Science.gov

Sample records for astrometric observations influence

  1. Interannaul variations of the vertical and their possible influence on the star catalogs derived from ground-based astrometric observations

    NASA Astrophysics Data System (ADS)

    Li, Z. X.

    The efforts at Shanghai Observatory since 1991, in response to the Resolution of IAU Comm.19: "Applications of optical astrometry time and latitude programs", is described in the paper, especially the studies concerned with the interannual variations of the vertical and their influence on the astronomical studies. It is clear now that there is a component of the order 0.01 - 0.02" on an interannual time scale in latitude residuals which is correlated with geophysical phenomena on the Earth. A recent study has confirmed that the component discovered is actually the variation of the vertical, related to ground-based observation in astronomy. So, it should be emphasized now that the variation of the vertical is significant enough to be considered in astronomy from now on. Its influence on the past studies, including the star catalogs already published and the ERP before 1980 when optical astrometry observations were still used, should be studied in the future. In comparing the HIPPARCOS catalog with those derived by the past observations, we should keep in mind the existence of this error in an astrometric observation and its influence on the star catalogs and other results derived from ground-based astrometric observations.

  2. Phobos and Deimos astrometric observations from Viking

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.; Callahan, J. D.

    1988-01-01

    This article describes the reduced astrometric observations of Phobos and Deimos derived from Viking Orbiter 1 and 2 imaging data. This data set spans four years from 1976 to 1980, contains 275 sets of spacecraft-centered, right ascension and declination observations, and has a limiting accuracy of a few km (1 sigma). The details of observation formulation and use for ephemeris improvement are given.

  3. CCD astrometric observations of Amalthea and Thebe

    NASA Astrophysics Data System (ADS)

    Veiga, C. H.; Vieira Martins, R.

    2005-07-01

    This paper presents the results of observations of Jupiter's satellites Amalthea and Thebe made in 1995, 1996 and 2001 at the Laboratório Nacional de Astrofísica (LNA), Brazil. The observations were made in visible light wavelengths with a 1.6 m reflector telescope and the light of Jupiter was covered by a mask placed near the CCD surface. The already published positions for 1995, whose astrometric reduction used the Galilean satellites, are now reduced using the stars in the CCD fields like the new positions of 1996 and 2001. The 2001 data are much better than those obtained in 1995, and that those from 1996 show large residuals. Considering the 310 frames observed, the mean residual is about 0.01 arcsec and the standard deviation is about 0.15 arcsec.

  4. Phobos and Deimos astrometric observations from the Phobos mission

    NASA Technical Reports Server (NTRS)

    Koliuka, IU.; Tikhonov, V.; Ivanov, N.; Poliakov, V.; Avanesov, G.

    1991-01-01

    This article describes the reduced astrometric observations of Phobos and Deimos as derived from the Phobos Mission imaging data. These astrometric data span 2 months in 1989, contain 37 sets of spacecraft-centered, right ascension and declination observations of Phobos and 8 sets of Deimos. The phobos observations have an orbital position accuracy of about 2 km while the Deimos observations have an accuracy of about 10 km. The details of observation formulation and use for ephemeris improvement are given.

  5. Phobos and Deimos astrometric observations from Mariner 9

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.; Callahan, J. D.

    1989-01-01

    This article describes the reduced astrometric observations of Phobos and Deimos derived from Mariner 9 imaging data. This data set spans 11 months from 1971 and 1972, contains 82 sets of spacecraft-centered right ascension and declination observations, and has an accuracy of 3 to 10 km (1-sigma) in orbital position. The details of the observation formulation and its use for ephemeris improvement are given.

  6. Astrometric observations of comets and asteroids and subsequent orbital investigations

    NASA Technical Reports Server (NTRS)

    Marsden, B. G.

    1991-01-01

    The transformation of the Oak Ridge astrometry from a photographic program to a charge coupled device (CCD) program can now be considered complete, and the number of observations being made is now approaching an order of magnitude greater than in the old photographic program. Astrometric observations with the 1.5-m reflector were made at the Oak Ridge Observatory, and the progress, accomplishments, and projected accomplishments are presented.

  7. CCD astrometric observations of Phoebe in 2003-2004

    NASA Astrophysics Data System (ADS)

    Qiao, R. C.; Tang, Z. H.; Shen, K. X.; Dourneau, G.; Yan, Y. R.; Yu, Y.; Wang, S. H.; Liu, J. R.

    2006-07-01

    In 2003-2004, we obtained 115 new observations of Phoebe, the 9th Saturnian faint satellite (visual magnitude of about 16.5). We used a large CCD detector (2048×2048 pixels) mounted on the 1.56 m astrometric reflector at the Sheshan Station, near Shanghai. In our reduction, an up-to-date catalogue of stars, UCAC2 (Zacharias et al. 2004), was chosen to ensure a proper astrometric calibration. A comparison of our observations to three recently available, high quality ephemerides, including the JPL SAT185 by Jacobson (2004b), has shown that most of our observed positions of Phoebe present an accuracy of some tens of mas, which appears to be a very high level for such a faint satellite.

  8. Astrometric observations of comets and minor planets

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Gibson, J.

    1991-01-01

    Comets and planet crossing asteroids are observed so that accurate positions can be determined. The observations are made with the Palomar 1.5 m telescope equipped with a CCD array. The combination of telescope and detector is quite effective at recording faint comets and minor planets. This proves useful for early acquisition of comets and asteroids returning for a new opposition. The resulting positions permit accurate orbits to be determined and allow the properties of the comets and asteroids to be measured by other observers using a variety of techniques. Recoveries and other notable observations of comets and planet crossing asteroids observed during the past years are discussed.

  9. Astrometric observations of comets and minor planets

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Gibson, J.

    1991-01-01

    Comets and planet crossings are observed so that accurate positions can be determined. The observations are made with the Palomar 1.5m telescope equipped with a charge coupled device (CCD) array. This combination is quite efficient at recording faint comets and minor planets. This proves quite useful for early acquisition of comets and asteroids returning for a new opposition. The resulting positions permit accurate orbits to be determined and allow the properties of the comets and asteroids to be measured by other observers using a variety of techniques. Recoveries and other notable observations of comets and planet crossing asteroids observed during the past year are discussed.

  10. ASTROMETRIC MASSES OF 26 ASTEROIDS AND OBSERVATIONS ON ASTEROID POROSITY

    SciTech Connect

    Baer, James; Chesley, Steven R.; Matson, Robert D. E-mail: steve.chesley@jpl.nasa.gov

    2011-05-15

    As an application of our recent observational error model, we present the astrometric masses of 26 main-belt asteroids. We also present an integrated ephemeris of 300 large asteroids, which was used in the mass determination algorithm to model significant perturbations from the rest of the main belt. After combining our mass estimates with those of other authors, we study the bulk porosities of over 50 main-belt asteroids and observe that asteroids as large as 300 km in diameter may be loose aggregates. This finding may place specific constraints on models of main-belt collisional evolution. Additionally, we observe that C-group asteroids tend to have significantly higher macroporosity than S-group asteroids.

  11. Astrometric Observations of Comets and Asteroids and Subsequent Orbital Investigations

    NASA Technical Reports Server (NTRS)

    Marsden, Brian G.; McCrosky, Richard E.

    1997-01-01

    An earlier series of photographic observations was made with the 1.5-m reflector from 1972 to 1989. The start of the series to which this report refers occurred shortly before the conversion from photographic to CCD operation in August 1989, at which point there was a dramatic increase in the productivity of the program. This is evident gives a month-by-month summary of the observations; the earlier data refer to the measurement or remeasurement of photographic plates previously taken with the same telescope. The total number of observations made was 24,423, of which 1338 were of comets. Of the 23,085 observations of asteroids, 21,529 referred to asteroids that were unnumbered when the observations were made. Since an important emphasis of the program was to improve knowledge of the orbits to the point where asteroids can be numbered, the fact that only 4262 of the observations refer to asteroids that are still unnumbered is a measure of the program's success, with 30-35 percent of all the new numberings being habitually made solely because of the recent data from the Oak Ridge program, which even at the time of McCrosky's retirement was still the fourth largest comet-asteroid astrometric program in the world.

  12. Photometric, astrometric and polarimetric observations of gravitational microlensing events

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe; Rahvar, Sohrab

    2015-09-01

    Gravitational microlensing can be used as a unique astrophysical tool to study the atmospheres of stars thousands of parsec away from us. This capability results from the bending of light rays in the gravitational field of a lens that can magnify the light of a background source star during the lensing. Moreover, one of the consequences of this light bending is that the circular symmetry of the source is broken because distorted images are produced at either side of the lens position. This property makes it possible to observe polarization, and also the light centroid shift of images. Assigning vectors for these two parameters, they are perpendicular to each other in simple and binary microlensing events, except in fold singularities. In this work, we investigate the advantages of polarimetric and astrometric observations during microlensing events (i) for studying the surface of the source star and spots on it and (ii) for obtaining extra information to determine the trajectory of source stars with respect to the lens. Finally, we analyse the largest sample of microlensing events from the Optical Gravitational Lensing Experiment (OGLE) catalogue and show that, for almost ˜4.3 per cent of events in the direction of the Galactic bulge, the polarization signals would be observable with large telescopes.

  13. An improved astrometric calibration technique for space debris observation

    NASA Astrophysics Data System (ADS)

    Sun, Rong-Yu; Zhao, Chang-Yin; Lu, Yao

    2016-02-01

    An optical survey is the main technique for detecting space debris. Due to the specific characteristics of observation, the pointing errors and tracking errors of the telescope as well as image degradation may be significant, which make it difficult for astrometric calibration. Here we present an improved method that corrects the pointing and tracking errors, and measures the image position precisely. The pipeline is tested on a number of CCD images obtained from a 1-m telescope administered by Xinjiang Astronomical Observatory while observing a GPS satellite. The results show that the position measurement error of the background stars is around 0.1 pixel, while the time cost for a single frame is about 7.5 s; hence the reliability and accuracy of our method are demonstrated. In addition, our method shows a versatile and feasible way to perform space debris observation utilizing non-dedicated telescopes, which means more sensors could be involved and the ability to perform surveys could be improved.

  14. Study of the impact of E-ELT and MICADO distortion and wavefront errors residuals on the MICADO astrometric observations

    NASA Astrophysics Data System (ADS)

    Rodeghiero, Gabriele; Pott, Jörg-Uwe; Bizenberger, Peter

    2016-08-01

    The paper describes the developments towards an end-to-end optical model based on a commercial ray tracing software for studying the effects of the telescope and instrumental instabilities on the Multi-AO Imaging Camera for Deep Observations (MICADO). The primary goal and observing mode of MICADO is imaging, with a focus on relative astrometry with an accuracy of about 50 μas. To achieve this ambitious goal a careful examination of the possible random and systematic effects that can influence the astrometric accuracy is required. Here we concentrate on the perturbations coming from the different telescope and instrumental instabilities, mainly related to the static and dynamical perturbations of the European-Extremely Large Telescope (E-ELT) optics, the cold optics tolerances of the instrument and the intrinsic geometric distortions of both the systems. ESO developed an extended dataset of the E-ELT perturbations that are integrated inside the optical model of the telescope and the instrument relay optics for gathering the aberrated wavefronts. The wavefront error residuals are then propagated inside the system to check the distortions and their effects on the astrometric measurement at the instrument focal plane. From our analysis the dominating instrumental errors are: (i) the telescope induced distortions, in the order of => 100μas, that originate from the optics misalignments and presumably vary over <= 1hr time-scales, and must be calibrated against sky measurements; (ii) the instrument optics induced distortions that can reach ˜ 1 arcsec levels, but are more stable than the telescope perturbations. They will be calibrated with the use of an astrometric calibration mask. We derived the order of magnitude of the astrometric distortions of E-ELT and MICADO. The results of our study will help to define an efficient instrumental calibration strategy against the astrometric error of the instrument.

  15. Astrometric observations of the faint satellites of Jupiter during the 1975 - 1976 opposition

    NASA Technical Reports Server (NTRS)

    Mulholland, J. D.; Shelus, P. J.; Benedict, G. F.

    1979-01-01

    The series of astrometric observations of the satellites of the trans-martian planets re-established at the McDonald Observatory in 1972 is continued. The positions deduced from photographic observations of the jovian system obtained during the 1975-76 opposition are presented together with the discovery positions of four asteroids found on these plates.

  16. Simultaneous Position, Velocity, Attitude, Angular Rates, and Surface Parameter Estimation Using Astrometric and Photometric Observations

    DTIC Science & Technology

    2013-07-01

    Simultaneous Position, Velocity, Attitude, Angular Rates, and Surface Parameter Estimation Using Astrometric and Photometric Observations...estimation is extended to include the various surface parameters associated with the bidirectional reflectance distribution function (BRDF... parameters are estimated simultaneously Keywords—estimation; data fusion; BRDF I. INTRODUCTION Wetterer and Jah [1] first demonstrated how brightness

  17. Hubble Space Telescope Astrometric Observations and Orbital Mean Motion Corrections for the Inner Uranian Satellites

    NASA Astrophysics Data System (ADS)

    Pascu, Dan; Rohde, James R.; Seidelmann, P. Kenneth; Wells, Eddie N.; Kowal, Charles T.; Zellner, Ben H.; Storrs, Alex D.; Currie, Douglas G.; Dowling, Daniel M.

    1998-03-01

    The 10 small inner satellites of Uranus were discovered in 1986 with Voyager 2 and not seen again until 1994, when eight were recovered with the Hubble Space Telescope Wide Field Planetary Camera 2 for astrometric, dynamical, and photometric studies. Thirty-three exposures were taken on 1994 August 14 with the PC1 chip in the BVRI filters. Measurable images of Ariel and Miranda were also obtained on the same CCD frames with those of the faint satellites. We present here the astrometric observations of these eight satellites relative to Miranda, as well as corrected orbital mean motions for them. For the full-well images of Ariel and Miranda, the astrometric limitation was due to an inadequate geometric distortion correction and distance from center. For the faint inner satellites, the astrometric precision varied from 50 mas for Bianca (V = 23 mag) to 9 mas for Puck (V = 20 mag) and was due primarily to a centroiding error caused by a low signal-to-noise ratio. The orbits of Owen & Synnott for the inner satellites were compared with these observations and corrections derived to their mean daily motions. While the orbits of Owen & Synnott proved to be better than their errors indicated, the new mean motions are 2 orders of magnitude more precise.

  18. First astrometric observations with the MéO telescope in view of space debris observations

    NASA Astrophysics Data System (ADS)

    Laas-Bourez, Myrtille; Deleflie, Florent; Klotz, Alain; Albanese, Dominique; Samain, Etienne

    The MéO (for "Métrologie Optique") telescope is the Satellite and Lunar Laser Ranging dedicated telescope of Observatoire de la Côte d'Azur (France), and located at "plateau de Calern" (43,7546336886111 N 6,9215750911111 E 1323,3480 U). The telescope is pointed by an altazimu-tale mount. The motorization, with a typical velocity of 5 deg/s allows to follow LEO satellites (from an altitude of 400 kilometers), as well as MEO and GEO satellites, and the Moon. The telescope has an aperture of 1.54m. It has Nasmyth focus equipped with an EMCCD camera. The field of view, defined by the equivalent focal length and the size of the camera, is actually 3 arcmin x 3 arcmin. The paper aims at presenting two methods that we will be developing to observe LEO and MEO satellites, and give very precise astrometrical positions in view of testing the capabilities of such an instrument to track space debris. In particular, the greater diameter than the ones usually used for space debris tracking should improve the current accu-racy of the observations within in the GEO region. In the LEO region, such a diameter should allow to observe trailing satellites with a high magnitude (to be quantified). The first method is "stellar reference" -based. It consists in identifying stars on the images sky background and in using an astrometrical catalog to calibrate the passage relations between image coordinates and celestial coordinates. The main difficulty comes from the possible lack of catalogued stars on every image, to exactly identify, for each track, the original epoch and positions of stellar trails. The second method is "telescope referenced" -based. It consists in relying the opto-mechanical chain of the telescope to assign the theoretical value read in the ephemeris file as the center of the images. So, we can calibrate the field blind. The difficulty consists hence in estimating the accuracy of pointing of the telescope. The feasibility of these two methods was demonstrated in

  19. Astrometric observations of comets and asteroids and subsequent orbital investigations

    NASA Technical Reports Server (NTRS)

    Mccrosky, R. E.; Marsden, B. G.

    1986-01-01

    During the past year some 500 observations were made on 66 nights and published on the MPCs (Minor Planet Circulars/Minor Planets and Comets). In addition, a handful of measurements of earlier plates were completed and published. 121 of the observations published referred to comets. Of special importance were observations of comets (P/Giacobini-Zinner and P/Halley) in connection with the NASA ICE and ESA Giotto missions, but a special effort was made to get good coverage of almost all of the observable comets. Observations were also made of (2060) Chiron and of the earth-approaching objects (1627) Ivar, (1866) Sisyphys, (1943) Anteros, (3362) 1984 QA, 1985 JA, PA, TB and WA, and 1986 DA and EB. 46 minor planets were given permanent numbers entirely as a result of the observations.

  20. Astrometric observations of planetary satellites at the Abastumani Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. P.; Chanturiya, S. M.; Vasil'eva, T. A.; Kalinichenko, O. A.

    2012-11-01

    We present and discuss the results of the astrometry project during which we observed the satellites of Mars, Jupiter, Saturn, Uranus, and Neptune at the Abastumani Astrophysical Observatory (Georgia) between 1983 and 1994. Observations at the Abastumani Observatory were performed with the double Zeiss astrograph (DZA: D/ F = 400/3024 mm) and AZT-11 telescope ( F = 16 m). We processed a large array of observations and determined exact coordinates of the planets and their satellites in a system of reference stars of modern catalogues as well as relative coordinates of the satellites. The results were compared with modern ephemerides using the MULTI-SAT software. The comparison enabled us to estimate the accuracy of observations (their random and systematic uncertainties) and the accuracy of modern theories of the motion of planets and their satellites. Random uncertainties of observations are estimated to be 0.10″-0.40″ for various objects and observational conditions. Observational results obtained for Uranus, Neptune and the satellites Titania and Oberon were shown to deviate appreciably and systematically from theories of their motion. The results of observations are presented in the Pulkovo database for Solar System bodies that is available at the website http://www.puldb.ru.

  1. Astrometric observations of comets and asteroids and subsequent orbital investigations

    NASA Technical Reports Server (NTRS)

    Mccroskey, Richard E.; Marsden, Brian G.

    1988-01-01

    The 155-cm reflector was used for observations of comets and minor planets on 28 nights during April-October. Twenty-two of the observations refer to comets, 62 to numbered minor planets (numbered, that is, by the end of the semester: only nine of them refer to minor planets already numbered at the time of the last report), and the remainer to unnumbered minor planets. Observations were made of four new comets discovered during the semester and a fifth discovered in January. Observations of Wilson (19861), P/Tempel 2 and two other returning short-period comets are also continuing. Among the odd numbered minor planets observed were the earth-approaching objects (1685) Toro and (1980) Tezcatlipoca. The Earth approacher 1980 PA was numbered (3908).

  2. Astrometric observations of comets and asteroids and subsequent orbital investigations

    NASA Technical Reports Server (NTRS)

    Mccrosky, Richard E.; Marsden, Brian G.

    1989-01-01

    Observations were made with the 155-cm reflector at the Oak Ridge Observatory. Since the last semiannual report (issued in November 1988) there have been 20 observations of comets, 146 of numbered minor planets and 135 of minor planets that were unnumbered at the time of observation. The orbit computations made during this period mainly applied to new discoveries, which have recently been exceptionally numerous. 1989 has already produced five new Apollo objects, and the new-moon period in early January produced a record six new comets.

  3. Astrometric observations of comets and asteroids and subsequent orbital investigations

    NASA Technical Reports Server (NTRS)

    Mccrosky, R. E.; Marsden, B. G.

    1986-01-01

    The 155-cm reflector was used for observations of comets and minor planets on 32 nights during April-October. The distribution was fairly uniform, ranging from 45 in June and September to 28 in July: on September 1 a total of 17 observations was made. A table is included which lists the 230 measurements published during the semester. These include six additional measurements going back to 1984 and the republication of a previously misidentified 1976 observation as a new discovery. Thirty-two of the observations refer to comets, 83 to numbered minor planets, and the remainder to unnumbered minor planets. Among the older-numbered minor planets observed were the Earth-approaching objects (3103) 1982 BB, (3199) 1982 RA (Nefertiti), (3361) 1982 HR and (3362) 1984 QA (Khufu), some of which were of interest for radar experiments. Unnumbered Earth-approaching objects observed were 1963 RH, 1983 RD, 1985 TB and 1986 DA, as well as the new discoveries 1986 JK, 1986 LA and 1986 PA.

  4. Astrometric observations of comets and asteroids and subsequent orbital investigations

    NASA Technical Reports Server (NTRS)

    Mccrosky, Richard E.; Marsden, Brian G.

    1987-01-01

    The 155-cm reflector of the Smithsonian Astrophysical Observatory was used for observations of comets and minor planets on 35 nights during October l986- April l987. The distrubution was fairly uniform November-February, but poor weather permitted only 21 observations during March. Table I lists the 423 measurements published (in the MPCs) since the last report, two of them actually made at the very beginning of May l987. Forty-six of the observations refer to comets, 193 to numbered minor planets (numbered, that is, by the end of the semester; only 11 of them refer to minor planets already numbered at the time of the last report), and the remainder to unnumbered minor planets.

  5. Treatment of Star Catalog Biases in Asteroid Astrometric Observations

    DTIC Science & Technology

    2010-01-01

    none of the other orbital parameters could be manipulated so as to elimi- nate the declination bias, it appeared to be the only systematic er- ror in...annotation regarding the observation quality or reduction technique. Photometry information may also be part of the record. For the present effort, the...collision analyses. The same principles could also be applied to develop a statisti- cal model of asteroid photometry , potentially yielding more pre

  6. Strong tidal dissipation in Io and Jupiter from astrometric observations.

    PubMed

    Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim

    2009-06-18

    Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.

  7. VizieR Online Data Catalog: Astrometric observations of Phobos (Pasewaldt+, 2015)

    NASA Astrophysics Data System (ADS)

    Pasewaldt, A.; Oberst, J.; Willner, K.; Beisembin, B.; Hoffmann, H.; Matz, K. D.; Roatsch, T.; Michael, G.; Cardesin-Moinelo, A.; Zubarev, A. E.

    2015-04-01

    The data is given in the form of two tables. Each table contains the same set of observations: Data in tablea1.dat has been reduced using MEX navigation orbits and predicted attitude by the European Space Operations Centre (ESOC). tablea2.dat data has been derived using MEX accurate orbits by the Royal Observatory of Belgium (ROB) and measured attitude by the European Space Astronomy Centre (ESAC). >From 158 astrometric observations 103 were determined by means of both methods, 27 using only control point measurements, and 28 performing only limb fit observations. Hence, each data table contains 261 entries, namely 130 control point measurements and 131 limb fit observations. (2 data files).

  8. Astrometric observations of the satellites of the outer planets. I - The Galilean satellites in 1977

    NASA Technical Reports Server (NTRS)

    Ianna, P. A.; Seitzer, P.; Levinson, F.

    1979-01-01

    Astrometric observations of the Galilean satellites of Jupiter performed around the opposition of 1977 with a 67-cm photovisual refractor are reported. The measurements are reduced to absolute and intersatellite positions by two different methods: a linear least-squares plate-constant solution to the AGK3 reference-star frame and the trail-scale method of Pascu (1977). Results of a plate-constant reduction are also presented for two observations of JV (Amalthea). Comparison of the data with Liske's (1978) theoretical predictions for the intersatellite positions indicates no systematic bias in the data; a probable scatter of about 15 arcsec in both right ascension and declination is estimated.

  9. First astrometric observations of space debris with the MéO telescope

    NASA Astrophysics Data System (ADS)

    Laas-Bourez, Myrtille; Wailliez, Sébastien; Deleflie, Florent; Klotz, Alain; Albanese, Dominique; Saba, Nathalie

    2012-02-01

    The MéO (for Métrologie Optique) telescope is the Satellite and Lunar Laser Ranging (SLR) dedicated telescope of Observatoire de la Côte d'Azur (France) located at plateau de Calern. The telescope uses an altazimuth mount. The motorization of the mount has a capability of 6 deg/s allowing the follow up of Low Earth Orbits (LEO) satellites, as well as Medium Earth Orbits (MEO) and geostationary (GEO) satellites, and the Moon. The telescope has a primary mirror of 1.54 m. It uses a Nasmyth focus equipped with an EMCCD camera. The telescope field of view, defined by the equivalent focal length and the size of the camera, is currently 3.4 arcmin × 3.4 arcmin.Space debris observation with an optical telescope ideally requires a large field of view, accurate pointing, a fast slew rate, a high sensitivity, accurate astrometric positions, and a precise method for orbit propagation. The challenge is to obtain accurate orbits for all debris without compromising the field of view. The MéO telescope has a larger diameter than the ones habitually used for space debris tracking. It should improve the current accuracy of observations in the GEO region. For LEO, such sensitivity should allow observations of small pieces of debris at low altitudes.This paper presents the preliminary experiments carried out to benefit from the high astrometric quality of the instrument, namely the method developed to extract and to compute the astrometric positions of LEO and MEO satellites, as a test of the capabilities of such an instrument (very small field of view, but large aperture) for space debris tracking. Furthermore, we analyse the ability of MéO to keep track of an object for which only a preliminary orbit (computed by the Laplace method from previous observations) is known, so that high precision measurements can be obtained and the object can be catalogued with an updated orbit.The feasibility of our astrometric methods was tested throughout 2010. This paper presents the methods

  10. Automated Astrometric Analysis of Satellite Observations using Wide-field Imaging

    NASA Astrophysics Data System (ADS)

    Skuljan, J.; Kay, J.

    2016-09-01

    An observational trial was conducted in the South Island of New Zealand from 24 to 28 February 2015, as a collaborative effort between the United Kingdom and New Zealand in the area of space situational awareness. The aim of the trial was to observe a number of satellites in low Earth orbit using wide-field imaging from two separate locations, in order to determine the space trajectory and compare the measurements with the predictions based on the standard two-line elements. This activity was an initial step in building a space situational awareness capability at the Defence Technology Agency of the New Zealand Defence Force. New Zealand has an important strategic position as the last land mass that many satellites selected for deorbiting pass before entering the Earth's atmosphere over the dedicated disposal area in the South Pacific. A preliminary analysis of the trial data has demonstrated that relatively inexpensive equipment can be used to successfully detect satellites at moderate altitudes. A total of 60 satellite passes were observed over the five nights of observation and about 2600 images were collected. A combination of cooled CCD and standard DSLR cameras were used, with a selection of lenses between 17 mm and 50 mm in focal length, covering a relatively wide field of view of 25 to 60 degrees. The CCD cameras were equipped with custom-made GPS modules to record the time of exposure with a high accuracy of one millisecond, or better. Specialised software has been developed for automated astrometric analysis of the trial data. The astrometric solution is obtained as a two-dimensional least-squares polynomial fit to the measured pixel positions of a large number of stars (typically 1000) detected across the image. The star identification is fully automated and works well for all camera-lens combinations used in the trial. A moderate polynomial degree of 3 to 5 is selected to take into account any image distortions introduced by the lens. A typical RMS

  11. A statistical study of radio-source structure effects on astrometric very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.

    1989-01-01

    Errors from a number of sources in astrometric very long baseline interferometry (VLBI) have been reduced in recent years through a variety of methods of calibration and modeling. Such reductions have led to a situation in which the extended structure of the natural radio sources used in VLBI is a significant error source in the effort to improve the accuracy of the radio reference frame. In the past, work has been done on individual radio sources to establish the magnitude of the errors caused by their particular structures. The results of calculations on 26 radio sources are reported in which an effort is made to determine the typical delay and delay-rate errors for a number of sources having different types of structure. It is found that for single observations of the types of radio sources present in astrometric catalogs, group-delay and phase-delay scatter in the 50 to 100 psec range due to source structure can be expected at 8.4 GHz on the intercontinental baselines available in the Deep Space Network (DSN). Delay-rate scatter of approx. 5 x 10(exp -15) sec sec(exp -1) (or approx. 0.002 mm sec (exp -1) is also expected. If such errors mapped directly into source position errors, they would correspond to position uncertainties of approx. 2 to 5 nrad, similar to the best position determinations in the current JPL VLBI catalog. With the advent of wider bandwidth VLBI systems on the large DSN antennas, the system noise will be low enough so that the structure-induced errors will be a significant part of the error budget. Several possibilities for reducing the structure errors are discussed briefly, although it is likely that considerable effort will have to be devoted to the structure problem in order to reduce the typical error by a factor of two or more.

  12. VERY LONG BASELINE ARRAY ASTROMETRIC OBSERVATIONS OF THE CASSINI SPACECRAFT AT SATURN

    SciTech Connect

    Jones, Dayton L.; Folkner, William M.; Lanyi, Gabor; Border, James; Jacobson, Robert A.; Fomalont, Ed; Dhawan, Vivek; Romney, Jon

    2011-02-15

    The planetary ephemeris is an essential tool for interplanetary spacecraft navigation, studies of solar system dynamics (including, for example, barycenter corrections for pulsar timing ephemerides), the prediction of occultations, and tests of general relativity. We are carrying out a series of astrometric very long baseline interferometry observations of the Cassini spacecraft currently in orbit around Saturn, using the Very Long Baseline Array (VLBA). These observations provide positions for the center of mass of Saturn in the International Celestial Reference Frame (ICRF) with accuracies {approx}0.3 mas (1.5 nrad) or about 2 km at the average distance of Saturn. This paper reports results from eight observing epochs between 2006 October and 2009 April. These data are combined with two VLBA observations by other investigators in 2004 and a Cassini-based gravitational deflection measurement by Fomalont et al. in 2009 to constrain a new ephemeris (DE 422). The DE 422 post-fit residuals for Saturn with respect to the VLBA data are generally 0.2 mas, but additional observations are needed to improve the positions of all of our phase reference sources to this level. Over time we expect to be able to improve the accuracy of all three coordinates in the Saturn ephemeris (latitude, longitude, and range) by a factor of at least three. This will represent a significant improvement not just in the Saturn ephemeris but also in the link between the inner and outer solar system ephemerides and in the link to the inertial ICRF.

  13. Recent Results from Follow-up Astrometric Observations of KBOs and NEOs

    NASA Astrophysics Data System (ADS)

    Tholen, D. J.; Connelley, M. S.

    2001-11-01

    As of the abstract deadline, 481 Kuiper belt objects have been discovered, but only 50 have four-opposition or greater orbits. Historically, some of the three-opposition orbits still had assumed eccentricities, indicating the relative level of inaccuracy in the orbit determination. Meanwhile, several authors have published eccentricity versus semimajor axis plots for Kuiper belt objects without attaching error bars to the symbols. Caution should therefore be exercised when looking at the relative populations of resonant, classical, and scattered objects, or when reaching conclusions about mechanisms at work that shape the Kuiper belt. We have been working to ameliorate this situation by securing follow-up astrometric observations of Kuiper belt objects with shorter arc orbit solutions, thereby extending the arcs and improving the accuracy of their semimajor axis and eccentricity determinations. Approximately 30 objects have been recovered to date, including a serendipitous observation of the satellite of 1998 WW31. We will be presenting improved estimates of the relative populations of resonant, classical, and scattered objects at the DPS meeting. Emphasis has also been given to astrometric observations of faint near-Earth objects to prevent their ephemeris uncertainties from growing large enough to warrant being tagged as "lost". In some cases, arcs have been extended by a factor of more than sixty. Virtually all of our observations are the last available for these objects. The number one reason for failure to recover an object has been low galactic latitude, where the field star density is so high that after non-sidereal tracking is taken into account, the field of view is nearly completely covered by star trails. Notable recoveries include 2000 SG344 at magnitude 26 in 2001 August using the CFHT (this object had been identified as having a 1 in 1000 chance of colliding with the Earth in 2071), 2000 GD147 at magnitude 24.5 in 2001 September using the UH 2.24-m

  14. Astrometric observations of the faint outer satellites of Jupiter during the 1993 opposition

    NASA Technical Reports Server (NTRS)

    Shelus, Peter J.; Whipple, Arthur L.; Benedict, G. F.

    1993-01-01

    Astrometric positions for the faint outer Jovian satellites VI-XIII during the 1993 opposition have been obtained from the measurement of plates taken with the 2.1 m Otto Struve reflector at McDonald Observatory.

  15. Astrometric Observations of the Faint Outer Satellites of Jupiter During the 1994 and 1995 Oppositions

    NASA Astrophysics Data System (ADS)

    Whipple, Arthur L.; Shelus, Peter J.; Whited, Randy W.; Cochran, Anita L.; MacQueen, Phillip J.; Benedict, George F.

    1996-07-01

    We present astrometric positions for the faint outer satellites of Jupiter VI-XIII during the 1994 and 1995 oppositions. These positions have been obtained from measurements of photographic plates taken with the 2.1 m Otto Struve reflector and from wide field CCD frames taken with the 0.76 m reflector. Both telescopes are located at McDonald Observatory. The new CCD-based instrumentation and astrometric reduction system is described.

  16. Astrometric reduction of the Mars Exploration Rover night-time observations

    NASA Astrophysics Data System (ADS)

    Berthier, J.; Lainey, V.; Bell, J.; Dehant, V.

    2006-06-01

    In 2003 NASA launched toward Mars two robots, Spirit and Opportunity, in search of answers about the history of water on Mars. They landed on Mars on January 4 and January 24, 2004. Since this date, they have traversed around their landing site to search for and characterize a wide range of rocks and soils that hold clues to past water activity on Mars. Among the science instruments carried by the rovers, the Panoramic Camera (Pancam) is used to determine the mineralogy, the texture, and the structure of the local terrain. The Pancam has also been used to take images of the Martian sky during the night. In particular, the Spirit rover has taken more than 500 night-time images showing Mars' moons Phobos and Deimos. We are performing the astrometric reduction of those images, with the goal of refining further the ephemerides of both satellites. Ephemeris improvements may help future targeting of high resolution images of the satellites from orbiters or other future missions. In addition, we hope to provide new constraints on the orbital evolution of the satellites through these observations and through other recent observations.

  17. Astrometric Reduction of the Mars Exploration Rover Night-Time Observations of Phobos and Deimos

    NASA Astrophysics Data System (ADS)

    Dehant, Veronique; Berthier, J.; Bell, J., III; Lainey, V.; Million, C.

    2006-09-01

    In 2003 NASA launched toward Mars two robots, Spirit and Opportunity, in search of answers about the history of water on Mars. They landed on Mars on January 4 and January 24, 2004. Since this date, they have traversed around their landing site to search for and characterize a wide range of rocks and soils that hold clues to past water activity on Mars. Among the science instruments carried by the rovers, the Panoramic Camera (Pancam) is used to determine the mineralogy, the texture, and the structure of the local terrain. The Pancam has also been used to take images of the martian sky during the night. In particular, the Spirit rover has taken more than 500 night-time images showing Mars's moons Phobos and Deimos. We are performing the astrometric reduction of those images, with the goal of refining further the ephemerides of both satellites. Ephemeris improvements may help future targeting of high resolution images of the satellites from orbiters or other future missions. In addition, we hope to provide new constraints on the orbital evolution of the satellites through these and other recent observations. In this presentation, we discuss in more detail the objectives of this campaign and our first preliminary results.

  18. Astrometric observations of satellites of Uranus using a 26-inch refractor in 2007-2011

    NASA Astrophysics Data System (ADS)

    Roshchina, E. A.; Izmailov, I. S.; Kiseleva, T. P.

    2015-05-01

    This paper reports CCD observations of Uranus and its main satellites using a 26-inch refractor at the Pulkovo Observatory in 2007-2011. These are 2450 CCD frames with images of Uranus and its four main satellites, i.e., Ariel, Umbriel, Titania, and Oberon. The field of view of the FLI Proline 9000 CCD camera is 12' × 12', which allows us to obtain stars and perform astrometric reduction by Turner's method to determine the satellites' equatorial coordinates. UCAC2 is used as a reference catalogue. The equatorial coordinates are compared with the GUST 06 theory. The average accuracy of normal places is 0.030″-0.040″ in right ascension and declination. The positions of the satellites and their theoretical uranocentric coordinates by GUST 06 are used to calculate the equatorial coordinates of Uranus. The positions of Uranus are compared with the INPOP10 planetary theory. The paper also presents the satellites' differential coordinates relative to one another.

  19. Astrometric observations of visual binaries using 26-inch refractor during 2007-2014 at Pulkovo

    NASA Astrophysics Data System (ADS)

    Izmailov, I. S.; Roshchina, E. A.

    2016-04-01

    We present the results of 15184 astrometric observations of 322 visual binaries carried out in 2007-2014 at Pulkovo observatory. In 2007, the 26-inch refractor ( F = 10413 mm, D = 65 cm) was equipped with the CCD camera FLI ProLine 09000 (FOV 12' × 12', 3056 × 3056 pixels, 0.238 arcsec pixel-1). Telescope automation and weather monitoring system installation allowed us to increase the number of observations significantly. Visual binary and multiple systems with an angular distance in the interval 1."1-78."6 with 7."3 on average were included in the observing program. The results were studied in detail for systematic errors using calibration star pairs. There was no detected dependence of errors on temperature, pressure, and hour angle. The dependence of the 26-inch refractor's scale on temperature was taken into account in calculations. The accuracy of measurement of a single CCD image is in the range of 0."0005 to 0."289, 0."021 on average along both coordinates. Mean errors in annual average values of angular distance and position angle are equal to 0."005 and 0.°04 respectively. The results are available here http://izmccd.puldb.ru/vds.htmand in the Strasbourg Astronomical Data Center (CDS). In the catalog, the separations and position angles per night of observation and annual average as well as errors for all the values and standard deviations of a single observation are presented. We present the results of comparison of 50 pairs of stars with known orbital solutions with ephemerides.

  20. Speckle observations with PISCO in Merate: IV. Astrometric measurements of visual binaries in 2005

    NASA Astrophysics Data System (ADS)

    Scardia, M.; Prieur, J.-L.; Pansecchi, L.; Argyle, R. W.; Sala, M.; Basso, S.; Ghigo, M.; Koechlin, L.; Aristidi, E.

    2008-01-01

    We present relative astrometric measurements of visual binaries made during the second semester of 2005, with the speckle camera PISCO at the 102 cm Zeiss telescope of Brera Astronomical Observatory, in Merate. Our sample contains orbital couples as well as binaries whose motion is still uncertain. The purpose of this long term program is to improve the accuracy of the orbits and determine the masses of the components.\\ We performed 130 new observations of 120 objects, with most of the angular separations in the range 0\\farcs1-4\\arcsec, and with an average accuracy of 0\\farcs01. Most of the position angles could be determined without the usual 180° ambiguity with the application of triple-correlation techniques, and their mean error is 0\\fdg8. We have found a possible new triple system: ADS 11077. škip0.15cm The measurements of the closest binaries were made with a new data reduction procedure, based on model fitting of the background of the auto-correlations. As this procedure proved to be very efficient, we have re-processed the old observations of close binaries made with PISCO in Merate since 2004. We thus improved 20 measurements already published and obtained 7 new measurements for observations that were previously reported as ``unresolved".\\ We finally present revised orbits for ADS 684, MCA 55Aac (in the Beta 1 Cyg-Albireo multiple system) and ADS 14783 for which the previously published orbits led to large residuals with our measurements and for which the new observations made since their computation allowed a significant improvement of those old orbits. The sum of the masses that we derived for those systems are consistent with the spectral type of the stars and the dynamic parallaxes are in good agreement with the parallaxes measured by Hipparcos.

  1. Cassini ISS astrometric observations of the inner jovian satellites, Amalthea and Thebe

    NASA Astrophysics Data System (ADS)

    Cooper, N. J.; Murray, C. D.; Porco, C. C.; Spitale, J. N.

    2006-03-01

    We present a total of 289 new astrometric observations of the inner jovian satellites, Amalthea and Thebe, obtained using the Cassini ISS narrow angle camera. Observations were made using image sequences from 2000 December 11-12 (inbound) and 2001 January 15-16 (outbound), at phase angles of approximately 2° and 122°, respectively. Target distances were of order 284 RJ, giving a maximum resolution of approximately 100 km/pixel. Centroided line and sample values for 239 observations of Amalthea and 50 of Thebe are provided, together with estimated camera pointing information for each image. Orbit fitting using a uniformly precessing Keplerian ellipse model, taking into account the oblateness of Jupiter up to terms in J6, gave RMS fit residuals of 0.364 and 0.443 pixel for Amalthea and Thebe, respectively (equivalent to 0.450 and 0.547 arcsec). RMS residuals relative to the JPL JUP230 ephemeris were 0.306 and 0.604 pixel (equivalent to 0.378 and 0.746 arcsec), for Amalthea and Thebe. The fitted orbital parameters confirm the relatively high inclinations of these satellites ( 0.374°±0.002° and 1.076°±0.003°, respectively), equivalent to maximum vertical displacements above Jupiter's equatorial plane of 1188±6 and 4240±12 km, respectively, consistent with current estimates of the half-thicknesses of the Amalthea and Thebe gossamer rings [Ockert-Bell, M.E., Burns, J.A., Dauber, I.J., Thomas, P.C., Veverka, J., Belton, M.J.S., Klaasen, K.P., 1999. Icarus 138, 188-213].

  2. Astrometric observations of the satellites of Saturn during 1975-1976

    NASA Technical Reports Server (NTRS)

    Mulholland, J. D.; Shelus, P. J.

    1980-01-01

    Absolute astrometric positions of satellites I-IX of Saturn have been obtained from plates taken with the 2.1-m Otto Struve reflector of the McDonald Observatory during 1975 and 1976. The positions are presented both in absolute celestial coordinates and in intersatellitary relative coordinates.

  3. Development of a radio-astrometric catalog by means of very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Fanselow, J. L.; Sovers, O. J.; Thomas, J. B.; Bletzacker, F. R.; Kearns, T. J.; Cohen, E. J.; Purcell, G. H., Jr.; Rogstad, D. H.; Skjerve, L. J.; Young, L. E.

    1981-01-01

    The Jet Propulsion Laboratory has been developing a radio-astrometric catalogue for use in the application of radio interferometry to interplanetary navigation and geodesy. The catalogue consists of approximately 100 compact extragalactic radio sources whose relative positions have formal uncertainties of the order of 0.01 arcsec. The sources cover nearly all of the celestial sphere above -40 deg declination. By using the optical counterparts of many of these radio sources, this radio reference frame has been tied to the FK4 optical system with a global accuracy of approximately 0.1 arcsec. This paper describes the status of this work.

  4. Astrometric CCD observations of the third and the fourth moons of Uranus with the normal astrograph at the Pulkovo observatory

    NASA Astrophysics Data System (ADS)

    Dement'eva, A. A.

    2015-09-01

    The results of astrometric CCD observations of two major moons of Uranus (Oberon and Titania) with the Normal Astrograph ( D/F = 0.33 m/3.5 m; CCD S2C with a FOV of 18' × 16') at the Pulkovo Observatory are presented. The observations were conducted in 2008-2011. The CCD image reduction is based on the Turner method with a reference to the UCAC3 catalogue system. The (O-C) values are calculated with the use of the MULTI-SAT server for the ephemerides of planetary moons. The obtained equatorial coordinates are compared to two modern theories of planetary motion: INPOP10 + Lainey (2008) and DE421/LE421 + Lainey (2008). The observations agree well with both theories.

  5. Astrometrical observations of Pluto-Charon system with the automated telescopes of Pulkovo observatory

    NASA Astrophysics Data System (ADS)

    Slesarenko, V. Yu.; Bashakova, E. A.; Devyatkin, A. V.

    2016-03-01

    The space probe "New Horizons" was launched on 19th of January 2006 in order to study Pluto and its moons. Spacecraft performed close fly-by to Pluto on 14th of July 2015 and obtained the most detailed images of Pluto and its moon until this moment. At the same time, observation obtained by the ground-based telescopes may also be helpful for the research of such distant system. Thereby, the Laboratory of observational astrometry of Pulkovo Observatory of RAS made a decision to reprocess observations obtained during last decade. More than 350 positional observations of Pluto-Charon system were carried out with the mirror astrograph ZA-320M at Pulkovo and Maksutov telescope MTM-500M near Kislovodsk. These observations were processed by means of software system APEX-II developed in Pulkovo observatory and numerical simulations were performed to calculate the differences between positions of photocenter and barycenter of Pluto-Charon system.

  6. Astrometric CCD observations of the inner Jovian satellites in 1999-2000

    NASA Astrophysics Data System (ADS)

    Kulyk, I.; Jockers, K.; Karpov, N.; Sergeev, A.

    2002-02-01

    This paper presents the results of observations of the inner Jovian satellites Thebe, Amalthea, Adrastea and Metis made in October-November 1999 and in November 2000. We provide Delta alpha and Delta delta of Thebe and Amalthea with respect to the Galilean satellites, while the positions of Adrastea and Metis are referred to either the Galilean moons or to Thebe or to Amalthea. All observed positions are compared with theoretical ones. Residual statistics show an inner accuracy of our observations in the range from about 0.1 to 0.9 arcsec. The dependence of the differences of the observed and calculated positions on the orbital longitude is presented for our observations of Adrastea and Metis.

  7. CCD astrometric observations of Amalthea and Thebe in the Gaia era

    NASA Astrophysics Data System (ADS)

    Robert, V.; Saquet, E.; Colas, F.; Arlot, J.-E.

    2017-01-01

    In the framework of the 2014-2015 campaign of mutual events, we observed Jupiter's inner satellites Amalthea (JV) and Thebe (JXIV). We focused on estimating whether the positioning accuracy determined from direct astrometry could compete with that derived from photometric observations of eclipses, for dynamical purposes. We present the analysis of 35 observations of Amalthea and 19 observations of Thebe realized with the 1-m telescope at Pic du Midi observatory during three nights in 2015, January and April. The images were reduced through an optimal process that includes image and spherical corrections using the Gaia-DR1 catalog to provide the most accurate equatorial (RA, Dec) positions. We compared the observed positions of both satellites with the theoretical positions from JPL JUP310 satellite ephemerides and from IMCCE INPOP13c planetary ephemeris. The rms (O-C) in equatorial positions are ±112 mas for the Amalthea observations, or 330 km at Jupiter, and ±90 mas for the Thebe observations, or 270 km at Jupiter. Using the Gaia-DR1 catalog allowed us to eliminate systematic errors due to the star references up to 120 mas, or 350 km at Jupiter, by comparison with the UCAC4 catalog.

  8. Astrometric observations of Phobos and Deimos during solar transits imaged by the Curiosity Mastcam

    NASA Astrophysics Data System (ADS)

    Lemmon, Mark; Bell, James; Malin, Michael; Bean, Keri; Wolff, Michael; Vasavada, Ashwin; Martin-Torres, F. Javier; Paz Zorzano-Mier, Maria; MSL Science Team

    2013-04-01

    Precise observations of the positions of the Martian moons can be used to refine knowledge of their orbits, allowing measurement of the rate at which their orbits evolve. Three transit events were targeted with the MSL Mastcam: sol (Martian day) 37 and 42 for Phobos, and 42 for Deimos. Observations were designed to take a large number of video frames with each camera. Observations were processed to determine the relative position of the satellite and the Sun through the transit. Comparison of the observations to the JPL Horizons ephemeris predictions results in Phobos arriving at the predicted time to within measurement precision, and Deimos arriving 3.0 sec early. Phobos was 3.3 km north of its predicted track, while Deimos was 1.7 km north. Uncertainties and possible systematic errors will be further refined and discussed.

  9. Astrometric observations of the Uranian satellites and a comparison with the theory.

    NASA Astrophysics Data System (ADS)

    Qiao, Rongchuan; Shen, Kaixian; Zhang, Xuefang

    1995-06-01

    The positions of the Uranian satellites from 7 photographic plates obtained with 1.0 m RCC telescope at the Yunnan Astronomical Observatory during the 1990 oppositions are given. These positions were compared with those calculated theoretically. The standard deviations of the observed-minus-calculated residuals referred to Titania are of the order of σα = 0″31, σδ = 0″33 and they are comparable with most of the precise observations found in the literature.

  10. Astrometric observations of Hevelius and derived values of ΔT (dynamical time - universal time).

    NASA Astrophysics Data System (ADS)

    Wünsch, J.

    About 1500 meridian altitudes of the Sun observed by Johannes Hevelius (1611 - 1687) at Danzig in the years 1652 - 1679 and about 1160 distances of fixed stars from the lunar limb obtained in 1658 - 1679 as well as 48 occultations of stars by the Moon were analyzed with the aim to obtain a value of the time difference ΔT = ET - UT between ephemeris time and universal time for the period of Hevelius' observations. This time difference is a measure of the "clock error" of the rotation of the Earth, caused mainly by secular deceleration due to tidal friction.

  11. A new astrometric measurement and reduction of USNO photographic observations of Phobos and Deimos: 1967-1997

    NASA Astrophysics Data System (ADS)

    Robert, V.; Lainey, V.; Pascu, D.; Pasewaldt, A.; Arlot, J.-E.; De Cuyper, J.-P.; Dehant, V.; Thuillot, W.

    2015-10-01

    Context. Accurate positional measurements of planets and satellites are used to improve our knowledge of both their orbits and their dynamics and to infer the accuracy of the planet and satellite ephemerides. Aims: In the framework of the European FP7 ESPaCE program, we provide the positions of Mars, Phobos, and Deimos taken with the US Naval Observatory 61-inch astrometric reflector and 26-inch refractor from 1967 to 1997. Methods: Four hundred twenty five astrophotographic plates were measured with the digitizer of the Royal Observatory of Belgium and reduced through an optimal process that includes image, instrumental, and spherical corrections using the UCAC4 catalog to provide the most accurate equatorial (RA, Dec) positions. Results: We compared the observed positions of the planet Mars and its satellites with the theoretical positions from INPOP13c and DE430 planetary ephemerides and from NOE MarsSatV10 and MAR097 satellite ephemerides. The rms residuals in RA and Dec of one position are less than 62 mas or about 20 km at the opposition of Mars. The rms intersatellite residuals in RA and Dec of one position are less than 40 mas or about 13 km at Mars. This accuracy is comparable to the most recent CCD observations. We also fitted the NOE model to the new computed positions and compared the orbital evolution of Phobos and Deimos with those derived from the same model, but only fitted to spacecraft data. Our results show that astrophotographic plate data can now compete with those of old spacecraft. Full Table 2 and Tables of the XY positions of the satellites and their references are available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A36, and at the Natural Satellites Data Center service of IMCCE via http://www.imcce.fr/nsdc/

  12. A Comparison of the Astrometric Precision and Accuracy of Double Star Observations with Two Telescopes

    NASA Astrophysics Data System (ADS)

    Alvarez, Pablo; Fishbein, Amos E.; Hyland, Michael W.; Kight, Cheyne L.; Lopez, Hairold; Navarro, Tanya; Rosas, Carlos A.; Schachter, Aubrey E.; Summers, Molly A.; Weise, Eric D.; Hoffman, Megan A.; Mires, Robert C.; Johnson, Jolyon M.; Genet, Russell M.; White, Robin

    2009-01-01

    Using a manual Meade 6" Newtonian telescope and a computerized Meade 10" Schmidt-Cassegrain telescope, students from Arroyo Grande High School measured the well-known separation and position angle of the bright visual double star Albireo. The precision and accuracy of the observations from the two telescopes were compared to each other and to published values of Albireo taken as the standard. It was hypothesized that the larger, computerized telescope would be both more precise and more accurate.

  13. Astrometric observations of the faint satellites of Jupiter and minor planets, 1974-1977

    NASA Technical Reports Server (NTRS)

    Benedict, G. R.; Shelus, P. J.; Mulholland, J. D.

    1978-01-01

    Precise positions of the faint satellites VI-XII of Jupiter during the 1974 opposition, and for Jupiter XIII during the 1976-1977 and 1977-1978 oppositions, have been obtained from plates taken with the 2.1-m Otto Struve reflector of the McDonald Observatory by the use of a new quasi-automatic plate measurement and reduction procedure on a PDS microdensitometer. Observations of selected asteroids, including two of 1977 UB (Chiron) are given also.

  14. Astrometric Observations of Phobos and Deimos During the 1971 Opposition of Mars

    DTIC Science & Technology

    2014-10-06

    opposition of Mars V. Robert1,2, V. Lainey1, D. Pascu3,?, J.-E. Arlot1, J.-P. De Cuyper4, V. Dehant4, and W. Thuillot1 1 Institut de Mécanique Céleste et de...dynamics and to infer the accuracy of planet and satellite ephemerides. Aims. In the framework of the FP7 ESPaCE project, we provide the positions of Mars ...corrections to provide the most accurate data. Results. We compared the observed positions of the planet Mars and its satellites with the theoretical

  15. Astrometric observations of Saturn's satellites from McDonald Observatory, 1972. [using reference stars

    NASA Technical Reports Server (NTRS)

    Abbot, R. I.; Mulholland, J. D.; Shelus, P. J.

    1974-01-01

    Observations of Saturn's satellites were reduced by means of secondary reference stars obtained by reduction of Palomar Sky Survey (PSS) plates. This involved the use of 39 SAO stars and plate overlap technique to determine the coordinates of 59 fainter stars in the satellite field. Fourteen plate constants were determined for each of the two PSS plates. Comparison of two plate measurement and reduction techniques on the satellite measurements demonstrate the existence of a serious background gradient effect and the utility of microdensitometry to eliminate this error source in positional determinations of close satellites.

  16. Astrometric observations of the main Uranian satellites at the Pulkovo Observatory in 2007-2016

    NASA Astrophysics Data System (ADS)

    Ershova, A. P.; Roshchina, E. A.; Izmailov, I. S.

    2016-12-01

    In this paper we present the results of the observations of the Uranian satellites made with the 26-in. refractor at the Pulkovo Observatory in 2007-2016. Almost 7000 CCD frames were analyzed and reduced using the UCAC4 catalog. Coordinates of Uranus were determined indirectly using the satellite positions and their ephemeris relative to the planet. The (O-C) differences were calculated for each object using the INPOP13c planetary theory and Lainey's theory of the satellites' motion. The positioning accuracy is better than 0.5 arcsec. The mean values of (O-C) do not exceed 0 ″ .1 in RA and DEC correspondingly (Ariel: 0 ″ .043 and - 0 ″ .074 ; Umbriel: 0 . ″ 025 and - 0 . ″ 069 ; Titania: - 0 . ″ 009 and - 0 . ″ 014 ; Oberon: - 0 . ″ 001 and - 0 ″ .019 ; Uranus: 0 . ″ 002 and - 0 . ″ 016). They are in a good agreement with the ephemeris.

  17. The fields of reference stars for optical positional observations of astrometric extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Dement'eva, A. A.; Ryl'Kov, V. P.

    The Pulkovo programme (Pul ERS) and the techniques used to create a catalogue of coordinates and magnitudes for more than 7000 faint stars in 73 small fields around extragalactic radiosources (ERS) are described. Accurate positions of stars in the fields around ERS 2200+420 and ERS 2021+614 are given. The catalogue containing 223 stars is presented. The errors of coordinate reductions in the system of reference stars from the CMC catalogue are found to be 1.5-2.0 times smaller than for those in the system of the PPM catalogue. This programme (Pul ERS) is required for quick identification of the extragalactic radio sources and for obtaining their characteristics from observations with large telescopes and CCD detectors.

  18. Astrometric follow-up observations of directly imaged sub-stellar companions to young stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Ginski, C.; Schmidt, T. O. B.; Mugrauer, M.; Neuhäuser, R.; Vogt, N.; Errmann, R.; Berndt, A.

    2014-11-01

    The formation of massive planetary or brown dwarf companions at large projected separations from their host star is not yet well understood. In order to put constraints on formation scenarios, we search for signatures in the orbit dynamics of the systems. We are specifically interested in the eccentricities and inclinations since those parameters might tell us about the dynamic history of the systems and where to look for additional low-mass sub-stellar companions. For this purpose, we utilized VLT/NACO to take several well-calibrated high-resolution images of six target systems and analyse them together with available literature data points of those systems as well as Hubble Space Telescope archival data. We used a statistical least-squares Monte Carlo approach to constrain the orbit elements of all systems that showed significant differential motion of the primary star and companion. We show for the first time that the GQ Lup system shows significant change in both separation and position angle. Our analysis yields best-fitting orbits for this system, which are eccentric (e between 0.21 and 0.69), but cannot rule out circular orbits at high inclinations. Given our astrometry, we discuss formation scenarios of the GQ Lup system. In addition, we detected an even fainter new companion candidate to GQ Lup, which is most likely a background object. We also updated the orbit constraints of the PZ Tel system, confirming that the companion is on a highly eccentric orbit with e > 0.62. Finally, we show with a high significance, that there is no orbital motion observed in the cases of the DH Tau, HD 203030 and 1RXS J160929.1-210524 systems, and give the most precise relative astrometric measurement of the UScoCTIO 108 system to date.

  19. BINARY ASTROMETRIC MICROLENSING WITH GAIA

    SciTech Connect

    Sajadian, Sedighe

    2015-04-15

    We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth due to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.

  20. Astrometric Binaries: White Dwarfs?

    NASA Astrophysics Data System (ADS)

    Oliversen, Nancy A.

    We propose to observe a selection of astrometric or spectroscopicastrometric binaries nearer than about 20 pc with unseen low mass companions. Systems of this type are important for determining the luminosity function of low mass stars (white dwarfs and very late main sequence M stars), and their contribution to the total mass of the galaxy. Systems of this type are also important because the low mass, invisible companions are potential candidates in the search for planets. Our target list is selected primarily from the list of 31 astrometric binaries near the sun by Lippincott (1978, Space Sci. Rev., 22, 153), with additional candidates from recent observations by Kamper. The elimination of stars with previous IUE observations, red companions resolved by infrared speckle interferometry, or primaries later than M1 (because if white dwarf companions are present they should have been detected in the visible region) reduces the list to 5 targets which need further information. IUE SWP low dispersion observations of these targets will show clearly whether the remaining unseen companions are white dwarfs, thus eliminating very cool main sequence stars or planets. This is also important in providing complete statistical information about the nearest stars. The discovery of a white dwarf in such a nearby system would provide important additional information about the masses of white dwarfs. Recent results by Greenstein (1986, A. J., 92, 859) from binary systems containing white dwarfs imply that 80% of such systems are as yet undetected. The preference of binaries for companions of approximately equal mass makes the Lippincott-Kamper list of A through K primaries with unseen companions a good one to use to search for white dwarfs. The mass and light dominance of the current primary over the white dwarf in the visible makes ultraviolet observations essential to obtain an accurate census of white dwarf binaries.

  1. An Astrometric Analysis of eta Carinae’s Eruptive History Using HST WF/PC2 and ACS Observations

    DTIC Science & Technology

    2007-07-11

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Naval Observatory,Dr. Bryan Dorland,Chief, Astrometric Satellite Division,Washington,DC,20392 8...4 1.3 η Car’s Historical Lightcurve . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 η Car’s Historical Lightcurve during the Great Eruption...not be the case. 5 Figure 1.3: The historical lightcurve of η Car, taken from [Frew(2004)]. V-band magnitude is shown as a function of time. The major

  2. Influence of precision inertial systems on astronomical observations

    NASA Technical Reports Server (NTRS)

    Ouellette, G. A.; Gilmore, J. P.; Nurre, G. S.

    1974-01-01

    The incorporation of precision inertial control on LST could exert a strong influence on the philosophy of and techniques for carrying out astronomical observations. In conjunction with a fine guidance star sensor, the inertial reference unit (IRU) described herein could easily expand LST capability to include observations such as (1) tracking of solar system objects, including specific points of interest on the planets; (2) rapid repositioning of scanning sensors on distributed objects such as nebulae and galaxies; (3) carrying out unified star catalog measurements to eliminate the overlap problem which exists in all ground procedures; and (4) carrying out various astrometric measurements with 'real time' data reduction capability.

  3. ASTROMETRIC REVERBERATION MAPPING

    SciTech Connect

    Shen Yue

    2012-10-01

    Spatially extended emission regions of active galactic nuclei respond to continuum variations, if such emission regions are powered by energy reprocessing of the continuum. The response from different parts of the reverberating region arrives at different times lagging behind the continuum variation. The lags can be used to map the geometry and kinematics of the emission region (i.e., reverberation mapping, RM). If the extended emission region is not spherically symmetric in configuration and velocity space, reverberation may produce astrometric offsets in the emission region photocenter as a function of time delay and velocity, detectable with future {mu}as to tens of {mu}as astrometry. Such astrometric responses provide independent constraints on the geometric and kinematic structure of the extended emission region, complementary to traditional RM. In addition, astrometric RM is more sensitive to infer the inclination of a flattened geometry and the rotation angle of the extended emission region.

  4. Satellite Tracking Astrometric Network (STAN)

    NASA Astrophysics Data System (ADS)

    Vecchiato, Alberto; Gai, Mario

    2015-08-01

    The possibility of precise orbit tracking and determination of different types of satellites has been explored for at least some 25 years (Arimoto et al., 1990). Proposals in this sense made use mainly of astrometric observations, but multiple tracking techniques combining transfer and laser ranging was also suggested (Guo et al., 2009; Montojo et al., 2011), with different requirements and performances ranging from $\\sim100$~m to tenths of meters.In this work we explore the possible improvements and a novel implementation of a technique relying on large angle, high precision astrometry from ground for the determination of satellite orbits. The concept is based on combined observation of geostationary satellites and other near-Earth space objects from two or more telescopes, applying the triangulation principle over widely separated regions of the sky. An accuracy of a few $10^{-2}$~m can be attained with 1-meter-class telescopes and a field of vied of some arcminutes.We discuss the feasibility of the technique, some of the implementation aspects, and the limitations imposed by atmospheric turbulence. The potential benefits for satellite orbit control and navigation systems are presented, depending on the number and position of the contributing telescopes.We also discuss the possibility that, by reversing the roles of stars and satellites, the same kind of observations can be used for verification and maintenance of astrometric catalogs.

  5. Breakthrough in orbit determination of a binary. - In expectation of astrometric observations with high precision such as VERA and JASMINE -

    NASA Astrophysics Data System (ADS)

    Asada, Hideki

    2006-11-01

    There exists a very classical inverse problem regarding orbit determination of a binary system: "when an orbital plane of two bodies is inclined with respect to the line of sight, observables are their positions projected onto a celestial sphere. How do we determine the orbital elements from observations?" A "complete exact solution" has been found. It is reviewed with some related topics.

  6. New astrometric measurement and reduction of USNO photographic observations of the main Saturnian satellites: 1974-1998

    NASA Astrophysics Data System (ADS)

    Robert, V.; Pascu, D.; Lainey, V.; Arlot, J.-E.; De Cuyper, J.-P.; Dehant, V.; Thuillot, W.

    2016-11-01

    Context. Accurate positional measurements of planets and satellites are used to improve our knowledge of their orbits and dynamics, and to infer the accuracy of the planet and satellite ephemerides. Aims: In the framework of the European FP7 ESPaCE program, we provide the positions of Saturn and its main satellites taken with the US Naval Observatory 26-inch refractor from 1974 to 1998. Methods: We measured 526 astrophotographic plates with the digitizer of the Royal Observatory of Belgium and reduced them through an optimal process that includes image, instrumental, and spherical corrections using the UCAC4 catalog to provide the most accurate equatorial (RA, Dec) positions. Results: We compared the observed positions of the satellites with the theoretical positions from INPOP13c and DE432 planetary ephemerides and from NOE-6-2015-SAT and SAT375 satellite ephemerides. The mean post-fit rms residuals in equatorial positions range from ±68 mas for the Titan observations or 400 km at Saturn, to ±100 mas for the Hyperion observations or 600 km at Saturn. The mean post-fit rms intersatellite residuals range from ±46 mas for the Rhea-Titan observations or 280 km at Saturn, to ±72 mas for the Hyperion-Titan observations or 430 km at Saturn. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A37 , at the Natural Satellites DataBase and Natural Satellites Data Center services of IMCCE via http://nsdb.imcce.fr/ or http://www.imcce.fr/nsdc/

  7. White Dwarfs in Astrometric Binaries?

    NASA Astrophysics Data System (ADS)

    Oliversen, N. A.; Evans, N. R.; Feibelman, W. A.; Kamper, K. W.

    1993-12-01

    Lippincott (1978, Space Sci Rev, 22, 153) compiled a list of astrometric binaries with unseen companions typically within 20 pc of the sun. Red companions have been observed in a number of these systems (e.g. McCarthy, D. W. 1983, IAU Coll. # 76, p. 107). Unseen, low mass companions could also be white dwarfs. We have obtained IUE observations of stars on the list which have primaries with spectral types M1 or earlier (white dwarf companions of cooler primaries could be detected from the ground), and are brighter than 10 mag, which do not have known red companions. Preliminary reductions (comparison with standard stars of appropriate spectral types) indicate that there are no white dwarfs in the sample. Further processing is being done to determine limits on possible white dwarf temperatures.

  8. The SIM Lite Astrometric Observatory

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.

    2009-05-01

    SIM Lite is an observatory mission dedicated to precision astrometry. With a single measurement accuracy of 1 microarcsecond (µas) and a noise floor below 0.035 µas it will have the capability to do an extensive search for Earth-mass planets in the `habitable zone’ around several dozen of the nearest stars. SIM Lite maintains its wide-angle accuracy of 4 µas for all targets down to V = 19, limited only by observing time. This opens up a wide array of astrophysical problems. As a flexibly pointed instrument, it is a natural complement to sky surveys such as JMAPS and Gaia, and will tackle questions that don't require the acquisition of statistics on a large number of targets. It will provide accurate masses for the first time for a variety of exotic star types, including X-ray binaries; it will study the structure and evolution of our Galaxy through tidal streams from dwarf spheroidals and the trajectories of halo stars and galaxies. Its faint-target capability will enable the use of astrometric and photometric variability as a probe of the disk accretion and jet formation processes in blazars. SIM Lite will have an extensive GO (General Observer) program, open to all categories of astrometric science. The project successfully completed a series of technology milestones in 2005, and is currently under study by by NASA as a flight mission. The research described in this talk was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  9. The Concept of a Stare-Mode Astrometric Space Mission

    DTIC Science & Technology

    2006-10-12

    observations, which is im- portant for some science goals, such as detecting extrasolar planets . The achievable astrometric mission precisions are...ing with instrumental effects, and attitude control). In addition, for many applications (parallaxes, planet detections), the one- dimensional

  10. Astrometric "Core-shifts" at the Highest Frequencies

    NASA Technical Reports Server (NTRS)

    Rioja, Maria; Dodson, Richard

    2010-01-01

    We discuss the application of a new VLBI astrometric method named "Source/Frequency Phase Referencing" to measurements of "core-shifts" in radio sources used for geodetic observations. We detail the reasons that astrometrical observations of 'core-shifts' have become critical in the era of VLBI2010. We detail how this new method allows the problem to be addressed at the highest frequencies and outline its superior compensation of tropospheric errors.

  11. Optical Characteristics of Astrometric Radio Sources OCARS

    NASA Astrophysics Data System (ADS)

    Malkin, Z.

    2013-04-01

    In this paper, the current status of the catalog of Optical Characteristics of Astrometric Radio Sources OCARS is presented. The catalog includes radio sources observed in various astrometric and geodetic VLBI programs in 1979-2012. For these sources the physical object type, redshift and visual or infrared magnitude is given when available. Detailed comments are provided when some problems with published data were encountered. Since the first version created in December 2007, the catalog is continuously developed and expanded in respect to inclusion of new radio sources and addition of new or correction of old astrophysical data. Several sources of information are used for OCARS. The main of them are the NASA/IPAC Extragalactic Database (NED) and SIMBAD astronomical databases. Besides several astronomical journals and arXiv depository are regularly monitored, so that new data is included in OCARS just after publication. The redshift for about 150 sources have been determined from dedicated optical spectroscopic observations. As of October 2012, OCARS catalog includes 7173 radio sources. 3898 sources have known redshift, and 4860 sources have known magnitude. In 2009, it was used as a supplement material to the ICRF2. The list of radio sources with a good observational history but lacking astrophysical information is provide for planning of optical observations of the most important astrometric sources. The OCARS catalog is updated, in average every several weeks and is available at http://www.gao.spb.ru/english/as/ac_vlbi/ocars.txt.

  12. Astrometric exoplanet surveys in practice

    NASA Astrophysics Data System (ADS)

    Sahlmann, Johannes

    2016-10-01

    Conversely to the transit photometry and radial velocity methods, the astrometric discovery of exoplanets is still limited by the sensitivity of available instruments. Ground-based surveys are now sensitive to giant planets in orbit around nearby low-mass stars and brown dwarfs. In 2014, ESA's Gaia mission began its survey, which is expected to discover thousands of giant exoplanets by detecting the astrometric orbital motions of the host stars.

  13. COMPANIONS TO NEARBY STARS WITH ASTROMETRIC ACCELERATION. II

    SciTech Connect

    Tokovinin, Andrei; Hartung, Markus; Hayward, Thomas L. E-mail: mhartung@gemini.edu

    2013-07-01

    Hipparcos astrometric binaries were observed with the NICI adaptive optics system at Gemini-S, completing the work of Paper I. Among the 65 F, G, and K dwarfs within 67 pc of the Sun studied here, we resolve 18 new subarcsecond companions, remeasure 7 known astrometric pairs, and establish the physical nature of yet another 3 wider companions. The 107 astrometric binaries targeted at Gemini so far have 38 resolved companions with separations under 3''. Modeling shows that bright enough companions with separations on the order of an arcsecond can perturb the Hipparcos astrometry when they are not accounted for in the data reduction. However, the resulting bias of parallax and proper motion is generally below formal errors and such companions cannot produce fake acceleration. This work contributes to the multiplicity statistics of nearby dwarfs by bridging the gap between spectroscopic and visual binaries and by providing estimates of periods and mass ratios for many astrometric binaries.

  14. Astrometric solar system anomalies

    SciTech Connect

    Nieto, Michael Martin; Anderson, John D

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  15. AGP (Astrometric Gravitation Probe) optical design report

    NASA Astrophysics Data System (ADS)

    Riva, Alberto; Gai, Mario; Landini, Federico; Lazzarini, Paolo; Gallieni, Daniele; Tintori, Matteo; Anselmi, Alberto; Cesare, Stefano; Busonero, Deborah; Lattanzi, Mario Gilberto; Vecchiato, Alberto

    2016-08-01

    This paper describes the current opto-mechanical design of AGP, a mission designed for astrometric verification of General Relativity (GR) and competing gravitation theories by means of precise determination of light deflection on field stars, and of orbital parameters of selected Solar System objects. The optical concept includes a planar rear-view mirror for simultaneous imaging on the CCD mosaic detector of fields of view also from the direction opposite to the Sun, affected by negligible deflection, for the sake of real time calibration. The precision of astrometric measurements on individual stars will be of order of 1 mas, over two fields separated by few degrees around the Sun and observed simultaneously. We describe the optical design characteristics, with particular reference to manufacturing and tolerancing aspects, evidencing the preservation of very good imaging performance over the range of expected operating conditions.

  16. GAME: Gamma Astrometric Measurement Experiment

    NASA Astrophysics Data System (ADS)

    Gai, Mario; Lattanzi, Mario G.; Ligori, Sebastiano; Vecchiato, Alberto

    2008-07-01

    The GAME mission concept aims at the very precise measurement of the gravitational deflection of light by the Sun, by means of an optimised telescope operating in the visible and launched in orbit on a small class satellite. The targeted precision on the γ parameter of the Parametrised Post-Newtonian formulation of General Relativity is 10-6 or better, i.e. one to two orders of magnitude better than the best currently available results. Such precision is suitable to detect possible deviations from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy. The measurement principle is based on the differential astrometric signature on the stellar positions, i.e., based on the spatial component of the effect rather than the temporal component as in the most recent experiments using radio link delay timing. The observation strategy also allows some additional scientific objectives related to other tests of General Relativity and to the study of exo-planetary field, multiple aperture Fizeau interferometer, observing simultaneously two regions close to the Solar limb. The diluted optics approach is selected for achieving an efficient rejection of the scattered solar radiation, while retaining an acceptable angular resolution on the science targets. We describe the science motivation, the proposed mission profile, the possible payload implementation and the expected performance.

  17. Gaia astrometric data reduction one year into science operations

    NASA Astrophysics Data System (ADS)

    Lammers, Uwe Rainer; Lindegren, Lennart; Hernandez, Jose; Hobbs, David; Bastian, Ulrich; Michalik, Daniel; Klioner, Sergei

    2015-08-01

    The European Space Agency's astrometry satellite Gaia was launched in December 2013 and started its scientific operations in July 2014 after an extended payload commissioning period.We report on the status of the core astrometric data reduction, using the Astrometric Global Iterative Solution (AGIS) and observational data from the first ten months of Gaia science operations. AGIS is a global, simultaneous least-squares estimation of all relevant satellite attitude, payload calibration, and astrometric parameters of selected, well-behaved single stars.After years of testing and validating AGIS with simulation data we now present preliminary results from trial runs with real mission data. These tests give astrometric post-fit residuals at a level commensurate with overall expectations, considering that at this stage of the mission our understanding of the relevant instrumental effects and the behaviour of the very complex payload is still limited.The positive results also indicate that a target date of summer 2016 for a first public release of a Gaia-only astrometric catalogue is feasible. In addition we report on experiments with joint Gaia and Tycho data that allow a useful astrometric solution with less than 1 year of Gaia data.

  18. Progress of astrometric research in Nikolaev Observatory

    NASA Astrophysics Data System (ADS)

    Ivantsov, Anatoliy; Maigurova, Nadia; Martynov, Maxim; Pinigin, Gennadiy

    2012-08-01

    A catalog of astrometric positions and proper motions of 140237 stars in fields of ecliptical zone and high proper motion stars was derived from CCD - observations made at AMC telescope (Nikolaev) in 2008 - 2009. The UCAC2 catalog was used as a reference one for astrometric reductions. The standard error for a single position is 20 - 65 mas in right ascension and 30 - 70 mas in declination. Cross - identification of the obtained data with modern astrometric catalogs such as TYCHO2, 2MASS, CMC14, PPMX, XPM, USNO - A2.0 and XPM - 1.0 was made for investigation systematical errors and calculation of the proper motions [1]. The final catalog contains star positions, proper motions as well as photometric data (B, V, r ´, J, H, K) taken from other catalogs. For analysis of perturbed motion of selected asteroids, there was made astrometric reduction for three thousands of positions of 68 selected asteroids observed at the Russian - Turkish telescope RTT150 in 2008 - 2011 [2]. The research is conducted within the International Joint Project between IMCCE (France), NAO (Ukraine), KFU (Russia), and TUG (Turkey). The reduction was made with the UCAC2 and UCAC3 catalogs. The standard error of a single position is 0.15 arcsec in right ascension and 0.13 arcsec in declination. Also, the first results of astrometric reduction are presented for the observations of selected asteroids made at the AZT8 (Evpatoriya ) and Mobitel (Nikolaev) telescopes. The obtained positions are expected to be used for derivation masses of asteroids by dynamical method. This work is supported by State Agency on Science, Innovation and Information of Ukraine, Russian Foundation for Basic Research. 1. Jin, W., Pinigin, G., Tang, Zh., Shulga, A. (2011). The collaboration between ShAO and NAO: Celebration of the 1 90th anniversary of NAO. Proc. Int. Conf. “Astronomical Research: from near - Earth Space to the Galaxy”, Nikolaev (pp. 92 - 104). 2 . Ivantsov, A., Gumerov, R., Khamitov, I., Aslan, Z

  19. Astrometric exoplanet detection with Gaia

    SciTech Connect

    Perryman, Michael; Hartman, Joel; Bakos, Gáspár Á.; Lindegren, Lennart

    2014-12-10

    We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sample of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the signal-to-noise ratio of the astrometric signature per field crossing, easily reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (±6000) high-mass (∼1-15M {sub J}) long-period planets should be discovered out to distances of ∼500 pc for the nominal 5 yr mission (including at least 1000-1500 around M dwarfs out to 100 pc), rising to some 70,000 (±20, 000) for a 10 yr mission. We indicate some of the expected features of this exoplanet population, amongst them ∼25-50 intermediate-period (P ∼ 2-3 yr) transiting systems.

  20. Gravitation Astrometric Measurement Experiment (GAME)

    NASA Astrophysics Data System (ADS)

    Gai, M.; Vecchiato, A.; Ligori, S.; Riva, A.; Lattanzi, M. G.; Busonero, D.; Fienga, A.; Loreggia, D.; Crosta, M. T.

    2012-07-01

    GAME is a recent concept for a small/medium class mission aimed at Fundamental Physics tests in the Solar system, by means of an optimised instrument in the visible, based on smart combination of coronagraphy and Fizeau interferometry. The targeted precision on the γ and β parameters of the Parametrised Post-Newtonian formulation of General Relativity are respectively in the 10-7-10-8 and 10-5-10-6 range, improving by one or two orders of magnitude with respect to the expectations on current or near future experiments. Such precision is suitable to detect possible deviations from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy from a Solar system scale experiment. The measurement principle is based on the differential astrometric signature on the stellar positions, i.e. based on the spatial component of the effect rather than the temporal component as in the most recent experiments using radio link delay timing variation (Cassini). The instrument concept is based on multiple field, multiple aperture Fizeau interferometry, observing simultaneously regions close to the Solar limb (requiring the adoption of coronagraphic techniques), and others in opposition to the Sun. The diluted optics approach is selected for achieving an efficient rejection of the scattered solar radiation, while retaining an acceptable angular resolution on the science targets. The multiple field observation is aimed at cost-effective control of systematic effects through simultaneous calibration. We describe the science motivation, the proposed mission profile, the instrument concept and the expected performance.

  1. Astrometrically registered simultaneous observations of the 22 GHz H{sub 2}O and 43 GHz SiO masers toward R Leonis Minoris using KVN and source/frequency phase referencing

    SciTech Connect

    Dodson, Richard; Rioja, María J.; Jung, Tae-Hyun; Sohn, Bong-Won; Byun, Do-Young; Cho, Se-Hyung; Lee, Sang-Sung; Kim, Jongsoo; Kim, Kee-Tae; Oh, Chung-Sik; Han, Seog-Tae; Je, Do-Heung; Chung, Moon-Hee; Wi, Seog-Oh; Kang, Jiman; Lee, Jung-Won; Chung, Hyunsoo; Kim, Hyo-Ryoung; Kim, Hyun-Goo; Lee, Chang-Hoon; and others

    2014-11-01

    Oxygen-rich asymptotic giant branch (AGB) stars can be intense emitters of SiO (v = 1 and 2, J = 1 → 0) and H{sub 2}O maser lines at 43 and 22 GHz, respectively. Very long baseline interferometry (VLBI) observations of the maser emission provide a unique tool to probe the innermost layers of the circumstellar envelopes in AGB stars. Nevertheless, the difficulties in achieving astrometrically aligned H{sub 2}O and v = 1 and v = 2 SiO maser maps have traditionally limited the physical constraints that can be placed on the SiO maser pumping mechanism. We present phase-referenced simultaneous spectral-line VLBI images for the SiO v = 1 and v = 2, J = 1 → 0, and H{sub 2}O maser emission around the AGB star R LMi, obtained from the Korean VLBI Network (KVN). The simultaneous multi-channel receivers of the KVN offer great possibilities for astrometry in the frequency domain. With this facility, we have produced images with bona fide absolute astrometric registration between high-frequency maser transitions of different species to provide the positions of the H{sub 2}O maser emission and the center of the SiO maser emission, hence reducing the uncertainty in the proper motions for R LMi by an order of magnitude over that from Hipparcos. This is the first successful demonstration of source frequency phase referencing for millimeter VLBI spectral-line observations and also where the ratio between the frequencies is not an integer.

  2. Forthcoming Occultations of Astrometric Radio Sources by Planets

    NASA Technical Reports Server (NTRS)

    L'vov, Victor; Malkin, Zinovy; Tsekmeister, Svetlana

    2010-01-01

    Astrometric observations of radio source occultations by solar system bodies may be of large interest for testing gravity theories, dynamical astronomy, and planetary physics. In this paper, we present an updated list of the occultations of astrometric radio sources by planets expected in the coming years. Such events, like solar eclipses, generally speaking can only be observed in a limited region. A map of the shadow path is provided for the events that will occurr in regions with several VLBI stations and hence will be the most interesting for radio astronomy experiments.

  3. ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION

    SciTech Connect

    Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.; Pier, Jeffrey R.

    2013-03-15

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  4. Astrometric microlensing with the GAIA satellite

    NASA Astrophysics Data System (ADS)

    Belokurov, V. A.; Evans, N. W.

    2002-04-01

    GAIA is the `super-Hipparcos ' survey satellite selected as a Cornerstone 6 mission by the European Space Agency. GAIA can measure microlensing by the brightening of source stars. For the broad G -band photometer, the all-sky source-averaged photometric optical depth is ~10-7 . There are ~1300 photometric microlensing events for which GAIA will measure at least one data point on the amplified light curve. GAIA can also measure microlensing by the small excursions of the light centroid that occur during events. The all-sky source-averaged astrometric microlensing optical depth is ~2.5×10-5 . Some ~25000 sources will have a significant variation of the centroid shift, together with a closest approach, during the lifetime of the mission. This is not the actual number of events that can be extracted from the GAIA data set, as the false detection rate has not been assessed. A covariance analysis is used to study the propagation of errors and the estimation of parameters from realistic sampling of the GAIA data stream of transits in the along-scan direction during microlensing events. The mass of the lens can be calculated to good accuracy if the lens is nearby so that the angular Einstein radius θ E is large; if the Einstein radius projected on to the observer plane r~ E is approximately an astronomical unit; or if the duration of the astrometric event is long (>~1yr) or the source star is bright . Monte Carlo simulations are used to study the ~2500 events for which the mass can be recovered with an error of <50 per cent. These high-quality events are dominated by disc lenses within a few tens of parsecs and source stars within a few hundred parsecs. We show that the local mass function can be recovered from the high-quality sample to good accuracy. GAIA is the first instrument with the capability of measuring the mass locally in very faint objects such as black holes and very cool white and brown dwarfs. For only ~5 per cent of all astrometric events will GAIA record

  5. IT challenges of Gaia's Astrometric Global Iterative Solution

    NASA Astrophysics Data System (ADS)

    Hernandez-Munoz, Jose Luis; O'Mullane, William

    2015-12-01

    The Astrometric Global Iterative Solution (AGIS) scheme is the key process in the astrometric reduction of the Gaia data. It's main purpose is to generate the astrometic part of the Gaia catalogue in a way that optimally combines all 10^12 available measurements in a globally, self-consistent manner.We will outline the technical design and chosen approaches for the distributed processing infrastructure of AGIS. An important aspect in this is the efficient reading and passing of observation data to the mathematical core algorithms.

  6. UCAC3: Astrometric Reductions

    DTIC Science & Technology

    2010-06-01

    Number of Number of Number of Calibration Frames Survey Frames Minor Planet Frames Pluto Frames CTIO east 1582 5 14 0 0 3 14 0 CTIO west 1583 163460 828...reduction steps to derive corrections to systematic errors. A summary of the CCD observations is given in Table 1. The frames taken along the path of Pluto

  7. On the detection of other planetary systems by astrometric techniques

    NASA Technical Reports Server (NTRS)

    Black, D. C.; Scargle, J. D.

    1982-01-01

    A quantitative method for astrometrically detecting perturbations induced in a star's motion by the presence of a planetary object is described. A periodogram is defined, wherein signals observed from a star show exactly periodic variations, which can be extracted from observational data using purely statistical methods. A detection threshold is defined for the frequency of occurrence of some detectable signal, e.g., the Nyquist frequency. Possible effects of a stellar orbital eccentricity and multiple companions are discussed, noting that assumption of a circular orbit assures the spectral purity of the signal described. The periodogram technique was applied to 12 yr of astrometric data from the U.S. Naval Observatory for three stars with low mass stellar companions. Periodic perturbations were confirmed. A comparison of the accuracy of different astrometric systems shows that the detection accuracy of a system is determined by the measurement accuracy and the number of observations, although the detection efficiency can be maximized by minimizing the number of data points for the case when observational errors are proportional to the square root of the number of data points. It is suggested that a space-based astrometric telescope is best suited to take advantage of the method.

  8. Astrometric aspects of 1980 Indian total solar eclipse.

    NASA Astrophysics Data System (ADS)

    Protitch-Benishek, V.; Arsenijević, J.; Vince, I.; Kubičela, A.; Lazendic, J.

    1997-05-01

    During the total solar eclipse of February 16, 1980, observable from India, besides many kinds of research programs, the sequence of eclipse phases was taken photographically for astrometric purposes. All relevant parameters of this eclipse are derived, including ΔT, Tmax, ΔRS etc.

  9. Gamma Astrometric Measurement Experiment

    NASA Astrophysics Data System (ADS)

    Gai, M.; Lattanzi, M. G.; Ligori, S.; Loreggia, D.; Vecchiato, A.

    GAME aims at the measurement of gravitational deflection of the light by the Sun, by an optimised telescope on board a small class satellite. The targeted precision on the gamma parameter of the Parametrised Post-Newtonian formulation of General Relativity is below 10-6, i.e. one to two orders of magnitude better than the best current results. Such precision is suitable to detect possible deviations from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy. The measurement principle is based on differential astrometry. The observations also allow additional scientific objectives related to tests of General Relativity and to the study of exo-planetary systems. The instrument concept is based on a dual field, multiple aperture Fizeau interferometer, observing simultaneously two regions close to the Solar limb. The diluted optics achieves efficient rejection of the solar radiation, with good angular resolution on the science targets. We describe the science motivation, the proposed mission implementation and the expected performance.

  10. Astrometric Results of NEOs from the Characterization and Astrometric Follow-up Program at Adler Planetarium

    NASA Astrophysics Data System (ADS)

    Nault, Kristie A.; Brucker, Melissa J.; Hammergren, Mark; Gyuk, Geza; Solontoi, Mike R.

    2015-11-01

    We present astrometric results of near-Earth objects (NEOs) targeted in fourth quarter 2014 and in 2015. This is part of Adler Planetarium’s NEO characterization and astrometric follow-up program, which uses the Astrophysical Research Consortium (ARC) 3.5-m telescope at Apache Point Observatory (APO). The program utilizes a 17% share of telescope time, amounting to a total of 500 hours per year. This time is divided up into two hour observing runs approximately every other night for astrometry and frequent half-night runs approximately several times a month for spectroscopy (see poster by M. Hammergren et. al.) and light curve studies (see poster by M. J. Brucker et. al.).Observations were made using Seaver Prototype Imaging Camera (SPIcam), a visible-wavelength, direct imaging CCD camera with 2048 x 2048 pixels and a field of view of 4.78’ x 4.78’. Observations were made using 2 x 2 binning.Special emphasis has been made to focus on the smallest NEOs, particularly around 140m in diameter. Targets were selected based on absolute magnitude (prioritizing for those with H > 25 mag to select small objects) and a 3σ uncertainty less than 400” to ensure that the target is in the FOV. Targets were drawn from the Minor Planet Center (MPC) NEA Observing Planning Aid, the JPL What’s Observable tool, and the Spaceguard priority list and faint NEO list.As of August 2015, we have detected 670 NEOs for astrometric follow-up, on point with our goal of providing astrometry on a thousand NEOs per year. Astrometric calculations were done using the interactive software tool Astrometrica, which is used for data reduction focusing on the minor bodies of the solar system. The program includes automatic reference star identification from new-generation star catalogs, access to the complete MPC database of orbital elements, and automatic moving object detection and identification.This work is based on observations done using the 3.5-m telescope at Apache Point Observatory

  11. Utilizing Astrometric Orbits to Obtain Coronagraphic Images of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Davidson, John M.

    2011-08-01

    We present an approach for utilizing astrometric orbit information to improve the yield of planetary images and spectra from a follow-on direct-detection mission. This approach is based on the notion—strictly hypothetical—that if a particular star could be observed continuously, the instrument would in time observe all portions of the habitable zone so that no planet residing therein could be missed. This strategy could not be implemented in any realistic mission scenario. But if an exoplanet’s orbit is known from astrometric observation, then it may be possible to plan and schedule a sequence of imaging observations that is the equivalent of continuous observation. A series of images—optimally spaced in time—could be recorded to examine contiguous segments of the orbit. In time, all segments would be examined, leading to the inevitable detection of the planet. In this article, we show how astrometric orbit information can be used to construct such a sequence. We apply this methodology to seven stars taken from the target lists of proposed astrometric and direct-detection missions. In addition, we construct this sequence for the Sun-Earth system as it would appear from a distance of 10 pc. In constructing these sequences, we have assumed that the imaging instrument has an inner working angle (IWA) of 75 mas and that the planets are visible whenever they are separated from their host stars by ≥IWA and are in quarter-phase or greater. In addition, we have assumed that the planets orbit at a distance of 1 AU scaled to luminosity and that the inclination of the orbit plane is 60°. For the individual stars in this target pool, we find that the number of observations in this sequence ranges from two to seven, representing the maximum number of observations required to find the planet. The probable number of observations ranges from 1.5 to 3.1. These results suggest that a direct-detection mission using astrometric orbits would find all eight exoplanets in

  12. Astrometric studies of the results of a new reduction of old photographic observations of the Saturnian System based on the comparison with the modern theories of satellite motion

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. P.; Vasil'eva, T. A.; Roshchina, E. A.; Izmailov, I. S.

    2016-11-01

    The paper shows the possibility of increasing the accuracy of the results of photographic observations of Saturn and its moons made in the 1970s and reduced using the old reference star catalogues and semiautomatic measurements. New celestial coordinates of the moons (from the third to the eighth), "satellite minus satellite" relative moon coordinates, and Saturn coordinates by positions of satellites are obtained without measuring its images. The results are stored in the Pulkovo Observatory database on the Solar System bodies and are available online at www.puldb.ru. The efficiency of the reduction method based on digitizing of astronegatives using 21 Mpx Canon digital camera and IZMCCD software is shown. The comparison of new results of old observations with the latest theories of moon motion has revealed a significant increase in satellite positioning accuracy. The investigation of the differences (O-C) of celestial coordinates from satellite positions in their apparent Saturn-centric orbits has revealed a noticeable motion of the differences (O-C) in right ascension depending on their distances from Saturn for all moons.

  13. Finding Free-Floating Black Holes using Astrometric Microlensing

    NASA Astrophysics Data System (ADS)

    Lu, Jessica R.; Ofek, Eran Oded; Sinukoff, Evan; Udalski, Andrzej; Kozlowski, Szymon

    2017-01-01

    Our Galaxy most likely hosts 10-100 million stellar mass black holes. The exact number and mass function of these black holes contains important information regarding our Galaxy's star formation history, stellar mass function, and the fate of very massive stars. However, isolated stellar black holes have yet to be detected. To date, stellar mass black holes have only been definitively detected in binary systems with accreting companions or merging to produce gravitational waves. In principle, the presence of isolated black holes can be inferred from astrometric and photometric signatures produced when they lens light from a background star. We attempt to detect the astrometric lensing signatures of several photometrically identified microlensing events, toward the Galactic Bulge. Long-duration events (t_Einstein > 100 days) were selected as the most likely black hole candidates and were observed using several years of laser-guided adaptive optics observations from the W. M. Keck telescopes. We present results from this search.

  14. Establishing Alpha Oph as a Prototype Rotator: Improved Astrometric Orbit

    DTIC Science & Technology

    2011-01-10

    astrometric characterization of the companion orbit. We also use photometry from these observations to derive a model-based estimate of the companion mass. A...uncertainties. In addition to the dynamically derived masses, we use IJHK photometry to derive a model-based mass for α Oph B, of 0.77 ± 0.05 M...greater abundance of both stellar and planetary mass companions (Kratter et al. 2010, J. Crepp 2010, private communication). However, the multiplicity

  15. The Gamma Astrometric Measurement Experiment (GAME)

    NASA Astrophysics Data System (ADS)

    Gai, Mario; Vecchiato, Alberto; Ligori, Sebastiano; Fineschi, Silvano; Lattanzi, Mario G.

    2009-08-01

    The GAME mission concept is aimed at very precise measurement of the gravitational deflection of light by the Sun, by an optimized telescope in the visible and launched in orbit on a small class satellite. The targeted precision on the γ parameter of the Parametrized Post-Newtonian formulation of General Relativity is 10-6 or better, i.e. one to two orders of magnitude better than the best current results. Such precision is suitable to detect possible deviations from unity value, associated to generalized Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy. The measurement principle is based on differential astrometric signature on the stellar positions, i.e. on the spatial component of the effect rather than the temporal component as in recent experiments using radio link delay timing. Exploiting the observation strategy, it is also possible to target other interesting scientific goals both in the realm of General Relativity and in the observations of extrasolar systems. The instrument is a dual field, multiple aperture Fizeau interferometer, observing simultaneously two regions close to the Solar limb. The diluted optics approach is selected for efficient rejection of the solar radiation, while retaining an acceptable angular resolution on the science targets. We describe the science motivation, the proposed mission profile, the payload concept and the expected performance from recent results.

  16. Astrometric Follow Up of Wide Planetary Candidates

    NASA Astrophysics Data System (ADS)

    Durkan, Stephen; Janson, Markus; Carson, Joseph

    2014-12-01

    The current population of known exoplanets is biased towards close in, short period planets due to the detection rate of transit and radial velocity techniques. However the advancement in direct imaging technologies and image reduction techniques has opened up sensitivity to massive planets at large separations, rapidly expanding the parameter space over which planetary existence and characteristics can be probed. The Spitzer space telescope is ideally suited for the direct imaging of such planets that have peak thermal emission at wavelengths around 4.5 microns. Previous Spitzer data collected under programs 34 and 48 has recently been the subject of a sophisticated principal components analysis reduction technique. This technique has removed stellar PSF to a much greater degree than preceding studies have achieved, the reduced archival Spitzer observations are sensitive to planetary mass companions at a much smaller separations than previously attainable. This reduction technique accompanied by stringent criteria, such as ≥5 sigma significance, realistic visual characteristics and taking into account the predicted spectral energy distribution of Jupiter mass planets, has identified a number of potential planetary companions. These targets must be observed in a 2nd epoch to test for common proper motion to offer a firm confirmation or refutation of the candidate's planetary nature. Here we propose to observe 12 of these targets for which data does not exist in a 2nd epoch to a sufficient degree of sensitivity to recover the potential planetary candidates for astrometric investigation.

  17. Stray light evaluation for the astrometric gravitation probe mission

    NASA Astrophysics Data System (ADS)

    Landini, Federico; Riva, Alberto; Gai, Mario; Baccani, Cristian; Focardi, Mauro; Pancrazzi, Maurizio

    2016-08-01

    The main goal of the Astrometric Gravitation Probe mission is the verification of General Relativity and competing gravitation theories by precise astrometric determination of light deflection, and of orbital parameters of selected Solar System objects. The key element is the coherent combination of a set of 92 circular entrance apertures, each feeding an elementary inverted occulter similar to the one developed for Solar Orbiter/METIS.1 This provides coronagraphic functions over a relevant field of view, in which all stars are observed for astrometric purposes with the full resolution of a 1 m diameter telescope. The telescope primary mirror acts as a beam combiner, feeding the 92 pupils, through the internal optics, toward a single focal plane. The primary mirror is characterized by 92 output apertures, sized according to the entrance pupil and telescope geometry, in order to dump the solar disk light beyond the instrument. The astronomical objects are much fainter than the solar disk, which is angularly close to the inner field of view of the telescope. The stray light as generated by the diffraction of the solar disk at the edges of the 92 apertures defines the limiting magnitude of observable stars. In particular, the stray light due to the diffraction from the pupil apertures is scattered by the telescope optics and follows the same optical path of the astronomical objects; it is a contribution that cannot be eliminated and must therefore be carefully evaluated. This paper describes the preliminary evaluation of this stray light contribution.

  18. Metrology for AGP - Astrometric Gravitation Probe

    NASA Astrophysics Data System (ADS)

    Gai, Mario; et al.

    2015-08-01

    The Astrometric Gravitation Probe (AGP) is a concept of space mission aimed at tests of Fundamental Physics in the Solar system, using Fizeau interferometry and coronagraphy techniques to implement differential astrometry among superposed stellar fields. The main goal is verification of the General Relativity (GR) and competing gravitation theories in the weak field of the Solar System by high precision measurement of the light deflection in the vicinity of the Sun at < 10-7 and of the main and minor planet dynamics at the microarcsec/year level. The AGP payload concept is based on a single main telescope (1.15 m diameter) implementing a multi-aperture Fizeau interferometer, for simultaneous observation of four regions close to the Solar limb and in opposition; coronagraphic techniques are applied on the elementary sub-apertures. The star displacement due to light deflection is derived by differential astrometry on images taken in different deflection conditions (e.g. ON and OFF). The instrument design is focused on systematic error control through multiple field simultaneous observation and calibration. The metrology system requirements related to the science goals are discussed, and the technical aspects of possible implementations are investigated. The potential benefit of auto-collimation and cophasing techniques derives from monitoring comparably large sections of the optical system common to the stellar beams. The performance at microarcsec level is verified by simulation.

  19. Astrometric Solar-System Anomalies

    NASA Astrophysics Data System (ADS)

    Anderson, John D.

    2009-05-01

    There are four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it experiences a gain in total orbital energy per unit mass (Anderson et al., Phys. Rev. Lett. 100, 091102). This amounts to a net velocity increase of 13.5 mm/s for the NEAR spacecraft at a closest approach of 539 km, 3.9 mm/s for the Galileo spacecraft at 960 km, and 1.8 mm/s for the Rosetta spacecraft at 1956 km. Next, I suggest the change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm/yr (Krasinsky and Brumberg, Celes. Mech. & Dynam. Astron. 90, 267). The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions (Anderson et al., Phys. Rev. D 65, 082004). Some, including me, are convinced this effect is of concern, but many are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported increase that is about three times larger than expected (J. G. Williams, DDA/AAS Brouwer Award Lecture, Halifax, Nova Scotia 2006). We suspect that all four anomalies have mundane explanations. However, the possibility that they will be explained by a new theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation of the excess precession of Mercury's perihelion.

  20. A Model for Astrometric Detection and Characterization of Multi-Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    April Thompson, Maggie; Spergel, David N.

    2017-01-01

    In this thesis, we develop an approximate linear model of stellar motion in multi- planet systems as an aid to observers using the astrometric method to detect and characterize exoplanets. Recent and near-term advances in satellite and ground-based instruments are on the threshold of achieving sufficient (~10 micro-arcsecond) angular accuracies to allow astronomers to measure and analyze the transverse mo- tion of stars about the common barycenter in single- and multi-planet systems due to the gravitational influence of companion planets. Given the emerging statistics of extrasolar planetary systems and the long observation periods required to assess exoplanet influences, astronomers should find an approximate technique for preliminary estimates of multiple planet numbers, masses and orbital parameters useful in determining the most likely stellar systems for follow-up studies. In this paper, we briefly review the history of astrometry and discuss its advantages and limitations in exoplanet research. In addition, we define the principal astrometric signature and describe the main variables affecting it, highlighting astrometry’s complementary role to radial velocity and photometric transit exoplanet detection techniques. We develop and test a Python computer code using actual data and projections of the Sun’s motion due to the influence of the four gas giants in the solar system. We then apply this model to over 50 hypothetical massive two- and three-exoplanet systems to discover useful general patterns by employing a heuristic examination of key aspects of the host star’s motion over long observation intervals. Finally, we modify the code by incorporating an inverse least-squares fit program to assess its efficiency in identifying the main characteristics of multi-planet systems based on observational records over 5-, 10- and 20-year periods for a variety of actual and hypothetical exoplanetary systems. We also explore the method’s sensitivity to

  1. The Astrometric Model Implementation. Simulations and Data Reduction Compatibility Test

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, G.; Torra, J.; Masana, E.; Luri, X.

    2005-01-01

    The aim of this paper is to give a brief description of the astrometric model accuracy at the current stage of the implementation in GASS (simulator) and GDAAS2 (Data Reduction study). The astrometric model described is a set of algorithms which relate the astrometric parameters with the observed directions on the satellite quasi-intertial reference frame. This includes the kinematics of point sources, the relativistic light deflection due to Solar System gravitational field and the aberration. The description of this model was given by Klioner (2002), The form of these algorithms is slightly different in the telemetry simulations (S.A. Klioner, ANSI-C code) and in the data reduction scheme (Lindegren 2002, Fortran90). Both versions make use of the ephemeris for the Solar System by Observatoire de la Côte d'Azur (Mignard 2003, Fortran 90). All these algorithms have been wrapped or recoded since the simulations and data reduction both run in a Java environment. All these manipulations required a strict verification since these algorithms constitute the core of the GIS (Global Iterative Solution). We present the compatibility tests performed during last year that helped us to make fully compatible the simulated data with the data reduction scheme.

  2. Astrometric orbits of SB^9 stars

    NASA Astrophysics Data System (ADS)

    Jancart, S.; Jorissen, A.; Babusiaux, C.; Pourbaix, D.

    2005-10-01

    Hipparcos Intermediate Astrometric Data (IAD) have been used to derive astrometric orbital elements for spectroscopic binaries from the newly released Ninth Catalogue of Spectroscopic Binary Orbits (SB^9). This endeavour is justified by the fact that (i) the astrometric orbital motion is often difficult to detect without the prior knowledge of the spectroscopic orbital elements, and (ii) such knowledge was not available at the time of the construction of the Hipparcos Catalogue for the spectroscopic binaries which were recently added to the SB^9 catalogue. Among the 1374 binaries from SB^9 which have an HIP entry (excluding binaries with visual companions, or DMSA/C in the Double and Multiple Stars Annex), 282 have detectable orbital astrometric motion (at the 5% significance level). Among those, only 70 have astrometric orbital elements that are reliably determined (according to specific statistical tests), and for the first time for 20 systems. This represents a 8.5% increase of the number of astrometric systems with known orbital elements (The Double and Multiple Systems Annex contains 235 of those DMSA/O systems). The detection of the astrometric orbital motion when the Hipparcos IAD are supplemented by the spectroscopic orbital elements is close to 100% for binaries with only one visible component, provided that the period is in the 50-1000 d range and the parallax is >5 mas. This result is an interesting testbed to guide the choice of algorithms and statistical tests to be used in the search for astrometric binaries during the forthcoming ESA Gaia mission. Finally, orbital inclinations provided by the present analysis have been used to derive several astrophysical quantities. For instance, 29 among the 70 systems with reliable astrometric orbital elements involve main sequence stars for which the companion mass could be derived. Some interesting conclusions may be drawn from this new set of stellar masses, like the enigmatic nature of the companion to the

  3. Astrometric Calibration of the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Tran, Debby; Konopacky, Quinn M.; GPIES Team

    2017-01-01

    The Gemini Planet Imager (GPI), housed on the 8-meter Gemini South telescope in Chile, is an instrument designed to detect Jupiter-like extrasolar planets by direct imaging. It relies on adaptive optics to correct the effects of atmospheric turbulence, along with an advanced coronagraph and calibration system. One of the scientific goals of GPI is to measure the orbital properties of the planets it discovers. Because these orbits have long periods, precise measurements of the relative position between the star and the planet (relative astrometry) are required. In this poster, I will present the astrometric calibration of GPI. We constrain the plate scale and orientation of the camera by observing different binary star systems with both GPI and another well-calibrated instrument, NIRC2, at the Keck telescope in Hawaii. We measure their separations with both instruments and use that information to calibrate the plate scale. By taking these calibration measurements over the course of one year, we have measured the plate scale to 0.05% and shown that it is stable across multiple epochs. We also examined the effects of the point spread function on the positions of the binaries as well as their separations, the results of which I will discuss.

  4. Bias Properties of Extragalactic Distance Indicators. XI. Methods to Correct for Observational Selection Bias for RR Lyrae Absolute Magnitudes from Trigonometric Parallaxes Expected from the Full-Sky Astrometric Mapping Explorer Satellite

    NASA Astrophysics Data System (ADS)

    Sandage, Allan; Saha, A.

    2002-04-01

    A short history is given of the development of the correction for observation selection bias inherent in the calibration of absolute magnitudes using trigonometric parallaxes. The developments have been due to Eddington, Jeffreys, Trumpler & Weaver, Wallerstein, Ljunggren & Oja, West, Lutz & Kelker, after whom the bias is named, Turon Lacarrieu & Crézé, Hanson, Smith, and many others. As a tutorial to gain an intuitive understanding of several complicated trigonometric bias problems, we study a toy bias model of a parallax catalog that incorporates assumed parallax measuring errors of various severities. The two effects of bias errors on the derived absolute magnitudes are (1) the Lutz-Kelker correction itself, which depends on the relative parallax error δπ/π and the spatial distribution, and (2) a Malmquist-like ``incompleteness'' correction of opposite sign due to various apparent magnitude cutoffs as they are progressively imposed on the catalog. We calculate the bias properties using simulations involving 3×106 stars of fixed absolute magnitude using Mv=+0.6 to imitate RR Lyrae variables in the mean. These stars are spread over a spherical volume bounded by a radius 50,000 pc with different spatial density distributions. The bias is demonstrated by first using a fixed rms parallax uncertainty per star of 50 μas and then using a variable rms accuracy that ranges from 50 μas at apparent magnitude V=9 to 500 μas at V=15 according to the specifications for the Full-Sky Astrometric Mapping Explorer (FAME) satellite to be launched in 2004. The effects of imposing magnitude limits and limits on the ``observer's'' error, δπ/π, are displayed. We contrast the method of calculating mean absolute magnitude directly from the parallaxes where bias corrections are mandatory, with an inverse method using maximum likelihood that is free of the Lutz-Kelker bias, although a Malmquist bias is present. Simulations show the power of the inverse method. Nevertheless, we

  5. Continued Astrometric Follow-up Of Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Spahr, Timothy; Johnson, Lindley (Technical Monitor)

    2005-01-01

    As the grant periods overlapped, some of this information below will also be present on the previous final report. During the period May 1 2004 to April 30 2005, approximately 100 NEOs fainter than V = 20 were observed on separate nights from the 1.2-m telescope at Mt. Hopkins. Additionally, a few comets were targeted, including astrometric support of the Deep Impact mission by observing comet P/Tempel 1. Kyle Smalley was again employed as an independent contractor, and he was trained in use of the telescope, performed several remote observing runs on his own, and has now begun critical software support of the observing program. Code to automatically operate the telescope, given a target list, is approximately 90% done. During the first observing run scheduled in late September or early October, this code will be tested at on the telescope. It is probable that the 1.2m telescope will be run automatically all night without any interruption from the observer for anything during this time. Additional work on selecting which NEO targets to observe is progressing, with a beta-release of a simple target selection web page. Additionally, two-night objects with the potential of being NEOs have been extracted on a routine basis during this last grant cycle. These will also be added to a web page to facilitate additional astrometric follow-up.

  6. Developing Astrometric Drift Scans for the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Carey, Sean J.; Ingalls, J.; Stauffer, J. R.; Grillmair, C. J.

    2014-01-01

    We are currently developing and optimizing a new observing mode using the IRAC instrument on-board the Spitzer Space Telescope. The new method which uses a constant rate drift scan while the instrument collects data is based on the successful HST drift scan method for producing high astrometric precision (20 micro-arcsecond) parallaxes to improve the cosmological distance scale. The HST experience indicates that a factor of 10 improvement in astrometric precision is possible. Currently Spitzer astrometric precision is of order 20-40 milli-arcseconds per epoch. Increasing the precision by even a factor of three greatly facilitates studies of nearby brown dwarfs and increases our ability to measure parallaxes to these intrinsically faint and cool sources out to ~30 parsecs. Initial tests of the method with observations of NGC 2516 at 3.6 and 4.5 microns have shown that useful data are taken in drift scan mode and the scans are in the specified direction and rate. We have developed a tool to measure source centroids in the stacks of images taken while scanning. The tool groups the centroids into tracklets which can then be simultaneously fit to remove telescope jitter and instrumental distortion. We present our latest results in the analysis of this mode and the prospects for the scientific exploitation of this method. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  7. The second version of the OCARS catalog of optical characteristics of astrometric radio sources

    NASA Astrophysics Data System (ADS)

    Malkin, Z. M.

    2016-11-01

    A new version of the Optical Characteristics of Astrometric Radio Sources (OCARS) catalog is presented. The catalog includes a list of radio sources observed in astrometric and geodetic VLBI programs since 1979, their redshifts, photometric data in 13 bands in the visible and near infrared, and a table indicating identifications btween the OCARS objects and objects in other catalogs. The main sources of information for the OCARS catalog are the NED and SIMBAD databases, as well as a variety of publications. Targeted observing programs designed to supplement the optical data for the astrometric radio sources have also been organized. The catalog currently contains 9956 sources, of which 5449 have redshifts and 7473 have photometric data. The catalog is updated, on average, once every several weeks, and is continuously augmented with new sources and new optical data.

  8. Microlensing Events in Gaia and other Astrometric Surveys

    NASA Astrophysics Data System (ADS)

    Baker, Claire; Di Stefano, Rosanne; Lepine, Sebastien

    2017-01-01

    The region within a kiloparsec of the Sun is a vast and mysterious place filled with uncharted planets, stars and compact objects, whose masses and properties are unknown. The Gaia space mission provides a unique opportunity to study of this region by measuring parallax distances and proper motions to millions of nearby stars, significantly advancing data available from previous astrometric surveys.We are putting this new astrometric information from the first Gaia data release to a novel use, by searching for matches between the positions of known microlensing events and the positions of stars observed by both the Gaia and the Tycho-2 missions, as listed in the Tycho-Gaia Astrometric Solution (TGAS) Catalogue.The existence of a gravitational microlensing event near a TGAS-listed star may provide information about the nature of either the source star lensed in the event, or the lens itself. For example, the source star lensed in the ‘TAGO’ event lies nearby, and is listed in the TGAS Catalogue. Other events may also have been caused by nearby TGAS-listed stars, or by their dim companions. In such cases, we can determine the lens mass and acquire information about any compact objects or planets which may exist around the lens.We report on the process of matching the positions of over 20,000 candidate microlensing events discovered by either OGLE and/or MOA, with the positions of 2 million stars from the TGAS Catalogue and stars from a range of other surveys, including Lepine's SUPERBLINK survey, and discuss the implications of the matches obtained.

  9. An Optical/Infrared Astrometric Satellite Project LIGHT

    NASA Astrophysics Data System (ADS)

    Yoshizawa, M.; Sato, K.; Nishikawa, J.; Fukushima, T.; Miyamoto, M.

    1997-08-01

    LIGHT is the name of a scanning astrometric satellite for stellar and galactic astronomy planned to be launched between 2007 and 2010. Four sets of Fizeau-type interferometers with a beam combiner unit of 1m baseline are the basic structure of the satellite optics. LIGHT is expected to observe the parallaxes and proper motions of nearly a hundred million stars up to V=18 mag (K=15 mag) magnitude with the precision better than 0.1 milliarcsec (about 50 microarcsec in V-band and 90 microarcsec in K-band) in parallaxes and better than 0.1 milliarcsec per year in proper motions, as well as the precise photometric characteristics of the observed stars. Almost all of the giant and supergiant stars belonging to the disk and halo components of our Galaxy within 10 to 15kpc from the sun will be observed by LIGHT to study the most fundamental structure and evolution of the Galaxy. LIGHT will become a precursor of a more sophisticated future astrometric interferometer satellite like GAIA (Lindegren & Perryman 1996).

  10. A Method for Rejection of Astrometric Outliers based on the Peirce Criterion

    NASA Astrophysics Data System (ADS)

    Micheli, Marco; Tholen, D. J.; Elliott, G. T.

    2012-10-01

    In the last decade the growing number of telescopes dedicated to NEO surveys, together with a rapid increase of the number of amateur-level observatories, resulted in a dramatic increase in the number of astrometric observations reported to the Minor Planet Center. The most accurate stations are now capable of obtaining astrometry of asteroids with random errors around 0.1”. On the other hand, the increase in the number of available data points is sometimes associated with an increasing occurrence of outliers, biases and erroneous observations, which may affect the correctness of scientific results obtained from those data, especially in cases of high-precision computations (impact monitoring, detection of non-gravitational effects, mission planning, ...). For well-calibrated professional settings, the dominant source of error is usually the astrometric catalog bias; debiasing methods have been developed (Chesley et al. 2010) based on the specific catalog used in the astrometric reduction. However, for astrometric positions coming from less-controlled sources, larger sources of error are often present (timing errors, improper handling of trailed sources, incorrect astrometric solutions, even misidentification of the target in some cases), and a complete but rigorous rejection of certain datapoints may become necessary. We recently developed a rejection method (Micheli et al. 2012) based on the little known Peirce criterion (Peirce 1852), that allows a mathematically founded approach to the rejection of observational data, specifically tailored for Rayleigh-distributed quantities (such as the optical astrometric residuals). We will present the basis of the method, together with its advantages over more common rejection algorithms, such as the ones based on the better known Chauvenet criterion. We will also present updated results on our application of this method to small-sized NEOs, that allows us to detect subtle non-gravitaional effects (such as radiation

  11. First detection of the astrometric orbit of the single-lined spectroscopic binary epsilon Librae

    NASA Technical Reports Server (NTRS)

    Castelaz, Michael W.

    1989-01-01

    The Multichannel Astrometric Photometer of the University of Pittsburgh's Allegheny Observatory was used to successfully measure for the first time the astrometric orbit of the single-lined spectroscopic binary epsilon Lib. Solution of the orbit indicates that the secondary component is a 0.5-solar-mass star, assuming that the F5 IV primary is 1.3 solar mass. If the secondary is on the main sequence, then it is later than a K5 star, but earlier than an M2 star. In addition to detection of the astrometric orbit of epsilon Lib, two references stars used in the observations, AO 754 and AO 755, are found to be a common-proper-motion pair.

  12. Correlated and Zonal Errors of Global Astrometric Missions: A Spherical Harmonic Solution

    NASA Astrophysics Data System (ADS)

    Makarov, V. V.; Dorland, B. N.; Gaume, R. A.; Hennessy, G. S.; Berghea, C. T.; Dudik, R. P.; Schmitt, H. R.

    2012-07-01

    We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.

  13. CORRELATED AND ZONAL ERRORS OF GLOBAL ASTROMETRIC MISSIONS: A SPHERICAL HARMONIC SOLUTION

    SciTech Connect

    Makarov, V. V.; Dorland, B. N.; Gaume, R. A.; Hennessy, G. S.; Berghea, C. T.; Dudik, R. P.; Schmitt, H. R.

    2012-07-15

    We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.

  14. Statistical analysis of the astrometric errors for the most productive asteroid surveys

    NASA Astrophysics Data System (ADS)

    Vereš, Peter; Farnocchia, Davide; Chesley, Steven R.; Chamberlin, Alan

    2016-10-01

    Accurate orbits of minor planets allow reliable predictions of an object's location in time and space. High fidelity ephemerides are crucial for the space missions targeting asteroids and comets, mitigation of Earth impact hazard, study of non-gravitational effects on small bodies and mass determination of encountering objects through mutual perturbations. The length of the observation arc as well as high quality astrometry play an essential role in achieving accurate orbits. In particular, accurate astrometry can allow the recovery of small near-Earth objects that could otherwise be lost. The vast majority of the 715,000 known asteroids have been discovered and observed by major dedicated optical CCD surveys. However, uncertainties of individual astrometric positions are not directly provided by observers yet and so orbit determination traditionally relies on conservative estimates of astrometric errors. We present a statistical study of astrometric residuals of optical CCD astrometry for the nine most prolific past and current asteroid surveys: Pan-STARRS1 (F51), Mt. Lemmon (G96), Catalina (703), LINEAR (704), Spacewatch (691), LONEOS (699), NEAT (644), NEOWISE (C51) and SST (G45). The study was limited to multiple apparition asteroids, which have well-constrained orbits, after correcting for the star catalog position and proper motion biases (Farnocchia et al., 2015). Therefore, the resulting astrometric residuals can be largely attributed to astrometric and timing errors in the reported astrometry. We analyze the behavior of residuals in right ascension, declination, along-track and cross-track, as well as timing errors. Astrometric residuals generally depend on reported magnitude by a quadratic function with astrometric quality degradation near the limiting magnitude and the saturation limit for bright objects. We found no systematic timing errors exceeding one second for the tested surveys. The presented analysis provides useful information to improve the

  15. An astrometric facility for planetary detection on the space station

    NASA Technical Reports Server (NTRS)

    Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.

    1987-01-01

    An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential space station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distance within the Milky Way Galaxy. The results of a recently completed ATF preliminary systems definition study are summarized. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objective without the development of any new technologies. A simple straightforward operations approach was developed for the ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for the facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the space station crew with the ATF will not be necessary, but onboard controls are provided for crew override as required for emergencies and maintenance.

  16. Influence of intermolecular interactions on magnetic observables

    NASA Astrophysics Data System (ADS)

    Schnack, Jürgen

    2016-02-01

    Very often it is an implied paradigm of molecular magnetism that magnetic molecules in a crystal interact so weakly that measurements of dc magnetic observables reflect ensemble properties of single molecules. But the number of cases where the assumption of virtually noninteracting molecules does not hold grows steadily. A deviation from the noninteracting case can especially clearly be seen in clusters with antiferromagnetic couplings, where steps of the low-temperature magnetization curve are smeared out with increasing intermolecular interaction. In this investigation we demonstrate with examples in one, two, and three space dimensions how intermolecular interactions influence typical magnetic observables such as magnetization, susceptibility, and specific heat.

  17. A Search For Stellar-mass Black Holes Via Astrometric Microlensing

    NASA Astrophysics Data System (ADS)

    Lu, J. R.; Sinukoff, E.; Ofek, E. O.; Udalski, A.; Kozlowski, S.

    2016-10-01

    While dozens of stellar-mass black holes (BHs) have been discovered in binary systems, isolated BHs have eluded detection. Their presence can be inferred when they lens light from a background star. We attempt to detect the astrometric lensing signatures of three photometrically identified microlensing events, OGLE-2011-BLG-0022, OGLE-2011-BLG-0125, and OGLE-2012-BLG-0169 (OB110022, OB110125, and OB120169), located toward the Galactic Bulge. These events were selected because of their long durations, which statistically favors more massive lenses. Astrometric measurements were made over one to two years using laser-guided adaptive optics observations from the W. M. Keck Observatory. Lens model parameters were first constrained by the photometric light curves. The OB120169 light curve is well fit by a single-lens model, while both OB110022 and OB110125 light curves favor binary lens models. Using the photometric fits as prior information, no significant astrometric lensing signal was detected and all targets were consistent with linear motion. The significant lack of astrometric signal constrains the lens mass of OB110022 to 0.05-1.79 M ⊙ in a 99.7% confidence interval, which disfavors a BH lens. Fits to OB110125 yielded a reduced Einstein crossing time and insufficient observations during the peak, so no mass limits were obtained. Two degenerate solutions exist for OB120169, which have a lens mass between 0.2-38.8 M ⊙ and 0.4-39.8 M ⊙ for a 99.7% confidence interval. Follow-up observations of OB120169 will further constrain the lens mass. Based on our experience, we use simulations to design optimal astrometric observing strategies and show that with more typical observing conditions the detection of BHs is feasible.

  18. New Method for Astrometric Measurements in Space Mission, JASMINE.

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Yamada, Y.

    2006-08-01

    We present a new method for measuring positions of stars in the Milky Way Galaxy by astrometric satellite, JASMINE, which is in progress at the National Astronomical Observatory of Japan. JASMINE is the acronym of the Japan Astrometry Satellite Mission for Infrared (z-band : 0.9 micron) Exploration, and is planned to be launched around 2015 The main objective of JASMINE is to study the fundamental structure and evolution of the bulge components of the Milky Way Galaxy. In order to accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about a few million stars during the observational program, with the precision of 10 microarcsec at z =14mag. The telescope of JASMINE has just one field of view, which is different from other astrometric satellites like Hipparcos and GAIA, that have two fields of view with large angle. These satellites, Hipparcos and GAIA, scan along the great circle with the spin axis perpendicular to both two fields of view to estimate the relative positions of stars on the great circle. They scan many different great circles to observe all the sky. On the other hand, JASMINE will take overlapping fields of view without any gaps to survey an area of about 20deg*10deg. Accordingly survey area covers the region of about 20deg*10deg in the bulge component. JASMINE will continue the above procedure for observing the area during the mission life. As a consequence, JASMINE will observe the restricted regions around the Galactic bulge and sweep repeatedly. The mission life is planned to be 5 years.

  19. New method for astrometric measurements in Space Mission, JASMINE

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Yamada, Y.

    We present a new method for measuring positions of stars in the Milky Way Galaxy by astrometric satellite, JASMINE, which is in progress at the National Astronomical Observatory of Japan. JASMINE is the acronym of the Japan Astrometry Satellite Mission for Infrared (z-band : 0.9 micron) Exploration, and is planned to be launched around 2015 The main objective of JASMINE is to study the fundamental structure and evolution of the bulge components of the Milky Way Galaxy. In order to accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about a few million stars during the observational program, with the precision of 10 microarcsec at z =14mag. The telescope of JASMINE has just one field of view, which is different from other astrometric satellites like Hipparcos and GAIA, that have two fields of view with large angle. These satellites, Hipparcos and GAIA, scan along the great circle with the spin axis perpendicular to both two fields of view to estimate the relative positions of stars on the great circle. They scan many different great circles to observe all the sky. On the other hand, JASMINE will take overlapping fields of view without any gaps to survey an area of about 20deg×10deg. Accordingly survey area covers the region of about 20deg×10deg in the bulge component. JASMINE will continue the above procedure for observing the area during the mission life. As a consequence, JASMINE will observe the restricted regions around the Galactic bulge and sweep repeatedly. The mission life is planned to be 5 years.

  20. Astrophysical and Technical Aspects of Astrometric Methods on Hubble

    NASA Astrophysics Data System (ADS)

    Currie, D. G.

    2005-10-01

    The astrometric analysis of eta Carinae, the associated homunculus, the surrounding ejected debris field and the inner core region with its more recent ejecta has provided both a wide variety of astrophysical results and a study on the use, methods and accuracy of astrometric procedures, both for the "plane of the sky" and for radial velocity or 3D astrometry, on extended or diffuse objects. From an astrophysical point of view, it has revealed the origin, history and 3D structure of the homunculus that was ejected in the Great Eruption of 1842. Additional information on the structure of the homunculus has been provided by the use of the Fabry-Perot with ADONIS on the European Southern Observatory's 3.6 meter telescope at La Silla, Chile. The analysis of the surrounding ejected debris has yielded information on the history of previous eruptions and may yield information as to the physical nature of these earlier eruptions. The interaction of the debris from various eruptions addresses the current state of the circumstellar media. Finally, recent analysis of the inner core region, using both the UVES spectrograph on the ESO's VLT at Paranal, Chile and the WFPC and the HRC/ACS on HST has yielded a definitive determination of the date of the origin of the Weigelt blobs. It should also yield definitive information on the motion of the inner disk. In general, it has yielded a large body of new information and, in addition, it has also greatly constrained theories and conjectures as to the history, structure, origin and evolution of eta Carinae and its ejecta. On the other hand, eta CAR has also been a very interesting object for the technical development of astrometric methods for use on diffuse objects. It is bright enough to allow multiple observations to understand the reproducibility of the results without a large penalty for telescope time. It is also bright enough to provide sufficient photons in an acceptable exposure time to obtain a very good signal

  1. SIM Lite Astrometric Observatory progress report

    NASA Astrophysics Data System (ADS)

    Marr, James C., IV; Shao, Michael; Goullioud, Renaud

    2010-07-01

    The SIM Lite Astrometric Observatory (aka SIM Lite), a micro-arcsecond astrometry space mission, has been developed in response to NASA's indefinite deferral of the SIM PlanetQuest mission. The SIM Lite mission, while significantly more affordable than the SIM PlanetQuest mission concept, still addresses the full breadth of SIM science envisioned by two previous National Research Council (NRC) Astrophysics Decadal Surveys at the most stringent "Goal" level of astrometric measurement performance envisioned in those surveys. Over the past two years, the project has completed the conceptual design of the SIM Lite mission using only the completed SIM technology; published a 250 page book describing the science and mission design (available at the SIM website: http://sim.jpl.nasa.gov); been subject to an independent cost and technical readiness assessment by the Aerospace Corporation; and submitted a number of information responses to the NRC Astro2010 Decadal Survey. The project also conducted an exoplanet-finding capability double blind study that clearly demonstrated the ability of the mission to survey 60 to 100 nearby sun-like dwarf stars for terrestrial, habitable zone planets in complex planetary systems. Additionally, the project has continued Engineering Risk Reduction activities by building brassboard (form, fit & function to flight) version of key instrument elements and subjecting them to flight qualification environmental and performance testing. This paper summarizes the progress over the last two years and the current state of the SIM Lite project.

  2. SIM Lite Astrometric Observatory Progress Report

    NASA Technical Reports Server (NTRS)

    Marr, James C., IV; Shao, Michael; Goullioud, Renaud

    2010-01-01

    The SIM Lite Astrometric Observatory (aka SIM Lite), a micro-arcsecond astrometry space mission, has been developed in response to NASA's indefinite deferral of the SIM PlanetQuest mission. The SIM Lite mission, while significantly more affordable than the SIM PlanetQuest mission concept, still addresses the full breadth of SIM science envisioned by two previous National Research Council (NRC) Astrophysics Decadal Surveys at the most stringent 'Goal' level of astrometric measurement performance envisioned in those surveys. Over the past two years, the project has completed the conceptual design of the SIM Lite mission using only the completed SIM technology; published a 250 page book describing the science and mission design (available at the SIM website: http://sim.jpl.nasa.gov); been subject to an independent cost and technical readiness assessment by the Aerospace Corporation; and submitted a number of information responses to the NRC Astro2010 Decadal Survey. The project also conducted an exoplanet-finding capability double blind study that clearly demonstrated the ability of the mission to survey 60 to 100 nearby sun-like dwarf stars for terrestrial, habitable zone planets in complex planetary systems. Additionally, the project has continued Engineering Risk Reduction activities by building brassboard (form, fit and function to flight) version of key instrument elements and subjecting them to flight qualification environmental and performance testing. This paper summarizes the progress over the last two years and the current state of the SIM Lite project.

  3. Star Confusion Effect on SIM PlanetQuest Astrometric Performance

    NASA Technical Reports Server (NTRS)

    Zhai, C.; Yu, M.; Milman, M.; Fathpour, N.; Morales, M.; Nemati, B.; Regehr, M.; Heflin, M.; Sievers, L.

    2007-01-01

    SIM PlanetQuest will measure star positions to an accuracy of a few microarcseconds using precise white light fringe measurements. One challenge for SIM observation scenario is "star confusion," where multiple stars are present in the instrument field of view. This is especially relevant for observing dim science targets because the density of number of stars increases rapidly with star magnitude. We study the effect of star confusion on the SIM astrometric performance due to systematic fringe errors caused by the extra photons from the confusion star(s}. Since star confusion from multiple stars may be analyzed as a linear superposition of the effect from single star confusion, we quantify the astrometric errors due to single star confusion surveying over many spectral types, including AOV, FOV, K5III, and MOV, and for various visual magnitude differences. To the leading order, the star confusion effect is characterized by the magnitude difference, spectral difference, and the angular separation between the target and confusion stars.Strategies for dealing with star confusion are presented. For example, since the presence of additional sources in the field of view leads to inconsistent delay estimates from different channels, with sufficient signal to noise ratio, the star confusion can be detected using chi-square statistics of fringe measurements from multiple spectral channels. An interesting result is that the star confusion can be detected even though the interferometer cannot resolve the separation between the target and confusion stars when their spectra are sufficiently different. Other strategies for mitigating the star confusion effect are also discussed.

  4. Modeling the Digital Output of the Multichannel Astrometric Photometer

    NASA Astrophysics Data System (ADS)

    de Jonge, Joost Kiewiet

    1995-05-01

    The periodic variation in the photon counts induced by the precision Ronchi ruling among the target and field stars imaged in the focal plane of the Thaw refractor has been and continues to be analyzed for phase differences in a purely numerical way. Efforts to develop a theoretical analytical output model for the MAP have so far been thwarted by the lack of an available, readily integrable mathematical function accurately representing the observed extended wing profiles of star images. However, it is shown that such a function exists in the form of a modified Bessel function. A complete theory of the instrument can therefore in principle be constructed. The derived time dependent output function has one given parameter (the ruling constant) and four adjustable parameters: FWHM image diameter (seeing diameter), semi-amplitude of the star's photon count, the cycle period and the time of zero phase. For each star first order approximations to these adjustable parameters (same for all cycles in a given run) are then improved by the method of differential corrections by solving the linearized equations of condition in a standard least square solution. The least square adjustments may extend over a few cycles or longer, yielding times of zero phase for each star and ultimately mean phase differences between all stars for a given run. Because the analytical model is capable of fitting the digital output of the MAP with great fidelity and is very flexible (it can accommodate a very wide variation in seeing and sky transparency) it is expected that its application to ongoing astrometric studies will bring about a further increase in the precision of astrometric observations at Allegheny Observatory.

  5. The Low-mass Astrometric Binary LSR 1610-0040

    NASA Astrophysics Data System (ADS)

    Koren, Seth C.; Blake, Cullen H.; Dahn, Conard C.; Harris, Hugh C.

    2016-03-01

    Even though it was discovered more than a decade ago, LSR 1610-0040 remains an enigma. This object has a peculiar spectrum that exhibits some features typically found in L subdwarfs, and others common in the spectra of more massive M dwarf stars. It is also a binary system with a known astrometric orbital solution. Given the available data, it remains a challenge to reconcile the observed properties of the combined light of LSR 1610-0040AB with current theoretical models of low-mass stars and brown dwarfs. We present the results of a joint fit to both astrometric and radial velocity measurements of this unresolved, low-mass binary. We find that the photocentric orbit has a period P=633.0+/- 1.7 days, somewhat longer than previous results, eccentricity of e=0.42+/- 0.03, and we estimate that the semimajor axis of the orbit of the primary is {a}1≈ 0.32 {{AU}}, consistent with previous results. While a complete characterization of the system is limited by our small number of radial velocity measurements, we establish a likely primary mass range of 0.09-0.10 {M}⊙ from photometric and color-magnitude data. For a primary mass in this range, the secondary is constrained to be 0.06-0.075 {M}⊙ , making a negligible contribution to the total I-band luminosity. This effectively rules out the possibility of the secondary being a compact object such as an old, low-mass white dwarf. Based on our analysis, we predict a likely angular separation at apoapsis comparable to the resolution limits of current high-resolution imaging systems. Measuring the angular separation of the A and B components would finally enable a full, unambiguous solution for the masses of the components of this system.

  6. Verification of the astrometric performance of the Korean VLBI network, using comparative SFPR studies with the VLBA AT 14/7 mm

    SciTech Connect

    Rioja, María J.; Dodson, Richard; Jung, TaeHyun; Sohn, Bong Won; Byun, Do-Young; Cho, Se-Hyung; Lee, Sang-Sung; Kim, Jongsoo; Kim, Kee-Tae; Oh, Chung Sik; Han, Seog-Tae; Je, Do-Heung; Chung, Moon-Hee; Wi, Seog-Oh; Kang, Jiman; Lee, Jung-Won; Chung, Hyunsoo; Kim, Hyo Ryoung; Kim, Hyun-Goo; Agudo, Iván; and others

    2014-11-01

    The Korean VLBI Network (KVN) is a new millimeter VLBI dedicated array with the capability to simultaneously observe at multiple frequencies, up to 129 GHz. The innovative multi-channel receivers present significant benefits for astrometric measurements in the frequency domain. The aim of this work is to verify the astrometric performance of the KVN using a comparative study with the VLBA, a well-established instrument. For that purpose, we carried out nearly contemporaneous observations with the KVN and the VLBA, at 14/7 mm, in 2013 April. The KVN observations consisted of simultaneous dual frequency observations, while the VLBA used fast frequency switching observations. We used the Source Frequency Phase Referencing technique for the observational and analysis strategy. We find that having simultaneous observations results in superior compensation for all atmospheric terms in the observables, in addition to offering other significant benefits for astrometric analysis. We have compared the KVN astrometry measurements to those from the VLBA. We find that the structure blending effects introduce dominant systematic astrometric shifts, and these need to be taken into account. We have tested multiple analytical routes to characterize the impact of the low-resolution effects for extended sources in the astrometric measurements. The results from the analysis of the KVN and full VLBA data sets agree within 2σ of the thermal error estimate. We interpret the discrepancy as arising from the different resolutions. We find that the KVN provides astrometric results with excellent agreement, within 1σ, when compared to a VLBA configuration that has a similar resolution. Therefore, this comparative study verifies the astrometric performance of the KVN using SFPR at 14/7 mm, and validates the KVN as an astrometric instrument.

  7. Astrometrica: Astrometric data reduction of CCD images

    NASA Astrophysics Data System (ADS)

    Raab, Herbert

    2012-03-01

    Astrometrica is an interactive software tool for scientific grade astrometric data reduction of CCD images. The current version of the software is for the Windows 32bit operating system family. Astrometrica reads FITS (8, 16 and 32 bit integer files) and SBIG image files. The size of the images is limited only by available memory. It also offers automatic image calibration (Dark Frame and Flat Field correction), automatic reference star identification, automatic moving object detection and identification, and access to new-generation star catalogs (PPMXL, UCAC 3 and CMC-14), in addition to online help and other features. Astrometrica is shareware, available for use for a limited period of time (100 days) for free; special arrangements can be made for educational projects.

  8. Gaia astrometric instrument calibration and image processing

    NASA Astrophysics Data System (ADS)

    Castaneda, J.; Fabricius, C.; Portell, J.; Garralda, N.; González-Vidal, J. J.; Clotet, M.; Torra, J.

    2017-03-01

    The astrometric instrument calibration and image processing is an integral and critical part of the Gaia mission. The data processing starts with a preliminary treatment on daily basis of the most recent data received and continues with the execution of several processing chains included in a cyclic reduction system. The cyclic processing chains are reprocessing all the accumulated data again in each iteration, thus adding the latest measurements and recomputing the outputs to obtain better quality on their results. This cyclic processing lasts until the convergence of the results is achieved and the catalogue is consolidated and published periodically. In this paper we describe the core of the data processing which has made possible the first catalogue release from the Gaia mission.

  9. Design and construction of an astrometric astrograph

    NASA Astrophysics Data System (ADS)

    Vukobratovich, Daniel; Valente, Tina M.; Shannon, Robert R.; Hooker, Roger A.; Sumner, Richard E.

    1992-12-01

    The Optical Sciences Center, University of Arizona, has designed and constructed a unique 'red corrected' astrometric astrograph objective lens for the United States Naval Observatory. A five element design, with an integral Schott OG550 filter, was developed to meet the requirement for a 2060 mm focal length, f/10 system. The lens provides a nearly zero distortion flat field of 5 by 5 degrees in the sky. A weight limit of 55 kg led to the use of a titanium lens barrel. Assembly tolerances are satisfied through the use of elastomeric subcell mounting of the individual elements, and an adjustable final element. The lens is hermetically sealed and uses a filter/dessicator system to insure the long term cleanliness of the optics.

  10. Astrometric studies in the region of Algol

    NASA Astrophysics Data System (ADS)

    Gatewood, George; de Jonge, Joost Kiewiet; Heintz, Wulff D.

    1995-01-01

    The distance and masses of the components of the triple star Algol (Beta Persei) are derived from photographic and electronic data collected with the two 0.76 m objectives of the Thaw Refractor at the University of Pittsburgh's Allegheny Observatory and with the 0.61 m visual refractor at Swarthmore College's Sproul Observatory. These datasets constitute the major narrow-field astrometric collections of this star. The newly derived weighted mean trigonometric parallax of Algol is now +0.0343 +/- 0.00085 corresponding to a distance modulus of 2.32 +/- 0.054 mag. The total mass of the Algol system is estimated at 6.05 +/- 0.45 solar mass. The photocentric semimajor axis of the AB/C orbit is determined in the blue, yellow, and red bandpasses of the three independent astrometric systems. The total mass for the A and B component stars is found to be 4.63 +/- 0.35 solar mass and the mass of the C component is determined to be 1.42 +/- 0.13 solar mass. Residuals to this solution showed no meaningful correlation to the orbital motion of A/B. Thus it is probable that the photocenter is located near the center of mass of the A/B subsystem. There is no evidence of a previously suggested 32 yr orbital motion and no significant acceleration is evident in the 60 yr photographic series. It is therefore unlikely that the system has a fourth stellar mass component. It is noted that the visual band interferometric studies of the Algol system have the AB and C components interchanged.

  11. Possible astrometric determination of tidal dissipation within Uranus from a future space mission

    NASA Astrophysics Data System (ADS)

    Lainey, Valery

    2014-11-01

    Tidal dissipation is the main actor of orbit migration among satellite systems. Recent work suggests possibly strong tidal dissipation within icy giant planets (Remus et al. 2013), with important consequences on satellite orbital evolution. Here we focus on the possible determination of tidal dissipation within Uranus using astrometric observations from ground and space. Besides regular observation campaigns from the Earth, simulations of observations from a future space probe around the Uranian system is considered. Constraints on the Uranian tidal ratio k2/Q as a function of astrometric accuracy and time span is assessed. This work is partly supported by EMERGENCE-UPMC grant (contract number: EME0911) and by the EC's 7th Framework Programme (FP7/2008-2017) under grant agreement n. 263466.

  12. Astrometric positioning and orbit determination of geostationary satellites

    NASA Astrophysics Data System (ADS)

    Montojo, F. J.; López Moratalla, T.; Abad, C.

    2011-03-01

    In the project titled “Astrometric Positioning of Geostationary Satellite” (PASAGE), carried out by the Real Instituto y Observatorio de la Armada (ROA), optical observation techniques were developed to allow satellites to be located in the geostationary ring with angular accuracies of up to a few tenths of an arcsec. These techniques do not necessarily require the use of large telescopes or especially dark areas, and furthermore, because optical observation is a passive method, they could be directly applicable to the detection and monitoring of passive objects such as space debris in the geostationary ring.By using single-station angular observations, geostationary satellite orbits with positional uncertainties below 350 m (2 sigma) were reconstructed using the Orbit Determination Tool Kit software, by Analytical Graphics, Inc. This software is used in collaboration with the Spanish Instituto Nacional de Técnica Aeroespacial.Orbit determination can be improved by taking into consideration the data from other stations, such as angular observations alone or together with ranging measurements to the satellite. Tests were carried out combining angular observations with the ranging measurements obtained from the Two-Way Satellite Time and Frequency Transfer technique that is used by ROA’s Time Section to carry out time transfer with other laboratories. Results show a reduction of the 2 sigma uncertainty to less than 100 m.

  13. REVEALING COMPANIONS TO NEARBY STARS WITH ASTROMETRIC ACCELERATION

    SciTech Connect

    Tokovinin, Andrei; Hartung, Markus; Hayward, Thomas L.; Makarov, Valeri V. E-mail: mhartung@gemini.edu E-mail: valeri.makarov@usno.navy.mil

    2012-07-15

    A subset of 51 Hipparcos astrometric binaries among FG dwarfs within 67 pc has been surveyed with the Near-Infrared Coronagraphic Imager adaptive optics system at Gemini-S, directly resolving for the first time 17 subarcsecond companions and 7 wider ones. Using these data together with published speckle interferometry of 57 stars, we compare the statistics of resolved astrometric companions with those of a simulated binary population. The fraction of resolved companions is slightly lower than expected from binary statistics. About 10% of astrometric companions could be 'dark' (white dwarfs and close pairs of late M-dwarfs). To our surprise, several binaries are found with companions too wide to explain the acceleration. Re-analysis of selected intermediate astrometric data shows that some acceleration solutions in the original Hipparcos catalog are spurious.

  14. Using HST to Detect Isolated Black Holes and Neutron Stars through Astrometric Microlensing

    NASA Astrophysics Data System (ADS)

    Sahu, Kailash C.; Albrow, M.; Anderson, J.; Bond, H. E.; Bond, I.; Brown, T. M.; Casertano, S.; Dominik, M.; Ferguson, H. C.; Fryer, C.; Livio, M.; Mao, S.; Perrott, Y.; Udalski, A.; Yock, P.

    2012-05-01

    To date, Black Hole (BH) and Neutron Star (NS) masses have been directly measured only in binaries; no isolated stellar-mass BH has been detected unambiguously within our Galaxy. We have underway a large, 3-year HST program (192 orbits) designed to detect microlensing events caused by non-luminous isolated BHs and NSs in the direction of the Galactic bulge. Our program consists of monitoring of 12 fields in the Sagittarius window of the Galactic bulge, containing a total of 1.5 million stars down to V=28. Our observations have a typical cadence of one observation every two weeks, and are primarily targeted towards detecting microlensing events caused by non-luminous isolated BHs and NSs in the Galactic disk and bulge. The unique capability of HST imaging for microlensing observations is the addition of high-precision astrometry, allowing detection of the astrometric shift of the source during the event. Combined with the lens parallax, which can be determined from the light curve as measured by HST (and supplemented by GEMINI) observations, the astrometric shift provides a direct measurement of the lens mass. Our program is optimized to detect long-duration events, which are more likely to be caused by massive lenses. We expect to detect a few dozen long-duration microlensing events, of which 45% will show astrometric deflections, leading to direct determinations of the lens masses.

  15. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties

    NASA Astrophysics Data System (ADS)

    Gaia Collaboration; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Mignard, F.; Drimmel, R.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Katz, D.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; O'Mullane, W.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Høg, E.; Lattanzi, M. G.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J.-L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J.-M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Duran, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J.-B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lorenz, D.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pichon, B.; Piersimoni, A. M.; Pineau, F.-X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I.-C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H.-H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P.-M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A.-M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D.-W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A.-T.; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J.-M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.

    2016-11-01

    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr-1 for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr-1. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to 0.03 mag over the magnitude range 5 to 20.7. Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five

  16. Astrometric Detection of Binary Companions and Planets: Acceleration of Proper Motion

    DTIC Science & Technology

    2003-07-14

    the ESO Symp. From Extrasolar Planets to Cosmology: The VLT Opening Symposium, Springer-Verlag, Berlin, p. 492 Appendix A: Simplified development of...Astron. Nachr./AN 324, No. 5, 419–424 (2003) / DOI 10.1002/asna.200310159 Astrometric detection of binary companions and planets : Acceleration of...period is at least several times the span of observations. We estimate orbit dimensions and distances at which low-mass companions and planets may be

  17. Astrometric Telescope Facility isolation and pointing study

    NASA Technical Reports Server (NTRS)

    Hibble, William; Allen, Terry; Jackson, Louis; Medbery, James; Self, Richard

    1988-01-01

    The Astrometric Telescope Facility (ATF), an optical telescope designed to detect extrasolar planetary systems, is scheduled to be a major user of the Space Station's Payload Pointing System (PPS). However, because the ATF has such a stringent pointing stability specification and requires + or - 180 deg roll about its line of sight, mechanisms to enhance the basic PPS capability are required. The ATF pointing performance achievable by the addition of a magnetic isolation and pointing system (MIPS) between the PPS upper gimbal and the ATF, and separately, by the addition of a passive isolation system between the Space Station and the PPS base was investigated. The candidate MIPS can meet the ATF requirements in the presence of a 0.01 g disturbance. It fits within the available annular region between the PPS and the ATF while meeting power and weight limitations and providing the required roll motion, payload data and power services. By contrast, the passive base isolator system must have an unrealistically low isolation bandwidth on all axes to meet ATF pointing requirements and does not provide roll about the line of sight.

  18. Reprocessing the Hipparcos Intermediate Astrometric Data of spectroscopic binaries. II. Systems with a giant component

    NASA Astrophysics Data System (ADS)

    Pourbaix, D.; Boffin, H. M. J.

    2003-02-01

    By reanalyzing the Hipparcos Intermediate Astrometric Data of a large sample of spectroscopic binaries containing a giant, we obtain a sample of 29 systems fulfilling a carefully derived set of constraints and hence for which we can derive an accurate orbital solution. Of these, one is a double-lined spectroscopic binary and six were not listed in the DMSA/O section of the catalogue. Using our solutions, we derive the masses of the components in these systems and statistically analyze them. We also briefly discuss each system individually. Based on observations from the Hipparcos astrometric satellite operated by the European Space Agency (ESA 1997) and on data collected with the Simbad database.

  19. Faster, Better, Cheaper: News on Seeking Gaia's Astrometric Solution with AGIS

    NASA Astrophysics Data System (ADS)

    Lammers, U.; Lindegren, L.; Bombrun, A.; O'Mullane, W.; Hobbs, D.

    2010-12-01

    Gaia is ESA’s ambitious space astrometry mission with a foreseen launch date in early 2012. Its main objective is to perform a stellar census of the 1000 Million brightest objects in our galaxy (completeness to V=20 mag) from which an astrometric catalog of micro-arcsec level accuracy will be constructed. A key element in this endeavor is the Astrometric Global Iterative Solution (AGIS) - the mathematical and numerical framework for combining the ≍80 available observations per star obtained during Gaia’s 5yr lifetime into a single global astrometric solution. At last year’s ADASS XVIII we presented (O4.1) in detail the fundamental working principles of AGIS, its development status, and selected results obtained by running the system on processing hardware at ESAC, Madrid with large-scale simulated data sets. We present here the latest developments around AGIS highlighting in particular a much improved algebraic solving method that has recently been implemented. This Conjugate Gradient scheme improves the convergence behavior in significant ways and leads to a solution of much higher scientific quality. We also report on a new collaboration aiming at processing the data from the future small Japanese astrometry mission Nano-Jasmine with AGIS.

  20. The Carlsberg Meridian Telescope: an astrometric robotic telescope

    NASA Astrophysics Data System (ADS)

    Evans, D. W.

    2001-12-01

    An overview is given of the Carlsberg Meridian Telescope on La Palma, which is one of the oldest robotic telescopes, having started observing on La Palma in 1984. In the spring of 1997, a further stage of automation was made when we converted the telescope to remote operation. Since then, the telescope has been operated over the Internet from Britain, Denmark or Spain. In 1997, a CCD camera, operating in a drift-scan mode, was installed. A year later the telescope underwent a major upgrade and a larger 2k×2k CCD camera was installed, with a Sloan r' filter. With the new system, the magnitude limit is r'=17 and the positional accuracy is in the range 0.03'' to 0.05''. The main task of the project is to map the sky in the declination range -3o to +50o, with the aim of providing an astrometric and photometric catalogue that can accurately transfer the Hipparcos/Tycho reference frame to Schmidt plates. We will release the first data by the end of 2001. Using the photometric information, extinction data for La Palma is also provided.

  1. The Carlsberg Meridian Telescope: An Astrometric Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Evans, Dafydd Wyn

    An overview is given of the Carlsberg Meridian Telescope on La Palma, which is one of the oldest robotic telescopes, having started observing in 1984. In the spring of 1997, a further stage of automation was made when we converted the telescope to remote operation. Since then, the telescope has been operated over the Internet from Britain, Denmark or Spain. Two years ago, the telescope underwent a major upgrade and a 2k×2k CCD camera was installed, with a Sloan r' filter, operating in a drift scan mode. With the new system, the magnitude limit is r'=17 and the positional accuracy is in the range 0.03'' to 0.05''. The main task of the project is to map the sky in the declination range -3o to +50o, with the aim of providing an astrometric and photometric catalogue that can accurately transfer the Hipparcos/Tycho reference frame to Schmidt plates. We will release the first data by the end of the year.

  2. Surveys, Astrometric Follow-Up, and Population Statistics

    NASA Astrophysics Data System (ADS)

    Jedicke, R.; Granvik, M.; Micheli, M.; Ryan, E.; Spahr, T.; Yeomans, D. K.

    Asteroid surveys are the backbone of asteroid science, and with this in mind we begin with a broad review of the impact of asteroid surveys on our field. We then provide a brief history of asteroid discoveries so as to place contemporary and future surveys in perspective. Surveys in the United States (U.S.) have discovered the vast majority of the asteroids, and this dominance has been consolidated since the publication of Asteroids III. Our descriptions of the asteroid surveys that have been operational since that time are focused on those that have contributed the vast majority of asteroid observations and discoveries. We also provide some insight into upcoming next-generation surveys that are sure to alter our understanding of the small bodies in the inner solar system and provide evidence to untangle their complicated dynamical and physical histories. The Minor Planet Center, the nerve center of the asteroid discovery effort, has improved its operations significantly in the past decade so that it can manage the increasing discovery rate, and ensure that it is well-placed to handle the data rates expected in the next decade. We also consider the difficulties associated with astrometric follow-up of newly identified objects. It seems clear that both of these efforts must operate in new modes in order to keep pace with expected discovery rates of next-generation ground- and spacebased surveys.

  3. The research of the accuracy of asteroid orbit fitting using both radar and astrometric observations. (Russian Title: Исследование точности решения задачи улучшения орбит астероидов по данным их радарных и угловых наблюдений)

    NASA Astrophysics Data System (ADS)

    Baturin, A. P.; Kinzersky, V. V.

    2014-12-01

    The least-square orbit fitting problem for asteroids using their radar and astrometric observations has been considered. The both types of radar observations have been taken into account: the time delay observations and the Doppler observations. The research of accuracy increase due to the using of radar observations in addition to astrometric ones has been carried out. This research has been done by means of several orbit fittings using different samples of observations of some asteroids. The samples contain all radar observations and different numbers of astrometric ones. The orbit arc of radar observations of chosen asteroids is very short (several days) while the arcs of astrometric observations for all used samples are much longer. It has been demonstrated that the using of radar observations in the orbit fitting may increase the accuracy of obtained solution by 1-3 orders even in the cases of very long astromeric arcs (several years). During the research the convenient windows-interface for the calculating program has been developed. The functions of the program also have been expanded. Particularly, the ability of perturbations calculation from different planet ephemerides and of calculations with different machine precision have been added to the program.

  4. Analogue Simulation and Orbital Solving Algorithm of Astrometric Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Huang, P. H.; Ji, J. H.

    2016-09-01

    Astrometry is an effective method to detect exoplanets. It has many advantages that other detection methods do not bear, such as providing three dimensional planetary orbit and determining the planetary mass. Astrometry will enrich the sample of exoplanets. As the high-precision astrometric satellite Gaia (Global Astrometry interferometer for Astrophysics) was launched in 2013, there will be abundant long-period Jupiter-size planets to be discovered by Gaia. In this paper, we specify the α Centauri A, HD 62509, and GJ 876 systems, and generate the synthetic astrometric data with the single astrometric precision of Gaia. Then we use the Lomb-Scargle periodogram to analyse the signature of planets and the Markov Chain Monte Carlo (MCMC) algorithm to fit the orbit of planets. The simulation results are well coincide with the initial solutions.

  5. Astrometric Calibration of the Gemini NICI Planet-Finding Campaign

    NASA Astrophysics Data System (ADS)

    Hayward, Thomas L.; Biller, Beth A.; Liu, Michael C.; Nielsen, Eric L.; Wahhaj, Zahed; Chun, Mark; Ftaclas, Christ; Hartung, Markus; Toomey, Douglas W.

    2014-12-01

    We describe the astrometric calibration of the Gemini NICI Planet-Finding Campaign. The Campaign requires a relative astrometric accuracy of $\\approx$ 20 mas across multi-year timescales in order to distinguish true companions from background stars by verifying common proper motion and parallax with their parent stars. The calibration consists of a correction for instrumental optical image distortion, plus on-sky imaging of astrometric fields to determine the pixel scale and image orientation. We achieve an accuracy of $\\lesssim 7$ mas between the center and edge of the 18$''$ NICI field, meeting the 20 mas requirement. Most of the Campaign data in the Gemini Science Archive are accurate to this level but we identify a number of anomalies and present methods to correct the errors.

  6. Revisiting TW Hydrae in light of new astrometric data

    NASA Astrophysics Data System (ADS)

    Teixeira, R.; Ducourant, C.; Galli, P. A. B.; Le Campion, J. F.; Zuckerman, B.; Krone-Martins, A. G. O.; Chauvin, G.; Song, I.

    2014-10-01

    Our efforts in the present work focused mainly on refining and improving the previous description and understanding of the stellar association TW Hydrae (TWA) including a very detailed membership analysis and its dynamical and evolutionary age.To achieve our objectives in a fully reliable way we take advantage of our own astrometric measurements (Ducourant et al. 2013) performed with NTT/EFOSC2 - ESO (La Silla - Chile) spread over three years (2007 - 2010) and of those published in the literature.A very detailed membership analysis based on the convergent point strategy as developed by our team (Galli et al. 2012, 2013) allowed us to define a consistent kinematic group containing 31 stars among the 44 proposed as TWA member in the literature. Assuming that our sample of stars may be contaminated by non-members and to get rid of the particular influence of each star we applied a Jacknife resampling technique generating 2000 random lists of 13 stars taken from our 16 stars and calculated for each the epoch of convergence when the radius is minimum. The mean of the epochs obtained and the dispersion about the mean give a dynamical age of 7.5± 0.7 Myr for the association that is in good agreement with the previous traceback age (De La Reza et al. 2006). We also estimated age for TWA moving group members from pre-main sequence evolutionary models (Siess et al. 2000) and find a mean age of 7.4± 1.2 Myr. These results show that the dynamical age of the association obtained via the traceback technique and the average age derived from theoretical evolutionary models are in good agreement.

  7. New constraints on Saturn's interior from Cassini astrometric data

    NASA Astrophysics Data System (ADS)

    Lainey, Valéry; Jacobson, Robert A.; Tajeddine, Radwan; Cooper, Nicholas J.; Murray, Carl; Robert, Vincent; Tobie, Gabriel; Guillot, Tristan; Mathis, Stéphane; Remus, Françoise; Desmars, Josselin; Arlot, Jean-Eudes; De Cuyper, Jean-Pierre; Dehant, Véronique; Pascu, Dan; Thuillot, William; Le Poncin-Lafitte, Christophe; Zahn, Jean-Paul

    2017-01-01

    Using astrometric observations spanning more than a century and including a large set of Cassini data, we determine Saturn's tidal parameters through their current effects on the orbits of the eight main and four coorbital Moons. We have used the latter to make the first determination of Saturn's Love number from observations, k2=0.390 ± 0.024, a value larger than the commonly used theoretical value of 0.341 (Gavrilov & Zharkov, 1977), but compatible with more recent models (Helled & Guillot, 2013) for which the static k2 ranges from 0.355 to 0.382. Depending on the assumed spin for Saturn's interior, the new constraint can lead to a significant reduction in the number of potential models, offering great opportunities to probe the planet's interior. In addition, significant tidal dissipation within Saturn is confirmed (Lainey et al., 2012) corresponding to a high present-day tidal ratio k2/Q=(1.59 ± 0.74) × 10-4 and implying fast orbital expansions of the Moons. This high dissipation, with no obvious variations for tidal frequencies corresponding to those of Enceladus and Dione, may be explained by viscous friction in a solid core, implying a core viscosity typically ranging between 1014 and 1016 Pa.s (Remus et al., 2012). However, a dissipation increase by one order of magnitude at Rhea's frequency could suggest the existence of an additional, frequency-dependent, dissipation process, possibly from turbulent friction acting on tidal waves in the fluid envelope of Saturn (Ogilvie & Lin, 2004; Fuller et al. 2016).

  8. Toward astrometric tracking with the infrared spatial interferometer

    NASA Technical Reports Server (NTRS)

    Treuhaft, R. N.; Bester, M.; Danchi, W. C.; Townes, C. H.

    1994-01-01

    Infrared interferometric demonstrations with the University of California, Berkeley's infrared spatial interferometer (ISI) on Mt. Wilson explore the potential of infrared and optical astrometry for deep space tracking, reference frame development, and DSN science. Astrometric data taken and analyzed over the last five years from the ISI have shown that instrumental and atmospheric effects limit current demonstrations. The benefits of sensitivity upgrades, which were performed in 1991 and 1992, have been demonstrated by comparing point-to-point phase fluctuations for the fall 1989 and fall 1992 observing epochs. This comparison showed that point-to-point phase fluctuations due to tropospheric and quantum noise, for optimal integration times of 0.2 sec, are approaching the 0.1-cycle level needed to reliably connect the interferometric phase. The increase in sensitivity, coupled with that arising from very recent hardware upgrades, will greatly enhance phase-connection capabilities necessary for astrometry in the presence of atmospheric refractivity fluctuations. The current data set suggests that atmospheric fluctuations on Mt. Wilson during the best seeing are dominated by a low-lying component, approximately 25 m high, which may be minimized with in situ calibration in the future. During poor seeing conditions that currently prohibit the interferometric phase connection necessary for astrometry, fluctuations seem to be generated by atmospheric inhomogeneities at much higher altitudes above Mt. Wilson. Data taken over the last year suggest that the ISI will soon be able to achieve 50- to 100-nrad astrometry in a single observing session, employing current ground-based laser distance interferometer calibrations to minimize atmospheric effects.

  9. Optical design for the Laser Astrometric Test of Relativity

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth L., Jr.

    2004-01-01

    This paper discusses the Laser Astrometric Test of Relativity (LATOR) mission. LATOR is a Michelson-Morley-type experiment designed to test the pure tensor metric nature of gravitation the fundamental postulate of Einstein's theory of general relativity. With its focus on gravity's action on light propagation it complements other tests which rely on the gravitational dynamics of bodies.

  10. ESTABLISHING {alpha} Oph AS A PROTOTYPE ROTATOR: IMPROVED ASTROMETRIC ORBIT

    SciTech Connect

    Hinkley, Sasha; Hillenbrand, Lynne; Crepp, Justin R.; Monnier, John D.; Oppenheimer, Ben R.; Brenner, Douglas; Sivaramakrishnan, Anand; Roberts, Lewis C. Jr; Zhao Ming; Vasisht, Gautam; Pueyo, Laurent; Ireland, Michael; Zimmerman, Neil; Parry, Ian R.; Martinache, Frantz; Lai, Olivier; Soummer, Remi; Beichman, Charles; Lloyd, James P.; Bernat, David

    2011-01-10

    The nearby star {alpha} Oph (Ras Alhague) is a rapidly rotating A5IV star spinning at {approx} 89% of its breakup velocity. This system has been imaged extensively by interferometric techniques, giving a precise geometric model of the star's oblateness and the resulting temperature variation on the stellar surface. Fortuitously, {alpha} Oph has a previously known stellar companion, and characterization of the orbit provides an independent, dynamically based check of both the host star and the companion mass. Such measurements are crucial to constrain models of such rapidly rotating stars. In this study, we combine eight years of adaptive optics imaging data from the Palomar, AEOS, and CFHT telescopes to derive an improved, astrometric characterization of the companion orbit. We also use photometry from these observations to derive a model-based estimate of the companion mass. A fit was performed on the photocenter motion of this system to extract a component mass ratio. We find masses of 2.40{sup +0.23}{sub -0.37} M{sub sun} and 0.85{sup +0.06}{sub -0.04} M{sub sun} for {alpha} Oph A and {alpha} Oph B, respectively. Previous orbital studies of this system found a mass too high for this system, inconsistent with stellar evolutionary calculations. Our measurements of the host star mass are more consistent with these evolutionary calculations, but with slightly higher uncertainties. In addition to the dynamically derived masses, we use IJHK photometry to derive a model-based mass for {alpha} Oph B, of 0.77 {+-} 0.05 M{sub sun} marginally consistent with the dynamical masses derived from our orbit. Our model fits predict a periastron passage on 2012 April 19, with the two components having a 50 mas separation from 2012 March to May. A modest amount of interferometric and radial velocity data during this period could provide a mass determination of this star at the few percent level.

  11. Photometric and Astrometric Vagaries of the Enigma Star KIC 8462852

    NASA Astrophysics Data System (ADS)

    Makarov, Valeri V.; Goldin, Alexey

    2016-12-01

    We apply a principal component analysis (PCA)-based pre-whitening method to the entire collection of main Kepler mission long-cadence data for KIC 8462852 spanning four years. This technique removes the correlated variations of instrumental origin in both the detected light curves and astrometry, resolving intrinsic changes in flux and image position of less than 100 ppm and 1 mas, respectively. Beside the major dips in the light curve during mission quarters 8 and 16, when the flux dropped by up to 20%, we confirm multiple smaller dips across the time span of observation with amplitudes ranging from 0.1% to 7%. A variation of flux with a period of 0.88 day and a half-amplitude of approximately 90 ppm is confirmed in the PCA-cleaned data. We find that the phase of the wave is steady over a 15 month interval. We confidently detect a weak variability-induced motion (VIM) effect in the cleaned astrometric trajectories, when the moment-based centroids shift synchronously with the flux dips by up to 0.0008 pixels on the detector. The inconsistent magnitude and direction of VIM effects within the same quarter point at more than one source of photometric variability in the blended image. The 0.88 day periodicity comes from a different source, not from the target star KIC 8462852. We discuss a possible interpretation of the bizarre properties of the source as a swarm of interstellar junk (comets and planetoids) crossing the line of sight to the star and its optical companions at approximately 7 mas yr-1.

  12. Design of Astrometric Mission (JASMINE) by Applying Model Driven System Engineering

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Miyashita, H.; Nakamura, H.; Suenaga, K.; Kamiyoshi, S.; Tsuiki, A.

    2010-12-01

    We are planning space astrometric satellite mission named JASMINE. The target accuracy of parallaxes in JASMINE observation is 10 micro arc second, which corresponds to 1 nm scale on the focal plane. It is very hard to measure the 1 nm scale deformation of focal plane. Eventually, we need to add the deformation to the observation equations when estimating stellar astrometric parameters, which requires considering many factors such as instrument models and observation data analysis. In this situation, because the observation equations become more complex, we may reduce the stability of the hardware, nevertheless, we require more samplings due to the lack of rigidity of each estimation. This mission imposes a number of trades-offs in the engineering choices and then decide the optimal design from a number of candidates. In order to efficiently support such decisions, we apply Model Driven Systems Engineering (MDSE), which improves the efficiency of the engineering by revealing and formalizing requirements, specifications, and designs to find a good balance among various trade-offs.

  13. Detecting and Measuring the Masses of Isolated Black Holes and Neutron Stars through Astrometric Microlensing

    NASA Astrophysics Data System (ADS)

    Sahu, Kailash

    2011-10-01

    We propose a 3-year program of monitoring of 12 fields in the Galactic bulge, containing a total of 1.5 million stars down to V=28. Our primary aim is to detect microlensing events caused by non-luminous isolated black holes {BHs} and neutron stars {NSs} in the Galactic disk and bulge.The unique capability of HST imaging for microlensing observations is the addition of high-precision astrometry, allowing detection of the astrometric shift of the source during the event. Combined with the lens parallax, provided by the HST event light curve, the astrometric shift provides a direct measurement of the lens mass. We will detect 120 microlensing events, of which 45% will show astrometric deflections, leading to direct determinations of the lens masses. Of these, about 18 lenses are expected to be BHs and 14 of them NSs, along with about 22 events due to main-sequence stars.To date, BH and NS masses have been directly measured only in binaries; no isolated BH has been detected unambiguously within our Galaxy. A survey of the scope proposed here is the only means available at present for measuring the mass function of isolated BHs and NSs, and moreover one that is normalized to that of luminous stars. The results will provide a quantitative estimate of the mass content in the form of stellar remnants in the young Galactic disk and old bulge, and important constraints on SN/GRB explosion mechanisms that produce NSs and BHs.Our data will also be useful for other investigations, including a more accurate determination of the microlensing optical depth, faint variable stars, bulge proper motions and kinematics, and a deep luminosity function of the disk and bulge stars.

  14. Detecting and Measuring the Masses of Isolated Black Holes and Neutron Stars through Astrometric Microlensing

    NASA Astrophysics Data System (ADS)

    Sahu, Kailash

    2012-10-01

    We propose a 3-year program of monitoring of 12 fields in the Galactic bulge, containing a total of 1.5 million stars down to V=28. Our primary aim is to detect microlensing events caused by non-luminous isolated black holes {BHs} and neutron stars {NSs} in the Galactic disk and bulge.The unique capability of HST imaging for microlensing observations is the addition of high-precision astrometry, allowing detection of the astrometric shift of the source during the event. Combined with the lens parallax, provided by the HST event light curve, the astrometric shift provides a direct measurement of the lens mass. We will detect 120 microlensing events, of which 45% will show astrometric deflections, leading to direct determinations of the lens masses. Of these, about 18 lenses are expected to be BHs and 14 of them NSs, along with about 22 events due to main-sequence stars.To date, BH and NS masses have been directly measured only in binaries; no isolated BH has been detected unambiguously within our Galaxy. A survey of the scope proposed here is the only means available at present for measuring the mass function of isolated BHs and NSs, and moreover one that is normalized to that of luminous stars. The results will provide a quantitative estimate of the mass content in the form of stellar remnants in the young Galactic disk and old bulge, and important constraints on SN/GRB explosion mechanisms that produce NSs and BHs.Our data will also be useful for other investigations, including a more accurate determination of the microlensing optical depth, faint variable stars, bulge proper motions and kinematics, and a deep luminosity function of the disk and bulge stars.

  15. Detecting and Measuring the Masses of Isolated Black Holes and Neutron Stars through Astrometric Microlensing

    NASA Astrophysics Data System (ADS)

    Sahu, Kailash

    2013-10-01

    We propose a 3-year program of monitoring of 12 fields in the Galactic bulge, containing a total of 1.5 million stars down to V=28. Our primary aim is to detect microlensing events caused by non-luminous isolated black holes {BHs} and neutron stars {NSs} in the Galactic disk and bulge.The unique capability of HST imaging for microlensing observations is the addition of high-precision astrometry, allowing detection of the astrometric shift of the source during the event. Combined with the lens parallax, provided by the HST event light curve, the astrometric shift provides a direct measurement of the lens mass. We will detect 120 microlensing events, of which 45% will show astrometric deflections, leading to direct determinations of the lens masses. Of these, about 18 lenses are expected to be BHs and 14 of them NSs, along with about 22 events due to main-sequence stars.To date, BH and NS masses have been directly measured only in binaries; no isolated BH has been detected unambiguously within our Galaxy. A survey of the scope proposed here is the only means available at present for measuring the mass function of isolated BHs and NSs, and moreover one that is normalized to that of luminous stars. The results will provide a quantitative estimate of the mass content in the form of stellar remnants in the young Galactic disk and old bulge, and important constraints on SN/GRB explosion mechanisms that produce NSs and BHs.Our data will also be useful for other investigations, including a more accurate determination of the microlensing optical depth, faint variable stars, bulge proper motions and kinematics, and a deep luminosity function of the disk and bulge stars.

  16. A study of astrometric distortions due to “tree rings” in CCD sensors using LSST Photon Simulator

    DOE PAGES

    Beamer, Benjamin; Nomerotski, Andrei; Tsybychev, Dmitri

    2015-05-22

    Imperfections in the production process of thick CCDs lead to circularly symmetric dopant concentration variations, which in turn produce electric fields transverse to the surface of the fully depleted CCD that displace the photogenerated charges. We use PhoSim, a Monte Carlo photon simulator, to explore and examine the likely impacts these dopant concentration variations will have on astrometric measurements in LSST. The scale and behavior of both the astrometric shifts imparted to point sources and the intensity variations in flat field images that result from these doping imperfections are similar to those previously observed in Dark Energy Camera CCDs, givingmore » initial confirmation of PhoSim's model for these effects. In addition, the organized shape distortions were observed as a result of the symmetric nature of these dopant variations, causing nominally round sources to be imparted with a measurable ellipticity either aligned with or transverse to the radial direction of this dopant variation pattern.« less

  17. A study of astrometric distortions due to “tree rings” in CCD sensors using LSST Photon Simulator

    SciTech Connect

    Beamer, Benjamin; Nomerotski, Andrei; Tsybychev, Dmitri

    2015-05-22

    Imperfections in the production process of thick CCDs lead to circularly symmetric dopant concentration variations, which in turn produce electric fields transverse to the surface of the fully depleted CCD that displace the photogenerated charges. We use PhoSim, a Monte Carlo photon simulator, to explore and examine the likely impacts these dopant concentration variations will have on astrometric measurements in LSST. The scale and behavior of both the astrometric shifts imparted to point sources and the intensity variations in flat field images that result from these doping imperfections are similar to those previously observed in Dark Energy Camera CCDs, giving initial confirmation of PhoSim's model for these effects. In addition, the organized shape distortions were observed as a result of the symmetric nature of these dopant variations, causing nominally round sources to be imparted with a measurable ellipticity either aligned with or transverse to the radial direction of this dopant variation pattern.

  18. An astrometric search for a stellar companion to the sun

    SciTech Connect

    Perlmutter, S.

    1986-11-25

    A companion star within 0.8 pc of the Sun has been postulated to explain a possible 26 Myr periodicity in mass extinctions of species on the Earth. Such a star would already be catalogued in the Yale Bright Star catalogue unless it is fainter than m/sub nu/ = 6.5; this limits the possible stellar types for an unseen companion to red dwarfs, brown dwarfs, or compact objects. Red dwarfs account for about 75% of these possible stars. We describe here the design and development of an astrometric search for a nearby red dwarf companion with a six-month peak-to-peak parallax of greater than or equal to2.5 arcseconds. We are measuring the parallax of 2770 candidate faint red stars selected from the Dearborn Observatory catalogue. An automated 30-inch telescope and CCD camera system collect digitized images of the candidate stars, along with a 13' x 16' surrounding field of background stars. Second-epoch images, taken a few months later, are registered to the first epoch images using the background stars as fiducials. An apparent motion, m/sub a/, of the candidate stars is found to a precision of sigma/sub m//sub a/ approx. = 0.08 pixel approx. = 0.2 arcseconds for fields with N/sub fiducial/ greater than or equal to 10 fiducial stars visible above the background noise. This precision is sufficient to detect the parallactic motion of a star at 0.8 pc with a two month interval between the observation epochs. Images with fewer fiducial stars above background noise are observed with a longer interval between epochs. If a star is found with high parallactic motion, we will confirm its distance with further parallax measurements, photometry, and spectral studies, and will measure radial velocity and proper motion to establish its orbit. We have demonstrated the search procedure with observations of 41 stars, and have shown that none of these is a nearby star. 37 refs., 16 figs., 3 tabs.

  19. Revealing Companions to Nearby Stars with Astrometric Acceleration

    DTIC Science & Technology

    2012-07-01

    of 57 stars, we compare the statistics of resolved astrometric companions with those of a simulated binary population. The fraction of resolved...frequency of supernovae, blue stragglers, X-ray binaries, etc. The statistical properties of binaries strongly depend on stellar mass. Only for nearby solar ...a large fraction of these stars by the Geneva-Copenhagen Sur- vey of the Solar neighborhood, GCS (Nordströem et al. 2004), revealing short-period

  20. Astrometric Jitter of the Sun as a Star

    DTIC Science & Technology

    2010-05-01

    1NASA Exoplanet Science Institute, Caltech, Pasadena, CA 91125 2Department of Physics and Astronomy, University of California, Los Angeles, CA 90095...nearby dwarfs should be as amenable to exoplanet detection as the Sun. The aim of this paper is to determine the solar astrometric jitter directly...axis. Planets in eccentric orbits also produce higher-order harmonics (overtones) of smaller amplitudes. The spectroscopic method of exoplanet

  1. SPHERE IRDIS and IFS astrometric strategy and calibration

    NASA Astrophysics Data System (ADS)

    Maire, Anne-Lise; Langlois, Maud; Dohlen, Kjetil; Lagrange, Anne-Marie; Gratton, Raffaele; Chauvin, Gaël.; Desidera, Silvano; Girard, Julien H.; Milli, Julien; Vigan, Arthur; Zins, Gerard; Delorme, Philippe; Beuzit, Jean-Luc; Claudi, Riccardo U.; Feldt, Markus; Mouillet, David; Puget, Pascal; Turatto, Massimo; Wildi, François

    2016-08-01

    We present the current results of the astrometric characterization of the VLT planet finder SPHERE over 2 years of on-sky operations. We first describe the criteria for the selection of the astrometric fields used for calibrating the science data: binaries, multiple systems, and stellar clusters. The analysis includes measurements of the pixel scale and the position angle with respect to the North for both near-infrared subsystems, the camera IRDIS and the integral field spectrometer IFS, as well as the distortion for the IRDIS camera. The IRDIS distortion is shown to be dominated by an anamorphism of 0.60+/-0.02% between the horizontal and vertical directions of the detector, i.e. 6 mas at 1 arcsec. The anamorphism is produced by the cylindrical mirrors in the common path structure hence common to all three SPHERE science subsystems (IRDIS, IFS, and ZIMPOL), except for the relative orientation of their field of view. The current estimates of the pixel scale and North angle for IRDIS are 12.255+/-0.009 milliarcseconds/pixel for H2 coronagraphic images and -1.70+/-0.08°. Analyses of the IFS data indicate a pixel scale of 7.46+/-0.02 milliarcseconds/pixel and a North angle of -102.18+/-0.13°. We finally discuss plans for providing astrometric calibration to the SPHERE users outside the instrument consortium.

  2. The multichannel astrometric photometer and atmospheric limitations in the measurement of relative positions

    NASA Technical Reports Server (NTRS)

    Gatewood, George D.

    1987-01-01

    The operational Multichannel Astrometric Photometer (MAP) now in use in the Allegheny Observatory astrometric program is the culmination of a decade of design and development effort. A detailed description of the system and its related software is followed by analysis of data acquired in four stellar regions. The study indicates an accuracy (in the sense of conformity to the best model), per night, for stars of the eighth magnitude or brighter, of 0.003 arcsec or better. These data points each have approximately twice the precision of the annual normal points obtained in our photographic program. Accuracy is shown to depend on: (1) the photon-count rate of the target star (it follows that the number of photons from the reference frame is also in important factor), (2) the duration of the observation, (3) the angular size of the reference frame, and (4) the quality of the astronomical seeing. Since (4) and, to a lesser extent, (1) involve the atmospheric characteristics at the time of observation, the probable performance at more favorable sites is discussed briefly.

  3. CATALOG MATCHING WITH ASTROMETRIC CORRECTION AND ITS APPLICATION TO THE HUBBLE LEGACY ARCHIVE

    SciTech Connect

    Budavari, Tamas; Lubow, Stephen H. E-mail: lubow@stsci.edu

    2012-12-20

    Object cross-identification in multiple observations is often complicated by the uncertainties in their astrometric calibration. Due to the lack of standard reference objects, an image with a small field of view can have significantly larger errors in its absolute positioning than the relative precision of the detected sources within. We present a new general solution for the relative astrometry that quickly refines the World Coordinate System of overlapping fields. The efficiency is obtained through the use of infinitesimal three-dimensional rotations on the celestial sphere, which do not involve trigonometric functions. They also enable an analytic solution to an important step in making the astrometric corrections. In cases with many overlapping images, the correct identification of detections that match together across different images is difficult to determine. We describe a new greedy Bayesian approach for selecting the best object matches across a large number of overlapping images. The methods are developed and demonstrated on the Hubble Legacy Archive, one of the most challenging data sets today. We describe a novel catalog compiled from many Hubble Space Telescope observations, where the detections are combined into a searchable collection of matches that link the individual detections. The matches provide descriptions of astronomical objects involving multiple wavelengths and epochs. High relative positional accuracy of objects is achieved across the Hubble images, often sub-pixel precision in the order of just a few milliarcseconds. The result is a reliable set of high-quality associations that are publicly available online.

  4. Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-consistent Measurements

    NASA Astrophysics Data System (ADS)

    Konopacky, Q. M.; Marois, C.; Macintosh, B. A.; Galicher, R.; Barman, T. S.; Metchev, S. A.; Zuckerman, B.

    2016-08-01

    We present new astrometric measurements from our ongoing monitoring campaign of the HR 8799 directly imaged planetary system. These new data points were obtained with NIRC2 on the W.M. Keck II 10 m telescope between 2009 and 2014. In addition, we present updated astrometry from previously published observations in 2007 and 2008. All data were reduced using the SOSIE algorithm, which accounts for systematic biases present in previously published observations. This allows us to construct a self-consistent data set derived entirely from NIRC2 data alone. From this data set, we detect acceleration for two of the planets (HR 8799b and e) at >3σ. We also assess possible orbital parameters for each of the four planets independently. We find no statistically significant difference in the allowed inclinations of the planets. Fitting the astrometry while forcing coplanarity also returns χ 2 consistent to within 1σ of the best fit values, suggesting that if inclination offsets of ≲20° are present, they are not detectable with current data. Our orbital fits also favor low eccentricities, consistent with predictions from dynamical modeling. We also find period distributions consistent to within 1σ with a 1:2:4:8 resonance between all planets. This analysis demonstrates the importance of minimizing astrometric systematics when fitting for solutions to highly undersampled orbits.

  5. Astrometric discovery of GJ 802b : in the Brown Dwarf Oasis?

    NASA Technical Reports Server (NTRS)

    Pravdo, Steven H.; Shaklan, Stuart B.; Lloyd, James

    2005-01-01

    The Stellar Planet Survey is an ongoing astrometric search for giant planets and brown dwarfs around a sample of 30 M dwarfs. We have discovered several low-mass companions by measuring the motion of our target stars relative to their reference frames. The lowest mass discovery thus far is GJ 802b, a companion to the M5 dwarf GJ 802A. The orbital period is 3.14 +/-0:03 yr, the system mass is 0:214 +/- 0:045 M(circled dot operator), and the semimajor axis is 1:28+/- 0:10 AU or 81 + 6 mas. Imaging observations indicate that GJ 802b is likely to be a brow with the astrometrically determined mass 0:058 +/- 0:021 M(circled dot operator) (1 (sigma) limits). The remaining uncertainty in the orbit is the eccentricity that is now loosely constrained. We dis the system age limits the mass and the prospects of further narrowing the mass range when e is more precisely determined.

  6. A Test of GEMS Astrometric Precision for Exoplanet Detection and Mass Measurement

    NASA Astrophysics Data System (ADS)

    Ammons, S. Mark; Marois, Christian; Macintosh, Bruce; Konopacky, Quinn; Neichel, Benoit; Galicher, Raphael; Bendek, Eduardo; Guyon, Olivier

    2014-08-01

    Precision astrometry is so far the only mainstream exoplanet detection technique that has yet to find a new planet. The unique capabilities of GeMS and GSAOI may finally be what we have been waiting for: the combination of a large aperture and wide-field AO correction for stable high-resolution wide-field diffraction-limited imaging. As part of this program, we have observed the astrometric calibrator star TYC 7122-00041-1 to demonstrate GeMS' long-term astrometric precision of < 0.4 mas in sparse fields (Ammons et al. 2013). Here, we propose two more epochs on the closest brown dwarf pair at 2 pc, WISE J1049-53 (Luhman 2013), newly discovered with Gemini in 2013 to be the third closest system known. GEMS will in one year obtain the best available projected relative orbits and a < 1% trigonometric distance, enabling precision masses and luminosity measurements for both L/T transition components of WISE 1049-53.

  7. Astrometric Measurements of Selected Visual Double Stars

    NASA Astrophysics Data System (ADS)

    Boyd, J.; Brokaw, A.; Deventer, J.; Garcia, M.; Gastelum, M.; Guerrero, Y.; Hallett, J.; Heape, K.; Ibarra, M.; Langston, R.; Maddux, D.; Moreland, J.; Mozzillo, R.; Overholts, J.; Perez, K.; Randle, V.; Savard, S.; Stewart, M.; West, L.; McClure, A.; Walker, D.

    2012-04-01

    The observations and measurements for a selected set of 13 double stars are reported. These tasks comprised the activities in a special course designated as a Learning Community which combines a standard astronomy course with a mathematics course devoted to research techniques. This class was taught at the Estrella Mountain Community College in Avondale, Arizona during the fall semester 2011. This course is a result of expanding the special research mathematics courses offered during the fall 2010 and spring 2011 semesters. Observations and measurements were taken with a Meade 12" Schmidt Cassegrain Telescope (SCT) using the Celestron MicroGuideTM and supplemented with imagery acquired with the Tzec Maun Foundation remote telescope system located in New Mexico.

  8. Competing Processes of Sibling Influence: Observational Learning and Sibling Deidentification

    ERIC Educational Resources Information Center

    Whiteman, Shawn D.; McHale, Susan M.; Crouter, Ann C.

    2007-01-01

    Although commonly cited as explanations for patterns of sibling similarity and difference, observational learning and sibling deidentification processes have rarely been examined directly. Using a person-oriented approach, we identified patterns in adolescents' perceptions of sibling influences and connected these patterns to sibling similarities…

  9. Evaluation of the Astrometric Potential of NIR Focal Plane Arrays for Determination of Parallaxes and Proper Motions of L and T Dwarfs

    NASA Astrophysics Data System (ADS)

    Vrba, F. J.; Henden, A. A.; Luginbuhl, C. B.; Guetter, H. H.; Monet, D. G.

    2000-05-01

    The capability of carrying out astrometric observations at near-infrared wavelengths has been long sought, as the region between 1.2-2.2 microns offers smaller atmospheric refractive distortions and measurement of objects which are not easily detectable at optical wavelengths. The recent discoveries by 2MASS, DENIS, and SDSS of numerous nearby L- and T-dwarfs whose SEDs peak in the near-infrared makes the capability of determining parallaxes and proper motions at these wavelengths especially attractive. We have carried out astrometric test observations using a Rockwell 256x256 HgCdTe (NICMOS 3) array at the USNO 1.55-m telescope to gain understanding of the prospects and problems inherent in a long-term near-infrared astrometric program. We routinely obtain accuracies of about 10 mas for a single measurement for well-exposed stars between 1.2 and 2.2 microns. We expect this accuracy to allow distance determinations to 2% or better for the majority of known L and T dwarfs within a two to three year observation series. These tests were carried out in anticipation of the use of an ALADDIN 1024x1024 InSb array, which will provide a larger FOV and increased sensitivity at 2.2 microns, for routine near-infrared parallax observations at USNO beginning in summer 2000. We report preliminary astrometric results obtained with engineering-grade ALADDIN arrays employed in NOAO instrumentation.

  10. VizieR Online Data Catalog: Amalthea and Thebe CCD astrometric obs. (Veiga+, 2005)

    NASA Astrophysics Data System (ADS)

    Veiga, C. H.; Vieira Martins, R.

    2005-07-01

    This paper presents the results of observations of Jupiter's satellites Amalthea and Thebe made in 1995, 1996 and 2001 at the Laboratorio Nacional de Astrofisica (LNA), Brazil. The observations were made in visible light wavelengths with a 1.6m reflector telescope and the light of Jupiter was covered by a mask placed near the CCD surface. The already published positions for 1995, whose astrometric reduction used the Galilean satellites, are now reduced using the stars in the CCD fields like the new positions of 1996 and 2001. The 2001 data are much better than those obtained in 1995, and that those from 1996 show large residuals. Considering the 310 frames observed, the mean residual is about 0.01" and the standard deviation is about 0.15". (1 data file).

  11. Astrometric calibration of the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center (XSTPS-GAC)

    NASA Astrophysics Data System (ADS)

    Zhang, Hui-Hua; Liu, Xiao-Wei; Yuan, Hai-Bo; Zhao, Hai-Bin; Yao, Jin-Sheng; Zhang, Hua-Wei; Xiang, Mao-Sheng; Huang, Yang

    2014-04-01

    We present astrometric calibration of the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center (XSTPS-GAC). XSTPS-GAC is the photometric part of the Digital Sky Survey of the Galactic Anti-center (DSS-GAC), which is a photometric and spectroscopic sky survey, in combination with LAMOST. In order to select an astrometric reference catalog, we made comparisons between the four widely used astrometric catalogs, GSC2.3, USNO-B1.0, UCAC3 and PPMXL. PPMXL shows relatively small systematic errors in positions and more homogeneous proper motion distributions toward the Galactic Anti-center (GAC), and was selected as the reference catalog. Based on the high quality and bright reference stars that were picked out from PPMXL, we performed a 4th-order polynomial fitting in image units, to construct the transformation relation between coordinates used by XSTPS-GAC and standard coordinates, and to simultaneously correct the image distortions in the CCD. Then we applied the derived relation to all sources to obtain their mean celestial coordinates based on the International Celestial Reference System. For bright point sources with r < 17.0 mag, the accuracy of astrometric calibration could reach about 80 mas for each of the g, r, i bands, with systematic errors being less than 10 mas. But for the faint sources at the brightness limit of the survey, which was r ~ 19.0 mag, the accuracy can still reach 200 mas. After combining all observations, the final weighted average coordinates could reach an accuracy of less than 70 mas for bright stars. For faint stars, the rms residuals of weighted coordinates decrease to ~ 110 mas. The final combined XSTPS-GAC coordinates show a good consistency with the Sloan Digital Sky Survey.

  12. Evaluating Observation Influence on Regional Water Budgets in Reanalyses

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Chern, Jiun-Dar; Mocko, David; Robertson, Franklin R.; daSilva, Arlindo M.

    2014-01-01

    The assimilation of observations in reanalyses incurs the potential for the physical terms of budgets to be balanced by a term relating the fit of the observations relative to a forecast first guess analysis. This may indicate a limitation in the physical processes of the background model, or perhaps inconsistencies in the observing system and its assimilation. In the MERRA reanalysis, an area of long term moisture flux divergence over land has been identified over the Central United States. Here, we evaluate the water vapor budget in this region, taking advantage of two unique features of the MERRA diagnostic output; 1) a closed water budget that includes the analysis increment and 2) a gridded diagnostic output data set of the assimilated observations and their innovations (e.g. forecast departures). In the Central United States, an anomaly occurs where the analysis adds water to the region, while precipitation decreases and moisture flux divergence increases. This is related more to a change in the observing system than to a deficiency in the model physical processes. MERRAs Gridded Innovations and Observations (GIO) data narrow the observations that influence this feature to the ATOVS and Aqua satellites during the 06Z and 18Z analysis cycles. Observing system experiments further narrow the instruments that affect the anomalous feature to AMSUA (mainly window channels) and AIRS. This effort also shows the complexities of the observing system, and the reactions of the regional water budgets in reanalyses to the assimilated observations.

  13. The First U.S. Naval Observatory Robotic Astrometric Telescope Catalog

    NASA Astrophysics Data System (ADS)

    Zacharias, N.; Finch, C.; Subasavage, J.; Bredthauer, G.; Crockett, C.; Divittorio, M.; Ferguson, E.; Harris, F.; Harris, H.; Henden, A.; Kilian, C.; Munn, J.; Rafferty, T.; Rhodes, A.; Schultheiss, M.; Tilleman, T.; Wieder, G.

    2015-10-01

    URAT1 is an observational, astrometric catalog covering most of the δ ≥slant -15° area and a magnitude range of about R = 3-18.5. Accurate positions (typically 10-30 mas standard error) are given for over 228 million objects at a mean epoch around 2013.5. For the over 188 million objects matched with the Two Micron All Sky Survey (2MASS) point-source catalog proper motions (typically 5-7 mas yr-1 standard errors) are provided. These data are supplemented by 2MASS and AAVSO Photometric All-Sky Survey (APASS) photometry. Observations, reductions, and catalog construction are described, together with results from external data verifications. The catalog data are served by CDS, Starsbourg (I/329).

  14. Geodetic and Astrometric Measurements with Very-Long-Baseline Interferometry. Ph.D. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Robertson, D. S.

    1975-01-01

    The use of very-long-baseline interferometry (VLBI) observations for the estimation of geodetic and astrometric parameters is discussed. Analytic models for the dependence of delay and delay rate on these parameters are developed and used for parameter estimation by the method of weighted least squares. Results are presented from approximately 15,000 delay and delay-rate observations, obtained in a series of nineteen VLBI experiments involving a total of five stations on two continents. The closure of baseline triangles is investigated and found to be consistent with the scatter of the various baseline-component results. Estimates are made of the wobble of the earth's pole and of the irregularities in the earth's rotation rate. Estimates are also made of the precession constant and of the vertical Love number, for which a value of 0.55 + or - 0.05 was obtained.

  15. Gamma Astrometric Measurement Experiment (GAME) - Implementation and performance

    NASA Astrophysics Data System (ADS)

    Gai, Mario; Gai, Mario; Vecchiato, Alberto; Lattanzi, Mario G.; Ligori, Sebastiano; Loreggia, Davide

    The GAME mission concept is aimed at test of the General Relativity, through very precise measurement of the gravitational deflection of light by the Sun, by means of an optimised telescope operating in the visible and launched in orbit on a small class satellite. We recall the science motivations, discussed in detail in a separate contribution by Vecchiato et al., and describe the mission requirements derivation, the proposed mission profile, the preliminary payload design and the expected performance. The targeted precision on the "γ" parameter of the Parametrised Post-Newtonian formulation of General Relativity is in the range 10-6 to 10-7 or better, with an improvement of one or two orders of magnitude with respect to the best currently available experimental results. Such precision is suitable to detect possible deviations of γ from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy. The measurement principle is based on the differential astrometric signature on the stellar positions, i.e. on the spatial component of the gravitational effect, rather than the temporal component as in the most recent experiments based on radio link delay timing. Calibration is based on frequent measurement of angular separation of bright sources in stellar fields affected by negligible deflection. The instrument concept is based on a dual field, multiple aperture Fizeau interferometer, observing simultaneously two sky regions close to the Solar limb. A split flat mirror is used to fold the telescope line of sight on two different directions on the sky, separated by a base angle of about 4 degrees, which represents the gauge applied on the sky to measure the desired angular value of deflection. Stability or calibration of the base angle is the key to fulfilling the GAME science goals. An internal laser metrology option is considered for both on ground

  16. The SIM Lite Astrometric Observatory: engineering risk reduction activity

    NASA Astrophysics Data System (ADS)

    Goullioud, Renaud; Dekens, Frank; Nemati, Bijan; An, Xin; Hovland, Larry

    2010-07-01

    The SIM Lite Astrometric Observatory is a mission concept for a space-borne instrument to perform micro-arcsecond narrow-angle astrometry to search 60 to 100 nearby stars for Earth-like planets, and to perform global astrometry for a broad astrophysics program. The main enabling technology development for the mission was completed during phases A & B. While the project is waiting for the results of the ASTRO2010 Decadal Survey to proceed into flight implementation, the instrument team is currently converting the developed technology onto flight-ready engineering models. These key engineering tasks will significantly reduce the implementation risks during the flight phases C & D of the mission. The main optical interferometer components, including the astrometric beam combiner (ABC), the fine steering mechanism (FSM), the path-length control and modulation optical mechanisms (POM & MOM), focal plane camera electronics (ATC & FTC), camera cooling cryo-heat pipe, and the siderostat mechanism are currently under development. Main assemblies are built to meet flight requirements and have been or will be subjected to flight qualification level environmental testing (random vibration and thermal cycling) and performance testing. The Spectral Calibration Development Unit (SCDU), a white light interferometer testbed has recently demonstrated how to perform the spectral calibration of the instrument. The Guide 2 Telescope testbed (G2T) has demonstrated the 50 micro-arcsecond angle monitoring capability required by SIM Lite to perform astrometry. This paper summarizes recent progress in engineering risk reduction activities.

  17. ASTROMETRIC JITTER OF THE SUN AS A STAR

    SciTech Connect

    Makarov, V. V.; Parker, D.; Ulrich, R. K.

    2010-07-10

    The daily variation of the solar photocenter over some 11 yr is derived from the Mount Wilson data reprocessed by Ulrich et al. to closely match the surface distribution of solar irradiance. The standard deviations of astrometric jitter are 0.52 {mu}AU and 0.39 {mu}AU in the equatorial and the axial dimensions, respectively. The overall dispersion is strongly correlated with solar cycle, reaching 0.91 {mu}AU at maximum activity in 2000. The largest short-term deviations from the running average (up to 2.6 {mu}AU) occur when a group of large spots happen to lie on one side with respect to the center of the disk. The amplitude spectrum of the photocenter variations never exceeds 0.033 {mu}AU for the range of periods 0.6-1.4 yr, corresponding to the orbital periods of planets in the habitable zone. Astrometric detection of Earth-like planets around stars as quiet as the Sun is not affected by star spot noise, but the prospects for more active stars may be limited to giant planets.

  18. Interstellar Medium, Young Stars, and Astrometric Binaries in Galactic Archaeology Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.

    2016-10-01

    Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.

  19. Advanced Undergraduate Computer Based Astronomy Lab. The Astrometric Binary Kruger 60.

    NASA Astrophysics Data System (ADS)

    Slovak, M. H.

    2002-12-01

    A challenging computer based lab for astronomy undergraduate students has been developed to determine the masses of the components of the visual binary system Kruger 60 = HD 239960 = BD+56 2783 using archival astrometric observations. The data consist of separations and position angles from 1898 to 1949 (Lippincott 1953; Van de Kamp 1967) of Kruger 60B relative to Kruger 60A covering a complete orbit. After reviewing Kepler's 3rd or Harmonic Law and Newton's revision, they analyze the data using Microsoft Excel to calculate a best fitting elliptical orbit to the relative orbit of Kruger 60B. The importance of deriving stellar masses from such binaries is emphasized by discussing the significance of mass in the role of stellar evolution. This lab is one in a series being designed to provide astronomy majors practical experience in mathematically modeling astronomical data.This research was supported in part by NASA LaSPACE LURA Grant LSU 3115-30-5199.

  20. Current results and developments in astrometric VLBI at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Purcell, G. H., Jr.; Cohen, E. J.; Fanselow, J. L.; Rogstad, D. H.; Skjerve, L. J.; Spitzmesser, D. J.; Thomas, J. B.

    1979-01-01

    The Jet Propulsion Laboratory's program of astrometric VLBI as one element of a navigation system for interplanetary spacecraft includes developing a radioastrometric source catalog, and a catalog of positions of compact extragalactic radio sources correct to about 0.01 arc sec. The three (64 m) antenna complexes of the Deep Space Network in Spain, Australia, and the U.S. are involved, each equipped to receive simultaneously at wavelengths of 13 and 3.6 cm with total system temperatures of about 20-25 K at both wavelengths. The program is to provide precise values of parameters used in navigational computations, including UT1 accurate to about 0.001s, and current values of polar motion to 30 cm. Bandwidth synthesis methods were applied to measure delays as well as rates regarding source positions derived from observations using the Mark II VLBI recording system which has a sampling rate of four million bits per second.

  1. Detecting human influence in observed changes in precipitation

    NASA Astrophysics Data System (ADS)

    Polson, Debbie; Hegerl, Gabriele; Bollasina, Massimo; Wilcox, Laura; Zhang, Xuebin; Osborn, Timothy; Balan Sarojini, Beena

    2015-04-01

    Human induced changes to the precipitation could cause some of the most serious impacts of climate change, with potential consequences for water resources, health, agriculture and ecosystems. However, quantifying and understanding the drivers of changes to precipitation is challenging due to its large spatial and temporal variability, the lack of long-term observational records over much of the globe and the counteracting affects of greenhouse gases and aerosols. Nevertheless, detection and attribution studies have shown that human influence has changed both global and regional precipitation over the latter half of the 20th century. Using climates models to derive fingerprints of external forcing, we are able to show that greenhouse gas warming has driven large scale changes in precipitation. Greenhouse gas forcing is detectable in observed changes to zonal mean precipitation over land (Polson et al., 2012a). It has also been shown to have caused the intensification of the water cycle, enhancing existing patterns of the precipitation in the tropics and subtropics, over both land and ocean (Polson et al., 2012b). While at global scales, the influence of greenhouse gases is detectable in observations, separating the response of precipitation to anthropogenic aerosol forcing is more difficult. However, in some regions the influence of aerosols dominate, making it possible to detect aerosol forcing. Observed precipitation in the monsoon regions underwent substantial changes during the second half of the twentieth century, with drying from the 1950s to mid-1980s and increasing precipitation in recent decades. Climate model simulations are used to derive fingerprints of individual climate forcings (i.e., greenhouse gas, anthropogenic aerosol, and natural) and detection and attribution methods applied to determine which, if any, have driven these changes to monsoon precipitation. Even when accounting for internal variability of the climate, a clear signal of anthropogenic

  2. The investigation of determination asteroids positions errors by observations of telescope SBG AO UFU

    NASA Astrophysics Data System (ADS)

    Kaizer, G. T.; Skripnichenko, P. V.

    2013-07-01

    The article is about investigation of influence astrometric CCD image processing conditions on the accuracy of determining the positions of asteroids. The main this research's problem is dependence of calculatedasteroids coordinates error from used in the processing mathematical model that approximated the image of the objects on the CCD image. In thearticle described of the effect of Lorentz and Moffatt profiles on the accuracy ofasteroids positions determining by the observation from SBG AO UFU.

  3. Astrometric search for Planets in the closest Brown Dwarf Binary system Luhman 16AB

    NASA Astrophysics Data System (ADS)

    Bedin, Luigi

    2014-10-01

    Located at 2.0 pc, the L8+T1 dwarfs system Luhman16AB is the third closest system known to Earth, making it a key benchmark for detailed investigation of brown dwarf atmospheric properties, thermal evolution, multiplicity and planet-hosting frequency. Indeed, a recent ground-based astrometric campaign suggested this system to host a 5-30 Jupiter masses exoplanet.We propose to use HST in spatial-scanning mode to obtain the most accurate annual parallax of any brown dwarf to date, achieving an unprecedented accuracy of 1 part in 10000 (50 micro-arcsecond) for each of the two components of Luh16, and to constrain their absolute space motions with similar accuracy. Most importantly, we will be able to confirm the giant planet candidate and to search for faint companions co-moving with the targets, either resolved or through astrometric perturbations of the A-B orbital motion, the latter probing down to few Earth-masses.Present-day ground-based direct imaging and AO facilities have fundamental limitations (field of view, PSF stability, differential chromatic effects, visibility) which introduce systematic and seasonal errors that are hard to quantify, and which have already resulted many times in clamorous false alarm in the recent past. This is particularly true for faint and red objects.Luhman 16A and B will be problematic for GAIA (faint, color, crowding, visibility), and the here proposed HST spatial-scanning mode observations will actually be an important complementary validation of the final GAIA catalog itself (expected 2020). Similarly, JWST is not expected to provide any better astrometry than HST because of its broader and irregular PSFs.

  4. An astrometric facility for planetary detection on the Space Station

    NASA Astrophysics Data System (ADS)

    Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.

    1987-03-01

    The preliminary system definition study for an Astrometric Telescope Facility (ATF) designed for the Space Station IOC is discussed, and a strawman system is designed which is found to meet the requirements for extrasolar planetary systems search and study. The strawman facility design, with a prime-focus 1.25-m aperture telescope and an f ratio of 13, was selected to minimize random and systematic errors. A basic operations approach is identified, including the approach to launch, initial on-orbit assembly and checkout, normal operations, and the response to anomolous conditions or failures. The preliminary system is designed to be fail-safe and single-fault tolerant. Mission analysis indicates that the basic viewing required for planetary detection can be accomplished in about 2/3 of the total viewing time.

  5. High Precision Bright-Star Astrometry with the USNO Astrometric CMOS Hybrid Camera System

    NASA Astrophysics Data System (ADS)

    Secrest, Nathan; Dudik, Rachel; Berghea, Ciprian T.; Hennessy, Greg; Dorland, Bryan

    2015-05-01

    While GAIA will provide excellent positional measurements of hundreds of millions of stars between 5 < mag < 20, an ongoing challenge in the field of high-precision differential astrometry is the positional accuracy of very bright stars (mag < 5), due to the enormous dynamic range between bright stars of interest, such as those in the Hipparcos catalog, and their background field stars, which are especially important for differential astrometry. Over the past few years, we have been testing the USNO Astrometric CMOS Hybrid Camera System (UAHC), which utilizes an H4RG-10 detector in windowing mode, as a possible solution to the NOFS USNO Bright Star Astrometric Database (UBAD). In this work, we discuss the results of an astrometric analysis of single-epoch Hipparcos data taken with the UAHC from the 1.55m Kaj Strand Astrometric Reflector at NOFS from June 27-30, 2014. We discuss the calibration of this data, as well as an astrometric analysis pipeline we developed that will enable multi-epoch differential and absolute astrometry with the UAHC. We find that while the overall differential astrometric stability of data taken with the UAHC is good (5-10 mas single-measurement precision) and comparable to other ground-based astrometric camera systems, bright stars in the detector window suffer from several systematic effects, such as insufficient window geometry and centroiding failures due to read-out artifacts - both of which can be significantly improved with modifications to the electronics, read-out speed and microcode.

  6. Influence of the lower boundary in lysimeter observations

    NASA Astrophysics Data System (ADS)

    Weller, Ulrich; Richter, Katja; Gubis, Jozef; Vogel, Hans-Jörg

    2014-05-01

    Lysimeters are a valuable tool to study the water household in soils under close to natural conditions. One major drawback is that they are cut off at the lower boundary. This influences strongly the percolation of water. As long as water is leaching down in the soil, it is stagnating at the lower boundary until saturated conditions are reached and the water can percolate through the gravel filter, and under unsaturated conditions there is no flow at all at the lower boundary. In natural soils the water potential at the same depth differs considerably from the regime in a lysimeter. If the depth of the soil or the soil forming substrate is deep enough, the lower boundary is at the potential that allows the percolation of the long term mean of percolation. In other situations, a water table may influence the matric potential in the natural soil, or a less permeable layer may impede free drainage. In all these situations the matric potential at the depth of the lower boundary of the lysimeter will differ substantially in the natural soil. The latest generation of lysimeter therefore has a controlled lower boundary. The matric potential can be actively adjusted to a desired value over a broad range. Most applications connect the suction in the lysimeter to a reference value obtained in the field at the same depth in order to mimic the correct distribution of the soil water. In this presentation we demonstrate the long term influence of the different lower boundary regimes on percolation and evaporation of water based on soil physical models, and we show first field data on the practical implementations with several months of observations.

  7. High-precision Astrometric Millimeter Very Long Baseline Interferometry Using a New Method for Multi-frequency Calibration

    NASA Astrophysics Data System (ADS)

    Dodson, Richard; Rioja, María J.; Molina, Sol N.; Gómez, José L.

    2017-01-01

    In this paper we describe a new approach for millimeter Very Long Baseline Interferometry (mm-VLBI) calibration that provides bona-fide astrometric alignment of the millimeter-wavelength images from a single source, for the measurement of frequency-dependent effects, such as “core-shifts” near the black hole of active galactic nucleus jets. We achieve our astrometric alignment by solving first for the ionospheric (dispersive) contributions using wide-band centimeter-wavelength observations. Second, we solve for the tropospheric (non-dispersive) contributions by using fast frequency-switching at the target millimeter-wavelengths. These solutions can be scaled and transferred from low frequency to the high frequency. To complete the calibration chain an additional step is required to remove a residual constant phase offset on each antenna. The result is an astrometric calibration and the measurement of the core-shift between 22 and 43 GHz for the jet in BL Lacertae to be ‑8 ± 5, 20 ± 6 μas, in R.A. and decl., respectively. By comparison to conventional phase referencing at centimeter-wavelengths we are able to show that this core shift at millimeter-wavelengths is significantly less than what would be predicted by extrapolating the low-frequency result, which closely followed the predictions of the Blandford & Königl conical jet model. As such it would be the first demonstration for the association of the VLBI core with a recollimation shock, normally hidden at low frequencies due to the optical depth, which could be responsible for the γ-ray production in blazar jets.

  8. Improving distance estimates to nearby bright stars: Combining astrometric data from Hipparcos, Nano-JASMINE and Gaia

    NASA Astrophysics Data System (ADS)

    Michalik, Daniel; Lindegren, Lennart; Hobbs, David; Lammers, Uwe; Yamada, Yoshiyuki

    2013-02-01

    Starting in 2013, Gaia will deliver highly accurate astrometric data, which eventually will supersede most other stellar catalogues in accuracy and completeness. It is, however, limited to observations from magnitude 6 to 20 and will therefore not include the brightest stars. Nano-JASMINE, an ultrasmall Japanese astrometry satellite, will observe these bright stars, but with much lower accuracy. Hence, the Hipparcos catalogue from 1997 will likely remain the main source of accurate distances to bright nearby stars. We are investigating how this might be improved by optimally combining data from all three missions through a joint astrometric solution. This would take advantage of the unique features of each mission: the historic bright-star measurements of Hipparcos, the updated bright-star observations of Nano-JASMINE, and the very accurate reference frame of Gaia. The long temporal baseline between the missions provides additional benefits for the determination of proper motions and binary detection, which indirectly improve the parallax determination further. We present a quantitative analysis of the expected gains based on simulated data for all three missions.

  9. Comparative feasibility study of two concepts for a space-based astrometric satellite

    NASA Technical Reports Server (NTRS)

    Bamdermann, L.; Bareket, N.; Metheny, W.

    1982-01-01

    A comparative feasibility study of two concepts for an astrometric satellite: a visual imaging telescope with a 16.5 meter focal length and a white light interferometer with a 15 meter baseline separation was conducted.

  10. The science, technology and mission design for the Laser Astrometric test of relativity

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.

    2006-01-01

    The Laser Astrometric Test of Relativity (LATOR) is a Michelson-Morley-type experiment designed to test the Einstein's general theory of relativity in the most intense gravitational environment available in the solar system - the close proximity to the Sun.

  11. Experimental Tests of the Astrometric Precision Obtainable with a Ten Micron Interferometer.

    DTIC Science & Technology

    1982-01-18

    declination-dependent phase offset is caused by the failure of the axes of rotation of the heliostat mirrors to intersect precisely . The source...A-Ji>L __ _ _ _ _ _ 4. TITLE (and Subtitle) S. TYPE Of REPORT & PERIOD COVERED EXPERIMENTAL TESTS OF THE ASTROMETRIC PRECISION Final Contract...of tests successfully achieved its objective and demonstrated the usefulness of infrared spatial interferometry for very precise astrometric

  12. GeMS/GSAOI Photometric and Astrometric Performance in Dense Stellar Fields

    NASA Astrophysics Data System (ADS)

    Dalessandro, E.; Saracino, S.; Origlia, L.; Marchetti, E.; Ferraro, F. R.; Lanzoni, B.; Geisler, D.; Cohen, R. E.; Mauro, F.; Villanova, S.

    2016-12-01

    Ground-based imagers at 8 m class telescopes assisted by multi-conjugate adaptive optics are primary facilities with which to obtain accurate photometry and proper motions in dense stellar fields. We observed the central region of the globular clusters Liller 1 and NGC 6624 with the Gemini Multi-conjugate Adaptive Optics System (GeMS) feeding the Gemini South Adaptive Optics Imager (GSAOI) currently available at the Gemini South telescope, under different observing conditions. We characterized the stellar point-spread function (PSF) in terms of FWHM, Strehl ratio (SR), and encircled energy (EE), over the field of view (FOV). We found that, for sub-arcsecond seeing at the observed airmass, we can obtain the diffraction-limited PSF (FWHM ≈ 80 mas), SR ∼ 40%, and EE ≥ 50% with a dispersion around 10% over the FOV of 85″ × 85″, in the K s band. In the J band the best images provide FWHMs between 60 and 80 mas, SR \\gt 10 % , and {EE}\\gt 40 % . For seeing at the observed airmass exceeding 1″, the performance worsens but it is still possible to perform PSF fitting photometry with 25% EE in J and 40% in K s . We also computed the geometric distortions of GeMS/GSAOI and we obtained corrected images with an astrometric accuracy of ∼1 mas in a stellar field with high crowding.

  13. VizieR Online Data Catalog: Astrometric orbits of SB9 stars (Jancart+, 2005)

    NASA Astrophysics Data System (ADS)

    Jancart, S.; Jorissen, A.; Babusiaux, C.; Pourbaix, D.

    2006-07-01

    Hipparcos Intermediate Astrometric Data (IAD) have been used to derive astrometric orbital elements for spectroscopic binaries from the newly released Ninth Catalogue of Spectroscopic Binary Orbits (SB9). This endeavour is justified by the fact that (i) the astrometric orbital motion is often difficult to detect without the prior knowledge of the spectroscopic orbital elements, and (ii) such knowledge was not available at the time of the construction of the Hipparcos Catalogue for the spectroscopic binaries which were recently added to the SB9 catalogue. Among the 1374 binaries from SB9 which have an HIP entry (excluding binaries with visual companions, or DMSA/C in the Double and Multiple Stars Annex), 282 have detectable orbital astrometric motion (at the 5% significance level). Among those, only 70 have astrometric orbital elements that are reliably determined (according to specific statistical tests), and for the first time for 20 systems. This represents a 8.5% increase of the number of astrometric systems with known orbital elements (The Double and Multiple Systems Annex contains 235 of those DMSA/O systems). (6 data files).

  14. The Astrometric Recognition of the Solar Clementine Gnomon (1702)

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    The Clementine gnomon has been built in 1702 to measure the Earth's obliquity variation. For this reason the pinhole was located in the walls of Diocletian's times (305 a. D.) in order to remain stable along the centuries, but its original form and position have been modified. We used an astrometric method to recover the original position of the pinhole: reshaping the pinhole to a circle of 1.5 cm of diameter, the positions of the Northern and Southern limbs have been compared with the ephemerides. A sistematic shift of 4.5 mm Southward of the whole solar image shows that the original pinhole was 4.5 mm North of the actual position, as the images in the Bianchini's book (1703) suggest. The oval shape of the actual pinhole is also wrong. Using a circle the larger solar spots are clearly visible. Some reference stars of the catalogue of Philippe de la Hire (1702), used originally for measuring the ecliptic latitude of the Sun, are written next to the meridian line, but after the last restauration (2000), four of them are wrongly located. Finally the deviation from the true North, of the meridian line's azimuth confirms the value recovered in 1750. This, with the local deviations of a true line, will remain as systematic error, like for all these historical instruments.

  15. IRREGULAR SATELLITES OF THE OUTER PLANETS: ORBITAL UNCERTAINTIES AND ASTROMETRIC RECOVERIES IN 2009-2011

    SciTech Connect

    Jacobson, R.; Brozovic, M.; Gladman, B.; Alexandersen, M.; Nicholson, P. D.; Veillet, C.

    2012-11-01

    More than 100 small satellites have been identified orbiting the giant planets in distant, inclined, eccentric orbits. Detailed study of these objects requires that their orbits be known well enough to permit routine observations both from the Earth and from spacecraft. Unfortunately, many of the satellites have very poorly known orbits due to a scarcity of astrometric measurements. We have developed a reliable method to estimate the future on-sky position uncertainties of the satellites and have verified that those uncertainties provide a correct measure of the true on-sky positional uncertainty. Based on the uncertainties, we identified a set of satellites that are effectively 'lost' and another set that would be lost if additional observations were not obtained in the near future. We attempted recoveries of 26 of the latter group using the Hale 5 m and CFHT 3.6 m telescopes and found 23. This validated our method's predictions and led to significant improvements in our knowledge of the orbits of the recovered moons. There remains a handful of irregular moons which are recoverable and whose orbits will benefit from additional observations during the next decade, while 16 moons of Jupiter and Saturn are essentially lost and will require a re-survey to be located again.

  16. Astrometric Confirmation and Preliminary Orbital Parameters of the Young Exoplanet 51 Eridani b with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    De Rosa, Robert J.; Nielsen, Eric L.; Blunt, Sarah C.; Graham, James R.; Konopacky, Quinn M.; Marois, Christian; Pueyo, Laurent; Rameau, Julien; Ryan, Dominic M.; Wang, Jason J.; Bailey, Vanessa; Chontos, Ashley; Fabrycky, Daniel C.; Follette, Katherine B.; Macintosh, Bruce; Marchis, Franck; Ammons, S. Mark; Arriaga, Pauline; Chilcote, Jeffrey K.; Cotten, Tara H.; Doyon, René; Duchêne, Gaspard; Esposito, Thomas M.; Fitzgerald, Michael P.; Gerard, Benjamin; Goodsell, Stephen J.; Greenbaum, Alexandra Z.; Hibon, Pascale; Ingraham, Patrick; Johnson-Groh, Mara; Kalas, Paul G.; Lafrenière, David; Maire, Jerome; Metchev, Stanimir; Millar-Blanchaer, Maxwell A.; Morzinski, Katie M.; Oppenheimer, Rebecca; Patel, Rahul I.; Patience, Jennifer L.; Perrin, Marshall D.; Rajan, Abhijith; Rantakyrö, Fredrik T.; Ruffio, Jean-Baptiste; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Tran, Debby; Vasisht, Gautam; Ward-Duong, Kimberly; Wolff, Schuyler G.

    2015-11-01

    We present new Gemini Planet Imager observations of the young exoplanet 51 Eridani b that provide further evidence that the companion is physically associated with 51 Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51 Eridani b is an unbound foreground or background T-dwarf in a chance alignment with 51 Eridani to 2 × 10-7, an order of magnitude lower than previously reported. If 51 Eridani b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semimajor axis of {14}-3+7 AU, corresponding to a period of {41}-12+35 years (assuming a mass of 1.75 M⊙ for the central star), and an inclination of {138}-13+15 deg. The remaining orbital elements are only marginally constrained by the current measurements. These preliminary values suggest an orbit that does not share the same inclination as the orbit of the distant M-dwarf binary, GJ 3305, which is a wide physically bound companion to 51 Eridani.

  17. Astrometric confirmation and preliminary orbital parameters of the young exoplanet 51 Eridani b with the Gemini Planet Imager

    SciTech Connect

    De Rosa, Robert J.; Nielsen, Eric L.; Blunt, Sarah C.; Graham, James R.; Konopacky, Quinn M.; Marois, Christian; Pueyo, Laurent; Rameau, Julien; Ryan, Dominic M.; Wang, Jason J.; Bailey, Vanessa; Chontos, Ashley; Fabrycky, Daniel C.; Follette, Katherine B.; Macintosh, Bruce; Marchis, Franck; Ammons, S. Mark; Arriaga, Pauline; Chilcote, Jeffrey K.; Cotten, Tara H.; Doyon, René; Duchêne, Gaspard; Fitzgerald, Michael P.; Gerard, Benjamin; Goodsell, Stephen J.; Greenbaum, Alexandra Z.; Hibon, Pascale; Ingraham, Patrick; Johnson-Groh, Mara; Kalas, Paul G.; Lafrenière, David; Maire, Jerome; Metchev, Stanimir; Millar-Blanchaer, Maxwell A.; Morzinski, Katie M.; Oppenheimer, Rebecca; Patel, Rahul I.; Patience, Jennifer L.; Perrin, Marshall D.; Rajan, Abhijith; Rantakyrö, Fredrik T.; Ruffio, Jean-Baptiste; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Tran, Debby; Vasisht, Gautam; Ward-Duong, Kimberly; Wolff, Schuyler G.

    2015-11-13

    We present new Gemini Planet Imager observations of the young exoplanet 51 Eridani b that provide further evidence that the companion is physically associated with 51 Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51 Eridani b is an unbound foreground or background T-dwarf in a chance alignment with 51 Eridani to 2 × 10–7, an order of magnitude lower than previously reported. If 51 Eridani b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semimajor axis of ${14}_{-3}^{+7}$ AU, corresponding to a period of ${41}_{-12}^{+35}$ years (assuming a mass of 1.75 M⊙ for the central star), and an inclination of ${138}_{-13}^{+15}$ deg. The remaining orbital elements are only marginally constrained by the current measurements. As a result, these preliminary values suggest an orbit that does not share the same inclination as the orbit of the distant M-dwarf binary, GJ 3305, which is a wide physically bound companion to 51 Eridani.

  18. Astrometric confirmation and preliminary orbital parameters of the young exoplanet 51 Eridani b with the Gemini Planet Imager

    DOE PAGES

    De Rosa, Robert J.; Nielsen, Eric L.; Blunt, Sarah C.; ...

    2015-11-13

    We present new Gemini Planet Imager observations of the young exoplanet 51 Eridani b that provide further evidence that the companion is physically associated with 51 Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51 Eridani b is an unbound foreground or background T-dwarf in a chance alignment with 51 Eridani to 2 × 10–7, an order of magnitude lower than previously reported. If 51 Eridani b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semimajor axis ofmore » $${14}_{-3}^{+7}$$ AU, corresponding to a period of $${41}_{-12}^{+35}$$ years (assuming a mass of 1.75 M⊙ for the central star), and an inclination of $${138}_{-13}^{+15}$$ deg. The remaining orbital elements are only marginally constrained by the current measurements. As a result, these preliminary values suggest an orbit that does not share the same inclination as the orbit of the distant M-dwarf binary, GJ 3305, which is a wide physically bound companion to 51 Eridani.« less

  19. High Precision Bright-Star Astrometry with the USNO Astrometric CMOS Hybrid Camera System

    NASA Astrophysics Data System (ADS)

    Secrest, Nathan; Dudik, Rachel; Berghea, Ciprian; Hennessy, Greg; Dorland, Bryan

    2015-08-01

    While GAIA will provide excellent positional measurements of hundreds of millions of stars between 5 < mag < 20, an ongoing challenge in the field of high-precision differential astrometry is the positional accuracy of very bright stars (mag < 5), due to the enormous dynamic range between bright stars of interest, such as those in the Hipparcos catalog, and their background field stars, which are especially important for differential astrometry. Over the past few years, we have been testing the USNO Astrometric CMOS Hybrid Camera System (UAHC), which utilizes an H4RG-10 detector in windowing mode, as a possible solution to the NOFS USNO Bright Star Astrometric Database (UBAD). In this work, we discuss the results of an astrometric analysis of single-epoch Hipparcos data taken with the UAHC from the 1.55m Kaj Strand Astrometric Reflector at NOFS from June 27-30, 2014. We discuss the calibration of this data, as well as an astrometric analysis pipeline we developed that will enable multi-epoch differential and absolute astrometry with the UAHC. We find that while the overall differential astrometric stability of data taken with the UAHC is good (5-10 mas single-measurement precision) and comparable to other ground-based astrometric camera systems, bright stars in the detector window suffer from several systematic effects, such as insufficient window geometry and centroiding failures due to read-out artifacts—both of which can be significantly improved with modifications to the electronics, read-out speed and microcode.

  20. The Laser Astrometric Test of Relativity (LATOR) Mission

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth, Jr.

    2003-01-01

    This paper discusses new fundamental physics experiment that will test relativistic gravity at the accuracy better than the effects of the second order in the gravitational field strength, proportional to G(sup 2). The Laser Astrometric Test Of Relativity (LATOR) mission uses laser interferometry between two micro-spacecraft whose lines of sight pass close by the Sun to accurately measure deflection of light in the solar gravity. The key element of the experimental design is a redundant geometry optical truss provided by a long-baseline (100 m) multi-channel stellar optical interferometer placed on the International Space Station (ISS). The spatial interferometer is used for measuring the angles between the two spacecraft and for orbit determination purposes. In Euclidean geometry, determination of a triangle s three sides determines any angle therein; with gravity changing the optical lengths of sides passing close by the Sun and deflecting the light, the Euclidean relationships are overthrown. The geometric redundancy enables LATOR to measure the departure from Euclidean geometry caused by the solar gravity field to a very high accuracy. LATOR will not only improve the value of the parameterized post-Newtonian (PPN) gamma to unprecedented levels of accuracy of 1 part in 10(exp 8), it will also reach ability to measure effects of the next post-Newtonian order (c(sup -4)) of light deflection resulting from gravity s intrinsic non-linearity. The solar quadrupole moment parameter, J(sub 2), will be measured with high precision, as well as a variety of other relativistic effects including Lense-Thirring precession. LATOR will lead to very robust advances in the tests of Fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity

  1. A Test of GEMS Astrometric Precision for Exoplanet Detection and Mass Measurement

    NASA Astrophysics Data System (ADS)

    Ammons, S. Mark; Marois, Christian; Macintosh, Bruce; Konopacky, Quinn; Neichel, Benoit; Galicher, Raphael; Bendek, Eduardo; Guyon, Olivier

    2013-08-01

    Precision astrometry is so far the only mainstream exoplanet detection technique that has yet to find a new planet. The unique capabilities of GeMS and GSAOI may finally be what we have been waiting for: the combination of a large aperture and wide-field AO correction for stable high-resolution wide-field diffraction-limited imaging. As part of a multi-year program starting in 2013A, we are observing SCR 1845 and Mu Arae in 2013A to (1) astrometrically verify the presence and measure the dynamical mass of the nearby brown dwarf companion orbiting SCR 1845 (Biller et al. 2006) and (2) measure the dynamical mass of mu Arae e, an RV discovery of 1.9 MJUP with a signal of approximately 0.5 mas (Pepe et al. 2008). Here, due to visibility constraints on SCR 1845 and Mu Arae, we propose four new epochs on the closest brown dwarf pair at 2 pc, WISE J1049-53 (Luhman 2013), newly discovered with Gemini in 2013 to be the third closest system known. GEMS will in one year obtain the best available projected relative orbits and a < 1% trigonometric distance, enabling precision masses and luminosity measurements for both L/T transition components.

  2. The scientific goal of the Japanese small astrometric satellite, Small-JASMINE

    NASA Astrophysics Data System (ADS)

    Yano, Taihei; Gouda, Naoteru; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Niwa, Yoshito; Yamada, Yoshiyuki

    2013-02-01

    Small-JASMINE is a small Japanese astrometric satellite, developed mainly at the National Astronomical Observatory of Japan. The target launch date of Small-JASMINE is around 2017. The satellite will be equipped with a telescope with an aperture size of 30 cm and a focal length of approximately 3.9 m. The operational wavelength will be centered on the infrared Hw band, between 1.1 and 1.7 μm, using a HgCdTe detector with 4k × 4k pixels. This will enable us to observe the central regions of our Galaxy and clarify the dynamical structure of the bulge region. A restricted region of the Galactic bulge will be observed using a frame-linking method, which is different from the approach taken by both Hipparcos and Gaia, both developed at ESA. The target accuracy of the annual parallax and proper motion is approximately 10 μas and 10 μas yr-1, respectively, in the central region of the survey area of 0.3 × 0.3 deg2. The target accuracy of the annual parallax, ~ 50 μas, and that of the proper motion, ~ 50 μas yr-1, will be obtained within a region of 2 × 2 deg2. The observing region covers a field of approximately 3 × 3 deg2. The mission is required to continue for around three years to obtain reliable measurements. In the winter season, the angular distance between the Sun and the Galactic bulge region is small. Accordingly, we may have the chance to observe different regions which contain scientifically interesting targets, such as Cygnus X-1. If we are successful in observing the object over the course of a few weeks, the orbital elements of the star accompanying Cygnus X-1 can be resolved by Small-JASMINE.

  3. Action Experience, More than Observation, Influences Mu Rhythm Desynchronization

    PubMed Central

    Cannon, Erin N.; Yoo, Kathryn H.; Vanderwert, Ross E.; Ferrari, Pier F.; Woodward, Amanda L.; Fox, Nathan A.

    2014-01-01

    Since the discovery of mirror neurons in premotor and parietal areas of the macaque monkey, the idea that action and perception may share the same neural code has been of central interest in social, developmental, and cognitive neurosciences. A fundamental question concerns how a putative human mirror neuron system may be tuned to the motor experiences of the individual. The current study tested the hypothesis that prior motor experience modulated the sensorimotor mu and beta rhythms. Specifically, we hypothesized that these sensorimotor rhythms would be more desynchronized after active motor experience compared to passive observation experience. To test our hypothesis, we collected EEG from adult participants during the observation of a relatively novel action: an experimenter used a claw-like tool to pick up a toy. Prior to EEG collection, we trained one group of adults to perform this action with the tool (performers). A second group comprised trained video coders, who only had experience observing the action (observers). Both the performers and the observers had no prior motor and visual experience with the action. A third group of novices was also tested. Performers exhibited the greatest mu rhythm desynchronization in the 8–13 Hz band, particularly in the right hemisphere compared to observers and novices. This study is the first to contrast active tool-use experience and observation experience in the mu rhythm and to show modulation with relatively shorter amounts of experience than prior mirror neuron expertise studies. These findings are discussed with respect to its broader implication as a neural signature for a mechanism of early social learning. PMID:24663967

  4. Astrometric Companions Detected at Visible Wavelengths with the Hubble Space Telescope Fine Guidance Sensors

    NASA Astrophysics Data System (ADS)

    Franz, O. G.; Wasserman, L. H.; Bradley, A. J.; Benedict, G. F.; Duncombe, R. L.; Hemenway, P. D.; Jefferys, W. H.; McArthur, B.; Nelan, E.; Shelus, P. J.; Story, D.; Whipple, A. L.; Fredrick, L. W.; van Altena, Wm. F.

    1994-12-01

    Astrometric (``unseen'') companions provide a plausible interpretation of periodic, low--amplitude variations (perturbations) in the proper motions of some nearby M--dwarfs (Lippincott 1978, Space Sci. Rev. 22, 153--189). Using the Fine Guidance Sensors (FGS) in the Transfer Function Scan mode, we have searched for five of these astrometric companions. We report the confirmed detection, at visible wavelengths, of a faint orbiting companion to each of the following M--dwarfs: BD+67.552 = GL310, AC+48.1595-89 = GL623, W1062 = GL748, and W922 = GL831. This work is supported by NASA under grant NAG5--1603 to UTexas.

  5. Astrometric light-travel time signature of sources in nonlinear motion. I. Derivation of the effect and radial motion

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, G.; Torra, J.

    2006-04-01

    Context: .Very precise planned space astrometric missions and recent improvements in imaging capabilities require a detailed review of the assumptions of classical astrometric modeling.Aims.We show that Light-Travel Time must be taken into account in modeling the kinematics of astronomical objects in nonlinear motion, even at stellar distances.Methods.A closed expression to include Light-Travel Time in the current astrometric models with nonlinear motion is provided. Using a perturbative approach the expression of the Light-Travel Time signature is derived. We propose a practical form of the astrometric modelling to be applied in astrometric data reduction of sources at stellar distances(d>1 pc).Results.We show that the Light-Travel Time signature is relevant at μ as accuracy (or even at mas) depending on the time span of the astrometric measurements. We explain how information on the radial motion of a source can be obtained. Some estimates are provided for known nearby binary systemsConclusions.Given the obtained results, it is clear that this effect must be taken into account in interpreting precise astrometric measurements. The effect is particularly relevant in measurements performed by the planned astrometric space missions (GAIA, SIM, JASMINE, TPF/DARWIN). An objective criterion is provided to quickly evaluate whether the Light-Travel Time modeling is required for a given source or system.

  6. Hand Dominance Influences the Processing of Observed Bodies

    ERIC Educational Resources Information Center

    Gardner, Mark R.; Potts, Rosalind

    2010-01-01

    In motor tasks, subgroups of lefthanders have been shown to differ in the distribution of attention about their own bodies. The present experiment examined whether similar attentional biases also apply when processing observed bodies. Sixteen right handers (RHs), 22 consistent left handers (CLHs) and 11 relatively ambidextrous inconsistent left…

  7. External Influences on Modeled and Observed Cloud Trends

    NASA Technical Reports Server (NTRS)

    Marvel, Kate; Zelinka, Mark; Klein, Stephen A.; Bonfils, Celine; Caldwell, Peter; Doutriaux, Charles; Santer, Benjamin D.; Taylor, Karl E.

    2015-01-01

    Understanding the cloud response to external forcing is a major challenge for climate science. This crucial goal is complicated by intermodel differences in simulating present and future cloud cover and by observational uncertainty. This is the first formal detection and attribution study of cloud changes over the satellite era. Presented herein are CMIP5 (Coupled Model Intercomparison Project - Phase 5) model-derived fingerprints of externally forced changes to three cloud properties: the latitudes at which the zonally averaged total cloud fraction (CLT) is maximized or minimized, the zonal average CLT at these latitudes, and the height of high clouds at these latitudes. By considering simultaneous changes in all three properties, the authors define a coherent multivariate fingerprint of cloud response to external forcing and use models from phase 5 of CMIP (CMIP5) to calculate the average time to detect these changes. It is found that given perfect satellite cloud observations beginning in 1983, the models indicate that a detectable multivariate signal should have already emerged. A search is then made for signals of external forcing in two observational datasets: ISCCP (International Satellite Cloud Climatology Project) and PATMOS-x (Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres - Extended). The datasets are both found to show a poleward migration of the zonal CLT pattern that is incompatible with forced CMIP5 models. Nevertheless, a detectable multivariate signal is predicted by models over the PATMOS-x time period and is indeed present in the dataset. Despite persistent observational uncertainties, these results present a strong case for continued efforts to improve these existing satellite observations, in addition to planning for new missions.

  8. Analysis of the photometric and astrometric fidelity of high-resistivity, p- channel CCDs

    NASA Astrophysics Data System (ADS)

    Abunaemeh, Malek Amir Mahmoud

    Photometry and astrometry performed with charge coupled devices (CCDs) at the focal planes of large telescopes are indispensable tools of modern observational cosmology, astrophysics and astronomy. In the modern era of precision cosmology, variations in the sub-pixel sensitivity and spectral response of CCDs can affect the science yield of observations and must be characterized. Unfortunately, there have been very few studies to measure the sub-pixel response variations of CCDs, particularly in the context of observational cosmology. It is the aim of this thesis to perform the first measurement of the photometric and astrometric fidelity of high-resistivity, p- channel CCDs. These devices have been selected for major upcoming observational cosmology missions such as the space-based Supernova Acceleration Probe satellite (SNAP) and the ground-based Dark Energy Survey. An experimental study has been performed to make detailed measurements of the intrapixel response variations of these devices at a precision exceeding 2%, which is the level of precision required for the missions mentioned above. A 300 mm thick, 10.5 mm pixel pitch, 1.4k×1.4k format, high-resistivity, p-channel CCD operated fully depleted was illuminated by a 1.3 mm pinhole projector. The illuminated spot was moved in sub-pixel steps through various patterns to measure several properties of the device including the lateral charge diffusion, the intrapixel sensitivity variations, the effective diffusion near the edge of the device active region where electric field lines in the device may diverge, to test the photometric performance of a new technique for acquiring dithered astronomical observations coined "CCD Phase Dithering." It was determined that the intrapixel sensitivity variations were less than ˜ 0.5% in most cases. The lateral diffusion in the device was measured to be 7.41 mm in the device center, consistent with theoretical predictions. Charge spreading near the device edge resulted in an

  9. Astrometric sky survey of the zone +2° – +5.5° with the telescope MAC

    NASA Astrophysics Data System (ADS)

    Lazorenko, P.; Karbovsky, V.; Svachiy, L.; Buromsky, M.; Kasyan, S.

    2016-06-01

    We describe the results of the astrometric sky survey with the telescope MAC which was performed in 2010–2014 by the Main Astronomical observatory of NAS of Ukraine and Astronomical observatory of Taras Shevchenko Kiev national University. We obtained about 6 million of images of the sky objects to 17m in equatorial zone δ = +2°÷+5.5°. All images were obtained during 188 night observational series with use of V-band filter. Now we obtained the preliminary version of KMAC2.0 catalogue. We estimate that precision of positions for bright V<14m stars is 50–90 milliarcsecond and for fainter 14m

  10. Rotation periods and astrometric motions of the Luhman 16AB brown dwarfs by high-resolution lucky-imaging monitoring

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Giacobbe, P.; Littlefair, S. P.; Southworth, J.; Bozza, V.; Damasso, M.; Dominik, M.; Hundertmark, M.; Jørgensen, U. G.; Juncher, D.; Popovas, A.; Rabus, M.; Rahvar, S.; Schmidt, R. W.; Skottfelt, J.; Snodgrass, C.; Sozzetti, A.; Alsubai, K.; Bramich, D. M.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Figuera Jaimes, R.; Galianni, P.; Gu, S.-H.; Harpsøe, K.; Haugbølle, T.; Henning, Th.; Hinse, T. C.; Kains, N.; Korhonen, H.; Scarpetta, G.; Starkey, D.; Surdej, J.; Wang, X.-B.; Wertz, O.

    2015-12-01

    Context. Photometric monitoring of the variability of brown dwarfs can provide useful information about the structure of clouds in their cold atmospheres.The brown-dwarf binary system Luhman 16AB is an interesting target for such a study, because its components stand at the L/T transition and show high levels of variability. Luhman 16AB is also the third closest system to the solar system, which allows precise astrometric investigations with ground-based facilities. Aims: The aim of the work is to estimate the rotation period and study the astrometric motion of both components. Methods: We have monitored Luhman 16AB over a period of two years with the lucky-imaging camera mounted on the Danish 1.54 m telescope at La Silla, through a special i + z long-pass filter, which allowed us to clearly resolve the two brown dwarfs into single objects. An intense monitoring of the target was also performed over 16 nights, in which we observed a peak-to-peak variability of 0.20 ± 0.02 mag and 0.34 ± 0.02 mag for Luhman 16A and 16B, respectively. Results: We used the 16-night time-series data to estimate the rotation period of the two components. We found that Luhman 16B rotates with a period of 5.1 ± 0.1 h, in very good agreement with previous measurements. For Luhman 16A, we report that it rotates more slowly than its companion, and even though we were not able to get a robust determination, our data indicate a rotation period of roughly 8 h. This implies that the rotation axes of the two components are well aligned and suggests a scenario in which the two objects underwent the same accretion process. The 2-year complete data set was used to study the astrometric motion of Luhman 16AB. We predict a motion of the system that is not consistent with a previous estimate based on two months of monitoring, but cannot confirm or refute the presence of additional planetary-mass bodies in the system. Based on data collected by MiNDSTEp with the Danish 1.54 m telescope at the ESO La

  11. Update on Astrometric Follow-Up at Apache Point Observatory by Adler Planetarium

    NASA Astrophysics Data System (ADS)

    Nault, Kristie A.; Brucker, Melissa; Hammergren, Mark

    2016-10-01

    We began our NEO astrometric follow-up and characterization program in 2014 Q4 using about 500 hours of observing time per year with the Astrophysical Research Consortium (ARC) 3.5m telescope at Apache Point Observatory (APO). Our observing is split into 2 hour blocks approximately every other night for astrometry (this poster) and several half-nights per month for spectroscopy (see poster by M. Hammergren et al.) and light curve studies.For astrometry, we use the ARC Telescope Imaging Camera (ARCTIC) with an SDSS r filter, in 2 hour observing blocks centered around midnight. ARCTIC has a magnitude limit of V~23 in 60s, and we target 20 NEOs per session. ARCTIC has a FOV 1.57 times larger and a readout time half as long as the previous imager, SPIcam, which we used from 2014 Q4 through 2015 Q3. Targets are selected primarily from the Minor Planet Center's (MPC) NEO Confirmation Page (NEOCP), and NEA Observation Planning Aid; we also refer to JPL's What's Observable page, the Spaceguard Priority List and Faint NEOs List, and requests from other observers. To quickly adapt to changing weather and seeing conditions, we create faint, midrange, and bright target lists. Detected NEOs are measured with Astrometrica and internal software, and the astrometry is reported to the MPC.As of June 19, 2016, we have targeted 2264 NEOs, 1955 with provisional designations, 1582 of which were detected. We began observing NEOCP asteroids on January 30, 2016, and have targeted 309, 207 of which were detected. In addition, we serendipitously observed 281 moving objects, 201 of which were identified as previously known objects.This work is based on observations obtained with the Apache Point Observatory 3.5m telescope, which is owned and operated by the Astrophysical Research Consortium. We gratefully acknowledge support from NASA NEOO award NNX14AL17G and thank the University of Chicago Department of Astronomy and Astrophysics for observing time in 2014.

  12. GAME - A small mission concept for high-precision astrometric test of General Relativity

    NASA Astrophysics Data System (ADS)

    Vecchiato, A.; Gai, Mario; Donati, Paolo; Morbidelli, Roberto; Lattanzi, Mario G.; Crosta, Mariateresa

    2010-11-01

    GAME (Gamma Astrometric Measurement Experiment) is a concept for a small mission whose main goal is to measure from space the γ parameter of the Parameterized Post-Newtonian formalism, Will (2001)) A satellite, looking as close as possible to the Solar limb, measures the gravitational bending of light in a way similar to that followed by past experiments from the ground during solar eclipses. In the cited formalism, deviations of the γ parameter from unity are interpreted as deviations from the predictions of General Relativity which are foreseen by several competing theories of gravity. In the present theoretical scenario, such deviations are expected to appear in the range between 10-5 and 10-7. The most stringent experimental constraints available up to now are those of the Cassini mission, that gives 1-γ≲10-5 Bertotti et al. (2003), while future space missions are expected to reach the 10-7 level of accuracy. (Vecchiato et al. (2003), Turyshev et al. (2004), Ni (2008)) Preliminary simulations have shown that the expected final accuracy of GAME can reach the 10-7 level, or better if the mission profile can be extended to fit a larger budget Vecchiato et al. (2009), Gai et al. (2009). This work, which has recently been extended to better assess the mission performances, has confirmed the previous results and has given indications on how further improve various aspects of the mission profile. Moreover, thanks to its flexible observation strategy, GAME is also able to target other interesting scientific goals in the realm of General Relativity, as well as in those involving observations of selected extrasolar systems in the brown dwarf and planetary regime.

  13. Parallax of a Mira variable R Ursae Majoris studied with astrometric VLBI

    NASA Astrophysics Data System (ADS)

    Nakagawa, Akiharu; Kurayama, Tomoharu; Matsui, Makoto; Omodaka, Toshihiro; Honma, Mareki; Shibata, Katsunori M.; Sato, Katsuhisa; Jike, Takaaki

    2016-10-01

    We have measured an annual parallax of the Mira variable R Ursae Majoris (R UMa) with the VLBI Exploration for Radio Astronomy (VERA). From the monitoring VLBI observations over a span of about two years, we detected H2O maser spots in the LSR velocity range from 37 to 42 km s-1. We derived an annual parallax of 1.97 ± 0.05 mas, and this gives a corresponding distance of 508 ± 13 pc. The VLBI maps revealed 72 maser spots distributed in an ˜110 au area around the expected stellar position. Circumstellar kinematics of the maser spots were also revealed by subtracting a systemic motion in the Hipparcos catalog from proper motions of each maser spot derived from our VLBI observations. Infrared photometry was also conducted to measure a K-band apparent magnitude, and we obtained a mean magnitude of mK = 1.19 ± 0.02 mag. Using the trigonometric distance, mK is converted to a K-band absolute magnitude of MK = -7.34 ± 0.06 mag. This result gives a much more accurate absolute magnitude for R UMa than previously provided. We solved a zero-point of the MK-log P relation for the Galactic Mira variables and obtained a relation of MK = -3.52 log P + (1.09 ± 0.14). Other long-period variables, including red supergiants, whose distances were determined with astrometric VLBI, were also compiled to explore the different sequences of the MK-log P relation.

  14. An Astrometric Companion to the Nearby Metal-Poor, Low-Mass Star LHS 1589

    NASA Astrophysics Data System (ADS)

    Lépine, Sébastien; Rich, R. Michael; Shara, Michael M.; Cruz, Kelle L.; Skemer, Andrew

    2007-10-01

    We report the discovery of a companion to the high proper motion star LHS 1589, a nearby high-velocity, low-mass subdwarf. The companion (LHS 1589B) is located 0.224''+/-0.004'' to the southwest of the primary (LHS 1589A), and is 0.5 mag fainter than the primary in the Ks band. The pair was resolved with the IRCAL infrared camera at Lick Observatory, operating with the Laser Guide Star Adaptive Optics system. A low-resolution spectrum of the unresolved pair obtained at the MDM observatory shows the source to be consistent with a cool subdwarf of spectral subtype sdK7.5. A photometric distance estimate places the metal-poor system at a distance d=81+/-18 pc from the Sun. We also measure a radial velocity Vrad=67+/-8 km s-1, which, together with the proper motion and estimated distance, suggests that the pair is roaming the inner Galactic halo on a highly eccentric orbit. With a projected orbital separation s=18.1+/-4.8 AU, and a crude estimate of the system's total mass, we estimate the orbital period of the system to be in the range 75 yr astrometrically, after monitoring the orbital motion over a decade or so. The LHS 1589AB system could thus provide a much needed constraint to the mass-luminosity relationship of metal-poor, low-mass stars. Based on observations performed with the Laser Guide Star Adaptive Optics system at the Lick Observatory, operated by the University of California system. Based on observations conducted at the MDM observatory, operated jointly by the University of Michigan, Dartmouth College, the Ohio State University, Columbia University, and the University of Ohio.

  15. Observation of Influence of Cataract Surgery on the Ocular Surface

    PubMed Central

    Park, Yuli; Hwang, Hyung Bin; Kim, Hyun Seung

    2016-01-01

    Introduction To evaluate meibomian gland function, changes of lacrimal tears and ocular surface parameters and tear inflammatory mediators following cataract surgery. Methods 48 eyes of 34 patients who underwent uncomplicated phacoemulsification were involved and divided into 2 groups with those who had preexisting dry-eye before cataract surgery and those who did not. Ocular symptom score, Schirmer I test, tear film break-up time (TBUT), corneal sensitivity threshold, corneal staining, inflammatory cytokine activities, lid margin abnormalities, meibum expressibility, meibum quality and meibomian gland imaging were evaluated preoperatively, at 1 day, 1 and 2 months postoperatively. Results Ocular symptom scores were worse at 1 and 2 months postoperatively but, TBUT, corneal staining score and corneal sensitivity threshold showed gradual improvements at 1 month and 2 months postoperatively (p<0.05, respectively). Interestingly there were statistically significant improvements in TBUT, corneal staining score and corneal sensitivity threshold at 1 month postoperatively when topical eye drops were used compared to the period without topical therapy which is the months 2 postoperatively. There were statistically significant decreases in IL-1β, IL-6, IL-8, MCP-1, TNF-α and IFN-γ concentrations at 1 and 2 months postoperatively. Lid margin abnormalities, meibum quality and expressibility scores increased significantly (p < 0.05, respectively) at postoperative period. Compared with the no dry eye group, dry eye group revealed significantly higher ocular symptom scores, lower TBUT, higher lid margin abnormalities, meibum quality and expressibility scores after cataract surgery. There were significant correlations between IL-6 and parameters of dry eye, and between MGD parameters and ocular symptom scores. Conclusions Our study revealed that meibomian gland function is influenced after cataract surgery accompanying structural changes and these were correlated with

  16. Comparing Observed Hurricane Conditions Against Potential Future Climate Change Influences

    NASA Astrophysics Data System (ADS)

    Graham, W. D.

    2012-12-01

    Climate Adaptation Science Investigators: (CASI) is to advance and apply NASA's scientific expertise and products to develop climate adaptation strategies that support NASA's overall mission by minimizing risks to each center's operations, physical assets, and personnel. Using Hurricane Katrina observations as a baseline, we use ADCIRC to model surge extent with simple modifications of the storm track. We examine two time now (T0) scenarios of present-day climatological factors: 1) translating the 2005 path 7 km west; and 2) rotating the approach angle from due-north to WNW. Second, we examine two future time scenarios (TX) by infusing climate change conditions, such as sea level rise and increased storm intensity, into a T0 baseline to assess future impacts. The primary goal of this work entails planning and protecting NASA assets and infrastructure. The adjacent communities, state and local emergency managers, gain benefit from this NASA work as data and analysis includes the surrounding geography.

  17. CCD Astrometric Measurements of WDS 08167+4053 Using the iTelescope Network

    NASA Astrophysics Data System (ADS)

    Riley, Bill; Li, Dewei; Li, Junyao; Dennis, Aren; Boyce, Grady; Boyce, Pat

    2016-10-01

    Separations and position angle astrometric measurements were made of the multiple star system WDS 08167+4053 AB, AC, and BC components. Our measurements compared favorably with historical measurements from the United States Naval Observatory Washington Double Star Catalog, confirming the trend.

  18. A magnetic isolation and pointing system for the astrometric telescope facility

    NASA Technical Reports Server (NTRS)

    Smith, Marcie; Hibble, William; Wolke, Patrick J.

    1993-01-01

    The astrometric telescope facility (ATF), a 20-meter telescope designed for long-term detection and observation of planetary systems outside of the solar system, is scheduled to be a major user of the Space Station's payload pointing system (PPS) capabilities. However, because the ATF has such a stringent pointing stability specification (as low as 0.01 arcsec error over the frequency range from 5 to 200 hertz) and requires +/- 180-degree roll rotation around the telescope's line of sight, the ATF's utilization of the PPS requires the addition of a mechanism or mechanisms to enhance the basic PPS capabilities. The results of a study conducted to investigate the ATF pointing performance achievable by the addition of a magnetic isolation and pointing (MIPS) system between the PPS upper gimbal and the ATF, and separately, by the addition of a passive isolation system between the Space Station and the PPS base are presented. In addition, the study produced requirements on magnetic force and gap motion as a function of the level of Space Station disturbance. These results were used to support the definition of a candidate MIPS. Pointing performance results from the study indicate that a MIPS can meet the ATF pointing requirements in the presence of a PPS base transitional acceleration of up to 0.018g, with reasonable restrictions placed on the isolation and pointing bandwidths. By contrast, the passive base isolator system must have an unrealistically low isolation bandwidth on all axes (less than 0.1 hertz) to meet ATF pointing requirements. The candidate MIPS is based on an assumed base translational disturbance of 0.01g. The system fits within the available annular region between the PPS and ATF while meeting power and weight limitations and providing the required payload roll motion. Payload data and power services are provided by noncontacting transfer devices.

  19. Elucidation of the tidal influence on bacterial populations in a monsoon influenced estuary through simultaneous observations.

    PubMed

    Khandeparker, Lidita; Eswaran, Ranjith; Gardade, Laxman; Kuchi, Nishanth; Mapari, Kaushal; Naik, Sneha D; Anil, Arga Chandrashekar

    2017-01-01

    The influence of tides on bacterial populations in a monsoon influenced tropical estuary was assessed through fine resolution sampling (1 to 3 h) during spring and neap tides from mouth to the freshwater end at four stations during pre-monsoon, monsoon and post-monsoon seasons. Higher abundance of total bacterial count (TBC) in surface water near the river mouth, compared to the upstream, during pre-monsoon was followed by an opposite scenario during the monsoon When seasonally compared, it was during the post-monsoon season when TBC in surface water was highest, with simultaneous decrease in their count in the river sediment. The total viable bacterial count (TVC) was influenced by the depth-wise stratification of salinity, which varied with tidal fluctuation, usually high and low during the neap and spring tides respectively. The abundance of both the autochthonous Vibrio spp. and allochthonous coliform bacteria was influenced by the concentrations of dissolved nutrients and suspended particulate matter (SPM). It is concluded that depending on the interplay of riverine discharge and tidal amplitude, sediment re-suspension mediated increase in SPM significantly regulates bacteria populations in the estuarine water, urging the need of systematic regular monitoring for better prediction of related hazards, including those associated with the rise in pathogenic Vibrio spp. in the changing climatic scenarios.

  20. Gravity wave amplitudes changes observed in different airglow emissions: influence of wave breaking and observational selection

    NASA Astrophysics Data System (ADS)

    Schmidt, Carsten; Wüst, Sabine; Hannawald, Patrick; Bittner, Michael

    2016-04-01

    The upper mesosphere lower thermosphere region is well known for enhanced gravity wave breaking. Airglow emissions originating in this height region provide a good possibility for detailed studies of gravity wave behavior in this altitude. Therefore, rotational temperatures and intensities of the OH(3-1), OH(4-2), OH(6-2) and O2b(0-1)-transitions recorded at the NDMC (Network for the Detection of Mesospheric Change) site Oberpfaffenhofen (48.1°N, 10.3°E), Germany are examined. First results indicate, that both significant amplitude growth from the lower (~87km) OH airglow emissions to the higher (~95km) O2 airglow emissions of more than 100% as well as strong damping can be observed. On several occasions OH- and O2-emissions show completely independent behavior - probably related to the complete breakup of a gravity wave. These amplitude changes are set into relation to emission layer height, vertical wavelength, absolute temperature and potential seasonal dependence. Observations from further NDMC sites in France, Germany and Austria are used to discuss the evolution of these waves on horizontal scales from 100km to 1000km.

  1. Astrometric Studies of Aldebaran, Arcturus, Vega, the Hyades, and Other Regions

    NASA Astrophysics Data System (ADS)

    Gatewood, George

    2008-07-01

    The results of astrometric studies in the regions of Groombridge 34A, the Hyades, Aldebaran, Ross 47, BD+5° 1668, 81 Cancri, BD+15° 2620, Arcturus, Vega, and Ross 248 are presented. Estimates of the absolute parallax of each star are presented and a mass estimate is present for 81 Cancri. Comments include the discussion of the apparent motions of a few previously suggested planetary systems.

  2. ASTROMETRIC STUDIES OF ALDEBARAN, ARCTURUS, VEGA, THE HYADES, AND OTHER REGIONS

    SciTech Connect

    Gatewood, George

    2008-07-15

    The results of astrometric studies in the regions of Groombridge 34A, the Hyades, Aldebaran, Ross 47, BD+5{sup 0} 1668, 81 Cancri, BD+15{sup 0} 2620, Arcturus, Vega, and Ross 248 are presented. Estimates of the absolute parallax of each star are presented and a mass estimate is present for 81 Cancri. Comments include the discussion of the apparent motions of a few previously suggested planetary systems.

  3. Using the microcomputer system for the 1.56 M astrometric telescope

    NASA Astrophysics Data System (ADS)

    Wan, Y.; Dai, C.

    This paper deals with the method of using a microcomputer system to steer the 1.56 m astrometric telescope at Shanghai Observatory. The main computer of this system is used for the general control of the telescope system, and single board computers are used for carrying out its operation instructions and orders. Its software and hardware design is also described in this paper. It is economical and practicable to apply this microcomputer system to the equipment with many auxiliary instruments.

  4. Observable Priors: Limiting Biases in Estimated Parameters for Incomplete Orbits

    NASA Astrophysics Data System (ADS)

    Kosmo, Kelly; Martinez, Gregory; Hees, Aurelien; Witzel, Gunther; Ghez, Andrea M.; Do, Tuan; Sitarski, Breann; Chu, Devin; Dehghanfar, Arezu

    2017-01-01

    Over twenty years of monitoring stellar orbits at the Galactic center has provided an unprecedented opportunity to study the physics and astrophysics of the supermassive black hole (SMBH) at the center of the Milky Way Galaxy. In order to constrain the mass of and distance to the black hole, and to evaluate its gravitational influence on orbiting bodies, we use Bayesian statistics to infer black hole and stellar orbital parameters from astrometric and radial velocity measurements of stars orbiting the central SMBH. Unfortunately, most of the short period stars in the Galactic center have periods much longer than our twenty year time baseline of observations, resulting in incomplete orbital phase coverage--potentially biasing fitted parameters. Using the Bayesian statistical framework, we evaluate biases in the black hole and orbital parameters of stars with varying phase coverage, using various prior models to fit the data. We present evidence that incomplete phase coverage of an orbit causes prior assumptions to bias statistical quantities, and propose a solution to reduce these biases for orbits with low phase coverage. The explored solution assumes uniformity in the observables rather than in the inferred model parameters, as is the current standard method of orbit fitting. Of the cases tested, priors that assume uniform astrometric and radial velocity observables reduce the biases in the estimated parameters. The proposed method will not only improve orbital estimates of stars orbiting the central SMBH, but can also be extended to other orbiting bodies with low phase coverage such as visual binaries and exoplanets.

  5. Automated image analysis for space debris identification and astrometric measurements

    NASA Astrophysics Data System (ADS)

    Piattoni, Jacopo; Ceruti, Alessandro; Piergentili, Fabrizio

    2014-10-01

    The space debris is a challenging problem for the human activity in the space. Observation campaigns are conducted around the globe to detect and track uncontrolled space objects. One of the main problems in optical observation is obtaining useful information about the debris dynamical state by the images collected. For orbit determination, the most relevant information embedded in optical observation is the precise angular position, which can be evaluated by astrometry procedures, comparing the stars inside the image with star catalogs. This is typically a time consuming process, if done by a human operator, which makes this task impractical when dealing with large amounts of data, in the order of thousands images per night, generated by routinely conducted observations. An automated procedure is investigated in this paper that is capable to recognize the debris track inside a picture, calculate the celestial coordinates of the image's center and use these information to compute the debris angular position in the sky. This procedure has been implemented in a software code, that does not require human interaction and works without any supplemental information besides the image itself, detecting space objects and solving for their angular position without a priori information. The algorithm for object detection was developed inside the research team. For the star field computation, the software code astrometry.net was used and released under GPL v2 license. The complete procedure was validated by an extensive testing, using the images obtained in the observation campaign performed in a joint project between the Italian Space Agency (ASI) and the University of Bologna at the Broglio Space center, Kenya.

  6. Multiple Shells Around Wolf-Rayet Stars: Space Based Astrometric Observing

    NASA Technical Reports Server (NTRS)

    Marston, Anthony P.

    1995-01-01

    The completion of a complementary optical emission-line survey of the nebulae associated with Wolf-Rayet stars in the southern sky is reported, along with the completion of a survey the large-scale environments of Wolf-Rayet stars using IRAS Skyflux data. HIRES IRAS maps in the four IRAS wavebands for appoximately half of all galactic Wolf-Rayet stars are created.

  7. JASMINE-astrometric map of the galactic bulge .

    NASA Astrophysics Data System (ADS)

    Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.; Tsujimoto, T.; Suganuma, M.; Niwa, Y.; Yamauchi, M.; Kawakatsu, Y.; Matsuhara, H.; Noda, A.; Tsuiki, A.; Utashima, M.; Ogawa, A.; Sako, N.; JASMINE working Group

    We introduce a Japanese plan of infrared (z-band:0.9mu m) space astrometry(JASMINE-project). JASMINE is the satellite (Japan Astrometry Satellite Mission for INfrared Exploration) which will measure distances and apparent motions of stars around the center of the Milky Way with yet unprecedented precision. It will measure parallaxes with the accuracy of 10 micro-arcsec and proper motions with the accuracy of 4 micro-arcsec/year for stars brighter than z=14mag. JASMINE can observe about ten million stars belonging to the bulge components of our Galaxy, which are hidden by the interstellar dust extinction in optical bands. Number of stars with sigma /pi <0.1 in the direction of the Galactic central bulge is about 1000 times larger than those observed in optical bands, where pi is a parallax and sigma is an error of the parallax. With the completely new map of the bulge in the Milky Way it is expected that many new exciting scientific results will be obtained in various fields of astronomy. We will introduce some scientific topics which will be obtained by JASMINE. Presently, JASMINE is in a development phase, with a target launch date around 2015. We adopt the following instrument design of JASMINE in order to get the accurate positions of many stars. We adopt a 3-mirrors optical system (modified Korsch system) with a primary mirror of 0.75m. On the astro-focal plane, we put dozens of new type of CCDs for z-band to get a wide field of view. JASMINE mission takes a frames-link method which can be applied for the survey of the Galactic bulge, as a observing strategy. The consideration of overall system (bus) design is now going on in cooperation with Japan Aerospace Exploration Agency (JAXA). The introduction of JASMINE and the present status of the project will be shown in the presentation.

  8. JASMINE-Astrometric Map of the Galactic Bulge-

    NASA Astrophysics Data System (ADS)

    Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.; Tsujimoto, T.; Suganuma, M.; Niwa, Y.; Yamauchi, M.; Kawakatsu, Y.; Matsuhara, H.; Moda, A.; Tsuiki, A.; Utashima, M.; Ogawa, A.; Sako, N.

    2006-08-01

    We introduce a Japanese plan of infrared(z-band:0.9μm) space astrometry (JASMINE-project). JASMINE is the satellite (Japan Astrometry Satellite Mission for INfrared Exploration) which will measure the distances and apparent motions of stars around the center of the Milky Way with yet unprecedented precision. It will measure parallaxes, positions with the accuracy of 10 micro-arcsec and proper motions with the accuracy of 4 micro-arcsec/year for stars brighter than z=14mag. JASMINE can observe about ten million stars belonging to the bulge components of our Galaxy, which are hidden by the interstellar dust extinction in optical bands. Number of stars with sigma/pi <0.1 in the direction of the Galactic central bulge is about 1000 times larger than those observed in optical bands, where pi is a parallax and sigma is an error of the parallax. With the completely new "map of the bulge in the Milky Way", it is expected that many new exciting scientific results will be obtained in various fields of astronomy. We will introduce some scientific topics which will be obtained by JASMINE. Presently, JASMINE is in a development phase, with a target launch date around 2015. We adopt the following instrument design of JASMINE in order to get the accurate positions of many stars. We adopt a 3-mirrors optical system (modified Korsch system) with a primary mirror of 0.75m. On the astro-focal plane, we put dozens of new type of CCDs for z-band to get a wide field of view. The consideration of overall system(bus) design is now going on in cooperation with Japan Aerospace Exploration Agency (JAXA). The introduction of JASMINE and the present status of the project will be shown in the presentation.

  9. Modulation of brain activity during action observation: influence of perspective, transitivity and meaningfulness.

    PubMed

    Hétu, Sébastien; Mercier, Catherine; Eugène, Fanny; Michon, Pierre-Emmanuel; Jackson, Philip L

    2011-01-01

    The coupling process between observed and performed actions is thought to be performed by a fronto-parietal perception-action system including regions of the inferior frontal gyrus and the inferior parietal lobule. When investigating the influence of the movements' characteristics on this process, most research on action observation has focused on only one particular variable even though the type of movements we observe can vary on several levels. By manipulating the visual perspective, transitivity and meaningfulness of observed movements in a functional magnetic resonance imaging study we aimed at investigating how the type of movements and the visual perspective can modulate brain activity during action observation in healthy individuals. Importantly, we used an active observation task where participants had to subsequently execute or imagine the observed movements. Our results show that the fronto-parietal regions of the perception action system were mostly recruited during the observation of meaningless actions while visual perspective had little influence on the activity within the perception-action system. Simultaneous investigation of several sources of modulation during active action observation is probably an approach that could lead to a greater ecological comprehension of this important sensorimotor process.

  10. A near-Infrared SETI Experiment: Alignment and Astrometric precision

    NASA Astrophysics Data System (ADS)

    Duenas, Andres; Maire, Jerome; Wright, Shelley; Drake, Frank D.; Marcy, Geoffrey W.; Siemion, Andrew; Stone, Remington P. S.; Tallis, Melisa; Treffers, Richard R.; Werthimer, Dan

    2016-06-01

    Beginning in March 2015, a Near-InfraRed Optical SETI (NIROSETI) instrument aiming to search for fast nanosecond laser pulses, has been commissioned on the Nickel 1m-telescope at Lick Observatory. The NIROSETI instrument makes use of an optical guide camera, SONY ICX694 CCD from PointGrey, to align our selected sources into two 200µm near-infrared Avalanche Photo Diodes (APD) with a field-of-view of 2.5"x2.5" each. These APD detectors operate at very fast bandwidths and are able to detect pulse widths extending down into the nanosecond range. Aligning sources onto these relatively small detectors requires characterizing the guide camera plate scale, static optical distortion solution, and relative orientation with respect to the APD detectors. We determined the guide camera plate scale as 55.9+- 2.7 milli-arcseconds/pixel and magnitude limit of 18.15mag (+1.07/-0.58) in V-band. We will present the full distortion solution of the guide camera, orientation, and our alignment method between the camera and the two APDs, and will discuss target selection within the NIROSETI observational campaign, including coordination with Breakthrough Listen.

  11. Influences of Teacher Delivery, Student Engagement, and Observation Focus on Preservice Teachers' Perceptions of Teaching Effectiveness

    ERIC Educational Resources Information Center

    Napoles, Jessica; MacLeod, Rebecca B.

    2016-01-01

    The purpose of this study was to examine how teacher delivery, student engagement, and observation focus influenced preservice teachers' ratings of teaching effectiveness. Participants (N = 84 preservice teachers) viewed short teaching excerpts of orchestral and choral rehearsals wherein the teacher displayed either high or low teacher delivery,…

  12. Astrometría de pequeño campo con CCD: Evaluación de la aplicabilidad del método de ajuste en bloque

    NASA Astrophysics Data System (ADS)

    Bustos Fierro, I. H.; Calderón, J. H.

    The measuring of astrometric positions from a mosaic of direct CCD images with partial overlap taken with the Telescope Jorge Sahade is proposed. The influence of the errors introduced by the method itself, the instrumental errors, the measuring errors and the errors in the reference positions is analyzed in numerical simulations. The achievable accuracy in a square field 25'sided mapped with sixteen frames 10' sided in a center-edge arrangement is determined. It is found that the errors of the method itself and the reference catalog lead to positions with the same order accuracy than the reference catalog. In a measurement of second epoch positions for the determination of proper motions from Carte du Ciel plates, such errors are not significant if the ACT Reference Catalog is the source of the reference positions. It is also found that the errors of the measured positions are dominated by the aberrations of the optical system and the centering error of the stellar images.

  13. The GAIA astrometric survey of the solar neighborhood and its contribution to the target database for DARWIN/TPF

    NASA Astrophysics Data System (ADS)

    Sozzetti, A.; Casertano, S.; Lattanzi, M. G.; Spagna, A.

    2003-10-01

    We evaluate the potential of the ESA Cornerstone Mission GAIA in helping populate the database of nearby stars (d < 25 pc) for subsequent target selection for DARWIN/TPF. The GAIA high-precision astrometric measurements will make it an ideal tool for a complete screening of the expected several thousands stars within 25 pc in order to identify and characterize (or rule out the presence of) Jupiter signposts. GAIA astrometry will be instrumental in complementing radial velocity surveys of F-G-K stars, and will more effectively search for massive planets the large database of nearby M dwarfs, which are less easily accessible with precision spectroscopy. The ability to determine the actual planet masses and inclination angles for detected systems, especially those with low-mass primaries (M < 0.6 Msun), stems as a fundamental contribution GAIA will make toward the final target selection for DARWIN/TPF, thus complementing exo-zodiacal dust emission observations from ground-based observatories such as Keck, LBTI, and VLTI.

  14. Influence of Previous Knowledge, Language Skills and Domain-specific Interest on Observation Competency

    NASA Astrophysics Data System (ADS)

    Kohlhauf, Lucia; Rutke, Ulrike; Neuhaus, Birgit

    2011-10-01

    Many epoch-making biological discoveries (e.g. Darwinian Theory) were based upon observations. Nevertheless, observation is often regarded as `just looking' rather than a basic scientific skill. As observation is one of the main research methods in biological sciences, it must be considered as an independent research method and systematic practice of this method is necessary. Because observation skills form the basis of further scientific methods (e.g. experiments or comparisons) and children from the age of 4 years are able to independently generate questions and hypotheses, it seems possible to foster observation competency at a preschool level. To be able to provide development-adequate individual fostering of this competency, it is first necessary to assess each child's competency. Therefore, drawing on the recent literature, we developed in this study a competency model that was empirically evaluated within learners ( N = 110) from different age groups, from kindergarten to university. In addition, we collected data on language skills, domain-specific interest and previous knowledge to analyse coherence between these skills and observation competency. The study showed as expected that previous knowledge had a high impact on observation competency, whereas the influence of domain-specific interest was nonexistent. Language skills were shown to have a weak influence. By utilising the empirically validated model consisting of three dimensions (`Describing', `Scientific reasoning' and `Interpreting') and three skill levels, it was possible to assess each child's competency level and to develop and evaluate guided play activities to individually foster a child's observation competency.

  15. Astrometric Analysis of the Homunculus of eta Carinae With the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Currie, Douglas G.; Dowling, Daniel M.; Shaya, Edward J.; Hester, Jeff; Scowen, Paul; Groth, Edward J.; Lynds, Roger; O'neil, Earl J., Jr.; Wide Field/Planetary Camera Instrument Definition Team

    1996-09-01

    Images of η Carinae, obtained with the HST Wide Field/Planetary Camera in 1990 October (WFl), 1991 April (PC 1), and 1992 December (WF2) have been used to perform a detailed study of the proper motion of the homunculus of η Carinae. This analysis yields the plane-of-the-sky astrometric velocities which range from tens of kilometers per second to over 1000 kin/sec with estimated uncertainties on the order of 40 km/sec. Our primary conclusion from these astrometric measurements is that the motion of the homunculus of η Carinae is largely radial, increasing linearly with distance from the central star. We measure an average radial expansion rate of 0.66% per year. The deviations from a pure linear expansion are 12 mas and 17 mas for the PC 1 :WF2 and WFl :WF2 measurements, respectively. These deviations are the computed standard deviation from linear expansion. The deviation between the two comparisons is 12 mas. Thus we believe the deviations seen in the comparison pairs to be somewhat correlated, implying that some of the non-linearities in the expansion are real. Our direct measurements imply a single eruptive event centered in 1841.2±0.8 years (standard deviation of mean) or ±4 years when one includes some corrections in the error estimate for the correlated motions and relative plate scale errors. This agrees well with the historical "Great Eruption" which peaked in 1843. The motion of the individual fragments indicates "times of ejection" for the fragments occurred over an interval of less than 20 years. We include astrometric measurement of the North "Jet" containing the NN and NS knots and find the knots generally follow the linear radial expansion rate of the homunculus. The NN and NS knots are "bullets" emitted at the time of the eruption (or up to 10 years later), rather than a part of a continuing jet. Finally, we demonstrate that astrometric measurements of extended objects with the Hubble Space Telescope (pre- and post-repair) are feasible at the 5

  16. Study of the true performance limits of the Astrometric Multiplexing Area Scanner (AMAS)

    NASA Technical Reports Server (NTRS)

    Frederick, L. W.; Mcalister, H. A.

    1975-01-01

    The Astrometric Multiplexing Area Scanner (AMAS) is an instrument designed to perform photoelectric long focus astrometry of small fields. Modulation of a telescope focal plane with a rotating Ronchi ruling produces a frequency modulated signal from which relative positions and magnitudes can be extracted. Evaluation instrumental precision, accuracy and resolution characteristics with respect to a variety of instrumental and cosmical parameters indicates 1.5 micron precision and accuracy for single stars under specific conditions. This value decreases for increased number of field stars, particularly for fainter stars.

  17. Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar.

    PubMed

    Nakajima, T Y; Imai, T; Uchino, O; Nagai, T

    1999-08-20

    The influence of daylight and noise current on cloud and aerosol observations by realistic spaceborne lidar was examined by computer simulations. The reflected solar radiations, which contaminate the daytime return signals of lidar operations, were strictly and explicitly estimated by accurate radiative transfer calculations. It was found that the model multilayer cirrus clouds and the boundary layer aerosols could be observed during the daytime and the nighttime with only a few laser shots. However, high background noise and noise current make it difficult to observe volcanic aerosols in middle and upper atmospheric layers. Optimal combinations of the laser power and receiver field of view are proposed to compensate for the negative influence that is due to these noises. For the computer simulations, we used a realistic set of lidar parameters similar to the Experimental Lidar in-Space Equipment of the National Space Development Agency of Japan.

  18. Recent Status of SIM Lite Astrometric Observatory Mission: Flight Engineering Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Dekens, Frank; Nemati, Bijan; An, Xin; Carson, Johnathan

    2010-01-01

    The SIM Lite Astrometric Observatory is a mission concept for a space-borne instrument to perform micro-arc-second narrow-angle astrometry to search 60 to 100 nearby stars for Earth-like planets, and to perform global astrometry for a broad astrophysics program. The instrument consists of two Michelson stellar interferometers and a telescope. The first interferometer chops between the target star and a set of reference stars. The second interferometer monitors the attitude of the instrument in the direction of the target star. The telescope monitors the attitude of the instrument in the other two directions. The main enabling technology development for the mission was completed during phases A & B. The project is currently implementing the developed technology onto flight-ready engineering models. These key engineering tasks will significantly reduce the implementation risks during the flight phases C & D of the mission. The main optical interferometer components, including the astrometric beam combiner, the fine steering optical mechanism, the path-length-control and modulation optical mechanisms, focal-plane camera electronics and cooling heat pipe, are currently under development. Main assemblies are built to meet flight requirements and will be subjected to flight qualification level environmental testing (random vibration and thermal cycling) and performance testing. This paper summarizes recent progress in engineering risk reduction activities.

  19. The Astrometric Calibration of Hubble Space Telescope Fine Guidance Sensor 1r - Fringe Tracking

    NASA Astrophysics Data System (ADS)

    Benedict, G. F.; McArthur, B. E.; Nelan, E. P.; Jefferys, W. H.

    2001-05-01

    We report on our progress towards an astrometric calibration of Fine Guidance Sensor 1r, installed during an HST refurbishment mission a few years ago. The calibration of this space-based interferometer will complete the commissioning of FGS1r as a sub-milliarcsecond astrometric science instrument for Cycle 10 and all future HST cycles, and permit the final reduction and analysis of ~100 orbits of FGS1r data acquired by a variety of GO programs during HST Cycles 8 and 9. These calibration data were secured in December 2000. We map the optical field angle distortions of FGS1r to facilitate the goal of millisecond of arc precision astrometry for FGS1r's fringe tracking (Position) mode. Our results will populate the FGS1r calibration database and will be available to all FGS GOs through the use of STScI's calibration pipeline. A second result will be an improved M35 calibration field, one that takes into account proper motions in the catalog. This will allow for more accurate monitoring of the FGS1r plate scale and distortions during future HST cycles.

  20. A Global Astrometric Solution for Pan-STARRS Referenced to ICRF2

    NASA Astrophysics Data System (ADS)

    Berghea, C. T.; Makarov, V. V.; Frouard, J.; Hennessy, G. S.; Dorland, B. N.; Veillette, D. R.; Dudik, R. P.; Magnier, E. A.; Burgett, W. S.; Chambers, K. C.; Denneau, L.; Flewelling, H.; Kaiser, N.; Tonry, J. L.; Wainscoat, R. J.; Sesar, B.

    2016-09-01

    We describe the development and application of a Global Astrometric Solution (GAS) to the problem of Pan-STARRS1 (PS1) astrometry. Current PS1 astrometry is based on differential astrometric measurements using 2MASS reference stars, and thus PS1 astrometry inherits the errors of the 2MASS catalog. The GAS, based on a single, least-squares adjustment to approximately 750 k “grid stars” using over 3000 extragalactic objects as reference objects, avoids this catalog-to-catalog propagation of errors to a great extent. The GAS uses a relatively small number of quasi-stellar objects (QSOs, or distant active galactic nuclei) with very accurate (<1 mas) radio positions, referenced to the ICRF2. These QSOs provide a hard constraint in the global least-squares adjustment. Solving such a system provides absolute astrometry for all of the stars simultaneously. The concept is much cleaner than conventional astrometry but is not easy to perform for large catalogs. In this paper, we describe our method and its application to Pan-STARRS1 data. We show that large-scale systematic errors are easily corrected but our solution residuals for position (˜60 mas) are still larger than expected based on simulations (˜10 mas). We provide a likely explanation for the reason the small-scale residual errors are not corrected in our solution as would be expected.

  1. NEAT: an astrometric space telescope to search for habitable exoplanets in the solar neighborhood

    NASA Astrophysics Data System (ADS)

    Crouzier, A.; Malbet, F.; Kern, P.; Feautrier, P.; Preiss, O.; Martin, G.; Henault, F.; Stadler, E.; Lafrasse, S.; Behar, E.; Saintpe, M.; Dupont, J.; Potin, S.; Lagage, P.-O.; Cara, C.; Leger, A.; Leduigou, J.-M.; Shao, M.; Goullioud, R.

    2014-03-01

    The last decade has witnessed a spectacular development of exoplanet detection techniques, which led to an exponential number of discoveries and a great diversity of known exoplanets. However, it must be noted that the quest for the holy grail of astrobiology, i.e. a nearby terrestrial exoplanet in habitable zone around a solar type star, is still ongoing and proves to be very hard. Radial velocities will have to overcome stellar noise if there are to discover habitable planets around stars more massive than M ones. For very close systems, transits are impeded by their low geometrical probability. Here we present an alternative concept: space astrometry. NEAT (Nearby Earth Astrometric Telescope) is a concept of astrometric mission proposed to ESA which goal is to make a whole sky survey of close (less then 20 pc) planetary systems. The detection limit required for the instrument is the astrometric signal of an Earth analog (at 10 pc). Differential astrometry is a very interesting tool to detect nearby habitable exoplanets. Indeed, for F, G and K main sequence stars, the astrophysical noise is smaller than the astrometric signal, contrary to the case for radial velocities. The difficulty lies in the fact that the signal of an exo-Earth around a G type star at 10 pc is a tiny 0.3 micro arc sec, which is equivalent to a coin on the moon, seen from the Earth: the main challenge is related to instrumentation. In order to reach this specification, NEAT consists of two formation flying spacecraft at a 40m distance, one carries the mirror and the other one the focal plane. Thus NEAT has a configuration with only one optical surface: an off-axis parabola. Consequently, beamwalk errors are common to the whole field of view and have a small effect on differential astrometry. Moreover a metrology system projects young fringes on the focal plane, which can characterize the pixels whenever necessary during the mission. NEAT has two main scientific objectives: combined with

  2. Influences on the use of observational methods by practitioners when identifying risk factors in physical work.

    PubMed

    Diego-Mas, Jose-Antonio; Poveda-Bautista, Rocio; Garzon-Leal, Diana-Carolina

    2015-01-01

    Most observational methods for musculoskeletal disorder risk assessment have been developed by researchers to be applied in specific situations, and practitioners could find difficulties in their use in real-work conditions. The main objective of this study was to identify the factors which have an influence on how useful the observational techniques are perceived to be by practitioners and to what extent these factors influence their perception. A survey was conducted on practitioners regarding the problems normally encountered when implementing these methods, as well as the perceived overall utility of these techniques. The results show that practitioners place particular importance on the support the methods provide in making decisions regarding changes in work systems and how applicable they are to different types of jobs. The results of this study can serve as guide to researchers for the development of new assessment techniques that are more useful and applicable in real-work situations.

  3. Seeing or doing? Influence of visual and motor familiarity in action observation.

    PubMed

    Calvo-Merino, Beatriz; Grèzes, Julie; Glaser, Daniel E; Passingham, Richard E; Haggard, Patrick

    2006-10-10

    The human brain contains specialized circuits for observing and understanding actions. Previous studies have not distinguished whether this "mirror system" uses specialized motor representations or general processes of visual inference and knowledge to understand observed actions. We report the first neuroimaging study to distinguish between these alternatives. Purely motoric influences on perception have been shown behaviorally, but their neural bases are unknown. We used fMRI to reveal the neural bases of motor influences on action observation. We controlled for visual and knowledge effects by studying expert dancers. Some ballet moves are performed by only one gender. However, male and female dancers train together and have equal visual familiarity with all moves. Male and female dancers viewed videos of gender-specific male and female ballet moves. We found greater premotor, parietal, and cerebellar activity when dancers viewed moves from their own motor repertoire, compared to opposite-gender moves that they frequently saw but did not perform. Our results show that mirror circuits have a purely motor response over and above visual representations of action. We understand actions not only by visual recognition, but also motorically. In addition, we confirm that the cerebellum is part of the action observation network.

  4. How the choice of the observable may influence the analysis of nonlinear dynamical systems

    NASA Astrophysics Data System (ADS)

    Letellier, Christophe; Aguirre, Luis; Maquet, Jean

    2006-08-01

    A great number of techniques developed for studying nonlinear dynamical systems start with the embedding, in a d-dimensional space, of a scalar time series, lying on an m-dimensional object, d > m. In general, the main results reached at are valid regardless of the observable chosen. In a number of practical situations, however, the choice of the observable does influence our ability to extract dynamical information from the embedded attractor. This may arise in standard problems in nonlinear dynamics such as model building, control theory and synchronization. To some degree, ease of success will thus depend on the choice of observable simply because it is related to the observability of the dynamics. Investigating the Rössler system, we show that the observability matrix is related to the map between the original phase space and the differential embedding induced by the observable. This paper investigates a form for the observability matrix for nonlinear system which is more general than the previous one used. The problem of controllability is also mentioned.

  5. Preliminary Light Curve Results of NEOs from the Characterization and Astrometric Follow-Up Program at Adler Planetarium

    NASA Astrophysics Data System (ADS)

    Brucker, Melissa J.; Nault, Kristie A.; Hammergren, Mark; Sieben, Jennifer; Gyuk, Geza; Solontoi, Michael R.

    2015-11-01

    We are nearing the halfway mark of a two-year program for near-Earth object (NEO) astrometric follow-up and characterization utilizing 500 hours of observing time per year with the Astrophysical Research Consortium (ARC) 3.5-meter telescope at Apache Point Observatory (APO). Our observing is divided into two-hour blocks approximately every other night for astrometry (see poster by K. A. Nault et al.) and several half-nights per month for spectroscopy (see poster by M. Hammergren et al.) and light curve studies.We present preliminary results from variable photometry observations as part of the characterization portion of the Adler Planetarium’s NEO program. The frequent scheduling of half-night observing time allows us to capture data for small NEOs near the time when they are closest to Earth before their apparent magnitudes rapidly diminish beyond the range of detectability. We searched for variability in newly discovered NEOs that had close approaches to Earth near the time of observation. These include 2014 RQ17, 2014 SB145, 2014 SF304, 2014 WO4, 2014 WY119, and 2015 BC. In addition, we observed 2340 Hathor and 2007 EC when they each made a close approach to Earth to compare with light curves and magnitude variation constraints from previous apparitions. We will construct light curves for all of the objects listed above and determine rotational periods for those with sufficient temporal coverage.The targets were selected from candidates in the JPL NEO Earth Close Approaches table, Arecibo planetary radar targets, and the Goldstone asteroid radar schedule. Due to the sensitivity of AGILE, we restricted our targets to those with apparent magnitudes in V less than 19 magnitudes.Observations were made using the frame transfer CCD camera AGILE on the ARC 3.5-meter telescope. AGILE has a field-of-view of 2.2'x2.2' and a plate scale of 0.258”/pixel with 2x2 binning.This work is based on observations obtained with the Apache Point Observatory 3.5-meter telescope

  6. [Observations upon some factors which influence the laboratory maintenance of Schistosoma mansoni (author's transl)].

    PubMed

    De Souza, C P; Dias, E P; De Azevedo, M D; Paulini, E

    1979-12-01

    Schistosoma mansoni has been maintained in the laboratory using a laboratory strain of B. glabrata, white mice (Mus musculus) and golden hamster (Cricetus auratus). Observations were collected during five consecutive years and the results were analysed for factors which might have influenced them. The analysis has shown that--(1) snail mortalities were independent of the relatively small variation in temperature and of the mean number of miracidia used for infection; (2) rate of infection of snails increased slowly with the increase of the mean number of miracidia; (3) the temperature was in reciprocal proportion with the logarithm of the cercarial development period; (4) the yield of viable eggs has increased steadily in white mice during the observation period; (5) significant increase of egg production was observed in golden hamsters when subcutaneous route of inoculation was used instead of inoculation through the alimentary pouch.

  7. Influence of projection effects on the observed differential rotation rate in the UV corona.

    PubMed

    Mancuso, Salvatore; Giordano, Silvio

    2013-05-01

    Following previous investigations by Giordano and Mancuso [1] and Mancuso and Giordano [2,3] on the differential rotation of the solar corona as obtained through the analysis of the intensity time series of the O VI 1032 Å spectral line observed by the UVCS/SOHO telescope during solar cycle 23, we analysed the possible influence of projection effects of extended coronal structures on the observed differential rotation rate in the ultraviolet corona. Through a simple geometrical model, we found that, especially at higher latitudes, the differential rotation may be less rigid than observed, since features at higher latitudes could be actually linked to much lower coronal structures due to projection effects. At solar maximum, the latitudinal rigidity of the UV corona, with respect to the differential rotating photosphere, has thus to be considered as an upper limit of the possible rigidity. At solar minimum and near the equatorial region throughout the solar cycle, projection effects are negligible.

  8. Nano-JASMINE: use of AGIS for the next astrometric satellite

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Gouda, N.; Lammers, U.

    2011-02-01

    The core data reduction for the Nano-JASMINE mission is planned to be done with Gaia's Astrometric Global Iterative Solution (AGIS). The collaboration started at 2007 prompted by Uwe Lammers' proposal. In addition to similar design and operating principles of the two missions, this is possible thanks to the encapsulation of all Gaia-specific aspects of AGIS in a Parameter Database. Nano-JASMINE will be the test bench for Gaia AGIS software. We present this idea in detail and the necessary practical steps to make AGIS work with Nano-JASMINE data. We also show the key mission parameters, goals, and status of the data reduction for the Nano-JASMINE.

  9. Wide angle astrometric demonstration on the micro-arcsecond metrology testbed for the space interferometry mission

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Shen, Tsae-Pyng J.; Catanzarite, Joseph H.

    2004-01-01

    The Space Interferometry Mission (SIM) requires fringe measurements to the level of picometers in order to produce astrometric data at the micro-arc-second level. To be more specific, it is necessary to measure both the position of the starlight central fringe and the change in the internal optical path of the interferometer to a few hundreds of picometers. The internal path is measured with a small heterodyne metrology beam, whereas the starlight fringe position is estimated with a CCD sampling a large concentric annular beam. One major challenge for SIM is to align the metrology beam with the starlight beam to keep the consistency between these two sensors at the system level while articulating the instrument optics over the field of view.

  10. Brassboard Astrometric Beam Combiner (ABC) development for the Space Interferometry Mission (SIM)

    NASA Astrophysics Data System (ADS)

    Jeganathan, Muthu; Kuan, Gary; Rud, Mike; Lin, Sean; Sutherland, Kristen; Moore, James; An, Xin

    2008-07-01

    The Astrometric Beam Combiner (ABC) is a critical element of the Space Interferometry Mission (SIM) that performs three key functions: coherently combine starlight from two siderostats; individually detect starlight for angle tracking; and disperse and detect the interferometric fringes. In addition, the ABC contains: a stimulus, cornercubes and shutters for in-orbit calibration; several tip/tilt mirror mechanisms for in-orbit alignment; and internal metrology beam launcher for pathlength monitoring. The detailed design of the brassboard ABC (which has the form, fit and function of the flight unit) is complete, procurement of long-lead items is underway, and assembly and testing is expected to be completed in Spring 2009. In this paper, we present the key requirements for the ABC, details of the completed optical and mechanical design as well as plans for assembly and alignment.

  11. Accurate Mass Determination of the Ancient White Dwarf ER 8 Through Astrometric Microlensing

    NASA Astrophysics Data System (ADS)

    Sahu, Kailash

    2005-07-01

    We propose to determine the mass of the very cool white dwarf ER 8 through astrometric microlensing. We have predicted that ER 8 will pass very close to a 15th-mag background star in January 2006, with an impact parameter of less than 0.05 arcsec. As it passes in front, it will cause a deflection of the background star's image by >8 milliarcsec, an amount easily detectable with HST/FGS. The gravitational deflection angle depends only on the distances and relative positions of the stars, and on the mass of the white dwarf. Since the distances and positions can be determined precisely before the event, the astrometric measurement offers a unique and direct method to measure the mass of the white dwarf to high accuracy {<5%}. Unlike all other stellar mass determinations, this technique works for single stars {but only if they are nearby and of sufficient mass}. The mass of ER 8 is of special interest because it is a member of the Galactic halo, and appears to be the oldest known field white dwarf. This object can thus set a lower limit on the age of the Galactic halo, but since white-dwarf cooling rates depend on their masses, the mass is a necessary ingredient in the age determination. As a byproduct, we will obtain an accurate parallax for ER 8, and thus its luminosity and {from its effective temperature} its radius. Such quantities are at present rather poorly known for the coolest white dwarfs, and will provide strong constraints on white-dwarf physics.

  12. Accurate Mass Determination of the Ancient White Dwarf ER 8 Through Astrometric Microlensing

    NASA Astrophysics Data System (ADS)

    Sahu, Kailash

    2004-07-01

    We propose to determine the mass of the very cool white dwarf ER 8 through astrometric microlensing. We have predicted that ER 8 will pass very close to a 15th-mag background star in January 2006, with an impact parameter of less than 0.05 arcsec. As it passes in front, it will cause a deflection of the background star's image by >8 milliarcsec, an amount easily detectable with HST/FGS. The gravitational deflection angle depends only on the distances and relative positions of the stars, and on the mass of the white dwarf. Since the distances and positions can be determined precisely before the event, the astrometric measurement offers a unique and direct method to measure the mass of the white dwarf to high accuracy {<5%}. Unlike all other stellar mass determinations, this technique works for single stars {but only if they are nearby and of sufficient mass}. The mass of ER 8 is of special interest because it is a member of the Galactic halo, and appears to be the oldest known field white dwarf. This object can thus set a lower limit on the age of the Galactic halo, but since white-dwarf cooling rates depend on their masses, the mass is a necessary ingredient in the age determination. As a byproduct, we will obtain an accurate parallax for ER 8, and thus its luminosity and {from its effective temperature} its radius. Such quantities are at present rather poorly known for the coolest white dwarfs, and will provide strong constraints on white-dwarf physics.

  13. Balancing cognitive control: how observed movements influence motor performance in a task with balance constraints.

    PubMed

    Verrel, Julius; Lisofsky, Nina; Kühn, Simone

    2014-07-01

    We investigated the influence of observed movements on executed movements in a task requiring lifting one foot from the floor while maintaining whole-body balance. Sixteen young participants (20-30 years) performed foot lift movements, which were either cued symbolically by a letter (L/R, indicating to lift the left/right foot) or by a short movie showing a foot lift movement. In the symbol cue condition, stimuli from the movie cue condition were used as distractors, and vice versa. Anticipatory postural adjustments (APAs) and actual foot lifts were recorded using force plates and optical motion capture. Foot lift responses were generally faster in response to the movie compared to the symbol cue condition. Moreover, incongruent movement distractors interfered with performance in the symbol cue condition, as shown by longer response times and increased number of APAs. Latencies of the first (potentially wrong) APA in a trial were shorter for movie compared to symbol cues but were not affected by cue-distractor congruency. Amplitude of the first APA was smaller when it was followed by additional APAs compared to trials with a single APA. Our results show that automatic imitation tendencies are integrated with postural control in a task with balance constraints. Analysis of the number, timing and amplitude of APAs indicates that conflicts between intended and observed movements are not resolved at a purely cognitive level but directly influence overt motor performance, emphasizing the intimate link between perception, cognition and action.

  14. The Influence of Observation Errors on Analysis Error and Forecast Skill Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, R. M.; Tai, K.-S.

    2013-01-01

    The Global Modeling and Assimilation Office (GMAO) observing system simulation experiment (OSSE) framework is used to explore the response of analysis error and forecast skill to observation quality. In an OSSE, synthetic observations may be created that have much smaller error than real observations, and precisely quantified error may be applied to these synthetic observations. Three experiments are performed in which synthetic observations with magnitudes of applied observation error that vary from zero to twice the estimated realistic error are ingested into the Goddard Earth Observing System Model (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation for a one-month period representing July. The analysis increment and observation innovation are strongly impacted by observation error, with much larger variances for increased observation error. The analysis quality is degraded by increased observation error, but the change in root-mean-square error of the analysis state is small relative to the total analysis error. Surprisingly, in the 120 hour forecast increased observation error only yields a slight decline in forecast skill in the extratropics, and no discernable degradation of forecast skill in the tropics.

  15. The influence of observation errors on analysis error and forecast skill investigated with an observing system simulation experiment

    NASA Astrophysics Data System (ADS)

    Privé, N. C.; Errico, R. M.; Tai, K.-S.

    2013-06-01

    The National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO) observing system simulation experiment (OSSE) framework is used to explore the response of analysis error and forecast skill to observation quality. In an OSSE, synthetic observations may be created that have much smaller error than real observations, and precisely quantified error may be applied to these synthetic observations. Three experiments are performed in which synthetic observations with magnitudes of applied observation error that vary from zero to twice the estimated realistic error are ingested into the Goddard Earth Observing System Model (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation for a 1 month period representing July. The analysis increment and observation innovation are strongly impacted by observation error, with much larger variances for increased observation error. The analysis quality is degraded by increased observation error, but the change in root-mean-square error of the analysis state is small relative to the total analysis error. Surprisingly, in the 120 h forecast, increased observation error only yields a slight decline in forecast skill in the extratropics and no discernible degradation of forecast skill in the tropics.

  16. Investigating nonlinear dynamics from time series: The influence of symmetries and the choice of observables

    NASA Astrophysics Data System (ADS)

    Letellier, Christophe; Aguirre, Luis A.

    2002-09-01

    When a dynamical system is investigated from a time series, one of the most challenging problems is to obtain a model that reproduces the underlying dynamics. Many papers have been devoted to this problem but very few have considered the influence of symmetries in the original system and the choice of the observable. Indeed, it is well known that there are usually some variables that provide a better representation of the underlying dynamics and, consequently, a global model can be obtained with less difficulties starting from such variables. This is connected to the problem of observing the dynamical system from a single time series. The roots of the nonequivalence between the dynamical variables will be investigated in a more systematic way using previously defined observability indices. It turns out that there are two important ingredients which are the complexity of the coupling between the dynamical variables and the symmetry properties of the original system. As will be mentioned, symmetries and the choice of observables also has important consequences in other problems such as synchronization of nonlinear oscillators.

  17. BDNF Val66Met Polymorphism Influences Visuomotor Associative Learning and the Sensitivity to Action Observation

    PubMed Central

    Taschereau-Dumouchel, Vincent; Hétu, Sébastien; Michon, Pierre-Emmanuel; Vachon-Presseau, Etienne; Massicotte, Elsa; De Beaumont, Louis; Fecteau, Shirley; Poirier, Judes; Mercier, Catherine; Chagnon, Yvon C.; Jackson, Philip L.

    2016-01-01

    Motor representations in the human mirror neuron system are tuned to respond to specific observed actions. This ability is widely believed to be influenced by genetic factors, but no study has reported a genetic variant affecting this system so far. One possibility is that genetic variants might interact with visuomotor associative learning to configure the system to respond to novel observed actions. In this perspective, we conducted a candidate gene study on the Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, a genetic variant linked to motor learning in regions of the mirror neuron system, and tested the effect of this polymorphism on motor facilitation and visuomotor associative learning. In a single-pulse TMS study carried on 16 Met (Val/Met and Met/Met) and 16 Val/Val participants selected from a large pool of healthy volunteers, Met participants showed significantly less muscle-specific corticospinal sensitivity during action observation, as well as reduced visuomotor associative learning, compared to Val homozygotes. These results are the first evidence of a genetic variant tuning sensitivity to action observation and bring to light the importance of considering the intricate relation between genetics and associative learning in order to further understand the origin and function of the human mirror neuron system. PMID:27703276

  18. Angle of Observation Influence on Emission Signal from Spatially Confined Laser-Induced Plasmas.

    PubMed

    Weiss, Jiri; Cabalín, Luisa Maria; Laserna, J Javier

    2017-01-01

    The present work focuses on the influence of the angle of observation on the emission signal from copper plasmas. Plasma plumes have been generated inside a home-made chamber consisting of two parallel glass windows spaced by 2.5 mm. This chamber allows observing plasma plumes from different collection angles throughout their perimeter, spanning from 20° to 80° with respect to the surface of the Cu target. In order to minimize the observed volume of the plasma, measurements were made from the closest distance possible through a metallic hollow tube. Single-pulse and collinear double-pulse excitation schemes with a Nd:YAG laser (1064 nm, 5 ns) have been investigated. The results have shown that the selection of the best angle to collect light from the plasma is related to the excitation mode. On the other hand, the shot-to-shot signal variability has been found to depend on the shape of plasma plumes. In single-pulse excitation, a good correlation between the observed laser-induced breakdown spectroscopy (LIBS) emission (from spatially confined plumes) and their integrated signal of plasma image has been ascertained. However, this fact was less evident in double-pulse LIBS, which could be due to a different mechanism involved in the ablation process.

  19. Observation

    ERIC Educational Resources Information Center

    Helfrich, Shannon

    2016-01-01

    Helfrich addresses two perspectives from which to think about observation in the classroom: that of the teacher observing her classroom, her group, and its needs, and that of the outside observer coming into the classroom. Offering advice from her own experience, she encourages and defends both. Do not be afraid of the disruption of outside…

  20. Observations

    ERIC Educational Resources Information Center

    Joosten, Albert Max

    2016-01-01

    Joosten begins his article by telling us that love and knowledge together are the foundation for our work with children. This combination is at the heart of our observation. With this as the foundation, he goes on to offer practical advice to aid our practice of observation. He offers a "List of Objects of Observation" to help guide our…

  1. How do Biomass Burning Carbon Monixide Emissions from South America influence Satellite Observed Columns over Africa?

    NASA Astrophysics Data System (ADS)

    Krol, M. C.; van Leeuwen, T. T.; Aouizerats, B.; van der Werf, G.

    2015-12-01

    Large amounts of Carbon Monoxide (CO) are emitted during biomass burning events. These emissions severely perturb the atmospheric composition. For this reason, satellite observations of CO can help to constrain emissions from biomass burning. Other sources of CO, such as the production of CO from naturally emitted non-methane hydrocarbons, may interfere with CO from biomass burning and inverse modeling efforts to estimate biomass burning emissions have to account for these CO sources. The atmospheric lifetime of CO varies from weeks to months, depending on the availability of atmospheric OH for atmospheric oxidation of CO to carbon dioxide. This means that CO can be transported over relatively long distances. It also implies that satellite-observed CO does not necessarily originate from the underlying continent, but may be caused by distant emissions transported to the observation location. In this presentation we focus on biomass burning emissions from South America and Southern Africa during 2010. This year was particularly dry over South America with a large positive anomaly in biomass burning in the 2010 burning season (July-October). We will adress the question how CO plumes from South America biomass burning influence satellite observations from the Infrared Atmospheric Sounding Interferometer (IASI) instrument over Southern Africa. For this we employ the TM5 atmospheric chemistry model, with 1x1 degree zoom resolutions over Africa and South America. Also, we use the TM5-4DVAR code to estimate CO biomass burning emissions using IASI CO observations. The accompanying image shows IASI CO oberservations over Africa on August 27, 2010, compared to the columns simulated with TM5. Clear signs of intercontinental transport from South America are visible over the Southermost region.

  2. Solar wind influence on the Jovian inner magnetosphere observed by Hisaki/EXCEED

    NASA Astrophysics Data System (ADS)

    Murakami, G.; Yoshioka, K.; Yamazaki, A.; Tsuchiya, F.; Kimura, T.; Tao, C.; Kagitani, M.; Sakanoi, T.; Uemizu, K.; Kasaba, Y.; Yoshikawa, I.; Fujimoto, M.

    2015-12-01

    The dawn-dusk asymmetry of the Io plasma torus has been seen by several observations [e.g., Sandel and Broadfoot, 1982; Steffl et al., 2004]. Ip and Goertz [1983] explained this asymmetry can be caused by a dawn-to-dusk electric field in the Jupiter's inner magnetosphere. However, the question what physical process can impose such an electric field deep inside the strong magnetosphere still remains. The long-term monitoring of the Io plasma torus is a key observation to answer this question. The extreme ultraviolet (EUV) spectrometer EXCEED onboard the Hisaki satellite observed the Io plasma torus continuously during the two periods: from December 2013 to March 2014 and from November 2014 to May 2015. We found clear responses of the dawn-dusk asymmetry to rapid increases of the solar wind dynamic pressure. We statistically analyzed the relations between solar wind and IPT response. Furthermore, we investigated the influence of Io's volcanic activity, detected by Hisaki in January 2015, on the solar wind response of Jovian inner magnetosphere. We will report the initial results of this study.

  3. Influence of solar-probe inherent atmosphere on in-situ observations

    SciTech Connect

    Hassanein, A.; Konkashbaev, A.I.; Konkashbaev, I.K.; Nikandrov, L.B.

    1998-08-01

    The solar corona is the source of the solar wind, which is responsible for the heliosphere and plays a crucial role in solar/terrestrial phenomena. A comprehensive understanding of these phenomena can be established only by directly measuring ion and electron velocity distributions, plasma waves, and fluxes of energetic particles near the sun. The problem resulting from the inherent atmosphere of a spacecraft moving in the vicinity of the sun and the influence of this atmosphere on in-situ measurements of the solar corona plasma is key to the realization and success of any solar probe mission. To evaluate the influence of the probe-inherent atmosphere on in-situ observations, the authors have developed comprehensive radiation hydrodynamic models. The physics of plasma/probe/vapor interaction are also being developed in a self-consistent model to predict the effect of probe inherent atmosphere on in-situ measurements of corona parameters during solar flares. Interaction of the ionized atmosphere with the ambient natural plasma will create a turbulent shock wave that can affect in-situ measurements and must be taken into account in designing the spacecraft and its scientific components.

  4. Influence of atmospheric relative humidity on ultraviolet flux and aerosol direct radiative forcing: Observation and simulation

    NASA Astrophysics Data System (ADS)

    Xia, Dong; Chen, Ling; Chen, Huizhong; Luo, Xuyu; Deng, Tao

    2016-08-01

    The atmospheric aerosols can absorb moisture from the environment due to their hydrophilicity and thus affect atmospheric radiation fluxes. In this article, the ultraviolet radiation and relative humidity (RH) data from ground observations and a radiative transfer model were used to examine the influence of RH on ultraviolet radiation flux and aerosol direct radiative forcing under the clear-sky conditions. The results show that RH has a significant influence on ultraviolet radiation because of aerosol hygroscopicity. The relationship between attenuation rate and RH can be fitted logarithmically and all of the R2 of the 4 sets of samples are high, i.e. 0.87, 0.96, 0.9, and 0.9, respectively. When the RH is 60%, 70%, 80% and 90%, the mean aerosol direct radiative forcing in ultraviolet is -4.22W m-2, -4.5W m-2, -4.82W m-2 and -5.4W m-2, respectively. For the selected polluted air samples the growth factor for computing aerosol direct radiative forcing in the ultraviolet for the RH of 80% varies from 1.19 to 1.53, with an average of 1.31.

  5. Type of gesture, valence, and gaze modulate the influence of gestures on observer's behaviors

    PubMed Central

    De Stefani, Elisa; Innocenti, Alessandro; Secchi, Claudio; Papa, Veronica; Gentilucci, Maurizio

    2013-01-01

    The present kinematic study aimed at determining whether the observation of arm/hand gestures performed by conspecifics affected an action apparently unrelated to the gesture (i.e., reaching-grasping). In 3 experiments we examined the influence of different gestures on action kinematics. We also analyzed the effects of words corresponding in meaning to the gestures, on the same action. In Experiment 1, the type of gesture, valence and actor's gaze were the investigated variables Participants executed the action of reaching-grasping after discriminating whether the gestures produced by a conspecific were meaningful or not. The meaningful gestures were request or symbolic and their valence was positive or negative. They were presented by the conspecific either blindfolded or not. In control Experiment 2 we searched for effects of the sole gaze, and, in Experiment 3, the effects of the same characteristics of words corresponding in meaning to the gestures and visually presented by the conspecific. Type of gesture, valence, and gaze influenced the actual action kinematics; these effects were similar, but not the same as those induced by words. We proposed that the signal activated a response which made the actual action faster for negative valence of gesture, whereas for request signals and available gaze, the response interfered with the actual action more than symbolic signals and not available gaze. Finally, we proposed the existence of a common circuit involved in the comprehension of gestures and words and in the activation of consequent responses to them. PMID:24046742

  6. An Illustration of the Influence of John Schaake on Modern Hydroclimatological Observation Networks

    NASA Astrophysics Data System (ADS)

    Burges, S. J.; Sieck, L. C.; Steiner, M.

    2001-12-01

    John Schaake made seminal contributions to many aspects of hydrologic science individually and through his leadership role at the National Weather Service Office of Hydrology. His work extends from detailed measurement of rainfall and the resulting flow from parking areas, to disaggregation of rainfall, to continental-scale hydroclimatology, particularly in the context of GEWEX-GCIP. He has been a strong supporter of the development of the hydrologic modeling and measurement systems that can make maximum use of remotely sensed information from space based platforms and NEXRAD radar. He has been a career-long supporter of younger colleagues and his enthusiasm has inspired many to make advances to the field that might not have otherwise been made. We illustrate some of the breadth of his influence on today's hydroclimatological observing systems and research using features of a major storm system that stretched from the US-Mexico border to the US-Canada border in late April 2001.

  7. Observation

    ERIC Educational Resources Information Center

    Kripalani, Lakshmi A.

    2016-01-01

    The adult who is inexperienced in the art of observation may, even with the best intentions, react to a child's behavior in a way that hinders instead of helping the child's development. Kripalani outlines the need for training and practice in observation in order to "understand the needs of the children and...to understand how to remove…

  8. Interferometric, astrometric, and photometric studies of Epsilon Aurigae: Seeing the disk around a distant star

    NASA Astrophysics Data System (ADS)

    Kloppenborg, Brian

    2012-05-01

    Epsilon (epsilon) Aurigae is a binary star system that has baffled astronomers for 170 years. In 1821 it was first noticed that the star system had dimmed by nearly 50%. After many decades of photometric monitoring, the 27.1 year period was finally established in 1903. A few years later, in 1912, Henry Norris Russell published the first analytic methods for binary star analysis. Later application of these formulae came to an interesting conclusion; the system was composed of two stars: the visible F-type supergiant, and an equally massive, but yet photometrically and spectroscopically invisible, companion. Several theories were advanced to explain this low-light to high-mass conundrum, eventually settling on the notion that the companion object is obscured from view by a disk of opaque material. With this topic solved, the debate shifted the evolutionary state of the system. Two scenarios became dominant: the system is either relativity young, and composed of a massive, 15 Mo (solar mass), F-type supergiant and a nearly equally massive main sequence companion inside of the disk; or a much older and significantly less massive, 4 Mo, F-type post-asymptotic giant branch object with a more massive, 6 Mo, companion surrounded by a debris disk. In this dissertation I disentangle the two evolutionary states by comparing the photometric behavior of the F-type star to known supergiant and post-asymptotic giant branch objects; and deriving a dynamical mass for the two components using astrometric, radial velocity, and interferometric data. Along with this, I provide the first interferometric images during the eclipse which prove the 50% dimming is indeed caused by an opaque disk. The first chapter presents the reader with the status quo of epsilon Aurigae research and the topics I wish to address in this dissertation. Chapter two presents an analysis of nearly 30 years of photometry on the system, concluding the star periodically exhibits stable pulsation on 1/3 orbital

  9. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  10. Current problems of dynamics of moons of planets and binary asteroids based on observations

    NASA Astrophysics Data System (ADS)

    Emel'yanov, N. V.

    2017-01-01

    The general approach to studying the dynamics of moons of planets and asteroids consists in developing more and more accurate models of motion based on observational data. Not only the necessary ephemerides, but also some physical parameters of planets and moons are obtained this way. It is demonstrated in the present study that progress in this field is driven not only by the increase in accuracy of observations. The accuracy of ephemerides may be increased by expanding the observation time interval. Several problems arise on the way toward this goal. Some of them become apparent only when the procedure of observational data processing and use is examined in detail. The method used to derive astrometric data by processing the results of photometric observations of mutual occultations and eclipses of planetary moons is explained below. The primary contribution to the error of astrometric results is produced by the unaccounted noise level in photometric readings and the inaccuracy of received values of the albedo of moons. It is demonstrated that the current methods do not allow one to eliminate the noise completely. Extensive additional photometric measurements should be performed at different angles of rotation of moons and in different spectral bands of the visible wavelength range in order to obtain correct values of the albedo of moons. Many new distant moons of the major planets have been discovered in the early 21st century. However, the observations of these moons are scarce and were performed over short time intervals; as a result, some of the moons were lost. The necessity of further observations of these Solar System bodies is pointed out in the present study. Insufficient knowledge of asteroid masses is an obstacle to improving the accuracy of the ephemerides of Mars. The basic method for determining the masses of large asteroids consists in analyzing their influence on the motion of Mars, the Earth, and spacecraft. The masses of more than 100 large

  11. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  12. The Influence of Aerosol Composition on Photolysis Rates Based on Airborne Observations

    NASA Astrophysics Data System (ADS)

    Corr, C.; Barrick, J. D. W.; Beyersdorf, A. J.; Chen, G.; Crawford, J. H.; Jordan, C. E.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Ziemba, L. D.; Madronich, S.; Anderson, B. E.

    2015-12-01

    The potential variability in modeled photolysis rates introduced by aerosol optical properties measured at visible wavelengths is presented here. Aerosol scattering and absorption were measured aboard the NASA P-3B aircraft during the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) using a TSI Nephelometer and a Radiance Research Particle Soot Absorption Photometer (PSAP), respectively. To isolate the effect of aerosols on photolysis rates, cloud-free case studies were identified using aircraft videos for the four DISCOVER-AQ deployments: Baltimore, MD-Washington, D.C. in July 2011, the California Central Valley in January/February 2013, Houston, TX in September 2013, and Denver, CO in July 2014. For these case studies, absorption measurements at 470 and 532 nm were extrapolated to the Nephelometer wavelengths (450 and 550nm) using the 470-532nm absorption Angstrom exponent (AAE470-532) to calculate aerosol extinction and SSAs at these wavelengths. Photolysis rates were modeled using the Tropospheric Ultraviolet model version 5.2 (TUV 5.2) for three scenarios: 1) an aerosol-free case, 2) using a spectrally-flat SSA at 550nm and 3) using a spectrally-dependent SSA derived from scattering and absorption measurements. Modeled photolysis rates were compared to those measured aboard the P-3B during DISCOVER-AQ. The relationship between airborne measurements of water soluble organic carbon (WSOC) made by a Particle-Into-Liquid-Sampler (PILS), AAE470-532 and model/measurement discrepancies were explored to assess the influence of aerosol composition on photolysis rates. Additional comparisons between photolysis rates modeled with vertically-resolved aerosol optical properties and those modeled using column-average values were performed to assess the influence of aerosol vertical distribution on photolysis rates.

  13. Astrometric Telescope Facility preliminary systems definition study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Sobeck, Charlie

    1987-01-01

    The Astrometric Telescope Facility (ATF) is a spaceborne observatory proposed for use on the Space Station (SS) as an Initial Operating Capability (IOC) payload. The primary objective of the ATF will be the search for extrasolar planetary systems and a detailed investigation of any discovered systems. In addition, it will have the capability of conducting other astrophysics investigations; e.g., measuring precise distances and motions of stars within our galaxy. The purposes of the study were to: (1) define mission and system requirements; (2) define a strawman system concept for the facility at the Prephase A level; (3) define the need for additional trade studies or technology development; and (4) estimate program cost for the strawman concept. It has been assumed for the study that the ATF will be a SS payload, will use a SS-provided Coarse Pointing System (CPS), will meet SS constraints, and will make maximum use of existing flight qualified designs or designs to be qualified by the SS program for general SS use.

  14. First experimental results of very high accuracy centroiding measurements for the neat astrometric mission

    NASA Astrophysics Data System (ADS)

    Crouzier, A.; Malbet, F.; Preis, O.; Henault, F.; Kern, P.; Martin, G.; Feautrier, P.; Stadler, E.; Lafrasse, S.; Delboulbé, A.; Behar, E.; Saint-Pe, M.; Dupont, J.; Potin, S.; Cara, C.; Donati, M.; Doumayrou, E.; Lagage, P. O.; Léger, A.; LeDuigou, J. M.; Shao, M.; Goullioud, R.

    2013-09-01

    NEAT is an astrometric mission proposed to ESA with the objectives of detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. NEAT requires the capability to measure stellar centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 2e-5 pixel at two times Nyquist sampling, this was shown at the JPL by the VESTA experiment. A metrology system was used to calibrate intra and inter pixel quantum efficiency variations in order to correct pixelation errors. The European part of the NEAT consortium is building a testbed in vacuum in order to achieve 5e-6 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the NEAT spacecraft. In this paper we present the metrology and the pseudo stellar sources sub-systems, we present a performance model and an error budget of the experiment and we report the present status of the demonstration. Finally we also present our first results: the experiment had its first light in July 2013 and a first set of data was taken in air. The analysis of this first set of data showed that we can already measure the pixel positions with an accuracy of about 1e-4 pixel.

  15. Astrometric telescope facility. Preliminary systems definition study. Volume 3: Cost estimate

    NASA Technical Reports Server (NTRS)

    Sobeck, Charlie (Editor)

    1987-01-01

    The results of the Astrometric Telescope Facility (ATF) Preliminary System Definition Study conducted in the period between March and September 1986 are described. The main body of the report consists primarily of the charts presented at the study final review which was held at NASA Ames Research Center on July 30 and 31, 1986. The charts have been revised to reflect the results of that review. Explanations for the charts are provided on the adjoining pages where required. Note that charts which have been changed or added since the review are dated 10/1/86; unchanged charts carry the review date 7/30/86. In addition, a narrative summary is presented of the study results and two appendices. The first appendix is a copy of the ATF Characteristics and Requirements Document generated as part of the study. The second appendix shows the inputs to the Space Station Mission Requirements Data Base submitted in May 1986. The report is issued in three volumes. Volume 1 contains an executive summary of the ATF mission, strawman design, and study results. Volume 2 contains the detailed study information. Volume 3 has the ATF cost estimate, and will have limited distribution.

  16. Satellite observations of fog over Indo-Gangetic Plains and its influence on solar irradiance

    NASA Astrophysics Data System (ADS)

    Kharol, Shailesh Kumar; Rani Sharma, Anu; Kvs, Badarinath; Roy, P. S.

    Every year, the Northern region of India, especially the Indo-Gangetic Plains (IGPs) region ex-perience severe fog conditions during winter season due to typical meteorological, environmental and prevailing terrain conditions. The IGP region is highly influenced by western disturbances during winter season, which provide ideal conditions for accumulation of pollutants within the boundary layer and often results in fog formation. The formation of fog over IGPs is believed to create numerous health hazards, economic loss and cross-country transportation of aerosols. The fog is also expected to have impact on agriculture, general economy, global and regional climate. It has attracted the global scientific community attention to address the uncertainties pertaining to its formation and physico-chemical properties. The increase in aerosol concen-tration in the lower atmosphere due to biomass-burning events and anthropogenic activities provides more fog formation with water vapor present in atmosphere over IGP region. In the present study, we made an attempt to study the fog conditions that occurred over North In-dian region and long range transport of aerosols from fog region towards southern region during November, 2008 using multi-satellite data sets and ground based observations on aerosol prop-erties and solar irradiance at urban region of Hyderabad, India. False Color Composites (FCC) of IRS-P6 AWiFS, IRS-P4 OCM and Terra/Aqua MODIS images showed an intense fog/aerosol layer over IGP region on 07th -09th November, 2008. The Terra/Aqua MODIS AOD500 and OMI-AI observations showed high values over IGP region due to fog layer and long range trans-port of aerosols from IGP to Southern Indian region. CALIPSO LIDAR observation showed thick layer of fog/aerosols up to above northern/central Indian region with thickness ranging from 1.5 to 3 Kms. NCEP temperature anomaly variation at 700 hPa showed higher values over IGP region attributed upper atmospheric heating due to

  17. The influence of program acceptability on the effectiveness of public health policy: a study of directly observed therapy for tuberculosis.

    PubMed Central

    Heymann, S J; Sell, R; Brewer, T F

    1998-01-01

    OBJECTIVES: This study examined how patient acceptability influences the effectiveness of directly observed therapy for tuberculosis. METHODS: Decision and sensitivity analyses were used in assessing influences. RESULTS: If mandatory directly observed therapy discourages 6% of initial tuberculosis patients (range: 4% to 10%) from seeking care, then such therapy will be less effective than self-administered therapy. Directly observed therapy is more effective than repeated self-administered therapy for patients failing to complete initial treatment unless 32% (range: 27% to 38%) of patients avoid seeking care. CONCLUSIONS: Patient acceptability must be taken into consideration before selecting public health strategies. PMID:9518978

  18. Emotional signals from faces, bodies and scenes influence observers' face expressions, fixations and pupil-size

    PubMed Central

    Kret, Mariska E.; Roelofs, Karin; Stekelenburg, Jeroen J.; de Gelder, Beatrice

    2013-01-01

    We receive emotional signals from different sources, including the face, the whole body, and the natural scene. Previous research has shown the importance of context provided by the whole body and the scene on the recognition of facial expressions. This study measured physiological responses to face-body-scene combinations. Participants freely viewed emotionally congruent and incongruent face-body and body-scene pairs whilst eye fixations, pupil-size, and electromyography (EMG) responses were recorded. Participants attended more to angry and fearful vs. happy or neutral cues, independent of the source and relatively independent from whether the face body and body scene combinations were emotionally congruent or not. Moreover, angry faces combined with angry bodies and angry bodies viewed in aggressive social scenes elicited greatest pupil dilation. Participants' face expressions matched the valence of the stimuli but when face-body compounds were shown, the observed facial expression influenced EMG responses more than the posture. Together, our results show that the perception of emotional signals from faces, bodies and scenes depends on the natural context, but when threatening cues are presented, these threats attract attention, induce arousal, and evoke congruent facial reactions. PMID:24391567

  19. Longitudinal observation of influence of "taspo" on smoking behavior among high school students.

    PubMed

    Miyajima, Sayo; Fukuda, Yoshiharu; Yoshimi, Itsuro; Hayashi, Kenji

    2010-08-01

    A system with an adult discrimination IC card "taspo" was introduced in 2008 to prevent minors from purchasing cigarettes in Japan. This study aimed to elucidate the short-term change in smoking behavior among a cohort of high school students through the introduction of the taspo system. We conducted a questionnaire survey in students at one high school in the metropolitan area of Japan in 2008. In this area, the taspo system was introduced on July 1, and the survey was conducted before and after its introduction (June and September). Change in smoking behavior was examined by linking the two questionnaires using a unique identification number for each participant. The questionnaire included basic characteristics, smoking-related behavior, and means of obtaining tobacco. Of 133 students, 123 (response rate 84.7%) completed the before and after questionnaire forms and could be linked. The smoking rate was 22.8% in June and 25.2% in September, with no statistically significant change. Vending machines were the major means of obtaining tobacco in June, while the use of cigarette shops and supermarkets increased after the introduction of taspo. The introduction of taspo hardly influenced underage smoking behavior during the observation period in our study subjects. The only significant change was in the means of obtaining tobacco. To prevent underage smoking, the importance of comprehensive restriction of the procurement route was suggested.

  20. Observation of influences of mental health promotion and mental intervention on mental health status of professionals

    PubMed Central

    Jiang, Shu-Qiang; Zhang, Jian-Ling

    2015-01-01

    Objective: To observe the influences of mental health promotion and mental intervention on mental health status of professionals. Method: 2878 professionals for physical examination were selected and randomly divided into treatment group and control group, with 1443 professionals and 1435 professionals, respectively. Then, the difference of mental health status before and after mental intervention between two groups was compared. Results: In treatment group, the proportion of people with healthy mental and modest pressure after mental intervention was higher than that before mental intervention and that in control group after mental intervention (P<0.01); the proportion of people with psychological sub-heath and moderate pressure after mental intervention was significantly lower than that before mental intervention and that in control group after mental intervention (P<0.05). There was no significant difference in mental health status in control group before and after mental intervention (P>0.05). Mental health consciousness, health status, self pressure-relief capability, job satisfaction, and happiness index of professionals were up to 63.3%~78.8%. Conclusions: Mental health promotion and mental intervention may significantly improve mental health status of professionals. PMID:26221385

  1. Emotional signals from faces, bodies and scenes influence observers' face expressions, fixations and pupil-size.

    PubMed

    Kret, Mariska E; Roelofs, Karin; Stekelenburg, Jeroen J; de Gelder, Beatrice

    2013-01-01

    We receive emotional signals from different sources, including the face, the whole body, and the natural scene. Previous research has shown the importance of context provided by the whole body and the scene on the recognition of facial expressions. This study measured physiological responses to face-body-scene combinations. Participants freely viewed emotionally congruent and incongruent face-body and body-scene pairs whilst eye fixations, pupil-size, and electromyography (EMG) responses were recorded. Participants attended more to angry and fearful vs. happy or neutral cues, independent of the source and relatively independent from whether the face body and body scene combinations were emotionally congruent or not. Moreover, angry faces combined with angry bodies and angry bodies viewed in aggressive social scenes elicited greatest pupil dilation. Participants' face expressions matched the valence of the stimuli but when face-body compounds were shown, the observed facial expression influenced EMG responses more than the posture. Together, our results show that the perception of emotional signals from faces, bodies and scenes depends on the natural context, but when threatening cues are presented, these threats attract attention, induce arousal, and evoke congruent facial reactions.

  2. How does observation uncertainty influence which stream water samples are most informative for model calibration?

    NASA Astrophysics Data System (ADS)

    Wang, Ling; van Meerveld, Ilja; Seibert, Jan

    2016-04-01

    occurred, the mixing processes were more complex and the information content of streamflow samples decreased. Therefore, for these cases, samples taken at the start or end of overflow were most informative. We, furthermore, investigated how observation errors influenced the multi-criteria calibration process. Preliminary results show that more than two samples are needed to maintain a similar simulation performance when observation errors in precipitation or streamflow are included. These results provide guidance on suitable event-based sampling strategies for different conditions.

  3. AN ASTROMETRIC SEARCH FOR A SUB-STELLAR COMPANION OF THE M8.5 DWARF TVLM 513–46546 USING VERY LONG BASELINE INTERFEROMETRY

    SciTech Connect

    Forbrich, Jan; Berger, Edo; Reid, Mark J.

    2013-11-01

    We conducted multi-epoch very long baseline interferometry observations to search for astrometric reflex motion that would be caused by a sub-stellar companion of the M8.5 dwarf TVLM 513–46546. The observations yield an absolute parallax corresponding to a distance of 10.762 ± 0.027 pc and a proper motion of 78.09 ± 0.17 mas yr{sup –1}. The averaged flux density per epoch varies by a factor of at least three. From the absence of significant residual motion, we place an upper limit on any reflex motion caused by a companion, extending the parameter space covered by previous near-infrared direct-imaging searches. The data exclude a phase space of companion masses and orbital periods ranging from 3.8 M{sub Jup} with an orbital radius of ∼0.05 AU (and an orbital period of 16 days) to 0.3 M{sub Jup} with an orbital radius of ∼0.7 AU (and an orbital period of 710 days)

  4. ORBIT DETERMINATION OF DOUBLE-LINED SPECTROSCOPIC BINARIES BY FITTING THE REVISED HIPPARCOS INTERMEDIATE ASTROMETRIC DATA

    SciTech Connect

    Ren Shulin; Fu Yanning E-mail: fyn@pmo.ac.c

    2010-05-15

    Untill now, the Hipparcos intermediate astrometric data (HIAD) have contributed little to the full orbit determination of double-lined spectroscopic binaries (SB2s). This is because the photocenter of such a binary system is usually not far from the system mass center, and its orbital wobble is generally weak with respect to the accuracy of the HIAD. However, the HIAD have been recently revised and the accuracy is increased by a factor of 2.2 in the total weight. Therefore, it is interesting to see if the revised HIAD can be used in the orbit determination at least for some SB2s. In this paper, we first search the 9th Catalogue of Orbits of Spectroscopic Binaries (S{sub B{sup 9}}) for SB2s with reliable spectroscopic orbital solutions and with periods between 50 days and 3.2 years. This leaves us with 56 systems. The full orbital solutions of these systems are then determined from the HIAD by a highly efficient grid search method developed in this paper. The high efficiency is achieved by reducing the number of nonlinear model parameters to one, and by allowing all parameters to be adjustable within a region centered at each grid point. After a variety of tests, we finally accept orbital solutions of 13 systems. Among these systems, six (HIP 677, 20894, 87895, 95995, 101382, and 111170) are well resolved with reliable interferometric data. Orbital solutions from these data are consistent with our results. The full orbital solutions of the other seven systems (HIP 9121, 17732, 32040, 57029, 76006, 102431, and 116360) are determined for the first time.

  5. Baseline pressure errors (BPEs) extensively influence intracranial pressure scores: results of a prospective observational study

    PubMed Central

    2014-01-01

    Background Monitoring of intracranial pressure (ICP) is a cornerstone in the surveillance of neurosurgical patients. The ICP is measured against a baseline pressure (i.e. zero - or reference pressure). We have previously reported that baseline pressure errors (BPEs), manifested as spontaneous shift or drifts in baseline pressure, cause erroneous readings of mean ICP in individual patients. The objective of this study was to monitor the frequency and severity of BPEs. To this end, we performed a prospective, observational study monitoring the ICP from two separate ICP sensors (Sensors 1 and 2) placed in close proximity in the brain. We characterized BPEs as differences in mean ICP despite near to identical ICP waveform in Sensors 1 and 2. Methods The study enrolled patients with aneurysmal subarachnoid hemorrhage in need of continuous ICP monitoring as part of their intensive care management. The two sensors were placed close to each other in the brain parenchyma via the same burr hole. The monitoring was performed as long as needed from a clinical perspective and the ICP recordings were stored digitally for analysis. For every patient the mean ICP as well as the various ICP wave parameters of the two sensors were compared. Results Sixteen patients were monitored median 164 hours (ranges 70 – 364 hours). Major BPEs, as defined by marked differences in mean ICP despite similar ICP waveform, were seen in 9 of them (56%). The BPEs were of magnitudes that had the potential to alter patient management. Conclusions Baseline Pressure Errors (BPEs) occur in a significant number of patients undergoing continuous ICP monitoring and they may alter patient management. The current practice of measuring ICP against a baseline pressure does not comply with the concept of State of the Art. Monitoring of the ICP waves ought to become the new State of the Art as they are not influenced by BPEs. PMID:24472296

  6. Observations of muslim physicians regarding the influence of religion on health and their clinical approach.

    PubMed

    Al-Yousefi, Nada A

    2012-06-01

    Although most patients report wanting their physicians to address the religious aspects of their lives, most physicians do not initiate questions concerning religion with their patients. Although religion plays a major role in every aspect of the life of a Muslim, most of the data on the role of religion in health have been conducted in populations that are predominantly non-Muslim. The objectives of this study were to assess Muslim physicians' beliefs and behaviours regarding religious discussions in clinical practice and to understand the factors that facilitate or impede discussion of religion in clinical settings. The study is based on a cross-sectional survey. Muslim physicians working in a tertiary care hospital in Saudi Arabia were invited to complete a questionnaire that included demographic data; intrinsic level of religiosity; beliefs about the impact of religion on health; and observations, attitudes, behaviours, and barriers to attending to patients' religious needs. Out of 225 physicians, 91% agreed that religion had a positive influence on health, but 62.2% thought that religion could lead to the refusal of medically indicated therapy. Over half of the physicians queried never asked about religious issues. Family physicians were more likely to initiate religious discussions, and physicians with high intrinsic religiosity were more likely to share their own religious views. Residents and staff physicians tended to avoid such discussions. The study results highlight the fact that many physicians do not address patients' religious issues and that there is a need to clarify ethically sound means by which to address such needs in Islamic countries. Medical institutions should work to improve the capacity of medical personnel to appropriately address religious issues. The training of clinical religious advisors is a promising solution to this dilemma.

  7. Examining rater and occasion influences in observational assessments obtained from within the clinical environment

    PubMed Central

    Kreiter, Clarence D.; Wilson, Adam B.; Humbert, Aloysius J.; Wade, Patricia A.

    2016-01-01

    Background When ratings of student performance within the clerkship consist of a variable number of ratings per clinical teacher (rater), an important measurement question arises regarding how to combine such ratings to accurately summarize performance. As previous G studies have not estimated the independent influence of occasion and rater facets in observational ratings within the clinic, this study was designed to provide estimates of these two sources of error. Method During 2 years of an emergency medicine clerkship at a large midwestern university, 592 students were evaluated an average of 15.9 times. Ratings were performed at the end of clinical shifts, and students often received multiple ratings from the same rater. A completely nested G study model (occasion: rater: person) was used to analyze sampled rating data. Results The variance component (VC) related to occasion was small relative to the VC associated with rater. The D study clearly demonstrates that having a preceptor rate a student on multiple occasions does not substantially enhance the reliability of a clerkship performance summary score. Conclusions Although further research is needed, it is clear that case-specific factors do not explain the low correlation between ratings and that having one or two raters repeatedly rate a student on different occasions/cases is unlikely to yield a reliable mean score. This research suggests that it may be more efficient to have a preceptor rate a student just once. However, when multiple ratings from a single preceptor are available for a student, it is recommended that a mean of the preceptor's ratings be used to calculate the student's overall mean performance score. PMID:26925540

  8. Modeling and Observational Study of the Stratospheric Ozone Influences on the Tropospheric Circulation Patterns

    NASA Astrophysics Data System (ADS)

    Barodka, S.; Krasouski, A.; Shalamyansky, A.

    2013-12-01

    It seems to be universally recognized that stratospheric ozone distribution and tropospheric dynamical formations are interconnected and both affect each other in manifold processes of stratosphere-troposphere interactions. In particular, numerous observational studies suggest a clear relation between the total ozone column (TOC) field and the distribution of air-masses in both the stratosphere and the troposphere. The tropopause height being a result of two rival categories of processes (the tropospheric vertical convection and the radiative heating of the stratosphere resulting from the ozone cycle), it is natural that tropospheric and stratospheric phenomena can have an effect on each other. Indeed, it has been shown that virtually all local ozone anomalies (synoptic-scale deviations in the TOC field) correspond to local uplifts of the tropopause level, and a significant amount of research was dedicated to identification of local patterns in the stratospheric ozone distribution as the outcome of tropospheric synoptic formations and weather systems. However, in the present study we focus our attention to the opposite side of the interaction: the impact of stratospheric ozone distribution on the features of tropospheric circulation and the associated weather and regional climate conditions. For that purpose, we proceed from analyzes of the observational data performed at the A.I. Voeikov Main Geophysical Observatory, which suggest a distinct correlation between stratospheric ozone distribution, synoptic formations and air-masses boundaries in the upper troposphere and the temperature field of the lower stratosphere. Furthermore, we perform a series of numerical simulations of formation, evolution and decay of ozone anomalies of different spatial and temporal scales, introducing disturbances to the stratospheric ozone and temperature variable fields and tracing the propagation of this perturbation to tropospheric model levels. Aiming to simulate dynamical processes

  9. Spacecraft observations of NEOs: a Mars Express demonstration

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas; Roatsch, Thomas; Jaumann, Ralf; Hoffmann, Harald; Giorgini, J. D.

    To demonstrate the astrometric capability of the Mars Express Super Resolution Channel for observing Near Earth Asteroids, asteroid 4 Vesta was imaged against a star field in two five-picture sequences. While at a solar phase angle of 40.5 degrees and visual magnitude of 7.2, Vesta was imaged along with a 7.4 and 8.2 visual magnitude reference star in all ten pictures. Mars Express centered astrometric observations of Vesta were then produced using flight camera geometric calibrations, optical photogrammetric techniques, and the Tycho 2 star catalog. The astrometric measurements, validated to an accuracy of 0.4 arc-sec, were delivered to the IAU's Minor Planet Center. Such observations provide geometrically powerful samples of the target body's state vector when combined with Earth-based astrometric observations, substantially improving orbit reconstruction and prediction compared to data obtained while viewing from the Earth direction only. Based on this success, Mars Express will routinely image Near Earth Objects, asteroids and comets passing within 20,000,000 km of Mars that are brighter than 9th magnitude to support the Near Earth Object Observation program

  10. The Growth of Hydrological Understanding: Observations, Theories and Societal Influences that have Shaped the Field

    NASA Astrophysics Data System (ADS)

    Sivapalan, M.

    2009-12-01

    “Progress in science depends on new techniques, new discoveries and new ideas, probably in that order.” Sydney Brenner (1980). ______________ Science never progresses smoothly or uniformly on all fronts. History of science tells us that progress cannot be meticulously planned, and elaborate plans do not always end up at their intended targets. Breakthroughs tend to happen by themselves through human ingenuity, which cannot be precisely predicted nor pre-planned. All sciences go through periods of euphoria, stagnation, pessimism and then recovery. New theories/ideas, or new measurements/data sources or new analysis techniques have alternated in generating vital breakthroughs. Progress in science is also not immune from other societal and technological influences, including wars. Hydrology is no exception. However, at this point in time it is not clear if hydrologic science is limited by data (and our ability to measure or monitor water cycle dynamics) or by theories or vital ideas that can help us understand how the hydrologic system works and will evolve. We can map the surface of Mars in search of the presence of water, but cannot close the water balance here on Earth. We have instruments that can help us observe pore scale processes in the laboratory, but still cannot predict how these will evolve in time in real places, at much larger scales. We are dealing with a complex adaptive system that evolves at all time and space scales. There is a great need for data to close the water balance, but there is an even greater need to understand and predict in all places in such a dynamic environment. It sometimes happens that every time a new measurement technology or data analysis technique is introduced we get excited and pour enormous resources on their development only to be disappointed that we have gone down a narrow alley. In spite of occasional breakthroughs in our measurement capability, the bigger challenge remains our inability to extrapolate beyond the

  11. The Exoplanet Simple Orbit Fitting Toolbox (ExoSOFT): An Open-source Tool for Efficient Fitting of Astrometric and Radial Velocity Data

    NASA Astrophysics Data System (ADS)

    Mede, Kyle; Brandt, Timothy D.

    2017-03-01

    We present the Exoplanet Simple Orbit Fitting Toolbox (ExoSOFT), a new, open-source suite to fit the orbital elements of planetary or stellar-mass companions to any combination of radial velocity and astrometric data. To explore the parameter space of Keplerian models, ExoSOFT may be operated with its own multistage sampling approach or interfaced with third-party tools such as emcee. In addition, ExoSOFT is packaged with a collection of post-processing tools to analyze and summarize the results. Although only a few systems have been observed with both radial velocity and direct imaging techniques, this number will increase, thanks to upcoming spacecraft and ground-based surveys. Providing both forms of data enables simultaneous fitting that can help break degeneracies in the orbital elements that arise when only one data type is available. The dynamical mass estimates this approach can produce are important when investigating the formation mechanisms and subsequent evolution of substellar companions. ExoSOFT was verified through fitting to artificial data and was implemented using the Python and Cython programming languages; it is available for public download at https://github.com/kylemede/ExoSOFT under GNU General Public License v3.

  12. Observations of Spacecraft Targets, Unusual Asteroids, and Targets of Opportunity

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    1998-01-01

    Obtain physical and astrometric observations of: (1) spacecraft targets to support mission operations; (2) known asteroids with unusual orbits to help determine their origin; and (3) newly discovered minor planets (including both asteroids and comets) that represent a particular opportunity to add significant new knowledge of the Solar System.

  13. A Computer-Based Observational Assessment of the Teaching Behaviours that Influence Motivational Climate in Physical Education

    ERIC Educational Resources Information Center

    Morgan, Kevin; Sproule, John; Weigand, Daniel; Carpenter, Paul

    2005-01-01

    The primary purpose of this study was to use an established behavioural taxonomy (Ames, 1992b) as a computer-based observational coding system to assess the teaching behaviours that influence perceptions of the motivational climate in Physical Education (PE). The secondary purpose was to determine the degree of congruence between the behavioural…

  14. Gravity and observer's body orientation influence the visual perception of human body postures.

    PubMed

    Lopez, Christophe; Bachofner, Christelle; Mercier, Manuel; Blanke, Olaf

    2009-05-04

    Since human behavior and perception have evolved within the Earth's gravitational field, humans possess an internal model of gravity. Although gravity is known to influence the visual perception of moving objects, the evidence is less clear concerning the visual perception of static objects. We investigated whether a visual judgment of the stability of human body postures (static postures of a human standing on a platform and tilted in the roll plane) may also be influenced by gravity and by the participant's orientation. Pictures of human body postures were presented in different orientations with respect to gravity and the participant's body. The participant's body was aligned to gravity (upright) or not (lying on one side). Participants performed stability judgments with respect to the platform, imagining that gravity operates in the direction indicated by the platform (that was or was not concordant with physical gravity). Such visual judgments were influenced by the picture's orientation with respect to physical gravity. When pictures were tilted by 90 degrees with respect to physical gravity, the human postures that were tilted toward physical gravity (down) were perceived as more unstable than similar postures tilted away from physical gravity (up). Stability judgments were also influenced by the picture's orientation with respect to the participant's body. This indicates that gravity and the participant's body position may influence the visual perception of static objects.

  15. The Functional Equivalence between Movement Imagery, Observation, and Execution Influences Imagery Ability

    ERIC Educational Resources Information Center

    Williams, Sarah E.; Cumming, Jennifer; Edwards, Martin G.

    2011-01-01

    Based on literature identifying movement imagery, observation, and execution to elicit similar areas of neural activity, research has demonstrated that movement imagery and observation successfully prime movement execution. To investigate whether movement and observation could prime ease of imaging from an external visual-imagery perspective, an…

  16. Stellar, Remnant, Planetary, and Dark-Object Masses from Astrometric Microlensing

    NASA Technical Reports Server (NTRS)

    Gould, Andrew P.; Bennett, David P.; Boden, Andrew; Depoy, Darren L.; Gaudi, Scott B.; Griest, Kim; Han, Cheongho; Paczynski, Bohdan; Reid, I. Neill

    2004-01-01

    The primary goal of our project is to make a complete census of the stellar population of the Galaxy. We are broadening the term stellar here to include both ordinary stars and dark stars. Ordinary stars, burning their nuclear fuel and shining, can perhaps best be studied with traditional astronomical techniques, but dark stars, by which we include old brown dwarfs, black holes, old white dwarfs, neutron stars, and perhaps exotic objects such as mirror matter stars or primordial black holes, can only be studied by their gravitational effects. Traditionally, these objects have been probed in binaries, and thus selected in a way that may or may not be representative of their respective field populations. The only way to examine the field population of these stars is through microlensing, the deflection of light from a visible star in the background by an object (dark or not) in the foreground. When lensed, there are two images of the background star. Although these images cannot be resolved when the lens has a stellar mass, the lensing effect can be detected in two ways: photometrically, i.e. by measuring the magnification of the source by the lens, and astrometrically, i.e. by measuring the shift in the centroid of the two images. Photometric microlensing experiments have detected hundreds of microlensing events over the past decade. Despite its successes, photometric microlensing has so far been somewhat frustrating because these events are difficult to interpret. Almost nothing is known about the masses of individual lenses and very little is known about the statistical properties of the lenses treated as a whole, such as their average mass. Although probably over 100 of the lenses are in fact dark objects, we can't determine which they are, let alone investigate finer details such as what their masses are, and where they are in the Galaxy. With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We

  17. Observations on the Influence of Tool-Sheet Contact Conditions on an Incremental Forming Process

    NASA Astrophysics Data System (ADS)

    Durante, M.; Formisano, A.; Langella, A.

    2011-08-01

    The influence of tool-sheet contact conditions on features such as surface roughness, forming force, and formability was evaluated for components produced by incremental forming, a highly flexible innovative sheet metal-forming process. Experimental tests were carried out on sheets of AA7075T0 to create two types of component: pyramid frusta (for the evaluation of roughness and force) and cone frusta (for the evaluation of formability). Four different types of tool-sheet contact were analyzed, using two types of tool. From the experimental tests, the influence on the surface finishing and on the trend of the forming forces depending on contact type was revealed. Contact types do not, however, influence sheet formability.

  18. Combining and Comparing Astrometric Data from Different Epochs: A Case Study with Hipparcos and Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Michalik, D.; Lindegren, L.; Hobbs, D.; Lammers, U.; Yamada, Y.

    2012-09-01

    The Hipparcos mission (1989-1993) resulted in the first space-based stellar catalogue including measurements of positions, parallaxes and annual proper motions accurate to about one milli-arcsecond. More space astrometry missions will follow in the near future. The ultra-small Japanese mission Nano-JASMINE (launch in late 2013) will determine positions and annual proper motions with some milli-arcsecond accuracy. In mid 2013 the next-generation ESA mission Gaia will deliver some tens of micro-arcsecond accurate astrometric parameters. Until the final Gaia catalogue is published in early 2020 the best way of improving proper motion values is the combination of positions from different missions separated by long time intervals. Rather than comparing positions from separately reduced catalogues, we propose an optimal method to combine the information from the different data sets by making a joint astrometric solution. This allows to obtain good results even when each data set alone is insufficient for an accurate reduction. We demonstrate our method by combining Hipparcos and simulated Nano-JASMINE data in a joint solution. We show a significant improvement over the conventional catalogue combination.

  19. Distortion of the pixel grid in HST WFC3/UVIS and ACS/WFC CCD detectors and its astrometric correction

    NASA Astrophysics Data System (ADS)

    Kozhurina-Platais, Vera; Mackenty, John; Golimovski, David; Sirianni, Marco; Borncamp, David; Anderson, Jay; Grogin, Norman

    2016-07-01

    The geometric distortion of the CCD detectors used in the Hubble Space TelescopeWide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments is characterized by both large and fine-scale distortions. The large-scale distortion, due to the complexity of the HST optical assembly, can be modeled by a high-order polynomial. The majority of fine-distortion is inherent to the CCD detectors themselves, which manifests itself as fine-scale, correlated systematic offsets in the residuals from the best-fit polynomial solution. Such systematic offsets across the CCD chip introduce astrometric errors at the level of about 0.1 pix (up to 1.5 μm within the 15 μm pixels). These fine-scale and low-amplitude distortions apparently arise from the spatial irregularities in the pixel grid. For the WFC3/UVIS CCD chips, there is a clear pattern of periodic skew in the lithographic-mask stencil imprinted onto the detector. Similar irregularities in the pixel grid of ACS/WFC CCD chips are even more pronounced by the narrow (68×2048 pixel) lithographic-mask stencil. To remove these distortions, a 2-D correction in the form of a look-up table has been developed using HST images of very dense stellar fields. The post-correction of fine-scale astrometric errors can be removed down to the level of 0.01 pix (0.15 μm) or better.

  20. Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks

    NASA Astrophysics Data System (ADS)

    Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.

    2009-04-01

    Porous rocks in hydrocarbon reservoirs are often saturated with a mixture of two or more fluids. Interpretation of exploration seismograms requires understanding of the relationship between distribution of the fluids patches and acoustic properties of rocks. The sizes of patches as well as their distribution affect significantly the seismic response. If the size of the fluid patch is smaller than the diffusion wavelength then pressure equilibration is achieved and the bulk modulus of the rock saturated with a mixture is defined by the Gassmann equations (Gassmann, 1951) with the saturation-weighted average of the fluid bulk modulus given by Wood's law (Wood, 1955, Mavko et al., 1998). If the fluid patch size is much larger than the diffusion wavelength then there is no pressure communication between different patches. In this case, fluid-flow effects can be neglected and the overall rock may be considered equivalent to an elastic composite material consisting of homogeneous parts whose properties are given by Gassmann theory with Hill's equation for the bulk modulus (Hill, 1963, Mavko et al., 1998). At intermediate values of fluid saturation the velocity-saturation relationship is significantly affected by the fluid patch distribution. In order to get an improved understanding of factors influencing the patch distribution and the resulting seismic wave response we performed simultaneous measurements of P-wave velocities and rock sample CT imaging. The CT imaging allows us to map the fluid distribution inside rock sample during saturation (water imbibition). We compare the experimental results with theoretical predictions. In this paper we will present results of simultaneous measurements of longitudinal wave velocities and imaging mapping of fluid distribution inside rock sample during sample saturation. We will report results of two kinds of experiments: "dynamic" and "quasi static" saturation. In both experiments Casino Cores Otway Basin sandstone, Australia core

  1. First Results of Venus Express Spacecraft Observations with Wettzell

    NASA Technical Reports Server (NTRS)

    Calves, Guifre Molera; Wagner, Jan; Neidhardt, Alexander; Kronschnabl, Gerhard; Ayucar, Miguel Perez; Cimo, Giuseppe; Pogrebenko, Sergei

    2010-01-01

    The ESA Venus Express spacecraft was observed at X-band with the Wettzell radio telescope in October-December 2009 in the framework of an assessment study of the possible contribution of the European VLBI Network to the upcoming ESA deep space missions. A major goal of these observations was to develop and test the scheduling, data capture, transfer, processing, and analysis pipeline. Recorded data were transferred from Wettzell to Metsahovi for processing, and the processed data were sent from Mets ahovi to JIVE for analysis. A turnover time of 24 hours from observations to analysis results was achieved. The high dynamic range of the detections allowed us to achieve a milliHz level of spectral resolution accuracy and to extract the phase of the spacecraft signal carrier line. Several physical parameters can be determined from these observational results with more observational data collected. Among other important results, the measured phase fluctuations of the carrier line at different time scales can be used to determine the influence of the solar wind plasma density fluctuations on the accuracy of the astrometric VLBI observations.

  2. Astrometric observations of the satellites of the outer planets. V - The oppositions of 1978-1979, 1980, and 1981

    NASA Technical Reports Server (NTRS)

    Rohde, J. R.; Ianna, P. A.; Stayton, L. C.; Levinson, F. H.

    1982-01-01

    Accurate photographic positions obtained during the 1978-1979, 1980 and 1981 oppositions are presented for the positions of the Galilean and the Saturn satellites. Spherical-equatorial coordinates are presented for a total of 1032 pairs, for the equator and equinox of 1950.0 and 1316 intersatellite positions. The data were obtained by the Leander McCormick Observatory's 67-cm refractor telescope, and answers the need for more refined orbital element data on these satellites required by the Galileo Jupiter orbiter vehicle.

  3. Top-down influences on ambiguous perception: the role of stable and transient states of the observer

    PubMed Central

    Scocchia, Lisa; Valsecchi, Matteo; Triesch, Jochen

    2014-01-01

    The world as it appears to the viewer is the result of a complex process of inference performed by the brain. The validity of this apparently counter-intuitive assertion becomes evident whenever we face noisy, feeble or ambiguous visual stimulation: in these conditions, the state of the observer may play a decisive role in determining what is currently perceived. On this background, ambiguous perception and its amenability to top-down influences can be employed as an empirical paradigm to explore the principles of perception. Here we offer an overview of both classical and recent contributions on how stable and transient states of the observer can impact ambiguous perception. As to the influence of the stable states of the observer, we show that what is currently perceived can be influenced (1) by cognitive and affective aspects, such as meaning, prior knowledge, motivation, and emotional content and (2) by individual differences, such as gender, handedness, genetic inheritance, clinical conditions, and personality traits and by (3) learning and conditioning. As to the impact of transient states of the observer, we outline the effects of (4) attention and (5) voluntary control, which have attracted much empirical work along the history of ambiguous perception. In the huge literature on the topic we trace a difference between the observer's ability to control dominance (i.e., the maintenance of a specific percept in visual awareness) and reversal rate (i.e., the switching between two alternative percepts). Other transient states of the observer that have more recently drawn researchers' attention regard (6) the effects of imagery and visual working memory. (7) Furthermore, we describe the transient effects of prior history of perceptual dominance. (8) Finally, we address the currently available computational models of ambiguous perception and how they can take into account the crucial share played by the state of the observer in perceiving ambiguous displays. PMID

  4. Observations of Three-Dimensional Radiative Effects that Influence Satellite Retrievals of Cloud Properties

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander; Lau, William K. M. (Technical Monitor)

    2001-01-01

    This paper examines three-dimensional (3D) radiative effects, which arise from horizontal radiative interactions between areas that have different cloud properties. Earlier studies have argued that these effects can cause significant uncertainties in current satellite retrievals of cloud properties, because the retrievals rely on one-dimensional (1D) theory and do not consider the effects of horizontal changes in cloud properties. This study addresses two questions: which retrieved cloud properties are influenced by 3D radiative effects, and where 3D effects tend to occur? The influence of 3D effects is detected from the wayside illumination and shadowing make clouds appear asymmetric: Areas appear brighter if the cloud top surface is tilted toward, rather than away from, the Sun. The analysis of 30 images by the Moderate Resolution Imaging Spectroradiometer (MODIS) reveals that retrievals of cloud optical thickness and cloud water content are most influenced by 3D effects, whereas retrievals of cloud particle size are much less affected. The results also indicate that while 3D effects are strongest at cloud edges, cloud top variability in cloud interiors, even in overcast regions, also produces considerable 3D effects. Finally, significant 3D effects are found in a wide variety of situations, ranging from thin clouds to thick ones and from low clouds to high ones.

  5. Motion trajectory information and agency influence motor learning during observational practice.

    PubMed

    Roberts, James W; Bennett, Simon J; Elliott, Digby; Hayes, Spencer J

    2015-07-01

    Fundamental to performing actions is the acquisition of motor behaviours. We examined if motor learning, through observational practice, occurs by viewing an agent displaying naturalistic or constant velocity, and whether motion trajectory, as opposed to end-state, information is required. We also investigated if observational practice is sensitive to belief regarding the origin of an agent. Participants had to learn a novel movement sequence timing task, which required upper-limb movements to a series of targets within a pre-specified absolute and relative time goal. Experiment 1 showed learning after viewing naturalistic and constant velocity, but not end-state information. For Experiment 2, in addition to learning the movement sequence, participants observed a series of movement stimuli that were either the trained or new sequences and asked to rate their confidence on whether the observed sequence was the same or different to observational practice. The results indicated that agency belief modulates how naturalistic and constant velocity is coded. This indicated that the processes associated with belief are part of an interpretative predictive coding system where the association between belief and observed motion is determined. When motion is constant velocity, or believed to be computer-generated, coding occurs through top-down processes. When motion is naturalistic velocity, and believed to be human-generated, it is most likely coded by gaining access to bottom-up sensorimotor processes in the action-observation network.

  6. Calibration of Hipparcos Long Period Variable Start Fields Using Multi-Color CCD Observations

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Mattei, Janet; Benson, Priscilla J.; Reyes, Adriana

    The first set of 4-color AAVSO CCD finder charts has been prepared using the 0.9-m telescope at Kitt peak national Observatory in Arizona. The stars selected were northern long period variable stars observed with the Hipparcos astrometric satellite, since multicolor photometry was needed on these stars to calibrate and reduce the photometric and astrometric data obtained by the satellite. We describe the criteria in choosing the stars for which to prepare CCD finder charts, the observation process, and the reduction of the CCD to obtain 4-color CCD magnitude sequences to use in the creation of AAVSO finder charts.

  7. Nurses' understanding influences comprehension of patients admitted in the observation unit.

    PubMed

    Desme, Aline; Mendes, Nathalie; Perruche, Franck; Veillard, Elsa; Elie, Caroline; Moulinet, Françoise; Sanson, Fabienne; Georget, Jean-Michel; Tissier, Anne; Pourriat, Jean-Louis; Claessens, Yann-Erick

    2013-01-01

    Comprehension is poor in patients admitted in the emergency observation unit. Teamwork communication gaps could contribute to patients' misunderstanding of their health condition. To determine in patients admitted in the emergency observation unit whether comprehension of diagnosis, prognosis, and management depended on nurses' comprehension, the authors conducted a prospective observational study in a busy adult emergency department of a tertiary teaching hospital in Paris over 2 months. Consecutive patients admitted in the emergency observation unit were included. Patients' and nurses' comprehension of diagnosis, prognosis, and management was compared with the statements of the emergency department attending physicians for these items. The authors observed whether patients' misunderstanding was associated with nurses' misunderstanding. A total of 544 patients were evaluated. For each patient, nurses' and patients' comprehension was available. Patients understood severity in 40%, organ involved in 69%, medical wording in 57%, reason for admission in 48%, and discharge instruction in 67%. In comparison with patients, nurses better understood each item except for discharge instruction. The authors observed that patients' comprehension was better when nurses understood diagnosis (p <.0001), reasons for admission (p =.032) and discharge instructions (p =.002). Nurses' understanding of severity did not modify patients' comprehension. These results support the conclusions that communication gaps in teamwork alter patients' comprehension and that nurses' and patients' misunderstandings are associated. Therefore, improving communication by nurses and physicians to patients may improve patients' understanding.

  8. The influence of instructional interactions on students’ mental models about the quantization of physical observables: a modern physics course case

    NASA Astrophysics Data System (ADS)

    Didiş Körhasan, Nilüfer; Eryılmaz, Ali; Erkoç, Şakir

    2016-01-01

    Mental models are coherently organized knowledge structures used to explain phenomena. They interact with social environments and evolve with the interaction. Lacking daily experience with phenomena, the social interaction gains much more importance. In this part of our multiphase study, we investigate how instructional interactions influenced students’ mental models about the quantization of physical observables. Class observations and interviews were analysed by studying students’ mental models constructed in a modern physics course during an academic semester. The research revealed that students’ mental models were influenced by (1) the manner of teaching, including instructional methodologies and content specific techniques used by the instructor, (2) order of the topics and familiarity with concepts, and (3) peers.

  9. Observed Influence of Amazon rainfall on the Atlantic ITCZ and Atlantic Nino

    NASA Astrophysics Data System (ADS)

    Fu, R.; Wang, H.

    2007-05-01

    Most of previous studies on climate variabilities of the tropical Atlantic Ocean have been focused on remote and internal oceanic processes or atmosphere-ocean interaction. In comparison, relatively few studies have examined the influences from adjacent continents, especially the influence of rainfall over the South American continent. Using the Tropical Rainfall Measuring Mission (TRMM) daily rain-rate dada, the QuikSCAT ocean surface wind and PIRATA buoy data, we have found that convection developed over the Amazonia appears to propagate eastward across the Atlantic and then into Africa. Such changes modulate the intensity and location of the convection within the Atlantic ITCZ and result in a zonal oscillation of the ITCZ between the west and east equatorial Atlantic Ocean. The eastward propagating disturbances appear to be an atmospheric Kelvin wave with a period of 6 to 7 days and a phase speed of around 12 m s-1. Such convectively coupled Kelvin wave is particularly strong during boreal spring and dominates the synoptic variations of the lower and upper troposphere winds. Our results further suggest that the interannual changes of these convective coupled Kelvin waves have an important influence on trigging the onset of Atlantic Ninos. In particular, anomalously late northward withdraw of the South American rainfall in boreal spring lead to stronger Kelvin wave activities and stronger westerly wind anomalies in the western equatorial Atlantic. The latter triggers a change of the slope of the thermocline in the equatorial Atlantic Ocean and induces sea surface temperature anomalies in the eastern Atlantic. These changes contribute to the onset of the Atlantic Nino in earlier boreal summer.

  10. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    USGS Publications Warehouse

    Tullos, Desiree D.; Walter, Cara; Dunham, Jason

    2016-01-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: (1) the velocities considered to be representative of habitat units; (2) patterns of use of the hydraulic environment by fish; and (3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution (grid spacing from 10 to 100 cm), reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  11. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    NASA Astrophysics Data System (ADS)

    Tullos, Desirée.; Walter, Cara; Dunham, Jason

    2016-08-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: (1) the velocities considered to be representative of habitat units; (2) patterns of use of the hydraulic environment by fish; and (3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution (grid spacing from 10 to 100 cm), reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  12. A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks

    NASA Astrophysics Data System (ADS)

    Diao, Su-Meng; Liu, Yun; Zeng, Qing-An; Luo, Gui-Xun; Xiong, Fei

    2014-12-01

    In this paper, we propose an opinion dynamics model in order to investigate opinion evolution and interactions and the behavior of individuals. By introducing social influence and its feedback mechanism, the proposed model can highlight the heterogeneity of individuals and reproduce realistic online opinion interactions. It can also expand the observation range of affected individuals. Combining psychological studies on the social impact of majorities and minorities, affected individuals update their opinions by balancing social impact from both supporters and opponents. It can be seen that complete consensus is not always obtained. When the initial density of either side is greater than 0.8, the enormous imbalance leads to complete consensus. Otherwise, opinion clusters consisting of a set of tightly connected individuals who hold similar opinions appear. Moreover, a tradeoff is discovered between high interaction intensity and low stability with regard to observation ranges. The intensity of each interaction is negatively correlated with observation range, while the stability of each individual’s opinion positively affects the correlation. Furthermore, the proposed model presents the power-law properties in the distribution of individuals’ social influences, which is in agreement with people’s daily cognition. Additionally, it is proven that the initial distribution of individuals’ social influences has little effect on the evolution.

  13. Contextual influences on concordance between maternal report and laboratory observation of toddler fear.

    PubMed

    Kiel, Elizabeth J; Hummel, Alexandra C

    2017-03-01

    Emotion and temperament researchers have faced an enduring issue of how to best measure children's tendencies to express specific emotions. Inconsistencies between laboratory observation and parental report have made it challenging for researchers to determine the utility of these different forms of measurement. The current study examined the effect of laboratory episode characteristics (i.e., threat level of the episode, maternal involvement) on concordance between maternal report and laboratory observation of toddler fear. The sample included 111 mother-toddler dyads who participated in a laboratory assessment when toddlers were approximately 24 months old. Toddler fear was assessed both via maternal report and observation from a number of laboratory episodes that varied in their level of threat and whether mothers were free or constrained in their involvement in the task. Results indicated that maternal report related to the observed fear composites for low threat, but not high threat episodes. On the contrary, maternal involvement in the laboratory episodes did not moderate the relation between maternal report and laboratory observation of fear. These results suggest that the threat level of laboratory episodes designed to elicit fear, but not maternal involvement in these episodes, may be important to take into consideration when assessing their relation to maternal report of fear and fearful temperament. (PsycINFO Database Record

  14. Motor facilitation during action observation: topographic mapping of the target muscle and influence of the onlooker's posture.

    PubMed

    Urgesi, Cosimo; Candidi, Matteo; Fabbro, Franco; Romani, Michela; Aglioti, Salvatore M

    2006-05-01

    Transcranial magnetic stimulation (TMS) studies report that viewing a given action performed by a model activates the neural representation of the onlooker's muscles that are activated during the actual execution of the observed action. Here we sought to determine whether this mirror observation-execution facilitation reflects only muscular specificity or whether it is also influenced by postural congruency between onlooker/model body parts. We recorded motor potentials evoked by single-pulse TMS from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles during observation of the right index and little finger abduction/adduction movements of models who kept their hands in a palm-down or palm-up position. Moreover, in different experiments observers kept their right hand palm down or palm up. Selective motor facilitation was observed during observation of movements that map the motor function of the targeted muscles, regardless of the posture of the observed hand. Modulation of FDI, however, was obtained only when participants kept their hand palm down; by contrast, modulation of ADM was obtained only when participants kept their hand palm up. Interestingly, electromyographic recordings showed that FDI is mostly active when index abduction/adduction movements are performed in the palm-down position, whereas ADM is mostly active when little finger abduction/adduction movements are performed in the palm-up position. Results show that the influence of the onlooker's hand posture is comparable in action execution and observation, thus indicating a fine-grain functional correspondence between these two processes.

  15. Implications of cavity, topographic and geologic influences on tilt and strain observations

    NASA Technical Reports Server (NTRS)

    Harrison, J. C.

    1978-01-01

    Tilt and strain observations are importantly (pathologically at the 100%, typically at the few 10s% level) affected by cavities, topography, and geological inhomogenities; gravity observation are practically unaffected. The traditional earth tide observatory and abandoned mine or tunnel is a very poor place to measure body tides because of the complicated cavities, topography and geology. Instead, the ideal site for observing the body tide is in flat terrain with horizontally layered, mechanically homogeneous geology. Strain will be measured with long surface- or trench-mounted laser strain meters and tilt with long, surface- or trench mounted liquid levels, or with borehole tiltmeters. Horizontal geological discontinuities can produce large perturbations of the tilt and strain tides, and these perturbations, using the known homogeneous tidal strains and tilts, can be used in exploring local structure in favorable cases and, through possible time variations of tidal admittances, in predicting earthquakes.

  16. Influence of perspective on the neural correlates of motor resonance during natural action observation.

    PubMed

    Vingerhoets, Guy; Stevens, Lenny; Meesdom, Morgan; Honoré, Pieterjan; Vandemaele, Pieter; Achten, Eric

    2012-01-01

    We investigated the neural correlates of motor resonance during the observation of natural transitive actions and determined how the observer's perspective modulates the neural activation. Seventeen right-handed participants observed right and left hand tool grasping actions from a first-person or third-person perspective while undergoing fMRI. A two-factorial analysis of variance over the parietal region revealed no main effects of hand identity or perspective, but unveiled a hand by perspective interaction effect. The first-person perspective elicited parietal activation in the hemisphere contralateral to the performing hand as if the modelled action was mimicked with the same anatomical hand. In the third-person perspective, parietal activation ipsilateral to the modelled hand was found, indicating a specular strategy, rather than an anatomical imitation. Motor resonance was maximal in three foci in the superior parietal lobule and intraparietal sulcus that have been associated with prehensile actions. Our results suggest that therapeutic strategies aimed to elicit motor resonance, such as motor imagery and observational modelling, can adjust their spatial frame of reference according to the hemisphere they intend to stimulate.

  17. Adolescent, Parent, and Observer Perceptions of Parenting: Genetic and Environmental Influences on Shared and Distinct Perceptions.

    ERIC Educational Resources Information Center

    Feinberg, Mark; Neiderhiser, Jenae; Howe, George; Hetherington, E. Mavis

    2001-01-01

    Examined low interrater agreement by decomposing common and unique variance among parent, adolescent, and observer reports of parental warmth and negativity into genetic and environmental factors. Model-fitting analyses findings generally supported predictions for warmth and negativity at Family and Individual levels. At the Social level, genetic…

  18. Does an Observer's Content Knowledge Influence the Feedback Offered about Mathematics Lessons?

    ERIC Educational Resources Information Center

    Peck, Duane C.

    2016-01-01

    The purpose of this study was two-fold. First, feedback from 3 different groups of observers: math content specialists, content specialists in areas other than mathematics, and building principals, was analyzed using an inductive approach to identify themes within the feedback. Second, differences in the feedback offered by participants of the 3…

  19. Spacebased Observations of Oceanic Influence on the Annual Variation of South American Water Balance

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu; Tang, Wenqing; Zlotnicki, Victor

    2006-01-01

    The mass change of South America (SA) continent measured by the Gravity Recovery and Climate Experiment (GRACE) imposes a constraint on the uncertainties in estimating the annual variation of rainfall measured by Tropical Rain Measuring Mission (TRMM) and ocean moisture influx derived from QuikSCAT data. The approximate balance of the mass change rate with the moisture influx less climatological river discharge, in agreement with the conservation principle, bolsters not only the credibility of the spacebased measurements, but supports the characterization of ocean's influence on the annual variation of continental water balance. The annual variation of rainfall is found to be in phase with the mass change rate in the Amazon and the La Plata basins, and the moisture advection across relevant segments of the Pacific and Atlantic coasts agrees with the annual cycle of rainfall in the two basins and the Andes mountains.

  20. The influence of visual perspective on the somatosensory steady-state response during pain observation

    PubMed Central

    Canizales, Dora L.; Voisin, Julien I. A.; Michon, Pierre-Emmanuel; Roy, Marc-André; Jackson, Philip L.

    2013-01-01

    The observation and evaluation of other’s pain activate part of the neuronal network involved in the actual experience of pain, including those regions subserving the sensori-discriminative dimension of pain. This was largely interpreted as evidence showing that part of the painful experience can be shared vicariously. Here, we investigated the effect of the visual perspective from which other people’s pain is seen on the cortical response to continuous 25 Hz non-painful somatosensory stimulation (somatosensory steady-state response: SSSR). Based on the shared representation framework, we expected first-person visual perspective (1PP) to yield more changes in cortical activity than third-person visual perspective (3PP) during pain observation. Twenty healthy adults were instructed to rate a series of pseudo-dynamic pictures depicting hands in either painful or non-painful scenarios, presented either in 1PP (0–45° angle) or 3PP (180° angle), while changes in brain activity was measured with a 128-electode EEG system. The ratings demonstrated that the same scenarios were rated on average as more painful when observed from the 1PP than from the 3PP. As expected from previous works, the SSSR response was decreased after stimulus onset over the left caudal part of the parieto-central cortex, contralateral to the stimulation side. Moreover, the difference between the SSSR was of greater amplitude when the painful situations were presented from the 1PP compared to the 3PP. Together, these results suggest that a visuospatial congruence between the viewer and the observed scenarios is associated with both a higher subjective evaluation of pain and an increased modulation in the somatosensory representation of observed pain. These findings are discussed with regards to the potential role of visual perspective in pain communication and empathy. PMID:24367323

  1. Io's volcanic influence on the Io plasma torus: HISAKI observation in 2015

    NASA Astrophysics Data System (ADS)

    Tsuchiya, F.; Yoshioka, K.; Kimura, T.; Murakami, G.; Yoneda, M.; Koga, R.; Kagitani, M.; Sakanoi, T.; Kasaba, Y.; Yamazaki, A.; Yoshikawa, I.

    2015-12-01

    The satellite Io which has many active volcanos supplies volcanic gases to the Jovian magnetosphere with typical rate of 1 ton/sec and has been known be a primary source of plasmas in the magnetosphere. Change in the volcanic activity on Io should cause change of the supply rate and could affect structure of the magnetosphere and dynamics occurs in it. However, responses of the magnetosphere to the volcanic activity is still not fully understood; one of the reasons is lack of continuous and long term observations of Io' volcanic gas extended around Io, plasmas in the Io torus, and activity of the magnetosphere. The extreme ultraviolet (EUV) spectroscope, EXCEED, onboard the HISAKI satellite has capability to measure ion and atomic emission lines in EUV range (55-145nm) and is dedicated to observing solar system planets. The satellite has been successfully launched on Sep. 2013 and 2nd campaign of Io plasma torus and Jovian northern EUV aurora observation has been done from the end of Nov. 2014 to middle of May 2015. On middle of Jan. 2015, HISAKI detected gradual increase in intensity of S+ emission lines and decrease of S3+ ones in the plasma torus. The S+ intensity showed a maximum around the end of Feb. and S++ and S3+ intensities also showed maxima subsequently. Simultaneous ground based observation of the sodium nebula showed increase of the emission intensity from the middle of Jan. to the beginning of Mar. These observations suggest that the volcanic activity began at the middle of Jan. and increase neutral atom and ion densities in the Io torus. The intensities of S+ and S2+ ions returned to the pre-increase level by the middle of May 2015. S3+ had still been in the decay phase at the end of the observation. Change in radial structure of the plasma torus was also found during the volcanic event. The intensity of S+ ion began to increase around the orbit of Io (6 Jovian radii). The brightened region propagated outward and reached at 8.5 Jovian radii from

  2. M-estimation with probabilistic models of geodetic observations

    NASA Astrophysics Data System (ADS)

    Wiśniewski, Z.

    2014-10-01

    The paper concerns -estimation with probabilistic models of geodetic observations that is called estimation. The special attention is paid to estimation that includes the asymmetry and the excess kurtosis, which are basic anomalies of empiric distributions of errors of geodetic or astrometric observations (in comparison to the Gaussian errors). It is assumed that the influence function of estimation is equal to the differential equation that defines the system of the Pearson distributions. The central moments , are the parameters of that system and thus, they are also the parameters of the chosen influence function. The estimation that includes the Pearson type IV and VII distributions ( method) is analyzed in great detail from a theoretical point of view as well as by applying numerical tests. The chosen distributions are leptokurtic with asymmetry which refers to the general characteristic of empirical distributions. Considering -estimation with probabilistic models, the Gram-Charlier series are also applied to approximate the models in question ( method). The paper shows that estimation with the application of probabilistic models belongs to the class of robust estimations; method is especially effective in that case. It is suggested that even in the absence of significant anomalies the method in question should be regarded as robust against gross errors while its robustness is controlled by the pseudo-kurtosis.

  3. The Influence of Wind Turbines on Radio Astronomical Observations in Irbene

    NASA Astrophysics Data System (ADS)

    Bezrukovs, D.

    2016-04-01

    The reflection and diffraction of external communication and navigational transmitters from tall constructions and moving blades of wind turbines produce some short-pulse additional electromagnetic interference strong enough to fully disturb radio astronomical observations. The problem of short-pulse electromagnetic interference is distinctive to all radio telescopes surrounded by wind turbines. This problem became significant for Ventspils International Radio Astronomy Centre (VIRAC) after new wind park "Platene" of Winergy Ltd. was built in 2012 and radio telescopes RT-16 and RT-32 renovated and equipped with cryogenic high sensitive receivers. The paper deals with the analysis and evaluation of intensities and probabilities of short-pulse interferences produced by wind park "Platene" and its possible impact on radio astronomical observations at VIRAC radio telescopes.

  4. Low contrast detectability performance of model observers based on CT phantom images: kVp influence.

    PubMed

    Hernandez-Giron, I; Calzado, A; Geleijns, J; Joemai, R M S; Veldkamp, W J H

    2015-11-01

    This paper studies low contrast detectability (LCD) performance of two model observers in CT phantom images acquired at different kVp levels and compares the results with humans in a 2-alternative forced choice experiment (2-AFC). Images of the Catphan phantom with objects of different contrasts (0.5 and 1%) and diameters (2-15 mm) were acquired in an Aquilion ONE 320-detector row CT (Toshiba Medical Systems, Tokyo, Japan), in two experiments, selecting (80-100-120-135 kV) with fixed mAs and varying the mAs to keep the dose constant, respectively. Four human observers evaluated the objects visibility obtaining a proportion correct (PC) for each case. LCD was also analyzed with two model observers (non-prewhitening matched filter with an eye filter, NPWE, and channelized Hotelling observer with Gabor channels, CHO). Object contrast was affected by kV, with differences up to 17% between the lowest and highest kV. Both models overestimated human performance and were corrected by efficiency and internal noise factors. The NPWE model reproduced better the human PC values trends showing Pearson's correlation coefficients ≥0.976 (0.954-0.987, 95% CI) for both experiments, whereas for CHO they were ≥0.706 (0.493-0.839). Bland-Altman plots showed better agreement between NPWE and humans being the average difference Δ and the range of the differences Δ±2σ (σ, standard deviation) of Δ=-0.3%, Δ±2σ = [-4.0%,4.5%]. For CHO, Δ=-1.2%, Δ± 2σ= [-10.7%,8.3%]. The NPWE model can be a useful tool to predict human performance in CT low contrast detection tasks in a standard phantom and be potentially used in protocol optimization based on kV selection.

  5. The Influence of Dissolution on Bedrock Channel Evolution: Insights from Modelling and Field Observations

    NASA Astrophysics Data System (ADS)

    Thaler, E.; Myre, J. M.; Covington, M. D.

    2015-12-01

    Despite the large global distribution of soluble bedrock, fluvial geomorphological studies typically regard dissolution as a negligible erosion mechanism in bedrock channels when compared to rates of mechanical erosion. Limited prior field observations have suggested that at the transition from insoluble to soluble substrate bedrock channels become wider, less steep, or both. By extending the Fastscape landscape evolution model to include dissolution as an erosion mechanism, we repeatedly produce landscapes with trunk streams consistent with field observations. However, in small tributaries, channel steepening occurs at the contact of the insoluble and soluble lithologies. Furthermore, as the main channel in a basin encounters the soluble layer, the increased erosion due to dissolution acts produces a local increase in the rate of base level lowering, resulting in steepening of channels upstream of the lithologic contact. The increased erosion at the lithological contact in the main stem also causes hillsope steepening in the soluble reaches. Independent field observations in the Buffalo National River Basin agree with the model results. Knickpoints and slot canyons are common at the lithologic contact in small tributaries, and channel widening occurs in soluble reaches in the main stem.

  6. Influence of ocean tides on the diurnal and semidiurnal earth rotation variations from VLBI observations

    NASA Astrophysics Data System (ADS)

    Gubanov, V. S.; Kurdubov, S. L.

    2015-05-01

    The International astrogeodetic standard IERS Conventions (2010) contains a model of the diurnal and semidiurnal variations in Earth rotation parameters (ERPs), the pole coordinates and the Universal Time, arising from lunisolar tides in the world ocean. This model was constructed in the mid-1990s through a global analysis of Topex/Poseidon altimetry. The goal of this study is to try to estimate the parameters of this model by processing all the available VLBI observations on a global network of stations over the last 35 years performed within the framework of IVS (International VLBI Service) geodetic programs. The complexity of the problemlies in the fact that the sought-for corrections to the parameters of this model lie within 1 mm and, thus, are at the limit of their detectability by all currently available methods of ground-based positional measurements. This requires applying universal software packages with a high accuracy of reduction calculations and a well-developed system of controlling the simultaneous adjustment of observational data to analyze long series of VLBI observations. This study has been performed with the QUASAR software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences. Although the results obtained, on the whole, confirm a high accuracy of the basic model in the IERS Conventions (2010), statistically significant corrections that allow this model to be refined have been detected for some harmonics of the ERP variations.

  7. An observational analysis: Tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification

    NASA Astrophysics Data System (ADS)

    Cohen, Judah

    2016-05-01

    The tropics, in general, and El Niño/Southern Oscillation (ENSO) in particular are almost exclusively relied upon for seasonal forecasting. Much less considered and certainly more controversial is the idea that Arctic variability is influencing midlatitude weather. However, since the late 1980s and early 1990s, the Arctic has undergone the most rapid warming observed globally, referred to as Arctic amplification (AA), which has coincided with an observed increase in extreme weather. Analysis of observed trends in hemispheric circulation over the period of AA more closely resembles variability associated with Arctic boundary forcings than with tropical forcing. Furthermore, analysis of intraseasonal temperature variability shows that the cooling in midlatitude winter temperatures has been accompanied by an increase in temperature variability and not a decrease, popularly referred to as "weather whiplash."

  8. The joint influence of albedo and insulation on roof performance: An observational study

    SciTech Connect

    Ramamurthy, P.; Sun, T.; Rule, K.; Bou-Zeid, E.

    2015-02-23

    We focus on understanding the temperature and heat flux fields in building roofs, and how they are modulated by the interacting influences of albedo and insulation at annual, seasonal and diurnal scales. High precision heat flux plates and thermocouples were installed over multiple rooftops of varying insulation thickness and albedo in the Northeastern United States to monitor the temperature and the heat flux into and out of the roof structures for a whole year. This analysis shows that while membrane reflectivity (albedo) plays a dominant role in reducing the heat conducted inward through the roof structures during the warmer months, insulation thickness becomes the main roof attribute in preventing heat loss from the buildings during colder months. On a diurnal scale, the thermal state of the white roof structures fluctuated little compared to black roof structures; membrane temperature over white roofs ranged between 10 °C and 45 °C during summer months compared to black membranes that ranged between 10 °C and 80 °C. Insulation thickness, apart from reducing the heat conducted through the roof structure, also delayed the transfer of heat, owing to the thermal inertia of the insulation layer. Furthermore, this has important implications for determining the peak heating and cooling times.

  9. The joint influence of albedo and insulation on roof performance: An observational study

    DOE PAGES

    Ramamurthy, P.; Sun, T.; Rule, K.; ...

    2015-02-23

    We focus on understanding the temperature and heat flux fields in building roofs, and how they are modulated by the interacting influences of albedo and insulation at annual, seasonal and diurnal scales. High precision heat flux plates and thermocouples were installed over multiple rooftops of varying insulation thickness and albedo in the Northeastern United States to monitor the temperature and the heat flux into and out of the roof structures for a whole year. This analysis shows that while membrane reflectivity (albedo) plays a dominant role in reducing the heat conducted inward through the roof structures during the warmer months,more » insulation thickness becomes the main roof attribute in preventing heat loss from the buildings during colder months. On a diurnal scale, the thermal state of the white roof structures fluctuated little compared to black roof structures; membrane temperature over white roofs ranged between 10 °C and 45 °C during summer months compared to black membranes that ranged between 10 °C and 80 °C. Insulation thickness, apart from reducing the heat conducted through the roof structure, also delayed the transfer of heat, owing to the thermal inertia of the insulation layer. Furthermore, this has important implications for determining the peak heating and cooling times.« less

  10. The influence of ionospheric thin shell height on TEC retrieval from GPS observation

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Lan; Wan, Qing-Tao; Ma, Guan-Yi; Li, Jing-Hua; Fan, Jiang-Tao

    2016-07-01

    We investigate the influence of assumed height for the thin shell ionosphere model on the Total Electron Content (TEC) derived from a small scale Global Positioning System (GPS) network. TEC and instrumental bias are determined by applying a grid-based algorithm to the data on several geomagnetically quiet days covering a 10 month period in 2006. Comparisons of TEC and instrumental bias are made among assumed heights from 250 km to 700 km with an interval of 10 km. While the TEC variations with time follow the same trend, TEC tends to increase with the height of the thin shell. The difference in TEC between heights 250 km and 700 km can be as large as ˜ 8 TECU in both daytime and nighttime. The times at which the TEC reaches its peak or valley do not vary much with the assumed heights. The instrumental biases, especially bias from the satellite, can vary irregularly with assumed height. Several satellites show a large deviation of ˜ 3 ns for heights larger than 550 km. The goodness of fit for different assumed heights is also examined. The data can be generally well-fitted for heights from 350 km to 700 km. A large deviation happens at heights lower than 350 km. Using the grid-based algorithm, there is no consensus on assumed height as related to data fitting. A thin shell height in the range 350 - 500 km can be a reasonable compromise between data fitting and peak height of the ionosphere.

  11. Evaluation Of Environmental Influences Of Urbanization Using Remote Sensing And Climate Observations

    NASA Astrophysics Data System (ADS)

    Xian, G.; Crane, M.

    2004-12-01

    Urban development has experienced rapid growth in the Tampa Bay area of west-central Florida over the last century. This expansion trend is transforming the landscape from natural cover types to increasingly impervious urban land. Remote sensing data has been used to assess urban land cover and its thermal characteristics by mapping impervious surfaces at a sub-pixel resolution. Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper plus (ETM+) data were used to estimate urban imperviousness variation from 1991 to 2002 in the Tampa Bay watershed, Florida. The urban/rural boundary and urban development density are defined through the selection of imperviousness threshold values. The increasingly important influence that urbanization and its attendant imperviousness exert on the environmental health of the region have been investigated by analyzing radiant surface temperatures (Ts) and Normalized Difference Vegetation Index (NDVI) using ETM+ satellite data. Analysis of impervious surface and Ts shows significant difference in Ts values associated with different percentages of impervious coverage. An inverse relationship has been found to exist between imperviousness and Normalized Difference Vegetation Index (NDVI) for several urban areas. The relationship of imperviousness, Ts and NDVI has been evaluated, as has the urban heat island (UHI) effect on local climate change. Our results show that urban land use change has a profound impact on both seasonal-averaged and minimum surface temperature changes within the spatial scale of the watershed.

  12. VizieR Online Data Catalog: USNO Martian observations (Robert+, 2015)

    NASA Astrophysics Data System (ADS)

    Robert, V.; Lainey, V.; Pascu, D.; Pasewaldt, A.; Arlot, J.-E.; de Cuyper, J.-P.; Dehant, V.; Thuillot, W.

    2015-08-01

    Astrometric and measured data of Mars, Phobos and Deimos taken with the U.S. Naval Observatory 61-inch astrometric reflector and 26-inch refractor from 1967 to 1997. Astrometric (RA,DEC) positions are geocentric observed positions reduced from stars and refer to the ICRF. They were corrected for all instrumental and spherical effects, except for the light time propagation. Measured (x,y) positions are raw data of the stars and satellites. They were obtained from initial extraction from the plates, thus no instrumental or spherical effects were corrected. (x,y) positions refer to the measured center of the planet. One should select/reject available references carefully to ensure the most accurate plate constants for the reduction process. (5 data files).

  13. Researching of sea waves influence on a coastal line transformation (based on field observation results)

    NASA Astrophysics Data System (ADS)

    Chernov, A.; Kouznetsov, K.; Kurkin, A.; Shevchenko, G.

    2009-04-01

    The long duration registrations of bottom pressure, temperature and meteorological data took place in June - October 2007 on the shelf near 104th - 110th kilometer of interstate road Yuzhno-Sakhalinsk - Okha. Sediment transport and abrasion processes are observed in this place, it is a dangerous factor for road and railroad constructions, it can also be threat for some buildings of Vzmorie town. Distributed network of autonomous pressure gauges was installed for wave structure studying. Gauges were installed in tree lines with 100, 150 and 200 meters far from each other. Gathered data contains information about different wave's regimes under different weather conditions, it's allowed us to make analysis. Different data rows for different wave regimes were taken for analysis. Transformation of wave field along shoreline and opposite was observed. The results of observation are showed that disposition of waves was determined by swell waves with period 8-9 second. Wind waves were weaker than swell waves, conceivably because of big depths in the studied area. Much more interesting results were found in the infragravity waves range (0.5 - 5 min). For example, peaks with period above 150 and 75 seconds are presented in the spectral estimation of record from gauge 23. The same peaks were not observed in other gauges to the North and to the South from 23. However, low frequency peak was much stronger at the storm weather, but 75 seconds peak was stayed non-changed under the different weather conditions. For understanding mechanism of infra-gravitation waves generation group structure of waves were studied. Spectrum characteristics of different data rows for different wave regimes and also for their envelopes were provided. Results of this research allow us to consider that wave packets with common period 7 - 8 seconds make infra-gravitation waves with period above 5 minutes which forcing sediment transport processes. Satellite images of studied place were used in this

  14. Observational evidence of planetary wave influences on ozone enhancements over upper troposphere North Africa

    NASA Astrophysics Data System (ADS)

    Mengistu Tsidu, Gizaw; Ture, Kassahun; Sivakumar, V.

    2013-07-01

    MOZAIC instrument measured enhanced ozone on two occasions in February, 1996 and 1997 at cruise altitude over North Africa. The cause and source of ozone enhancements over the region are investigated using additional reanalysis data from ERA-Interim. The ERA-Interim reprocessed GOME ozone indicated existence of enhancement as well. Both observational data revealed that the increase in ozone has wider latitudinal coverage extending from North Europe upto North Africa. The geopotential heights and zonal wind from ERA-Interim have indicated existence of planetary-scale flow that allowed meridional airmass exchanges between subtropics and higher latitudes. The presence of troughs-ridge pattern are attributable to large amplitude waves of zonal wavenumber 1-5 propagating eastward in the winter hemisphere westerly current as determined from Hayashi spectra as well as local fractional variance spectra determined from Multitaper Method-Singular Value Decomposition (MTM-SVD) spectral method. MTM-SVD is also used to understand the role of these waves on ozone enhancement and variability during the observation period in a mechanistic approach. A joint analysis of driving field, such as wind and potential vorticity (PV) for which only signals of the dominant zonal wavenumbers of prevailing planetary waves are retained, has revealed strong linkage between wave activity and ozone enhancement over the region at a temporal cycle of 5.8 days. One of these features is the displacement of the polar vortex southward during the enhancements, allowing strong airmass, energy and momentum exchanges. Evidence of cutoff laws that are formed within the deep trough, characteristics of Rossby wave breaking, is also seen in the ozone horizontal distribution at different pressure levels during the events. The reconstruction of signals with the cycle of 5.8 days has shown that the time and strength of enhancement depend on the circulation patterns dictated by planetary-scale flow relative to the

  15. The influence of PMCs on water vapor and drivers behind PMC variability from SOFIE observations

    NASA Astrophysics Data System (ADS)

    Hervig, Mark E.; Siskind, David E.; Bailey, Scott M.; Russell, James M.

    2015-09-01

    Observations from the Solar Occultation For Ice Experiment (SOFIE) are used to quantify relationships between polar mesospheric clouds (PMC) and their environment. Dehydration due to ice growth is found to be greatest ∼1.8 km above the height of peak ice mass density on average, and H2O enhancement due to sublimation is greatest near the bottom of the PMC layer. The dehydration and hydration layers contain a similar amount of H2O, although less than is found in ice layers, a difference that may be due to meridional transport. Because PMCs modify the surrounding water vapor, PMC-H2O relationships can be misleading and recommendations are made for dealing with this issue. The dependence of PMCs on water vapor and temperature was quantified, accounting for the effects of ice on water vapor. The approach examined inter-annual variations and considered the subset of PMCs detected by the Solar Backscatter Ultraviolet (SBUV) instruments, which are less sensitive than SOFIE. Results in the Northern Hemisphere indicate that PMC variations are dominated by temperature, but that a combination of temperature and water vapor provides the best explanation of the observations. In the Southern Hemisphere PMC variability is attributed primarily to temperature, with water vapor playing a minor role. The subset of SBUV PMCs are found to be one third as sensitive to changing temperature as the entire PMC population observed by SOFIE. Finally, an approach is presented which allows temperature and water vapor anomalies to be estimated from various PMC data sets such as SBUV. Using recently reported SBUV PMC trends at 64-74°N latitude with the results of this study indicates a cooling trend of -0.27±0.14 K decade-1 and a water vapor increase of +0.66±0.34% decade-1 (both at 80-84 km). This cooling trend agrees with reports based on observations in the middle atmosphere at similar latitudes. The water vapor increase is lower than expected due to increasing methane, although this

  16. Traces across the body: influence of music-dance synchrony on the observation of dance.

    PubMed

    Woolhouse, Matthew Harold; Lai, Rosemary

    2014-01-01

    In previous studies investigating entrainment and person perception, synchronized movements were found to enhance memory for incidental person attributes. Although this effect is robust, including in dance, the process by which it is actuated are less well understood. In this study, two hypotheses are investigated: that enhanced memory for person attributes is the result of (1) increased gaze time between in-tempo dancers; and/or (2) greater attentional focus between in-tempo dancers. To explore these possible mechanisms in the context of observing dance, an eye-tracking study was conducted in which subjects watched videos of pairs of laterally positioned dancers; only one of the dancers was synchronized with the music, the other being asynchronous. The results were consistent with the first hypothesis-music-dance synchrony gives rise to increased visual inspection times. In addition, there was a preference for upper-body fixations over lower-body fixations across both synchronous and asynchronous conditions. A subsequent, single-dancer eye-tracking study investigated fixations across different body regions, including head, torso, legs and feet. Significantly greater dwell times were recorded for head than torso and legs; feet attracted significantly less dwell time than any other body region. Lastly, the study sought to identify dance gestures responsible for torso- and head-directed fixations. Specifically we asked whether there are features in dance that are specially designed to direct an observer's gaze towards the face-the main "communicative portal" with respect to the transmission of intent, affect and empathy.

  17. Influence of duty cycle on the power-duration relationship: observations and potential mechanisms.

    PubMed

    Broxterman, R M; Ade, C J; Wilcox, S L; Schlup, S J; Craig, J C; Barstow, T J

    2014-02-01

    The highest sustainable rate of aerobic metabolism [critical power (CP)] and the finite amount of work that can be performed above CP (W' [curvature constant]) were determined under two muscle contraction duty cycles. Eight men completed at least three constant-power handgrip tests to exhaustion to determine CP and W' for 50% and 20% duty cycles, while brachial artery blood flow (Q̇BA) and deoxygenated-[hemoglobin + myoglobin] (deoxy-[Hb+Mb]) were measured. CP was lower for the 50% duty cycle (3.9 ± 0.9 W) than the 20% duty cycle (5.1 ± 0.8 W; p < 0.001), while W' was not significantly different (50% duty cycle: 452 ± 141 J vs. 20% duty cycle: 432 ± 130 J; p > 0.05). At the same power output, Q̇BA and deoxy-[Hb + Mb] achieved higher end-exercise values for the 20% duty cycle (9.87 ± 1.73 ml·s(-1); 51.7 ± 4.7 μM) than the 50% duty cycle (7.37 ± 1.76 ml·s(-1), p < 0.001; 44.3 ± 2.4 μM, p < 0.03). These findings indicate that blood flow influences CP, but not W'.

  18. CCD observations of Phoebe, 9th satellite of Saturn

    NASA Astrophysics Data System (ADS)

    Fienga, A.; Arlot, J.-E.; Baron, N.; Bec-Borsenberger, A.; Crochot, A.; Emelyanov, N.; Thuillot, W.

    2002-08-01

    In 1998 and 1999, we started observations of the 9th satellite of Saturn. We made 163 observations using the 120 cm-telescope of Observatoire de Haute-Provence, France. We used the USNO A2 catalogue of stars for the astrometric reduction. With the help of observations of optical counterparts of ICRF sources, a zonal correction to the USNO A2.0 catalogue was computed and applied to the Phoebe positions. A comparison with the most recent theories was made.

  19. VizieR Online Data Catalog: USNO Saturnian observations 1974-1998 (Robert+, 2016)

    NASA Astrophysics Data System (ADS)

    Robert, V.; Pascu, D.; Lainey, V.; Arlot, J.-E.; de Cuyper, J.-P.; Dehant, V.; Thuillot, W.

    2016-10-01

    Astrometric and measured data of Saturn, Mimas, Enceladus, Tethys, Dione, Rhea, Titan, Hyperion and Iapetus, taken with the U.S. Naval Observatory 26-inch refractor from 1974 to 1998. Astrometric (RA,DEC) positions are geocentric observed positions reduced from stars and refer to the ICRF. They were corrected for all instrumental and spherical effects, except for the light time propagation. Raw data with (x,y) positions of the stars and satellites are available on demand (Vincent Robert, vincent.robert(at)obspm.fr). (9 data files).

  20. Influence of Surface Roughness Spatial Variability and Temporal Dynamics on the Retrieval of Soil Moisture from SAR Observations

    PubMed Central

    Álvarez-Mozos, Jesús; Verhoest, Niko E.C.; Larrañaga, Arantzazu; Casalí, Javier; González-Audícana, María

    2009-01-01

    Radar-based surface soil moisture retrieval has been subject of intense research during the last decades. However, several difficulties hamper the operational estimation of soil moisture based on currently available spaceborne sensors. The main difficulty experienced so far results from the strong influence of other surface characteristics, mainly roughness, on the backscattering coefficient, which hinders the soil moisture inversion. This is especially true for single configuration observations where the solution to the surface backscattering problem is ill-posed. Over agricultural areas cultivated with winter cereal crops, roughness can be assumed to remain constant along the growing cycle allowing the use of simplified approaches that facilitate the estimation of the moisture content of soils. However, the field scale spatial variability and temporal variations of roughness can introduce errors in the estimation of soil moisture that are difficult to evaluate. The objective of this study is to assess the impact of roughness spatial variability and roughness temporal variations on the retrieval of soil moisture from radar observations. A series of laser profilometer measurements were performed over several fields in an experimental watershed from September 2004 to March 2005. The influence of the observed roughness variability and its temporal variations on the retrieval of soil moisture is studied using simulations performed with the Integral Equation Model, considering different sensor configurations. Results show that both field scale roughness spatial variability and its temporal variations are aspects that need to be taken into account, since they can introduce large errors on the retrieved soil moisture values. PMID:22389611

  1. Democratic Parenting Beliefs and Observed Parental Sensitivity: Reciprocal Influences Between Coparents

    PubMed Central

    Schofield, Thomas; Weaver, Jennifer

    2016-01-01

    Three hundred and sixty-five two-parent families from the NICHD Study of Early Child Care and Youth Development were rated by trained observers on their parenting behavior at six assessments ranging from six months after the child's birth to when the child was in fifth grade (M = 10.4 years old at fifth grade). Across assessments, parents reported on their parenting beliefs and mothers reported on the child's externalizing behavior problems. Parenting beliefs predicted change in parenting behavior, and to a lesser degree parenting behavior predicted change in parenting beliefs. Parenting behavior and parenting beliefs both showed reciprocal effects between coparents, after controlling for child externalizing behavior and parent education. PMID:26551656

  2. A Comet Engulfs Mars: MAVEN Observations of Comet Siding Spring's Influence on the Martian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Espley, Jared R.; Dibraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper S.; Combi, Michael; Luhmann, Janet; Ma, Yingjuan

    2015-01-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000?km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  3. A comet engulfs Mars: MAVEN observations of comet Siding Spring's influence on the Martian magnetosphere

    NASA Astrophysics Data System (ADS)

    Espley, Jared R.; DiBraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper; Combi, Michael; Luhmann, Janet; Ma, Yingjuan; Jia, Yingdong; Jakosky, Bruce

    2015-11-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000 km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  4. Quantifying the influence of sea ice on ocean microseism using observations from the Bering Sea, Alaska

    USGS Publications Warehouse

    Tsai, Victor C.; McNamara, Daniel E.

    2011-01-01

    Microseism is potentially affected by all processes that alter ocean wave heights. Because strong sea ice prevents large ocean waves from forming, sea ice can therefore significantly affect microseism amplitudes. Here we show that this link between sea ice and microseism is not only a robust one but can be quantified. In particular, we show that 75–90% of the variability in microseism power in the Bering Sea can be predicted using a fairly crude model of microseism damping by sea ice. The success of this simple parameterization suggests that an even stronger link can be established between the mechanical strength of sea ice and microseism power, and that microseism can eventually be used to monitor the strength of sea ice, a quantity that is not as easily observed through other means.

  5. Quantifying the influence of sea ice on ocean microseism using observations from the Bering Sea, Alaska

    USGS Publications Warehouse

    Tsai, V.C.; McNamara, D.E.

    2011-01-01

    Microseism is potentially affected by all processes that alter ocean wave heights. Because strong sea ice prevents large ocean waves from forming, sea ice can therefore significantly affect microseism amplitudes. Here we show that this link between sea ice and microseism is not only a robust one but can be quantified. In particular, we show that 75-90% of the variability in microseism power in the Bering Sea can be predicted using a fairly crude model of microseism damping by sea ice. The success of this simple parameterization suggests that an even stronger link can be established between the mechanical strength of sea ice and microseism power, and that microseism can eventually be used to monitor the strength of sea ice, a quantity that is not as easily observed through other means. Copyright 2011 by the American Geophysical Union.

  6. The major influence of the atmosphere on intracranial pressure: an observational study

    NASA Astrophysics Data System (ADS)

    Herbowski, Leszek

    2017-01-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p < 0.05) and all the measurements are perfectly reliable (Bland-Altman coefficient is 4.8 %). It appears from this study that changes in absolute intracranial pressure are related to seasonal variation. Absolute intracranial pressure is shown to be impacted positively by atmospheric pressure.

  7. Influence of LCD color reproduction accuracy on observer performance using virtual pathology slides

    NASA Astrophysics Data System (ADS)

    Krupinski, Elizabeth A.; Silverstein, Louis D.; Hashmi, Syed F.; Graham, Anna R.; Weinstein, Ronald S.; Roehrig, Hans

    2012-02-01

    The use of color LCDs in medical imaging is growing as more clinical specialties use digital images as a resource in diagnosis and treatment decisions. Telemedicine applications such as telepathology, teledermatology and teleophthalmology rely heavily on color images. However, standard methods for calibrating, characterizing and profiling color displays do not exist, resulting in inconsistent presentation. To address this, we developed a calibration, characterization and profiling protocol for color-critical medical imaging applications. Physical characterization of displays calibrated with and without the protocol revealed high color reproduction accuracy with the protocol. The present study assessed the impact of this protocol on observer performance. A set of 250 breast biopsy virtual slide regions of interest (half malignant, half benign) were shown to 6 pathologists, once using the calibration protocol and once using the same display in its "native" off-the-shelf uncalibrated state. Diagnostic accuracy and time to render a decision were measured. In terms of ROC performance, Az (area under the curve) calibrated = 0.8640; uncalibrated = 0.8558. No statistically significant difference (p = 0.2719) was observed. In terms of interpretation speed, mean calibrated = 4.895 sec, mean uncalibrated = 6.304 sec which is statistically significant (p = 0.0460). Early results suggest a slight advantage diagnostically for a properly calibrated and color-managed display and a significant potential advantage in terms of improved workflow. Future work should be conducted using different types of color images that may be more dependent on accurate color rendering and a wider range of LCDs with varying characteristics.

  8. The major influence of the atmosphere on intracranial pressure: an observational study.

    PubMed

    Herbowski, Leszek

    2017-01-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p < 0.05) and all the measurements are perfectly reliable (Bland-Altman coefficient is 4.8 %). It appears from this study that changes in absolute intracranial pressure are related to seasonal variation. Absolute intracranial pressure is shown to be impacted positively by atmospheric pressure.

  9. Influence of muscle mass and bone mass on the mobility of elderly women: an observational study

    PubMed Central

    2014-01-01

    Background The purpose of this study was to investigate the influence of muscle mass and bone mineral density on markers of mobility in dwelling elderly women. Methods This cross-sectional study included 99 elderly women, who were 65 years old or above, in Campinas-SP, Brazil. To collect data, we used sociodemographic data, the body mass index (BMI), health status, comorbidities, use of medications, mobility tests (TUG and gait speed) and examinations of the body composition (densitometry with dual-emission X-ray absorptiometry “DXA”). In order to examine the relationship between muscle and bone mass with mobility (gait speed and TUG), we applied the Spearman correlation coefficient. Also was applied the analysis of covariance (ANCOVA) adjusted for age and comorbidities. To identify the factors associated with mobility, we used the univariate and multivariate logistic regression analysis. The level of significance for statistical tests was P < 0.05. Results The correlation between sarcopenia and bone mineral density with mobility tests showed a significant relationship only between sarcopenia and TUG (r = 0.277, P = 0.006) in Spearman correlation coefficient. The result of the correlation analysis (ANCOVA) showed that sarcopenia was associated with gait speed (r2 = 0.0636, P = 0.0018) and TUG (r2 = 0.0898, P = 0.0027). The results of the multivariate analysis showed that age (P = 0.034, OR = 1.081) was associated with worse performance on gait speed. By highlighting the TUG test, the results of the multivariate analysis showed that the age (P = 0.004, OR = 1.111) and BMI in overweight (P = 0.011, OR = 7.83) and obese (P < 0.001, OR = 7.84) women were associated with lower performance of the functionality of the lower limbs. Conclusion The findings with regard to mobility tests which were analyzed in this study indicate the association of variables related to the aging process that contribute to the

  10. Geodetic observations in Iceland: divergent plate boundary influenced by a hotspot

    NASA Astrophysics Data System (ADS)

    Ofeigsson, Benedikt Gunnar; Hreinsdóttir, Sigrun; Sigmundsson, Freysteinn; Arnadottir, Thora; Vogfjord, Kristin; Geirsson, Halldor; Einarsson, Pall; Jonsson, Sigurjon; Villemin, Thierry; Fjalar Sigurdsson, Sigurdur; Roberts, Matthew; Sturkell, Erik; Lafemina, Peter C.; Bennett, Richard; Voelksen, Christof; Valsson, Gudmundur; Sigurdsson, Thorarinn

    2013-04-01

    The mid Atlantic ridge, separating the Eurasian and North American tectonic plates, is mostly buried below the Atlantic. There are, however, a few places where subaerial exposure of the mid-oceanic rift system allows geodetic observations of the deformation associated with the plate boundary. Iceland is the largest portion of the system emerged above sea level, a consequence of excessive volcanism caused by the interaction of a mantle plume with the mid-oceanic ridge. Iceland is therefore a unique site to study processes associated with divergent plate boundaries, and the effects of the plume-ridge interaction. A network of continuous GPS stations have been operating in Iceland since 1995 when the first station was installed in Reykjavik. Since then, stations have been added to the network at different points in time, with over 70 stations presently in operation. The network has been used e.g. for studies of deformation associated with the divergent plate boundary, micro-plate formation due to rift jumps, the plate-spreading deformation cycle associated with rifting episodes, strain rates and stress accumulation on transform zones connecting the ridge segments and deformation due to magmatic processes. In addition the GPS network is used in studies of the deformation associated with mass variations of Iceland's glaciers. The continuous GPS network serves as monitoring tool in Iceland, both for volcanic and seismic hazards but also as a research tool. In the recent Futurvolc project, which partly builds on EPOS, the data from the continuous GPS network along with data from the seismic network and InSAR observations, will serve as the main input in joint analyses of long and short term magma movements in volcanic regions. The establishment of the continuous GPS network in Iceland has provided an ideal tool to further increase our understanding of the geodynamic processes associated with divergent plate boundaries and plume-ridge interaction as well as establishing a

  11. Imitate or innovate? Children's innovation is influenced by the efficacy of observed behaviour.

    PubMed

    Carr, Kayleigh; Kendal, Rachel L; Flynn, Emma G

    2015-09-01

    This study investigated the age at which children judge it futile to imitate unreliable information, in the form of a visibly ineffective demonstrated solution, and deviate to produce novel solutions ('innovations'). Children aged 4-9 years were presented with a novel puzzle box, the Multiple-Methods Box (MMB), which offered multiple innovation opportunities to extract a reward using different tools, access points and exits. 209 children were assigned to conditions in which eight social demonstrations of a reward retrieval method were provided; each condition differed incrementally in terms of the method's efficacy (0%, 25%, 75%, and 100% success at extracting the reward). An additional 47 children were assigned to a no-demonstration control condition. Innovative reward extractions from the MMB increased with decreasing efficacy of the demonstrated method. However, imitation remained a widely used strategy irrespective of the efficacy of the method being reproduced (90% of children produced at least one imitative attempt, and imitated on an average of 4.9 out of 8 attempt trials). Children were more likely to innovate in relation to the tool than exit, even though the latter would have been more effective. Overall, innovation was rare: only 12.4% of children innovated by discovering at least one novel reward exit. Children's prioritisation of social information is consistent with theories of cultural evolution indicating imitation is a prepotent response following observation of behaviour, and that innovation is a rarity; so much so, that even maladaptive behaviour is copied.

  12. Factors influencing the quality of postoperative epidural analgesia: an observational multicenter study

    PubMed Central

    Wranicz, Piotr; Andersen, Hege; Nordbø, Arve; Kongsgaard, Ulf E

    2014-01-01

    Background Epidural analgesia (EDA) is used widely for postoperative pain treatment. However, studies have reported a failure rate of EDA of up to 30%. We aimed to evaluate the quality of postoperative EDA in patients undergoing a laparotomy in five Norwegian hospitals. Methods This was a multicenter observational study in patients undergoing a laparotomy with epidural-based postoperative analgesia. Data were registered at three time points. Technical aspects, infusion rates, pain intensity, assessment procedures, side effects, and satisfaction of patients and health personnel were recorded. The use of other pain medications and coanalgesics was registered. Results Three hundred and seventeen patients were included. Pain control at rest was satisfactory in 89% of patients at 24 hours and in 91% at 48 hours. Pain control when coughing was satisfactory in 62% at 24 hours and in 59% at 48 hours. The spread of hypoesthesia was consistent for each individual patient but varied between patients. The hypoesthetic area was not associated with pain intensity, and the precision of the EDA insertion point was not associated with the pain score. Few side effects were reported. EDA was regarded as effective and functioning well by 64% of health personnel. Conclusion EDA was an effective method for postoperative pain relief at rest but did not give sufficient pain relief during mobilization. The use of cold stimulation to assess the spread of EDA had limited value as a clinical indicator of the efficacy of postoperative pain control. Validated tools for the control of EDA quality are needed. PMID:25206312

  13. Influence of surface and protein modification on immunoglobulin G adsorption observed by scanning force microscopy.

    PubMed Central

    Droz, E; Taborelli, M; Descouts, P; Wells, T N

    1994-01-01

    Scanning force microscopy has been used successfully to produce images of individual protein molecules. However, one of the problems with this approach has been the high mobility of the proteins caused by the interaction between the sample and the scanning tip. To stabilize the proteins we have modified the adsorption properties of immunoglobulin G on graphite and mica surfaces. We have used two approaches: first, we applied glow discharge treatment to the surface to increase the hydrophilicity, favoring adhesion of hydrophilic protein molecules; second, we used the arginine modifying reagent phenylglyoxal to increase the protein hydrophobicity and thus enhance its adherence to hydrophobic surfaces. We used scanning force microscopy to show that the glow discharge treatment favors a more homogeneous distribution and stronger adherence of the protein molecules to the graphite surface. Chemical modification of the immunoglobulin caused increased aggregation of the proteins on the surface but did not improve the adherence to graphite. On mica, clusters of modified immunoglobulins were also observed and their adsorption was reduced. These results underline the importance of the surface hydrophobicity and charge in controlling the distribution of proteins on the surface. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:7811946

  14. The influence of dust grain porosity on the analysis of debris disc observations

    NASA Astrophysics Data System (ADS)

    Brunngräber, Robert; Wolf, Sebastian; Kirchschlager, Florian; Ertel, Steve

    2017-02-01

    Debris discs are often modelled assuming compact dust grains, but more and more evidence for the presence of porous grains is found. We aim at quantifying the systematic errors introduced when modelling debris discs composed of porous dust with a disc model assuming spherical, compact grains. We calculate the optical dust properties derived via the fast, but simple effective medium theory. The theoretical lower boundary of the size distribution - the so-called `blowout size' - is compared in the cases of compact and porous grains. Finally, we simulate observations of hypothetical debris discs with different porosities and feed them into a fitting procedure using only compact grains. The deviations of the results for compact grains from the original model based on porous grains are analysed. We find that the blowout size increases with increasing grain porosity up to a factor of 2. An analytical approximation function for the blowout size as a function of porosity and stellar luminosity is derived. The analysis of the geometrical disc set-up, when constrained by radial profiles, is barely affected by the porosity. However, the determined minimum grain size and the slope of the grain size distribution derived using compact grains are significantly overestimated. Thus, the unexpectedly high ratio of minimum grain size to blowout size found by previous studies using compact grains can be partially described by dust grain porosity, although the effect is not strong enough to completely explain the trend.

  15. Towards improved understanding of cloud influence on polar surface energy budgets using CloudSat and CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Kay, J. E.; L'Ecuyer, T. S.; McIlhattan, E.; Chepfer, H.; Morrison, A.

    2015-12-01

    The spaceborne radar CloudSat and the spaceborne lidar platform Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) have provided nearly a decade of groundbreaking observations of polar cloud and precipitation processes. Specifically relevant to this AGU session, the CloudSat 2B-FLXHR-LIDAR product (hereafter, 2BFLX) is an observationally constrained radiative flux and heating rate calculation that leverages constraints from A-train observations, including CloudSat+CALIPSO. The surface radiative fluxes calculated within 2BFLX represent an important advance because unlike top-of-atmosphere (TOA) fluxes, surface radiative fluxes cannot be directly measured by satellite, yet directly impact surface heating, sea ice melt, and ice sheet mass balance. In this presentation, we will highlight the influence of supercooled liquid on polar surface radiation budgets constrained within 2BFLX data. We will also use 2BFLX data in concert with the fully attenuated signal and cloud phase information from CALIPSO as an observational constraint on polar cloud-climate feedbacks in the Community Earth System Model (CESM).

  16. The clouds of Venus. II - An investigation of the influence of coagulation on the observed droplet size distribution

    NASA Technical Reports Server (NTRS)

    Rossow, W. B.

    1977-01-01

    An approximate numerical technique is used to investigate the influence of coagulation, sedimentation and turbulent motions on the observed droplet size distribution in the upper layers of the Venus clouds. If the cloud mass mixing ratio is less than 0.000001 at 250 K or the eddy diffusivity throughout the cloud is greater than 1,000,000 sq cm per sec, then coagulation is unimportant. In this case, the observed droplet size distribution is the initial size distribution produced by the condensation of the droplets. It is found that all cloud models with droplet formation near the cloud top (e.g., a photochemical model) must produce the observed droplet size distribution by condensation without subsequent modification by coagulation. However, neither meteoritic or surface dust can supply sufficient nucleating particles to account for the observed droplet number density. If the cloud droplets are formed near the cloud bottom, the observed droplet size distribution can be produced solely by the interaction of coagulation and dynamics; all information about the initial size distribution is lost. If droplet formation occurs near the cloud bottom, the lower atmosphere of Venus is oxidizing rather than reducing.

  17. Top-down influences on visual attention during listening are modulated by observer sex.

    PubMed

    Shen, John; Itti, Laurent

    2012-07-15

    In conversation, women have a small advantage in decoding non-verbal communication compared to men. In light of these findings, we sought to determine whether sex differences also existed in visual attention during a related listening task, and if so, if the differences existed among attention to high-level aspects of the scene or to conspicuous visual features. Using eye-tracking and computational techniques, we present direct evidence that men and women orient attention differently during conversational listening. We tracked the eyes of 15 men and 19 women who watched and listened to 84 clips featuring 12 different speakers in various outdoor settings. At the fixation following each saccadic eye movement, we analyzed the type of object that was fixated. Men gazed more often at the mouth and women at the eyes of the speaker. Women more often exhibited "distracted" saccades directed away from the speaker and towards a background scene element. Examining the multi-scale center-surround variation in low-level visual features (static: color, intensity, orientation, and dynamic: motion energy), we found that men consistently selected regions which expressed more variation in dynamic features, which can be attributed to a male preference for motion and a female preference for areas that may contain nonverbal information about the speaker. In sum, significant differences were observed, which we speculate arise from different integration strategies of visual cues in selecting the final target of attention. Our findings have implications for studies of sex in nonverbal communication, as well as for more predictive models of visual attention.

  18. Sudden Stratospheric Warming (SSW) and its immediate and broader influence on tropical dynamics using COSMIC Observations

    NASA Astrophysics Data System (ADS)

    Dhaka, Surendra

    2016-07-01

    We have analyzed temperature changes in troposphere and stratosphere from polar to tropical region during major sudden stratospheric warming (SSW) using data derived from COSMIC over a period of 2007-2014. During peak period of SSW, a large variability noted in temperature structure, rise in temperature occurred down to the tropopause height (~8 km height) in polar region. At around 40 km altitudes (as data is available to this height), temperature increased by several tens of degrees within few days of SSW. After SSW termination, temperature decreased up to ~ 80°C in strong SSW cases. After about a week of SSW event, descending cold anomalies emerged at polar region. These features are emerging normally known as polar night jet oscillations (PJO). The cooling phase was much longer along with large spatial coverage than the warm phase. Due to SSW, polar T-CPT and H-CPT alter significantly. As a consequence of SSW, bottom of stratospheric region expands and hence the tropospheric region shrunk by the same height. A rapid atmospheric response is identified between polar and tropical region possibly through set up of strong meridional circulation. During occurrence of SSW, at 40 km altitude in polar region, large increase in temperature noted, while in the tropics temperature dropped at similar heights. After termination of SSW, descending warm anomalies observed over the tropical region for a longer duration, while the long cold phase persisted at the polar region. These warm anomalies at tropical region are much longer and deeper in comparison to those of the cold anomalies. It is concluded that SSW event at polar region connects to the entire tropical tropopause region across the equator in SH up to 40° S. Hence these processes need to be understood thoroughly to contribute to the temperature change.

  19. Traces across the body: influence of music-dance synchrony on the observation of dance

    PubMed Central

    Woolhouse, Matthew Harold; Lai, Rosemary

    2014-01-01

    In previous studies investigating entrainment and person perception, synchronized movements were found to enhance memory for incidental person attributes. Although this effect is robust, including in dance, the process by which it is actuated are less well understood. In this study, two hypotheses are investigated: that enhanced memory for person attributes is the result of (1) increased gaze time between in-tempo dancers; and/or (2) greater attentional focus between in-tempo dancers. To explore these possible mechanisms in the context of observing dance, an eye-tracking study was conducted in which subjects watched videos of pairs of laterally positioned dancers; only one of the dancers was synchronized with the music, the other being asynchronous. The results were consistent with the first hypothesis—music-dance synchrony gives rise to increased visual inspection times. In addition, there was a preference for upper-body fixations over lower-body fixations across both synchronous and asynchronous conditions. A subsequent, single-dancer eye-tracking study investigated fixations across different body regions, including head, torso, legs and feet. Significantly greater dwell times were recorded for head than torso and legs; feet attracted significantly less dwell time than any other body region. Lastly, the study sought to identify dance gestures responsible for torso- and head-directed fixations. Specifically we asked whether there are features in dance that are specially designed to direct an observer’s gaze towards the face—the main “communicative portal” with respect to the transmission of intent, affect and empathy. PMID:25520641

  20. Precise calibration of CCD images with a small field of view. Application to observations of Phoebe

    NASA Astrophysics Data System (ADS)

    Peng, Q.; Vienne, A.; Han, Y. B.; Li, Z. L.

    2004-09-01

    A precise astrometric calibration method is presented for a CCD image with a small field of view. Its detailed computational formulae are given, and its feasibility and accuracy are tested by the observations of both the star and Phoebe, the 9th satellite of Saturn. This new method can also be applicable to other planetary satellites, asteroids and optical counterparts of extragalactic radio sources.

  1. The Astrometric Binary W1062: Initial ``Visual'' Orbit from Astrometry with the HST Fine Guidance Sensors in the Transfer Function Scan Mode

    NASA Astrophysics Data System (ADS)

    Franz, O. G.; Wasserman, L. H.; Henry, T. J.; Bradley, A. J.; Benedict, G. F.; Duncombe, R. L.; Hemenway, P. D.; Jefferys, W. H.; McArthur, B.; Nelan, E.; Shelus, P. J.; Story, D.; Whipple, A. L.; Fredrick, L. W.; van Altena, Wm. F.

    1995-12-01

    The M-dwarf W1062 = GL748 [V=11.1; RA = 19:12:08.6, Dec = +02:53:36 (2000)] was first discussed as an astrometric binary by R. S. Harrington (1977, PASP 89, 214) and S. L. Lippincott (1977, Astron. J. 82, 925). It was first resolved and confirmed at visible wavelengths with HST-FGS (Franz et al. 1994, BAAS 26, 1464) near apastron at separations of 0.2032 and 0.2034 arcsec. We have obtained four additional observations near periastron covering a position angle interval of 50 deg at separations of 0.0923 to 0.0887 arcsec. These six HST-FGS measures yield the first ``visual'' orbit of W1062 with P = 2.423 +/- 0.055 yr and a = 0.1462 +/- 0.0007 arcsec. The largest residual in separation is 2.0 mas; the others lie between 0.5 and 0.1 mas. Position angle residuals are 1.25 to 0.38 deg. Using the absolute trigonometric parallax p = 0.1008 arcsec (C. C. Dahn et al. 1982, Astron. J. 87, 419), we derive a total mass of M = 0.52 +/- 0.03\\ M_sun. The uncertainty is based on the formal errors of the orbital elements only and does not include the parallax error. Our 1995 observations are part of an ongoing project of HST-FGS astrometry combining transfer function mode and position mode relative to a set of local reference stars. Once complete, these observations will yield barycentric orbits and thus masses of the individual components free of any assumptions and with an expected accuracy of 5 percent or better. This work was supported in part by NASA under grant NAG5-1603 to UTexas. Support for this work was provided also by NASA through grant number GO-06047.03-94A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  2. Video Surveillance Captures Student Hand Hygiene Behavior, Reactivity to Observation, and Peer Influence in Kenyan Primary Schools

    PubMed Central

    Pickering, Amy J.; Blum, Annalise G.; Breiman, Robert F.; Ram, Pavani K.; Davis, Jennifer

    2014-01-01

    Background In-person structured observation is considered the best approach for measuring hand hygiene behavior, yet is expensive, time consuming, and may alter behavior. Video surveillance could be a useful tool for objectively monitoring hand hygiene behavior if validated against current methods. Methods Student hand cleaning behavior was monitored with video surveillance and in-person structured observation, both simultaneously and separately, at four primary schools in urban Kenya over a study period of 8 weeks. Findings Video surveillance and in-person observation captured similar rates of hand cleaning (absolute difference <5%, p = 0.74). Video surveillance documented higher hand cleaning rates (71%) when at least one other person was present at the hand cleaning station, compared to when a student was alone (48%; rate ratio  = 1.14 [95% CI 1.01–1.28]). Students increased hand cleaning rates during simultaneous video and in-person monitoring as compared to single-method monitoring, suggesting reactivity to each method of monitoring. This trend was documented at schools receiving a handwashing with soap intervention, but not at schools receiving a sanitizer intervention. Conclusion Video surveillance of hand hygiene behavior yields results comparable to in-person observation among schools in a resource-constrained setting. Video surveillance also has certain advantages over in-person observation, including rapid data processing and the capability to capture new behavioral insights. Peer influence can significantly improve student hand cleaning behavior and, when possible, should be exploited in the design and implementation of school hand hygiene programs. PMID:24676389

  3. Investigating the Influence of Anthropogenic Forcing on Observed Mean and Extreme Sea Level Pressure Trends over the Mediterranean Region

    DOE PAGES

    Barkhordarian, Armineh

    2012-01-01

    We investigate whether the observed mean sea level pressure (SLP) trends over the Mediterranean region in the period from 1975 to 2004 are significantly consistent with what 17 models projected as response of SLP to anthropogenic forcing (greenhouse gases and sulphate aerosols, GS). Obtained results indicate that the observed trends in mean SLP cannot be explained by natural (internal) variability. Externally forced changes are detectable in all seasons, except spring. The large-scale component (spatial mean) of the GS signal is detectable in all the 17 models in winter and in 12 of the 17 models in summer. However, the small-scalemore » component (spatial anomalies about the spatial mean) of GS signal is only detectable in winter within 11 of the 17 models. We also show that GS signal has a detectable influence on observed decreasing (increasing) tendency in the frequencies of extremely low (high) SLP days in winter and that these changes cannot be explained by internal climate variability. While the detection of GS forcing is robust in winter and summer, there are striking inconsistencies in autumn, where analysis points to the presence of an external forcing, which is not GS forcing.« less

  4. Influence of upper ocean on Indian summer monsoon rainfall: studies by observation and NCEP climate forecast system (CFSv2)

    NASA Astrophysics Data System (ADS)

    Chaudhari, Hemantkumar S.; Pokhrel, Samir; Rahman, H.; Dhakate, A.; Saha, Subodh K.; Pentakota, S.; Gairola, R. M.

    2016-08-01

    This study explores the role played by ocean processes in influencing Indian summer monsoon rainfall (ISMR) and compares the observed findings with National Centers for Environmental Prediction (NCEP)-coupled model Climate Forecast System, version 2 (CFSv2). The excess and deficit ISMR clearly brings out the distinct signatures in sea surface height (SSH) anomaly, thermocline and mixed layer depth over north Indian Ocean. CFSv2 is successful in simulating SSH anomalies, especially over Arabian Sea and Bay of Bengal region. CFSv2 captures observed findings of SSH anomalies during flood and drought (e.g., Rossby wave propagation which reaches western Bay of Bengal (BoB) during flood years, Rossby wave propagation which did not reach western BoB during drought). It highlights the ability of CFSv2 to simulate the basic ocean processes which governs the SSH variability. These differences are basically generated by upwelling and downwelling caused by the equatorial and coastal Kelvin and Rossby waves, thereby causing difference in SSH anomaly and thermocline, and subsequently modifying the convection centers, which dictates precipitation over the Indian subcontinent region. Since the observed SSH anomaly and thermal structure show distinct characteristic features with respect to strong and weak ISMR variability, the assimilation of real ocean data in terms of satellite products (like SSHA from AVISO/SARAL) bestow great promise for the future improvement.

  5. The Influence of Pumping on Observed Bacterial Counts in Groundwater Samples: Implications for Sampling Protocol and Water Quality Interpretation

    NASA Astrophysics Data System (ADS)

    Kozuskanich, J.; Novakowski, K.; Anderson, B.

    2008-12-01

    Drinking water quality has become an important issue in Ontario following the events in Walkerton in 2000. Many rural communities are reliant on private groundwater wells for drinking water, and it is the responsibility of the owner to have the water tested to make sure it is safe for human consumption. Homeowners can usually take a sample to the local health unit for total coliform and E. Coli analysis at no charge to determine if the water supply is being tainted by surface water or fecal matter, both of which could indicate the potential for negative impacts on human health. However, is the sample coming out of the tap representative of what is going on the aquifer? The goal of this study is to observe how bacterial counts may vary during the course of well pumping, and how those changing results influence the assessment of water quality. Multiple tests were conducted in bedrock monitoring wells to examine the influence of pumping rate and pumped volume on observed counts of total coliform, E. Coli, fecal streptococcus, fecal coliform and heterotrophic plate count. Bacterial samples were collected frequently during the course of continuous purging events lasting up to 8 hours. Typical field parameters (temperature, salinity, pH, dissolved oxygen and ORP) were also continuously monitored during the course of each test. Common practice in groundwater studies is to wait until these parameters have stabilized or three well volumes have been removed prior to sampling, to ensure the sample is taken from new water entering the well from the aquifer, rather than the original water stored in the borehole prior to the test. In general, most bacterial counts were low, but did go above the drinking water standard of 0 counts/100mL (total coliform and E. Coli) at times during the tests. Results show the greatest variability in the observed bacterial counts at the onset of pumping prior to the removal of three well volumes. Samples taken after the removal of three well

  6. Characterization of optical turbulence at the GREGOR solar telescope: temporal and local behavior and its influence on the solar observations

    NASA Astrophysics Data System (ADS)

    Sprung, D.; Sucher, E.; Stein, K.; von der Lühe, O.; Berkefeld, Th.

    2016-10-01

    Local atmospheric turbulence at the telescope level is regarded as a major reason for affecting the performance of the adaptive optics systems using wavelengths in the visible and infrared for solar observations. During the day the air masses around the telescope dome are influenced by flow distortions. Additionally heating of the infrastructure close to telescope causes thermal turbulence. Thereby optical turbulence is produced and leads to quality changes in the local seeing throughout the day. Image degradation will be yielded affecting the performance of adaptive optical systems. The spatial resolution of the solar observations will be reduced. For this study measurements of the optical turbulence, represented by the structure function parameter of the refractive index Cn2 were performed on several locations at the GREGOR telescope at the Teide observatory at Tenerife at the Canary Islands / Spain. Since September 2012 measurements of Cn2 were carried out between the towers of the Vacuum Tower Telescope (VTT) and of GREGOR with a laser-scintillometer. The horizontal distance of the measurement path was about 75 m. Additional from May 2015 up to March 2016 the optical turbulence was determined at three additional locations close to the solar telescope GREGOR. The optical turbulence is derived from sonic anemometer measurements. Time series of the sonic temperature are analyzed and compared to the direct measurements of the laser scintillometer. Meteorological conditions are investigated, especially the influence of the wind direction. Turbulence of upper atmospheric layers is not regarded. The measured local turbulence is compared to the system performance of the GREGOR telescopes. It appears that the mountain ridge effects on turbulence are more relevant than any local causes of seeing close to the telescope. Results of these analyses and comparison of nearly one year of measurements are presented and discussed.

  7. Influence of mental practice and movement observation on motor memory, cognitive function and motor performance in the elderly

    PubMed Central

    Altermann, Caroline D. C.; Martins, Alexandre S.; Carpes, Felipe P.; Mello-Carpes, Pâmela B.

    2014-01-01

    Background With aging, it is important to maintain cognitive and motor functions to ensure autonomy and quality of life. During the acquisition of motor skills, it is necessary for the elderly to understand the purpose of the proposed activities. Physical and mental practice, as well as demonstrations, are strategies used to learn movements. Objectives To investigate the influence of mental practice and the observation of movement on motor memory and to understand the relationship between cognitive function and motor performance in the execution of a sequence of digital movements in the elderly. Method This was a cross-sectional study conducted with 45 young and 45 aged subjects. The instruments used were Mini-Mental State Examination (MMSE), Manual Preference Inventory and a Digital Motor Task (composed of a training of a sequence of movements, an interval and a test phase). The subjects were divided into three subgroups: control, mental practice and observation of movement. Results The elderly depend more strongly on mental practice for the acquisition of a motor memory. In comparing the performances of people in different age groups, we found that in the elderly, there was a negative correlation between the MMSE score and the execution time as well as the number of errors in the motor task. Conclusions For the elderly, mental practice can advantage motor performance. Also, there is a significant relationship between cognitive function, learning and the execution of new motor skills. PMID:24839046

  8. Influence of temperature on layer growth as measured by in situ XRD observation of nitriding of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Manova, D.; Günther, C.; Bergmann, A.; Mändl, S.; Neumann, H.; Rauschenbach, B.

    2013-07-01

    Investigating the formation of expanded austenite has resulted in several, different models trying to explain the particular diffusion and phase formation behaviour. However, only ex situ information, influenced by cooling and annealing processes of the samples after ion implantation has been available until now. Here, the time and temperature dependent layer growth is reported using in situ XRD measurements obtained from low energy broadbeam nitrogen ion implantation into polycrystalline austenitic stainless steel 304 in the temperature range from 300 to 500 °C for a process time of up to 1 h. Expanded austenite was observed at all temperatures without any CrN, in agreement with already published lifetime data for this metastable phase. The layer growth was derived from the time evolution of the substrate peak intensity. Using the temperature dependence of the layer growth, an activation energy of nearly 0.8 eV was estimated for the nitrogen diffusion. In contrast, a complex behaviour was observed for the lattice expansion and peak width of the expanded peak, indicating additional dynamic annealing during implantation.

  9. Detection method and observed data of high-energy gamma rays under the influence of quantum gravity

    SciTech Connect

    Kifune, T.

    2014-05-20

    The interaction of high-energy particles affected by quantum gravity is argued from the experimental viewpoint of raising a question, 'our detection method for high-energy γ-rays supplies trustworthy observation data and we are now seeing the true image of the universe through high-energy γ-rays?' The modified dispersion relation (MDR) for particles' energy and momentum is applied to the equation of energy-momentum conservation in particle reactions, to study the restriction imposed on the kinematic state of high-energy particles by the Lorentz invariance violation (LIV) due to quantum gravity, as a function of the incident particle energy of the reaction. The result suggests that the interaction utilized for γ-ray detection is not free from the effect of quantum gravity when γ-ray energy is higher than 10{sup 13} ∼ 10{sup 17} eV depending on models of MDR. Discussion is presented on the prospect of finding clear evidence of the LIV effect from γ-ray observations, as well as on the radiation and propagation mechanism of γ-rays under the influence of the LIV effect.

  10. Correlated and Zonal Errors of Global Astrometric Missions: A Spherical Harmonic Solution

    DTIC Science & Technology

    2012-07-01

    significance in astrom- etry, because it directly affects the cosmic distance scale based on trigonometric parallaxes. A common offset of parallaxes is...observation, and the finite field of view of the telescope , all lead to a strongly non- uniform propagation of observational noise in different orders of...and self-calibrating basic angle separating the two viewing directions of the telescope . Hoyer et al. (1981) suggested that the problem of propagating

  11. Upgrades to the Flagstaff Astrometric Scanning Transit Telescope: A Fully Automated Telescope for Astrometry

    DTIC Science & Technology

    2003-10-01

    their modern ephemerides are accurate to70 mas, or better, in each coordinate, with the exception of Titania and Oberon, satellites of Uranus . FASTT data...to observe satellites of the outer planets Jupiter, Saturn, Uranus , and Neptune. A serious problem occurs when a satellite falls within the bloomed...However, excep- tions to this rule are the planets Saturn and Uranus , which are each observed twice each night. This is accomplished by using two

  12. Eclipses of the inner satellites of Jupiter observed in 2015

    NASA Astrophysics Data System (ADS)

    Saquet, E.; Emelyanov, N.; Colas, F.; Arlot, J.-E.; Robert, V.; Christophe, B.; Dechambre, O.

    2016-06-01

    Aims: During the 2014-2015 campaign of mutual events, we recorded ground-based photometric observations of eclipses of Amalthea (JV) and, for the first time, Thebe (JXIV) by the Galilean moons. We focused on estimating whether the positioning accuracy of the inner satellites determined with photometry is sufficient for dynamical studies. Methods: We observed two eclipses of Amalthea and one of Thebe with the 1 m telescope at Pic du Midi Observatory using an IR filter and a mask placed over the planetary image to avoid blooming features. A third observation of Amalthea was taken at Saint-Sulpice Observatory with a 60 cm telescope using a methane filter (890 nm) and a deep absorption band to decrease the contrast between the planet and the satellites. After background removal, we computed a differential aperture photometry to obtain the light flux, and followed with an astrometric reduction. Results: We provide astrometric results with an external precision of 53 mas for the eclipse of Thebe, and 20 mas for that of Amalthea. These observation accuracies largely override standard astrometric measurements. The (O - C)s for the eclipse of Thebe are 75 mas on the X-axis and 120 mas on the Y-axis. The (O - C)s for the total eclipses of Amalthea are 95 mas and 22 mas, along the orbit, for two of the three events. Taking into account the ratio of (O - C) to precision of the astrometric results, we show a significant discrepancy with the theory established by Avdyushev and Ban'shikova in 2008, and the JPL JUP 310 ephemeris. Three of the four eclipse observations where recorded at the 1 m telescope of Pic du Midi Observatory (S2P), the other at Saint-Sulpice Observatory.

  13. Observations of Anomalous Refraction with Co-housed Telescopes

    NASA Astrophysics Data System (ADS)

    Taylor, Malinda S.; McGraw, J. T.; Zimmer, P. C.

    2013-01-01

    Anomalous refraction is described as a low frequency, large angular scale motion of the entire image plane with respect to the celestial coordinate system as observed and defined by previous astrometric catalogs. These motions of typically several tenths of an arcsecond with timescales on the order of ten minutes are ubiquitous to drift-scan ground-based astrometric measurements regardless of location or telescopes used and have been attributed to meter scale slowly evolving coherent dynamical structures in the boundary-layer below 60 meters. The localized nature of the effect and general inconsistency of the motions seen by even closely spaced telescopes in individual domes has led to the hypothesis that the dome or other type of telescope housing may be responsible. This hypothesis is tested by observing anomalous refraction using two telescopes housed in a single roll-off roof observatory building with the expected outcome that the two telescopes will see correlated anomalous refraction induced motions.

  14. The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves.

    PubMed

    Balser, Nils; Lorey, Britta; Pilgramm, Sebastian; Naumann, Tim; Kindermann, Stefan; Stark, Rudolf; Zentgraf, Karen; Williams, A Mark; Munzert, Jörn

    2014-01-01

    In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses. Recently, researchers have suggested that the action-observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant's anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation task.

  15. Understanding the influence of assimilating satellite-derived observations on mesoscale analyses and forecasts of tropical cyclone track and structure

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Chi

    This dissertation research explores the influence of assimilating satellite-derived observations on mesoscale numerical analyses and forecasts of tropical cyclones (TC). The ultimate goal is to provide more accurate mesoscale analyses of TC and its surrounding environment for superior TC track and intensity forecasts. High spatial and temporal resolution satellite-derived observations are prepared for two TC cases, Typhoon Sinlaku and Hurricane Ike (both 2008). The Advanced Research version of the Weather and Research Forecasting Model (ARW-WRF) is employed and data is assimilated using the Ensemble Adjustment Kalman Filter (EAKF) implemented in the Data Assimilation Research Testbed. In the first part of this research, the influence of assimilating enhanced atmospheric motion vectors (AMVs) derived from geostationary satellites is examined by comparing three parallel WRF/EnKF experiments. The control experiment assimilates the same AMV dataset assimilated in NCEP operational analysis along with conventional observations from radiosondes, aircraft, and advisory TC position data. During Sinlaku and Ike, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) generates hourly AMVs along with Rapid-Scan (RS) AMVs when the satellite RS mode is activated. With an order of magnitude more AMV data assimilated, the assimilation of hourly CIMSS AMV dataset exhibit superior initial TC position, intensity and structure estimates to the control analyses and the subsequent short-range forecasts. When RS AMVs are processed and assimilated, the addition of RS AMVs offers additional modification to the TC and its environment and leads to Sinlaku's recurvature toward Japan, albeit prematurely. The results demonstrate the promise of assimilating enhanced AMV data into regional TC models. The second part of this research continues the work in the first part and further explores the influence of assimilating enhanced AMV datasets by conducting parallel data-denial WRF

  16. Possible influence of cosmic rays on climate through thunderstorm clouds, 2. Observations in different cosmic ray components

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Dorman, I. V.; Iucci, N.; Ne'eman, Yu.; Parisi, M.; Pustil'nik, L. A.; Signoretti, F.; Sternlieb, A.; Villoresi, G.; Zukerman, I. G.

    We compare observed in many experiments effects of atmospheric electric field in cosmic rays. On the basis of cosmic ray and atmospheric electric field one minute data obtained by NM and EFS of Emilio Segre' Observatory (hight 2025 m above s.l., cosmic ray cut-off rigidity for vertical direction 10.8 GV) we determine the atmospheric electric field effect in CR for total neutron intensity and for multiplicities m ≥ 1, m ≥ 2, m ≥ 3, m ≥ 4, m ≥ 5, m ≥ 6, m ≥ 7, and m ≥ 8, as well as for m = 1, m = 2, m = 3, m = 4, m = 5, m = 6, and m = 7. For comparison and excluding primary CR variations we use also one minute data on neutron multiplicities obtained by NM in Rome and other cosmic ray stations. According to the theoretical calculations of Dorman and Dorman (2004) the electric field effect in the NM counting rate must be caused mainly by captchuring of slow negative muons by lead nucleus with escaping few neutrons. As it was shown in Dorman and Dorman (2004), the biggest electric field effect is expected in the multiplicity m = 1, much smaller in m = 2 and negligible effect is expected in higher multiplicities. We control this conclusion on the basis of our experimental data. Obtained results give a possibility to estimate total acceleration and deceleration of CR particles by the atmospheric electric field. We consider also the possible influence of CR air ionization (especially by secondary energetic electrons) on thunderstorms and lightnings, and through this -- on climate. References: Dorman L.I. and I.V. Dorman ``Possible influence of cosmic rays on climate through thunderstorm clouds, 1. Theory on cosmic ray connection with atmospheric electric field phenomenon''. Report on the Session D2.1/C2.2/E3.1 of COSPAR-2004.

  17. Astrometric Positioning of the Venezuelan Satellite VeneSat-1 "PASAVEN"

    NASA Astrophysics Data System (ADS)

    Otero, S.; Abad, C.; Hernández, R.

    2014-06-01

    By means of this document we inform regarding the collaboration between the Venezuelan institutions, Bolivarian Agency for Space Activities (ABAE) and the Astronomy Research Center (CIDA) with the purpose of using astrometry for the tracking of the Venezuelan Geostationary Satellite Venesat1 by means of optical observation. For this purpose two small astronomical observatories shall be installed on the space tracking ground stations owned by the ABAE in Venezuela and we hope that in a short term they shall be producing the expected results, and also that these observations may be extended to future Venezuelan satellites and to the determination of the geostationary space debris trajectories.

  18. On the influence of biomass burning on the seasonal CO2 signal as observed at monitoring stations

    USGS Publications Warehouse

    Wittenberg, U.; Heimann, Martin; Esse, G.; McGuire, A.D.; Sauf, W.

    1998-01-01

    We investigated the role of biomass burning in simulating the seasonal signal in both prognostic and diagnostic analyses. The prognostic anaysis involved the High-Resolution Biosphere Model, a prognostic terrestrial biosphere model, and the coupled vegetation fire module, which together produce a prognostic data set of biomass burning. The diagnostic analysis invovled the Simple Diagnostic Biosphere Model (SDBM) and the Hao and Liu [1994] diagnostic data set of bimass burning, which have been scaled to global 2 and 4 Pg C yr-1, respectively. The monthly carbon exchange fields between the atmosphere and the biosphere with a spatial resolution of 0.5?? ?? 0.5??, the seasonal atmosphere-ocean exchange fields, and the emissions from fossil fuels have been coupled to the three-dimensional atmospheric transport model TM2. We have chosen eight monitoring stations of the National Oceanic and Atmospheric Administration network to compare the predicted seasonal atmospheric CO2 signals with those deduced from atmosphere-biosphere carbon exchange fluxes without any contribution from biomass burning. The prognostic analysis and the diagnostic analysis with global burning emissions of 4 Pg C yr-1 agree with respect to the change in the amplitude of the seasonal CO2 concentration introduced through biomass burning. We find that the seasonal CO2 signal at stations in higher northern latitudes (north of 30??N) is marginally influenced by biomass burning. For stations in tropical regions an increase in the CO2 amplitude of more an 1 oppmv (up to 50% with respect to the observed trough to peak amplitude) has been calculated. Biomass burning at stations farther south accounts for an increase in the CO2 amplitude of up to 59% (0.6 ppmv). A change in the phase of the seasonal CO2 signal at tropical and southern stations has been shown to be strongly influenced by the onset of biomass burning in southern tropical Africa and America. Comparing simulated and observed seasonal CO2 signals

  19. Observational Constraints on Terpene Oxidation with and without Anthropogenic Influence in the Amazon using Speciated Measurements from SV-TAG

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman, G. A.; Kreisberg, N. M.; Liu, Y.; McKinney, K. A.; de Sá, S. S.; Martin, S. T.; Alexander, M. L.; Palm, B. B.; Hu, W.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Viegas, J.; Springston, S. R.; Wurm, F.; Ferreira De Brito, J.; Artaxo, P.; Manzi, A. O.; Machado, L.; Longo, K.; Oliveira, M. B.; Souza, R. A. F. D.; Hering, S. V.; Goldstein, A. H.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) from the Amazon forest represent the largest regional source of organic carbon emissions to the atmosphere. These BVOC emissions dominantly consist of volatile and semi-volatile terpenoid compounds that undergo chemical transformations in the atmosphere to form oxygenated condensable gases and secondary organic aerosol (SOA). However, the oxidation pathways of these compounds are still not well understood, and are expected to differ significantly between "pristine" conditions, as is common in Amazonia, and polluted conditions caused by emissions from growing cities. Our focus is to elucidate how anthropogenic emissions influence BVOC chemistry and BSOA formation through speciated measurements of their oxidation products. We have deployed the Semi-Volatile Thermal desorption Aerosol Gas Chromatograph (SV-TAG) at the rural T3 site located west of the urban center of Manaus, Brazil as part of the Green Ocean Amazon (GoAmazon) 2014 field campaign to measure hourly concentrations of semi-volatile BVOCs and their oxidation products during the wet and dry seasons. Primary BVOC concentrations measured by the SV-TAG include sesquiterpenes and diterpenes, which have rarely been speciated with high time-resolution. We observe sesquiterpenes to be anti-correlated with ozone, indicative of sesquiterpene oxidation playing a major role in the regional oxidant budget. The role of sesquiterpenes in atmospheric SOA formation are of interest due to their high aerosol yields and high reactivity with ozone, relative to more commonly measured BVOCs (e.g. monoterpenes). We explore relative concentrations of sesquiterpenes and monoterpenes and their roles as precursors to SOA formation by combining SV-TAG measurements with those from an additional suite of VOC and particle measurements deployed in the Amazon. We also report the first ever hourly observations of the gas-particle partitioning of speciated terpene oxidation products in the Amazon

  20. Influence of the actions observed on cervical motion in patients with chronic neck pain: a pilot study

    PubMed Central

    de-la-Puente-Ranea, Lucía; García-Calvo, Beatriz; La Touche, Roy; Fernández-Carnero, Josué; Gil-Martínez, Alfonso

    2016-01-01

    The aim of the present pilot study was to prove if the action-observation (AOb) improved the cervical range of motion (CROM) in patients with nonspecific chronic neck pain (CNP). Double blind pilot study. A total of 28 subjects were randomly assigned to an effective-movement group (n=14) and an ineffective-movement group (n=14). The follow-up consisted of: pretreatment, posttreatment and 10 min after second measurement (motor imagery). Outcome measures were CROM, and pres-sure pain detection thresholds (PPDTs). No statistical differences were found in baseline on CROM and on the PPDT. Test for independent groups revealed significant changes in cervical rotation movement. Both groups in posttreatment (P=0.042; Cohen d=0.81) and after 10 min (P=0.019; Cohen d=0.9). For intragroup PPDT, the Wilcoxon test revealed significant effects in the effective movement at C2 of the pre to 10-min post (P=0.040). However, the ineffective movement revealed a significant reduction in PPDT in zygapophyseal joint of C5–C6 as the pre to post (P=0.010) as the pre to 10-min post (P=0.041) periods. In conclusions this pilot study demonstrated that the effective AOb produced significant changes versus ineffective AOb in the CROM and it could influences in PPT in subject with CNP immediately. PMID:27656633

  1. EMCCD SPECKLE INTERFEROMETRY WITH THE 6 m TELESCOPE: ASTROMETRIC MEASUREMENTS, DIFFERENTIAL PHOTOMETRY, AND ORBITS

    SciTech Connect

    Docobo, Jose A.; Tamazian, Vakhtang S.; Melikian, Norair D. E-mail: vakhtang.tamazian@usc.e E-mail: nmelikia@bao.sci.a

    2010-10-15

    Results of the EMCCD-based speckle interferometric observations and differential photometry for 46 visual binaries obtained in 2007 June and July with the 6 m telescope of the Special Astrophysical Observatory (Russia) are presented. First preliminary orbits for COU 401, COU 1281, and COU 1037 as well as improved orbits for CHR 137, COU 100, COU 1136, COU 798, CHR 51, CHR 55, COU 315, COU 206, and ADS 13961, along with their dynamical mass estimates, are reported. On the basis of dynamical parallax information, first distance estimates for COU 100, COU 1136, COU 798, COU 206, and COU 1037 are calculated.

  2. Combining Photometric and Astrometric Data to Identify Stellar Clustering at KPC-Distances

    NASA Astrophysics Data System (ADS)

    Teixeira, R.; Medina-Tanco, G.; Corti, M.; Ducourant, C.

    2005-01-01

    A field of 0.5° × 0.5° , at l ˜ 265° and b ˜ -2° , is used as a test bed for stellar structure identification. Spectroscopic and photometric observations were used to estimate distances to the early-type stars inside in the field. Positions, distances and proper motions were combined in a series of statistical analysis to identify clustering. In this way we are able to characterize stellar structures up to distances of approximately 8 kpc, probably as far as the outer spiral arm.

  3. The First U.S. Naval Observatory Robotic Astrometric Telescope Catalog

    DTIC Science & Technology

    2015-10-01

    with opti- mized quantum efficiency near the URAT bandpass. The CCDs have few to none column defects. The CCDs are operated normally at −100°C. Each... efficiency Figure 8. Same as previous figure, butfor residuals as a function of V–I color index (from APASS data). Figure 9.Mean field distortion pattern of...For part of the observing program (see below) a diffraction grating is mounted in front of the lens. First-order diffraction images saturate for

  4. Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities

    PubMed Central

    Davis, Robert E.; Hondula, David M.; Patel, Anjali P.

    2015-01-01

    -mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality. Citation: Davis RE, Hondula DM, Patel AP. 2016. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect 124:795–804; http://dx.doi.org/10.1289/ehp.1509946 PMID:26636734

  5. A Characterization of Arctic Aerosols as Derived from Airborne Observations and their Influence on the Surface Radiation Budget

    NASA Astrophysics Data System (ADS)

    Herber, A.; Stone, R.; Liu, P. S.; Li, S.; Sharma, S.; Neuber, R.; Birnbaumn, G.; Vitale, V.

    2011-12-01

    Arctic climate is influenced by aerosols that affect the radiation balance at the surface and within the atmosphere. Impacts depend on the composition and concentration of aerosols that determine opacity, which is quantified by the measure of aerosol optical depth (AOD). During winter and spring, aerosols are transported into the Arctic from lower latitude industrial regions. Trans-Arctic flight missions PAMARCMiP (Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project) of the German POLAR 5 during spring 2009 and spring 2011 provided opportunities to collect a comprehensive data set from which properties of the aerosol were derived, including AOD. Measurements were made from near the surface to over 4 km in altitude during flights between Svalbard, Norway and Pt. Barrow, Alaska. These, along with measurements of particle size and concentration, and black carbon content (BC) provide a three-dimensional characterization of the aerosols encountered along track. The horizontal and vertical distribution of Arctic haze, in particular, was evaluated. During April 2009, the Arctic atmosphere was variably turbid with total column AOD (at 500 nm) ranging from ~ 0.12 to > 0.35, where clean background values are typically < 0.06 (Stone et al., 2010). The haze was concentrated within and just above the surface-based temperature inversion layer. Few, distinct elevated aerosol layers were observed, also with an aerosol airborne Lidar. The presence of these haze layers in the Arctic atmosphere during spring reduced the diurnally averaged net shortwave irradiance, which can cause cooling of the surface, depending on its Albedo (reflectivity). An overview of both campaigns will be given with results presented in the context of historical observations and current thinking about the impact aerosols have on the Arctic climate. Stone, R.S., A. Herber, V. Vitale, M. Mazzola, A. Lupi, R. Schnell, E.G. Dutton, P. Liu, S.M. Li, K. Dethloff, A. Lampert, C. Ritter

  6. The influence of passenger car front shape on pedestrian injury risk observed from German in-depth accident data.

    PubMed

    Li, Guibing; Lyons, Mathew; Wang, Bingyu; Yang, Jikuang; Otte, Dietmar; Simms, Ciaran

    2017-04-01

    Quantified relationships between passenger car front shape and pedestrian injury risk derived from accident data are sparse, especially considering the significant recent changes in car front design. The purpose of this paper is therefore to investigate the detailed effects of passenger car front shape on injury risk to a pedestrian's head, thorax, pelvis and leg in the event of a vehicle pedestrian impact. Firstly, an accident sample of 594 pedestrian cases captured during 2000-2015 from the German In-Depth Accident Study (GIDAS) database was employed. Multicollinearity diagnostic statistics were then used to detect multicollinearity between the predictors. Following this, logistic regression was applied to quantify the effects of passenger car front shape on injury risks while controlling for impact speed and pedestrian age. Results indicate that the bumper lower depth (BLD), bumper lower height (BLH), bumper upper height (BUH) and normalised bumper lower/upper height (NBLH/NBUH) are statistically significant for AIS2+ leg injury risk. The normalised bonnet leading edge height (NBLEH) has a statistically significant influence on AIS2+ femur/pelvis injury occurrence. The passenger car front shape did not show statistical significance for AIS3+ thorax and head injuries. The impact speed and pedestrian age are generally significant factors influencing AIS2+ leg and pelvis injuries, and AIS3+ thorax and head injuries. However, when head impacts are fixed on the central windscreen region both pedestrian age and impact speed are not statistically significant for AIS3+ head injury. For quantified effects, when controlling for speed, age and BUH, an average 7% and 6% increase in AIS2+ leg injury odds was observed for every 1cm increase in BLD and BLH respectively; 1cm increase in BUH results in a 7% decrease in AIS2+ leg injury odds when the BLD or BLH are fixed respectively (again controlling for impact speed and pedestrian age); the average AIS2+ femur/pelvis injury

  7. SIMULATION AND ANALYSIS OF SUB-{mu}as PRECISION ASTROMETRIC DATA FOR PLANET FINDING

    SciTech Connect

    Savransky, Dmitry; Kasdin, N. Jeremy

    2010-10-01

    We present a vector formulation of an interferometric observation of a star, including the effects of the barycentric motion of the observatory, the proper motions of the star, and the reflex motions of the star due to orbiting planets. We use this model to empirically determine the magnitude and form of the signal due to a single Earth-mass planet orbiting about a Sun-mass star. Using bounding values for the known components of the model, we perform a series of expansions, comparing the residuals to this signal. We demonstrate why commonly used first-order linearizations of similar measurement models are insufficient for signals of the magnitude of the one due to an Earth-mass planet, and present a consistent expansion which is linear in the unknown quantities, with residuals multiple orders of magnitude below the Earth-mass planet signal. We also discuss numerical issues that can arise when simulating or analyzing these measurements.

  8. Radio-source structure in astrometric and geodetic very long baseline interferometry

    SciTech Connect

    Charlot, P. Institut Geographique National, Saint Mande )

    1990-04-01

    An algorithm to calculate source structure corrections for bandwidth synthesis delays and delay rates is used to refer the position of extragalacitc radio sources to a specific feature of each source's morphology. The delay and delay rate are obtained from VBLI observations. The algorithm and its theoretical basis are described, and simulations for a simple two-component source are discussed. VLBI data for the complex radio source NRAO 140 are analyzed. For this source, structure corrections are calculated with maps from three different VLBI imaging techniques: the hybrid-CLEAN algorithm, the maximum entropy method, and model fitting. The calculated structure corrections are compared with brightness distributions to the actual data. The results are used to map NRAO 140. It is found that the CLEAN map produces the most accurate structure corrections. 27 refs.

  9. Factors influencing serum concentrations of IgD in the adult population: an observational study in Spain.

    PubMed

    Carballo, Iago; Rabuñal, Noelia; Alvela, Lucía; Pérez, Luis-Fernando; Vidal, Carmen; Alonso, Manuela; Sopeña, Bernardo; Gude, Francisco; Gonzalez-Quintela, Arturo

    2017-01-27

    Immunoglobulin D (IgD) is the least studied of immunoglobulin classes. This study sought to investigate the potential relationship between demographic, metabolic, lifestyle and immunologic factors, and serum IgD concentrations in a general adult population. We measured serum IgD concentrations by means of a commercial turbidimetric assay in 413 individuals (median age, 55 years; 45% males), randomly selected from the adult population of a Spanish municipality. Serum IgD concentrations displayed considerable variation in the population, ranging from undetectable (<6.7 mg/L) to 878 mg/L. Serum IgD concentrations were undetectable in 78 cases (18.9%) and greater than 100 mg/L in 39 cases (9.4%). Median IgD was 21.9 mg/L. Serum IgD concentrations were negatively associated with age and positively associated with smoking, after adjustment for potential confounders. Overweight individuals and showed lower concentrations of IgD than did normal-weight individuals. Atopy (positivity of skin tests to aeroallergens) was not significantly associated with IgD concentrations, though non-symptomatic atopics showed higher IgD concentrations. No consistent association was observed between serum IgD concentrations and gender, metabolic syndrome, or alcohol consumption. No significant association was found between baseline IgD concentrations and development of either allergic or immune disease after a median 11.4 years of follow-up. In conclusion, serum IgD concentrations in adults show a wide variation in the population and may be influenced by common factors, particularly age and smoking habit. These factors should be taken into account when defining reference ranges for serum IgD concentrations. This article is protected by copyright. All rights reserved.

  10. Short-term Influences on Suspended Particulate Matter Distribution in the Northern Gulf of Mexico: Satellite and Model Observations

    PubMed Central

    D'Sa, Eurico J.; Ko, Dong S.

    2008-01-01

    Energetic meteorological events such as frontal passages and hurricanes often impact coastal regions in the northern Gulf of Mexico that influence geochemical processes in the region. Satellite remote sensing data such as winds from QuikSCAT, suspended particulate matter (SPM) concentrations derived from SeaWiFS and the outputs (sea level and surface ocean currents) of a nested navy coastal ocean model (NCOM) were combined to assess the effects of frontal passages between 23-28 March 2005 on the physical properties and the SPM characteristics in the northern Gulf of Mexico. Typical changes in wind speed and direction associated with frontal passages were observed in the latest 12.5 km wind product from QuikSCAT with easterly winds before the frontal passage undergoing systematic shifts in direction and speed and turning northerly, northwesterly during a weak and a strong front on 23 and 27 March, respectively. A quantitative comparison of model sea level results with tide gauge observations suggest better correlations near the delta than in the western part of the Gulf with elevated sea levels along the coast before the frontal passage and a large drop in sea level following the frontal passage on 27 March. Model results of surface currents suggested strong response to wind forcing with westward and onshore currents before the frontal passage reversing into eastward, southeastward direction over a six day period from 23 to 28 March 2005. Surface SPM distribution derived from SeaWiFS ocean color data for two clear days on 23 and 28 March 2005 indicated SPM plumes to be oriented with the current field with increasing concentrations in nearshore waters due to resuspension and discharge from the rivers and bays and its seaward transport following the frontal passage. The backscattering spectral slope γ, a parameter sensitive to particle size distribution also indicated lower γ values (larger particles) in nearshore waters that decreased offshore (smaller particles

  11. Phobos Ephemeris Improvement from Recent Spacecraft Observations

    NASA Technical Reports Server (NTRS)

    Bills, B. G.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2004-01-01

    Despite 127 years of observations, there is still room for improvement in the ephemeris of the Martian satellite Phobos. Early in this history, Earth-based astrometric observations of Phobos and Deimos were used to estimate the mass and oblateness of Mars. As more data accumulated, it became clear that a secular acceleration in the longitude of Phobos was occurring, and this was attributed to tidal dissipation within Mars, yielding rough estimates of the tidal quality factor, or Q. At the epoch of the earliest spacecraft observations of Phobos, from Mariner 9 and the Viking Orbiters and Landers, the gravitational field of Mars, and resulting forces on Phobos, were still not particularly well known. Thus observations of natural and artificial satellite motions continued to contribute, each in their own way, to knowledge of the mass distribution within Mars. Improvements in tracking system accuracy, and the placement of satellites, like the 1996 Mars Global Surveyor and 2001 Mars Odyssey, in circular polar orbits has lead to dramatic improvements to knowledge of the Mars gravity field. The direct gravitational influence on Phobos is no longer expected to be a limiting factor in predicting its orbital motion. Despite that progress, a variety of observations of Phobos from recent orbiters and landers suggest that the best satellite ephemeris still has along-track orbit errors which are accumulating at a rate of 1.75 kilometers per year, with Phobos gaining on the predicted positions. These recent observations alone do not span sufficient time to separately resolve the positional error into changes in mean motion and changes in secular acceleration. However, combining them with earlier observations will allow improvements in both the mean motion and its first derivative. This latter parameter is particularly interesting, as it relates to tidal dissipation, and thus uniquely constrains the internal structure of Mars. The current best estimate of the secular acceleration

  12. A comparison of individual versus community influences on youth smoking behaviours: a cross-sectional observational study

    PubMed Central

    Adachi-Mejia, Anna M; Carlos, Heather A; Berke, Ethan M; Tanski, Susanne E; Sargent, James D

    2012-01-01

    Objectives To compare individual with community risk factors for adolescent smoking. Design A cross-sectional observational study with multivariate analysis. Setting National telephone survey. Participants 3646 US adolescents aged 13–18 years in 2007 recruited through a random digit-dial survey. Outcome measures Ever tried smoking and, among experimental smokers, smoking intensity (based on smoking in past 30 days). Results One-third of participants (35.6%, N=1297) had tried smoking. After controlling for individual risk factors, neither tobacco outlet density nor proximity were associated with tried smoking or smoking intensity. Associations with trying smoking included age (adjusted OR (AOR)=1.23, 95% CI 1.16 to 1.31), lower socioeconomic status (AOR=0.82, 95% CI 0.74 to 0.91), sibling smoking (AOR=2.13, 95% CI 1.75 to 2.59), friend smoking (AOR=2.60, 95% CI 2.19 to 3.10 for some and AOR=7.01, 95% CI 5.05 to 9.74 for most), movie smoking exposure (AOR=2.66, 95% CI 1.95 to 3.63), team sports participation (AOR=0.69, 95% CI 0.54 to 0.89) and sensation seeking (AOR=7.72, 95% CI 5.26 to 11.34). Among experimental smokers, age (AOR=1.32, 95% CI 1.21 to 1.44), minority status (AOR=0.48, 95% CI 0.30 to 0.79 for Black; AOR=0.46, 95% CI 0.31 to 0.69 for Hispanic; AOR=0.53, 95% CI 0.43 to 0.85 for mixed race/other), friend smoking (AOR=3.37, 95% CI 2.37 to 4.81 for some; AOR=20.27, 95% CI 13.22 to 31.08 for most), team sports participation (AOR=0.38, 95% CI 0.26 to 0.55) and sensation seeking (AOR=6.57, 95% CI 3.71 to 11.64) were associated with smoking intensity. Conclusions The study suggests that interventions and policies to prevent and reduce youth smoking should focus on individual risk factors for smoking, including supporting participation in team sports, minimising exposure to movie smoking, addressing the social influence of friend smoking and addressing experience seeking among high sensation-seekers. PMID:22942229

  13. ALMA Observations of TNOs

    NASA Astrophysics Data System (ADS)

    Butler, Bryan J.; Brown, Michael E.

    2016-10-01

    Some of the most fundamental properties of TNOs are still quite poorly constrained, including diameter and density. Observations at long thermal wavelengths, in the millimeter and submillimeter, hold promise for determining these quantities, at least for the largest of these bodies (and notably for those with companions). Knowing this information can then yield clues as to the formation mechanism of these bodies, allowing us to distinguish between pairwise accretion and other formation scenarios.We have used the Atacama Large Millimeter/Submillimeter Array (ALMA) to observe Orcus, Quaoar, Salacia, and 2002 UX25 at wavelengths of 1.3 and 0.8 mm, in order to constrain the sizes of these bodies. We have also used ALMA to make astrometric observations of the Eris-Dysnomia system, in an attempt to measure the wobble of Eris and hence accurately determine its density. Dysnomia should also be directly detectable in those data, separate from Eris (ALMA has sufficient resolution in the configuration in which the observations were made). Results from these observations will be presented and discussed.

  14. Reduction of astrometric plates

    NASA Technical Reports Server (NTRS)

    Stock, J.

    1984-01-01

    A rapid and accurate method for the reduction of comet or asteroid plates is described. Projection equations, scale length correction, rotation of coordinates, linearization, the search for additional reference stars, and the final solution are examined.

  15. To Blame or Not to Blame: Influences of Target Race and Observer Sex on Rape Blame Attribution

    ERIC Educational Resources Information Center

    Donovan, Roxanne A.

    2007-01-01

    There is a paucity of research on the influence of racist and sexist stereotypes in rape blame attribution, including the jezebel and matriarch stereotypes of Black women. This study extends the literature by examining how victim race, perpetrator race, and participant sex affect perceptions of a rape survivor's promiscuity (jezebel stereotype)…

  16. Discovery, Observational Data and the Orbit of the Amor Group Asteroid 2010 BT3

    NASA Astrophysics Data System (ADS)

    Černis, K.; Zdanavičius, J.; Wlodarczyk, I.; Stonkutė, E.

    A project devoted to astrometric and photometric observations of asteroids at the Molėtai Observatory is described. One of its most important results is the discovery of the asteroid 2010 BT3 belonging to the Amor group of the near-Earth objects. The results of astrometric and photometric observations of the asteroid are presented. The brightness variations of the asteroid are found to be about 0.2 mag in R. The orbit of the asteroid was computed from 96 observations. This orbit, combined with the apparent brightness, gives the absolute magnitude 21.34 mag and the diameter between 160 m and 360 m, taking albedos of S-type and C-type asteroids, respectively.

  17. 134340 Pluto: nine years of CCD observations

    NASA Astrophysics Data System (ADS)

    Veiga, C. H.

    2008-08-01

    Aims: The purpose of this article is to present the new accurate astrometric CCD positions of Pluto, now designated as the minor planet 134340 Pluto and member of the Trans-Neptunian population. These positions were obtained from 1108 frames taken during 49 nights. The observations were distributed in 17 continuous missions between the years of 1995 and 2004. Methods: The USNO-A2.0 star catalog, locally corrected by UCAC2 catalog, was used for the astrometric calibration. All positions were compared with those calculated by the PLU017 ephemeris. Results: In this work precise positions of 134340 Pluto are presented. The residues, observed minus calculated positions, have mean and standard deviation smaller than 0.05 arcsec, in the right ascension and declination coordinates' directions. Based on observations made at the Laboratório Nacional de Astrofísica/MCT-Itajubá-Brazil. Full Table [see full text] is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/486/613

  18. Using Art to Teach Students Science Outdoors: How Creative Science Instruction Influences Observation, Question Formation, and Involvement

    NASA Astrophysics Data System (ADS)

    Cone, Christina Schull

    Elementary education has become increasingly divided into subjects and focused on the demand for high math and reading scores. Consequently, teachers spend less time devoted to science and art instruction. However, teaching art and science is crucial to developing creative and rational thinking, especially for observation and questioning skills. In this study, third grade students attending an urban school in Portland, Oregon received instruction of an art strategy using observational and quantifying drawing techniques. This study examines, "Will an art strategy observing the local environment help students make observations and ask questions?" and "In what ways are student learning and perspectives of science affected by the art strategy?" The independent variable is the art strategy developed for this study. There are three dependent variables: quality of student observations, quality of questions, and themes on student learning and perspectives of science. I predicted students would develop strong observation and questioning skills and that students would find the strategy useful or have an increased interest in science. The art scores were high for relevance and detail, but not for text. There were significant correlations between art scores and questions. Interviews revealed three themes: observations create questions, drawing is helpful and challenging, and students connected to science. By examining science through art, students were engaged and created strong observations and questions. Teachers need to balance unstructured drawing time with scaffolding for optimal results. This study provides an integrated science and art strategy that teachers can use outdoors or adapt for the classroom.

  19. Observing the Influence of X-Rays on Aqueous Copper Solutions by In Situ Combined Video/XAFS/UV-Vis Spectroscopy

    SciTech Connect

    Mesu, J. Gerbrand; Beale, Andrew M.; Groot, Frank M. F. de; Weckhuysen, Bert M.

    2007-02-02

    In situ video monitoring and UV-Vis Spectroscopy have been used in combination with XAFS Spectroscopy to study the effect of synchrotron radiation on a series of copper solutions in a micro-reactor. The samples that were investigated contained initially a mixture of Cu2+ ions and both biologically and non-biologically relevant amine ligands. It was observed that when water was used as the solvent, gas bubbles are formed under the influence of the X-ray beam. At the resultant liquid-gas interface and under certain conditions, colloidal copper nanoparticles were observed to form. This reduction process was influenced primarily by the type of the copper precursor salt (SO{sub 4}{sup 2-}, NO{sub 3}{sup -} and Cl-), although the ligands surrounding the copper cation and the redox potential of the copper complexes (ranging between +594 and -360 mV) were also observed to have some effect. Critically we show how these results illustrate the benefits of combining methods (and in particular the use of video imaging) to monitor chemical processes and for observing the influence of one technique on the measurement process. Furthermore the results give some insight into the parameters that are important in the redox-processes that occur in biological systems.

  20. Estimation of the influence of cloudiness on the Earth observation from space through a gap in a cloudy field

    NASA Astrophysics Data System (ADS)

    Belov, V. V.; Kirnos, I. V.; Tarasenkov, M. V.

    2015-11-01

    For atmospheric correction of satellite images, the problem is formulated to estimate the distance from a cloud at which its influence on the satellite image of the Earth surface can be neglected. The Monte Carlo method of conjugate trajectories is used. The gap radius in the field of continuous cloudiness at which the influence of the cloudy medium on the received signal intensity does not exceed 10 % is obtained. It is revealed that for the Lambert law of radiation reflection from the Earth surface, the curve of the dependence of the received signal intensity on the gap radius has a maximum caused by the opposite influence of light scattering by the cloudy medium and radiation reflection by the surface (adjacency effect). To further generalize the examined problem to a stochastic cloud field, the method of direct simulation of photon trajectories in a stochastic medium is compared with G. A. Titov's method of closed equations in the gap vicinity. A comparison is carried out with the model of the stochastic medium in the form of a cloud field of constant geometric thickness consisting of rectangular clouds whose boundaries are determined by the stationary Poisson flow of points. It is demonstrated that results of calculations can differ at most by 20‒30 %; however, in some cases (for some sets of initial data), the difference for the entire region of cloud cover indices is within 7 %.

  1. High-precision follow-up observations of Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Ramanjooloo, Yudish; Tholen, David J.; Fohring, Dora; Hung, Denise

    2016-10-01

    We present the latest results of ongoing high-precision astrometric follow-up observations of Near-Earth Objects (NEOs) using the University of Hawaii 2.24 metre telescope (currently 7.5 arcmin FOV), the Canada-France-Hawaii Telescope (CFHT; 1 degree FOV) with MegaPrime, and the Subaru Hyper Suprime-Cam (1.5 degree FOV). The combination of excellent observing conditions at Maunakea, and the use of no filter to maximise our throughput efficiency, allows us to recover targets having V < 24, and sometimes V < 25 under ideal conditions. We frequently achieve astrometric accuracy limited by the reference catalog and plan to improve on this capability with the implementation of the GAIA catalog. This work is funded by NASA grant NXX13AI64G.

  2. Influence of biogenic pollen on optical properties of atmospheric aerosols observed by lidar over Gwangju, South Korea

    NASA Astrophysics Data System (ADS)

    Noh, Young Min; Müller, Detlef; Lee, Hanlim; Choi, Tae Jin

    2013-04-01

    For the first time, optical properties of biogenic pollen, i.e., backscatter coefficients and depolarization ratios at 532 nm were retrieved by lidar observations. The extinction coefficient was derived with the assumption of possible values of the extinction-to-backscatter (lidar) ratio. We investigate the effect of the pollen on the optical properties of the observed atmospheric aerosols by comparing lidar and sun/sky radiometer measurements carried out at the lidar site. The observations were made with a depolarization lidar at the Gwangju Institute of Science & Technology (GIST) in Gwangju, Korea (35.13°N, 126.50°E) during an intensive observational period that lasted from 5 to 7 May 2009. The pollen concentration was measured with a Burkard trap sampler at the roof top of the Gwangju Bohoon hospital which is located 1 km away from the lidar site. During the observation period, high pollen concentrations of 1360, 2696, and 1952 m-3 day-1 were measured on 5, 6, and 7 May, respectively. A high lidar depolarization ratio caused by biogenic pollen was only detected during daytime within the planetary boundary layer which was at 1.5-2.0 km height above ground during the observational period. The contribution of biogenic pollen to the total backscatter coefficient was estimated from the particle depolarization ratio. Average hourly values of pollen optical depth were retrieved by integrating the pollen extinction coefficients. We find average values of 0.062 ± 0.037, 0.041 ± 0.028 and 0.067 ± 0.036 at 532 nm on 5, 6, and 7 May, respectively. The contribution of pollen optical depth to total aerosol optical depth was 2-34%. The sun/sky radiometer data show that biogenic pollen can affect optical properties of atmospheric aerosol by increasing aerosol optical depth and decreasing the Ångström exponent during daytime during the season of high pollen emission.

  3. The thermal influence of the subducting slab beneath South America from 410 and 660 km discontinuity observations

    NASA Astrophysics Data System (ADS)

    Collier, J. D.; Helffrich, G. R.

    2001-11-01

    Regional seismic network data from deep South American earthquakes to western United States and western European seismic arrays is slant stacked to detect weak near-source interactions with upper mantle discontinuities. These observations are complemented by an analysis of earlier work by Sacks & Snoke (1977) who observed S to P conversions from deep events to stations in South America, and similar observations from 1994-95 events using the BANJO and SEDA networks. Observations of the depth of the 410km discontinuity are made beneath central South America in the vicinity of the aseismic region of the subducting Nazca Plate. These results image the 410km discontinuity over a lateral extent of up to 850km perpendicular to the slab and over a distance of 2700km along the length of the slab. Away from the subducting slab the discontinuity is mainly seen near its global average depth, whilst inside the slab there is evidence for its elevation by up to around 60km but with significant scatter in the data. These results are consistent with the presence of a continuous slab through the aseismic region with a thermal anomaly of 900°C at 350km depth. This value is in good agreement with simple thermal models though our data are too sparse to accurately constrain them. Sparse observations of the 660km discontinuity agree with tomographic models suggesting penetration of the lower mantle by the slab in the north but stagnation at the base of the transition zone in the south. The geographical distribution of the data, however, does not allow us to rule out the possibility of slab stagnation at the base of the transition zone in the north. These observations, together with the presence of deep earthquakes, require more complicated thermal models than previously used to explain them, possibly including changes in slab dip and age with depth.

  4. How does our choice of observable influence our estimation of the centre of a galaxy cluster? Insights from cosmological simulations

    NASA Astrophysics Data System (ADS)

    Cui, Weiguang; Power, Chris; Biffi, Veronica; Borgani, Stefano; Murante, Giuseppe; Fabjan, Dunja; Knebe, Alexander; Lewis, Geraint F.; Poole, Greg B.

    2016-03-01

    Galaxy clusters are an established and powerful test-bed for theories of both galaxy evolution and cosmology. Accurate interpretation of cluster observations often requires robust identification of the location of the centre. Using a statistical sample of clusters drawn from a suite of cosmological simulations in which we have explored a range of galaxy formation models, we investigate how the location of this centre is affected by the choice of observable - stars, hot gas, or the full mass distribution as can be probed by the gravitational potential. We explore several measures of cluster centre: the minimum of the gravitational potential, which would expect to define the centre if the cluster is in dynamical equilibrium; the peak of the density; the centre of brightest cluster galaxy (BCG); and the peak and centroid of X-ray luminosity. We find that the centre of BCG correlates more strongly with the minimum of the gravitational potential than the X-ray defined centres, while active galactic nuclei feedback acts to significantly enhance the offset between the peak X-ray luminosity and minimum gravitational potential. These results highlight the importance of centre identification when interpreting clusters observations, in particular when comparing theoretical predictions and observational data.

  5. VISIBILITY OF STRUCTURES OF RELEVANCE FOR PATIENTS WITH CYSTIC FIBROSIS IN CHEST TOMOSYNTHESIS: INFLUENCE OF ANATOMICAL LOCATION AND OBSERVER EXPERIENCE

    PubMed Central

    Meltzer, Carin; Båth, Magnus; Kheddache, Susanne; Ásgeirsdóttir, Helga; Gilljam, Marita; Johnsson, Åse Allansdotter

    2016-01-01

    The aims of this study were to assess the visibility of pulmonary structures in patients with cystic fibrosis (CF) in digital tomosynthesis (DTS) using computed tomography (CT) as reference and to investigate the dependency on anatomical location and observer experience. Anatomical structures in predefined regions of CT images from 21 patients were identified. Three observers with different levels of experience rated the visibility of the structures in DTS by performing a head-to-head comparison with visibility in CT. Visibility of the structures in DTS was reported as equal to CT in 34 %, inferior in 52 % and superior in 14 % of the ratings. Central and peripheral lateral structures received higher visibility ratings compared with peripheral structures anteriorly, posteriorly and surrounding the diaphragm (p ≤ 0.001). Reported visibility was significantly higher for the most experienced observer (p ≤ 0.01). The results indicate that minor pathology can be difficult to visualise with DTS depending on location and observer experience. Central and peripheral lateral structures are generally well depicted. PMID:26842827

  6. Real & Simulated IFU Observations of Low-Mass Early-Type Galaxies: Environmental Influence Probed for Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Sybilska, Agnieszka; Łokas, Ewa Luiza; Fouquet, Sylvain

    2017-03-01

    We combine high-quality IFU data with a new set of numerical simulations to study low-mass early type galaxies (dEs) in dense environments. Our earlier study of dEs in the Virgo cluster has produced the first large-scale maps of kinematic and stellar population properties of dEs in those environments (Ryś et al. 2013, 2014, 2015). A quantitative discrimination between various (trans)formation processes proposed for these objects is, however, a complex issue, requiring a priori assumptions about the progenitors of galaxies we observe and study today. To bridge this gap between observations and theoretical predictions, we use the expertise gained in the IFU data analysis to look ``through the eye of SAURON'' at our new suite of high-resolution N-body simulations of dEs in the Virgo cluster. Mimicking the observers perspective as closely as possible, we can also indicate the existing instrumental and viewer limitations regarding what we are/are not able to detect as observers.

  7. Short-term Influences on Suspended Particulate Matter Distribution in the Northern Gulf of Mexico: Satellite and Model Observations

    DTIC Science & Technology

    2008-07-15

    also observed all along the nearshore coastal waters. East of the birdsfoot delta within the island chain ( Breton and Chandeleur Sounds), higher SPM...Proceedings, 12’h Conference on 10AS-AOLS 2008, P2.9. 7. Forget, P.; Andre , G. Can satellite-derived chlorophyll imagery be used to trace surface

  8. Discovering New Ways of Moving: Observational Analysis of Motor Creativity while Dancing Contact Improvisation and the Influence of the Partner

    ERIC Educational Resources Information Center

    Torrents, Carlota; Castaner, Marta; Dinusova, Maria; Anguera, M. Teresa

    2010-01-01

    Contact improvisation (CI) is a form of dance based on motor creativity, improvisation and the physical contact between different improvisers dancing together. This will generate different ways of moving and a varied use of motor creativity depending on the dancers involved. This study aims to observe the differences in movement generation…

  9. Hubble Space Telescope faint object spectrograph Quasar Absorption System Snapshot Survey (AbSnap). 1: Astrometric optical positions and finding charts of 269 bright QSO

    NASA Technical Reports Server (NTRS)

    Bowen, David V.; Osmer, Samantha J.; Blades, J. Chris; Tytler, David; Cottrell, Lance; Fan, Xiao-Ming; Lanzetta, Kenneth M.

    1994-01-01

    We present finding charts and optical positions accurate to less than 1 arcsec for 269 bright (V less than or = 18.5) Quasi-Stellar Objects (QSOs). These objects were selected as candidates for the Hubble Space Telescope (HST) Quasar Absorption System Snapshot Survey (AbSnap), a program designed to use the Faint Object Spectrograph (FOS) to obtain short exposure ultraviolet (UV) spectra of bright QSOs. Many quasars were included because of their proximity to bright, low redshift galaxies and positions of these QSOs are measured accurately for the first time. Data were obtained using the digitized sky survey produced by the Space Telescope Science Institute's Guide Stars Selection System Astrometric Support Program.

  10. Experimental observation of the influence of furnace temperature profile on convection and segregation in the vertical Bridgman crystal growth technique

    NASA Technical Reports Server (NTRS)

    Neugebauer, G. T.; Wilcox, W. R.

    1990-01-01

    Azulene-doped naphtalene was directionally solidified using the vertical Bridgman-Stockbarger technique. Doping homogeneity and convection are determined as a function of the temperature profile in the furnace and the freezing rate. Convective velocities are two orders of magnitude lower when the temperature increases with height. The cross sectional variation in azulene concentration tends to be asymmetric. Neither rotation of the ampoule nor deliberate introduction of thermal asymmetries during solidification had a significant influence on cross sectional variations in doping. It is predicted that slow directional solidification under microgravity conditions can produce greater inhomogeneities than on earth. Thus when low freezing rates are necessary in order to avoid constitutional supercooling, it may be necessary to combine microgravity and magnetic fields in order to achieve homogeneous crystals.

  11. To blame or not to blame: influences of target race and observer sex on rape blame attribution.

    PubMed

    Donovan, Roxanne A

    2007-06-01

    There is a paucity of research on the influence of racist and sexist stereotypes in rape blame attribution, including the jezebel and matriarch stereotypes of Black women. This study extends the literature by examining how victim race, perpetrator race, and participant sex affect perceptions of a rape survivor's promiscuity (jezebel stereotype) and strength and/or toughness (matriarch stereotype). The myth of the Black male sexual predator of White women is also investigated. Data provided partial support for the jezebel stereotype. There were also contradictory findings supporting and challenging the acceptance of the Black rapist of White women stereotype. No significant differences were found for the matriarch stereotype. Reasons for and implications of findings are explored.

  12. The "Quasar" Network Observations in e-VLBI Mode Within the Russian Domestic VLBI Programs

    NASA Technical Reports Server (NTRS)

    Finkelstein, Andrey; Ipatov, Alexander; Kaidanovsky, Michael; Bezrukov, Ilia; Mikhailov, Andrey; Salnikov, Alexander; Surkis, Igor; Skurikhina, Elena

    2010-01-01

    The purpose of the Russian VLBI "Quasar" Network is to carry out astrometrical and geodynamical investigations. Since 2006 purely domestic observational programs with data processing at the IAA correlator have been carried out. To maintain these geodynamical programs e-VLBI technology is being developed and tested. This paper describes the IAA activity of developing a real-time VLBI system using high-speed digital communication links.

  13. Dependence of the Sunspot-Group Size on the Level of Solar Activity and its Influence on the Calibration of Solar Observers

    NASA Astrophysics Data System (ADS)

    Usoskin, I. G.; Kovaltsov, G. A.; Chatzistergos, T.

    2016-12-01

    We study the distribution of the sunspot-group size (area) and its dependence on the level of solar activity. We show that the fraction of small groups is not constant but decreases with the level of solar activity so that high solar activity is mainly defined by large groups. We analyze the possible influence of solar activity on the ability of a realistic observer to see and report the daily number of sunspot groups. It is shown that the relation between the number of sunspot groups as seen by different observers with different observational acuity thresholds is strongly nonlinear and cannot be approximated by the traditionally used linear scaling (k-factors). The observational acuity threshold [A_{th}] is considered to quantify the quality of each observer, instead of the traditional relative k-factor. A nonlinear c-factor based on A_{th} is proposed, which can be used to correct each observer to the reference conditions. The method is tested on a pair of principal solar observers, Wolf and Wolfer, and it is shown that the traditional linear correction, with the constant k-factor of 1.66 to scale Wolf to Wolfer, leads to an overestimate of solar activity around solar maxima.

  14. Does type of hospital ownership influence physicians' daily work schedules? An observational real-time study in German hospital departments

    PubMed Central

    Mache, Stefanie; Scutaru, Cristian; Vitzthum, Karin; Quarcoo, David; Schöffel, Norman; Welte, Tobias; Klapp, Burghard F; Groneberg, David A

    2009-01-01

    Background During the last two decades the German hospital sector has been engaged in a constant process of transformation. One obvious sign of this is the growing amount of hospital privatization. To date, most research studies have focused on the effects of privatization regarding financial outcomes and quality of care, leaving important organizational issues unexplored. Yet little attention has been devoted to the effects of privatization on physicians' working routines. The aim of this observational real-time study is to deliver exact data about physicians' work at hospitals of different ownership. By analysing working hours, further impacts of hospital privatization can be assessed and areas of improvement identified. Methods Observations were made by shadowing 100 physicians working in private, for-profit or non-profit as well as public hospital departments individually during whole weekday shifts in urban German settings. A total of 300 days of observations were conducted. All working activities were recorded, accurate to the second, by using a mobile personal computer. Results Results have shown significant differences in physicians' working activities, depending on hospital ownership, concerning working hours and time spent on direct and indirect patient care. Conclusion This is the first real-time analysis on differences in work activities depending on hospital ownership. The study provides an objective insight into physicians' daily work routines at hospitals of different ownership, with additional information on effects of hospital privatization. PMID:19473487

  15. Uncertainties in global trends in observational soil moisture data and their impact on the detectability of human influence

    NASA Astrophysics Data System (ADS)

    Mueller, B.; Wen, Q. H.; Zhang, X.

    2013-12-01

    Global trends in soil moisture are difficult to determine due to the lack of global reference datasets and discrepancies between drought indices based on different formulations. Nevertheless, soil moisture changes are among the most relevant impacts of climate change due to their importance for agriculture, water and food security as well as due to possible devastating consequences of floods. What effect increasing temperatures and greenhouse gas concentrations have on the global hydrological cycle is still not well understood. Using global climate models allows disentangling the effects of natural and anthropogenic forcings on variables of interest. We here present an analysis of soil moisture in CMIP5 climate model simulations and perform a formal detection and attribution. We have chosen one set of CMIP5 simulations driven with historical natural forcing (NAT, solar irradiance and volcanic activity) and one driven with all forcing (ALL, both natural and anthropogenic forcing). Due to the lack of global, direct observations of soil moisture, we consider output from four different land-surface models (LSMs) as pseudo-observations. Land-surface models are similar to land-surface schemes employed in global climate models or atmospheric reanalyses, but run in an offline mode and forced with observational data. The LSMs considered here are driven with CRU and NCEP historical forcing. A comparison of past soil moisture trends (1950-2007) shows large spatial discrepancies between the four different LSMs. Each of the LSMs is, however, more consistent with CMIP5 simulations driven with ALL forcing then driven with natural forcing only. NAT simulations display positive trends in most regions of the globe, while ALL exhibit strong negative trends in, e.g., most parts of the Americas and Europe. These trends are consistent among individual CMIP5 models. We show that despite clear differences between CMIP5 simulations driven with natural forcing only and driven with

  16. Experimental observation of the influence of furnace temperature profile on convection and segregation in the vertical Bridgman crystal growth technique

    NASA Technical Reports Server (NTRS)

    Neugebauer, G. T.; Wilcox, William R.

    1992-01-01

    Azulene-doped naphthalene was directionally solidified during the vertical Bridgman-Stockbarger technique. Doping homogeneity and convection were determined as a function of the temperature profile in the furnace and the freezing rate. Convection velocities were two orders of magnitude lower when the temperature increased with height. Rarely was the convection pattern axisymmetric, even though the temperature varied less than 0.1 K around the circumference of the growth ampoule. Correspondingly the cross sectional variation in azulene concentration tended to be asymmetric, especially when the temperature increased with height. This cross sectional variation changed dramatically along the ingot, reflecting changes in convection presumably due to the decreasing height of the melt. Although there was large scatter and irreproducibility in the cross sectional variation in doping, this variation tended to be least when the growth rate was low and the convection was vigorous. It is expected that compositional variations would also be small at high growth rates with weak convection and flat interfaces, although this was not investigated in the present experiments. Neither rotation of the ampoule nor deliberate introduction of thermal asymmetries during solidification had a significant influence on cross sectional variations in doping. It is predicted that slow directional solidification under microgravity conditions could produce greater inhomogeneities than on Earth. Combined use of microgravity and magnetic fields would be required to achieve homogeneity when it is necessary to freeze slowly in order to avoid constitutional supercooling.

  17. Photographic observations of fireballs in Tajikistan

    NASA Astrophysics Data System (ADS)

    Babadzhanov, P. B.; Kokhirova, G. I.; Borovička, J.; Spurny, P.

    2009-08-01

    Since 2006, systematic double-station photographic observations of fireballs using all-sky cameras equipped with Zeiss Distagon “fisheye” objectives ( f/3.5, f = 30 mm) with a 180° field of view have been carried out at two observatories, Gissar (GisAO) and Sanglokh (IAOS), of the Institute of Astrophysics of the Tajik Academy of Sciences. In the method of astrometric reduction of fireball photographs, the empirical formulae for converting the measured coordinates to horizontal celestial coordinates are used. These formulae contain 12 unknown constants to be determined by the least-squares method and the iteration method. Such an approach enables the determination of the coordinates of an object at any point of the celestial hemisphere with a precision close to the theoretical limit whose value is quite comparable with the measurement errors. In the photometric reduction, the dependence of the measured width of the diurnal star trails on their magnitudes was used. As a result of astrometric and photometric reduction of the double-station photographs of five fireballs, the data on atmospheric trajectories, the coordinates of radiants, orbits in interplanetary space, light curves, and photometric masses of meteoroids which produced fireballs were obtained, and the belonging of fireballs to the known meteor showers was determined as well.

  18. Influence of 8-bit versus 11-bit digital displays on observer performance and visual search: a multi-center evaluation

    NASA Astrophysics Data System (ADS)

    Krupinski, Elizabeth A.; Siddiqui, Khan; Siegel, Eliot; Shrestha, Rasu; Grant, Edward; Roehrig, Hans; Fan, Jiahua

    2007-03-01

    Monochrome monitors typically display 8 bits of data (256 shades of gray) at one time. This study determined if monitors that can display a wider range of grayscale information (11-bit) can improve observer performance and decrease the use of window/level in detecting pulmonary nodules. Three sites participated using 8 and 11-bit displays from three manufacturers. At each site, six radiologists reviewed 100 DR chest images on both displays. There was no significant difference in ROC Az (F = 0.0374, p = 0.8491) as a function of 8 vs 11 bit-depth. Average Az across all observers with 8-bits was 0.8284 and with 11-bits was 0.8253. There was a significant difference in overall viewing time (F = 10.209, p = 0.0014) favoring the 11-bit displays. Window/level use did not differ significantly for the two types of displays. Eye position recording on a subset of images at one site showed that cumulative dwell times for each decision category were lower with the 11-bit than with the 8-bit display. T-tests for paired observations showed that the TP (t = 1.452, p = 0.1507), FN (t = 0.050, p = 0.9609) and FP (t = 0.042, p = 0.9676) were not statistically significant. The difference for the TN decisions was statistically significant (t = 1.926, p = 0.05). 8-bit displays will not impact negatively diagnostic accuracy, but using 11-bit displays may improve workflow efficiency.

  19. Tidal influence on O(1S) airglow emission rate distributions at the geographic equator as observed by WINDII

    NASA Technical Reports Server (NTRS)

    Shephere, G. G.; Mclandress, C.; Solheim, B. H.

    1995-01-01

    WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite, observes winds, temperatures and emission rates in the upper mesosphere and thermosphere. In this paper we report on nighttime observations of the vertical distribution of the O(1S) 557.7 nm emission near the geographic equator for March/April, 1993. The airglow volume emission rate distribution is found to be strongly dependent on local time. Beginning at dusk, an intense airglow emission layer descends from a mean altitude of 95 km, reaching 89 km by midnight after which the emission rapidly decays. Shortly after midnight it reappears weakly at a higher altitude and remains at this level as the emission rate gradually increases towards dawn. This strong local time dependence leads us to conclude that the effect is tidally driven. Comparison with the Forbes (1982a,b) model suggest that total density perturbations and changes in the atomic oxygen mixing ratio may the cause of the changes in emission rate distribution between dusk and midnight. The reappearance of the emission after midnight may be caused by downward winds bringing oxygen-rich air from above.

  20. Interfacial kinematics and governing mechanisms under the influence of high strain rate impact conditions: Numerical computations of experimental observations

    NASA Astrophysics Data System (ADS)

    Raoelison, R. N.; Sapanathan, T.; Padayodi, E.; Buiron, N.; Rachik, M.

    2016-11-01

    This paper investigates the complex interfacial kinematics and governing mechanisms during high speed impact conditions. A robust numerical modelling technique using Eulerian simulations are used to explain the material response of the interface subjected to a high strain rate collision during a magnetic pulse welding. The capability of this model is demonstrated using the predictions of interfacial kinematics and revealing the governing mechanical behaviours. Numerical predictions of wave formation resulted with the upward or downward jetting and complex interfacial mixing governed by wake and vortex instabilities corroborate the experimental observations. Moreover, the prediction of the material ejection during the simulation explains the experimentally observed deposited particles outside the welded region. Formations of internal cavities along the interface is also closely resemble the resulted confined heating at the vicinity of the interface appeared from those wake and vortex instabilities. These results are key features of this simulation that also explains the potential mechanisms in the defects formation at the interface. These results indicate that the Eulerian computation not only has the advantage of predicting the governing mechanisms, but also it offers a non-destructive approach to identify the interfacial defects in an impact welded joint.

  1. Stratospheric influence on the concentration and seasonal cycle of lower tropospheric ozone: Observation at Mount Hehuan, Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chi; Huh, Chih-An; Hsu, Shih-Chieh; Lin, Chuan-Yao; Liang, Mao-Chang; Lin, Po-Hsiung

    2014-03-01

    Continuous measurements of ozone (O3), carbon monoxide (CO), beryllium-7 (7Be), and lead-210 (210Pb) in aerosols along with relative humidity (RH) were carried out at the Mount Hehuan site (24.05°N, 121.10°E, 3380 m above sea level (asl)) from September 2011 to September 2012 in order to investigate the seasonality of stratospheric influence (SI) and its effect on surface ozone concentration in the subtropical free troposphere over central Taiwan. During the 13 month period, the measured O3 concentration fluctuated around a mean of 41 ppb and showed a broad springtime maximum and summertime minimum that can be attributed to regional circulation over subtropical Asia. Beryllium-7, CO, RH, and the normalized fraction of 7Be, f(7Be, 210Pb) were used to identify SI days based on several criteria. Of the total analyzed days, 14 SI days (approximately 4.6%) were found, indicating that SI phenomenon in the subtropical region is much less frequent than at northern midlatitudes. About two thirds of the SI days occurred in the winter, whereas none were found in the summer. The seasonality of SI occurrence could be related to the position of the subtropical jet stream. The proportion of surface O3 derived from the stratosphere was estimated to be only 1.3% on a yearly basis, increasing to ~3.2% in the winter and 27% during the SI days, demonstrating the importance of downward transport of stratospheric air in affecting the level of surface ozone.

  2. Influence of structure on the tissue dynamics of the human soleus muscle observed in MRI studies during isometric contractions.

    PubMed

    Hodgson, John A; Finni, Taija; Lai, Alex M; Edgerton, V Reggie; Sinha, Shantanu

    2006-05-01

    This article investigates how the internal structure of muscle and its relationship with tendon and even skeletal structures influence the translation of muscle fiber contractions into movement of a limb. Reconstructions of the anatomy of the human soleus muscle from the Visible Human Dataset (available from the National Library of Medicine), magnetic resonance images (MRI), and cadaver studies revealed a complex 3D connective tissue structure populated with pennate muscle fibers. The posterior aponeurosis and the median septum of the soleus form the insertion of the muscle and are continuous with the Achilles tendon. The distal extremities of the pennate muscle fibers attach to these structures. The anterior aponeurosis is located intramuscularly, between the posterior aponeurosis and the median septum. It forms the origin of the muscle and contacts the proximal extremities of the soleus muscle fibers. MRI measurements of in vivo tissue velocities during isometric contractions (20% and 40% maximum voluntary contractions) revealed a similarly complex 3D distribution of tissue movements. The distribution of velocities was similar to the distribution of major connective tissue structures within the muscle. During an isometric contraction, muscle fiber contractions move the median septum and posterior aponeurosis proximally, relative to the anterior aponeurosis. The pennate arrangement of muscle fibers probably amplifies muscle fiber length changes but not sufficiently to account for the twofold difference in muscle fiber length changes relative to excursion of the calcaneus. The discrepancy may be accounted for by an additional gain mechanism operating directly on the Achilles tendon by constraining the posterior movement of the tendon, which would otherwise occur due to the increasingly posterior location of the calcaneus in plantarflexeion.

  3. Influence of dust and black carbon on the snow albedo in the NASA Goddard Earth Observing System version 5 land surface model

    NASA Astrophysics Data System (ADS)

    Yasunari, Teppei J.; Koster, Randal D.; Lau, K.-M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kodama, Yuji

    2011-01-01

    Present-day land surface models rarely account for the influence of both black carbon and dust in the snow on the snow albedo. Snow impurities increase the absorption of incoming shortwave radiation (particularly in the visible bands), whereby they have major consequences for the evolution of snowmelt and life cycles of snowpack. A new parameterization of these snow impurities was included in the catchment-based land surface model used in the National Aeronautics and Space Administration Goddard Earth Observing System version 5. Validation tests against in situ observed data were performed for the winter of 2003-2004 in Sapporo, Japan, for both the new snow albedo parameterization (which explicitly accounts for snow impurities) and the preexisting baseline albedo parameterization (which does not). Validation tests reveal that daily variations of snow depth and snow surface albedo are more realistically simulated with the new parameterization. Reasonable perturbations in the assigned snow impurity concentrations, as inferred from the observational data, produce significant changes in snowpack depth and radiative flux interactions. These findings illustrate the importance of parameterizing the influence of snow impurities on the snow surface albedo for proper simulation of the life cycle of snow cover.

  4. Influence of Dust and Black Carbon on the Snow Albedo in the NASA Goddard Earth Observing System Version 5 Land Surface Model

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei J.; Koster, Randal D.; Lau, K. M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kodama, Yuji

    2011-01-01

    Present-day land surface models rarely account for the influence of both black carbon and dust in the snow on the snow albedo. Snow impurities increase the absorption of incoming shortwave radiation (particularly in the visible bands), whereby they have major consequences for the evolution of snowmelt and life cycles of snowpack. A new parameterization of these snow impurities was included in the catchment-based land surface model used in the National Aeronautics and Space Administration Goddard Earth Observing System version 5. Validation tests against in situ observed data were performed for the winter of 2003.2004 in Sapporo, Japan, for both the new snow albedo parameterization (which explicitly accounts for snow impurities) and the preexisting baseline albedo parameterization (which does not). Validation tests reveal that daily variations of snow depth and snow surface albedo are more realistically simulated with the new parameterization. Reasonable perturbations in the assigned snow impurity concentrations, as inferred from the observational data, produce significant changes in snowpack depth and radiative flux interactions. These findings illustrate the importance of parameterizing the influence of snow impurities on the snow surface albedo for proper simulation of the life cycle of snow cover.

  5. Learning style preferences and their influence on students' problem solving in kinematics observed by eye-tracking method

    NASA Astrophysics Data System (ADS)

    Kekule, Martina

    2017-01-01

    The article presents eye-tracking method and its using for observing students when they solve problems from kinematics. Particularly, multiple-choice items in TUG-K test by Robert Beichner. Moreover, student's preference for visual way of learning as a possible influential aspect is proofed and discussed. Learning Style Inventory by Dunn, Dunn&Price was administered to students in order to find out their preferences. More than 20 high school and college students about 20 years old took part in the research. Preferred visual way of learning in contrast to the other ways of learning (audio, tactile, kinesthetic) shows very slight correlation with the total score of the test, none correlation with the average fixation duration and slight correlation with average fixation count on a task and average total visit duration on a task.

  6. The influence of sea-level rise on fringing reef sediment dynamics: field observations and numerical modeling

    USGS Publications Warehouse

    Storlazzi, Curt D.; Field, Michael E.; Elias, Edwin; Presto, M. Katherine

    2011-01-01

    While most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100, it is not clear how fluid flow and sediment transport on fringing reefs might change in response to this rapid sea-level rise. Field observations and numerical modeling suggest that an increase in water depth on the order of 0.5-1.0 m on a fringing reef flat would result in larger significant wave heights and wave-driven shear stresses, which, in turn, would result in an increase in both the size and quantity of sediment that can be resuspended from the seabed or eroded from coastal plain deposits. Greater wave- and wind-driven currents would develop on the reef flat with increasing water depth, increasing the offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest.

  7. [Analysis of variables that are not directly observable: influence on decision-making during the research process].

    PubMed

    Curado, Maria Alice Santos; Teles, Júlia; Marôco, João

    2014-02-01

    The sample dimension, types of variables, format used for measurement, and construction of instruments to collect valid and reliable data must be considered during the research process. In the social and health sciences, and more specifically in nursing, data-collection instruments are usually composed of latent variables or variables that cannot be directly observed. Such facts emphasize the importance of deciding how to measure study variables (using an ordinal scale or a Likert or Likert-type scale). Psychometric scales are examples of instruments that are affected by the type of variables that comprise them, which could cause problems with measurement and statistical analysis (parametric tests versus non-parametric tests). Hence, investigators using these variables must rely on suppositions based on simulation studies or recommendations based on scientific evidence in order to make the best decisions.

  8. Dust particles in controlled fusion devices: morphology, observations in the plasma and influence on the plasma performance

    NASA Astrophysics Data System (ADS)

    Rubel, M.; Cecconello, M.; Malmberg, J. A.; Sergienko, G.; Biel, W.; Drake, J. R.; Hedqvist, A.; Huber, A.; Philipps, V.

    2001-08-01

    The formation and release of particle agglomerates, i.e. debris and dusty objects, from plasma facing components and the impact of such materials on plasma operation in controlled fusion devices has been studied in the Extrap T2 reversed field pinch and the TEXTOR tokamak. Several plasma diagnostic techniques, camera observations and surface analysis methods were applied for in situ and ex situ investigation. The results are discussed in terms of processes that are decisive for dust transfer: localized power deposition connected with wall locked modes causing emission of carbon granules, brittle destruction of graphite and detachment of thick flaking co-deposited layers. The consequences for large next step devices are also addressed.

  9. Hubble Space Telescope observations of the very low mass companion to Gliese 105A

    NASA Technical Reports Server (NTRS)

    Golimowski, David A.; Fastie, William G.; Uomoto, Alan; Schroeder, Daniel J.

    1995-01-01

    Hubble Space Telescope images of the astrometric binary GI 105A confirm the previous ground-based detection of a faint, very red companion (GI 105C) located 3.39 sec from GI 105A at P.A. 290 deg. The instrumental magnitudes of GI 105C are (visual magnitude) V(sub 555) = 16.86 and I(sub 814) = 13.54. The observed position of GI 105C differs significantly from the positions expected from current astrometric solutions. No other companions brighter than I(sub 814) = 20.3 are seen between 1 sec and 13.5 sec from GI 105A. Using the M dwarf model atmospheres of Allard and Hauschildt, we obtain for GI 105C a standard color of V - I = 4.6, which suggests a spectral type of M7 V.

  10. Assessing the validity and intra-observer agreement of the MIDAM-LTC; an instrument measuring factors that influence personal dignity in long-term care facilities

    PubMed Central

    2014-01-01

    Background Patients who are cared for in long-term care facilities are vulnerable to lose personal dignity. An instrument measuring factors that influence dignity can be used to better target dignity-conserving care to an individual patient, but no such instrument is yet available for the long-term care setting. The aim of this study was to create the Measurement Instrument for Dignity AMsterdam - for Long-Term Care facilities (MIDAM-LTC) and to assess its validity and intra-observer agreement. Methods Thirteen items specific for the LTC setting were added to the earlier developed, more general MIDAM. The MIDAM-LTC consisted of 39 symptoms or experiences for which presence as well as influence on dignity were asked, and a single item score for overall personal dignity. Questionnaires containing the MIDAM-LTC were administered face-to-face at two moments (with a 1-week interval) to 95 nursing home residents residing on general medical wards of six nursing homes in the Netherlands. Constructs related to dignity (WHO Well-Being Five Index, quality of life and physical health status) were also measured. Ten residents answered the questions while thinking aloud. Content validity, construct validity and intra-observer agreement were examined. Results Nine of the 39 items barely exerted influence on dignity. Eight of them could be omitted from the MIDAM-LTC, because the thinking aloud method revealed sensible explanations for their small influence on dignity. Residents reported that they missed no important items. Hypotheses to support construct validity, about the strength of correlations between on the one hand personal dignity and on the other hand well-being, quality of life or physical health status, were confirmed. On average, 83% of the scores given for each item’s influence on dignity were practically consistent over 1 week, and more than 80% of the residents gave consistent scores for the single item score for overall dignity. Conclusion The MIDAM-LTC has good

  11. Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress

    SciTech Connect

    Potosnak, M.; LeStourgeon, Lauren; Pallardy, Stephen G.; Hosman, Kevin P.; Gu, Lianghong; Karl, Thomas; Geron, Chris; Guenther, Alex B.

    2014-02-19

    Ecosystem fluxes of isoprene emission were measured during the majority of the 2011 growing season at the University of Missouri's Baskett Wildlife Research and Education Area in centralMissouri, USA (38.7° N, 92.2° W). This broadleaf deciduous forest is typical of forests common in theOzarks region of the central United States. The goal of the isoprene flux measurements was to test ourunderstanding of the controls on isoprene emission from the hourly to the seasonal timescale using a state-of-the-art emission model, MEGAN (Model of Emissions of Gases and Aerosols from Nature). Isoprene emission rates were very high from the forest with a maximum of 50.9 mg m-2 hr-1 (208 nmol m-2 s-1), which to our knowledge exceeds all other reports of canopy-scale isoprene emission. The fluxes showed a clear dependence on the previous temperature and light regimes which was successfully captured by the existing algorithms in MEGAN. During a period of drought, MEGAN was unable to reproduce the time-dependent response of isoprene emission to water stress. Overall, the performance of MEGAN was robust and could explain 87% of the observed variance in the measured fluxes, but the response of isoprene emission to drought stress is a major source of uncertainty.

  12. Influence of Scleral Buckling Surgery with Encircling Band on Subfoveal Choroidal Thickness in Long-Term Observations

    PubMed Central

    Laudańska-Olszewska, Iwona; Gozdek, Piotr; Maroszyński, Mariusz; Amon, Michael

    2013-01-01

    Purpose. The aim of this study is the presentation of subfoveal choroidal thickness with enhanced depth imaging spectral-domain optical coherence tomography (EDI-OCT) several months after scleral buckling with encircling band surgery. Methods. 48 patients who underwent scleral buckling with encircling band surgery for unilateral rhegmatogenous retinal detachment were included in the retrospective observational study. The mean time from scleral buckling surgery to the final EDI-OCT examination was 22±6.7 months. We compare choroidal thickness between operated and fellow eyes. Results. In all patients, the macula was detached before the surgery. The subfoveal choroidal thickness in 48 treated eyes was 260.9±45.8 µm (range 155–383 µm) and in the fellow eyes was 217.5±36.7 µm (range 98–326 µm). The subfoveal choroidal thickness of eyes after scleral buckling surgery in long-term EDI-OCT examination was significantly thicker (P<0.001) than in fellow eyes. Conclusions. The subfoveal choroid in eyes undergoing encircling band surgery was significantly thicker than in fellow eyes. We suspect that this may be the result of reduced choroidal blood flow. It also seems that the width and size of the material used in scleral buckling surgery may affect a change in the choroid circulation and increase subfoveal choroidal thickness. PMID:23841077

  13. CHARACTERIZING ULTRAVIOLET AND INFRARED OBSERVATIONAL PROPERTIES FOR GALAXIES. I. INFLUENCES OF DUST ATTENUATION AND STELLAR POPULATION AGE

    SciTech Connect

    Mao Yewei; Kong Xu; Kennicutt, Robert C. Jr.; Hao, Cai-Na; Zhou Xu E-mail: xkong@ustc.edu.cn

    2012-09-20

    The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color (or ultraviolet spectral slope), i.e., the IRX-UV (or IRX-{beta}) relation, found in studies of starburst galaxies is a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion and to have a better understanding of the nature of the IRX-UV relation, in this paper, we select five nearby spiral galaxies, and perform spatially resolved studies on each of the galaxies, with a combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to disperse the age effects. At the same time, strong evidence shows the need for more parameters in the interpretation of observational data, such as variations in attenuation/extinction law. Fractional contributions of different components to the integrated luminosities of the galaxies suggest that the integrated measurements of these galaxies, which comprise different populations, would weaken the effect of the age parameter on IRX-UV diagrams. The dependence of the IRX-UV relation on luminosity and radial distance in galaxies presents weak trends, which offers an implication of selective effects. The two-dimensional maps of the UV color and the infrared-to-ultraviolet ratio are displayed and show a disparity in the spatial distributions between the two galaxy parameters, which offers a spatial interpretation of the scatter

  14. Sampling Design Influences the Observed Dominance of Culex tritaeniorhynchus: Considerations for Future Studies of Japanese Encephalitis Virus Transmission.

    PubMed

    Lord, Jennifer S; Al-Amin, Hasan Mohammad; Chakma, Sumit; Alam, Mohammad Shafiul; Gurley, Emily S; Pulliam, Juliet R C

    2016-01-01

    Mosquito sampling during Japanese encephalitis virus (JEV)-associated studies, particularly in India, has usually been conducted via aspirators or light traps to catch mosquitoes around cattle, which are dead-end hosts for JEV. High numbers of Culex tritaeniorhynchus, relative to other species, have often been caught during these studies. Less frequently, studies have involved sampling outdoor resting mosquitoes. We aimed to compare the relative abundance of mosquito species between these two previously used mosquito sampling methods. From September to December 2013 entomological surveys were undertaken in eight villages in a Japanese encephalitis (JE) endemic area of Bangladesh. Light traps were used to collect active mosquitoes in households, and resting boxes and a Bina Pani Das hop cage were used near oviposition sites to collect resting mosquitoes. Numbers of humans and domestic animals present in households where light traps were set were recorded. In five villages Cx. tritaeniorhynchus was more likely to be selected from light trap samples near hosts than resting collection samples near oviposition sites, according to log odds ratio tests. The opposite was true for Cx. pseudovishnui and Armigeres subalbatus, which can also transmit JEV. Culex tritaeniorhynchus constituted 59% of the mosquitoes sampled from households with cattle, 28% from households without cattle and 17% in resting collections. In contrast Cx. pseudovishnui constituted 5.4% of the sample from households with cattle, 16% from households with no cattle and 27% from resting collections, while Ar. subalbatus constituted 0.15%, 0.38%, and 8.4% of these samples respectively. These observations may be due to differences in timing of biting activity, host preference and host-seeking strategy rather than differences in population density. We suggest that future studies aiming to implicate vector species in transmission of JEV should consider focusing catches around hosts able to transmit JEV.

  15. Tidal influence on gas bubble emissions from permanent seafloor observations at Ocean Networks Canada's cabled array NEPTUNE

    NASA Astrophysics Data System (ADS)

    Roemer, M.; Scherwath, M.; Heesemann, M.; Spence, G.; Riedel, M.

    2015-12-01

    Sonar data from the northern Cascadia margin correlate well with tidal pressure changes and not so well with currents, seafloor shaking from storms or earthquakes, or temperature changes. These data are available from Ocean Networks Canada which operates the NEPTUNE observatory with power and communications to gas hydrate sites on the continental slope, allowing 24/7 monitoring of the dynamic gas hydrate activity. Clayoquot Slope at Cascadia's Bullseye Vent and Bubbly Gulch, is equipped with a variety of sensors including a 270 kHz Imagenex 100 m range multibeam sonar, as well as Conductivity-Temperature-Depth (CTD) sensors, high precision Bottom Pressure Recorders (BPR), current meter and Ocean Bottom Seismograph (OBS). This enables statistically meaningful correlation of these data. Hourly sonar data were collected showing venting activity in the form of gas plumes of various strengths. For four years the sonar was located at what appears to be a transient gas site, with longer periods of absolutely no venting observed activity. Here, the strongest correlation of gas bubbling is with rapid decreasing tidal pressure, where subsequent increasing tidal pressure is shutting down the degassing. In May 2014, the sonar was moved by 500 m to a more actively venting site termed Gastown Alley, over a zone of seismic blanking interpreted as having high subsurface gas content. This site is continuously emitting gas bubbles albeit with varying numbers of plumes and intensities. The strongest correlation of gas discharge is with absolute pressures, with maximum flows at higher tidal pressures, hinting at a steady subsurface rise of gas that is squeezed out stronger at high tides, partially emptying the shallow reservoirs, and with subsiding tidal pressure the venting activity also decreases again. Thus, the two sonar sites, though only 500 m apart, show a different behavior in degassing, however, both reacting most strongly to tidal pressure changes.

  16. Sampling Design Influences the Observed Dominance of Culex tritaeniorhynchus: Considerations for Future Studies of Japanese Encephalitis Virus Transmission

    PubMed Central

    Lord, Jennifer S.; Al-Amin, Hasan Mohammad; Chakma, Sumit; Alam, Mohammad Shafiul; Gurley, Emily S.; Pulliam, Juliet R. C.

    2016-01-01

    Mosquito sampling during Japanese encephalitis virus (JEV)-associated studies, particularly in India, has usually been conducted via aspirators or light traps to catch mosquitoes around cattle, which are dead-end hosts for JEV. High numbers of Culex tritaeniorhynchus, relative to other species, have often been caught during these studies. Less frequently, studies have involved sampling outdoor resting mosquitoes. We aimed to compare the relative abundance of mosquito species between these two previously used mosquito sampling methods. From September to December 2013 entomological surveys were undertaken in eight villages in a Japanese encephalitis (JE) endemic area of Bangladesh. Light traps were used to collect active mosquitoes in households, and resting boxes and a Bina Pani Das hop cage were used near oviposition sites to collect resting mosquitoes. Numbers of humans and domestic animals present in households where light traps were set were recorded. In five villages Cx. tritaeniorhynchus was more likely to be selected from light trap samples near hosts than resting collection samples near oviposition sites, according to log odds ratio tests. The opposite was true for Cx. pseudovishnui and Armigeres subalbatus, which can also transmit JEV. Culex tritaeniorhynchus constituted 59% of the mosquitoes sampled from households with cattle, 28% from households without cattle and 17% in resting collections. In contrast Cx. pseudovishnui constituted 5.4% of the sample from households with cattle, 16% from households with no cattle and 27% from resting collections, while Ar. subalbatus constituted 0.15%, 0.38%, and 8.4% of these samples respectively. These observations may be due to differences in timing of biting activity, host preference and host-seeking strategy rather than differences in population density. We suggest that future studies aiming to implicate vector species in transmission of JEV should consider focusing catches around hosts able to transmit JEV. PMID

  17. Influence of Radical Recyling on Spatial Distributions of HOx in the Planetary Boundary Layer - Zeppelin-Based Observations

    NASA Astrophysics Data System (ADS)

    Hofzumahaus, A.; Gomm, S.; Broch, S.; Fuchs, H.; Holland, F.; Bohn, B.; Häseler, R.; Keutsch, F. N.; Li, X.; Lu, K.; Lohse, I.; Rohrer, F.; Tillmann, R.; Wegener, R.; Mentel, T. F.; Kiendler-Scharr, A.; Wahner, A.; Kaiser, J.; Jäger, J.; Wolfe, G.

    2015-12-01

    Tropospheric OH is the most important oxidant in the chemical degradation of atmospheric pollutants leading to a large variety of oxidised products. Often, OH reactions produce hydroperoxy radicals (HO2) which can recycle OH by reaction with NO or O3. The chemical interconversion of OH and HO2(collectively HOx) occurs on a fast time scale of seconds to minutes. Owing to their high reactivity and short chemical lifetime, substantial spatial variability of HOx is expected in ambient air with inhomogeneous trace-gas distribution. This is particularly the case in the planetary boundary layer (PBL) where most tropospheric pollutants are emitted near Earth's surface and are then distributed by transport. In summer 2012, a Zeppelin NT was used as an airborne platform to investigate the spatial variation of HOx and other trace gases in the PBL in the Po Valley (Italy) as part of the Pan-European Gas-AeroSOls-climate interaction Study (PEGASOS). HOx and OH reactivity were measured by laser-induced fluorescence. Other on-board measurements included O3, CO, NO, NO2, HCHO, HONO, VOCs, photolysis frequencies, particle number concentration, and meteorological parameters. Due to the slow flight speed and precise navigation of the Zeppelin, the concentrations of HOx and trace gases could be measured with high spatial resolution. Vertical profiles were recorded repeatedly at altitudes between 75 m and 900m above ground. In the morning, measured vertical distributions of trace gases such as CO, NOx or VOCs visualise the dynamically evolving structure of the PBL. They show a pronounced effect on the radical cycling of HOx and therefore on the concentration profiles of OH and HO2. This presentation will show examples of the Zeppelin-based observations and discuss the role of HOx radical recycling in the evolving PBL.

  18. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  19. Acanthamoeba polyphaga Strain Age and Method of Cyst Production Influence the Observed Efficacy of Therapeutic Agents and Contact Lens Disinfectants

    PubMed Central

    Hughes, Reanne; Heaselgrave, Wayne; Kilvington, Simon

    2003-01-01

    The effects of age in culture and the type of medium used for induction of Acanthamoeba polyphaga (Ros) cysts on susceptibilities to polyhexamethylene biguanide (PHMB; 3 μg/ml), chlorhexidine digluconate (30 μg/ml), myristamidopropyl dimethylamine (20 μg/ml), H2O2 (3%), and two multipurpose contact lens solutions (MPS-1 and MPS-2, based on 1 μg of PHMB per ml) were examined. Strain Ros-02 was cryopreserved on isolation in 1991, while strain Ros-91 had been in continuous axenic culture. Significant differences in susceptibilities to the disinfectants were found depending on the medium used for cyst preparation and the age of the test strain, with Ros-02 generally being more resistant. For example, the killing of Ros-91 cysts produced from an axenic culture of trophozoites in the presence of 50 mM MgCl2 by MPS-2 was 4 logs, but the killing of Ros-02 by MPS-2 was only 2 logs (P < 0.05) and killing of both strains with cysts obtained from monoxenic cultures with Escherichia coli was only 1 log (P < 0.001). Assays repeated with different batches of the various cyst types gave consistent results. A batch of Ros-91 cysts stored at 4°C and tested over an 8-week period with MPS-1 showed progressively increasing susceptibility to disinfection, although there was no loss of viability during storage (P < 0.01). These observations have important implications for the standardization and interpretation of Acanthamoeba disinfectant and therapeutic agent testing. PMID:14506012

  20. Influence of Immediate Skin-to-Skin Contact During Cesarean Surgery on Rate of Transfer of Newborns to NICU for Observation.

    PubMed

    Schneider, Lindsay W; Crenshaw, Jeannette T; Gilder, Richard E

    We conducted an evidence-based practice project to determine if skin-to-skin contact immediately after cesarean birth influenced the rate of transfer of newborns to the NICU for observation. We analyzed data for 5 years (2011 through 2015) and compared the rates for the period before implementation of skin-to-skin contact with rates for the period after. The proportion of newborns transferred to the NICU for observation was significantly different and lower after implementing skin-to-skin contact immediately after cesarean birth (Pearson's χ(2) = 32.004, df = 1, p < .001). These results add to the growing body of literature supporting immediate, uninterrupted skin-to-skin contact for all mother-newborn pairs, regardless of birth mode.

  1. Influence of the Aure valley on the boundary-layer features observed during the BLLAST experimental field campaign

    NASA Astrophysics Data System (ADS)

    Jimenez, Maria A.; Cuxart, Joan; Martinez-Villagrasa, Daniel

    2016-04-01

    Under clear-skies and weak-synoptic pressure gradients, the organization of the flow at lower levels is mainly controlled by the local effects, such as terrain or surface heterogeneities. This is the case of the thermal differences between the air adjacent to the slopes, within a valley and over the nearby plains that generate slope, valley and mountain winds with an opposite direction between day and night. The Aure valley, located at the north of the Pyrenees with the main axis pointing to North, and the surrounding foothills are selected to study the temporal and spatial scales of the thermally-driven flows during the BLLAST experimental field campaign (June-July 2011). A combined inspection of the observations in Lannemezan (located over a plateau at about 5 km from the exit of the Aure valley) and high-resolution mesoscale simulations is used to evaluate the effect of the Aure valley on the boundary-layer characteristics over Lannemezan. The inspection of some selected IOPs (clear-skies, no rain) show that the interaction between the Aure valley and the Lannemezan plateau takes place depending on the direction and intensity of the large-scale wind, enhancing or diminishing the thermally-driven flow. During day, a convective boundary layer is formed with associated strong turbulence at the foothills, valleys and plain. However, during the night-time turbulence is in general weaker with some episodes of strong turbulence associated to wind shear related to the presence of the exit valley jet of the drainage winds. It is found that when large-scale winds are weak the exit valley jet reach Lannemezan close to midnight and interacts with the locally-generated downslope winds already present. It is found that IOP11 shows a Foehn effect in the valley, that is warmer than the plain, resulting in up-valley flows during the night. The BLLAST dataset is an useful tool to evaluate the performance of the mesoscale model in a complex region, such as the valleys and

  2. Influence of socioeconomic status on community-acquired pneumonia outcomes in elderly patients requiring hospitalization: a multicenter observational study

    PubMed Central

    2010-01-01

    Background The associations between socioeconomic status and community-acquired pneumonia outcomes in adults have been studied although studies did not always document a relationship. The aim of this multicenter observational study was to determine the association between socioeconomic status and community-acquired pneumonia outcomes in the elderly, in the context of a public health system providing universal free care to the whole population. Methods A total of 651 patients aged ≥65 years hospitalized due to community-acquired pneumonia through the emergency departments of five Spanish public hospitals were recruited and followed up between May 2005 and January 2007. The primary outcomes studied were: length of stay, intensive care unit admission, overall mortality and readmission. Socioeconomic status was measured using both individual and community data: occupation [categorized in six social groups (I, II, III, IVa, IVb and V)], educational level (≤ primary level or ≥ secondary level) and disposable family income of the municipality or district of residence [>12,500 € (high municipality family income) and ≤12,500 € (low municipality family income)]. The six social groups were further categorized as upper/middle social class (groups I-IVb) and lower class (group V). Bivariate and multivariate analyses were performed. OR and their 95% confidence intervals were calculated. All statistical tests were two tailed and statistical significance was established as p < 0.05. Results 17.7% of patients lived in a municipality or district with a high municipality family income and 63.6% were upper/middle social class (I-IVb). Only 15.7% of patients had a secondary education. The adjusted analysis showed no association between pneumonia outcomes and social class, educational level or municipality family income. However, length of stay increased significantly in patients in whom the factors, living alone and being a smoker or ex-smoker coincided (p < 0

  3. Influence of the observer's level of experience on systolic and diastolic arterial blood pressure measurements using Doppler ultrasonography in healthy conscious cats.

    PubMed

    Gouni, Vassiliki; Tissier, Renaud; Misbach, Charlotte; Balouka, David; Bueno, Hanna; Pouchelon, Jean-Louis; Lefebvre, Hervé P; Chetboul, Valérie

    2015-02-01

    The objective of this study was to determine the influence of the observer's level of experience on within- and between-day variability, and the percentage of successful systolic (SAP) and diastolic arterial blood pressure (DAP) measurements obtained by Doppler ultrasonography (DU) in awake cats. For this purpose, six healthy conscious cats were used and four observers with different levels of training performed 144 SAP and DAP measurements on 4 days using DU. Measurements were recorded five consecutive times, and mean values were used for statistical analysis. Only the two most skilled observers - a PhD student in cardiology and a Dipl ECVIM-CA (cardiology) - had within- and between-day coefficients of variation (CVs) for SAP ⩽16% (13-16%). Conversely, the two less experienced observers - a fifth-year student and an assistant - had high between-day CVs (61% and 73%). For DAP, only the most experienced observer (Dipl ECVIM-CA) succeeded in 100% of the attempts, with within- and between-day CVs of 11% and 4%, respectively. Conversely, DAP could not be measured by the other three observers in 8%, 19% and 56% of attempts (from the highest to the lowest level of experience); therefore, the corresponding CV values could not be calculated. In conclusion, SAP may be assessed using DU in healthy awake cats with good repeatability and reproducibility by a well-trained observer. Measurement of DAP is more difficult than of SAP, and needs a longer training period, which represents one of the limitations of DU in cats.

  4. Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L

    SciTech Connect

    Flanagan, L.B.; Comstock, J.P.; Ehleringer, J.R. )

    1991-06-01

    In this paper the authors describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L.I. Gordon for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AMV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate.

  5. Comparison of Modeled and Observed Environmental Influences on the Stable Oxygen and Hydrogen Isotope Composition of Leaf Water in Phaseolus vulgaris L. 1

    PubMed Central

    Flanagan, Lawrence B.; Comstock, Jonathan P.; Ehleringer, James R.

    1991-01-01

    In this paper we describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L. I. Gordon ([1965] in E Tongiorgi, ed, Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, Italy, pp 9-130) for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AWV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively depleted in heavy isotopes when exposed to AWV with a low heavy isotope composition, and leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate. PMID:16668226

  6. Numerical simulations of barnacle larval dispersion coupled with field observations on larval abundance, settlement and recruitment in a tropical monsoon influenced coastal marine environment

    NASA Astrophysics Data System (ADS)

    Gaonkar, Chetan A.; Samiksha, S. V.; George, Grinson; Aboobacker, V. M.; Vethamony, P.; Anil, Arga Chandrashekar

    2012-06-01

    Larval abundance in an area depends on various factors which operate over different spatial and temporal scales. Identifying the factors responsible for variations in larval supply and abundance is important to understand the settlement and recruitment variability of their population in a particular area. In view of this, observations were carried out to monitor the larval abundance, settlement and recruitment of barnacles on a regular basis for a period of two years. The results were then compared with the numerical modelling studies carried out along the west coast of India. Field observations of larval abundance showed temporal variations. The least abundance of larvae was mostly observed during the monsoon season and the peak in abundance was mostly observed during the pre-monsoon season. Numerical simulations also showed a seasonal change in larval dispersion and retention patterns. During pre-monsoon season the larval movement was mostly found towards south and the larvae released from the northern release sites contributed to larval abundance within the estuaries, whereas during the monsoon season the larval movement was mostly found towards north and the larvae released from southern release sites contributed to larval abundance within the estuary. During post-monsoon season, the larval movement was found towards the north in the beginning of the season and is shifted towards the south at the end of the season, but the movement was mostly restricted near to the release sites. Larval supply from the adjacent rocky sites to the estuaries was higher during the pre-monsoon season and the retention of larvae released from different sites within the estuaries was found to be highest during the late post-monsoon and early pre-monsoon season. Maximum larval supply and retention during the pre-monsoon season coincided with maximum larval abundance, settlement and recruitment of barnacles observed in the field studies. These observations showed that the pattern of

  7. Observing Gravitational Lensing Effects by Sgr A* with GRAVITY

    NASA Astrophysics Data System (ADS)

    Bozza, V.; Mancini, L.

    2012-07-01

    The massive black hole Sgr A* at the Galactic center is surrounded by a cluster of stars orbiting around it. Light from these stars is bent by the gravitational field of the black hole, giving rise to several phenomena: astrometric displacement of the primary image, the creation of a secondary image that may shift the centroid of Sgr A*, and magnification effects on both images. The soon-to-be second-generation Very Large Telescope Interferometer instrument GRAVITY will perform observations in the near-infrared of the Galactic center at unprecedented resolution, opening the possibility of observing such effects. Here we investigate the observability limits for GRAVITY of gravitational lensing effects on the S-stars in the parameter space 1[D LS, γ, K], where D LS is the distance between the lens and the source, γ is the alignment angle of the source, and K is the source's apparent magnitude in the K band. The easiest effect to observe in future years is the astrometric displacement of primary images. In particular, the shift of the star S17 from its Keplerian orbit will be detected as soon as GRAVITY becomes operative. For exceptional configurations, it will be possible to detect effects related to the spin of the black hole or post-Newtonian orders in the deflection.

  8. OBSERVING GRAVITATIONAL LENSING EFFECTS BY Sgr A* WITH GRAVITY

    SciTech Connect

    Bozza, V.; Mancini, L. E-mail: mancini@mpia-hd.mpg.de

    2012-07-01

    The massive black hole Sgr A* at the Galactic center is surrounded by a cluster of stars orbiting around it. Light from these stars is bent by the gravitational field of the black hole, giving rise to several phenomena: astrometric displacement of the primary image, the creation of a secondary image that may shift the centroid of Sgr A*, and magnification effects on both images. The soon-to-be second-generation Very Large Telescope Interferometer instrument GRAVITY will perform observations in the near-infrared of the Galactic center at unprecedented resolution, opening the possibility of observing such effects. Here we investigate the observability limits for GRAVITY of gravitational lensing effects on the S-stars in the parameter space 1[D{sub LS}, {gamma}, K], where D{sub LS} is the distance between the lens and the source, {gamma} is the alignment angle of the source, and K is the source's apparent magnitude in the K band. The easiest effect to observe in future years is the astrometric displacement of primary images. In particular, the shift of the star S17 from its Keplerian orbit will be detected as soon as GRAVITY becomes operative. For exceptional configurations, it will be possible to detect effects related to the spin of the black hole or post-Newtonian orders in the deflection.

  9. In-situ observations on the influence of wood moisture content and temperature on spore germination and wood colonization by Poria carbonica

    SciTech Connect

    Przybylowicz, P.R.; Corden, M.E.

    1986-01-01

    A method for observing germinating fungal spores on wood was developed in which temperature and wood moisture content could be easily controlled and subsequent wood colonization could be determined. Thin radial sections of Douglas fir (Pseudotsuga menziesii) heartwood (8 mm x 8 mm x 60 mu m) were inoculated with a spore suspension and a similar wood section was placed over the inoculated section forming a ''spore sandwich''. The ''spore sandwiches'' were incubated between larger blocks of Douglas fir heartwood to maintain control of the wood moisture content during incubation in controlled temperature-humidity chambers. Spore germination was observed by opening the ''spore sandwiches'' and staining the spores in situ for microscopic observation. Wood colonization was determined by isolations from the surrounding wood blocks. The ''spore sandwich'' method was used to study the influences of temperature and wood moisture content on spore germination of Poria carbonica. Basidiospores and asexual spores germinated and colonized wood at and above the fibre saturation point (c 30% moisture content), but not below. Both spore types germinated and colonized wood at 22 and 30 degrees Centigrade, but basidiospores failed to germinate at 5 and 35 degrees, whereas asexual spores germinated at 5 and 35 degrees, but were unable to colonize the wood. The ''spore sandwich'' method provides a means for assessing spore germination and wood colonization by wood decaying fungi under conditions simulating those occurring naturally in wood in service. (Refs. 21).

  10. Influence of the day care, home and neighbourhood environment on young children's physical activity and health: protocol for the PLAYCE observational study

    PubMed Central

    Christian, Hayley; Maitland, Clover; Enkel, Stephanie; Trapp, Georgina; Trost, Stewart G; Schipperijn, Jasper; Boruff, Bryan; Lester, Leanne; Rosenberg, Michael; Zubrick, Stephen R

    2016-01-01

    Introduction The early years are a critical period in a child's health and development, yet most preschool children fail to meet physical activity guidelines. Outside of the home and neighbourhood, children spend a large proportion of time within early childhood education and care (ECEC) services such as long day care. Research is required to determine how the design of day care outdoor (and indoor) spaces provides opportunities or constraints for physical activity. A significant evidence gap surrounds what objectively measured attributes of the home and neighbourhood environment influence preschoolers’ physical activity. The PLAY Spaces & Environments for Children's Physical Activity (PLAYCE) study will empirically investigate the relative and cumulative influence of the day care, home and neighbourhood environment on preschoolers’ physical activity. Methods and analysis The PLAYCE study is a cross-sectional observational study (April 2015 to April 2018) of 2400 children aged 2–5 years attending long day care in metropolitan Perth, Western Australia. Accelerometers will measure physical activity with indoor physical activity measured using radio frequency identification. Global positioning systems will be used to determine outdoor location of physical activity around the home and neighbourhood for a subsample (n=310). The day care environment will be objectively measured using a validated audit tool. Other potential individual, social and physical environmental influences on preschoolers’ physical activity will be collected by geographic information systems measures, parent and day care educator surveys. Ethics and dissemination Ethical approval has been granted by The University of Western Australia Human Ethics Research Committee, approval number RA/4/1/7417. Findings will be published in international peer-reviewed journals and presented at international conferences. Key findings will be disseminated to stakeholders, collaborators, policymakers and

  11. Investigating the influence of long-range transport on surface O3 in Nevada, USA, using observations from multiple measurement platforms.

    PubMed

    Fine, Rebekka; Miller, Matthieu B; Yates, Emma L; Iraci, Laura T; Gustin, Mae Sexauer

    2015-10-15

    The current United States (US) National Ambient Air Quality Standard (NAAQS) for O3 (75 ppb) is expected to be revised to between 60 and 70 ppb. As the NAAQS becomes more stringent, characterizing the extent of O3 and precursors transported into the US is increasingly important. Given the high elevation, complex terrain, and location in the Intermountain West, the State of Nevada is ideally situated to intercept air transported into the US. Until recently, measurements of O3 and associated pollutants were limited to areas in and around the cities of Las Vegas and Reno. In 2011, the Nevada Rural Ozone Initiative began and through this project 13 surface monitoring sites were established. Also in 2011, the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) began making routine aircraft measurements of O3 and other greenhouse gases in Nevada. The availability of aircraft and surface measurements in a relatively rural, remote setting in the Intermountain West presented a unique opportunity to investigate sources contributing to the O3 observed in Nevada. Our analyses indicate that stratosphere to troposphere transport, long-range transport of Asian pollution, and regional emissions from urban areas and wildfires influence surface observations. The complexity of sources identified here along with the fact that O3 frequently approaches the threshold being considered for a revised NAAQS indicate that interstate and international cooperation will be necessary to achieve compliance with a more stringent regulatory standard. Further, on a seasonal basis we found no significant difference between daily 1-h maximum O3 at surface sites, which ranged in elevation from 888 to 2307 m, and aircraft measurements of O3 <2500 m which suggests that similar processes influence daytime O3 across rural Nevada and indicates that column measurements from Railroad Valley, NV are useful in understanding these processes.

  12. The pattern of growth observed for Clostridium botulinum type A1 strain ATCC 19397 is influenced by nutritional status and quorum sensing: a modelling perspective

    PubMed Central

    Ihekwaba, Adaoha E. C.; Mura, Ivan; Peck, Michael W.; Barker, G. C.

    2015-01-01

    Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum are the most poisonous substances known to mankind. However, toxin regulation and signals triggering synthesis as well as the regulatory network and actors controlling toxin production are unknown. Experiments show that the neurotoxin gene is growth phase dependent for C. botulinum type A1 strain ATCC 19397, and toxin production is influenced both by culture conditions and nutritional status of the medium. Building mathematical models to describe the genetic and molecular machinery that drives the synthesis and release of BoNT requires a simultaneous description of the growth of the bacterium in culture. Here, we show four plausible modelling options which could be considered when constructing models describing the pattern of growth observed in a botulinum growth medium. Commonly used bacterial growth models are unsuitable to fit the pattern of growth observed, since they only include monotonic growth behaviour. We find that a model that includes both the nutritional status and the ability of the cells to sense their surroundings in a quorum-sensing manner is most successful at explaining the pattern of growth obtained for C. botulinum type A1 strain ATCC 19397. PMID:26449712

  13. The pattern of growth observed for Clostridium botulinum type A1 strain ATCC 19397 is influenced by nutritional status and quorum sensing: a modelling perspective.

    PubMed

    Ihekwaba, Adaoha E C; Mura, Ivan; Peck, Michael W; Barker, G C

    2015-12-01

    Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum are the most poisonous substances known to mankind. However, toxin regulation and signals triggering synthesis as well as the regulatory network and actors controlling toxin production are unknown. Experiments show that the neurotoxin gene is growth phase dependent for C. botulinum type A1 strain ATCC 19397, and toxin production is influenced both by culture conditions and nutritional status of the medium. Building mathematical models to describe the genetic and molecular machinery that drives the synthesis and release of BoNT requires a simultaneous description of the growth of the bacterium in culture. Here, we show four plausible modelling options which could be considered when constructing models describing the pattern of growth observed in a botulinum growth medium. Commonly used bacterial growth models are unsuitable to fit the pattern of growth observed, since they only include monotonic growth behaviour. We find that a model that includes both the nutritional status and the ability of the cells to sense their surroundings in a quorum-sensing manner is most successful at explaining the pattern of growth obtained for C. botulinum type A1 strain ATCC 19397.

  14. Characterization of Detached Main Sequence Binaries Observed by Kepler, SDSS(APOGEE) and Gaia

    NASA Astrophysics Data System (ADS)

    Solis, Christina Oleander; Mason, Paul A.

    2017-01-01

    In addition to finding planets, the Kepler Observatory obtained high precision light curves of eclipsing binaries that have subsequently been observed by SDSS and Gaia. Main sequence eclipsing binaries are important laboratories for stellar astrophysics. The determination of precise temperatures, radii, masses, and orbital parameters constrain evolution theory. We examined 28 main sequence binaries observed using Kepler, SDSS(APOGEE) and Gaia. Combining observed astrometric, photometric, and spectroscopic data places strong constraints on stellar and binary characteristics. We compare derived parameters with model calculations of these binaries and present preliminary results.

  15. Radar observations of asteroid 1986 JK

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.; Yeomans, D. K.; Chodas, P. W.; Goldstein, R. M.; Jurgens, R. F.; Thompson, T. W.

    1989-01-01

    The asteroid 1986 JK was observed with a 3.5 cm-wavelength radar in May and June, 1986, at less than 0.029 AU; its radar echo power circular polarization ratio indicates single backscattering from smooth surface elements. A working model constructed for the asteroid in light of these radar data postulates a 1-2 km object whose shape has little elongation and some polar flattening. Orbital and physical characteristics are rather cometlike. The radar astrometric data obtained are noted to be extremely powerful for orbit-improvement, so that a search ephemeris whose uncertainty is an order-of-magnitude smaller than that based on relevant optical data alone can be prepared by combining optical and radar data.

  16. Differential influence of the ventral subiculum on dopaminergic responses observed in core and dorsomedial shell subregions of the nucleus accumbens in latent inhibition.

    PubMed

    Peterschmitt, Y; Meyer, F; Louilot, A

    2008-06-26

    It has previously been reported that dopamine (DA) responses observed in the core and dorsomedial shell parts of the nucleus accumbens (Nacc) in latent inhibition (LI) are dependent on the left entorhinal cortex (ENT). The present study was designed to investigate the influence of the left ventral subiculum (SUB) closely linked to the ENT on the DA responses obtained in the Nacc during LI, using an aversive conditioned olfactory paradigm and in vivo voltammetry in freely moving rats. In the first (pre-exposure) session, functional blockade of the left SUB was achieved by local microinjection of tetrodotoxin (TTX). In the second session, rats were aversively conditioned to banana odor, the conditional stimulus (CS). In the retention (test) session the results were as follows: (1) pre-exposed (PE) conditioned animals microinjected with TTX, displayed aversion toward the CS; (2) in the core part of the Nacc, for PE-TTX-conditioned rats as for non-pre-exposed (NPE) conditioned animals, DA levels remained close to the baseline whereas DA variations in both groups were significantly different from the DA increases observed in PE-conditioned rats microinjected with the solvent (phosphate-buffered saline (PBS)); (3) in the shell part of the Nacc, for PE-TTX-conditioned rats, DA variations were close to or above the baseline. They were situated between the rapid DA increases observed in NPE-conditioned animals and the transient DA decreases obtained in PE-PBS-conditioned animals. These findings suggest that, in parallel to the left ENT, the left SUB controls DA LI-related responses in the Nacc. The present data may also offer new insight into the pathophysiology of schizophrenia.

  17. Factors influencing knowledge on completion of treatment among TB patients under directly observed treatment strategy, in selected health facilities in Embu County, Kenya

    PubMed Central

    Ndwiga, Joshua Muriuki; Kikuvi, Gideon; Omolo, Jared Odhiambo

    2016-01-01

    Introduction The World Health Organization (WHO) promotes the Directly Observed Treatment (DOT) strategy as the standard to increase adherence to Tuberculosis (TB) medication. However, cases of retreatment and Multi Drug Resistant continue to be reported in many parts of Kenya. This study sought to determine the factors influencing the completion of tuberculosis medication among TB patients in Embu County, Kenya. Methods A descriptive cross-sectional study was conducted on a population of tuberculosis patients under DOT attending selected TB treatment clinics in Embu County, in Kenya. One hundred and forty TB patients interviewed within a period of 3 months. Data were analyzed using SPSS version 17.0 and included Bivariate and Multivariate Analysis. The level of significance was p≤ 0.05. Results The male and female participants were 61.4% and 38.6% respectively. The mean age of the respondents was 35±31.34-39.3 years. For the majority (52%) of the participants, the highest level of education was primary education. The unemployed participants formed the highest number of the respondent in the study (73%). The majorities (91.4%0) of the respondents were under the home-based DOT strategy (91.4%, 95% C.I: 85.5-95.5). Bivariate analysis using Chi-square showed that the level of education (p=0.003), patients feeling uncomfortable during supervision (p=0.01), and knowledge regarding the frequency of taking medication (p=0.004) were all significantly associated with knowledge regarding the importance of completion of medication. However, none of these factors was significant after multivariate analysis. Conclusion Most participants did not know the importance of completion of medication. TB programs should come up with better ways to educate TB patients on the importance of supervision and treatment completion during the treatment of TB. The education programs should focus on influencing the attitudes of patients and creating awareness about the importance of treatment

  18. CCD Camera Observations

    NASA Astrophysics Data System (ADS)

    Buchheim, Bob; Argyle, R. W.

    One night late in 1918, astronomer William Milburn, observing the region of Cassiopeia from Reverend T.H.E.C. Espin's observatory in Tow Law (England), discovered a hitherto unrecorded double star (Wright 1993). He reported it to Rev. Espin, who measured the pair using his 24-in. reflector: the fainter star was 6.0 arcsec from the primary, at position angle 162.4 ^{circ } (i.e. the fainter star was south-by-southeast from the primary) (Espin 1919). Some time later, it was recognized that the astrograph of the Vatican Observatory had taken an image of the same star-field a dozen years earlier, in late 1906. At that earlier epoch, the fainter star had been separated from the brighter one by only 4.8 arcsec, at position angle 186.2 ^{circ } (i.e. almost due south). Were these stars a binary pair, or were they just two unrelated stars sailing past each other? Some additional measurements might have begun to answer this question. If the secondary star was following a curved path, that would be a clue of orbital motion; if it followed a straight-line path, that would be a clue that these are just two stars passing in the night. Unfortunately, nobody took the trouble to re-examine this pair for almost a century, until the 2MASS astrometric/photometric survey recorded it in late 1998. After almost another decade, this amateur astronomer took some CCD images of the field in 2007, and added another data point on the star's trajectory, as shown in Fig. 15.1.

  19. Mid infrared observations of Van Maanen 2: no substellar companion.

    SciTech Connect

    Farihi, J; Becklin, E; Macintosh, B

    2004-11-03

    The results of a comprehensive infrared imaging search for the putative 0.06 M{sub {circle_dot}} astrometric companion to the 4.4 pc white dwarf van Mannen 2 are reported. Adaptive optics images acquired at 3.8 {micro}m reveal a diffraction limited core of 0.09 inch and no direct evidence of a secondary. Models predict that at 5 Gyr, a 50 M{sub J} brown dwarf would be only 1 magnitude fainter than van Maanen 2 at this wavelength and the astrometric analysis suggested a separation of 0.2 inch. In the case of a chance alignment along the line of sight, a 0.4 mag excess should be measured. An independent photometric observation at the same wavelength reveals no excess. In addition, there exist published ISO observations of van Maanen 2 at 6.8 {micro}m and 15.0 {micro}m which are consistent with photospheric flux of a 6750 K white dwarf. If recent brown dwarf models are correct, there is no substellar companion with T{sub eff} {approx}> 500 K.

  20. Ionospheric influence on the seismo-telluric current related to electromagnetic signals observed before the Wenchuan MS 8.0 earthquake

    NASA Astrophysics Data System (ADS)

    Li, Mei; Tan, Handong; Cao, Meng

    2016-10-01

    A three-layer (Earth-air-ionosphere) physical model, as well as a two-layer (Earth-air) model, is employed in this paper to investigate the ionospheric effect on the wave fields for a finite length dipole current source co-located at a hypocenter depth and along the main fault of an earthquake when the distance between the epicenter and an observing station is up to 1000 km or even more. The results show that all electrical fields are free of ionospheric effects for different frequencies in a relative short range, e.g., ˜ 300 km for f = 1 Hz, implying the ionospheric influence on electromagnetic fields can be neglected within this range, which becomes smaller as the frequency increases. However, the ionosphere can give a constructive interference to the waves passing through and make them decay slowly when an observation is out of this range; moreover, the ionospheric effect can be up to 1-2 orders of magnitude of the electrical fields. For a ground-based observable 1.3 mV m-1 electric signal at f = 1 Hz 1440 km away from the Wenchuan MS 8.0 earthquake, the expected seismo-telluric current magnitude for the Earth-air-ionosphere model is of 5.0 × 107A, 1 magnitude smaller than the current value of 3.7 × 108A obtained by the Earth-air model free of ionospheric effects. This indicates that the ionosphere facilitates the electromagnetic wave propagation, as if the detectability of the system were improved effectively and it is easier to record a signal even for stations located at distances beyond their detectability thresholds. Furthermore, the radiating patterns of the electrical field components |Ex| and |Ey| are complementary to each other, although any two-dimensional (2-D) power distribution of these components shows strong power areas as well as weak ones, which is advantageous to register a signal if the observing system is designed to measure both of them instead of only one.

  1. Influence of regional biomass burning on the highly elevated organic carbon concentrations observed at Gosan, South Korea during a strong Asian dust period.

    PubMed

    Nguyen, Duc Luong; Kim, Jin Young; Ghim, Young Sung; Shim, Shang-Gyoo

    2015-03-01

    PM2.5 carbonaceous particles were measured at Gosan, South Korea during 29 March-11 April 2002 which includes a pollution period (30 March-01 April) when the highest concentrations of major anthropogenic species (nss-SO4 (2-), NO3 (-), and NH4 (+)) were observed and a strong Asian dust (AD) period (08-10 April) when the highest concentrations of mainly dust-originated trace elements (Al, Ca, Mg, and Fe) were seen. The concentrations of elemental carbon (EC) measured in the pollution period were higher than those measured in the strong AD period, whereas an inverse variation in the concentrations of organic carbon (OC) was observed. Based on the OC/EC ratios, the possible source that mainly contributed to the highly elevated OC concentrations measured in the strong AD period was biomass burning. The influence of the long-range transport of smoke plumes emitted from regional biomass burning sources was evaluated by using MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data for fire locations and the potential source contribution function analysis. The most potential source regions of biomass burning were the Primorsky and Amur regions in Far Eastern Russia and southeastern and southwestern Siberia, Russia. Further discussion on the source characteristics suggested that the high OC concentrations measured in the strong AD period were significantly affected by the smoldering phase of biomass burning. In addition to biomass burning, secondary OC (SOC) formed during atmospheric long-range transport should be also considered as an important source of OC concentration measured at Gosan. Although this study dealt with the episodic case of the concurrent increase of dust and biomass burning particles, understanding the characteristics of heterogeneous mixing aerosol is essential in assessing the radiative forcing of aerosol.

  2. Gender as a Modifying Factor Influencing Myotonic Dystrophy Type 1 Phenotype Severity and Mortality: A Nationwide Multiple Databases Cross-Sectional Observational Study

    PubMed Central

    Hamroun, Dalil; Varet, Hugo; Fabbro, Marianne; Rougier, Felix; Amarof, Khadija; Arne Bes, Marie-Christine; Bedat-Millet, Anne-Laure; Behin, Anthony; Bellance, Remi; Bouhour, Françoise; Boutte, Celia; Boyer, François; Campana-Salort, Emmanuelle; Chapon, Françoise; Cintas, Pascal; Desnuelle, Claude; Deschamps, Romain; Drouin-Garraud, Valerie; Ferrer, Xavier; Gervais-Bernard, Helene; Ghorab, Karima; Laforet, Pascal; Magot, Armelle; Magy, Laurent; Menard, Dominique; Minot, Marie-Christine; Nadaj-Pakleza, Aleksandra; Pellieux, Sybille; Pereon, Yann; Preudhomme, Marguerite; Pouget, Jean; Sacconi, Sabrina; Sole, Guilhem; Stojkovich, Tanya; Tiffreau, Vincent; Urtizberea, Andoni; Vial, Christophe; Zagnoli, Fabien; Caranhac, Gilbert; Bourlier, Claude; Riviere, Gerard; Geille, Alain; Gherardi, Romain K.; Eymard, Bruno; Puymirat, Jack; Katsahian, Sandrine; Bassez, Guillaume

    2016-01-01

    Background Myotonic Dystrophy type 1 (DM1) is one of the most heterogeneous hereditary disease in terms of age of onset, clinical manifestations, and severity, challenging both medical management and clinical trials. The CTG expansion size is the main factor determining the age of onset although no factor can finely predict phenotype and prognosis. Differences between males and females have not been specifically reported. Our aim is to study gender impact on DM1 phenotype and severity. Methods We first performed cross-sectional analysis of main multiorgan clinical parameters in 1409 adult DM1 patients (>18y) from the DM-Scope nationwide registry and observed different patterns in males and females. Then, we assessed gender impact on social and economic domains using the AFM-Téléthon DM1 survey (n = 970), and morbidity and mortality using the French National Health Service Database (n = 3301). Results Men more frequently had (1) severe muscular disability with marked myotonia, muscle weakness, cardiac, and respiratory involvement; (2) developmental abnormalities with facial dysmorphism and cognitive impairment inferred from low educational levels and work in specialized environments; and (3) lonely life. Alternatively, women more frequently had cataracts, dysphagia, digestive tract dysfunction, incontinence, thyroid disorder and obesity. Most differences were out of proportion to those observed in the general population. Compared to women, males were more affected in their social and economic life. In addition, they were more frequently hospitalized for cardiac problems, and had a higher mortality rate. Conclusion Gender is a previously unrecognized factor influencing DM1 clinical profile and severity of the disease, with worse socio-economic consequences of the disease and higher morbidity and mortality in males. Gender should be considered in the design of both stratified medical management and clinical trials. PMID:26849574

  3. Astrometric Confirmation and Preliminary Orbital Parameters of the Young Exoplanet 51 Eridani b with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Nielsen, Eric Ludwig; Blunt, Sarah; De Rosa, Robert; Konopacky, Quinn; Graham, James R.; Macintosh, Bruce; Marchis, Franck; Wang, Jason; Pueyo, Laurent; Rameau, Julien; Marois, Christian

    2015-12-01

    The Gemini Planet Imager Exoplanet Survey discovered the young, 2 Jupiter mass planet 51 Eri b based on observations conducted in December 2014 and January 2015. It is the lowest mass extrasolar planet ever detected by direct imaging and shows strong methane absorption, and is at a projected separation of just 13 AU from its host star. We present new astrometry from late 2015 that confirms 51 Eri b is a bound planet and not an interloping brown dwarf. Orbital motion is detected despite monitoring the system for less than a year. We have implemented a computationally efficient Monte Carlo technique for fitting a range of possible orbital motion based on astrometry covering a small fraction of the period and producing distributions of orbital parameters consistent with the measurements. We apply this technique to the astrometry of 51 Eri b and present preliminary orbital parameter distributions of this intriguing planet.

  4. THE SPACE INTERFEROMETRY MISSION ASTROMETRIC GRID GIANT STAR SURVEY. III. BASIC STELLAR PARAMETERS FOR AN EXTENDED SAMPLE

    SciTech Connect

    Bizyaev, Dmitry; Smith, Verne V.; Cunha, Katia E-mail: vsmith@noao.ed

    2010-12-15

    We present results of high-resolution ({approx}55000) spectral observations of 830 photometrically pre-selected candidate red giants in the magnitude range of V = 9-12. We develop a pipeline for automated determination of the stellar atmospheric parameters from these spectra and estimate T{sub eff}, log g, [Fe/H], microturbulence velocity, and projected rotational velocities, vsin i, for the stars. The analysis confirms that the candidate selection procedure yielded red giants with very high success rate. We show that most of these stars are G and K giants with slightly subsolar metallicity ([Fe/H] {approx} -0.3 dex). An analysis of Mg abundances in the sample results in consistency of the [Mg/Fe] vs [Fe/H] trend with published results.

  5. Submersible- and lander-observed community patterns in the Mariana and New Britain trenches: Influence of productivity and depth on epibenthic and scavenging communities

    NASA Astrophysics Data System (ADS)

    Gallo, Natalya D.; Cameron, James; Hardy, Kevin; Fryer, Patricia; Bartlett, Douglas H.; Levin, Lisa A.

    2015-05-01

    Deep-sea trenches remain one of the least explored ocean ecosystems due to the unique challenges of sampling at great depths. Five submersible dives conducted using the DEEPSEA CHALLENGER submersible generated video of undisturbed deep-sea communities at bathyal (994 m), abyssal (3755 m), and hadal (8228 m) depths in the New Britain Trench, bathyal depths near the Ulithi atoll (1192 m), and hadal depths in the Mariana Trench Challenger Deep (10908 m). The New Britain Trench is overlain by waters with higher net primary productivity (~3-fold) than the Mariana Trench and nearby Ulithi, and receives substantially more allochthonous input from terrestrial sources, based on the presence of terrestrial debris in submersible video footage. Comparisons between trenches addressed how differences in productivity regime influence benthic and demersal deep-sea community structure. In addition, the scavenger community was studied using paired lander deployments to the New Britain (8233 m) and Mariana (10918 m) trenches. Differences in allochthonous input were reflected in epibenthic community abundance, biodiversity, and lifestyle representation. More productive locations were characterized by higher faunal abundances (~2-fold) at both bathyal and hadal depths. In contrast, biodiversity trends showed a unimodal pattern with more food-rich areas exhibiting reduced bathyal diversity and elevated hadal diversity. Hadal scavenging communities exhibited similar higher abundance but also ~3-fold higher species richness in the more food-rich New Britain Trench compared to the Mariana Trench. High species- and phylum-level diversity observed in the New Britain Trench suggest that trench environments may foster higher megafaunal biodiversity than surrounding abyssal depths if food is not limiting. However, the absence of fish at our hadal sites suggests that certain groups do have physiological depth limits. Submersible video footage allowed novel in situ observation of holothurian

  6. Influence of genetic variability at the surfactant proteins A and D in community-acquired pneumonia: a prospective, observational, genetic study

    PubMed Central

    2011-01-01

    Introduction Genetic variability of the pulmonary surfactant proteins A and D may affect clearance of microorganisms and the extent of the inflammatory response. The genes of these collectins (SFTPA1, SFTPA2 and SFTPD) are located in a cluster at 10q21-24. The objective of this study was to evaluate the existence of linkage disequilibrium (LD) among these genes, and the association of variability at these genes with susceptibility and outcome of community-acquired pneumonia (CAP). We also studied the effect of genetic variability on SP-D serum levels. Methods Seven non-synonymous polymorphisms of SFTPA1, SFTPA2 and SFTPD were analyzed. For susceptibility, 682 CAP patients and 769 controls were studied in a case-control study. Severity and outcome were evaluated in a prospective study. Haplotypes were inferred and LD was characterized. SP-D serum levels were measured in healthy controls. Results The SFTPD aa11-C allele was significantly associated with lower SP-D serum levels, in a dose-dependent manner. We observed the existence of LD among the studied genes. Haplotypes SFTPA1 6A2 (P = 0.0009, odds ration (OR) = 0.78), SFTPA2 1A0 (P = 0.002, OR = 0.79), SFTPA1-SFTPA2 6A2-1A0 (P = 0.0005, OR = 0.77), and SFTPD-SFTPA1-SFTPA2 C-6A2-1A0 (P = 0.00001, OR = 0.62) were underrepresented in patients, whereas haplotypes SFTPA2 1A10 (P = 0.00007, OR = 6.58) and SFTPA1-SFTPA2 6A3-1A (P = 0.0007, OR = 3.92) were overrepresented. Similar results were observed in CAP due to pneumococcus, though no significant differences were now observed after Bonferroni corrections. 1A10 and 6A-1A were associated with higher 28-day and 90-day mortality, and with multi-organ dysfunction syndrome (MODS) and acute respiratory distress syndrome (ARDS) respectively. SFTPD aa11-C allele was associated with development of MODS and ARDS. Conclusions Our study indicates that missense single nucleotide polymorphisms and haplotypes of SFTPA1, SFTPA2 and SFTPD are associated with susceptibility to CAP, and

  7. Photographic observations of comet Hale-Bopp at the Zvenigorod Observatory

    NASA Astrophysics Data System (ADS)

    Vereshchagin, S. V.; Osipenko, V. P.; Postnikova, E. S.

    2017-03-01

    We describe the archive of scans of the astronomical plates obtained in the observations of comet Hale-Bopp. The observations were carried out from August 17, 1996, to April 29, 1997, at the Zeiss-400/2000 astrograph of the Zvenigorod Observatory of the Institute of Astronomy of the Russian Academy of Sciences (INASAN). The archive contains the images that can be used in astrometric, photometric, and astrophysical studies. In some of the plates, the size of the comet reaches 6.3° (23 cm). In many scans, the details of the cometary tail, including individual jets, vortexes, etc., are clearly distinguishable. The archive of the images is available free.

  8. Combined Space-Based Observations of Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Scott, R.; Bernard, K.; Thorsteinson, S.

    2016-09-01

    One of the Space Situational Awareness (SSA) science experiments of the NEOSSat mission is to learn the practicalities of combining space-based metric observations with the Sapphire system. To answer this question, an experiment was performed observing clustered Canadian geostationary satellites using both Sapphire and NEOSSat in early 2016. Space-based tracking data was collected during tracking intervals where both NEOSSat and Sapphire had visibility on the geostationary objects enabling astrometric (orbit determination) and photometric (object characterization) observations to be performed. We describe the orbit determination accuracies using live data collected from orbit for different collection cases; a) NEOSSat alone, b) Sapphire alone, and c) Combined observations from both platforms. We then discuss the practicalities of using space-based sensors to reduce risk of orbital collisions of Canadian geostationary satellites by proactively tasking space based sensors in response to conjunction data warnings in GEO.

  9. The influence of time from injury to surgery on motor recovery and length of hospital stay in acute traumatic spinal cord injury: an observational Canadian cohort study.

    PubMed

    Dvorak, Marcel F; Noonan, Vanessa K; Fallah, Nader; Fisher, Charles G; Finkelstein, Joel; Kwon, Brian K; Rivers, Carly S; Ahn, Henry; Paquet, Jérôme; Tsai, Eve C; Townson, Andrea; Attabib, Najmedden; Bailey, Christopher S; Christie, Sean D; Drew, Brian; Fourney, Daryl R; Fox, Richard; Hurlbert, R John; Johnson, Michael G; Linassi, A G; Parent, Stefan; Fehlings, Michael G

    2015-05-01

    To determine the influence of time from injury to surgery on neurological recovery and length of stay (LOS) in an observational cohort of individuals with traumatic spinal cord injury (tSCI), we analyzed the baseline and follow-up motor scores of participants in the Rick Hansen Spinal Cord Injury Registry to specifically assess the effect of an early (less than 24 h from injury) surgical procedure on motor recovery and on LOS. One thousand four hundred and ten patients who sustained acute tSCIs with baseline American Spinal Injury Association Impairment Scale (AIS) grades A, B, C, or D and were treated surgically were analyzed to determine the effect of the timing of surgery (24, 48, or 72 h from injury) on motor recovery and LOS. Depending on the distribution of data, we used different types of generalized linear models, including multiple linear regression, gamma regression, and negative binomial regression. Persons with incomplete AIS B, C, and D injuries from C2 to L2 demonstrated motor recovery improvement of an additional 6.3 motor points (SE=2.8 p<0.03) when they underwent surgical treatment within 24 h from the time of injury, compared with those who had surgery later than 24 h post-injury. This beneficial effect of early surgery on motor recovery was not seen in the patients with AIS A complete SCI. AIS A and B patients who received early surgery experienced shorter hospital LOS. While the issues of when to perform surgery and what specific operation to perform remain controversial, this work provides evidence that for an incomplete acute tSCI in the cervical, thoracic, or thoracolumbar spine, surgery performed within 24 h from injury improves motor neurological recovery. Early surgery also reduces LOS.

  10. The Influence of Clouds on Radical Concentrations: Observations of OH and HO2 during the Hill CAP Cloud THÜRINGER (hcct) Campaign in 2010

    NASA Astrophysics Data System (ADS)

    Whalley, L. K.; Stone, D. J.; George, I. J.; Mertes, S.; van Pinxteren, D.; Fomba, K. W.; Evans, M. J.; Herrmann, H.; Heard, D. E.

    2013-12-01

    Measurements of OH and HO2 radicals made during the HCCT (Hill Cap Cloud Thuringia) campaign that took place at Mt. Schmücke, Thuringia in Germany during September/October 2010 are reported. The University of Leeds Fluorescence Assay by Gas Expansion (FAGE) instrument was located near the summit of Mt. Schmücke (982 m) and made near-continuous measurements of the radicals at the top of a 22 m tower. The site was regularly influenced by orographic clouds throughout the measurement period. On average, the photolysis rate of O3 to form O(1D), J(O1D), the usual primary initiator of HOx radicals, was ~ 30 % of its value out of cloud. The HO2 concentrations were significantly depleted in cloud, with concentrations just 10 % of the value out of cloud; an OH signal above the noise of the instrument was not observed during cloud events. These results suggest that heterogeneous processes in clouds do perturb the gas-phase radical chemistry. Using an analytical expression to simulate the HO2 in-cloud observations, a first order loss rate of HO2 to clouds = 0.1 s-1 is needed to enable agreement between the simulation and measured values, suggesting a reactive uptake coefficient, γ = 0.005, at the observed mean cloud droplet surface area of 1.2 x 10-3 cm2cm-3. This value is in good agreement with very recent recommendations based of laboratory studies of heterogeneous uptake of HO2 on aqueous aerosols1. The rate of loss of HO2 as a function of cloud droplet surface area and pH have demonstrated clear dependencies of γ on these parameters. The change in γ observed over the pH range encountered during the project can be well replicated using the mechanism outlined by Thornton et al. (2008)2 for HO2 loss in aqueous aerosol without the presence of significant levels of transition metal ions. This work provides experimental evidence that clouds can alter gas-phase concentrations of HO2 through heterogeneous reactions, reducing the oxidising capacity and O3 production in the

  11. Orbital Debris Observations with WFCAM

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Mann, B.; Read, M.; Kerr, T.; Irwin, M.; Cross, N.; Bold, M.,; Varricatt, W.; Madsen, G.

    2014-09-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU. This paper will present the January and February results of the orbital debris surveys with WFCAM.

  12. La influencia de la rotación terrestre en el método de los arcos aplicado a observaciones VLBI

    NASA Astrophysics Data System (ADS)

    de Biasi, M. S.; Arias, E. F.

    We analyze the influence of the model or Earth's rotation in the arclength method envisioned to analyze VLBI astrometric observations. We particulary focus in the case of quasi-simultaneous observations.

  13. Observational data and orbits of the asteroids discovered at the Baldone Observatory in 2008--2013

    NASA Astrophysics Data System (ADS)

    Černis, K.; Wlodarczyk, I.; Eglitis, I.

    The paper presents statistics of the asteroids observed and discovered at the Baldone Observatory, Latvia, in 2008--2013 within the project for astrometric observations of the near-Earth objects (NEOs), the main belt asteroids and comets. CCD observations of the asteroids were obtained with the 0.80/1.20 m, f/3 Schmidt telescope and a ST-10XME 15 × 10 mm CCD camera. In the Minor Planet Circulars and the Minor Planet Electronic Circulars (2008--2013) we published 3511 astrometric positions of 826 asteroids. Among them, 43 asteroids were newly discovered at Baldone. For 36 of these asteroids the precise orbits are calculated. Because of short observational arc and small number of observations, a few asteroids have low-precision orbits and their tracks have been lost. For seven objects with poorly known orbits we present their ephemerides for 2015--2016. The orbits and the evolution of orbital elements of two asteroids, (428694) 2008 OS9 from the Apollo group and the Centaur (330836) Orius (2009 HW77), are recalculated including new observations obtained after 2011.

  14. The Unification of Astrometric Catalogues

    NASA Astrophysics Data System (ADS)

    Stock, J.; Abad, C.

    1988-06-01

    RESUMEN Se desarrolla un metodo de interpolaci6n para detectar diferencias sistematicas entre catalogos de posiciones y movimientos propios y se aplica a los catalogos AGK3 y Santiago 67, usando los cata'logos No. 1 y No. 2 del Cfrculo Meridiano Carlsberg como sistema de referencia. ABSTRACT An interpolation mechanism is developed for the detection of systematic differences between position and proper motion catalogues and is applied to the AGK3 and Santiago 67 catalogues, using the Carlsberg Meridian Circle catalogues No. 1 and No. 2 as reference sources. Key words: ASTROMETRY

  15. STEPS: JPL's Astrometric Exoplanet Survey

    NASA Technical Reports Server (NTRS)

    Shaklan, Stuart; Pravdo, Steve

    2008-01-01

    Presentation topics include: STEPS ground-based astrometry at Hale Telescope; the instrument; why astronomy and why M-dwarfs; motion of center of light about center of mass in photocentric orbit; photocentric motion vs. fractional mass; high-resolution imaging of STEPS targets; GU 802 p one possible orbit plotted with data, Keplerian frame; GJ 802 results; STEPS future; and a bibliography of STEPS papers.

  16. Quantitative Influence of ABO Blood Groups on Factor VIII and Its Ratio to von Willebrand Factor, Novel Observations from an ARIC Study of 11,673 Subjects.

    PubMed

    Song, Jaewoo; Chen, Fengju; Campos, Marco; Bolgiano, Doug; Houck, Katie; Chambless, Lloyd E; Wu, Kenneth K; Folsom, Aaron R; Couper, David; Boerwinkle, Eric; Dong, Jing-fei

    2015-01-01

    ABO blood groups are known to influence the plasma level of von Willebrand factor (VWF), but little is known about the relationship between ABO and coagulation factor VIII (FVIII). We analyzed the influence of ABO genotypes on VWF antigen, FVIII activity, and their quantitative relationship in 11,673 participants in the Atherosclerosis Risk in Communities (ARIC) study. VWF, FVIII, and FVIII/VWF levels varied significantly among O, A (A1 and A2), B and AB subjects, and the extent of which varied between Americans of European (EA) and African (AA) descent. We validated a strong influence of ABO blood type on VWF levels (15.2%), but also detected a direct ABO influence on FVIII activity (0.6%) and FVIII/VWF ratio (3.8%) after adjustment for VWF. We determined that FVIII activity changed 0.54% for every 1% change in VWF antigen level. This VWF-FVIII relationship differed between subjects with O and B blood types in EA, AA, and in male, but not female subjects. Variations in FVIII activity were primarily detected at low VWF levels. These new quantitative influences on VWF, FVIII and the FVIII/VWF ratio help understand how ABO genotypes differentially influence VWF, FVIII and their ratio, particularly in racial and gender specific manners.

  17. Pro-Am Collaboration in Asteroid Observations

    NASA Astrophysics Data System (ADS)

    Kidger, Marc

    1999-08-01

    High quality CCD cameras and powerful PCs are enabling advanced amateur astronomers to make high quality photometric and astrometric observations of a wide variety of solar system objects and to reduce them almost in real time. This has had important consequences for the observation of minor solar system bodies. In particular, new comets down as faint as 17th and 18th magnitude which were previously highly under-observed, can now count with extensive astrometry within a few days of discovery. At least one amateur astronomer is even working in astrometry of Kuiper Belt Objects which were thought, until recently, to be exclusively a professional province. A further field where even a modestly equipped amateur can make a major contribution is in the determination of rotation periods and physical parameters of Near Earth Objects (NEOs). This presentation examines the rotation curve of two objects - 1999 CV3 and 1999 HF1 - observed in collaboration between members of the "The Astronomer" Group and astro- physicists at Teide Observatory (Canary Islands) and shows how amateur and student observations can make a highly valuable contribution to this field.

  18. OBSERVATIONS OF HIERARCHICAL SOLAR-TYPE MULTIPLE STAR SYSTEMS

    SciTech Connect

    Roberts, Lewis C. Jr.; Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.; Riddle, Reed L.

    2015-10-15

    Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primaries of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color–magnitude diagram and discuss each multiple system individually.

  19. Observations of Hierarchical Solar-type Multiple Star Systems

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C., Jr.; Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.; Riddle, Reed L.

    2015-10-01

    Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primaries of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color-magnitude diagram and discuss each multiple system individually.

  20. A comparison of radiometric fluxes influenced by parameterization cirrus clouds with observed fluxes at the Southern Great Plains (SGP) cloud and radiation testbed (CART) site

    SciTech Connect

    Mace, G.G.; Ackerman, T.P.; George, A.T.

    1996-04-01

    The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.

  1. Digital image processing of the CCD (SRT) positional observations of two satellites (Ariel and Titania) of Uranus.

    NASA Astrophysics Data System (ADS)

    Peng, Qingyu; Liu, Weiwei; Wang, Feng

    1998-08-01

    The positional determination of natural satellites is very important in astrometry and celestial mechanics. Some researchers have performed very good astrometric observations of Uranian satellites with a new image processing technique. The authors compared the methods without and with halo-processing for the CCD (SRT-Separated Readout Technique) observations of Ariel and Titania carried out with the 1-meter telescope of Yunnan Observatory. When the two satellites were used to determine the CCD scale and orientation, it was clarified that the Uranian halo-processing is very important for the positional determination of satellites.

  2. Astrometry of the main satellites of Uranus: 18 years of observations

    NASA Astrophysics Data System (ADS)

    Camargo, J. I. B.; Magalhães, F. P.; Vieira-Martins, R.; Assafin, M.; Braga-Ribas, F.; Dias-Oliveira, A.; Benedetti-Rossi, G.; Gomes-Júnior, A. R.; Andrei, A. H.; da Silva Neto, D. N.

    2015-10-01

    Context. We contribute to developing dynamical models of the motions of Uranus' main satellites. Aims: We determine accurate positions of the main satellites of Uranus: Miranda, Ariel, Umbriel, Titania, and Oberon. Positions of Uranus, as derived from those of these satellites, are also determined. The observational period spans from 1992 to 2011. All runs were made at the Pico dos Dias Observatory, Brazil. Methods: We used the software called Platform for Reduction of Astronomical Images Automatically (PRAIA) to perform a digital coronography to minimise the influence of the scattered light of Uranus on the astrometric measurements and to determine accurate positions of the main satellites. The positions of Uranus were then indirectly determined by computing the mean differences between the observed and ephemeris positions of these satellites. A series of numerical filters was applied to filter out spurious data. These filters are mostly based on (a) the comparison between the positions of Oberon with those of the other satellites and on (b) the offsets as given by the differences between the observed and ephemeris positions of all satellites. Results: We have, for the overall offsets of the five satellites, -29 mas (±63 mas) in right ascension and -27 mas (±46 mas) in declination. For the overall difference between the offsets of Oberon and those of the other satellites, we have +3 mas (±30 mas) in right ascension and -2 mas (±28 mas) in declination. Ephemeris positions for the satellites were determined from DE432+ura111. Comparisons using other modern ephemerides for the solar system - INPOP13c - and for the motion of the satellites - NOE-7-2013 - were also made. They confirm that the largest contribution to the offsets we find comes from the motion of the barycenter of the Uranus system around the barycenter of the solar system, as given by the planetary ephemerides. For the period from 1992 to 2011, our final catalogues contain 584 observed positions of

  3. Experiments for observation of the total solar eclipse on July 22, 2009, China

    NASA Astrophysics Data System (ADS)

    Stoeva, Penka; Stoev, Alexey; Kuzin, Sergey; Stoyanov, Nikolay; Pertsov, Andrey

    Scientific expedition for observation of the July 22, 2009 total solar eclipse was organized by the Solar-Terrestrial Influences Institute, BAS and the Yuri Gagarin Public Astronomical Observatory, and displaced near the observing station of the Shanghai Observatory, which belongs to the Chinese Academy of Sciences and is very close to the central line of the eclipse. The following experiments were conducted: 1. Determination of the absolute intensity of the red coronal line FeX 6374A with a spectro-grph mounted together with a 130/2000 Macsutov -Cassegrain telescope with a 20mm eyelense. The spectrogrph is designed and developed by specialists from Solar-Terrestrial Influences In-stitute, Stara Zagora Department, Bulgaria, Lebedev Physical Institute, Moscow, Russia and Yuri Gagarin Public Astronomical Observatory, Stara Zagora, Bulgaria, in the frames of the Bulgarian-Russian project of joint scientific research "CORONA". The aim of the experiment is to obtain images of the inner corona in the visible region of the spectrum simultaneously with images in the X ray region from the THESIS telescope on CORONAS -PHOTON helio-spheric satellite (launched in January 2009). This gives the unique possibility of determining the distribution of the light emission of the plasma with the temperature (detailed diagnostics of the thermal and nonthermal heating of the solar corona). 2. Investigation of the white-light corona from photographs with 250 mm and 2000mm objec-tives. 3. Investigation of the response of the Earth's atmosphere during the particular sircumstances in which solar light is totally being blocked by the Moon. Atmospheric temperature and pressure rapidly change during total solar eclipses which produce meteorological anomalies typical in this kind of phenomena. That is why the basic climatic parameters have to be measured with high sensitive meteorological instruments. Conducting measurements of the temperature of the soil and the air at three different levels

  4. Observation studies on the influence of atmospheric boundary layer characteristics associate with air quality in dry season over the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Fan, Shaojia; Wu, Meng; Li, Haowen; Liao, Zhiheng; Fan, Qi; Zhu, Wei

    2016-04-01

    The characteristics of atmospheric boundary layer (ABL) is the very important factors influence on air quality in dry season over the Pearl River Delta (PRD), China. Based on the sounding data at six stations (Xinken,Dongguan, Sanshui, Nanhai, Shunde, and Heshan) which obtained from three times ABL experiments carried in dry season over PRD, the influence of wind and temperature vertical structure to the air quality over PRD has been studied with wind and temperature profiles, inversion layer, recirculation factor (RF), atmospheric boundary layer height (ABLH) and ventilation index (VI). It was found that the vertical wind of PRD could be divided in typical three layers according two wind shears appeared in 800 m and 1300 m. The thickness of calm or lower wind speed layer in pollution days was 500-1000m thicker than that of clean days, and its last time also much longer than that of clean days. The frequency of surface inversion in pollution days was about 35%,the mean thickness was about 100 m. With the influence of sea breeze, the frequency and thickness of surface inversion layer at Xinken station was a little lower than that in inland. Influenced by sea-land breezes and urban heat-island circulation, the RF of pollution days in coastal and urban area was quite smaller than that of clean days. During sea-land breezes days, the pollutants would be transported back to inland in nighttime with the influence of sea breeze, and resulted in 72.7% sea-land breezes was pollution days. The evolution of ABL was very typical in PRD during dry season. In pollution days, daily ABLH in PRD was lower than 500 m, daily VI was about 500-1500 m2/s. In clean days, daily VI was much larger than 2500 m2/s. An improved conceptual model of ABL influence on poor air quality and the parameters of the ABL characteristics associate with poor air quality in dry season over PRD had been summarized.

  5. Observer age and the social transmission of attractiveness in humans: Younger women are more influenced by the choices of popular others than older women.

    PubMed

    Little, Anthony C; Caldwell, Christine A; Jones, Benedict C; DeBruine, Lisa M

    2015-08-01

    Being paired with an attractive partner increases perceptual judgements of attractiveness in humans. We tested experimentally for prestige bias, whereby individuals follow the choices of prestigious others. Women rated the attractiveness of photographs of target males which were paired with either popular or less popular model female partners. We found that pairing a photo of a man with a woman presented as his partner positively influenced the attractiveness of the man when the woman was presented as more popular (Experiment 1). Further, this effect was stronger in younger participants compared to older participants (Experiment 1). Reversing the target and model such that women were asked to rate women paired with popular and less popular men revealed no effect of model popularity and this effect was unrelated to participant age (Experiment 2). An additional experiment confirmed that participant age and not stimulus age primarily influenced the tendency to follow others' preferences in Experiment 1 (Experiment 3). We also confirmed that our manipulations of popularity lead to variation in rated prestige (Experiment 4). These results suggest a sophisticated model-based bias in social learning whereby individuals are most influenced by the choices of those who have high popularity/prestige. Furthermore, older individuals moderate their use of such social information and so this form of social learning appears strongest in younger women.

  6. SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets Around Young Stars

    NASA Technical Reports Server (NTRS)

    Tanner, Angelle; Beichman, Charles; Akeson, Rachel; Ghez, Andrea; Grankin, Konstantin N.; Herbst, William; Hillenbrand, Lynne; Huerta, Marcos; Konopacky, Quinn; Metchev, Stanimir; Mohanty, Subhanjoy; Prato, L.; Simon, Michal

    2008-01-01

    We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of <5 mas. The photometric survey suggests that approximately half of the stars initially selected for this program are variable to a degree (1(sigma) >0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that removes the most targets from the SIM-YSO program is photometric variability.

  7. Influence of observers and stream flow on northern two-lined salamander (Eurycea bislineata bislineata) relative abundance estimates in Acadia and Shenandoah National Parks, USA

    USGS Publications Warehouse

    Crocker, J.B.; Bank, M.S.; Loftin, C.S.; Jung Brown, R.E.

    2007-01-01

    We investigated effects of observers and stream flow on Northern Two-Lined Salamander (Eurycea bislineata bislineata) counts in streams in Acadia (ANP) and Shenandoah National Parks (SNP). We counted salamanders in 22 ANP streams during high flow (May to June 2002) and during low flow (July 2002). We also counted salamanders in SNP in nine streams during high flow (summer 2003) and 11 streams during low flow (summers 2001?02, 2004). In 2002, we used a modified cover-controlled active search method with a first and second observer. In succession, observers turned over 100 rocks along five 1-m belt transects across the streambed. The difference between observers in total salamander counts was not significant. We counted fewer E. b. bislineata during high flow conditions, confirming that detection of this species is reduced during high flow periods and that assessment of stream salamander relative abundance is likely more reliable during low or base flow conditions.

  8. Simulations and Interpretations of BETTII Observations

    NASA Astrophysics Data System (ADS)

    Dhabal, Arnab; Mundy, Lee G.; Rizzo, Maxime; Rinehart, Stephen; Juanola-Parramon, Roser

    2017-01-01

    BETTII (Balloon Experimental Twin Telescope for Infra-red Interferometry) is an 8-meter baseline far-infrared (30-90 microns) interferometer mission on a balloon. Its capabilities of spatially resolved spectroscopy with 0.5” resolution are aimed at studying clustered star formation and galaxy evolution. With its 9x9 detector arrays, we can perform relative astrometry over a 2’x2’ field of view and get source spectral and size information. Since BETTII is a two-element fixed baseline length interferometer and balloon flight time is short, its u-v coverage is very limited. Standard inversion techniques cannot be used to image the emission as is typically done for radio interferometers.We simulate the BETTII observations using a hypothetical star forming region as the input and taking into account the instrument characteristics and limitations. We derive astrometric, spectroscopic, and morphological information from the simulated output through model fitting. Varying the input model parameters that we use to define the dust emission from the protostar, we produce sets of simulated outputs. By comparing these outputs with the hypothetical observations, we explore how well the BETTII observations constrain the defining parameters of the young stellar system.

  9. The influence of urban heat island phenomenon on PM concentration: an observation study during the summer half-year in metropolitan Taipei, Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, Li-Wei

    2016-10-01

    Air circulation due to the urban heat island (UHI) effect can influence the dispersion of air pollutants in a metropolis. This study focusses on the influence of the UHI effect on particulate matter (PM; including PM2.5 and PM2.5-10) between May and September 2010-2012 in the Taipei basin. Meteorological and PM data were obtained from the sites, owned by the governmental authorities. The analysis was carried out using t test, relative indices (RIs), Pearson product-moment correlation and stepwise regression. The results show that the RI values for PM were the highest at moderate UHI intensity (MUI; 2 °C ≤ UHI < 4 °C) rather than at strong UHI intensity (SUI; 4 °C ≤ UHI) during the peak time for anthropogenic emissions (20:00 LST). Neither the accumulation of PM nor the surface convergence occurred in the hot centre, as shown by the case study. At MUI, more than 89 % of the synoptic weather patterns showed that the weather was clear and hot or that the atmosphere was stable. The variation in PM was associated with horizontal and vertical air dispersion. Poor horizontal air dispersion, with subsidence, caused an increase in PM at MUI. However, the updraft motion diluted the PM at SUI. The stepwise regression models show that the cloud index and surface air pressure determined the variation in PM2.5-10, while cloud index, wind speed and mixing height influenced the variation in PM2.5. In conclusion, a direct relationship between UHI effect and PM was not obvious.

  10. Incidence, influencing factors, and prognostic impact of intraoperative massive blood loss in adolescents with neuromuscular scoliosis: A STROBE-compliant retrospective observational analysis.

    PubMed

    Jia, Rui; Li, Na; Xu, Bi-Yun; Zhang, Wei; Gu, Xiao-Ping; Ma, Zheng-Liang

    2017-03-01

    Factors influencing massive blood loss for neuromuscular scoliosis (NMS) patients.Despite advances in surgical and anesthetic techniques, scoliosis surgery is still associated with intraoperative massive blood loss, which can result in postoperative mortality and morbidity. The aim of this study was to assess the incidence, influencing factors, and prognostic impact of intraoperative massive blood loss in adolescents with NMS.A retrospective review of adolescents who underwent posterior spinal instrumentation and fusion for NMS was performed. Perioperative variables and data were recorded. Massive blood loss was defined as an estimated blood loss that exceeds 30% of total blood volume.We obtained data for 114 patients, of whom 63 (55%) had intraoperative massive blood loss. Compared with those without, patients with massive blood loss were more likely to be older, have lower body mass indexes (BMIs), larger Cobb angles, more fused levels, more osteotomy procedures, and prolonged duration of operation. Logistic regression analysis identified the number of fused levels to be more than 12 (P = 0.003, odds ratio = 6.614, 95% confidence interval [CI]: 1.891-23.131), BMI lower than 16.8 kg/m (P = 0.025, odds ratio = 3.293, 95% CI: 1.159-9.357), age greater than 15 years (P = 0.014, odds ratio = 3.505, 95% CI: 1.259-9.761), and duration of operation longer than 4.4 hours (P = 0.016, odds ratio = 3.746, 95% CI: 1.428-9.822) as influencing factors. Patients with massive blood loss are associated with more intraoperative colloids infusion and blood transfusions (red blood cell and fresh frozen plasma), as well as postoperative drainage volume.In adolescents with NMS who underwent posterior spinal instrumentation and fusion operations, intraoperative massive blood loss is common. The number of fused levels, BMI, age, and duration of operation are factors influencing intraoperative massive blood loss.

  11. Flare Observations.

    PubMed

    Benz, Arnold O

    Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays at 100 MeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, and SOHO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections (CMEs), electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s) of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting reconnection of magnetic field lines as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth's lower ionosphere. While flare scenarios have slowly converged over the past decades, every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  12. Absolute gravity observations in Norway (1993-2014) for glacial isostatic adjustment studies: The influence of gravitational loading effects on secular gravity trends

    NASA Astrophysics Data System (ADS)

    Ophaug, Vegard; Breili, Kristian; Gerlach, Christian; Omholt Gjevestad, Jon Glenn; Lysaker, Dagny Iren; Dahl Omang, Ove Christian; Pettersen, Bjørn Ragnvald

    2016-12-01

    We have compiled and analyzed FG5 absolute gravity observations between 1993 and 2014 at 21 gravity sites in Norway, and explore to what extent these observations are applicable for glacial isostatic adjustment (GIA) studies. Where available, raw gravity observations are consistently reprocessed. Furthermore, refined gravitational corrections due to ocean tide loading and non-tidal ocean loading, as well as atmospheric and global hydrological mass variations are computed. Secular gravity trends are computed using both standard and refined corrections and subsequently compared with modeled gravity rates based on a GIA model. We find that the refined gravitational corrections mainly improve rates where GIA, according to model results, is not the dominating signal. Consequently, these rates may still be considered unreliable for constraining GIA models, which we trace to continued lack of a correction for the effect of local hydrology, shortcomings in our refined modeling of gravitational effects, and scarcity of observations. Finally, a subset of standard and refined gravity rates mainly reflecting GIA is used to estimate ratios between gravity and height rates of change by ordinary and weighted linear regression. Relations based on both standard and refined gravity rates are within the uncertainty of a recent modeled result.

  13. Developmental variations in environmental influences including endocrine disruptors on pubertal timing and neuroendocrine control: Revision of human observations and mechanistic insight from rodents.

    PubMed

    Parent, Anne-Simone; Franssen, Delphine; Fudvoye, Julie; Gérard, Arlette; Bourguignon, Jean-Pierre

    2015-07-01

    Puberty presents remarkable individual differences in timing reaching over 5 years in humans. We put emphasis on the two edges of the age distribution of pubertal signs in humans and point to an extended distribution towards earliness for initial pubertal stages and towards lateness for final pubertal stages. Such distortion of distribution is a recent phenomenon. This suggests changing environmental influences including the possible role of nutrition, stress and endocrine disruptors. Our ability to assess neuroendocrine effects and mechanisms is very limited in humans. Using the rodent as a model, we examine the impact of environmental factors on the individual variations in pubertal timing and the possible underlying mechanisms. The capacity of environmental factors to shape functioning of the neuroendocrine system is thought to be maximal during fetal and early postnatal life and possibly less important when approaching the time of onset of puberty.

  14. Biomass Burning Influences on the Composition of the Remote South Pacific Troposphere: Analysis Based on Observations from PEM Tropics-A

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Viezee, W.; Chen, Y.; Bradshaw, J.; Sandholm, S.; Blake, D.; Blake, N.; Heikes, B.; Snow, J.; Talbot, R.; Sachse, G.; Vay, S.

    1999-01-01

    Airborne, in-situ measurements from PEM-Tropics-A (September/October 1996) are analyzed to show the presence of distinct pollution plumes in the middle-tropical troposphere of the remote South Pacific (10-30degS). These elevated plumes cause a relative maximum at about 5-7km attitude in the vertical distribution of primary and secondary species characteristic of fuel combustion and biomass burning (CO, C2H2, C2H6, CH3Cl, PAN, O3). Similar plumes were also observed at mid-latitudes in the middle troposphere during three flights east of New Zealand (40-45degS). In all, pollution plumes with CO larger than 100 ppb were observed 24 times on 7 separate flight days south of the equator. The observed plumes were generally embedded in very dry air. Ten-day back trajectory analysis supports the view that these originated from the biomass burning regions of South Africa (and South America) and were transported to the South Pacific along long-distance subsiding trajectories. The chemical composition of the southern Pacific troposphere analyzed from the PEM-Tropics-A data is compared with data from the tropical regions of the northern Pacific (PEM-West-A) and southern Atlantic (TRACE-A) during the same Sept/Oct time period. Sizable perturbations in the abundance of ozone and its key precursors, resulting from the transport of pollution originating from biomass burning sources, are observed in much of the Southern Hemispheric troposphere.

  15. The influence of normal stress and sliding velocity on the frictional behaviour of calcite at room temperature: insights from laboratory experiments and microstructural observations

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Collettini, C.; Viti, C.; Cavallo, A.

    2016-04-01

    The presence of calcite in and near faults, as the dominant material, cement, or vein fill, indicates that the mechanical behaviour of carbonate-dominated material likely plays an important role in shallow- and mid-crustal faulting. To better understand the behaviour of calcite, under loading conditions relevant to earthquake nucleation, we sheared powdered gouge of Carrara Marble, >98 per cent CaCO3, at constant normal stresses between 1 and 100 MPa under water-saturated conditions at room temperature. We performed slide-hold-slide tests, 1-3000 s, to measure the amount of static frictional strengthening and creep relaxation, and velocity-stepping tests, 0.1-1000 μm s-1, to evaluate frictional stability. We observe that the rates of frictional strengthening and creep relaxation decrease with increasing normal stress and diverge as shear velocity is increased from 1 to 3000 μm s-1 during slide-hold-slide experiments. We also observe complex frictional stability behaviour that depends on both normal stress and shearing velocity. At normal stresses less than 20 MPa, we observe predominantly velocity-neutral friction behaviour. Above 20 MPa, we observe strong velocity-strengthening frictional behaviour at low velocities, which then evolves towards velocity-weakening friction behaviour at high velocities. Microstructural analyses of recovered samples highlight a variety of deformation mechanisms including grain size reduction and localization, folding of calcite grains and fluid-assisted diffusion mass transfer processes promoting the development of calcite nanograins in the highly deformed portions of the experimental fault. Our combined analyses indicate that calcite fault gouge transitions from brittle to semi-brittle behaviour at high normal stress and slow sliding velocities. This transition has important implications for earthquake nucleation and propagation on faults in carbonate-dominated lithologies.

  16. Study on the influence of ground and satellite observations on the numerical air-quality for PM10 over Romanian territory