. Acknowledgments: This research is supported by NASA Grant Number NAGW-2049. References: [1] Binzel R. P. and Xu S. (1993) Science, 260, 186-191. [2] Gaffey M. J. et al. (1992) Icarus, 100, 95-109. [3] Farinella P. et al. (1993) Icarus, 101, 174-187. [4] Sawyer S. R. (1991) Ph.D. thesis, Univ. of Texas, Austin. [5] Bell J. F. et al. (1988) LPS XIX, 57-58. [6] Gaffey M. J. (1976) JGR, 81, 905-920. [7] Hiroi T. et al. (1993) Science, 261, 1016-1018. [8] Jones T. D. et al. (1990) Icarus, 88,172-192.

  14. Ptolemy: in situ mass spectrometry during the Rosetta flyby of 21 Lutetia, and implications for future missions.

    NASA Astrophysics Data System (ADS)

    Andrews, D. J.; Morse, A. D.; Barber, S. J.; Leese, M. R.; Morgan, G. H.; Sheridan, S.; Wright, I. P.; Pillinger, C. T.

    2011-10-01

    Rosetta is the European Space Agency 'Planetary Cornerstone' mission intended to solve many of the unanswered questions surrounding the small bodies of the Solar System. Launched in March 2004 it is now over halfway through its decade long cruise, leading up to entering orbit around the nucleus of comet 67P/Churyumov-Gerasimenko in mid-2014. To date, this cruise has included three gravitational assist manoeuvres using Earth and one such manoeuvre using the gravity well of Mars. In addition, targeted flybys of two asteroids have returned a plethora of data to be compared with the comet observations to come. These flybys were of the 5.3 km diameter E-type asteroid 2867 Šteins on September 5th 2008, and a similar 3,162 km flyby of the 100 km diameter asteroid 21 Lutetia on July 10th 2010, the focus of this work. Recent ground based observations of the main belt asteroid 24 Themis have shown this body to have an organic-rich surface with exposed water ice [1]. It is also known that there at least four main belt comets - comets residing within the main belt, the prototype being 133P/Elst-Pizarro - and there are likely to be many more such bodies undergoing lower levels of cometary activity yet to be discovered [2]. The once clear-cut differentiation between volatile rich comets and volatile depleted asteroids has been somewhat eroded by these findings. Ptolemy is a miniature chemical analysis laboratory aboard the Rosetta lander 'Philae', and is intended to determine the chemical and isotopic composition of cometary material sourced from beneath, on and above the surface of the target comet. Samples are taken from the Sampler, Drill and Distribution system (SD2) and are then processed in a chemical preparation suite before delivery to a three channel gas chromatograph (GC). Elution products from the GC are passed to a quadrupole ion trap mass spectrometer for detection and quantitation [3]. As well as analysing solid samples, Ptolemy can passively adsorb coma material onto CarbosphereTM molecular sieve contained within one of the 26 SD2 sample ovens for later thermal release and analysis. Ptolemy can also make direct 'sniff' detections of the current spacecraft environment, bypassing the sample inlet and GC system, instead directly analyzing the inside of the mass spectrometer which is connected to space via a vent pipe. Based on the demonstrated instrument performance (a sensitivity of one ion count per 1x10-11 mbar for a particular mass), and knowing that the state of knowledge concerning the volatile composition and outgassing nature of main belt asteroids is only loosely constrained, it was decided to attempt to detect any extant, tenuous exosphere surrounding asteroid 21 Lutetia during the 2010 flyby opportunity. This body was thought to have both carbonaceous material and hydrated minerals on its surface - potential sources of outgassing - and therefore worthwhile of study [4].

  15. Asteroid models from the Lowell photometric database

    NASA Astrophysics Data System (ADS)

    Ďurech, J.; Hanuš, J.; Oszkiewicz, D.; Vančo, R.

    2016-03-01

    Context. Information about shapes and spin states of individual asteroids is important for the study of the whole asteroid population. For asteroids from the main belt, most of the shape models available now have been reconstructed from disk-integrated photometry by the lightcurve inversion method. Aims: We want to significantly enlarge the current sample (~350) of available asteroid models. Methods: We use the lightcurve inversion method to derive new shape models and spin states of asteroids from the sparse-in-time photometry compiled in the Lowell Photometric Database. To speed up the time-consuming process of scanning the period parameter space through the use of convex shape models, we use the distributed computing project Asteroids@home, running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. This way, the period-search interval is divided into hundreds of smaller intervals. These intervals are scanned separately by different volunteers and then joined together. We also use an alternative, faster, approach when searching the best-fit period by using a model of triaxial ellipsoid. By this, we can independently confirm periods found with convex models and also find rotation periods for some of those asteroids for which the convex-model approach gives too many solutions. Results: From the analysis of Lowell photometric data of the first 100 000 numbered asteroids, we derived 328 new models. This almost doubles the number of available models. We tested the reliability of our results by comparing models that were derived from purely Lowell data with those based on dense lightcurves, and we found that the rate of false-positive solutions is very low. We also present updated plots of the distribution of spin obliquities and pole ecliptic longitudes that confirm previous findings about a non-uniform distribution of spin axes. However, the models reconstructed from noisy sparse data are heavily biased towards more elongated bodies with high lightcurve amplitudes. Conclusions: The Lowell Photometric Database is a rich and reliable source of information about the spin states of asteroids. We expect hundreds of other asteroid models for asteroids with numbers larger than 100 000 to be derivable from this data set. More models will be able to be reconstructed when Lowell data are merged with other photometry. Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A48

  16. Enhanced Gravity Tractor Derived from the Asteroid Redirect Mission for Deflecting Hypothetical Asteroid 2017 PDC

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Reeves, David M.; Abell, Paul A.; Shen, Haijun; Qu, Min

    2017-01-01

    The Asteroid Redirect Mission (ARM) concept would robotically visit a hazardous-size near-Earth asteroid (NEA) with a rendezvous spacecraft, collect a multi-ton boulder and regolith samples from its surface, demonstrate an innovative planetary defense technique known as the Enhanced Gravity Tractor (EGT), and return the asteroidal material to a stable orbit around the Moon, allowing astronauts to explore the returned material in the mid-2020s. Launch of the robotic vehicle to rendezvous with the ARM reference target, NEA (341843) 2008 EV5, would occur in late 2021 [1,2]. The robotic segment of the ARM concept uses a 40 kW Solar Electric Propulsion (SEP) system with a specific impulse (Isp) of 2600 s, and would provide the first ever demonstration of the EGT technique on a hazardous-size asteroid and validate one method of collecting mass in-situ. The power, propellant, and thrust capability of the ARM robotic spacecraft can be scaled from a 40 kW system to 150 kW and 300 kW, which represent a likely future power level progression. The gravity tractor technique uses the gravitational attraction of a station-keeping spacecraft with the asteroid to provide a velocity change and gradually alter the trajectory of the asteroid. EGT utilizes a spacecraft with a high-efficiency propulsion system, such as Solar Electric Propulsion (SEP), along with mass collected in-situ to augment the mass of the spacecraft, thereby increasing the gravitational force between the objects [3]. As long as the spacecraft has sufficient thrust and propellant capability, the EGT force is only limited by the amount of in-situ mass collected and can be increased several orders of magnitude compared to the traditional gravity tractor technique in which only the spacecraft mass is used to generate the gravitational attraction force. This increase in available force greatly reduces the required deflection time. The collected material can be a single boulder, multiple boulders, regolith, or a combination of different material types using a variety of collection techniques. The EGT concept assumes that the ability to efficiently collect asteroid mass in-situ from a wide variety of asteroid types and environments is a future capability that will be developed and perfected in the future by the asteroid mining community. Additionally, it is anticipated that the mass collection would likely be performed by a single or multiple separable spacecraft to allow the SEP spacecraft to operate at safe distance from the asteroid.

  17. NASA Sample Return Missions: Recovery Operations

    NASA Technical Reports Server (NTRS)

    Pace, L. F.; Cannon, R. E.

    2017-01-01

    The Utah Test and Training Range (UTTR), southwest of Salt Lake City, Utah, is the site of all NASA unmanned sample return missions. To date these missions include the Genesis solar wind samples (2004) and Stardust cometary and interstellar dust samples (2006). NASA’s OSIRIS-REx Mission will return its first asteroid sample at UTTR in 2023.

  18. Space Weathering of Ordinary Chondrite Parent Bodies, Its Impact on the Method of Distinguishing H, L, and LL Types and Implications for Itokawa Samples Returned by the Hayabusa Mission

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Sasaki, S.; Noble, S. K.; Pieters, C. M.

    2011-01-01

    As the most abundance meteorites in our collections, ordinary chondrites potentially have very important implications on the origin and formation of our Solar System. In order to map the distribution of ordinary chondrite-like asteroids through remote sensing, the space weathering effects of ordinary chondrite parent bodies must be addressed through experiments and modeling. Of particular importance is the impact on distinguishing different types (H/L/LL) of ordinary chondrites. In addition, samples of asteroid Itokawa returned by the Hayabusa spacecraft may re veal the mechanism of space weathering on an LLchondrite parent body. Results of space weathering simulations on ordinary chondrites and implications for Itokawa samples are presented here.

  19. BENNU’S JOURNEY - Early Earth

    NASA Image and Video Library

    2017-12-08

    This is an artist's concept of the young Earth being bombarded by asteroids. Scientists think these impacts could have delivered significant amounts of organic matter and water to Earth. Image Credit: NASA's Goddard Space Flight Center Conceptual Image Lab The Origins Spectral Interpretation Resource Identification Security -- Regolith Explorer spacecraft (OSIRIS-REx) will travel to a near-Earth asteroid, called Bennu, and bring a sample back to Earth for study. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-REx is scheduled for launch in late 2016. As planned, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Project Apophis for integrated research of minor body of the Solar System

    NASA Astrophysics Data System (ADS)

    Shustov, Boris M.; Martynov, Maxim; Zakharov, Alexander; Simonov, Alexander; Pol, Vadim

    The results of pre-Phase A study of the project of space mission to a minor body of the Solar System are described. For definiteness of design the famous asteroid Apophis was chosen. This hectometer size asteroid is selected as a typical potentially hazardous minor body. The study was performed in cooperation of institutes of the Russian Academy of Sciences (Space Research Institute and Institute of Astronomy) and Roscosmos (Lavochkin Association). The major goals of the mission preliminary named “Apophis” are to carry out a study of physical and chemical properties of a potentially hazardous asteroid and to put a special radio beacon into circum-asteroid orbit aimed to precise determination of the asteroid’s orbital parameters. The time schedule is connected to the upcoming close encounter of Apophis with the Earth in 2029. The period around 2020 seems to be the most reasonable window for the launch. Selection of the launch date should meet the following optimization requirements: • minimal summary velocity consumption; • maximal mass of the SC on orbit of Apophis; • favorable conditions for observation of asteroid from the Earth. General features of a mission to Apophis are described. The total mass of payload is about 800 kg. Both distant and contact (if a lander option will be included) mode of study are planned. The expected lifetime of the mission is about 5 years (10 years for the beacon). The unique science instrument for the Apophis mission is a beacon itself and system of precise registration of position and velocity of the spacecraft that uses the beacon. Besides practical things these will provide fine data for study dynamical effects of the motion of minor body in the Solar System. The science instruments designed for study of bulk characteristics of the asteroid, its internal structure, properties of regolith and exosphere are included in the payload. Most of them are analogues of the instruments included in the “Phobos-Grunt” mission. The maximum use of the heritage (findings) of the mission “Phobos-Grunt” is an important feature that reduces the cost of the project Finally, we consider possible international cooperation on ground segment. It represents the capacity utilization of the VLBI (in particular opportunities of JIVE) for the trajectory measurements.

  1. Spin State of Returning Fly-by Near Earth Asteroid 2012 TC4

    NASA Astrophysics Data System (ADS)

    Ryan, William; Ryan, Eileen V.

    2017-10-01

    The ten-meter class near-Earth asteroid 2012 TC4 will make a close approach to the Earth on October 12, 2017. As of July 2017, the close approach distance ranges from 0.003 to 0.64 lunar distances (LD) with a nominal value of 0.23 LD. However this is the second observable close approach that this object has made since its discovery. In particular, broadband photometry was obtained for 2012 TC4 on 10 and 11 October 2012 using the Magdalena Ridge Observatory (MRO) 2.4-meter telescope. A periodicity of ~12.2 minutes was immediately evident in the time-series data, which was in agreement with the reported values of Polishook (2013), Odden et al. (2012), Warner (2013), and Carbognani (2014). The lightcurve displays an amplitude of ~0.9 magnitude, which implies that it is highly elongated with an axial ratio of a/b>2.3. However, a second period is also clearly evident in the MRO data, indicating that the asteroid is in a state of non-principle axis rotation.The nature of its orbit has made 2012 TC4 an attractive Earth-impacting asteroid surrogate for an exercise testing the capabilities of the scientific and emergency response communities (Reddy, 2017). For this reason, it is anticipated that considerable resources, including MRO, will be utilized to take advantage of the 2017 flyby to study this asteroid. Here, we present the details of the tumbling nature of this fast-spinning object observed during the October 2012 discovery apparition. These data were acquired before closest approach in 2012 where the asteroid came within 0.25 lunar distances of Earth. Therefore, this analysis will be discussed in the context of the spin state observations planned for early October 2017 at MRO, for which preliminary results will also be reported. In particular, comparison of the observed rotation state from the two apparitions can be indicative of any effects of Earth’s gravity during the 2012 flyby.References:Odden, C.E., Verhaegh, J.C., McCullough, D.G., and Briggs, J.W. (2013). Minor Planet Bul. 40, 176-177.Warner, B.D. (2013). Minor Planet Bul. 40, 71-80.Polishook, D. (2013). Minor Planet Bul. 40, 42-43.Carbognani, A. (2014). Minor Planet Bul. 41, 4-8.Reddy, V. (2017), AMOS SSA Technical Conference, Maui, HI.

  2. The contribution of comets in Near-Earth Object and Main Belt populations and the role of collisions in the physical properties of members of these populations.

    NASA Astrophysics Data System (ADS)

    Michel, P.

    2008-09-01

    The population of Near-Earth Objects (NEOs) is composed of small bodies of various origins. Groundbased observational programs have been developed to perform their inventory and to determine their physical properties. However, these observations contain many biases and the total population of NEOs with diameters down to a few hundreds of meters has not been identified yet. In recent years, the main sources of NEOs have been characterized [1]. Most of these bodies come from the asteroid main belt and the Jupiter-family comets and their source regions are linked to transport mechanisms (mean motion and secular resonances, slow diffusion mechanisms) to the NEO-space. It has then been possible to construct a complete model of the steady-state orbital, size and albedo distribution of NEOs and to determine the level of contribution of each of their sources, including the contribution of Jupiter-family comets. However, nothing is known regarding the contribution of longperiod comets. Physical observations have been conducted in order to identify potential dormant or extinct comets among small bodies in the NEO population and to determine the fraction of "comet candidates within the total NEO population. Combining the results of these observations with our model of NEO population to evaluate source region probabilities [1], it was found that 8 +/- 5% of the total asteroid-like NEO population may have originated as comets from the outer Solar System [2]. In the population of Main Belt (MB) asteroids, three members are known to display transient comet-like physical characteristics, including prolonged periods of dust emission leading to the formation of radiation pressure-swept tails [3]. These physical properties are most naturally explained as the result of sub-limation of near-surface ice from what are, dynamically, mainbelt asteroids (hence the name "main-belt comets" (MBCs) or, equivalently "icy asteroids"). No pausible dynamical path to the asteroid belt from the cometary reservoirs in the Oort cloud or Kuiper belt has been established. Thus, we may have an unsuspected icy region closer to the Sun than expected. However, it has also been suggested that numerous comets may have been captured during a violent period of planetary orbital evolution in the early stages of our Solar System [4]. Most of these bodies experience collisions during their lifetime, which can either disrupt them or modify their physical properties. In particular, collisions are suspected to be the triggering mechanism for the activation of MBCs. Thus the collisional process needs a good understanding in order to determine its contribution in the evolution of these small bodies, as a function of their physical properties. We have recently made a major improvement in the simulations of a small body disruption by introducing a model of fragmentation of porous material which will allows us to study the impact process on cometary bodies [5]. Moreover, for bodies dominated by gravity, our simulations includes the explicit computation of the formation of aggregates during the gravitational reaccumulation of small fragments, allowing us to obtain information on their spin, the number of boulders composing them or lying on their surface, and their shape. We will present the first and preliminary results of this process taking as examples some asteroid families that we reproduced successfully with our previous simulations [6], [7], [8], [9], [10], and their possible implications on the properties of small bodies generated by a disruption. Such information can for instance be compared with data provided by the Japanese space mission Hayabusa of the asteroid Itokawa, a body now understood to be a fragment of a larger parent body. For the population of comets, improving our understanding of their collisional response can then allow us to better characterize their collisional evolution, lifetime and other properties [11] which can have some implications on their contribution in "asteroidal" populations. It is also clear that future space missions to small bodies devoted to precise insitu analysis and sample return will allow us to improve our understanding on the physical properties of these objects, and to check whether our theoretical and numerical works are valid.

  3. Aqueous alteration on main-belt asteroids

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Lantz, C.; Barucci, M.; Lazzarin, M.

    2014-07-01

    The study of aqueous alteration is particularly important for unraveling the processes occurring during the earliest times in Solar System history, as it can give information both on the thermal processes and on the localization of water sources in the asteroid belt, and for the associated astrobiological implications. The aqueous alteration process produces the low temperature (< 320 K) chemical alteration of materials by liquid water which acts as a solvent and produces materials like phyllosilicates, sulphates, oxides, carbonates, and hydroxides. This means that liquid water was present in the primordial asteroids, produced by the melting of water ice by heating sources, very probably by ^{26}Al decay. Hydrated minerals have been found mainly on Mars surface, on primitive main-belt asteroids (C, G, B, F, and P-type, following the classification scheme by Tholen, 1984) and possibly also on few transneptunian objects. Reflectance spectroscopy of aqueous altered asteroids shows absorption features in the 0.6-0.9 and 2.5-3.5-micron regions, which are diagnostic of, or associated with, hydrated minerals. In this work, we investigate the aqueous alteration process on a large sample of 600 visible spectra of C-complex asteroids available in the literature. We analyzed all these spectra in a similar way to characterize the absorption-band parameters (band center, depth, and width) and spectral slope, and to look for possible correlations between the aqueous alteration process and the asteroids taxonomic classes, orbital elements, heliocentric distances, albedo, and sizes. We find that 4.6 % of P, 7.7 % of F, 9.8 % of B, 50.5 % of C, and 100 % of the G-type asteroids have absorption bands in the visible region due to hydrated silicates. Our analysis shows that the aqueous alteration sequence starts from the P-type objects, practically unaltered, and increases through the P → F → B → C → G asteroids, these last being widely aqueously altered, strengthening thus the results previously obtained by Vilas (1994). We confirm the strong correlation between the 0.7-μm band and the 3-μ m band, the deepest feature associated with hydrated minerals, as 95 % of the asteroids showing the 0.7-μ m band have also the 3-μ m feature. 45 % of the asteroids belonging to the C-complex (the F, B, C, and G classes) have signatures of aqueously altered materials in the visible range. It must be noted that this percentage represents a lower limit in the number of hydrated asteroids, simply because the 3-μ m band, the main absorption feature produced by hydrated silicates, may be present in the spectra of primitive asteroids when no bands are detected in the visible range. All this considered, we estimate that 70 % of the C-complex asteroids might have the 3-μ m signature in the IR range and thus were affected by the aqueous alteration process in the past. We find that the aqueous alteration process dominates in primitive asteroids located between 2.3 and 3.1 au, that is, at smaller heliocentric distances than previously suggested by Vilas et al. (1993). The percentage of hydrated asteroids is strongly correlated with their size (Fornasier et al. 2014). The aqueous alteration process is less effective for bodies smaller than 50 km, while it dominates in the 50-240-km sized primitive asteroids. No correlation is found between the aqueous alteration process and the asteroid albedo or orbital elements. Aqueously altered asteroids are the plausible parent bodies of CM2 meteorites. Nevertheless, we see a systematic difference in the 0.7-μ m band center position, the CM2 meteorites having a band centered at longer wavelengths (0.71-0.75 μ m) compared to that of hydrated asteroids. Moreover, the hydrated asteroids are more clustered in spectral slope and band depth than the CM meteorites. All these spectral differences may be attributed to different mineral abundances (CM2 meteorites being more serpentine rich than the asteroids), and/or to grain-size effects, or simply to the fact the CM2 collected on the Earth might not be representative of the whole population of aqueously altered asteroids.

  4. Light-Curve Survey of Jupiter Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Melita, M.; Ortiz, J. L.; Licandro, J.; Williams, I. P.; Jones, D.

    2008-09-01

    Trojan asteroids are an interesting population of minor bodies due to their dynamical characteristics, their physical properties and that they are relatively isolated located at the snow-line The main hypotheses about the origin of the Jupiter Trojans assumed that they formed either during the final stages of the planetary formation (Marzari & Scholl 1998), or during the epoch of planetary migration (Morbidelli et al. 2005), in any case more than 3.8 Gy. ago. The dynamical configuration kept the Trojans isolated from the asteroid Main Belt throughout the history of the Solar System. In spite of eventual interactions with other populations of minor bodies like the Hildas, the Jupiter family comets, and the Centaurs, their collisional evolution has been dictated mostly by the intrapopulation collisions (Marzari et al. 1996, 1997). Therefore, the Jupiter Trojans may be considered primordial bodies, whose dynamical and physical properties can provide important clues about the environment of planetary formation. The available sample of Jupiter Trojans light-curves is small and mainly restricted to the largest objects. According to the MPC-website (updated last in March 2006), the present sample of rotation periods and light-curve-amplitudes of the Jupiter Trojan asteroids is composed by 25 objects with some information about their periods and by 10 of them with only an amplitude estimation. A survey of contact binary Trojan asteroids has been done by Mann et al. 2007, where they have recorded more than 100 amplitudes from sparse-sampled light-curves and very-wellresolved rotational periods. More than 2000 Trojan asteroids have been discovered up to date, so, there is an urgent need to enlarge the sample of intrinsic rotation periods and accurate light-curve amplitudes and to extend it to smaller sizes. Results and Discusions We requested 26 nights of observation in the second semester of 2007, to begin with the survey. They were scheduled for the following instruments: the WFC, Isaac Newton Telescope (ING, 2.5m, 7 nights), CAHA (2.2m, 6 nights), CCD direct OSN (1.5m, 6 nights) and CCD direct, JS (CASLEO, 2.15m, 7 nights). From these observations we have constructed the differential photometry light-curves of 15 Trojan asteroids. Plots showing the actual light curves and the quality assessment of our estimation of the rotational period can be downloaded from: http://www.df.uba.ar/users/melita/PICT07/PICT07.ht ml. See table 1 for the main results. In figure 1 we show the known periods of the Trojan asteroids as a function of their size. Some of these data are still of poor quality. It remains to be confirmed the reality of the clustering of small objects at small periods, so, there is a need to improve those rotation rates with reliable standard photometry produced at an instrument of larger aperture. Also, a lack of data for the biggest objects is apparent from this figure. In figure 2 we show a plot of the Rmagnitude amplitude variation as a function of the absolute magnitude. Most of the objects are from the survey of contact binaries by Mann et al. 2007. This plot seems to indicate that the extreme elongations recorded previously are constrained to the largest objects. Our data follows the trend of a negative slope, but given the error-bars involved, it remains to be confirmed if smaller objects tend to be more spherical.

  5. A Mobile Asteroid Surface Scout for the AIDA Mission

    NASA Astrophysics Data System (ADS)

    Ho, Tra Mi; Lange, Caroline; Grimm, Christian; Thimo Grundmann, Jan; Rößler, Johannes; Schröder, Silvio; Skoczylas, Thomas; Ziach, Christian; Biele, Jens; Cozzoni, Barbara; Krause, Christian; Küchemann, Oliver; Maibaum, Michael; Ulamec, Stephan; Lange, Michael; Mierheim, Olaf; Maier, Maximilian; Herique, Alain; Mascot Study Team

    2016-04-01

    The Asteroid Impact Deflection, AIDA, mission is composed of a kinetic impactor, DART and an observer, the Asteroid Impact Monitor, AIM, carrying among other payload a surface package, MASCOT2 (MSC2). Its proposed concept is based on the MASCOT lander onboard the HAYABUSA2 Mission (JAXA) to near-Earth asteroid (162173) Ryugu. MASCOT is a compact platform ('shoe box size') carrying a suite of 4 scientific instruments and has a landed mass of ~10kg. Equipped with a mobility mechanism, the MASCOT lander is able to upright and relocate on the targeted asteroid; thus providing in-situ data at more than one site. In the context of the AIDA Mission, the MASCOT2 lander would be carried by the AIM spacecraft and delivered onto Didymoon, the secondary object in the (65803) Didymos binary near-Earth asteroid system. Since the mission objectives of the AIM mission within the joint AIDA mission concept differ from JAXA's sample return mission HAYABUSA2, several design changes need to be studied and implemented. To support one of the prime objectives of the AIM mission, the characterization of the bulk physical properties of Didymoon, the main scientific payload of MSC2 is a low-frequency radar (LFR) to investigate the internal structure of the asteroid moon. Since the total science payload on MASCOT2 is limited to approximately 2.3 kg, the mass remaining for a suite of other experiments is in the range of 0.1 to 0.5 kg per instrument. Further requirements have a significant impact on the MSC2 design which will be presented. Among these are the much longer required operational lifetime than for MASCOT on HAYABUSA2, and different conditions on the target body such as an extremely low gravity due to its small size of Ø_[Didymoon] ~ 150m.

  6. Spin states of asteroids in the Eos collisional family

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Delbo', M.; Alí-Lagoa, V.; Bolin, B.; Jedicke, R.; Ďurech, J.; Cibulková, H.; Pravec, P.; Kušnirák, P.; Behrend, R.; Marchis, F.; Antonini, P.; Arnold, L.; Audejean, M.; Bachschmidt, M.; Bernasconi, L.; Brunetto, L.; Casulli, S.; Dymock, R.; Esseiva, N.; Esteban, M.; Gerteis, O.; de Groot, H.; Gully, H.; Hamanowa, Hiroko; Hamanowa, Hiromi; Krafft, P.; Lehký, M.; Manzini, F.; Michelet, J.; Morelle, E.; Oey, J.; Pilcher, F.; Reignier, F.; Roy, R.; Salom, P. A.; Warner, B. D.

    2018-01-01

    Eos family was created during a catastrophic impact about 1.3 Gyr ago. Rotation states of individual family members contain information about the history of the whole population. We aim to increase the number of asteroid shape models and rotation states within the Eos collision family, as well as to revise previously published shape models from the literature. Such results can be used to constrain theoretical collisional and evolution models of the family, or to estimate other physical parameters by a thermophysical modeling of the thermal infrared data. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as input for the convex inversion method, and derive 3D shape models of asteroids together with their rotation periods and orientations of rotation axes. We present updated shape models for 15 asteroids and new shape model determinations for 16 asteroids. Together with the already published models from the publicly available DAMIT database, we compiled a sample of 56 Eos family members with known shape models that we used in our analysis of physical properties within the family. Rotation states of asteroids smaller than ∼ 20 km are heavily influenced by the YORP effect, whilst the large objects more or less retained their rotation state properties since the family creation. Moreover, we also present a shape model and bulk density of asteroid (423) Diotima, an interloper in the Eos family, based on the disk-resolved data obtained by the Near InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope.

  7. Asteroid clusters similar to asteroid pairs

    NASA Astrophysics Data System (ADS)

    Pravec, P.; Fatka, P.; Vokrouhlický, D.; Scheeres, D. J.; Kušnirák, P.; Hornoch, K.; Galád, A.; Vraštil, J.; Pray, D. P.; Krugly, Yu. N.; Gaftonyuk, N. M.; Inasaridze, R. Ya.; Ayvazian, V. R.; Kvaratskhelia, O. I.; Zhuzhunadze, V. T.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Világi, J.; Kornoš, L.; Gajdoš, Š.; Burkhonov, O.; Ehgamberdiev, Sh. A.; Donchev, Z.; Borisov, G.; Bonev, T.; Rumyantsev, V. V.; Molotov, I. E.

    2018-04-01

    We studied the membership, size ratio and rotational properties of 13 asteroid clusters consisting of between 3 and 19 known members that are on similar heliocentric orbits. By backward integrations of their orbits, we confirmed their cluster membership and estimated times elapsed since separation of the secondaries (the smaller cluster members) from the primary (i.e., cluster age) that are between 105 and a few 106 years. We ran photometric observations for all the cluster primaries and a sample of secondaries and we derived their accurate absolute magnitudes and rotation periods. We found that 11 of the 13 clusters follow the same trend of primary rotation period vs mass ratio as asteroid pairs that was revealed by Pravec et al. (2010). We generalized the model of the post-fission system for asteroid pairs by Pravec et al. (2010) to a system of N components formed by rotational fission and we found excellent agreement between the data for the 11 asteroid clusters and the prediction from the theory of their formation by rotational fission. The two exceptions are the high-mass ratio (q > 0.7) clusters of (18777) Hobson and (22280) Mandragora for which a different formation mechanism is needed. Two candidate mechanisms for formation of more than one secondary by rotational fission were published: the secondary fission process proposed by Jacobson and Scheeres (2011) and a cratering collision event onto a nearly critically rotating primary proposed by Vokrouhlický et al. (2017). It will have to be revealed from future studies which of the clusters were formed by one or the other process. To that point, we found certain further interesting properties and features of the asteroid clusters that place constraints on the theories of their formation, among them the most intriguing being the possibility of a cascade disruption for some of the clusters.

  8. The Almahata Sitta Polymict Ureilite from the University of Khartoum Collection: Classification, Distribution of Clast Types in the Strewn Field, New Meteorite Types, and Implications for the Structure of Asteroid 2008 TC3

    NASA Technical Reports Server (NTRS)

    Goodrich, C. A.; Fioretti, A. M.; Zolensky, M.; Ross, Daniel K.; Shaddad, M.; Ross, D. K.; Kohl, I.; Young, E.; Kita, N.; Hiroi, T.; hide

    2018-01-01

    The Almahata Sitta (AhS) polymict ureilite fell in 2008 when asteroid 2008 TC3 impacted over Sudan]. It is the first meteorite to originate from an asteroid that had been tracked and studied in space (with spectral classification) before impact, and provides a unique opportunity to correlate properties of meteorites with those of their parent asteroid. More than 700 monolithologic stones from the AhS fall were collected. Of those previously studied, approx. 70% were ureilites and approx. 30% were chondrites. It has been inferred that 2008 TC3 was loosely aggregated and porous and disintegrated in the atmosphere, with only its most coherent clasts falling as stones. However, understanding the structure of this asteroid is limited by incomplete study of the heterogeneous stones, and the loss of most of the mass of the asteroid. The University of Khartoum (UOK) AhS collection contains over >600 AhS stones with find coordinates. We are studying this collection to determine: 1) the proportion of ureilitic to various non-ureilitic stones; 2) the distribution of types of stones in the strewn field; and 3) the compositional and physical structure of 2008 TC3. We report on 61 new stones, including a unique sample that may represent the bulk of the material lost from 2008 TC3.

  9. Tracing meteorite source regions through asteroid spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina Ana

    By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives the best representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original solar system formation locations for different meteorite classes. To forge the first link between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-micron and 2-micron geometric band centers and their band area ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in the H, L, LL and HED meteorite classes. For each NEO spectrum, we assign a set of probabilities for it being related to each of these meteorite classes. Our NEO- meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. An apparent (significant at the 2.1-sigma level) source region signature is found for the H chondrites to be preferentially delivered to the inner solar system through the 3:1 mean motion resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites. The spectroscopy of asteroids is subject to several sources of inherent error. The source region model used a variety of S-type spectra without attempting to infer mineralogy. Yet work by Gaffey et al. (1993) describes the S-asteroid class as home to a wide variety of mineralogies. Using data from the Small Main-belt Asteroid Spectroscopic Survey (SMASS), the 24-color asteroid survey and the 52-color asteroid survey, the spectral parameters of subclass members are investigated to predict possible errors to our model. While spectra are a diagnostic tool, there are factors inherent to the environment of near-Earth asteroids that pose ambiguities, such as grain size, temperature and space weathering. These factors are difficult to deconvolve from the compositional signal and are addressed here by simulated effects on meteorites from RELAB, Moroz et al. (2000) and Strazzulla et al (2005). A long-standing puzzle in asteroid science is the space weathering process and its implications for the relationship between S-type asteroids and ordinary chondrites. While Q-type asteroids are most spectrally similar to ordinary chondrites, these meteorites share certain diagnostic similarities with S-type asteroids. Binzel et al. (2004) statistically demonstrated a trend in spectral slope in near-Earth objects from 0.1 to 5 km. This analysis provided a missing link between the Q- and S-type by showing a reddening of spectral slope with larger diameter that corresponds to a transition from Q-type asteroid spectra to S-type asteroid spectra. This reddening of spectral slope is attributed to the effects of space weathering on the observable surface composition. This work shows preliminary results of a photometric survey of small Koronis family members. Observations of these objects were obtained in visible and near- infrared Harris and Sloan filters. Due to their common origin, Koronis family members have shown similar S-type spectroscopic signatures. We assume this consistency applies to the small-unclassified bodies. This provides a unique opportunity to compare the effects of the space weathering process on potentially ordinary chondrite-like bodies within a population of identical initial conditions. By examining a size range similar to the Binzel et al. work we hope to compare the slope reddening transition sizes within the near-Earth population and the main-belt. This data set should prove crucial to our understanding of the space weathering process and its relevant timescales. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  10. Numerical Simulations of Granular Physics in the Solar System

    NASA Astrophysics Data System (ADS)

    Ballouz, Ronald

    2017-08-01

    Granular physics is a sub-discipline of physics that attempts to combine principles that have been developed for both solid-state physics and engineering (such as soil mechanics) with fluid dynamics in order to formulate a coherent theory for the description of granular materials, which are found in both terrestrial (e.g., earthquakes, landslides, and pharmaceuticals) and extra-terrestrial settings (e.g., asteroids surfaces, asteroid interiors, and planetary ring systems). In the case of our solar system, the growth of this sub-discipline has been key in helping to interpret the formation, structure, and evolution of both asteroids and planetary rings. It is difficult to develop a deterministic theory for granular materials due to the fact that granular systems are composed of a large number of elements that interact through a non-linear combination of various forces (mechanical, gravitational, and electrostatic, for example) leading to a high degree of stochasticity. Hence, we study these environments using an N-body code, pkdgrav, that is able to simulate the gravitational, collisional, and cohesive interactions of grains. Using pkdgrav, I have studied the size segregation on asteroid surfaces due to seismic shaking (the Brazil-nut effect), the interaction of the OSIRIS-REx asteroid sample-return mission sampling head, TAGSAM, with the surface of the asteroid Bennu, the collisional disruptions of rubble-pile asteroids, and the formation of structure in Saturn's rings. In all of these scenarios, I have found that the evolution of a granular system depends sensitively on the intrinsic properties of the individual grains (size, shape, sand surface roughness). For example, through our simulations, we have been able to determine relationships between regolith properties and the amount of surface penetration a spacecraft achieves upon landing. Furthermore, we have demonstrated that this relationship also depends on the strength of the local gravity. By comparing our numerical results to laboratory experiments and observations by spacecraft we can begin to understand which microscopic properties (i.e., grain properties) control the macroscopic properties of the system. For example, we can compare the mechanical response of a spacecraft to landing or Cassini observations of Saturn's ring to understand how the penetration depth of a spacecraft or the complex optical depth structure of a ring system depends on the size and surface properties of the grains in those systems.

  11. Shapes, rotation, and pole solutions of the selected Hilda and Trojan asteroids

    NASA Astrophysics Data System (ADS)

    Gritsevich, Maria; Sonnett, Sarah; Torppa, Johanna; Mainzer, Amy; Muinonen, Karri; Penttilä, Antti; Grav, Thomas; Masiero, Joseph; Bauer, James; Kramer, Emily

    2017-04-01

    Binary asteroid systems contain key information about the dynamical and chemical environments in which they formed. For example, determining the formation environments of Trojan and Hilda asteroids (in 1:1 and 3:2 mean-motion resonance with Jupiter, respectively) will provide critical constraints on how small bodies and the planets that drive their migration must have moved throughout Solar System history, see e.g. [1-3]. Therefore, identifying and characterizing binary asteroids within the Trojan and Hilda populations could offer a powerful means of discerning between Solar System evolution models. Dozens of possibly close or contact binary Trojans and Hildas were identified within the data obtained by NEOWISE [4]. Densely sampled light curves of these candidate binaries have been obtained in order to resolve rotational light curve features that are indicative of binarity (e.g., [5-7]). We present analysis of the shapes, rotation, and pole solutions of some of the follow-up targets observed with optical ground-based telescopes. For modelling the asteroid photometric properties, we use parameters describing the shape, surface light scattering properties and spin state of the asteroid. Scattering properties of the asteroid surface are modeled using a two parameter H-G12 magnitude system. Determination of the initial best-fit parameters is carried out by first using a triaxial ellipsoid shape model, and scanning over the period values and spin axis orientations, while fitting the other parameters, after which all parameters were fitted, taking the initial values for spin properties from the spin scanning. In addition to the best-fit parameters, we also provide the distribution of the possible solution, which should cover the inaccuracies of the solution, caused by the observing errors and model. The distribution of solutions is generated by Markov-Chain Monte Carlo sampling the spin and shape model parameters, using both an ellipsoid shape model and a convex model, Gaussian curvature of which is defined as a spherical harmonics series [8]. References: [1] Marzari F. and Scholl H. (1998), A&A, 339, 278. [2] Morbidelli A. et al. (2005), Nature, 435, 462. [3] Nesvorny D. et al. (2013), ApJ, 768, 45. [4] Sonnett S. et al. (2015), ApJ, 799, 191. [5] Behrend R. et al. (2006), A&A, 446, 1177. [6] Lacerda P. and Jewitt D. C. (2007), AJ, 133, 1393. [7] Oey J. (2016), MPB, 43, 45. [8] Muinonen et al., ACM 2017.

  12. Exobiology opportunities from Discovery-class missions. [Abstract only

    NASA Technical Reports Server (NTRS)

    Meyer, Michael A.; Rummel, John D.

    1994-01-01

    Discovery-class missions that are now planned, and those in the concept stage, have the potential to expand our knowledge of the origins and evolution of biogenic compounds, and ultimately, of the origins of life in the solar system. This class of missions, recently developed within NASA's Solar System Exploration Program, is designed to meet important scientific objectives within stringent guidelines--$150 million cap on development cost and a 3-year cap on the development schedule. The Discovery Program will effectively enable "faster, cheaper" missions to explore the inner solar system. The first two missions are Mars Environmental Survey (MESUR) Pathfinder and Near Earth Asteroid Rendezvous (NEAR). MESUR Pathfinder will be the first Discovery mission, with launch planned for November/December 1996. It will be primarily a technical demonstration and validation of the MESUR Program--a network of automated landers to study the internal structure, meteorology, and surface properties of Mars. Besides providing engineering data, Pathfinder will carry atmospheric instrumentation and imaging capabilities, and may deploy a microrover equipped with an alpha proton X-ray spectrometer to determine elemental composition, particularly the lighter elements of exobiological interest. NEAR is expected to be launched in 1998 and to rendezvous with a near-Earth asteroid for up to 1 year. During this time, the spacecraft will assess the asteroid's mass, size, density, map its surface topography and composition, determine its internal properties, and study its interaction with the interplanetary environment. A gamma ray or X-ray spectrometer will be used to determine elemental composition. An imaging spectrograph, with 0.35 to 2.5 micron spectral range, will be used to determine the asteroid's compositional disbribution. Of the 11 Discovery mission concepts that have been designated as warranting further study, several are promising in terms of determining the composition and chemical evolution of organic matter on small planetary bodies. The following mission concepts are of particular interest to the Exobiology Program: Cometary coma chemical composition, comet nucleus tour, near earth asteroid returned sample, small missions to asteroids and comets, and solar wind sample return. The following three Discovery mission concepts that have been targeted for further consideration are relevant to the study of the evolution of biogenic compounds: Comet nucleus penetrator, mainbelt asteroid rendezvous explorer, and the Mars polar Pathfinder.

  13. Exploring Extreme Retro-reflection by Asteroids Using Las Cumbres Observatory Robotic Telescope Observations

    NASA Astrophysics Data System (ADS)

    Goguen, Jay D.; Bauer, James M.

    2017-10-01

    The reflectivity of solar system surfaces ‘spikes’ sharply when the Sun is less than 1 degree from directly behind the observer. The Galileo spacecraft measured the reflectivity of part of Europa’s surface to increase by as much as a factor of 8 as the observer moves from 5 degrees to the exact backscattering direction! One mechanism explains this spike as coherent light scattering that occurs only close to this unique retro-reflection geometry. Due to the tight linear alignment of the target, observer and Sun required to measure the peak brightness of the spike, accurate and complete measurements of the amplitude and decay of the spike exist for only a few targets. We used the unique capabilities of the automated Las Cumbres Observatory global telescope network (LCO) to systematically measure this extreme opposition surge for 60+ asteroids sampling a variety of taxonomic classes in the Bus/DeMeo taxonomy.Each asteroid was observed in the SDSS r’ and g’ filters during the ~8 hour interval when it passes within ~0.1 deg of the point opposite the Sun on the sky. Supporting observations of each asteroid with LCO collected over ~50 days measure asteroid rotation and phase angle brightness changes to enable accurate characterization of the retro-reflection spike. This data set vastly increases the number and variety of the surfaces characterized at such small phase angles compared to existing asteroid data. We examine how the spike characteristics vary with surface composition, albedo, and wavelength providing new constraints on physical models of this ubiquitous yet poorly understood phenomenon.Analysis and modeling of these measurements will advance our understanding of the physical mechanism responsible for this enhanced retro-reflection thereby improving our ability to characterize these surfaces from remote observations. The ability to infer surface physical properties from remote sensing data is a key capability for future asteroid missions, manned exploration, impact hazard assessment, and fundamental asteroid science.

  14. Unambiguous Spectral Evidence for High- (and Low-) Calcium Pyroxene in Asteroids and Meteorites

    NASA Technical Reports Server (NTRS)

    Sunshine, J. M.; Bus, S. J.; Burbine, T. H.; McCoy, T. J.; Binzel, R. P.

    2001-01-01

    Spectroscopy remains a powerful tool for inferring the modal mineralogy and mafic mineral composition of asteroid surfaces. Since similar measurements can be made on meteorite samples, spectroscopy can help link the two populations and add spatial and geologic context to detailed geochemical knowledge derived from meteorite samples. For example, analysis of the recent NEAR-Shoemaker mission to Eros include detailed study of NIS spectra to assess the affinity of Eros to ordinary chondrites. As discussed in these studies, pyroxene (PYX) and olivine (OLV) absorption are readily detectable in the spectra. Furthermore, subtleties in band parameters (position vs. area) suggest the presence of both low- and high-calcium pyroxene (LCP and HCP), as expected from the petrology of ordinary chondrites. However unambiguous identification and detailed compositional inferences for both LCP and HCP (and OLV) are difficult from band parameters analysis. In this study, we examine spectra of S-asteroids and meteorites with the Modified Gaussian Model (MGM), an absorption band model, to explore the role of HCP in these silicate-rich spectra.

  15. Unambiguous Spectral Evidence for High- (and Low-) Calcium Pyroxene In Asteroids and Meteorites

    NASA Technical Reports Server (NTRS)

    Sunshine, J. M.; Bus, S. J.; Burbine, T. H.; McCoy, T. J.; Binzel, R. P.

    2001-01-01

    Spectroscopy remains a powerful tool for inferring the modal mineralogy and mafic mineral composition of asteroid surfaces. Since similar measurements can be made on meteorite samples, spectroscopy can help link the two populations and add spatial and geologic context to detailed geo knowledge derived from meteorite samples. For example, analysis of the recent NEAR-Shoemaker mission to Eros include detailed study of NIS spectra to assess the affinity of Eros to ordinary chondrites. As discussed in these studies, pyrox (PYX) and olivine (OLV) absorption are readily detectable in the spectra. Furthermore, subtleties in band parameters (position vs. area) suggest the presence of both low- and high-calcium pyroxene (LCP and HCP), as expected from the petrology of ordinary chondrites. However unambiguous identification and detailed compositional inferences for both LCP and HCP (and OLV) are difficult from band parameters analysis. In this study, we examine spectra of S-asteroids and meteorites with the Modified Gaussian Model (MGM), an absorption band model, to explore the role of HCP in these silicate-rich spectra.

  16. BENNU’S JOURNEY Poster

    NASA Image and Video Library

    2017-12-08

    The Origins Spectral Interpretation Resource Identification Security -- Regolith Explorer spacecraft (OSIRIS-REx) will travel to a near-Earth asteroid, called Bennu, and bring a sample back to Earth for study. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-REx is scheduled for launch in late 2016. As planned, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. BENNU’S JOURNEY

    NASA Image and Video Library

    2017-12-08

    This large asteroid, a proto-star undergoes fusion and our sun is born. This is the parent of Asteroid Bennu. Today, a NASA Spacecraft has the chance to retrieve a sample from Bennu to reveal the history of our solar system. OSIRIRS-REx is a NASA sample return mission to visit Asteroid Bennu. We plan to grab a piece of Bennu, because it’s a time capsule that can tell us about the origins of our planet and our entire solar system. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. The Themis-Beagle families: Investigation of space-weathering processes on primitive surfaces

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Perna, D.; Lantz, C.; Barucci, M.

    2014-07-01

    In the past 20 years, enormous progress has been reached in the study of space-weathering (SW) effects on silicates and silicate asteroids. The so-called ordinary chondrite paradox, that is, lack of asteroids similar to the ordinary chondrites, which represent 80 % of meteorite falls, has been solved. These meteorites are now clearly related to S-type asteroids, as proved also by the direct measurements of the NEAR and HAYABUSA missions on the near-Earth asteroids Eros and Itokawa. Spectral differences between S-type asteroids and ordinary chondrites are caused by space-weathering effects, which produce a darkening in the albedo, a reddening of the spectra, and diminish the silicate absorption bands on the asteroids surfaces, exposed to cosmic radiation and solar wind. On the other hand, our understanding of space-weathering effects on primitive asteroids is still poor. Only few laboratory experiments have been devoted to the investigation of SW effects on dark carbonaceous chondrites and on complex organic materials. Irradiation of transparent organic materials produces firstly redder and darker materials that upon further processing turn flatter-bluish and darker (Kanuchova et al. 2012; Moroz et al. 2004). The Themis family is a natural laboratory to study primitive asteroids and space-weathering effects. The Themis family is located between 3.05 and 3.24 au, beyond the snow line, and it is composed of primitive asteroids. Themis is one of the most statistically reliable families in the asteroid belt. First discovered by Hirayama (1918), it has been identified as a family in all subsequent works, and it has 550 members as determined by Zappalà et al. (1995) and more than 4000 as determined by Nesvorny et al. (2010). The family formed probably about 2.3 Gyr ago as a result of a large-scale catastrophic disruption event of a parent asteroid 400 km in diameter colliding with a 190-km projectile (Marzari et al. 1995). Several Themis family members show absorption features associated to hydrated silicates, and, recently, water-ice and organics features have been detected on the surface of (24) Themis (Campins et al. 2010, Rivkin & Emery 2010). Hydrated silicates are produced by the aqueous-alteration process, which require low temperature (< 320 K) and the presence of liquid water in the past. The Themis family may be an important reservoir of water ice. Moreover, the main-belt comets 133P, 238P, and 176P seem to be related to the Themis family because of orbital proximities and spectral properties analogies. Within the old Themis family members, a young sub-family, Beagle, formed less than 10 Myr ago, has been identified. This sub-family has 65 members up to 2 km of diameter (Nesvorny et al. 2008). So, the Themis family is very important to shed light on the asteroid-comet continuum, to constrain the abundances of water ices in the outer part of the main belt, and to probe space-weathering effects on old Themis and young Beagle families' members. To investigate all these aspects, we carried out a spectroscopic survey in the visible and near-infrared range at the 3.6-m Italian telescope TNG (La Palma, Spain) during 6 nights in February and December 2012. We got new spectra of 8 Beagle and 22 Themis members using the DOLORES (with the LR-R and LR-B grisms) and the NICS (with the Amici prism) instruments. To look for possible coma around the targets, we also performed deep imaging in the R filter. Data are currently under analysis, and the results will be presented at the ACM meeting. None of the investigated spectra show water-ice absorption features at 1.5 and 2 microns, while few Themis members have visible absorption bands associated with hydrated silicates. The best meteoritic analogues to both Themis and Beagle members are the carbonaceous chondrites, especially CM2. The spectra of Beagle and Themis asteroids show significant differences: 'old' Themis members exhibit a wide range of spectra, including asteroids with blue/neutral and moderately red spectra (relative to the Sun), while the young Beagle members investigated are bluer and brighter than the Themis ones. These preliminary results seem to indicate that the SW effects on primitive asteroids are similar to those observed on silicate asteroids, that is, they produce reddening of the spectra and moderate darkening of the surface.

  19. Evidence from Polymict Ureilite Meteorites for a Single "Rubble-Pile" Ureilite Parent Asteroid Gardened by Several Distinct Impactors

    NASA Technical Reports Server (NTRS)

    Downes, Hilary; Mittlefehldt, David W.; Kita, Noriko T.; Valley, John W.

    2008-01-01

    Ureilites are ultramafic achondrite meteorites that have experienced igneous processing whilst retaining heterogeneity in mg# and oxygen isotope ratios. Polymict ureilites represent material derived from the surface of the ureilite parent asteroid(s). Electron microprobe analysis of more than 500 olivine and pyroxene clasts in six polymict ureilites reveals that they cover a statistically identical range of compositions to that shown by all known monomict ureilites. This is considered to be convincing evidence for derivation from a single parent asteroid. Many of the polymict ureilites also contain clasts that have identical compositions to the anomalously high Mn/Mg olivines and pyroxenes from the Hughes 009 monomict ureilite (here termed the Hughes cluster ). Four of the six samples also contain distinctive ferroan lithic clasts that have been derived from oxidized impactors. The presence of several common distinctive lithologies within the polymict ureilites is additional evidence that the ureilites were derived from a single parent asteroid. Olivine in a large lithic clast of augite-bearing ureilitic has an mg# of 97, extending the compositional range of known ureilite material. Our study confirms that ureilitic olivine clasts with mg#s < 85 are much more common than those with mg# > 85, which also show more variable Mn contents, including the melt-inclusion bearing "Hughes cluster" ureilites. We interpret this to indicate that the parent ureilite asteroid was disrupted by a major impact at a time when melt was still present in regions with a bulk mg# > 85, giving rise to the two types of ureilites: common ferroan ones that were already residual after melting and less common magnesian ones that were still partially molten when disruption occurred, some of which are the result of interaction of melts with residual mantle during disruption. A single daughter asteroid re-accreted from the disrupted remnants of the mantle of the proto-ureilite asteroid, giving rise to a "rubble-pile" body that had material of a wide variety of compositions and shock states present on its surface. The analysed polymict ureilite meteorites represent regolith that subsequently formed on this asteroidal surface, including impact-derived material from at least six different meteoritic sources.

  20. Plagioclase-Rich Itokawa Grains: Space Weathering, Exposure Ages, and Comparison to Lunar Soil Grains

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berge, E.

    2017-01-01

    Regolith grains returned by the Hayabusa mission to asteroid 25143 Itokawa provide the only samples currently available to study the interaction of chondritic asteroidal material with the space weathering environment. Several studies have documented the surface alterations observed on the regolith grains, but most of these studies involved olivine because of its abundance. Here we focus on the rarer Itokawa plagioclase grains, in order to allow comparisons between Itokawa and lunar soil plagioclase grains for which an extensive data set exists.

  1. Insights into Regolith Evolution from TEM Studies of Space Weathering of Itokawa Particles

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Exposure to solar wind irradiation and micrometeorite impacts alter the properties of regolith materials exposed on airless bodies. However, estimates of space weathering rates for asteroid regoliths span many orders of magnitude. Timescales for space weathering processes on airless bodies can be anchored by analyzing surface samples returned by JAXA's Hayabusa mission to asteroid 25143 Itokawa. Constraints on timescales of solar flare particle track accumulation and formation of solar wind produced ion-damaged rims yield information on regolith dynamics.

  2. Predictive Control of Plasma Kinetics: Time-Resolved Measurements of Inert Gas Mixing in a Hollow Cathode Discharge

    DTIC Science & Technology

    2011-10-01

    enable more extensive cost-capped, Discovery class NASA missions such as robotic missions to Mars and near- Earth asteroids to perform round trip sample...could be facilitated with higher performance propulsion systems include robotic missions to the Moon, Mars, and near- Earth asteroids to perform round...discharge in the case with nitrogen gas mixing. This is not due to the common misconception that molecular gases would have a higher ionization energy

  3. Asteroid Icy Regolith Excavation and Volatile Capture Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mantovani, James; Swanger, Adam; Townsend, Ivan

    2015-01-01

    Icy regolith simulants will be produced in a relevant vacuum environment using various minerals, including hydrated minerals, that are found in C-type meteorites and in other types of planetary regolith. This will allow us to characterize the mechanical strength of the icy regolith as a function of ice content using penetration, excavation, and sample capture devices. The results of this study will benefit engineers in designing efficient regolith excavators and ISRU processing systems for future exploration missions to asteroids and other planetary bodies.

  4. Rotational spectral variations of asteroid (8) Flora Implications for the nature of the S-type asteroids and for the parent bodies of the ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.

    1984-01-01

    The surface material and the surface material heterogeneities of the asteroid Flora are characterized using the best available data sets and the most sophisticated interpretive calibrations. Five spectrally derived mineralogic and patrologic properties of the surface assemblage of Flora which are relevant to whether this body is a differentiated or undifferentiated object are considered: bulk mineralogy, mafic mineral assemblage, metallic phase, pyroxene composition and structural type, and mineralogic variation. All of these properties indicate that Flora is a differentiated body. Flora is probably the residual core of an intensely heated, thermally evolved, and magnetically differentiated planetesimal which was subsequently disrupted. The present surface sample layers formed at or near the core-mantle boundary in the parent body.

  5. The ISIS Mission Concept: An Impactor for Surface and Interior Science

    NASA Technical Reports Server (NTRS)

    Chesley, Steven R.; Elliot, John O.; Abell, Paul A.; Asphaug, Erik; Bhaskaran, Shyam; Lam, Try; Lauretta, Dante S.

    2013-01-01

    The Impactor for Surface and Interior Science (ISIS) mission concept is a kinetic asteroid impactor mission to the target of NASA's OSIRIS-REx (Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer) asteroid sample return mission. The ISIS mission concept calls for the ISIS spacecraft, an independent and autonomous smart impactor, to guide itself to a hyper-velocity impact with 1999 RQ36 while the OSIRIS-REx spacecraft observes the collision. Later the OSIRIS-REx spacecraft descends to reconnoiter the impact site and measure the momentum imparted to the asteroid through the impact before departing on its journey back to Earth. In this paper we discuss the planetary science, human exploration and impact mitigation drivers for mission, and we describe the current mission concept and flight system design.

  6. The OSIRIS-REx laser altimeter (OLA): Development progress

    NASA Astrophysics Data System (ADS)

    Daly, M.; Barnouin, O.; Johnson, C.; Bierhaus, E.; Seabrook, J.; Dickinson, C.; Haltigin, T.; Gaudreau, D.; Brunet, C.; Cunningham, G.; Lauretta, D.; Boynton, W.; Beshore, E.

    2014-07-01

    Introduction: The NASA New Frontiers Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission will be the first to sample the B-type asteroid (101955) Bennu [1]. This asteroid is thought to be primitive and carbonaceous, and is probably closely related to CI and/or CM meteorites [2]. The OSIRIS-REx mission hopes to better understand both the physical and geochemical origin and evolution of carbonaceous asteroids through its investigation of Bennu. The OSIRIS-REx spacecraft will launch in September 2016, and arrive at Bennu two years later. The Canadian Space Agency is contributing a scanning lidar system known as the OSIRIS-REx Laser Altimeter (OLA), to the OSIRIS-REx Mission. The OLA instrument is part of suite of onboard instruments [3] including cameras (OCAMS) [4], a visible and near- infrared spectrometer (OVIRS) [5], a thermal emission spectrometer (OTES), and an X-ray imaging spectrometer (REXIS) [6]. OLA Objectives: The OLA instrument has a suite of scientific and mission operations purposes. At a global scale, it will update the shape and mass of Bennu to provide insights on the geological origin and evolution of Bennu, by, for example, further refining constraints on its bulk density. With a carefully undertaken geodesy campaign, OLA-based precision ranges, constraints from radio science (2-way tracking) data and stereo OCAMS images, it will yield broad-scale, quantitative constraints on any internal heterogeneity of Bennu and hence provide further clues to Bennu's origin and subsequent collisional evolution. OLA-derived global asteroid maps of slopes, elevation relative to the asteroid geoid, and vertical roughness will provide quantitative insights on how local-regional surfaces on Bennu evolved subsequent to the formation of the asteroid. In addition, OLA data and derived products support the assessment of the safety and sampleability of potential sample sites. At the sample-site scale, the OLA instrument will provide detailed information on the geological and geophysical processes which influence the surface regolith at scales relevant to the samples that will be collected. High resolution (meter-scale) spatial measurements of surface topographic slopes, center-of-mass referenced elevation, and vertical roughness within the sample ellipse will provide quantitative data on regolith processes such as surface granular flows that could have displaced the regolith sampled by OSIRIS-REx spacecraft. The OLA system will also be responsible for assessing hazards at any proposed sample site. Specifically, the OLA system will measure the slope distribution within the sample ellipse and characterize backscatter roughness at or below the scale of the OLA spot size. Technical Specifications: The completed OLA instrument is expected to achieve all these objectives through its specifications that are based on the characteristics of Bennu and operational considerations: Maximum Operational Range, 7.5 km; Minimum Operational Range, 0.150 km; Range Accuracy, 5--20 cm (range dependent); Range Resolution, <4 cm; Scanner Field of Regard, ±10 deg. (each axis); Laser Spot Size (on surface), 0.015--2 m (range dependent). Progress To-date: A prototype of the OLA system has been developed and successfully tested. Results from this testing will be presented and compared with the instrument requirements. Simulated OLA datasets will be presented along with the first engineering model hardware and test results.

  7. The formation of jupiter, the jovian early bombardment and the delivery of water to the asteroid belt: the case of (4) vesta.

    PubMed

    Turrini, Diego; Svetsov, Vladimir

    2014-01-28

    The asteroid (4) Vesta, parent body of the Howardite-Eucrite-Diogenite meteorites, is one of the first bodies that formed, mostly from volatile-depleted material, in the Solar System. The Dawn mission recently provided evidence that hydrated material was delivered to Vesta, possibly in a continuous way, over the last 4 Ga, while the study of the eucritic meteorites revealed a few samples that crystallized in presence of water and volatile elements. The formation of Jupiter and probably its migration occurred in the period when eucrites crystallized, and triggered a phase of bombardment that caused icy planetesimals to cross the asteroid belt. In this work, we study the flux of icy planetesimals on Vesta during the Jovian Early Bombardment and, using hydrodynamic simulations, the outcome of their collisions with the asteroid. We explore how the migration of the giant planet would affect the delivery of water and volatile materials to the asteroid and we discuss our results in the context of the geophysical and collisional evolution of Vesta. In particular, we argue that the observational data are best reproduced if the bulk of the impactors was represented by 1-2 km wide planetesimals and if Jupiter underwent a limited (a fraction of au) displacement.

  8. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1986-01-01

    The number of radar detected asteroids has climbed from 6 to 40 (27 mainbelt plus 13 near-Earth). The dual-circular-polarization radar sample now comprises more than 1% of the numbered asteroids. Radar results for mainbelt asteroids furnish the first available information on the nature of these objects at macroscopic scales. At least one object (2 Pallas) and probably many others are extraordinarily smooth at centimeter-to-meter scales but are extremely rough at some scale between several meters and many kilometers. Pallas has essentially no small-scale structure within the uppermost several meters of the regolith, but the rms slope of this regolith exceeds 20 deg., much larger than typical lunar values (approx. 7 deg.). The origin of these slopes could be the hypervelocity impact cratering process, whose manifestations are likely to be different on low-gravity, low-radius-of-curvature objects from those on the terrestrial planets. The range of mainbelt asteroid radar albedoes is very broad and implies big variations in regolith porosity or metal concentration, or both. The highest albedo estimate, for 16 Psyche, is consistent with a surface having porosities typical of lunar soil and a composition nearly completely metallic. Therefore, Psyche might be the collisionally stripped core of a differentiated small plant, and might resemble mineralogically the parent bodies of iron meteorites.

  9. The Formation of Jupiter, the Jovian Early Bombardment and the Delivery of Water to the Asteroid Belt: The Case of (4) Vesta

    PubMed Central

    Turrini, Diego; Svetsov, Vladimir

    2014-01-01

    The asteroid (4) Vesta, parent body of the Howardite-Eucrite-Diogenite meteorites, is one of the first bodies that formed, mostly from volatile-depleted material, in the Solar System. The Dawn mission recently provided evidence that hydrated material was delivered to Vesta, possibly in a continuous way, over the last 4 Ga, while the study of the eucritic meteorites revealed a few samples that crystallized in presence of water and volatile elements. The formation of Jupiter and probably its migration occurred in the period when eucrites crystallized, and triggered a phase of bombardment that caused icy planetesimals to cross the asteroid belt. In this work, we study the flux of icy planetesimals on Vesta during the Jovian Early Bombardment and, using hydrodynamic simulations, the outcome of their collisions with the asteroid. We explore how the migration of the giant planet would affect the delivery of water and volatile materials to the asteroid and we discuss our results in the context of the geophysical and collisional evolution of Vesta. In particular, we argue that the observational data are best reproduced if the bulk of the impactors was represented by 1–2 km wide planetesimals and if Jupiter underwent a limited (a fraction of au) displacement. PMID:25370027

  10. Near surface bulk density estimates of NEAs from radar observations and permittivity measurements of powdered geologic material

    NASA Astrophysics Data System (ADS)

    Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An

    2018-05-01

    The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.

  11. The research of the accuracy of asteroid orbit fitting using both radar and astrometric observations. (Russian Title: Исследование точности решения задачи улучшения орбит астероидов по данным их радарных и угловых наблюдений)

    NASA Astrophysics Data System (ADS)

    Baturin, A. P.; Kinzersky, V. V.

    2014-12-01

    The least-square orbit fitting problem for asteroids using their radar and astrometric observations has been considered. The both types of radar observations have been taken into account: the time delay observations and the Doppler observations. The research of accuracy increase due to the using of radar observations in addition to astrometric ones has been carried out. This research has been done by means of several orbit fittings using different samples of observations of some asteroids. The samples contain all radar observations and different numbers of astrometric ones. The orbit arc of radar observations of chosen asteroids is very short (several days) while the arcs of astrometric observations for all used samples are much longer. It has been demonstrated that the using of radar observations in the orbit fitting may increase the accuracy of obtained solution by 1-3 orders even in the cases of very long astromeric arcs (several years). During the research the convenient windows-interface for the calculating program has been developed. The functions of the program also have been expanded. Particularly, the ability of perturbations calculation from different planet ephemerides and of calculations with different machine precision have been added to the program.

  12. Phootprint - A Phobos sample return mission study

    NASA Astrophysics Data System (ADS)

    Koschny, Detlef; Svedhem, Håkan; Rebuffat, Denis

    Introduction ESA is currently studying a mission to return a sample from Phobos, called Phootprint. This study is performed as part of ESA’s Mars Robotic Exploration Programme. Part of the mission goal is to prepare technology needed for a sample return mission from Mars itself; the mission should also have a strong scientific justification, which is described here. 1. Science goal The main science goal of this mission will be to Understand the formation of the Martian moons Phobos and put constraints on the evolution of the solar system. Currently, there are several possibilities for explaining the formation of the Martian moons: (a) co-formation with Mars (b) capture of objects coming close to Mars (c) Impact of a large body onto Mars and formation from the impact ejecta The main science goal of this mission is to find out which of the three scenarios is the most probable one. To do this, samples from Phobos would be returned to Earth and analyzed with extremely high precision in ground-based laboratories. An on-board payload is foreseen to provide information to put the sample into the necessary geological context. 2. Mission Spacecraft and payload will be based on experience gained from previous studies to Martian moons and asteroids. In particular the Marco Polo and MarcoPolo-R asteroid sample return mission studies performed at ESA were used as a starting point. Currently, industrial studies are ongoing. The initial starting assumption was to use a Soyuz launcher. Uunlike the initial Marco Polo and MarcoPolo-R studies to an asteroid, a transfer stage will be needed. Another main difference to an asteroid mission is the fact that the spacecraft actually orbits Mars, not Phobos or Deimos. It is possible to select a spacecraft orbit, which in a Phobos- or Deimos-centred reference system would give an ellipse around the moon. The following model payload is currently foreseen: - Wide Angle Camera, - Narrow Angle Camera, - Close-Up Camera, - Context camera for sampling context, - visible-IR spectrometer - thermal IR spectrometer - and a Radio Science investigation. It is expected that with these instruments the necessary context for the sample can be provided. The paper will focus on the current status of the mission study.

  13. The Science of Asteroid Sample Return Mission Hayabusa2

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Yoshikawa, M.; Watanabe, S.

    2015-12-01

    Hayabusa2, which is the follow-on mission of Hayabusa, was launched on Dec. 3, 2014. The target asteroid is (162173) 1999 JU3, a C-type, small Near Earth Asteroid. The principal purpose of Hayabusa2 is to study the origin and evolution of the solar system, especially the origin of organic matters and waters on the earth. Hayabusa2 will arrive at 1999 JU3 in June or July 2018, stay there for about one and half years, leave there at the end of 2019, and come back to the earth at the end of 2020. The main mission is the sample return, taking the surface materials of 1999 JU3 and bringing them back to the earth. We will try to get the samples not only from the surface but also from the subsurface by creating a small crater on the surface of the asteroid (see the figure). Hayabusa2 has remote sensing instruments as follows: Optical Navigation Cameras (ONC-T/W1/W2), Near Infrared Spectrometer (NIRS3), Thermal Infrared Imager (TIR), and Laser Altimeter (LIDAR). It has also three small rovers (MINERVA-II-1A/1B/2), and one small lander (MASCOT), which was provided by DLR and CNES. Small Carry-on Impactor (SCI) is used to create a small crater and the impact event is observed by a deployable camera (DCAM3). Thus we can use a wide variety of data to study this C-type asteroid. And of course, we will analyze the samples in detail after the capsule of Hayabusa2 comes back to the earth. For the science researches, we have Hayabusa2 science team in Japan. As for the international science discussions we organized Hayabusa2 Joint Science Team (HJST). HJST is presently consists of Japanese science members and European members who are mostly related MASCOT. We had four general meetings up to now. In this year (2015), NASA announced Hayabusa2 Participating Scientist Program. If US scientists are selected, they will be the members of HJST. In addition to this, we have started discussions with OSIRIS-REx team for the science collaboration. We hope that Hayabusa2 will produce much more scientific results by the international collaborations.

  14. Sampling Strategy and Curation Plan of "Hayabusa" Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Yano, H.; Fujiwara, A.; Abe, M.; Hasegawa, S.; Kushiro, I.; Zolensky, M. E.

    2004-01-01

    On the 9th May 2003 JST, Japanese spacecraft MUSES-C was successfully launched from Uchinoura. The spacecraft was directly inserted to interplanetary trajectory and renamed as Hayabusa , or "Falcon" to be the world s first sample return spacecraft to a near Earth asteroid (NEA). The NEA (25143)Itokawa (formerly known as "1998SF36") is its mission target. Its orbital and physical characteristics were well observed; the size is (490 +/- 100)x (250 +/- 55)x(180 +/- 50) m with about 12-hour rotation period. It has a red-sloped S(IV)-type spectrum with strong 1- and 2-micron absorption bands, analogous to ordinary LL chondrites with space weathering effect. Assuming its bulk density, the surface gravity level of Itokawa is in the order of 10 micro-G with its escape velocity = approx. 20 cm/s.

  15. Spectral reflectance "deconstruction" of the Murchison CM2 carbonaceous chondrite and implications for spectroscopic investigations of dark asteroids

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward A.; Pietrasz, Valerie B.; Kiddell, Cain; Izawa, Matthew R. M.; Vernazza, Pierre; Burbine, Thomas H.; DeMeo, Francesca; Tait, Kimberly T.; Bell, James F.; Mann, Paul; Applin, Daniel M.; Reddy, Vishnu

    2018-05-01

    Carbonaceous chondrites (CCs) are important materials for understanding the early evolution of the solar system and delivery of volatiles and organic material to the early Earth. Presumed CC-like asteroids are also the targets of two current sample return missions: OSIRIS-REx to asteroid Bennu and Hayabusa-2 to asteroid Ryugu, and the Dawn orbital mission at asteroid Ceres. To improve our ability to identify and characterize CM2 CC-type parent bodies, we have examined how factors such as particle size, particle packing, and viewing geometry affect reflectance spectra of the Murchison CM2 CC. The derived relationships have implications for disc-resolved examinations of dark asteroids and sampleability. It has been found that reflectance spectra of slabs are more blue-sloped (reflectance decreasing toward longer wavelengths as measured by the 1.8/0.6 μm reflectance ratio), and generally darker, than powdered sample spectra. Decreasing the maximum grain size of a powdered sample results in progressively brighter and more red-sloped spectra. Decreasing the average grain size of a powdered sample results in a decrease in diagnostic absorption band depths, and redder and brighter spectra. Decreasing porosity of powders and variations in surface texture result in spectral changes that may be different as a function of viewing geometry. Increasing thickness of loose dust on a denser powdered substrate leads to a decrease in absorption band depths. Changes in viewing geometry lead to different changes in spectral metrics depending on whether the spectra are acquired in backscatter or forward-scatter geometries. In backscattered geometry, increasing phase angle leads to an initial increase and then decrease in spectral slope, and a general decrease in visible region reflectance and absorption band depths, and frequent decreases in absorption band minima positions. In forward scattering geometry, increasing phase angle leads to small non-systematic changes in spectral slope, and general decreases in visible region reflectance, and absorption band depths. The highest albedos and larger band depths are generally seen in the lowest phase angle backscattering geometry spectra. The reddest spectra are generally seen in the lowest phase angle backscatter geometry spectra. For the same phase angle, spectra acquired in forward scatter geometry are generally redder and darker and have shallower absorption bands than those acquired in backscatter geometry. Overall, backscatter geometry-acquired spectra are flatter, brighter, and have deeper 0.7 μm region absorption band depths than forward scatter geometry-acquired spectra. It was also found that the 0.7, 0.9, and 1.1 μm absorption bands in Murchison spectra, which are attributable to various Fe electronic processes, are ubiquitous and can be used to recognize CM2 chondrites regardless of the physical properties of the meteorite and viewing geometry.

  16. PING Gamma Ray and Neutron Measurements of a Meter-Sized Carbonaceous Asteroid Analog

    NASA Technical Reports Server (NTRS)

    Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Parsons, A.; Schweitzer, J.; hide

    2011-01-01

    Determining the elemental composition of carbonaceous (spectral type C) asteroids is still one of the basic problems when studying these objects. The only main source of elemental composition information for asteroids is from their optical, NIR and IR properties, which include their spectral reflectance characteristics, albedo, polarization, and the comparison of optical spectroscopy with meteorite groups corresponding to asteroids of every spectral type. Unfortunately, these sources reflect observations from widely contrasting spatial scales that presently yield a void in the continuum of microscopic and macroscopic evidence, a lack of in situ measurement confirmation, and require deeper sensing techniques to discern the nature of these asteroids. The Probing In situ with Neutrons and Gamma rays (PING) instrument is ideally suited to address this problem because it can be used to determine the bulk elemental composition, H and C content, the average atomic weight and density of the surface and subsurface layers of C-type asteroids, and can provide measurements used to determine the difference between and distinguish between different types of asteroids. We are currently developing the PING instrument that combines gamma ray and neutron detectors with a 14 Me V pulsed neutron generator to determine the in-situ bulk elemental abundances and geochemistry of C-type asteroids with a spatial resolution of 1 m down to depths of tens of cm to 1 m. One aspect of the current work includes experimentally testing and optimizing PING on a known meter-sized Columbia River basalt C-type asteroid analog sample that has a similar composition and the same neutron response as that of a C-type asteroid. An important part of this effort focuses on utilizing timing measurements to isolate gamma rays produced by neutron inelastic scattering, neutron capture and delayed activation processes. Separating the gamma ray spectra by nuclear processes results in higher precision and sensitivity elemental composition measurements. Using gated data acquisition techniques allows for the unambiguous identification of gamma ray lines from different isotopes and nuclear processes, especially in situations when limited detector resolution results in overlapping gamma ray lines that cannot be individually resolved. In this paper, we will present the PING basalt layering experimental data, taken at the test facility at NASA Goddard Space Flight Center using the time tagged event-by-event data analysis technique, compared to our MCNPX computer simulation results for the C-type asteroid and basalt layering simulant models. Comparison of these data will show the advantages, validity, and measurement sensitivity of PING's nuclear interrogation methods to obtain more precise and sensitive in situ bulk elemental composition and density measurements of the subsurface of asteroids.

  17. Near Earth Asteroid redirect missions based on gravity assist maneuver

    NASA Astrophysics Data System (ADS)

    Ledkov, Anton; Shustov, Boris M.; Eismont, Natan; Boyarsky, Michael; Nazirov, Ravil; Fedyaev, Konstantin

    During last years several events attracted world community attention to the hazards of hitting the Earth by sky objects. One of these objects is Apophis asteroid what was expected with nonzero probability to hit the Earth in 2036. Luckily after more precise measurements this event is considered as practically improbable. But the other object has really reached the Earth, entered the atmosphere in the Chelyabinsk area and caused vast damages. After this the hazardous near Earth objects problem received practical confirmation of the necessity to find the methods of its resolution. The methods to prevent collision of the dangerous sky object with the Earth proposed up to now look not practical enough if one mentions such as gravitational tractor or changing the reflectivity of the asteroid surface. Even the method supposing the targeting of the spacecraft to the hazardous object in order to deflect it from initial trajectory by impact does not work because its low mass as compared with the mass of asteroid to be deflected. For example the mass of the Apophis is estimated to be about 40 million tons but the spacecraft which can be launched to intercept the asteroid using contemporary launchers has the mass not more than 5 tons. So the question arises where to find the heavier projectile which is possible to direct to the dangerous object? The answer proposed in our paper is very simple: to search it among small near Earth asteroids. As small ones we suppose those which have the cross section size not more than 12-15 meters and mass not exceeding 1500 -1700 tons. According to contemporary estimates the number of such asteroids is not less than 100000. The other question is how to redirect such asteroid to the dangerous one. In the paper the possibilities are studied to use for that purpose gravity assist maneuvers near Earth. It is shown that even among asteroids included in contemporary catalogue there are the ones which could be directed to the trajectory of the gravity assist maneuver near Earth resulted by following impact with dangerous asteroid. As example of the last one the Apophis was chosen. The required delta-V pulse to be applied to the candidate projectile asteroid to fulfill mentioned change of initial trajectory was confirmed to be comparatively small: not exceeding 10 m/s, and the smallest is about 2 m/s. To fulfilled this maneuver it is necessary to land and to mount on the surface of the asteroid projectile the spacecraft with sufficient amount of propellant onboard. The possible trajectories and demanded maneuvers were explored and it was confirmed that for contemporary space technology it is doable for the small asteroids belonging to the determined by our studies list of candidates supposing some reservations, namely the mass of the found asteroids. This was not considered as decisive obstacle because up to now only about 1% of small enough asteroids are included in catalogue so the list of the appropriate ones is far from to be closed. The studies have been fulfilled aimed to develop the methods to reached required accuracies of asteroid projectile trajectory parameters determination. With existing methods used for the usual spacecraft the limits of achievable accuracies demand the corrections delta-V maneuvers which may exceed the nominal ones. As a result the proposed conception of hazardous asteroids deflection becomes problematic. To overcome this obstacle in the paper new method of trajectory parameters determination is proposed and explored. Practically it is radio interferometer method when one transponder is placed on the asteroid target and two others together with the asteroid projectile form tetrahedron. This system begins to operate in vicinity of target asteroid in autonomous regime and expected to allow reaching the demanded low enough correction maneuver values. Paper gives the estimations of the accuracy of these three bodies relative motion parameters and expected limit values of correction maneuvers needed for hitting the target object. As additional option of planetary defense system construction the idea to redirect small near Earth asteroids onto the orbits resonance with the Earth orbit is explored. It is shown that it is possible to reach it by the use gravity assist maneuvers as it was described above by applying small velocity impulses to the asteroids. At least 11 asteroids were found demanded small enough delta-V for transferring them on such trajectories. After executing these maneuvers one can receive the system of asteroids approaching to the Earth practically each month with a possibility to use them as projectiles or for the purposes of delivering to the Earth their soil samples.

  18. Poor Man's Asteroid Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Landis, R. R.; Graham, L. D.

    2018-02-01

    A cislunar platform at a Near-Rectilinear [Halo] Orbit in the vicinity of the Moon could provide an opportunity for a small NEA sample return mission at relatively low cost. There are a couple potential small ( 1m) object target dynamical groups.

  19. ARM Spacecraft Illustration

    NASA Image and Video Library

    2016-09-20

    This graphic depicts the Asteroid Redirect Vehicle conducting a flyby of its target asteroid. During these flybys, the Asteroid Redirect Mission (ARM) would come within 0.6 miles (1 kilometer), generating imagery with resolution of up to 0.4 of an inch (1 centimeter) per pixel. The robotic segment of ARM will demonstrate advanced, high-power, high-throughput solar electric propulsion; advanced autonomous precision proximity operations at a low-gravity planetary body; and controlled touchdown and liftoff with a multi-ton mass. The crew segment of the mission will include spacewalk activities for sample selection, extraction, containment and return; and mission operations of integrated robotic and crewed vehicle stack -- all key components of future in-space operations for human missions to the Mars system. After collecting a multi-ton boulder from the asteroid, the robotic spacecraft will redirect the boulder to a crew-accessible orbit around the moon, where NASA plans to conduct a series of proving ground missions in the 2020s that will help validate capabilities needed for NASA's Journey to Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21062

  20. Highest Resolution Topography of 433 Eros and Implications for MUSES-C

    NASA Technical Reports Server (NTRS)

    Cheng, A. F.; Barnouin-Jha, O.

    2003-01-01

    The highest resolution observations of surface morphology and topography at asteroid 433 Eros were obtained by the Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft on 12 February 2001, as it landed within a ponded deposit on Eros. Coordinated observations were obtained by the imager and the laser rangefinder, at best image resolution of 1 cm/pixel and best topographic resolution of 0.4 m. The NEAR landing datasets provide unique information on rock size and height distributions and regolith processes. Rocks and soil can be distinguished photometrically, suggesting that bare rock is indeed exposed. The NEAR landing data are the only data at sufficient resolution to be relevant to hazard assessment on future landed missions to asteroids, such as the MUSES-C mission which will land on asteroid 25143 (1998 SF36) in order to obtain samples. In a typical region just outside the pond where NEAR landed, the areal coverage by resolved positive topographic features is 18%. At least one topographic feature in the vicinity of the NEAR landing site would have been hazardous for a spacecraft.

  1. Multi-Wavelength Observations of 2100 Ra-Shalom: Radar and Lightcurves

    NASA Technical Reports Server (NTRS)

    Shepard, M. K.; Clark-Joseph, B. E.; Benner, L. A. M.; Giorgini, J. D.; Kusnirak, P.; Margot, J.-L.; Nolan, M. C.; Ostro, S. J.; Pravec, P.; Sarounova, L.

    2004-01-01

    We conducted a multi-wavelength campaign to study the near-Earth asteroid (NEA) 2100 Ra-Shalom during its August 2003 encounter. Rotationally resolved observations were acquired at Arecibo (12.6 cm radar), the IRTF (0.8-2.5 micron and 3 micron), McDonald Observatory (0.48-0.92 micron), Palomar Observatory (8-15 micron), and Ondrejov Observatory (optical lightcurves). Our objectives were to determine Ra-Shalom's size and shape, and the composition and physical state of its near-surface material. Preliminary results from radar and lightcurve measurements will be presented here.

  2. Petrology of Two Itokawa Particles: Comparison with Equilibrated LL Chondrites

    NASA Technical Reports Server (NTRS)

    Komatsu, M.; Mikouchi, T.; Arai, T.; Fagan, T. J.; Zolensky, M.; Hagiya, K.; Ohsumi, K.; Karouji, Y.

    2015-01-01

    A strong link between Itokawa particles and LL chondrites was confirmed by preliminary examinations of Hayabusa particles [e.g., 1, 2]. Both poorly equilibrated and highly equilibrated particles have been found among the grains returned from Itokawa [1], and it is suggested that they correspond to LL4 and LL5-6, respectively. Here we report the petrography of two Itokawa particles and TEM study of one, and compare them to Antarctic LL chondrites with variable petrologic types (LL4-LL7) in order to understand the metamorphic history of asteroid Itokawa.

  3. Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    NASA Astrophysics Data System (ADS)

    French, Linda M.

    2016-01-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half of the objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015). A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004). Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  4. Space weathering trends on carbonaceous asteroids: A possible explanation for Bennu's blue slope?

    NASA Astrophysics Data System (ADS)

    Lantz, C.; Binzel, R. P.; DeMeo, F. E.

    2018-03-01

    We compare primitive near-Earth asteroid spectral properties to the irradiated carbonaceous chondrite samples of Lantz et al. (2017) in order to assess how space weathering processes might influence taxonomic classification. Using the same eigenvectors from the asteroid taxonomy by DeMeo et al. (2009), we calculate the principal components for fresh and irradiated meteorites and find that change in spectral slope (blueing or reddening) causes a corresponding shift in the two first principal components along the same line that the C- and X-complexes track. Using a sample of B-, C-, X-, and D-type NEOs with visible and near-infrared spectral data, we further investigated the correlation between prinicipal components and the spectral curvature for the primitive asteroids. We find that space weathering effects are not just slope and albedo, but also include spectral curvature. We show how, through space weathering, surfaces having an original "C-type" reflectance can thus turn into a redder P-type or a bluer B-type, and that space weathering can also decrease (and disguise) the D-type population. Finally we take a look at the case of OSIRIS-REx target (101955) Bennu and propose an explanation for the blue and possibly red spectra that were previously observed on different locations of its surface: parts of Bennu's surface could have become blue due to space weathering, while fresher areas are redder. No clear prediction can be made on Hayabusa-2 target (162173) Ryugu.

  5. Rotation Frequencies of Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; James, David J.; Coley, Daniel; Connour, Kyle

    2015-11-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half the 131 objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015).A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004).Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  6. Near-infrared spectroscopy of 3:1 Kirkwood Gap asteroids III

    NASA Astrophysics Data System (ADS)

    Fieber-Beyer, Sherry K.; Gaffey, Michael J.

    2015-09-01

    The research is an integrated effort beginning with telescopic observations and extending through detailed mineralogical characterizations to provide constraints on the composition and meteorite affinities of a subset of fourteen asteroids in/near the 3:1 Kirkwood Gap. Eight asteroids were identified as having either one or two absorption features, while six were deemed featureless. The compositional analysis of Asteroids (355) Gabriella and (1447) Utra reveal Fs and Fa values which are consistent with values for the L-type ordinary chondrites (Fs19-22 and Fa22-26). The location of these two bodies with respect to each other and to the previously identified L-chondrite parent body Asteroid (1722) Goffin, suggests a small L-chondrite genetic family. These results support the model that the L-chondrites come from an asteroid family rather than from a single object. Asteroids (1368) Numidia, (1587) Kahrstadt, (1854) Skvortsov, (2497) Kulikovskij, and (5676) Voltaire were analyzed and determined to have "basaltic" silicate mineralogies similar to those of the HED (howardite-eucrite-diogenite) meteorite group. In particular, we found that the compositions of (1368), (1587) and (1854) are consistent with olivine-orthopyroxenitic diogenites, while (2497) and (5676)'s compositions are consistent with harzburgitic diogenites. The Band I and Band II absorption feature depths are much shallower than seen in diogenite spectra, typically ∼70% depth (Burbine, T.H. et al. [2000]. Forging asteroid-meteorite relationships through reflectance spectroscopy. Lunar Planet. Sci. XXXI. Abstract 1844). The nature of the weak features seen in the asteroid spectra when compared to measured band depths of in situ diogenite samples indicate an additional mechanism(s) acting to weaken the features, most likely space weathering. The aforementioned five asteroids are plausible sources for the olivine-orthopyroxenitic diogenites and harzburgitic diogenites, and very well may be fragments of Vesta. Asteroid (46) Hestia is an interesting object whose surface minerals may be consistent with a CR2 chondrite; however, the unique spectrum deserves further study in the future. Featureless Asteroids (248) Lameia, (1960) Guisan, (3345) Tarkovskij and (6212) 1993 MS1 surface materials are likely organic assemblages consistent with the Type 1 or 2 carbonaceous chondrite meteorite class; however specific terrestrial meteorite analog could not be identified. The spectra of Asteroids (3228) Pire and (3999) Aristarchus are consistent with each other and have been assigned to the Eulalia by Walsh et al. (Walsh, K.J. et al. [2013]. Icarus 225, 283-297). Spectrally they are similar to (495) in terms of blue-slope and albedo (Fieber-Beyer, S.K., et al. [2012]. Icarus 221, 593-602), thus increasing our confidence the three bodies are truly related dynamically and genetically. By extrapolation and due to their location adjacent to the 3:1 Kirkwood Gap, (3228) and (3999) are plausible sources of the CV3OXB carbonaceous chondrites.

  7. Lunar and Planetary Science XXXVI, Part 18

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics discussed include: PoDS: A Powder Delivery System for Mars In-Situ Organic, Mineralogic and Isotopic Analysis Instruments Planetary Differentiation of Accreting Planetesimals with 26Al and 60Fe as the Heat Sources Ground-based Observation of Lunar Surface by Lunar VIS/NIR Spectral Imager Mt. Oikeyama Structure: First Impact Structure in Japan? Central Mounds in Martian Impact Craters: Assessment as Possible Perennial Permafrost Mounds (Pingos) A Further Analysis of Potential Photosynthetic Life on Mars New Insight into Valleys-Ocean Boundary on Mars Using 128 Pixels per Degree MOLA Data: Implication for Martian Ocean and Global Climate Change; Recursive Topography Based Surface Age Computations for Mars: New Insight into Surficial Processes That Influenced Craters Distribution as a Step Toward the Formal Proof of Martian Ocean Recession, Timing and Probability; Laser-induced Breakdown Spectroscopy: A New Method for Stand-Off Quantitative Analysis of Samples on Mars; Milk Spring Channels Provide Further Evidence of Oceanic, >1.7-km-Deep Late Devonian Alamo Crater, Southern Nevada; Exploration of Martian Polar Residual Caps from HEND/ODYSSEY Data; Outflow Channels Influencing Martian Climate: Global Circulation Model Simulations with Emplaced Water; Presence of Nonmethane Hydrocarbons on Pluto; Difference in Degree of Space Weathering on the Newborn Asteroid Karin; Circular Collapsed Features Related to the Chaotic Terrain Formation on Mars; A Search for Live (sup 244)Pu in Deep-Sea Sediments: Preliminary Results of Method Development; Some Peculiarities of Quartz, Biotite and Garnet Transformation in Conditions of Step-like Shock Compression of Crystal Slate; Error Analysis of Remotely-Acquired Mossbauer Spectra; Cloud Activity on Titan During the Cassini Mission; Solar Radiation Pressure and Transient Flows on Asteroid Surfaces; Landing Site Characteristics for Europa 1: Topography; and The Crop Circles of Europa.

  8. Simulation of the dusty plasma environment of 65803 Didymos for the Asteroid Impact Mission (AIM)

    NASA Astrophysics Data System (ADS)

    Cipriani, Fabrice; Rodgers, David; Hilgers, Alain; Hess, Sebastien; Carnelli, Ian

    2016-10-01

    The Asteroid Impact and Deflection Assessment mission (AIDA) is a joint European-US technology demonstrator mission including the DART asteroid impactor (NASA/JHU/APL) and the AIM asteroid rendezvous platform (ESA/DLR/OCA) set to reach Near Earth binary Object 65803 Didymos in October 2022. Besides technology demonstration in the deep space communications domain and the realization of a kinetic impact on the moonlet to study deflection parameters, this asteroid rendezvous mission is an opportunity to carry out in-situ observations of the close environment of a binary system, addressing some fundamental science questions. The MASCOT-2 lander will be released from the AIM platform and operate at the surface of the moonlet of 65803 Didymos, complemented by the ability of the Cubesat Opportunity Payloads (COPINS) to sample the close environment of the binary.In this context, we have developed an model describing the plasma and charged dust components of the near surface environment of the moonlet (170m in diameter), targeted by the MASCOT-2 lander and of the DART impactor. We performed numerical simulations in order to estimate the electrostatic surface potentials at various locations of the surface, resulting from its interaction with the solar wind plasma and solar photons. In addition, we describe charging levels, density profiles, and velocity distribution of regolith grains lifted out from the surface up to about 70m above the surface.

  9. NASA's Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Mazanek, Dan; Reeves, David; Naasz, Bo; Cichy, Benjamin

    2015-11-01

    The National Aeronautics and Space Administration (NASA) is developing a robotic mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, and redirect it into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA’s plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. In order to maximize the knowledge return from the mission, NASA is organizing an ARM Investigation Team, which is being preceded by the Formulation Assessment and Support Team. These teams will be comprised of scientists, technologists, and other qualified and interested individuals to help plan the implementation and execution of ARM. An overview of robotic and crewed segments of ARM, including the mission requirements, NEA targets, and mission operations, will be provided along with a discussion of the potential opportunities associated with the mission.

  10. The Asteroid Redirect Mission (ARM)

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2015-01-01

    The National Aeronautics and Space Administration (NASA) is developing a robotic mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, and redirect it into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA's plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. In order to maximize the knowledge return from the mission, NASA is organizing an ARM Investigation Team, which is being preceded by the Formulation Assessment and Support Team. These teams will be comprised of scientists, technologists, and other qualified and interested individuals to help plan the implementation and execution of ARM. An overview of robotic and crewed segments of ARM, including the mission requirements, NEA targets, and mission operations, will be provided along with a discussion of the potential opportunities associated with the mission.

  11. A Ground Systems Template for Remote Sensing Systems

    NASA Astrophysics Data System (ADS)

    McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.

    2002-10-01

    Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS.

  12. Preliminary Results From Observing The Fast Stardust Sample Return Capsule Entry In Earth's Atmosphere On January 15, 2006.

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Jordan, D.; Kontinos, D.; Wright, M.; Olejniczak, J.; Raiche, G.; Wercinski, P.; Schilling, E.; Taylor, M.; Rairden, R.; Stenbaek-Nielsen, H.; McHarg, M. G.; Abe, S.; Winter, M.

    2006-08-01

    In order for NASA's Stardust mission to return a comet sample to Earth, the probe was put in an orbit similar to that of Near Earth Asteroids. As a result, the reentry in Earth's atmosphere on January 15, 2006, was the fastest entry ever for a NASA spacecraft, with a speed of 12.8 km/s, similar to that of natural fireballs. A new thermal protection material, PICA, was used to protect the sample, a material that may have a future as thermal protection for the Crew Return Vehicle or for future planetary missions. An airborne and ground-based observing campaign, the "Stardust Hyperseed MAC", was organized to observe the reentry under good observing conditions, with spectroscopic and imaging techniques commonly used for meteor observations (http:// reentry.arc.nasa.gov). A spectacular video of the reentry was obtained. The spectroscopic observations measure how much light was generated in the shock wave, how that radiation added to heating the surface, how the PICA ablated as a function of altitude, and how the carbon reacted with the shock wave to form CN, a possible marker of prebiotic chemistry in natural meteors. In addition, the observations measured a transient signal of zinc and potassium early in the trajectory, from the ablation of a white paint layer that had been applied to the heat shield for thermal control. Implications for sample return and the exploration of atmospheres in future planetary missions will be discussed.

  13. OSIRIS-REx Solar Array Illumination Test

    NASA Image and Video Library

    2016-08-05

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, illumination testing is underway on the power-producing solar arrays for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-Rex will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  14. OSIRIS-REx Solar Array Illumination Test

    NASA Image and Video Library

    2016-08-05

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, illumination testing is underway on the power -producing solar arrays for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-Rex will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  15. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    The United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  16. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    After leaving the Vertical Integration Facility, a United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  17. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    The United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth. Photo credit: NASA/Kim Shiflett

  18. Hayabusa2 Sample Catcher and Container: Metal-Seal System for Vacuum Encapsulation of Returned Samples with Volatiles and Organic Compounds Recovered from C-Type Asteroid Ryugu

    NASA Astrophysics Data System (ADS)

    Okazaki, Ryuji; Sawada, Hirotaka; Yamanouchi, Shinji; Tachibana, Shogo; Miura, Yayoi N.; Sakamoto, Kanako; Takano, Yoshinori; Abe, Masanao; Itoh, Shoichi; Yamada, Keita; Yabuta, Hikaru; Okamoto, Chisato; Yano, Hajime; Noguchi, Takaaki; Nakamura, Tomoki; Nagao, Keisuke

    2017-07-01

    The spacecraft Hayabusa2 was launched on December 3, 2014, to collect and return samples from a C-type asteroid, 162173 Ryugu (provisional designation, 1999 JU3). It is expected that the samples collected contain organic matter and water-bearing minerals and have key information to elucidate the origin and history of the Solar System and the evolution of bio-related organics prior to delivery to the early Earth. In order to obtain samples with volatile species without terrestrial contamination, based on lessons learned from the Hayabusa mission, the sample catcher and container of Hayabusa2 were refined from those used in Hayabusa. The improvements include (1) a mirror finish of the inner wall surface of the sample catcher and the container, (2) adoption of an aluminum metal sealing system, and (3) addition of a gas-sampling interface for gas collection and evacuation. The former two improvements were made to limit contamination of the samples by terrestrial atmosphere below 1 Pa after the container is sealed. The gas-sampling interface will be used to promptly collect volatile species released from the samples in the sample container after sealing of the container. These improvements maintain the value of the returned samples.

  19. NASA's Asteroid Redirect Mission: A Robotic Boulder Capture Option for Science, Human Exploration, Resource Utilization, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar electric propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (4 - 10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (1 - 5 m) via robotic manipulators from the surface of a larger (100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well- characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense. Science: The RBC option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. In addition, the material surrounding the boulder can be collected from the surface, thus providing geological contextual information and additional samples of NEA regolith. The robotic manipulators used for capturing the boulder will ensure some of the surface remains undisturbed and that the boulder will retain its structural integrity, which will preserve the context of any samples collected by the astronauts and ensure a high level of science return. Human Exploration: Due to the coherent nature of the boulder that will be collected, entire encapsulation of the asteroid material is not required. This facilitates exploration and sample collection of the boulder by astronauts in a variety of ways. The total time for EVA during the crew portion of the mission is very limited. Current estimates are that each of the two EVAs will only last four hours. The RBC option will allow crew members to have good situational awareness of the work site and quickly identify sample sites of interest. In addition, the samples to be collected can be readily accessed without having to deal with removal of an encapsulation system, which adds extra complexity and risk for the astronauts during EVA. Resource Utilization: One of the most crucial aspects for resource utilization is the identification and collection of appropriate materials (e.g., volatiles, organics, metals, etc.) that contain components of interest. Prior characterization of NEAs is required in order to increase the likelihood that appropriate materials will be returned. Ground-based observations of small (<10 m) NEAs are challenging, but characterization efforts of larger targets have demonstrated that NEAs with volatiles and organics have been identified. Two potential targets for the RBC option (Bennu and 1999 JU3) have been previously identified as potentially rich in resources, and both are already targets of currently planned robotic missions that will characterize their physical properties in great detail. Planetary Defense: The RBC option involves interaction with a well- characterized potentially hazardoussized NEA that would enable NASA to conduct one or more planetary defense demonstrations. The primary method would use the collected boulder to augment the mass of the ARV and perform an Enhanced Gravity Tractor (EGT) demonstration on the NEA. Additionally, other approaches could be demonstrated during the mission, such as Ion Beam Deflection (IBD) and/or observation of a Kinetic Impactor (KI). The relative effectiveness of a slow push-pull method such as the EGT or IBD could be directly compared and contrasted with the results of the more energetic KI method on the target NEA. Conclusions: This boulder option for NASA's ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more certainty of the target NEA's physical characteristics and reduces mission risk. This increases the return on investment for NASA's future activities with respect to human exploration, resource utilization, and planetary defense.

  20. Lessons Learned from Preparing OSIRIS-REx Spectral Analog Samples for Bennu

    NASA Technical Reports Server (NTRS)

    Schrader, D. L.; McCoy, T. J.; Cody, G. D.; King, A. J.; Schofield, P. F.; Russell, S. S.; Connolly, H. C., Jr.; Keller, L. P.; Donaldson Hanna, K.; Bowles, N.; hide

    2017-01-01

    NASA's OSIRIS-REx sample return mission launched on September 8th, 2016 to rendezvous with B-type asteroid (101955) Bennu in 2018. Type C and B asteroids have been linked to carbonaceous chondrites because of their similar visible - to - near infrared (VIS-NIR) spectral properties [e.g., 1,2]. The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) and the Thermal Emission Spectrometer (OTES) will make spectroscopic observations of Bennu during the encounter. Constraining the presence or absence of hydrous minerals (e.g., Ca-carbonate, phyllosilicates) and organic molecules will be key to characterizing Bennu [3] prior to sample site selection. The goal of this study was to develop a suite of analog and meteorite samples and obtain their spectral properties over the wavelength ranges of OVIRS (0.4- 4.3 micrometer) and OTES (5.0-50 micrometer). These spectral data were used to validate the mission science-data processing system. We discuss the reasoning behind the study and share lessons learned.

  1. Earth Rings for Planetary Environment Control

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome; Oldson, John; Levin, Eugene; Carroll, Joseph

    2002-01-01

    For most of its past, large parts of the Earth have experienced subtropical climates, with high sea levels and no polar icecaps. This warmer environment was punctuated 570, 280, and 3 million years ago with periods of glaciation that covered temperate regions with thick ice for millions of years. At the end of the current ice age, a warmer climate could flood coastal cities, even without human-caused global warming. In addition, asteroids bombard the Earth periodically, with impacts large enough to destroy most life on Earth, and the sun is warming inexorably. This paper proposes a concept to solve these problems simultaneously, by creating an artificial planetary ring about the Earth to shade it. Past proposals for space climate control have depended on gigantic engineering structures launched from Earth and placed in Earth orbit or at the Earth-Sun L1 libration point, requiring fabrication, large launch masses and expense, constant control, and repair. Our solution is to begin by using lunar material, and then mine and remove Earth-orbit-crossing asteroids and discard the tailings into Earth orbit, to form a broad, flat ring like those of Saturn. This solution is evaluated and compared with other alternatives. Such ring systems can persist for thousands of years, and can be maintained by shepherding satellites or by continual replenishment from new asteroids to replace the edges of the ring lost by diffusion. An Earth ring at R = 1.3-1.83 RE would shade only the equatorial regions, moderating climate extremes, and could reverse a century of global warming. It could also absorb particles from the radiation belts, making trips to high Earth orbit and GEO safer for humans and for electronics. It would also light the night many times as bright as the full moon. A preliminary design of the ring is developed, including its location, mass, composition, stability, and timescale required. A one-dimensional climate model is used to evaluate the Earth ring performance. Earth, lunar, and asteroidal material sources are evaluated; asteroid retrieval is addressed, along with techniques for processing and forming the ring to the proper thickness and density. The ring could consist of particles, or fabricated satellite structures. Environmental concerns and effects on existing satellites in various Earth orbits are addressed. There are uncertainties in our understanding of climate and its control. But it appears that the Earth ring could control the Earth's temperature and its latitudinal variation, make dangerous asteroids useful, reduce the intensity of the Van Allen radiation belts, provide nighttime illumination without power, and create an artificial ionosphere for radio communication.

  2. Solar System Observations with Spitzer Space Telescope: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2005-01-01

    The programs of observations of Solar System bodies conducted in the first year of the operation of the Spitzer Space Telescope as part of the Guaranteed Observing Time allocations are described. Initial results include the determination of the albedos of a number of Kuiper Belt objects and Centaurs from observations of their flux densities at 24 and 70 microns, and the detection of emission bands in the spectra of several distant asteroids (Trojans) around 10 and 25 microns. The 10 Kuiper Belt objects observed to date have albedos in the range 0.08 - 0.15, significantly higher than the earlier estimated 0.04. An additional KBO [(55565) 2002 AW(sub l97)] has an albedo of 0.17 plus or minus 0.03. The emission bands in the asteroid spectra are indicative of silicates, but specific minerals have not yet been identified. The Centaur/comet 29P/Schwassmann-Wachmann 1 has a nucleus surface albedo of 0.025 plus or minus 0.01, and its dust production rate was calculated from the properties of the coma. Several other investigations are in progress as the incoming data are processed and analyzed.

  3. Investigating the Efficacy of CubeSats for Asteroid Detection

    NASA Technical Reports Server (NTRS)

    O'Toole, Conor

    2015-01-01

    A simulation to examine the potential of a network of CubeSats for detecting Near Earth Objects is discussed, in terms of goals, methods used and initial results obtained. By designing a basic optical system and the orbital parameters of the satellites in this network, their effectiveness for detecting asteroids is examined, with a small sample of cataloged asteroids considered.The conditions to be satisfied for detection cover both the geometrical aspects of astronomy such as field of view and line of sight, along with more technical optics-based conditions such as resolution and sensitivity of our telescopes. Of special interest to us in this work is the region of the sky between 45 deg. and 90 deg. from the Sun, as seen from the Earth. This part of the sky is currently unobservable by ground-based surveys and so provides the primary reason to consider a space-based one. There exist a number of issues with the simulation which call these results into question, but an eort has been made to remove those results which exceed the possible capabilities of the satellite network, and identify those aspects of the mission which should be examined in order to provide an in-depth assessment of it's performance. With these filters applied to the overall data, a tentative result of 1458 total detections over an 85 year period has been obtained, with 14 of the 22 asteroids in the sample being detected at least once. A number of ways in which the simulation could be improved are also proposed, both in-terms of addressing the aforementioned issues, as well as how to improve on the accuracy of the simulation and capture as many aspects of a space-based optical astronomy mission as possible,with the possible nal form of the simulation being a tool for assessing the performance of any space-based optical mission to detect asteroids.

  4. Thermophysical properties and modeling of minor bodies regoliths

    NASA Astrophysics Data System (ADS)

    Delbo, M.

    2017-12-01

    I will review recent studies of atmosphere-less Solar System minor bodies in the thermal infrared wavelengths (> 5 micron), which have seen major advances in the last few years thanks to the observations from space telescopes such as NASA's WISE and Spitzer, JAXA's Akari and ESA's Herschel. Analysis of these observations by means of numerical models allowed not only the determination of sizes and albedos for more than hundred-thousands asteroids, but also to infer, for several of these objects, the values of their thermal inertia. The latter is a sensitive indicator for the presence (or absence) of surface regolith, its grain size, porosity, and degree of compaction. These data confirm presence of regolith on all the studied asteroids, even on the rapidly rotating (period < 3 hours) ones. To exaplain this latter result, researchers invoked electrostatic forces to retain the regolith, which otherwise would be lost in space. Furthermore, it appears that thermal inertia inversely correlates with asteroid sizes, and directly correlates with their rotation periods. This can be explained by regolith density increasing with increasing depth below the surface, a phenomenon already noted of our moon. These findings will soon be tested with unprecedented detail by data from NASA's OSIRIS-REx sample return mission to the asteroid Bennu. OSIRIS-REx's instruments will map temperatures of the entire surface at different local times of the day (between 3:20am and 8:40pm) allowing fine sampling of the diurnal temperature curve. This will result in maps of the thermal inertia of the surface at 40 m spatial scale. On atmosphere-less bodies, thermal inertia controls the amplitude and rate of changes of temperature cycles, which can reach several tens of degrees and several degrees per minute, respectively. Laboratory experiments on materials analogs to those expected on asteroids show that these repeated temperature excursions cause stress on the materials, leading to their fragmentation and the production of fresh regolith

  5. The AKARI IRC asteroid flux catalogue: updated diameters and albedos

    NASA Astrophysics Data System (ADS)

    Alí-Lagoa, V.; Müller, T. G.; Usui, F.; Hasegawa, S.

    2018-05-01

    The AKARI IRC all-sky survey provided more than twenty thousand thermal infrared observations of over five thousand asteroids. Diameters and albedos were obtained by fitting an empirically calibrated version of the standard thermal model to these data. After the publication of the flux catalogue in October 2016, our aim here is to present the AKARI IRC all-sky survey data and discuss valuable scientific applications in the field of small body physical properties studies. As an example, we update the catalogue of asteroid diameters and albedos based on AKARI using the near-Earth asteroid thermal model (NEATM). We fit the NEATM to derive asteroid diameters and, whenever possible, infrared beaming parameters. We fit groups of observations taken for the same object at different epochs of the survey separately, so we compute more than one diameter for approximately half of the catalogue. We obtained a total of 8097 diameters and albedos for 5170 asteroids, and we fitted the beaming parameter for almost two thousand of them. When it was not possible to fit the beaming parameter, we used a straight line fit to our sample's beaming parameter-versus-phase angle plot to set the default value for each fit individually instead of using a single average value. Our diameters agree with stellar-occultation-based diameters well within the accuracy expected for the model. They also match the previous AKARI-based catalogue at phase angles lower than 50°, but we find a systematic deviation at higher phase angles, at which near-Earth and Mars-crossing asteroids were observed. The AKARI IRC All-sky survey is an essential source of information about asteroids, especially the large ones, since, it provides observations at different observation geometries, rotational coverages and aspect angles. For example, by comparing in more detail a few asteroids for which dimensions were derived from occultations, we discuss how the multiple observations per object may already provide three-dimensional information about elongated objects even based on an idealised model like the NEATM. Finally, we enumerate additional expected applications for more complex models, especially in combination with other catalogues. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A85

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, B.; Helou, G.; Noriega-Crespo, A.

    The Spitzer Space Telescope routinely detects asteroids in astrophysical observations near the ecliptic plane. For the galactic or extragalactic astronomer, these solar system bodies can introduce appreciable uncertainty into the source identification process. We discuss an infrared color discrimination tool that may be used to distinguish between solar system objects and extrasolar sources. We employ four Spitzer Legacy data sets, the First Look Survey-Ecliptic Plane Component (FLS-EPC), SCOSMOS, SWIRE, and GOODS. We use the Standard Thermal Model to derive FLS-EPC main belt asteroid (MBA) diameters of 1-4 km for the numbered asteroids in our sample and note that several ofmore » our solar system sources may have fainter absolute magnitude values than previously thought. A number of the MBAs are detected at flux densities as low as a few tens of {mu}Jy at 3.6 {mu}m. As the FLS-EPC provides the only 3.6-24.0 {mu}m observations of individual asteroids to date, we are able to use this data set to carry out a detailed study of asteroid color in comparison to astrophysical sources observed by SCOSMOS, SWIRE, and GOODS. Both SCOSMOS and SWIRE have identified a significant number of asteroids in their data, and we investigate the effectiveness of using relative color to distinguish between asteroids and background objects. We find a notable difference in color in the IRAC 3.6-8.0 mm and MIPS 24 {mu}m bands between the majority of MBAs, stars, galaxies, and active galactic nuclei, though this variation is less significant when comparing fluxes in individual bands. We find median colors for the FLS-EPC asteroids to be [F(5.8/3.6), F(8.0/4.5), F(24/8)] = (4.9 {+-} 1.8, 8.9 {+-} 7.4, 6.4 {+-} 2.3). Finally, we consider the utility of this technique for other mid-infrared observations that are sensitive to near-Earth objects, MBAs, and trans-Neptunian objects. We consider the potential of using color to differentiate between solar system and background sources for several space-based observatories, including Warm Spitzer, Herschel, and WISE.« less

  7. Thermophysical modeling of main-belt asteroids from WISE thermal data

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Delbo', M.; Ďurech, J.; Alí-Lagoa, V.

    2018-07-01

    By means of a varied-shape thermophysical model of Hanuš et al. (2015) that takes into account asteroid shape and pole uncertainties, we analyze the thermal infrared data acquired by the NASA's Wide-field Infrared Survey Explorer of about 300 asteroids with derived convex shape models. We utilize publicly available convex shape models and rotation states as input for the thermophysical modeling. For more than one hundred asteroids, the thermophysical modeling gives us an acceptable fit to the thermal infrared data allowing us to report their thermophysical properties such as size, thermal inertia, surface roughness or visible geometric albedo. This work more than doubles the number of asteroids with determined thermophysical properties, especially the thermal inertia. In the remaining cases, the shape model and pole orientation uncertainties, specific rotation or thermophysical properties, poor thermal infrared data or their coverage prevent the determination of reliable thermophysical properties. Finally, we present the main results of the statistical study of derived thermophysical parameters within the whole population of main-belt asteroids and within few asteroid families. Our sizes based on TPM are, in average, consistent with the radiometric sizes reported by Mainzer et al. (2016). The thermal inertia increases with decreasing size, but a large range of thermal inertia values is observed within the similar size ranges between D ∼ 10-100 km. We derived unexpectedly low thermal inertias ( < 20 J m-2 s- 1 / 2 K-1) for several asteroids with sizes 10 < D < 50 km, indicating a very fine and mature regolith on these small bodies. The thermal inertia values seem to be consistent within several collisional families, however, the statistical sample is in all cases rather small. The fast rotators with rotation period P ≲ 4 h tend to have slightly larger thermal inertia values, so probably do not have a fine regolith on the surface. This could be explained, for example, by the loss of the fine regolith due to the centrifugal force, or by the ineffectiveness of the regolith production(e.g., by the thermal cracking mechanism of Delbo' et al. 2014).

  8. Escape of asteroids from the main belt

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Morbidelli, Alessandro; Vokrouhlický, David; Bottke, William F.; Nesvorný, David; Jedicke, Robert

    2017-02-01

    Aims: We locate escape routes from the main asteroid belt, particularly into the near-Earth-object (NEO) region, and estimate the relative fluxes for different escape routes as a function of object size under the influence of the Yarkovsky semimajor-axis drift. Methods: We integrated the orbits of 78 355 known and 14 094 cloned main-belt objects and Cybele and Hilda asteroids (hereafter collectively called MBOs) for 100 Myr and recorded the characteristics of the escaping objects. The selected sample of MBOs with perihelion distance q > 1.3 au and semimajor axis a < 4.1 au is essentially complete, with an absolute magnitude limit ranging from HV < 15.9 in the inner belt (a < 2.5 au) to HV < 14.4 in the outer belt (2.5 au < a < 4.1 au). We modeled the semimajor-axis drift caused by the Yarkovsky force and assigned four different sizes (diameters of 0.1, 0.3, 1.0, and 3.0 km) and random spin obliquities (either 0 deg or 180 deg) for each test asteroid. Results: We find more than ten obvious escape routes from the asteroid belt to the NEO region, and they typically coincide with low-order mean-motion resonances with Jupiter and secular resonances. The locations of the escape routes are independent of the semimajor-axis drift rate and thus are also independent of the asteroid diameter. The locations of the escape routes are likewise unaffected when we added a model for Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) cycles coupled with secular evolution of the rotation pole as a result of the solar gravitational torque. A Yarkovsky-only model predicts a flux of asteroids entering the NEO region that is too high compared to the observationally constrained flux, and the discrepancy grows larger for smaller asteroids. A combined Yarkovsky and YORP model predicts a flux of small NEOs that is approximately a factor of 5 too low compared to an observationally constrained estimate. This suggests that the characteristic timescale of the YORP cycle is longer than our canonical YORP model predicts.

  9. Design space pruning heuristics and global optimization method for conceptual design of low-thrust asteroid tour missions

    NASA Astrophysics Data System (ADS)

    Alemany, Kristina

    Electric propulsion has recently become a viable technology for spacecraft, enabling shorter flight times, fewer required planetary gravity assists, larger payloads, and/or smaller launch vehicles. With the maturation of this technology, however, comes a new set of challenges in the area of trajectory design. Because low-thrust trajectory optimization has historically required long run-times and significant user-manipulation, mission design has relied on expert-based knowledge for selecting departure and arrival dates, times of flight, and/or target bodies and gravitational swing-bys. These choices are generally based on known configurations that have worked well in previous analyses or simply on trial and error. At the conceptual design level, however, the ability to explore the full extent of the design space is imperative to locating the best solutions in terms of mass and/or flight times. Beginning in 2005, the Global Trajectory Optimization Competition posed a series of difficult mission design problems, all requiring low-thrust propulsion and visiting one or more asteroids. These problems all had large ranges on the continuous variables---launch date, time of flight, and asteroid stay times (when applicable)---as well as being characterized by millions or even billions of possible asteroid sequences. Even with recent advances in low-thrust trajectory optimization, full enumeration of these problems was not possible within the stringent time limits of the competition. This investigation develops a systematic methodology for determining a broad suite of good solutions to the combinatorial, low-thrust, asteroid tour problem. The target application is for conceptual design, where broad exploration of the design space is critical, with the goal being to rapidly identify a reasonable number of promising solutions for future analysis. The proposed methodology has two steps. The first step applies a three-level heuristic sequence developed from the physics of the problem, which allows for efficient pruning of the design space. The second phase applies a global optimization scheme to locate a broad suite of good solutions to the reduced problem. The global optimization scheme developed combines a novel branch-and-bound algorithm with a genetic algorithm and an industry-standard low-thrust trajectory optimization program to solve for the following design variables: asteroid sequence, launch date, times of flight, and asteroid stay times. The methodology is developed based on a small sample problem, which is enumerated and solved so that all possible discretized solutions are known. The methodology is then validated by applying it to a larger intermediate sample problem, which also has a known solution. Next, the methodology is applied to several larger combinatorial asteroid rendezvous problems, using previously identified good solutions as validation benchmarks. These problems include the 2nd and 3rd Global Trajectory Optimization Competition problems. The methodology is shown to be capable of achieving a reduction in the number of asteroid sequences of 6-7 orders of magnitude, in terms of the number of sequences that require low-thrust optimization as compared to the number of sequences in the original problem. More than 70% of the previously known good solutions are identified, along with several new solutions that were not previously reported by any of the competitors. Overall, the methodology developed in this investigation provides an organized search technique for the low-thrust mission design of asteroid rendezvous problems.

  10. Guided asteroid deflection by kinetic impact: Mapping keyholes to an asteroid's surface

    NASA Astrophysics Data System (ADS)

    Chesley, S.; Farnocchia, D.

    2014-07-01

    The kinetic impactor deflection approach is likely to be the optimal deflection strategy in most real-world cases, given the likelihood of decades of warning time provided by asteroid search programs and the probable small size of the next confirmed asteroid impact that would require deflection. However, despite its straightforward implementation, the kinetic impactor approach can have its effectiveness limited by the astrodynamics that govern the impactor spacecraft trajectory. First, the deflection from an impact is maximized when the asteroid is at perihelion, while an impact near perihelion can in some cases be energetically difficult to implement. Additionally, the asteroid change in velocity Δ V should aligned with the target's heliocentric velocity vector in order to maximize the deflection at a potential impact some years in the future. Thus the relative velocity should be aligned with or against the heliocentric velocity, which implies that the impactor and asteroid orbits should be tangent at the point of impact. However, for natural bodies such as meteorites colliding with the Earth, the relative velocity vectors tend to cluster near the sunward or anti- sunward directions, far from the desired direction. This is because there is generally a significant crossing angle between the orbits of the impactor and target and an impact at tangency is unusual. The point is that hitting the asteroid is not enough, but rather we desire to hit the asteroid at a point when the asteroid and spacecraft orbits are nearly tangent and when the asteroid is near perihelion. However, complicating the analysis is the fact that the impact of a spacecraft on an asteroid would create an ejecta plume that is roughly normal to the surface at the point of impact. This escaping ejecta provides additional momentum transfer that generally adds to the effectiveness of a kinetic deflection. The ratio β between the ejecta momentum and the total momentum (ejecta plus spacecraft) can range from around 1 for a porous, compressible body producing negligible ejecta, to 2 when the ejecta momentum matches the spacecraft momentum, and as high as 5--10 for rocky bodies that produce large, high-velocity ejecta fragments. If the impactor hits the centerpoint of a spherical asteroid the momentum of the escaping ejecta directly adds to the momentum of the impacting asteroid, but if the impact is oblique then the ejecta and spacecraft momenta are added to the asteroid in vector sum. This suggests the possibility that for a given intercept trajectory the asteroid deflection could include guidance by targeting an oblique impact that could steer the asteroid Δ V to a more optimal direction that is different from the relative velocity direction of the spacecraft. An oblique impact decreases the net Δ V magnitude, and yet could significantly increase the net deflection at the time of the threatening Earth encounter. We use asteroid (101955) Bennu, which is the target of the OSIRIS-REx asteroid sample return mission and which has a series of potential Earth impacts in the years from 2175--2196, as an example to demonstrate the effectiveness of the oblique impact. These future potential impacts will occur if the asteroid passes through one of a series of keyholes when the asteroid passes the Earth at roughly the lunar distance from the Earth in 2135. To study the Bennu deflection problem we simulate a hypervelocity spacecraft impact on Bennu in March 2021, after the OSIRIS-REx mission is complete. In our example, the spacecraft arrives from approximately the sunward direction, and targeting ahead or behind the center of the asteroid allows non-negligible transverse accelerations for modest values of β. A given impact location on the asteroid surface yields a given Δ V vector, and our approach starts by mapping the net Δ V components on the surface for an assumed value of β. Knowing the mapping from impact location to Δ V and also the mapping from Δ V to the future Earth miss distance allows us to map the surface locations where a spacecraft impact would lead to an Earth impact 150--200 years later. In effect, we are able to project Earth impact trajectories, or keyholes, onto the asteroid surface and, for a given value of β, we can target our impactor spacecraft for an area on the surface that avoids potential Earth impacts. Of course, at the present time we have little information on what is the appropriate value or range of values for β in the case of asteroid Bennu, or any other asteroid for that matter. However, if this information is made known, either through a precursor mission or better inferences as to its nature we can develop a distribution of β that can be used to better design an impact deflection strategy. Specifically, we can compute a map of Earth impact probability density on the surface of the asteroid based on an assumed probability density function for β. If we target the lowest impact probability density regions then we maximize the chance of a successful deflection. This approach has the potential to allow more efficient kinetic impactor deflection, and therefore the deflection of larger bodies than would otherwise be possible.

  11. NASA's Asteroid Redirect Mission: Overview and Status

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Brophy, John; Mazanek, Dan; Muirhead, Brian

    A major element of the National Aeronautics and Space Administration’s (NASA) new Asteroid Initiative is the Asteroid Redirect Mission (ARM). This concept was first proposed in 2011 during a feasibility study at the Keck Institute for Space Studies (KISS)[1] and is under consideration for implementation by NASA. The ARM involves sending a high-efficiency (ISP 3000 s), high-power (40 kW) solar electric propulsion (SEP) robotic vehicle that leverages technology developed by NASA’s Space Technology Mission Directorate (STMD) to rendezvous with a near-Earth asteroid (NEA) and return asteroidal material to a stable lunar distant retrograde orbit (LDRO)[2]. There are two mission concepts currently under study, one that captures an entire 7 - 10 meter mean diameter NEA[3], and another that retrieves a 1 - 10 meter mean diameter boulder from a 100+ meter class NEA[4]. Once the retrieved asteroidal material is placed into the LDRO, a two person crew would launch aboard an Orion capsule to rendezvous and dock with the robotic SEP vehicle. After docking, the crew would conduct two extra-vehicular activities (EVA) to collect asteroid samples and deploy instruments prior to Earth return. The crewed portion of the mission is expected to last approximately 25 days and would represent the first human exploration mission beyond low-Earth orbit (LEO) since the Apollo program. The ARM concept leverages NASA’s activities in Human Exploration, Space Technology, and Planetary Defense to accomplish three primary objectives and several secondary objectives. The primary objective relevant to Human Exploration is to gain operational experience with vehicles, systems, and components that will be utilized for future deep space exploration. In regard to Space Technology, the ARM utilizes advanced SEP technology that has high power and long duration capabilities that enable future missions to deep space destinations, such as the Martian system. With respect to Planetary Defense, the ARM mission will utilize an enhanced NEA observation campaign that will detect, track, and characterize both spacecraft mission targets and potentially hazardous asteroids that may threaten Earth in the future. Potential secondary objectives for ARM include planetary defense demonstrations at the NEA, conducting planetary science (both during the robotic and crewed mission segments), and encouraging commercial and international partnership opportunities. References [1] J. Brophy et al., “Asteroid Retrieval Feasibility Study,” Keck Institute for Space Studies Report, April 2012. [2] N. Strange et al., “Overview of Mission Design for NASA Asteroid Redirect Robotic Mission Concept,” presented at the 33rd International Electric Propulsion Conference, The George Washington University, Washington, D.C., October 2013. [3] B. Muirhead, J. Brophy “Asteroid Redirect Robotic Mission Feasibility Study,” presented at IEEE Aerospace Conference, Big Sky, Montana, March 2014. [4] Mazenek et al., “Asteroid Redirect Robotic Mission: Alternate Concept Overview”, American Institute of Aeronautics and Astronautics, Space 2014 Conference, San Diego, California, August 2014.

  12. Observations of Rosetta Target (21) Lutetia with Keck and Gemini Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Conrad, A. R.; Merline, W. J.; Drummond, J.; Carry, B.; Tamblyn, P. M.; Chapman, C. R.; Dumas, C.; Weaver, H. A.

    2009-12-01

    In support of the NASA/ESA Rosetta mission’s plans to observe asteroid (21) Lutetia during a 2010 July flyby, and in conjunction with a larger ground-based plus HST campaign to support this mission, we observed Lutetia from Keck and Gemini-North during several nights spanning 2008 Oct through 2009 Jan. Observations were made using adaptive optics in the near-IR, primarily at K-band (2.1 micron), and were timed to coincide with the asteroid's most recent opposition at a distance of about 1.4 AU. From these data, we determined Lutetia’s triaxial size and shape to be 132 x 101 x 76 km, with maximum expected uncertainties of 4 x 3 x 31 km. The spin pole is found to be at (RA, Dec) = (48, +9) deg or ecliptic (long, lat) = (49,-8) deg, with a formal uncertainty radius (not including systematics) of 3 deg. We have calibrated our technique of deriving dimensions of asteroids from AO images against Pluto and 4 satellites of Saturn with accurate diameters, and we expect that our systematics (included in the size uncertainties above) are no more than 3%. We also searched for satellites and our preliminary results indicate no detection of a satellite larger than about 1 km over a significant fraction of the Hill sphere (10-240 asteroid radii). Improved limits are expected from a more refined analysis. We are grateful for telescope time made available to us by S. Kulkarni and M. Busch (Cal Tech) for a portion of this dataset. We also thank our collaborators on Team Keck, the Keck science staff, for making possible some of these observations and for observing time granted at Gemini under NOAO time allocation. Plane-of-sky short and long axes of (21) Lutetia taken from Keck AO images on 2008 Dec 2.

  13. Planetary Defense From Space: Part 2 (Simple) Asteroid Deflection Law

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2006-06-01

    A system of two space bases housing missiles for an efficient Planetary Defense of the Earth from asteroids and comets was firstly proposed by this author in 2002. It was then shown that the five Lagrangian points of the Earth Moon system lead naturally to only two unmistakable locations of these two space bases within the sphere of influence of the Earth. These locations are the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). In fact, placing missiles based at L1 and L3 would enable the missiles to deflect the trajectory of incoming asteroids by hitting them orthogonally to their impact trajectory toward the Earth, thus maximizing the deflection at best. It was also shown that confocal conics are the only class of missile trajectories fulfilling this “best orthogonal deflection” requirement. The mathematical theory developed by the author in the years 2002 2004 was just the beginning of a more expanded research program about the Planetary Defense. In fact, while those papers developed the formal Keplerian theory of the Optimal Planetary Defense achievable from the Earth Moon Lagrangian points L1 and L3, this paper is devoted to the proof of a simple “(small) asteroid deflection law” relating directly the following variables to each other:the speed of the arriving asteroid with respect to the Earth (known from the astrometric observations);the asteroid's size and density (also supposed to be known from astronomical observations of various types);the “security radius” of the Earth, that is, the minimal sphere around the Earth outside which we must force the asteroid to fly if we want to be safe on Earth. Typically, we assume the security radius to equal about 10,000 km from the Earth center, but this number might be changed by more refined analyses, especially in the case of “rubble pile” asteroids;the distance from the Earth of the two Lagrangian points L1 and L3 where the defense missiles are to be housed;the deflecting missile's data, namely its mass and especially its “extra-boost”, that is, the extra-energy by which the missile must hit the asteroid to achieve the requested minimal deflection outside the security radius around the Earth.This discovery of the simple “asteroid deflection law” presented in this paper was possible because:In the vicinity of the Earth, the hyperbola of the arriving asteroid is nearly the same as its own asymptote, namely, the asteroid's hyperbola is very much like a straight line. We call this approximation the line/circle approximation. Although “rough” compared to the ordinary Keplerian theory, this approximation simplifies the mathematical problem to such an extent that two simple, final equations can be derived.The confocal missile trajectory, orthogonal to this straight line, ceases then to be an ellipse to become just a circle centered at the Earth. This fact also simplifies things greatly. Our results are thus to be regarded as a good engineering approximation, valid for a preliminary astronautical design of the missiles and bases at L1 and L3.Still, many more sophisticated refinements would be needed for a complete Planetary Defense System:taking into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3;adding more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth Moon system or from the surface of the Moon itself;encompassing the full range of missiles currently available to the USA (and possibly other countries) so as to really see “which missiles could divert which asteroids”, even just within the very simplified scheme proposed in this paper.In summary: outlined for the first time in February 2002, our Confocal Planetary Defense concept is a simplified Keplerian Theory that already proved simple enough to catch the attention of scholars, popular writers, and representatives of the US Military. These developments would hopefully mark the beginning of a general mathematical vision for building an efficient Planetary Defense System in space and in the vicinity of the Earth, although not on the surface of the Earth itself! We must make a real progress beyond academic papers, Hollywood movies and secret military plans, before asteroids like 99942 Apophis get close enough to destroy us in 2029 or a little later.

  14. Investigation of the interior of primordial asteroids and the origin of the Earth's water: The INSIDER space mission

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Lamy, P.

    2014-07-01

    Today's asteroid belt may not only be populated by objects that formed in situ, typically between 2.2 and 3.3 au, but also by bodies that formed over a very large range of heliocentric distances. It is currently proposed that both the early (<5 Myrs after Solar System formation) and late (>700 Myrs after Solar System formation) dynamical evolution of the Solar System was governed by giant planet migrations that led to the insertion of inner (1--3 au) as well as outer (4--13 au) small bodies in the asteroid belt. Taken altogether, the current dynamical models are able to explain many striking features of the asteroid belt including i) its incredible compositional diversity deduced mainly from spectroscopic observations and meteorites measurements, and ii) the evidence of radial mixing experienced by the various asteroid classes (e.g., S-, C-types) after their formation. In a broad stroke, the idea that the asteroid belt is a condensed version of the primordial Solar System is progressively emerging. The asteroid belt therefore presents the double advantage of being easily accessible and of offering crucial tests for the formation models of the Solar System by exploring the building blocks predicted by models of i) the telluric planets, ii) the giant planet cores, iii) the giant planets' satellites, and iv) outer small bodies such TNOs and comets. It also appears as an ideal place to search for the origin of Earth's water. Up to now, only a few asteroid classes (e.g., several S-types) have been visited by spacecraft and the focus of these in situ measurements has been mainly to give a geological context to ground based observations as well as strengthen/validate their interpretation. Most of the tantalizing discoveries of asteroid missions have been realized via images of the objects surfaces. Time has come for asteroid space science to reach a new milestone by extending the reconnaissance of the Belt's diversity and addressing new science questions. The scientific objectives of the INSIDER mission, to be proposed in response to the 2014 ESA call for an M-class mission, require the exploration of diverse primordial asteroids --- possibly the smallest surviving protoplanets of our Solar System --- in order to constrain the earliest stages of planetesimal formation thus avoiding the effect of destructive collisions, which produce extensively processed rubble piles. Our science objectives that justify in situ measurements in the context of an M-class mission and that are expected to lead to significant breakthroughs include: - The exploration of the diversity of the asteroid belt - The first investigation of the internal structure of asteroids - The origin of water on Earth The proposed mission scenario consists in i) successive rendez-vous followed by orbit insertion of two and possibly three large (D>100 km) objects, ii) one or two small landing modules (MASCOT type) to perform cosmochemical measurements (D/H ratio, O isotopes). The potential targets would include 24 Themis and 10 Hygiea. Meeting our science objectives requires instruments (such as radar, seismometers to be dropped to the surface, magnetometer, high resolution laser-desorption-ionization mass spectrometer to analyse the surface samples) not flown so far during past asteroids missions along with the traditional powerhouses, such as cameras and spectrometers.

  15. The oxygen isotope composition of Almahata Sitta

    NASA Astrophysics Data System (ADS)

    Rumble, Douglas; Zolensky, Michael E.; Friedrich, Jon M.; Jenniskens, Peter; Shaddad, Muawia H.

    2010-10-01

    Eleven fragments of the meteorite Almahata Sitta (AHS) have been analyzed for oxygen isotopes. The fragments were separately collected as individual stones from the meteorite's linear strewn field in the Nubian Desert. Each of the fragments represents a sample of a different and distinct portion of asteroid 2008 TC3. Ten of the fragments span the same range of values of δ18O, δ17O, and Δ17O, and follow the same trend along the carbonaceous chondrite anhydrous minerals (CCAM) line as monomict and polymict members of the ureilite family of meteorites. The oxygen isotope composition of fragment #25 is consistent with its resemblance petrographically to an H5 ordinary chondrite. Our results demonstrate that a single small asteroidal parent body, asteroid 2008 TC3, only 4 m in length, encompassed the entire range of variation in oxygen isotope compositions measured for monomict and polymict ureilites.

  16. Thermophysical Characteristics of OSIRIS-REx Target Asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Yu, Liangliang; Ji, Jianghui

    2016-01-01

    In this work, we investigate the thermophysical properties, including thermal inertia, roughness fraction and surface grain size of OSIRIS-REx target asteroid (101955) Bennu by using a thermophysical model with the recently updated 3D radar-derived shape model (Nolan et al., 2013) and mid-infrared observations (Müller et al. 2012, Emery et al., 2014). We find that the asteroid bears an effective diameter of 510+6 -40 m, a geometric albedo of 0.047+0.0083 -0.0011, a roughness fraction of 0.04+0.26 -0.04, and thermal inertia of 240+440 -60 Jm-2s-0.5K-1 for our best-fit solution. The best-estimate thermal inertia suggests that fine-grained regolith may cover a large portion of Bennu's surface, where a grain size may vary from 1.3 to 31 mm. Our outcome suggests that Bennu is suitable for the OSIRIS-REx mission to return samples to Earth.

  17. Brightness variation distributions among main belt asteroids from sparse light-curve sampling with Pan-STARRS 1

    NASA Astrophysics Data System (ADS)

    McNeill, A.; Fitzsimmons, A.; Jedicke, R.; Wainscoat, R.; Denneau, L.; Vereš, P.; Magnier, E.; Chambers, K. C.; Kaiser, N.; Waters, C.

    2016-07-01

    The rotational state of asteroids is controlled by various physical mechanisms including collisions, internal damping and the Yarkovsky-O'Keefe-Radzievskii-Paddack effect. We have analysed the changes in magnitude between consecutive detections of ˜60 000 asteroids measured by the Panoramic Survey Telescope and Rapid Response System (PanSTARRS) 1 survey during its first 18 months of operations. We have attempted to explain the derived brightness changes physically and through the application of a simple model. We have found a tendency towards smaller magnitude variations with decreasing diameter for objects of 1 < D < 8 km. Assuming the shape distribution of objects in this size range to be independent of size and composition our model suggests a population with average axial ratios 1 : 0.85 ± 0.13 : 0.71 ± 0.13, with larger objects more likely to have spin axes perpendicular to the orbital plane.

  18. Deriving global Olivine distribution on Hayabusa's target (25143) Itokawa using Near-Infrared Spectrometer data

    NASA Astrophysics Data System (ADS)

    Nardi, L.; Palomba, E.; Longobardo, A.; Galiano, A.; Dirri, F.

    2017-09-01

    In 2005 Hayabusa spacecraft visited asteroid Itokawa, bringing back surface samples to Earth in 2010. Near-Infrared data taken by NIRS and samples analysis confirmed hypothesis made through ground-based observations, in particular the one that sees Itokawa as an LL-chondrite like asteroid processed by space weathering. In this work, we apply spectral indices for olivine detection. In particular, we define the BAR* and relate it to the olivine abundance, by means of calibration on laboratory data. We present the distribution of BAR* calculated for nearly 38.000 spectra taken from an altitude of 3.5-7 km, defined as Home Position, which was the longest mission observation phase. In addition, a plot of olivine normalized content versus BAR* for RELAB compounds is given.

  19. Origin and history of ureilitic material in the solar system: The view from asteroid 2008 TC3 and the Almahata Sitta meteorite

    NASA Astrophysics Data System (ADS)

    Goodrich, Cyrena Anne; Hartmann, William K.; O'Brien, David P.; Weidenschilling, Stuart J.; Wilson, Lionel; Michel, Patrick; Jutzi, Martin

    2015-04-01

    Asteroid 2008 TC3 (approximately 4 m diameter) was tracked and studied in space for approximately 19 h before it impacted Earth's atmosphere, shattering at 44-36 km altitude. The recovered samples (>680 individual rocks) comprise the meteorite Almahata Sitta (AhS). Approximately 50-70% of these are ureilites (ultramafic achondrites). The rest are chondrites, mainly enstatite, ordinary, and Rumuruti types. The goal of this work is to understand how fragments of so many different types of parent bodies became mixed in the same asteroid. Almahata Sitta has been classified as a polymict ureilite with an anomalously high component of foreign clasts. However, we calculate that the mass of fallen material was ≤0.1% of the pre-atmospheric mass of the asteroid. Based on published data for the reflectance spectrum of the asteroid and laboratory spectra of the samples, we infer that the lost material was mostly ureilitic. Therefore, 2008 TC3 probably contained only a few percent nonureilitic materials, similar to other polymict ureilites except less well consolidated. From available data for the AhS meteorite fragments, we conclude that 2008 TC3 samples essentially the same range of types of ureilitic and nonureilitic materials as other polymict ureilites. We therefore suggest that the immediate parent of 2008 TC3 was the immediate parent of all ureilitic material sampled on Earth. We trace critical stages in the evolution of that material through solar system history. Based on various types of new modeling and re-evaluation of published data, we propose the following scenario. (1) The ureilite parent body (UPB) accreted 0.5-0.6 Ma after formation of calcium-aluminum-rich inclusions (CAI), beyond the ice line (outer asteroid belt). Differentiation began approximately 1 Ma after CAI. (2) The UPB was catastrophically disrupted by a major impact approximately 5 Ma after CAI, with selective subsets of the fragments reassembling into daughter bodies. (3) Either the UPB (before breakup), or one of its daughters (after breakup), migrated to the inner belt due to scattering by massive embryos. (4) One daughter (after forming in or migrating to the inner belt) became the parent of 2008 TC3. It developed a regolith, mostly ≥3.8 Ga ago. Clasts of enstatite, ordinary, and Rumuruti-type chondrites were implanted by low-velocity collisions. (5) Recently, the daughter was disrupted. Fragments were injected or drifted into Earth-crossing orbits. 2008 TC3 comes from outer layers of regolith, other polymict ureilites from deeper regolith, and main group ureilites from the interior of this body. In contrast to other models that have been proposed, this model invokes a stochastic history to explain the unique diversity of foreign materials in 2008 TC3 and other polymict ureilites.

  20. Computer simulations of large asteroid impacts into oceanic and continental sites--preliminary results on atmospheric, cratering and ejecta dynamics

    USGS Publications Warehouse

    Roddy, D.J.; Schuster, S.H.; Rosenblatt, M.; Grant, L.B.; Hassig, P.J.; Kreyenhagen, K.N.

    1987-01-01

    Computer simulations have been completed that describe passage of a 10-km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics caused by impact of the asteroid into both oceanic and continental sites. The asteroid was modeled as a spherical body moving vertically at 20 km/s with a kinetic energy of 2.6 ?? 1030 ergs (6.2 ?? 107 Mt ). Detailed material modeling of the asteroid, ocean, crustal units, sedimentary unit, and mantle included effects of strength and fracturing, generic asteroid and rock properties, porosity, saturation, lithostatic stresses, and geothermal contributions, each selected to simulate impact and geologic conditions that were as realistic as possible. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock wave followed by a highly shock compressed and heated air mass. Rapid expansion of this shocked air created a large low-density region that also expanded away from the impact area. Shock temperatures in air reached ???20,000 K near the surface of the uplifting crater rim and were as high as ???2000 K at more than 30 km range and 10 km altitude. Calculations to 30 s showed that the shock fronts in the air and in most of the expanding shocked air mass preceded the formation of the crater, ejecta, and rim uplift and did not interact with them. As cratering developed, uplifted rim and target material were ejected into the very low density, shock-heated air immediately above the forming crater, and complex interactions could be expected. Calculations of the impact events showed equally dramatic effects on the oceanic and continental targets through an interval of 120 s. Despite geologic differences in the targets, both cratering events developed comparable dynamic flow fields and by ???29 s had formed similar-sized transient craters ???39 km deep and ???62 km across. Transient-rim uplift of ocean and crust reached a maximum altitude of nearly 40 km at ???30 s and began to decay at velocities of 500 m/s to develop large-tsunami conditions. After ???30 s, strong gravitational rebound drove both craters toward broad flat-floored shapes. At 120 s, transient crater diameters were ???80 km (continental) and ???105 km (oceanic) and transient depths were ???27 km; crater floors consisting of melted and fragmented hot rock were rebounding rapidly upward. By 60 s, the continental crater had ejected ???2 ?? 1014 t, about twice the mass ejected from the oceanic crater. By 120 s, ???70,000 km3 (continental) and ???90,000 km3 (oceanic) target material were excavated (no mantle) and massive ejecta blankets were formed around the craters. We estimate that in excess of ???70% of the ejecta would finally lie within ???3 crater diameters of the impact, and the remaining ejecta (???1013 t), including the vaporized asteroid, would be ejected into the atmosphere to altitudes as high as the ionosphere. Effects of secondary volcanism and return of the ocean over hot oceanic crater floor could also be expected to contribute substantial material to the atmosphere. ?? 1987.

  1. Small carry-on impactor of Hayabusa2 mission

    NASA Astrophysics Data System (ADS)

    Saiki, Takanao; Sawada, Hirotaka; Okamoto, Chisato; Yano, Hajime; Takagi, Yasuhiko; Akahoshi, Yasuhiro; Yoshikawa, Makoto

    2013-03-01

    A Japanese spacecraft, Hayabusa2, the successor of Hayabusa, which came back from the Asteroid Itokawa with sample materials after its 7-year-interplanetary journeys, is a current mission of Japan Aerospace Exploration Agency (JAXA) and scheduled to be launched in 2014. Although its design basically follows Hayabusa, some new components are planned to be equipped in Hayabusa2 mission. A Small Carry-on Impactor (SCI), a small explosive device, is one of the challenges that were not seen with Hayabusa. An important scientific objective of Hayabusa2 is to investigate chemical and physical properties of the internal materials and structures. SCI creates an artificial crater on the surface of the asteroid and the mother spacecraft observes the crater and tries to get sample materials. High kinetic energy is required to creating a meaningful crater. The SCI would become complicated and heavy if the traditional acceleration devices like thrusters and rocket motors are used to hit the asteroid because the acceleration distance is quite large and guidance system is necessary. In order to make the system simpler, a technology of special type of shaped charge is used for the acceleration of the impact head. By using this technology, it becomes possible to accelerate the impact head very quickly and to hit the asteroid without guidance system. However, the impact operation should be complicated because SCI uses powerful explosive and it scatters high speed debris at the detonation. This paper presents the overview of our new small carry-on impact system and the impact operation of Hayabusa2 mission.

  2. Exospheric Escape: A Parametrical Study

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Burger, Matthew H.; Farrell, William M.

    2017-01-01

    The study of exospheres can help us understand the long-term loss of volatiles from planetary bodies due to interactions of planets, satellites, and small bodies with the interplanetary medium, solar radiation, and internal forces including diffusion and outgassing. Recent evidence for water and OH on the Moon has spurred interest in processes involving chemistry and sequestration of volatile species at the poles and in voids. In recent years, NASA has sent spacecraft to asteroids including Vesta and Ceres, and ESA sent Rosetta to comet 67P/Churyumov-Gerasimenko and the asteroids Lutetia and Steins. Japan's Hayabusa spacecraft returned a sample from asteroid Itakowa, and OSIRIS-REX will return a sample from a primitive asteroid, Bennu, to Earth. In a surface-bounded exosphere, the gases are derived from the surface and thus reflect the composition of the body's regolith, although not in a one-to-one ratio. Observation of an escaping exosphere, termed a corona, is challenging. We have therefore embarked on a parametrical study of exospheres as a function of mass of the exospheric species, mass of the primary body and source velocity distribution, specifically thermal (Maxwell-Boltzmann) and sputtering. The goal is to provide a quick look to determine under what conditions and for what mass of the primary body the species of interest are expected to be bound or escaping and to quickly estimate the observability of exospheric species. This work does not provide a comprehensive model but rather serves as a starting point for further study. These parameters will be useful for mission planning as well as for students beginning a study of planetary exospheres.

  3. The compositional diversity of non-Vesta basaltic asteroids

    NASA Astrophysics Data System (ADS)

    Leith, Thomas B.; Moskovitz, Nicholas A.; Mayne, Rhiannon G.; DeMeo, Francesca E.; Takir, Driss; Burt, Brian J.; Binzel, Richard P.; Pefkou, Dimitra

    2017-10-01

    We present near-infrared (0.78-2.45 μm) reflectance spectra for nine middle and outer main belt (a > 2.5 AU) basaltic asteroids. Three of these objects are spectrally distinct from all classifications in the Bus-DeMeo system and could represent spectral end members in the existing taxonomy or be representatives of a new spectral type. The remainder of the sample are classified as V- or R-type. All of these asteroids are dynamically detached from the Vesta collisional family, but are too small to be intact differentiated parent bodies, implying that they originated from differentiated planetesimals which have since been destroyed or ejected from the solar system. The 1- and 2-μm band centers of all objects, determined using the Modified Gaussian Model (MGM), were compared to those of 47 Vestoids and fifteen HED meteorites of known composition. The HEDs enabled us to determine formulas relating Band 1 and Band 2 centers to pyroxene ferrosilite (Fs) compositions. Using these formulas we present the most comprehensive compositional analysis to date of middle and outer belt basaltic asteroids. We also conduct a careful error analysis of the MGM-derived band centers for implementation in future analyses. The six outer belt V- and R-type asteroids show more dispersion in parameter space than the Vestoids, reflecting greater compositional diversity than Vesta and its associated bodies. The objects analyzed have Fs numbers which are, on average, between five and ten molar percent lower than those of the Vestoids; however, identification and compositional analysis of additional outer belt basaltic asteroids would help to confirm or refute this result. Given the gradient in oxidation state which existed within the solar nebula, these results tentatively suggest that these objects formed at either a different time or location than 4 Vesta.

  4. PRIMitive Asteroids Spectroscopic Survey - PRIMASS: First Results

    NASA Astrophysics Data System (ADS)

    de Leon, Julia; Pinilla-Alonso, Noemi; Campins, Humberto; Lorenzi, Vania; Licandro, Javier; Morate, David; Tanga, Paolo; Cellino, Alberto; Delbo, Marco

    2015-11-01

    NASA OSIRIS-REx and JAXA Hayabusa 2 sample-return missions have targeted two near-Earth asteroids: (101955) Bennu and (162173) 1999 JU3, respectively. These are primitive asteroids that are believed to originate in the inner belt, where five distinct sources have been identified: four primitive collisional families (Polana, Erigone, Sulamitis, and Clarissa), and a population of low-albedo and low-inclination background asteroids. Identifying and characterizing the populations from which these two NEAs might originate will enchance the science return of the two missions.With this main objective in mind, we initiated in 2010 a spectroscopic survey in the visible and the near-infrared to characterize the primitive collisional families in the inner belt and the low-albedo background population. This is the PRIMitive Asteroids Spectroscopic Survey - PRIMASS. So far we have obtained more than 200 spectra using telescopes located at different observatories. PRIMASS uses a variety of ground based facilities. Most of the spectra have been obtained using the 10.4m Gran Telescopio Canarias (GTC), and the 3.6m Telescopio Nazionale Galileo (TNG), both located at the El Roque de los Muchachos Observatory (La Palma, Spain), and the 3.0m NASA Infrared Telescope Facility on Mauna Kea (Hawai, USA).We present the first results from our on-going survey (de Leon et al. 2015; Pinilla-Alonso et al. 2015; Morate et al. 2015), focused on the Polana and the Erigone primitive families, with visible and near-infrared spectra of more than 200 objects, most of them with no previous spectroscopic data. Our survey is already the largest database of primitive asteroids spectra, and we keep obtaining data on the Sulamitis and the Clarissa families, as well as on the background low-albedo population.

  5. Sensitivity to Uncertainty in Asteroid Impact Risk Assessment

    NASA Astrophysics Data System (ADS)

    Mathias, D.; Wheeler, L.; Prabhu, D. K.; Aftosmis, M.; Dotson, J.; Robertson, D. K.

    2015-12-01

    The Engineering Risk Assessment (ERA) team at NASA Ames Research Center is developing a physics-based impact risk model for probabilistically assessing threats from potential asteroid impacts on Earth. The model integrates probabilistic sampling of asteroid parameter ranges with physics-based analyses of entry, breakup, and impact to estimate damage areas and casualties from various impact scenarios. Assessing these threats is a highly coupled, dynamic problem involving significant uncertainties in the range of expected asteroid characteristics, how those characteristics may affect the level of damage, and the fidelity of various modeling approaches and assumptions. The presented model is used to explore the sensitivity of impact risk estimates to these uncertainties in order to gain insight into what additional data or modeling refinements are most important for producing effective, meaningful risk assessments. In the extreme cases of very small or very large impacts, the results are generally insensitive to many of the characterization and modeling assumptions. However, the nature of the sensitivity can change across moderate-sized impacts. Results will focus on the value of additional information in this critical, mid-size range, and how this additional data can support more robust mitigation decisions.

  6. Chondritic Asteroids--When Did Aqueous Alteration Happen?

    NASA Astrophysics Data System (ADS)

    Doyle, P. M.

    2015-06-01

    Using a synthesized fayalite (Fe2SiO4) standard for improved 53Mn-53Cr radiometric age dating, Patricia Doyle (previously at the University of Hawaii and now at the University of Cape Town, South Africa) and coauthors from Hawaii, the National Astronomical Observatory of Japan, University of Chicago, and Lawrence Livermore National Laboratory in California, analyzed aqueously formed fayalite in the ordinary chondrite Elephant Moraine 90161 (L3.05) and in the carbonaceous chondrites Asuka 881317 (CV3) and MacAlpine Hills 88107 (CO3-like) from Antarctica. The data obtained indicate that liquid water existed - and aqueous alteration started - on the chondritic parent bodies about three million years earlier than previously determined. This discovery has implications for understanding when and where the asteroids accreted. The 53Mn-53Cr chronology of chondrite aqueous alteration, combined with thermodynamic calculations and physical modeling, signifies that hydrated asteroids, at least those sampled by meteorites, accreted in the inner Solar System (2-4 AU) near the main asteroid belt 2-4 million years after the beginning of the Solar System, rather than migrating inward after forming in the Solar System's colder, outer regions beyond Jupiter's present orbit (5-15 AU).

  7. Compositional study of asteroids in the Erigone collisional family using visible spectroscopy at the 10.4 m GTC

    NASA Astrophysics Data System (ADS)

    Morate, David; de León, Julia; De Prá, Mário; Licandro, Javier; Cabrera-Lavers, Antonio; Campins, Humberto; Pinilla-Alonso, Noemí; Alí-Lagoa, Víctor

    2016-02-01

    Two primitive near-Earth asteroids, (101955) Bennu and (162173) Ryugu, will be visited by a spacecraft with the aim of returning samples back to Earth. Since these objects are believed to originate in the inner main belt primitive collisional families (Erigone, Polana, Clarissa, and Sulamitis) or in the background of asteroids outside these families, the characterization of these primitive populations will enhance the scientific return of the missions. The main goal of this work is to shed light on the composition of the Erigone collisional family by means of visible spectroscopy. Asteroid (163) Erigone has been classified as a primitive object, and we expect the members of this family to be consistent with the spectral type of the parent body. We have obtained visible spectra (0.5-0.9 μm) for 101 members of the Erigone family, using the OSIRIS instrument at the 10.4 m Gran Telescopio Canarias. We found that 87% of the objects have typically primitive visible spectra consistent with that of (163) Erigone. In addition, we found that a significant fraction of these objects (~50%) present evidence of aqueous alteration.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masiero, Joseph R.; Mainzer, A. K.; Nugent, C. R.

    We present revised near-infrared albedo fits of 2835 main-belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. Because our sample requires reflected light measurements, it undersamples small, low-albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the main belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 μm. Conversely, the 4.6more » μm albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 μm albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 μm albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are important indicators of asteroid taxonomy and can identify interesting targets for spectroscopic follow-up.« less

  9. The REgolith X-Ray Imaging Spectrometer (REXIS) for OSIRIS-REx: identifying regional elemental enrichment on asteroids

    NASA Astrophysics Data System (ADS)

    Allen, Branden; Grindlay, Jonathan; Hong, Jaesub; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K.; Chodas, Mark; Smith, Matthew W.; Bautz, Marshall W.; Kissel, Steven E.; Villasenor, Joel; Oprescu, Miruna; Induni, Nicholas

    2013-09-01

    The OSIRIS-REx Mission was selected under the NASA New Frontiers program and is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of asteroid Bennu in 2019. 101955 Bennu (previously 1999 RQ36) is an Apollo (near-Earth) asteroid originally discovered by the LINEAR project in 1999 which has since been classified as a potentially hazardous near-Earth object. The REgolith X-Ray Imaging Spectrometer (REXIS) was proposed jointly by MIT and Harvard and was subsequently accepted as a student led instrument for the determination of the elemental composition of the asteroid's surface as well as the surface distribution of select elements through solar induced X-ray fluorescence. REXIS consists of a detector plane that contains 4 X-ray CCDs integrated into a wide field coded aperture telescope with a focal length of 20 em for the detection of regions with enhanced abundance in key elements at 50 m scales. Elemental surface distributions of approximately 50-200 m scales can be detected using the instrument as a simple collimator. An overview of the observation strategy of the REXIS instrument and expected performance are presented here.

  10. NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masiero, Joseph R.; Mainzer, A. K.; Kramer, E.

    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) reactivation mission has completed its third year of surveying the sky in the thermal infrared for near-Earth asteroids and comets. NEOWISE collects simultaneous observations at 3.4 and 4.6  μ m of solar system objects passing through its field of regard. These data allow for the determination of total thermal emission from bodies in the inner solar system, and thus the sizes of these objects. In this paper, we present thermal model fits of asteroid diameters for 170 NEOs and 6110 Main Belt asteroids (MBAs) detected during the third year of the survey,more » as well as the associated optical geometric albedos. We compare our results with previous thermal model results from NEOWISE for overlapping sample sets, as well as diameters determined through other independent methods, and find that our diameter measurements for NEOs agree to within 26% (1 σ ) of previously measured values. Diameters for the MBAs are within 17% (1 σ ). This brings the total number of unique near-Earth objects characterized by the NEOWISE survey to 541, surpassing the number observed during the fully cryogenic mission in 2010.« less

  11. Harpoon-based sample Acquisition System

    NASA Astrophysics Data System (ADS)

    Bernal, Javier; Nuth, Joseph; Wegel, Donald

    2012-02-01

    Acquiring information about the composition of comets, asteroids, and other near Earth objects is very important because they may contain the primordial ooze of the solar system and the origins of life on Earth. Sending a spacecraft is the obvious answer, but once it gets there it needs to collect and analyze samples. Conceptually, a drill or a shovel would work, but both require something extra to anchor it to the comet, adding to the cost and complexity of the spacecraft. Since comets and asteroids are very low gravity objects, drilling becomes a problem. If you do not provide a grappling mechanism, the drill would push the spacecraft off the surface. Harpoons have been proposed as grappling mechanisms in the past and are currently flying on missions such as ROSETTA. We propose to use a hollow, core sampling harpoon, to act as the anchoring mechanism as well as the sample collecting device. By combining these two functions, mass is reduced, more samples can be collected and the spacecraft can carry more propellant. Although challenging, returning the collected samples to Earth allows them to be analyzed in laboratories with much greater detail than possible on a spacecraft. Also, bringing the samples back to Earth allows future generations to study them.

  12. Asteroid mining

    NASA Astrophysics Data System (ADS)

    Gertsch, Richard E.

    The earliest studies of asteroid mining proposed retrieving a main belt asteroid. Because of the very long travel times to the main asteroid belt, attention has shifted to the asteroids whose orbits bring them fairly close to the Earth. In these schemes, the asteroids would be bagged and then processed during the return trip, with the asteroid itself providing the reaction mass to propel the mission homeward. A mission to one of these near-Earth asteroids would be shorter, involve less weight, and require a somewhat lower change in velocity. Since these asteroids apparently contain a wide range of potentially useful materials, our study group considered only them. The topics covered include asteroid materials and properties, asteroid mission selection, manned versus automated missions, mining in zero gravity, and a conceptual mining method.

  13. Asteroid mining

    NASA Technical Reports Server (NTRS)

    Gertsch, Richard E.

    1992-01-01

    The earliest studies of asteroid mining proposed retrieving a main belt asteroid. Because of the very long travel times to the main asteroid belt, attention has shifted to the asteroids whose orbits bring them fairly close to the Earth. In these schemes, the asteroids would be bagged and then processed during the return trip, with the asteroid itself providing the reaction mass to propel the mission homeward. A mission to one of these near-Earth asteroids would be shorter, involve less weight, and require a somewhat lower change in velocity. Since these asteroids apparently contain a wide range of potentially useful materials, our study group considered only them. The topics covered include asteroid materials and properties, asteroid mission selection, manned versus automated missions, mining in zero gravity, and a conceptual mining method.

  14. GeoLab Concept: The Importance of Sample Selection During Long Duration Human Exploration Mission

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Evans, C. A.; Bell, M. S.; Graff, T. G.

    2011-01-01

    In the future when humans explore planetary surfaces on the Moon, Mars, and asteroids or beyond, the return of geologic samples to Earth will be a high priority for human spaceflight operations. All future sample return missions will have strict down-mass and volume requirements; methods for in-situ sample assessment and prioritization will be critical for selecting the best samples for return-to-Earth.

  15. Advances in Astromaterials Curation: Supporting Future Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Evans, C. A.; Zeigler, R. A.; Fries, M. D..; Righter, K.; Allton, J. H.; Zolensky, M. E.; Calaway, M. J.; Bell, M. S.

    2015-01-01

    NASA's Astromaterials, curated at the Johnson Space Center in Houston, are the most extensive, best-documented, and leastcontaminated extraterrestrial samples that are provided to the worldwide research community. These samples include lunar samples from the Apollo missions, meteorites collected over nearly 40 years of expeditions to Antarctica (providing samples of dozens of asteroid bodies, the Moon, and Mars), Genesis solar wind samples, cosmic dust collected by NASA's high altitude airplanes, Comet Wild 2 and interstellar dust samples from the Stardust mission, and asteroid samples from JAXA's Hayabusa mission. A full account of NASA's curation efforts for these collections is provided by Allen, et al [1]. On average, we annually allocate about 1500 individual samples from NASA's astromaterials collections to hundreds of researchers from around the world, including graduate students and post-doctoral scientists; our allocation rate has roughly doubled over the past 10 years. The curation protocols developed for the lunar samples returned from the Apollo missions remain relevant and are adapted to new and future missions. Several lessons from the Apollo missions, including the need for early involvement of curation scientists in mission planning [1], have been applied to all subsequent sample return campaigns. From the 2013 National Academy of Sciences report [2]: "Curation is the critical interface between sample return missions and laboratory research. Proper curation has maintained the scientific integrity and utility of the Apollo, Antarctic meteorite, and cosmic dust collections for decades. Each of these collections continues to yield important new science. In the past decade, new state-of-the-art curatorial facilities for the Genesis and Stardust missions were key to the scientific breakthroughs provided by these missions." The results speak for themselves: research on NASA's astromaterials result in hundreds of papers annually, yield fundamental discoveries about the evolution of the solar system (e.g. [3] and references contained therein), and serve the global scientific community as ground truth for current and planned missions such as NASA's Dawn mission to Vesta and Ceres, and the future OSIRIS REx mission to asteroid Bennu [1,3

  16. New Exozodi and Asteroid Belt Analogs using WISE

    NASA Astrophysics Data System (ADS)

    Patel, Rahul; Metchev, Stanimir; Heinze, Aren

    2015-01-01

    The presence of circumstellar dust in the terrestrial planet zone and asteroid belt regions of stars can be ascertained from the excess flux from main sequence stars in the mid-infrared wavelengths. Finding dust in these regions is significant as it traces material related to terrestrial planet formation. The WISE All-Sky survey presents an opportunity to extend the population of faint disks to flux levels 100x fainter than disks detected by IRAS.We use the WISE All-Sky Survey data to detect circumstellar debris disks at the 12 and 22 μm bandpasses (W3 and W4, respectively). We present the detection of a sample of over 214 exozodi and asteroid belt analog candidates, 45% of which are brand new detections at confidence levels >99.5%. This was done by cross-matching Hipparcos main-sequence stars with the WISE All-Sky Data Release for stars within 75 pc and outside the galactic plane (|b|>5 deg) and then seeking color excesses at W3 and W4. In addition to applying the standard WISE photometric flags and filters to remove contaminants from our sample, we also improved our selection techniques by correcting for previously unknown systematic behavior in the WISE photometry, thereby including bright saturated stars into our sample. Our debris disk candidates are reliable detections as well as unprecedentedly faint, due in large part to these improved selection techniques. These new nearby excess hosts are optimal targets for direct imaging campaigns to characterize the disk morphology and to provide a larger sample of well characterized disks with which to understand the overall exoplanetary system architecture.

  17. On the cutting edge technology enabling the challenging missions to asteroids and comets, our primitive neighbors

    NASA Astrophysics Data System (ADS)

    Kawaguchi, J.

    2014-07-01

    The world's first sample-and-return mission from an object orbiting outside the sphere of influence of the Earth was successfully performed through Hayabusa in 2010, an engineering demonstration mission of JAXA. And it was followed by another technology demonstrator, Ikaros, the world's first solar-sail mission launched in 2010, the same year of the Hayabusa return. These two demonstrations represent the significance of the technology development that shall precede the real science missions that will follow. The space-exploration community focuses its attention on the use of asteroids and comets as one of the most immediate destinations. Humans will perform voyages to those objects sooner or later. And we will initiate a kind of research as scientific activity for those objects. The missions may include even sample-and-return missions to those bodies for assessing the chance of possible resource utilization in future. The first step for it is, needless to say, science. Combining the sample-and-return technology using the ultra-high-speed reentry for sample recovery with the new propulsion system using both electric and photon force will be the direct conclusion from Hayabusa and Ikaros. And key elements such as autonomy are also among the essential factors in making the sophisticated operation possible around asteroids and comets avoiding the communication difficulty. This presentation will comprehensively touch on what those technology skills are, and how they are applicable to the subsequent new missions, from the mission leader's point of view. They are probably real requisites for planning brand-new innovative challenges in the ACM community.

  18. More chips off of Asteroid (4) Vesta: Characterization of eight Vestoids and their HED meteorite analogs

    NASA Astrophysics Data System (ADS)

    Hardersen, Paul S.; Reddy, Vishnu; Roberts, Rachel; Mainzer, Amy

    2014-11-01

    Vestoids are generally considered to be fragments from Asteroid (4) Vesta that were ejected by past collisions that document Vesta's collisional history. Dynamical Vestoids are defined by their spatial proximity with Vesta (Zappala, V., Bendjoya, Ph., Cellino, A., Farinella, P., Froeschle', C. [1995]. Icarus 116, 291-314; Nesvorny, D. [2012]. Nesvorny HCM Asteroid Families V2.0. EAR-A-VARGBDET-5-NESVORNYFAM-V2.0. NASA Planetary Data System.). Taxonomic Vestoids are defined as V-type asteroids that have a photometric, visible-wavelength spectral, or other observational relationship with Vesta (Tholen, D.J., 1984. Asteroid Taxonomy from Cluster Analysis of Photometry. Ph.D. Thesis, University of Arizona, Tucson; Bus, S.J., Binzel, R.P. [2002]. Icarus 158, 106-145; Carvano, J., Hasselmann, P.H., Lazzaro, D., Mothe'-Diniz, T. [2010]. Astron. Astrophys. 510, A43). We define 'genetic Vestoids' as V-type asteroids that are probable fragments ejected from (4) Vesta based on the supporting combination of dynamical, near-infrared (NIR) spectral, and taxonomic evidence. NIR reflectance spectroscopy is one of the primary ground-based techniques to constrain an asteroid's major surface mineralogy (Burns, R.G. [1993a]. Mineralogical Applications of Crystal Field Theory. Cambridge University Press, Cambridge, UK, 551 p). Despite the reasonable likelihood that many dynamical and taxonomic Vestoids likely originate from Vesta, ambiguity exists concerning the fraction of these populations that are from Vesta as compared to the fraction of asteroids that might not be related to Vesta. Currently, one of the most robust techniques to identify the genetic Vestoid population is through NIR reflectance spectroscopy from ∼0.7 to 2.5 μm. The derivation of spectral band parameters, and the comparison of those band parameters with those from representative samples from the Howardite-Eucrite-Diogenite (HED) meteorite types, allows a direct comparison of their primary mineralogies. Establishing tighter constraints on the genetic Vestoid population will better inform mass estimates for the current population of probable Vestoids, will provide more accurate orbital information of Vestoid migration through time that will assist dynamical models, and will constrain the overall current abundance of basaltic material in the main asteroid belt (Moskovitz, N.A., Jedicke, R., Gaidos, E., Willman, M., Nesvorny, D., Fevig, R. [2008]. Icarus 198, 77-90). This work reports high-quality NIR spectra, and their respective interpretations, for eight Vp-type asteroids, as defined by Carvano et al. (Carvano, J., Hasselmann, P.H., Lazzaro, D., Mothe'-Diniz, T. [2010]. Astron. Astrophys. 510, A43), that were observed at the NASA Infrared Telescope Facility on January 14, 2013 UT. They include: (3867) Shiretoko, (5235) Jean-Loup, (5560) Amytis, (6331) 1992 FZ1, (6976) Kanatsu, (17469) 1991 BT, (29796) 1999 CW77, and (30872) 1992 EM17. All eight asteroids exhibit the broad ∼0.9- and ∼1.9-μm mineral absorption features indicative of pyroxene on each asteroid's surface. Data reduction and analysis via multiple techniques produced consistent results for the derived spectral absorption band centers and average pyroxene surface chemistries for all eight asteroids (Reddy, V., Sanchez, J.A., Nathues, A., Moskovitz, N.A., Li, J.-Y, Cloutis, E.A., Archer, K., Tucker, R.A., Gaffey, M.J., Mann, P.J., Sierks, H., Schade, U. [2012c]. Icarus 217, 153-168; Lindsay, S.S., Emery, J.P., Marchis, F., Enriquez, J., Assafin, M. [2013]. A spectroscopic and mineralogic study of multiple asteroid systems. American Astronomical Society, DPS Meeting #45, #112.04; Lindsay, S.S., Marchis, F., Emery, J.P., Enriquez, J.E., Assafin, M. [2014]. Icarus, submitted for publication; Gaffey, M.J., Cloutis, E.A., Kelley, M.K., Reed, K.L. [2002]. Mineralogy of asteroids. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (Eds.), Asteroids III. The University of Arizona Press, Tucson, pp. 183-204; Burbine, T.H., Buchanan, P.C., Dolkar, T., Binzel, R.P. [2009]. Met. Planet. Sci. 44, 1331-1341.). (3867) Shiretoko is most consistent with the eucrite meteorites while the remaining seven asteroids are most consistent with the howardite meteorites. The existing evidence suggests that all eight of these Vp-type asteroids are genetic Vestoids that probably originated from Vesta's surface.

  19. Howardite Noble Gases as Indicators of Asteroid Surface Processing

    NASA Technical Reports Server (NTRS)

    Cartwright, J. A.; Mittlefehldt, D. W.; Herrin, J. S.; Ott, U.

    2011-01-01

    The HED (Howardite, Eucrite and Diogenite) group meteorites likely or iginate from the Asteroid 4 Vesta - one of two asteroid targets of NA SA's Dawn mission. Whilst Howardites are polymict breccias of eucriti c and diogenitic material that often contain "regolithic" petrologica l features, neither their exact regolithic nature nor their formation processes are well defined. As the Solar Wind (SW) noble gas compon ent is implanted onto surfaces of solar system bodies, noble gas anal yses of Howardites provides a key indicator of regolithic origin. In addition to SW, previous work by suggested that restricted Ni (300-12 00 micro g/g) and Al2O3 (8-9 wt%) contents may indicate an ancient we ll-mixed regolith. Our research combines petrological, compositional and noble gas analyses to help improve understanding of asteroid reg olith formation processes, which will play an intergral part in the i nterpretation of Dawn mission data. Following compositional and petrological analyses, we developed a regolith grading scheme for our sampl e set of 30 Howardites and polymict Eucrites. In order to test the r egolith indicators suggested by, our 8 selected samples exhibited a r ange of Ni, Al2O3 contents and regolithic grades. Noble gas analyses were performed using furnace stepheating on our MAP 215-50 noble gas mass spectrometer. Of our 8 howardites, only 3 showed evidence of SW noble gases (e.g approaching Ne-20/Ne-22 approximately equals 13.75, Ne-21/Ne-22 approximately equals 0.033). As these samples display low regolithic grades and a range of Ni and Al2O3 contents, so far we are unable to find any correlation between these indicators and "regolit hic" origin. These results have a number of implications for both Ho wardite and Vesta formation, and may suggest complex surface stratigr aphies and surface-gardening processes.

  20. Lucy: Navigating a Jupiter Trojan Tour

    NASA Technical Reports Server (NTRS)

    Stanbridge, Dale; Williams, Ken; Williams, Bobby; Jackman, Coralie; Weaver, Hal; Berry, Kevin; Sutter, Brian; Englander, Jacob

    2017-01-01

    In January 2017, NASA selected the Lucy mission to explore six Jupiter Trojan asteroids. These six bodies, remnants of the primordial material that formed the outer planets, were captured in the Sun-Jupiter L4 and L5 Lagrangian regions early in the solar system formation. These particular bodies were chosen because of their diverse spectral properties and the chance to observe up close for the first time two orbiting approximately equal mass binaries, Patroclus and Menoetius. KinetX, Inc. is the primary navigation supplier for the Lucy mission. This paper describes preliminary navigation analyses of the approach phase for each Trojan encounter.

Top