Sample records for astronaut construction methods

  1. Design and construction of the astronautics refrigerator magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresner, L.

    1994-05-01

    This document reports on the design, construction, and testing of a 7-Tesla, 4-in. bore superconducting magnet for use in the Astronautics Refrigerator Experiment. The magnet is a single-strand, layer-wound, potted solenoid wound with Formvar-insulated SSC strands. The magnet was constructed by American Magnetics, Inc. of Oak Ridge and has been installed in the Astronautics Refrigerator Experiment at the Astronautics Technology Center in Madison, Wisconsin.

  2. Around Marshall

    NASA Image and Video Library

    1978-08-24

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Another facet of the space station would be electrical cornectors which would be used for powering tools the astronauts would need for construction, maintenance and repairs. Shown is an astronaut training during an underwater electrical connector test in the NBS.

  3. Neutral Buoyancy Simulator: MSFC-Langley joint test of large space structures component assembly:

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Another facet of the space station would be electrical cornectors which would be used for powering tools the astronauts would need for construction, maintenance and repairs. Shown is an astronaut training during an underwater electrical connector test in the NBS.

  4. Around Marshall

    NASA Image and Video Library

    1977-04-12

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built.Pictured is an experiment where the astronaut is required to move a large object which weighed 19,000 pounds. It was moved with realitive ease once the astronaut became familiar with his environment and his near weightless condition. Experiments of this nature provided scientists with the information needed regarding weight and mass allowances astronauts could manage in preparation for building a permanent space station in the future.

  5. Neutral Buoyancy Test NB-14 Large Space Structure Assembly

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built.Pictured is an experiment where the astronaut is required to move a large object which weighed 19,000 pounds. It was moved with realitive ease once the astronaut became familiar with his environment and his near weightless condition. Experiments of this nature provided scientists with the information needed regarding weight and mass allowances astronauts could manage in preparation for building a permanent space station in the future.

  6. Ride With Astronauts In Flyby Salute to Marshall Center Test Stand Construction Teams

    NASA Image and Video Library

    2016-09-27

    NASA astronaut Don Pettit captured this video from the cockpit with Victor Glover as they and fellow astronauts Barry "Butch” Wilmore and Stephanie Wilson banked low over Marshall Space Flight Center at Huntsville, Alabama, saluting to teams finishing construction of Test Stand 4697. In the short video edited by Pettit, viewers fly along from the astronauts' takeoff in two NASA T-38 jets from Ellington Field Joint Reserve Base in Houston to their landing at Huntsville International Airport for meetings at Marshall. (NASA/Don Pettit)

  7. Dedication Ceremony

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Alabama Governor Don Seigleman cuts the ribbon marking the dedication of the Saturn V rocket replica that was constructed at the U. S. Space and Rocket Center in honor of the 30th arniversary of the lunar landing. Accompanying the Governor are (L/R): Mike Wing, CEO US Space Rocket Center; Mike Gillespie, Madison County Commissioner, Dist. Seven; Buzz Aldrin, Apollo 11 Astronaut; Governor Seigleman; Walt Cunningham, Apollo 7 Astronaut; Dick Gordon, Apollo 12 Astronaut; Ed Mitchell, Apollo 14 Astronaut; Charlie Duke, Apollo 16 Astronaut; and Owen Garriott, Skylab 3 Astronaut.

  8. Around Marshall

    NASA Image and Video Library

    1999-07-16

    Alabama Governor Don Seigleman cuts the ribbon marking the dedication of the Saturn V rocket replica that was constructed at the U. S. Space and Rocket Center in honor of the 30th arniversary of the lunar landing. Accompanying the Governor are (L/R): Mike Wing, CEO US Space Rocket Center; Mike Gillespie, Madison County Commissioner, Dist. Seven; Buzz Aldrin, Apollo 11 Astronaut; Governor Seigleman; Walt Cunningham, Apollo 7 Astronaut; Dick Gordon, Apollo 12 Astronaut; Ed Mitchell, Apollo 14 Astronaut; Charlie Duke, Apollo 16 Astronaut; and Owen Garriott, Skylab 3 Astronaut.

  9. Microgravity

    NASA Image and Video Library

    2001-10-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  10. Spacelab

    NASA Image and Video Library

    1977-08-30

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. Pictured is Astronaut Paul Weitz training on a mock-up of Spacelab's airlock-hatch cover. Training was also done on the use of foot restraints which had recently been developed to help astronauts maintain their positions during space walks rather than having their feet float out from underneath them while they tried to perform maintenance and repair operations. Every aspect of every space mission was researched and demonstrated in the NBS. Using the airlock hatch cover and foot restraints were just a small example of the preparation that went into each mission.

  11. Around Marshall

    NASA Image and Video Library

    1979-08-13

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Included in the plans for the space station was a space telescope. This telescope would be attached to the space station and directed towards outerspace. Astronomers hoped that the space telescope would provide a look at space that is impossible to see from Earth because of Earth's atmosphere and other man made influences. In an effort to make replacement and repairs easier on astronauts the space telescope was designed to be modular. Practice makes perfect as demonstrated in this photo: an astronaut practices moving modular pieces of the space telescope in the Neutral Buoyancy Simulator (NBS) at MSFC. The space telescope was later deployed in April 1990 as the Hubble Space Telescope.

  12. Spacelab

    NASA Image and Video Library

    1977-10-13

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. Pictured is Astronaut Paul Weitz training on a mock-up of Spacelab's airlock-hatch cover. Training was also done on the use of foot restraints which had recently been developed to help astronauts maintain their positions during space walks rather than having their feet float out from underneath them while they tried to perform maintenance and repair operations. Every aspect of every space mission was researched and demonstrated in the NBS. Using the airlock hatch cover and foot restraints were just a small example of the preparation that went into each mission.

  13. Securing Safety with Sensors

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Robot Systems Technology Branch at NASA's Johnson Space Center collaborated with the Defense Advanced Research Projects Agency to design Robonaut, a humanoid robot developed to assist astronauts with Extra Vehicular Activities (EVA) such as space structure assembly and repair operations. By working side-by-side with astronauts or going where risks are too great for people, Robonaut is expected to expand the Space Agency s ability for construction and discovery. NASA engineers equipped Robonaut with human-looking, dexterous hands complete with five fingers to accomplish its tasks. The Robonaut hand is one of the first being developed for space EVA use and is the closest in size and capability to a suited astronaut s hand. As part of the development process, an advanced sensor system was needed to provide an improved method to measure the movement and forces exerted by Robonaut s forearms and hands.

  14. Students build glovebox at Space Science Center

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  15. Space flight visual simulation.

    PubMed

    Xu, L

    1985-01-01

    In this paper, based on the scenes of stars seen by astronauts in their orbital flights, we have studied the mathematical model which must be constructed for CGI system to realize the space flight visual simulation. Considering such factors as the revolution and rotation of the Earth, exact date, time and site of orbital injection of the spacecraft, as well as its orbital flight and attitude motion, etc., we first defined all the instantaneous lines of sight and visual fields of astronauts in space. Then, through a series of coordinate transforms, the pictures of the scenes of stars changing with time-space were photographed one by one mathematically. In the procedure, we have designed a method of three-times "mathematical cutting." Finally, we obtained each instantaneous picture of the scenes of stars observed by astronauts through the window of the cockpit. Also, the dynamic conditions shaded by the Earth in the varying pictures of scenes of stars could be displayed.

  16. Around Marshall

    NASA Image and Video Library

    1980-05-06

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. As part of this experimentation, the Experimental Assembly of Structures in Extravehicular Activity (EASE) project was developed as a joint effort between MFSC and the Massachusetts Institute of Technology (MIT). The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. Pictured is an entire unit that has been constructed and is sitting in the bottom of a mock-up shuttle cargo bay pallet.

  17. Neutral Buoyancy Simulator: MSFC-Langley joint test of large space structures component assembly:

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  18. Around Marshall

    NASA Image and Video Library

    1979-03-22

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  19. Around Marshall

    NASA Image and Video Library

    1977-07-13

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  20. Around Marshall

    NASA Image and Video Library

    1979-04-16

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  1. Neutral Buoyancy Test - Large Space Structure

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  2. Neutral Buoyancy Test - NB-18 - Large Space Structure Assembly

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  3. Injury Surveillance Among NASA Astronauts Using the Barell Injury Diagnosis Matrix

    NASA Technical Reports Server (NTRS)

    Murray, J. D.; Laughlin, M. S.; Eudy, D. L.; Wear, M. L.; VanBaalen, M. G.

    2014-01-01

    Astronauts perform physically demanding tasks and risk incurring musculoskeletal injuries during both groundbased training and missions. Increased injury rates throughout the history of the U.S. space program have been attributed to numerous factors, including an aging astronaut corps, increased Weightless Environment Training Facility (WETF) and Neutral Buoyancy Laboratory (NBL) training to construct the International Space Station, and improved clinical operations that promote injury prevention and reporting. With NASA program changes through the years (including retirement of the Shuttle program) and an improved training environment (including a new astronaut gym), there is no surveillance program to systematically track injury rates. A limited number of research projects have been conducted over the past 20 years to evaluate musculoskeletal injuries: (1) to evaluate orthopedic injuries from 1987 to 1995, (2) to describe upper extremity injuries, (3) to evaluate EVA spacesuit training related injuries, and (4) to evaluate in-flight musculoskeletal injuries. Nevertheless, there has been no consistently performed comprehensive assessment of musculoskeletal injuries among astronauts. The Barell Injury Diagnosis Matrix was introduced at the 2001 meeting of the International Collaborative Effort (ICE) on Injury Statistics. The Matrix proposes a standardized method of classifying body region by nature of injury. Diagnoses are coded using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) coding system. The purpose of this study is to assess the usefulness and complexity of the Barell Injury Diagnosis Matrix to classify and track musculoskeletal injuries among NASA astronauts.

  4. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia's (STS-87) first ever Extravehicular Activity (EVA), astronaut Takao Doi works with a 156-pound crane carried onboard for the first time. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the Space Station. This crane device is designed to aid future space walkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier Doi, an international mission specialist representing Japan, and astronaut Winston E. Scott, mission specialist, had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations after completing a contingency EVA to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).

  5. A mobile work station concept for mechanically aided astronaut assembly of large space trusses

    NASA Technical Reports Server (NTRS)

    Heard, W. L., Jr.; Bush, H. G.; Wallson, R. E.; Jensen, J. K.

    1983-01-01

    This report presents results of a series of truss assembly tests conducted to evaluate a mobile work station concept intended to mechanically assist astronaut manual assembly of erectable space trusses. The tests involved assembly of a tetrahedral truss beam by a pair of test subjects with and without pressure (space) suits, both in Earth gravity and in simulated zero gravity (neutral buoyancy in water). The beam was assembled from 38 identical graphite-epoxy nestable struts, 5.4 m in length with aluminum quick-attachment structural joints. Struts and joints were designed to closely simulate flight hardware. The assembled beam was approximately 16.5 m long and 4.5 m on each of the four sides of its diamond-shaped cross section. The results show that average in-space assembly rates of approximately 38 seconds per strut can be expected for struts of comparable size. This result is virtually independent of the overall size of the structure being assembled. The mobile work station concept would improve astronaut efficiency for on-orbit manual assembly of truss structures, and also this assembly-line method is highly competitive with other construction methods being considered for large space structures.

  6. Astronaut Jerry Ross on RMS holds on to ACCESS device

    NASA Image and Video Library

    1985-12-01

    61B-102-022 (1 Dec 1985) --- Astronaut Jerry L. Ross, anchored to the foot restraint on the remote manipulator system (RMS), holds onto the tower-like Assembly Concept for Construction of Erectable Space Structures (ACCESS) device, as the Atlantis flies over white clouds and blue ocean waters. The frame was exposed with a negative-equipped camera held by Astronaut Sherwood C. Spring, who was also on the EVA-task.

  7. Construction concept for erecting an offset-fed antenna

    NASA Technical Reports Server (NTRS)

    Rhodes, M. D.

    1984-01-01

    A design concept for the construction of an offset-fed antenna is discussed. Antennas of this type are of interest for space applications because the configuration eliminates the effects of feed and feed-support blockage. The proposed construction concept is developed around the assembly of a stiff truss substructure by pressure-suited astronauts operating in extravehicular activity (EVA) assisted by a mobile platform that moves along the structure to position the astronauts at joint locations where they can latch members in place. Construction can be accomplished from the shuttle cargo bay in the course of a normal flight or from a space station platform. The concepts demonstrates the versatility of machine assisted manned assembly and is only one of many potential applications.

  8. Around Marshall

    NASA Image and Video Library

    1978-07-21

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Included in the plans for the space station was a space telescope. This telescope would be attached to the space station and directed towards outerspace. Astronomers hoped that the space telescope would provide a look at space that is impossible to see from Earth because of Earth's atmosphere and other man made influences. Pictured is a large structure that is being used as the antenna base for the space telescope.

  9. Neutral Buoyancy Simulator-NB32-Assembly of Large Space Structure

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, theprospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA's Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. The MIT student in this photo is assembling two six-beam tetrahedrons.

  10. Around Marshall

    NASA Image and Video Library

    1980-01-07

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA's Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. The MIT student in this photo is assembling two six-beam tetrahedrons.

  11. Around Marshall

    NASA Image and Video Library

    1980-02-27

    Once the United States' space program had progressed from Earth's orbit into outerspace, theprospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA's Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. The MIT student in this photo is assembling two six-beam tetrahedrons.

  12. Around Marshall

    NASA Image and Video Library

    1980-07-08

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle.

  13. Inverse simulation system for evaluating handling qualities during rendezvous and docking

    NASA Astrophysics Data System (ADS)

    Zhou, Wanmeng; Wang, Hua; Thomson, Douglas; Tang, Guojin; Zhang, Fan

    2017-08-01

    The traditional method used for handling qualities assessment of manned space vehicles is too time-consuming to meet the requirements of an increasingly fast design process. In this study, a rendezvous and docking inverse simulation system to assess the handling qualities of spacecraft is proposed using a previously developed model-predictive-control architecture. By considering the fixed discrete force of the thrusters of the system, the inverse model is constructed using the least squares estimation method with a hyper-ellipsoidal restriction, the continuous control outputs of which are subsequently dispersed by pulse width modulation with sensitivity factors introduced. The inputs in every step are deemed constant parameters, and the method could be considered as a general method for solving nominal, redundant, and insufficient inverse problems. The rendezvous and docking inverse simulation is applied to a nine-degrees-of-freedom platform, and a novel handling qualities evaluation scheme is established according to the operation precision and astronauts' workload. Finally, different nominal trajectories are scored by the inverse simulation and an established evaluation scheme. The scores can offer theoretical guidance for astronaut training and more complex operation missions.

  14. View of Forrester working on ISS construction during STS-117 EVA2

    NASA Image and Video Library

    2007-06-13

    ISS015-E-12018 (13 June 2007) --- Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut Patrick Forrester, STS-117 mission specialist, participates in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and astronaut Steven Swanson (out of frame), mission specialist, removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  15. Neutral Buoyancy Simulator-NB32-Large Space Structure Assembly

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. As part of this experimentation, the Experimental Assembly of Structures in Extravehicular Activity (EASE) project was developed as a joint effort between MFSC and the Massachusetts Institute of Technology (MIT). The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. Pictured is an entire unit that has been constructed and is sitting in the bottom of a mock-up shuttle cargo bay pallet.

  16. Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007816 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  17. Foreman during Expedition 16 / STS-123 EVA 4

    NASA Image and Video Library

    2008-03-21

    ISS016-E-033394 (21 March 2008) --- Astronaut Mike Foreman, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Foreman and astronaut Robert L. Behnken (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  18. Foreman during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007832 (21 March 2008) --- Astronaut Mike Foreman, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Foreman and astronaut Robert L. Behnken (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  19. Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007907 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  20. Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007906 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  1. Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007909 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  2. Method for forming a glove attachment

    NASA Technical Reports Server (NTRS)

    Dawn, Frederic S. (Inventor); Guy, Walter W. (Inventor); Kosmo, Joseph (Inventor); Drennan, Arthur P. (Inventor); Tschirch, Richard P. (Inventor)

    1995-01-01

    An attachment principally for the palm of an astronaut glove to enhance the gripping area of the palm without detracting from the flexibility and utility of the glove is presented. The attachment is a composite construction formed from a layer of silicone rubber having an outer surface with a friction configuration and another layer of silicone rubber in which a Nomex Aramid mesh fabric is embedded prior to curing. The method of construction involves the use of a mold with a friction configuration surface. A first layer of silicone rubber or sealant is disposed in the mold and allowed to set for an hour. A second layer of silicone rubber or sealant is layered over the first layer and leveled. A Nomex Aramid mesh fabric is embedded into the second layer and the composite is permitted to cure. When cured, a configured area of the composite construction is glued or stitched to the palm area of the glove.

  3. Astronaut Exposures to Ionizing Radiation in a Lightly-Shielded Spacesuit

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.-H. Y.; Cucinotta, F. A.; Badavi, F. F.; Atwell, W.

    1999-01-01

    The normal working and living areas of the astronauts are designed to provide an acceptable level of protection against the hazards of ionizing radiation of the space environment. Still there are occasions when they must don a spacesuit designed mainly for environmental control and mobility and leave the confines of their better-protected domain. This is especially true for deep space exploration. The impact of spacesuit construction on the exposure of critical astronaut organs will be examined in the ionizing radiation environments of free space, the lunar surface and the Martian surface. The computerized anatomical male model is used to evaluate astronaut self-shielding factors and to determine space radiation exposures to critical radiosensitive human organs.

  4. Measuring space radiation shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  5. Behnken during Expedition 16 / STS-123 EVA 4

    NASA Image and Video Library

    2008-03-21

    ISS016-E-033400 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground. A portion of the Space Shuttle Endeavour payload bay is visible in the background.

  6. Astronaut Sherwood Spring on RMS checks joints on the ACCESS device

    NASA Image and Video Library

    1985-11-27

    Astronaut Sherwood C. Spring, anchored to the foot restraint on the remote manipulator system (RMS) arm, checks joints on the tower-like Assembly Concept for Construction of Erectable Space Structures (ACCESS) device extending from the payload bay as the Atlantis flies over white clouds and blue ocean waters. The Gulf of Mexico waters form the backdrop for the scene.

  7. Tanner poses by the Floating Potential Probe during the third EVA of STS-97

    NASA Image and Video Library

    2000-12-07

    STS097-377-006 (7 December 2000) --- --- Space walking Endeavour astronauts topped off their scheduled space walk activities with an image of an evergreen tree (left) placed atop the P6 solar array structure, the highest point in their construction project. Astronaut Joseph R. Tanner, mission specialist, then posed for this photo with the "tree" before returning to the shirt-sleeve environment of the Space Shuttle Endeavour. Astronaut Carlos I. Noriega, mission specialist who shared three STS-97 space walks with Tanner, took the photo with a 35mm camera.

  8. Mortality Due to Cardiovascular Disease Among Apollo Lunar Astronauts.

    PubMed

    Reynolds, Robert J; Day, Steven M

    2017-05-01

    Recent research has postulated increased cardiovascular mortality for astronauts who participated in the Apollo lunar missions. The conclusions, however, are based on small numbers of astronauts, are derived from methods with known weaknesses, and are not consistent with prior research. Records for NASA astronauts and U.S. Air Force astronauts were analyzed to produce standardized mortality ratios. Lunar astronauts were compared to astronauts who have never flown in space (nonflight astronauts), those who have only flown missions in low Earth orbit (LEO astronauts), and the U.S. general population. Lunar astronauts were significantly older at cohort entry than other astronaut group and lunar astronauts alive as of the end of 2015 were significantly older than nonflight astronauts and LEO astronauts. No significant differences in cardiovascular disease (CVD) mortality rates between astronaut groups was observed, though lunar astronauts were noted to be at significantly lower risk of death by CVD than are members of the U.S. general population (SMR = 13, 95% CI = 3-39). The differences in age structure between lunar and nonlunar astronauts and the deaths of LEO astronauts from external causes at young ages lead to confounding in proportional mortality studies of astronauts. When age and follow-up time are properly taken into account using cohort-based methods, no significant difference in CVD mortality rates is observed. Care should be taken to select the correct study design, outcome definition, exposure classification, and analysis when answering questions involving rare occupational exposures.Reynolds RJ, Day SM. Mortality due to cardiovascular disease among Apollo lunar astronauts. Aerosp Med Hum Perform. 2017; 88(5):492-496.

  9. KSC-07pd0306

    NASA Image and Video Library

    2007-02-06

    KENNEDY SPACE CENTER, FLA. -- On the floor of the Space Station Processing Facility, astronauts Dan Tani (left) and Peggy Whitson practice working with a cover, something they may handle during an upcoming shuttle flight. With construction of the Space Station the primary focus of future shuttle missions, astronaut crews will be working with one or more of the elements and hardware already being processed in the SSPF. Photo credit: NASA/Kim Shiflett

  10. Walheim and Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008200 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel (top) and NASA astronaut Rex Walheim, both STS-122 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Walheim and Schlegel worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  11. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008315 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  12. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008195 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  13. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008325 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  14. Walheim and Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008199 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel (right) and NASA astronaut Rex Walheim, both STS-122 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Walheim and Schlegel worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  15. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008219 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  16. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047827 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  17. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008906 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  18. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009312 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  19. Reisman during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047841 (21 May 2010) --- NASA astronaut Garrett Reisman, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Reisman and NASA astronaut Michael Good (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  20. Reisman during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047842 (21 May 2010) --- NASA astronaut Garrett Reisman, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Reisman and NASA astronaut Michael Good (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  1. Reisman during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047855 (21 May 2010) --- NASA astronaut Garrett Reisman, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Reisman and NASA astronaut Michael Good (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  2. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047864 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  3. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047845 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  4. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047833 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  5. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047828 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  6. Conducting Rock Mass Rating for tunnel construction on Mars

    NASA Astrophysics Data System (ADS)

    Beemer, Heidi D.; Worrells, D. Scott

    2017-10-01

    Mars analogue missions provide researchers, scientists, and engineers the opportunity to establish protocols prior to sending human explorers to another planet. This paper investigated the complexity of a team of simulation astronauts conducting a Rock Mass Rating task during Analogue Mars missions. This study was conducted at the Mars Desert Research Station in Hanksville, UT, during field season 2015/2016 and with crews 167,168, and 169. During the experiment, three-person teams completed a Rock Mass Rating task during a three hour Extra Vehicular Activity on day six of their two-week simulation mission. This geological test is used during design and construction of excavations in rock on Earth. On Mars, this test could be conducted by astronauts to determine suitable rock layers for tunnel construction which would provide explorers a permanent habitat and radiation shielding while living for long periods of time on the surface. The Rock Mass Rating system derives quantitative data for engineering designs that can easily be communicated between engineers and geologists. Conclusions from this research demonstrated that it is feasible for astronauts to conduct the Rock Mass Rating task in a Mars simulated environment. However, it was also concluded that Rock Mass Rating task orientation and training will be required to ensure that accurate results are obtained.

  7. Synthesis of ethological studies on behavioural adaptation of the astronaut to space flight conditions

    NASA Astrophysics Data System (ADS)

    Tafforin, Carole

    The motor behaviour of the astronaut as revealed in his movement, posture and orientation is treated as observable evidence of the subject's adaptation to space flight conditions. In addition to the conservative physiological homeostasies, the quantitative description of the astronaut's motor activity in microgravity is postulated in terms of an innovative regulation, within a temporal dynamic. The proposed ethological method consists of first drawing up a specific behavioural repertoire and then of using video recordings of space missions to describe each of the behavioural units observed in the ongoing flux context in which it occurred. Finally the data is quantified into frequencies of occurrence, transition and association and completed with factorial correlation analysis. Comparison of ground training ( g = 1) and space flight ( g = 0) between the first and last day of a mission up to return to Earth gravity simulated by an anti-orthostatic decubitus experiment, reveals the nature of the adaptive strategies implemented. These strategies are evidence of changes in the behavioural repertoire including the search for predominantly visual environmental cues and the progression of motor skill during the flight. The pre-flight period is defined as a phase involving automizing of motor patterns and the post-flight period as rehabituation of strategies which have already been acquired. The phenomena observed are discussed in terms of the new spatial representation and the body image, constructed by the astronaut during his adaptation. They are considered to be optimizing for the subject's relation to his environment.

  8. The astronaut and the banana peel: An EVA retriever scenario

    NASA Technical Reports Server (NTRS)

    Shapiro, Daniel G.

    1989-01-01

    To prepare for the problem of accidents in Space Station activities, the Extravehicular Activity Retriever (EVAR) robot is being constructed, whose purpose is to retrieve astronauts and tools that float free of the Space Station. Advanced Decision Systems is at the beginning of a project to develop research software capable of guiding EVAR through the retrieval process. This involves addressing problems in machine vision, dexterous manipulation, real time construction of programs via speech input, and reactive execution of plans despite the mishaps and unexpected conditions that arise in uncontrolled domains. The problem analysis phase of this work is presented. An EVAR scenario is used to elucidate major domain and technical problems. An overview of the technical approach to prototyping an EVAR system is also presented.

  9. Using an Informative Missing Data Model to Predict the Ability to Assess Recovery of Balance Control after Spaceflight

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Wood, Scott J.; Jain, Varsha

    2008-01-01

    Astronauts show degraded balance control immediately after spaceflight. To assess this change, astronauts' ability to maintain a fixed stance under several challenging stimuli on a movable platform is quantified by "equilibrium" scores (EQs) on a scale of 0 to 100, where 100 represents perfect control (sway angle of 0) and 0 represents data loss where no sway angle is observed because the subject has to be restrained from falling. By comparing post- to pre-flight EQs for actual astronauts vs. controls, we built a classifier for deciding when an astronaut has recovered. Future diagnostic performance depends both on the sampling distribution of the classifier as well as the distribution of its input data. Taking this into consideration, we constructed a predictive ROC by simulation after modeling P(EQ = 0) in terms of a latent EQ-like beta-distributed random variable with random effects.

  10. The Hazard of an Explosion of the ARIANE 5 Launcher- The Risks for the Astronauts Sitting on the Ejector Seats

    DTIC Science & Technology

    1990-08-30

    velocities (a first approach). In a first step, we <<construct>> the launcher. A launcher is composed of structures (propellant reservoirs for example... structures and the unburnt propellant included in the cone C, are all part of the fragments’ <<environment>> (Fig. 3). Its D mass W,is concentrated on the...dynamic fluid- structure interactions*. Computer Methods in Applied Mechanics And Engineering 33 (1982) 689-723. 1151 M. ECK, M.MUKUNDA : <<Predicting

  11. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008221 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, works on the new Columbus laboratory as he participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  12. Space Shuttle Project

    NASA Image and Video Library

    1997-11-19

    Onboard Space Shuttle Columbia's (STS-87) first ever Extravehicular Activity (EVA), astronaut Takao Doi works with a 156-pound crane carried onboard for the first time. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the Space Station. This crane device is designed to aid future space walkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier Doi, an international mission specialist representing Japan, and astronaut Winston E. Scott, mission specialist, had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations after completing a contingency EVA to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).

  13. A Tribute to National Aeronautics and Space Administration Minority Astronauts: Past and Present

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has been selecting astronauts since 1959. The first group was called the "Mercury Seven." These seven men were chosen because of their performance as military officers and test pilots, their character, their intelligence, and their guts. Six of these seven flew in the Mercury capsule. Several additional groups were chosen between 1959 and 1978. It was an exciting period in the American space program. Many of these astronauts participated in the Gemini and Apollo programs, traveled and walked on the Moon, docked with the Russians during the Apollo-Soyuz Test Project, and occupied America's first space station, the Skylab. With the onset of the Space Shuttle, a new era began. The astronauts selected in 19 78 broke the traditional mold. For the first time, minorities and women became part of America's astronaut corps. Since then, eight additional groups have been selected, with an increasing mix of African American, Hispanic, Latino, Asian/Pacific Islander, and Native American men and women. These astronauts will continue the American space program into the new millennium by continuing flights on the Space Shuttle and participating in the construction and occupancy of the International Space Station. These astronauts, and those who will be chosen in the future, will lead America and its partners to future voyages beyond the influence of Earth's gravity.

  14. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021529 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  15. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065720 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  16. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021537 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  17. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065722 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  18. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021515 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  19. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021506 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  20. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021503 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  1. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021535 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  2. Behnken during EVA 2

    NASA Image and Video Library

    2010-02-14

    S130-E-007858 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission’s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  3. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021525 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  4. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065731 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  5. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021510 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  6. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065750 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  7. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065758 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  8. Behnken during EVA 2

    NASA Image and Video Library

    2010-02-14

    S130-E-007862 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission’s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  9. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065751 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  10. Tani during EVA 14

    NASA Image and Video Library

    2008-01-30

    ISS016-E-026454 (30 Jan. 2008) --- Astronaut Daniel Tani, Expedition 16 flight engineer, participates in a session of extravehicular activity (EVA) as maintenance and construction continue on the International Space Station. During the 7-hour, 10-minute spacewalk, Tani and astronaut Peggy Whitson (out of frame), commander, replaced a motor, known as the Bearing Motor Roll Ring Module (BMRRM), at the base of one of the station's solar wings. The BMRRM is part of the Beta Gimbal Assembly, which experienced electrical failures Dec. 8.

  11. Whitson during EVA 13

    NASA Image and Video Library

    2007-12-18

    ISS016-E-017370 (18 Dec. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA). During the 6-hour, 56-minute spacewalk, Whitson and astronaut Daniel Tani (out of frame), flight engineer, looked for the cause of partial loss of electrical power to one of the International Space Station's two Beta Gimbal Assemblies (BGA) for starboard solar wings and examined damage to the starboard Solar Alpha Rotary Joint (SARJ). The spacewalk was the 100th for the construction and maintenance of the station.

  12. STS-117 Astronauts Patrick Forrester and Steven Swanson During EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-117 astronauts and mission specialists Patrick Forrester and Steven Swanson (out of frame), participated in the second Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two removed all of the launch locks holding the 10 foot wide solar alpha rotary joint in place and began the solar array retraction. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4).

  13. EVA 3 - Wheelock on Destiny laboratory module

    NASA Image and Video Library

    2007-10-30

    S120-E-007581 (30 Oct. 2007) --- Astronaut Doug Wheelock, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Wheelock and astronaut Scott Parazynski (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks.

  14. Bowen works electric batteries during EVA 1

    NASA Image and Video Library

    2010-05-17

    S132-E-008102 (17 May 2010) --- NASA astronaut Steve Bowen, STS-132 mission specialist, participates in the mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 25-minute spacewalk, Bowen and NASA astronaut Garrett Reisman (out of frame), mission specialist, loosened bolts holding six replacement batteries, installed a second antenna for high-speed Ku-band transmissions and adding a spare parts platform to Dextre, a two-armed extension for the station’s robotic arm.

  15. The Design, Planning and Control of Robotic Systems in Space

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1996-01-01

    In the future, robotic systems will be expected to perform important tasks in space, in orbit and in planetary exploration. In orbit, current technology requires that tasks such as the repair, construction and maintenance of space stations and satellites be performed by astronaut Extra Vehicular Activity (EVA). Eliminating the need for astronaut EVA through the use of space manipulators would greatly reduce both mission costs and hazards to astronauts. In planetary exploration, cost and logistical considerations clearly make the use of autonomous and telerobotic systems also very attractive, even in cases where an astronaut explorer might be in the area. However, such applications introduce a number of technical problems not found in conventional earth-bound industrial robots. To design useful and practical systems to meet the needs of future space missions, substantial technical development is required, including in the areas of the design, control and planning. The objectives of this research program were to develop such design paradigms and control and planning algorithms to enable future space robotic systems to meet their proposed mission objectives. The underlying intellectual focus of the program is to construct a set of integrated design, planning and control techniques based on an understanding of the fundamental mechanics of space robotic systems. This work was to build upon the results obtained in our previous research in this area supported by NASA Langley Research Center in which we have made important contributions to the area of space robotics.

  16. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation

    PubMed Central

    Sun, Wenjuan; JIA, Xianghong; XIE, Tianwu; XU, Feng; LIU, Qian

    2013-01-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 × 2 × 4 mm3for radioactive particle transport simulations from isotropic protons with energies of 5000–10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). PMID:23135158

  17. Love during EVA 1

    NASA Image and Video Library

    2008-02-11

    S122-E-007850 (11 Feb. 2008) --- Astronaut Stanley Love, STS-122 mission specialist, participates in the first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the almost eight-hour spacewalk, Love and astronaut Rex Walheim (out of frame), mission specialist, installed a grapple fixture on the Columbus laboratory and prepared electrical and data connections on the module while it rested inside Space Shuttle Atlantis' payload bay. The crewmembers also began work to replace a large nitrogen tank used for pressurizing the station's ammonia cooling system.

  18. Love during EVA 1

    NASA Image and Video Library

    2008-02-11

    S122-E-007853 (11 Feb. 2008) --- Astronaut Stanley Love, STS-122 mission specialist, participates in the first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the almost eight-hour spacewalk, Love and astronaut Rex Walheim (out of frame), mission specialist, installed a grapple fixture on the Columbus laboratory and prepared electrical and data connections on the module while it rested inside Space Shuttle Atlantis' payload bay. The crewmembers also began work to replace a large nitrogen tank used for pressurizing the station's ammonia cooling system.

  19. Love during EVA 1

    NASA Image and Video Library

    2008-02-11

    S122-E-007771 (11 Feb. 2008) --- Astronaut Stanley Love, STS-122 mission specialist, participates in the first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the almost eight-hour spacewalk, Love and astronaut Rex Walheim (out of frame), mission specialist, installed a grapple fixture on the Columbus laboratory and prepared electrical and data connections on the module while it rested inside Space Shuttle Atlantis' payload bay. The crewmembers also began work to replace a large nitrogen tank used for pressurizing the station's ammonia cooling system.

  20. Love during EVA 1

    NASA Image and Video Library

    2008-02-11

    S122-E-007794 (11 Feb. 2008) --- Astronaut Stanley Love, STS-122 mission specialist, participates in the first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the almost eight-hour spacewalk, Love and astronaut Rex Walheim (out of frame), mission specialist, installed a grapple fixture on the Columbus laboratory and prepared electrical and data connections on the module while it rested inside Space Shuttle Atlantis' payload bay. The crewmembers also began work to replace a large nitrogen tank used for pressurizing the station's ammonia cooling system.

  1. STS-118 Astronaut Williams and Expedition 15 Engineer Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Dave Williams, representing the Canadian Space Agency, participated in the fourth and final session of Extra Vehicular Activity (EVA). During the 5 hour space walk, Williams and Expedition 15 engineer Clay Anderson (out of frame) installed the External Wireless Instrumentation System Antenna, attached a stand for the shuttle robotic arm extension boom, and retrieved the two Materials International Space Station Experiments (MISSE) for return to Earth. MISSE collects information on how different materials weather in the environment of space.

  2. Bowen works with the Battery ORUs during EVA 1

    NASA Image and Video Library

    2010-05-17

    S132-E-008106 (17 May 2010) --- NASA astronaut Steve Bowen, STS-132 mission specialist, participates in the mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 25-minute spacewalk, Bowen and NASA astronaut Garrett Reisman (out of frame), mission specialist, loosened bolts holding six replacement batteries, installed a second antenna for high-speed Ku-band transmissions and adding a spare parts platform to Dextre, a two-armed extension for the station’s robotic arm.

  3. Bowen works with the Battery ORUs during EVA 1

    NASA Image and Video Library

    2010-05-17

    S132-E-008100 (17 May 2010) --- NASA astronaut Steve Bowen, STS-132 mission specialist, participates in the mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 25-minute spacewalk, Bowen and NASA astronaut Garrett Reisman (out of frame), mission specialist, loosened bolts holding six replacement batteries, installed a second antenna for high-speed Ku-band transmissions and adding a spare parts platform to Dextre, a two-armed extension for the station’s robotic arm.

  4. Tani during EVA 14

    NASA Image and Video Library

    2008-01-30

    ISS016-E-026022 (30 Jan. 2008) --- The face of astronaut Daniel Tani, Expedition 16 flight engineer, is easily recognizable as he participates in a session of extravehicular activity (EVA) as maintenance and construction continue on the International Space Station. During the 7-hour, 10-minute spacewalk, Tani and astronaut Peggy Whitson (out of frame), commander, replaced a motor, known as the Bearing Motor Roll Ring Module (BMRRM), at the base of one of the station's solar wings. The BMRRM is part of the Beta Gimbal Assembly, which experienced electrical failures Dec. 8.

  5. Shuttle Space Suit: Fabric/LCVG Model Validation. Chapter 8

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tweed, J.; Zeitlin, C.; Kim, M.-H. Y.; Anderson, B. M.; Cucinotta, F. A.; Ware, J.; Persans, A. E.

    2003-01-01

    A detailed space suit computational model is being developed at the Langley Research Center for radiation exposure evaluation studies. The details of the construction of the space suit are critical to estimation of exposures and assessing the risk to the astronaut on EVA. Past evaluations of space suit shielding properties assumed the basic fabric layup (Thermal Micrometeoroid Garment, fabric restraints, and pressure envelope) and LCVG could be homogenized as a single layer overestimating the protective properties over 60 percent of the fabric area. The present space suit model represents the inhomogeneous distributions of LCVG materials (mainly the water filled cooling tubes). An experimental test is performed using a 34-MeV proton beam and high-resolution detectors to compare with model-predicted transmission factors. Some suggestions are made on possible improved construction methods to improve the space suit s protection properties.

  6. Shuttle Spacesuit: Fabric/LCVG Model Validation

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tweed, J.; Zeitlin, C.; Kim, M.-H. Y.; Anderson, B. M.; Cucinotta, F. A.; Ware, J.; Persans, A. E.

    2001-01-01

    A detailed spacesuit computational model is being developed at the Langley Research Center for radiation exposure evaluation studies. The details of the construction of the spacesuit are critical to estimation of exposures and assessing the risk to the astronaut on EVA. Past evaluations of spacesuit shielding properties assumed the basic fabric lay-up (Thermal Micrometeroid Garment, fabric restraints, and pressure envelope) and Liquid Cooling and Ventilation Garment (LCVG) could be homogenized as a single layer overestimating the protective properties over 60 percent of the fabric area. The present spacesuit model represents the inhomogeneous distributions of LCVG materials (mainly the water filled cooling tubes). An experimental test is performed using a 34-MeV proton beam and highresolution detectors to compare with model-predicted transmission factors. Some suggestions are made on possible improved construction methods to improve the spacesuit's protection properties.

  7. A glimpse from the inside of a space suit: What is it really like to train for an EVA?

    NASA Astrophysics Data System (ADS)

    Gast, Matthew A.; Moore, Sandra K.

    2011-01-01

    The beauty of the view from the office of a spacewalking astronaut gives the impression of simplicity, but few beyond the astronauts, and those who train them, know what it really takes to get there. Extravehicular Activity (EVA) training is an intense process that utilizes NASA's Neutral Buoyancy Laboratory (NBL) to develop a very specific skill set needed to safely construct and maintain the orbiting International Space Station. To qualify for flight assignments, astronauts must demonstrate the ability to work safely and efficiently in the physically demanding environment of the space suit, possess an acute ability to resolve unforeseen problems, and implement proper tool protocols to ensure no tools will be lost in space. Through the insights and the lessons learned by actual EVA astronauts and EVA instructors, this paper will take you on a journey through an astronaut's earliest experiences working in the space suit, termed the Extravehicular Mobility Unit (EMU), in the underwater training environment of the NBL. This work details an actual Suit Qualification NBL training event, outlines the numerous challenges the astronauts face throughout their initial training, and the various ways they adapt their own abilities to overcome them. The goal of this paper is to give everyone a small glimpse into what it is really like to work in a space suit.

  8. A Glimpse from the Inside of a Space Suit: What Is It Really Like to Train for an EVA?

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.; Moore, Sandra K.

    2009-01-01

    The beauty of the view from the office of a spacewalking astronaut gives the impression of simplicity, but few beyond the astronauts, and those who train them, know what it really takes to get there. Extravehicular Activity (EVA) training is an intense process that utilizes NASA's Neutral Buoyancy Laboratory (NBL) to develop a very specific skill set needed to safely construct and maintain the orbiting International Space Station. To qualify for flight assignments, astronauts must demonstrate the ability to work safely and efficiently in the physically demanding environment of the spacesuit, possess an acute ability to resolve unforeseen problems, and implement proper tool protocols to ensure no tools will be lost in space. Through the insights and the lessons learned by actual EVA astronauts and EVA instructors, this paper twill take you on a journey through an astronaut's earliest experiences working in the spacesuit. termed the Extravehicular Mobility Unit (EMU), in the underwater training environment of the NBL. This work details an actual Suit Qualification NBL training event, outlines the numerous challenges the astronauts face throughout their initial training, and the various ways they adapt their own abilities to overcome them. The goal of this paper is to give everyone a small glimpse into what it is really like to work in a spacesuit.

  9. Starshade Assembly Enabled by the Deep Space Gateway Architecture

    NASA Astrophysics Data System (ADS)

    Grunsfeld, J. M.; Siegler, N.; Mukherjee, R.

    2018-02-01

    A starshade is a large external coronagraph which will allow the direct imaging and analysis of planets around nearby stars. We present how the Deep Space Gateway would enable the robotic/astronaut construction of a starshade.

  10. University role in astronaut life support systems: Portable thermal control systems

    NASA Technical Reports Server (NTRS)

    Ephrath, A. R.

    1971-01-01

    One of the most vital life support systems is that used to provide the astronaut with an adequate thermal environment. State-of-the-art techniques are reviewed for collecting and rejecting excess heat loads from the suited astronaut. Emphasis is placed on problem areas which exist and which may be suitable topics for university research. Areas covered include thermal control requirements and restrictions, methods of heat absorption and rejection or storage, and comparison between existing methods and possible future techniques.

  11. Hey! What's Space Station Freedom?

    NASA Technical Reports Server (NTRS)

    Vonehrenfried, Dutch

    1992-01-01

    This video, 'Hey! What's Space Station Freedom?', has been produced as a classroom tool geared toward middle school children. There are three segments to this video. Segment One is a message to teachers presented by Dr. Jeannine Duane, New Jersey, 'Teacher in Space'. Segment Two is a brief Social Studies section and features a series of Presidential Announcements by President John F. Kennedy (May 1961), President Ronald Reagan (July 1982), and President George Bush (July 1989). These historical announcements are speeches concerning the present and future objectives of the United States' space programs. In the last segment, Charlie Walker, former Space Shuttle astronaut, teaches a group of middle school children, through models, computer animation, and actual footage, what Space Station Freedom is, who is involved in its construction, how it is to be built, what each of the modules on the station is for, and how long and in what sequence this construction will occur. There is a brief animation segment where, through the use of cartoons, the children fly up to Space Station Freedom as astronauts, perform several experiments and are given a tour of the station, and fly back to Earth. Space Station Freedom will take four years to build and will have three lab modules, one from ESA and another from Japan, and one habitation module for the astronauts to live in.

  12. Hey] What's Space Station Freedom?

    NASA Astrophysics Data System (ADS)

    Vonehrenfried, Dutch

    This video, 'Hey] What's Space Station Freedom?', has been produced as a classroom tool geared toward middle school children. There are three segments to this video. Segment One is a message to teachers presented by Dr. Jeannine Duane, New Jersey, 'Teacher in Space'. Segment Two is a brief Social Studies section and features a series of Presidential Announcements by President John F. Kennedy (May 1961), President Ronald Reagan (July 1982), and President George Bush (July 1989). These historical announcements are speeches concerning the present and future objectives of the United States' space programs. In the last segment, Charlie Walker, former Space Shuttle astronaut, teaches a group of middle school children, through models, computer animation, and actual footage, what Space Station Freedom is, who is involved in its construction, how it is to be built, what each of the modules on the station is for, and how long and in what sequence this construction will occur. There is a brief animation segment where, through the use of cartoons, the children fly up to Space Station Freedom as astronauts, perform several experiments and are given a tour of the station, and fly back to Earth. Space Station Freedom will take four years to build and will have three lab modules, one from ESA and another from Japan, and one habitation module for the astronauts to live in.

  13. Psychological Selection of NASA Astronauts for International Space Station Missions

    NASA Technical Reports Server (NTRS)

    Galarza, Laura

    1999-01-01

    During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.

  14. What it takes to Fly in Space...Training to be an Astronaut and Daily Operations on ISS

    NASA Technical Reports Server (NTRS)

    Ham, Michelle

    2009-01-01

    This presentation highlights NASA requirements to become an astronaut, training astronauts must do to fly on the International Space Station (ISS), systems and other training, and day-to-day activities onboard ISS. Additionally, stowage, organization and methods of communication (email, video conferenceing, IP phone) are discussed.

  15. Robotic space construction

    NASA Technical Reports Server (NTRS)

    Mixon, Randolph W.; Hankins, Walter W., III; Wise, Marion A.

    1988-01-01

    Research at Langley AFB concerning automated space assembly is reviewed, including a Space Shuttle experiment to test astronaut ability to assemble a repetitive truss structure, testing the use of teleoperated manipulators to construct the Assembly Concept for Construction of Erectable Space Structures I truss, and assessment of the basic characteristics of manipulator assembly operations. Other research topics include the simultaneous coordinated control of dual-arm manipulators and the automated assembly of candidate Space Station trusses. Consideration is given to the construction of an Automated Space Assembly Laboratory to study and develop the algorithms, procedures, special purpose hardware, and processes needed for automated truss assembly.

  16. STS-119 Extravehicular Activity (EVA) 1 Translate and Ingress

    NASA Image and Video Library

    2009-03-19

    S119-E-006688 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  17. STS-119 Extravehicular Activity (EVA) 1 Arnold in EMU

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041089 (19 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Arnold and astronaut Steve Swanson (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  18. Whitson during EVA 13

    NASA Image and Video Library

    2007-12-18

    ISS016-E-017499 (18 Dec. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA). During the 6-hour, 56-minute spacewalk, Whitson and astronaut Daniel Tani (out of frame), flight engineer, looked for the cause of partial loss of electrical power to one of the International Space Station's two Beta Gimbal Assemblies (BGA) for starboard solar wings and examined damage to the starboard Solar Alpha Rotary Joint (SARJ). The spacewalk was the 100th for the construction and maintenance of the station. A blue and white Earth provides the background for the scene.

  19. Whitson during EVA 13

    NASA Image and Video Library

    2007-12-18

    ISS016-E-017501 (18 Dec. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA). During the 6-hour, 56-minute spacewalk, Whitson and astronaut Daniel Tani (out of frame), flight engineer, looked for the cause of partial loss of electrical power to one of the International Space Station's two Beta Gimbal Assemblies (BGA) for starboard solar wings and examined damage to the starboard Solar Alpha Rotary Joint (SARJ). The spacewalk was the 100th for the construction and maintenance of the station. A blue and white Earth provides the background for the scene.

  20. Reilly on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-12

    S117-E-06912 (11 June 2007) --- Astronaut Jim Reilly, STS-117 mission specialist, participates in the mission's first planned session of extravehicular activity (EVA) as construction continues on the International Space Station. Among other tasks, Reilly and astronaut John "Danny" Olivas (out of frame), connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4. Earth's horizon and the blackness of space provide the backdrop for the scene.

  1. EVA 3 - P6 truss and arrays

    NASA Image and Video Library

    2007-10-30

    S120-E-007426 (30 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Parazynski and astronaut Doug Wheelock (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks. Also, Parazynski inspected the port Solar Alpha Rotary Joint (SARJ) to gather comparison data for the starboard rotary joint.

  2. EVA 3 - P6 truss and arrays

    NASA Image and Video Library

    2007-10-30

    S120-E-007424 (30 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Parazynski and astronaut Doug Wheelock (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks. Also, Parazynski inspected the port Solar Alpha Rotary Joint (SARJ) to gather comparison data for the starboard rotary joint.

  3. Parazynski during EVA 3

    NASA Image and Video Library

    2007-10-30

    ISS016-E-007423 (30 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Parazynski and astronaut Doug Wheelock (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks. Also, Parazynski inspected the port Solar Alpha Rotary Joint (SARJ) to gather comparison data for the starboard rotary joint.

  4. STS-118 Astronauts Rick Mastracchio and Clay Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist Rick Mastracchio was anchored on the foot restraint of the Canadarm2 as he participated in the third session of Extra Vehicular Activity (EVA) for the mission. Assisting Mastracchio was Expedition 15 flight engineer Clay Anderson (out of frame). During the 5 hour, 28 minute space walk, the two relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) truss to the Port 1 (P1) truss, installed a new transponder on P1 and retrieved the P6 transponder.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-07-01

    Astronaut Michael L. Gernhardt, STS-104 mission specialist, participates in one of three STS-104 space walks while holding on to the end effector of the Canadarm on the Space Shuttle Atlantis. Gernhardt was joined on the extravehicular activity (EVA) by astronaut James F. Reilly (out of frame). The major objective of the mission was to install and activate the Joint Airlock, which completed the second phase of construction on the International Space Station (ISS). The airlock accommodates both United States and Russian space suits and was designed and built at the Marshall Space Flight Center by the Boeing Company.

  6. Validation of astronaut psychological select-in criteria

    NASA Technical Reports Server (NTRS)

    Rose, R. M.; Helmreich, R. L.; Mcfadden, T.; Santy, P. A.; Holland, A. W.

    1992-01-01

    An optional astronaut selection strategy would select-in individuals on the basis of personality attributes associated with superior performance. Method: A test battery, the Astronaut Personal Characteristics Inventory (ASTROPCI) was developed which assesses positive and negative components of achievement, motivation, and interpersonal orientations and skills. The battery was administered to one hundred three astronaut candidates and sixty-six current U.S. Shuttle astronauts. To determine performance, a series of conceptual areas related to space flight performance were defined. Astronauts rated their peers on each of these dimensions. Ratings were obtained on all eighty-four current astronauts (excluding those selected in 1990). In addition to peer ratings, supervisor assessments of the same dimensions were obtained for each astronaut. Results: Cluster and factor analysis techniques were employed to isolate subgroups of astronauts. Those astronauts with both high achievement needs and interpersonal skills were most often rated among the top five by their peers and least often rated among the lowest five. A number of scales discriminated between astronauts rated high and low on one or more performance dimensions. Conclusions: The results parallel findings from the personality assessment of individuals in other demanding professions, including aircraft pilots and research scientists, suggesting that personality factors are significant determinants to performance in the space environment.

  7. Comprehensive analysis of the skin fungal microbiota of astronauts during a half-year stay at the International Space Station.

    PubMed

    Sugita, Takashi; Yamazaki, Takashi; Makimura, Koichi; Cho, Otomi; Yamada, Shin; Ohshima, Hiroshi; Mukai, Chiaki

    2016-03-01

    The International Space Station (ISS) is a huge manned construct located approximately 400 km above the earth and is inhabited by astronauts performing space experiments. Because the station is within a closed microgravity environment, the astronauts are subject to consistent stress. This study analyzed the temporal changes in the skin fungal microbiota of 10 astronauts using pyrosequencing and quantitative PCR assay before, during, and after their stay in the ISS. Lipophilic skin fungi, Malassezia predominated most samples regardless of the collection period, body site (cheek or chest), or subject. During their stay in the ISS, the level of Malassezia colonization changed by 7.6- ± 7.5-fold (mean ± standard deviation) and 9.5- ± 24.2-fold in cheek and chest samples, respectively. At the species level, M. restricta, M. globosa, and M. sympodialis were more abundant. In the chest samples, the ratio of M. restricta to all Malassezia species increased, whereas it did not change considerably in cheek samples. Fungal diversity was reduced, and the ratio of Malassezia to all fungal colonization increased during the astronauts' stay at the ISS. The ascomycetous yeast Cyberlindnera jadinii was detected in abundance in the in-flight sample of 5 of the 10 astronauts. The microorganism may have incidentally adhered to the skin during the preflight period and persisted on the skin thereafter. This observation suggests the ability of a specific or uncommon microorganism to proliferate in a closed environment. Our study is the first to reveal temporal changes in the skin fungal microbiota of ISS astronauts. These findings will provide information useful for maintaining the health of astronauts staying in the space environment for long periods and for preventing infection due to the human skin microbiota. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. The space telescope

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers concerning the development of the Space Telescope which were presented at the Twenty-first Annual Meeting of the American Astronautical Society in August, 1975 are included. Mission planning, telescope performance, optical detectors, mirror construction, pointing and control systems, data management, and maintenance of the telescope are discussed.

  9. Curbeen during first EVA

    NASA Image and Video Library

    2006-12-13

    ISS014-E-09523 (12 Dec. 2006) --- Astronaut Robert L. Curbeam, Jr., STS-116 mission specialist, participates in the mission's first of three planned sessions of extravehicular activity (EVA) as construction resumes on the International Space Station. A power tool, attached to Curbeam's spacesuit, floats at left.

  10. Astronaut Ross Approaches Assembly Concept for Construction of Erectable Space Structure (ACCESS)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross, perched on the Manipulator Foot Restraint (MFR) approaches the erected ACCESS. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  11. STS-61B Astronaut Ross Works on Assembly Concept for Construction of Erectable Space Structure

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo astronaut Ross, located on the Manipulator Foot Restraint (MFR) over the cargo bay, erects ACCESS. The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  12. STS-119 Extravehicular Activity (EVA) 1 S6 Truss Umbilical Mate OPS

    NASA Image and Video Library

    2009-03-19

    S119-E-006674 (19 March 2009) --- Astronaut Steve Swanson (center), STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  13. STS-119 Extravehicular Activity (EVA) 1 Swanson in Extravehicular Mobility Unit (EMU)

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041093 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  14. STS-119 Extravehicular Activity (EVA) 1 Swanson in Extravehicular Mobility Unit (EMU)

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041098 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  15. STS-119 Extravehicular Activity (EVA) 1 Swanson waves to camera

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041084 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  16. STS-119 Extravehicular Activity (EVA) 1 S6 Truss Umbilical Mate OPS

    NASA Image and Video Library

    2009-03-19

    S119-E-006675 (19 March 2009) --- Astronaut Steve Swanson (center right), STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  17. Drew during EVA-1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030930 (28 Feb. 2011) --- NASA astronaut Alvin Drew, STS-133 mission specialist, participates in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Drew and NASA astronaut Steve Bowen (out of frame), mission specialist, installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  18. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009074 (21 May 2010) --- NASA astronauts Michael Good (left) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  19. Drew during EVA-1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030929 (28 Feb. 2011) --- NASA astronaut Alvin Drew, STS-133 mission specialist, participates in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Drew and NASA astronaut Steve Bowen (out of frame), mission specialist, installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  20. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009283 (21 May 2010) --- NASA astronauts Michael Good (top center) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  1. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009246 (21 May 2010) --- NASA astronauts Michael Good and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  2. Bowen and Drew durring EVA 1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030869 (28 Feb. 2011) --- NASA astronaut Steve Bowen, STS-133 mission specialist, participates in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Bowen and NASA astronaut Alvin Drew (out of frame), mission specialist, installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  3. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009253 (21 May 2010) --- NASA astronauts Michael Good (left) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  4. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008866 (21 May 2010) --- NASA astronauts Michael Good and Garrett Reisman (partially obscured), both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  5. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009255 (21 May 2010) --- NASA astronauts Michael Good (bottom center) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  6. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008863 (21 May 2010) --- NASA astronauts Garrett Reisman (right) and Michael Good, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  7. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009298 (21 May 2010) --- NASA astronauts Michael Good (partially obscured at left) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  8. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008868 (21 May 2010) --- NASA astronauts Michael Good and Garrett Reisman (partially obscured), both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  9. Good and Reisman during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-049791 (21 May 2010) --- NASA astronauts Garrett Reisman (bottom) and Michael Good, both STS-132 mission specialists, participate in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Reisman and Good completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  10. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009242 (21 May 2010) --- NASA astronauts Michael Good (left) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  11. STS-128 EVA 1 MISSE 6 Relocation OPS

    NASA Image and Video Library

    2009-09-02

    S128-E-007230 (1 Sept. 2009) --- Astronaut Nicole Stott, Expedition 20 flight engineer, participates in the STS-128 mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 35-minute spacewalk, Stott and astronaut John “Danny” Olivas (out of frame), mission specialist, removed an empty ammonia tank from the station’s truss and temporarily stowed it on the station’s robotic arm. Olivas and Stott also retrieved the European Technology Exposure Facility (EuTEF) and Materials International Space Station Experiment (MISSE) from the Columbus laboratory module and installed them on Discovery’s payload bay for return.

  12. STS-128 EVA 1 MISSE 6 Relocation OPS

    NASA Image and Video Library

    2009-09-02

    S128-E-007229 (1 Sept. 2009) --- Astronaut Nicole Stott, Expedition 20 flight engineer, participates in the STS-128 mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 35-minute spacewalk, Stott and astronaut John “Danny” Olivas (out of frame), mission specialist, removed an empty ammonia tank from the station’s truss and temporarily stowed it on the station’s robotic arm. Olivas and Stott also retrieved the European Technology Exposure Facility (EuTEF) and Materials International Space Station Experiment (MISSE) from the Columbus laboratory module and installed them on Discovery’s payload bay for return.

  13. STS-128 EVA 1 MISSE 6 Relocation OPS

    NASA Image and Video Library

    2009-09-02

    S128-E-007225 (1 Sept. 2009) --- Astronaut John “Danny” Olivas, STS-128 mission specialist, participates in the mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 35-minute spacewalk, Olivas and astronaut Nicole Stott (out of frame), mission specialist, removed an empty ammonia tank from the station’s truss and temporarily stowed it on the station’s robotic arm. Olivas and Stott also retrieved the European Technology Exposure Facility (EuTEF) and Materials International Space Station Experiment (MISSE) from the Columbus laboratory module and installed them on Discovery’s payload bay for return.

  14. STS-128 EVA 1 MISSE 6 Relocation OPS

    NASA Image and Video Library

    2009-09-02

    S128-E-007242 (1 Sept. 2009) --- Astronaut Nicole Stott, Expedition 20 flight engineer, participates in the STS-128 mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 35-minute spacewalk, Stott and astronaut John “Danny” Olivas (out of frame), mission specialist, removed an empty ammonia tank from the station’s truss and temporarily stowed it on the station’s robotic arm. Olivas and Stott also retrieved the European Technology Exposure Facility (EuTEF) and Materials International Space Station Experiment (MISSE) from the Columbus laboratory module and installed them on Discovery’s payload bay for return.

  15. STS-128 EVA 1 MISSE 6 Relocation OPS

    NASA Image and Video Library

    2009-09-02

    S128-E-007239 (1 Sept. 2009) --- Astronaut Nicole Stott, Expedition 20 flight engineer, participates in the STS-128 mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 35-minute spacewalk, Stott and astronaut John “Danny” Olivas (out of frame), mission specialist, removed an empty ammonia tank from the station’s truss and temporarily stowed it on the station’s robotic arm. Olivas and Stott also retrieved the European Technology Exposure Facility (EuTEF) and Materials International Space Station Experiment (MISSE) from the Columbus laboratory module and installed them on Discovery’s payload bay for return.

  16. Casting Footprints for Eternity

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Apollo 11 Astronaut Buzz Aldrin has his footprints casted during the dedication ceremony of the rocket fountain at Building 4200 at Marshall Space Flight Center. The casts of Aldrin's footprints will be placed in the newly constructed Von Braun courtyard representing the accomplishments of the Apollo 11 lunar landing.

  17. A manned-machine space station construction concept

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Bush, H. G.; Wallsom, R. E.; Dorsey, J. T.; Rhodes, M. D.

    1984-01-01

    A design concept for the construction of a permanent manned space station is developed and discussed. The main considerations examined in developing the design concept are: (1) the support structure of the station be stiff enough to preclude the need for an elaborate on-orbit system to control structural response, (2) the station support structure and solar power system be compatible with existing technology, and (3) the station be capable of growing in a systematic modular fashion. The concept is developed around the assembly of truss platforms by pressure-suited astronauts operating in extravehicular activity (EVA), assisted by a machine (Assembly and Transport Vehicle, ATV) to position the astronauts at joint locations where they latch truss members in place. The ATV is a mobile platform that is attached to and moves on the station support structure using pegs attached to each truss joint. The operation of the ATV is described and a number of conceptual configurations for potential space stations are developed.

  18. Large ORU/ Crane evaluations conducted during first EVA of STS-87 (DTO 671)

    NASA Image and Video Library

    1997-11-25

    STS087-718-069 (19 November ? 5 December 1997) --- On the Space Shuttle Columbia's first ever spacewalk (EVA), astronaut Takao Doi works with a 156-pound crane carried onboard for the first time this trip of Columbia. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the Space Station. This crane device is designed to aid future spacewalkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier Doi, an international mission specialist representing Japan, and astronaut Winston E. Scott had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations, long ago manifest for this mission, after completing a contingency spacewalk to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).

  19. Space radiation and cataracts in astronauts.

    PubMed

    Cucinotta, F A; Manuel, F K; Jones, J; Iszard, G; Murrey, J; Djojonegro, B; Wear, M

    2001-11-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts.

  20. Space radiation and cataracts in astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Jones, J.; Iszard, G.; Murrey, J.; Djojonegro, B.; Wear, M.

    2001-01-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts.

  1. Space Flight-Induced Intracranial Hypertension: An Ophthalmic Review

    NASA Technical Reports Server (NTRS)

    Gibson, Charles Robert; Mader, Thomas H.

    2010-01-01

    Background: Although physiologic and pathologic changes associated with microgravity exposure have been studied extensively, the effect of this environment on the eye is largely unknown. Over the last several years, NASA s Space Medicine Division has documented astronauts presenting with varying degrees of disc edema, globe flattening, choroidal folds, cotton wool spots, and hyperopic shifts after long-duration space flight. Methods: Before and after long-duration space flight, six astronauts underwent complete eye examinations to include cycloplegic and/or manifest refraction and fundus photography. Five of these astronauts had Optical Coherence Tomography (OCT) and Magnetic Resonance Imaging (MRI) performed following their missions. Results: Following exposure to space flight of approximately 6-months duration, six astronauts had neuro-ophthalmic findings. These consisted of disc edema in four astronauts, globe flattening in four astronauts, choroidal folds in four astronauts, cotton wool spots in three astronauts, nerve fiber layer thickening by OCT in five astronauts, and decreased near vision in five astronauts. Four of the astronauts with near vision complaints had a hyperopic shift equal to or greater than + 0.50D between pre- and post-mission spherical equivalent refraction in one or both eyes (range +0.50D to +1.50D). These same four had globe flattening by MRI. Conclusions: The findings we describe may have resulted from a rise in intracranial pressure caused by microgravity fluid shifts, and could represent parts of a spectrum of ocular and cerebral responses to extended microgravity.

  2. Results of EVA/mobile transporter space station truss assembly tests

    NASA Technical Reports Server (NTRS)

    Watson, Judith J.; Heard, Walter L., Jr.; Bush, Harold G.; Lake, M. S.; Jensen, J. K.; Wallsom, R. E.; Phelps, J. E.

    1988-01-01

    Underwater neutral buoyance tests were conducted to evaluate the use of a Mobile Transporter concept in conjunction with EVA astronauts to construct the Space Station Freedom truss structure. A three-bay orthogonal tetrahedral truss configuration with a 15 foot square cross section was repeatedly assembled by a single pair of pressure suited test subjects working from the Mobile Transporter astronaut positioning devices (mobile foot restraints). The average unit assembly time (which included integrated installation of utility trays) was 27.6 s/strut, or 6 min/bay. The results of these tests indicate that EVA assembly of space station size structures can be significantly enhanced when using a Mobile Transporter equipped with astronaut positioning devices. Rapid assembly time can be expected and are dependent primarily on the rate of translation permissible for on-orbit operations. The concept used to demonstate integrated installation of utility trays requires minimal EVA handling and consequentially, as the results show, has little impact on overall assembly time.

  3. No evidence for an increase in circulatory disease mortality in astronauts following space radiation exposures

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis A.; Hamada, Nobuyuki; Little, Mark P.

    2016-08-01

    Previous analysis has shown that astronauts have a significantly lower standardized mortality ratio for circulatory disease mortality compared to the U.S. population, which is consistent with the rigorous selection process and healthy lifestyles of astronauts, and modest space radiation exposures from past space missions. However, a recent report by Delp et al. estimated the proportional mortality ratio for ages of 55-64 y of Apollo lunar mission astronauts to claim a high risk of cardiovascular disease due to space radiation compared to the U.S. population or to non-flight astronauts. In this Commentary we discuss important deficiencies in the methods and assumptions on radiation exposures used by Delp et al. that we judge cast serious doubt on their conclusions.

  4. Astronautics and psychology: recommendations for the psychological training of astronauts.

    PubMed

    Haupt, G F

    1991-11-01

    The methods presently applied in the psychological training of astronauts are based on the principle of ensuring maximum performance of astronauts during missions. The shortcomings are obvious since those undergoing training provide nothing but the best ability to cope with Earth problem situations and add simply an experience of space problem situations as they are presently conceived. Earth attitudes and Earth behaviour remain and are simply modified. Through the utilization of interdisciplinary space knowledge a much higher degree of problem anticipation could be achieved and the astronaut be psychologically transformed into a space-being. This would at the same time stimulate interdisciplinary space research. The interdisciplinary space knowledge already available suggests that space requires not only physical and mental adjustments, but a profoundly new relationship with life.

  5. Spaceborne construction and operations planning - Decision rules for selecting EVA, telerobot, and combined work-systems

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.

    1992-01-01

    An approach is presented for selecting an appropriate work-system for performing construction and operations tasks by humans and telerobots. The decision to use extravehicular activity (EVA) performed by astronauts, extravehicular robotics (EVR), or a combination of EVA and EVR is determined by the ratio of the marginal costs of EVA, EVR, and IVA. The approach proposed here is useful for examining cost trade-offs between tasks and performing trade studies of task improvement techniques (human or telerobotic).

  6. Cassidy during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009315 (27 July 2009) --- Astronaut Christopher Cassidy, STS-127 mission specialist, participates in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Cassidy and astronaut Tom Marshburn (out of frame), mission specialist, secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  7. Marshburn during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009303 (27 July 2009) --- Astronaut Tom Marshburn, STS-127 mission specialist, participates in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Marshburn and astronaut Christopher Cassidy (out of frame), mission specialist, secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  8. iss020e025085

    NASA Image and Video Library

    2009-07-27

    ISS020-E-025085 (27 July 2009) --- Astronaut Christopher Cassidy, STS-127 mission specialist, participates in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Cassidy and astronaut Tom Marshburn (out of frame), mission specialist, secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of ?get ahead? tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  9. Cassidy during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009248 (27 July 2009) --- Astronaut Christopher Cassidy, STS-127 mission specialist, participates in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Cassidy and astronaut Tom Marshburn (out of frame), mission specialist, secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  10. Cassidy during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009347 (27 July 2009) --- Astronaut Christopher Cassidy, STS-127 mission specialist, participates in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Cassidy and astronaut Tom Marshburn (out of frame), mission specialist, secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  11. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-032068 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  12. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-031706 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  13. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-032066 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  14. View of STS-129 MS2 Bresnik during EVA3

    NASA Image and Video Library

    2009-11-23

    S129-E-008006 (23 Nov. 2009) --- Astronaut Randy Bresnik, STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Bresnik and astronaut Robert L. Satcher Jr. (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  15. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    S129-E-008120 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  16. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-031703 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  17. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-031717 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  18. View of STS-129 MS2 Bresnik during EVA3

    NASA Image and Video Library

    2009-11-23

    S129-E-008010 (23 Nov. 2009) --- Astronaut Randy Bresnik, STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Bresnik and astronaut Robert L. Satcher Jr. (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  19. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    S129-E-008103 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  20. STS-124 EVA 3 Nitrogen Tank Assembly (NTA) OPS

    NASA Image and Video Library

    2008-06-08

    ISS017-E-009220 (8 June 2008) --- Anchored to a Canadarm2 mobile foot restraint, astronaut Ron Garan, STS-124 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 33-minute spacewalk, Garan and astronaut Mike Fossum (out of frame), mission specialist, exchanged a depleted Nitrogen Tank Assembly for a new one, removed thermal covers and launch locks from the Kibo laboratory, reinstalled a repaired television camera onto the space station's left P1 truss, and retrieved samples of a dust-like substance from the left Solar Alpha Rotary Joint for analysis by experts on the ground.

  1. KSC-06pd2249

    NASA Image and Video Library

    2006-08-25

    KENNEDY SPACE CENTER, FLA. - At SPACEHAB in Cape Canaveral, Fla., STS-116 Pilot William Oefelein and Commander Mark Polansky relax during equipment familiarization to talk to astronaut Marsha Ivins, who is currently assigned to the Astronaut Office, Space Station/Shuttle Branches for crew equipment, habitability and stowage. Mission crews make frequent trips to the Space Coast to become familiar with the equipment and payloads they will be using. STS-116 will be mission number 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/George Shelton

  2. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-031705 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  3. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    S129-E-008115 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  4. Comparison Of Human Modelling Tools For Efficiency Of Prediction Of EVA Tasks

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Loughead, Tomas E.

    1998-01-01

    Construction of the International Space Station (ISS) will require extensive extravehicular activity (EVA, spacewalks), and estimates of the actual time needed continue to rise. As recently as September, 1996, the amount of time to be spent in EVA was believed to be about 400 hours, excluding spacewalks on the Russian segment. This estimate has recently risen to over 1100 hours, and it could go higher before assembly begins in the summer of 1998. These activities are extremely expensive and hazardous, so any design tools which help assure mission success and improve the efficiency of the astronaut in task completion can pay off in reduced design and EVA costs and increased astronaut safety. The tasks which astronauts can accomplish in EVA are limited by spacesuit mobility. They are therefore relatively simple, from an ergonomic standpoint, requiring gross movements rather than time motor skills. The actual tasks include driving bolts, mating and demating electric and fluid connectors, and actuating levers; the important characteristics to be considered in design improvement include the ability of the astronaut to see and reach the item to be manipulated and the clearance required to accomplish the manipulation. This makes the tasks amenable to simulation in a Computer-Assisted Design (CAD) environment. For EVA, the spacesuited astronaut must have his or her feet attached on a work platform called a foot restraint to obtain a purchase against which work forces may be actuated. An important component of the design is therefore the proper placement of foot restraints.

  5. Computer Analysis of Electromagnetic Field Exposure Hazard for Space Station Astronauts during Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Kelley, James S.; Panneton, Robert B.; Arndt, G. Dickey

    1995-01-01

    In order to estimate the RF radiation hazards to astronauts and electronics equipment due to various Space Station transmitters, the electric fields around the various Space Station antennas are computed using the rigorous Computational Electromagnetics (CEM) techniques. The Method of Moments (MoM) was applied to the UHF and S-band low gain antennas. The Aperture Integration (AI) method and the Geometrical Theory of Diffraction (GTD) method were used to compute the electric field intensities for the S- and Ku-band high gain antennas. As a result of this study, The regions in which the electric fields exceed the specified exposure levels for the Extravehicular Mobility Unit (EMU) electronics equipment and Extravehicular Activity (EVA) astronaut are identified for various Space Station transmitters.

  6. Is Autonomic Modulation Different between European and Chinese Astronauts?

    PubMed Central

    Liu, Jiexin; Li, Yongzhi; Verheyden, Bart; Chen, Shanguang; Chen, Zhanghuang; Gai, Yuqing; Liu, Jianzhong; Gao, Jianyi; Xie, Qiong; Yuan, Ming; Li, Qin; Li, Li; Aubert, André E.

    2015-01-01

    Purpose The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences. Methods Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions). Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability. Results Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts. Conclusion Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc. PMID:25799561

  7. Evaluation of a Human Modeling Software Tool in the Prediction of Extra Vehicular Activity Tasks for an International Space Station Assembly Mission

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles; Loughead, Tomas E.

    1997-01-01

    The difficulty of accomplishing work in extravehicular activity (EVA) is well documented. It arises as a result of motion constraints imposed by a pressurized spacesuit in a near-vacuum and of the frictionless environment induced in microgravity. The appropriate placement of foot restraints is crucial to ensuring that astronauts can remove and drive bolts, mate and demate connectors, and actuate levers. The location on structural members of the foot restraint sockets, to which the portable foot restraint is attached, must provide for an orientation of the restraint that affords the astronaut adequate visual and reach envelopes. Previously, the initial location of these sockets was dependent upon the experienced designer's ability to estimate placement. The design was tested in a simulated zero-gravity environment; spacesuited astronauts performed the tasks with mockups while submerged in water. Crew evaluation of the tasks based on these designs often indicated the bolt or other structure to which force needed to be applied was not within an acceptable work envelope, resulting in redesign. The development of improved methods for location of crew aids prior to testing would result in savings to the design effort for EVA hardware. Such an effort to streamline EVA design is especially relevant to International Space Station construction and maintenance. Assembly operations alone are expected to require in excess of four hundred hours of EVA. Thus, techniques which conserve design resources for assembly missions can have significant impact. We describe an effort to implement a human modelling application in the design effort for an International Space Station Assembly Mission. On Assembly Flight 6A, the Canadian-built Space Station Remote Manipulator System will be delivered to the U.S. Laboratory. It will be released from its launch restraints by astronauts in EVA. The design of the placement of foot restraint sockets was carried out using the human model Jack, and the modelling results were compared with actual underwater test results. The predicted locations of the sockets was found to be acceptable for 94% of the tasks attempted by the astronauts, This effort provides confidence in the capabilities of this package to accurately model tasks. It therefore increases assurance that the tool maybe used early in the design process.

  8. No evidence for an increase in circulatory disease mortality in astronauts following space radiation exposures.

    PubMed

    Cucinotta, Francis A; Hamada, Nobuyuki; Little, Mark P

    2016-08-01

    Previous analysis has shown that astronauts have a significantly lower standardized mortality ratio for circulatory disease mortality compared to the U.S. population, which is consistent with the rigorous selection process and healthy lifestyles of astronauts, and modest space radiation exposures from past space missions. However, a recent report by Delp et al. estimated the proportional mortality ratio for ages of 55-64 y of Apollo lunar mission astronauts to claim a high risk of cardiovascular disease due to space radiation compared to the U.S. population or to non-flight astronauts. In this Commentary we discuss important deficiencies in the methods and assumptions on radiation exposures used by Delp et al. that we judge cast serious doubt on their conclusions. Copyright © 2016 The Committee on Space Research (COSPAR). All rights reserved.

  9. The versatility of a truss mounted mobile transporter for in-space construction

    NASA Technical Reports Server (NTRS)

    Bush, Harold G.; Lake, Mark S.; Watson, Judith J.; Heard, Walter L., Jr.

    1988-01-01

    The Mobile Transporter (MT) evolution from early erectable structures assembly activities is detailed. The MT operational features which are required to support astronauts performing on-orbit structure construction or spacecraft assembly functions are presented and discussed. Use of the MT to perform a variety of assembly functions is presented. Estimated EVA assembly times for a precision segmented reflector approximately 20 m in diameter are presented. The EVA/MT technique under study for construction of the reflector (and the entire spacecraft) is illustrated. Finally, the current status of development activities and test results involving the MT and Space Station structural assembly are presented.

  10. Career Excess Mortality Risk from Diagnostic Radiological Exams Required for Crewmembers Participating in Long Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Dodge, C. W.; Gonzalez, S. M.; Picco, C. E.; Johnston, S. L.; Shavers, M. R.; VanBaalen, M.

    2008-01-01

    NASA requires astronauts to undergo diagnostic x-ray examinations as a condition for their employment. The purpose of these procedures is to assess the astronaut s overall health and to diagnose conditions that could jeopardize the success of long duration space missions. These include exams for acceptance into the astronaut corps, routine periodic exams, as well as evaluations taken pre and post missions. Issues: According to NASA policy these medical examinations are considered occupational radiological exposures, and thus, are included when computing the astronaut s overall radiation dose and associated excess cancer mortality risk. As such, astronauts and administrators are concerned about the amount of radiation received from these procedures due to the possibility that these additional doses may cause astronauts to exceed NASA s administrative limits, thus disqualifying them from future flights. Methods: Radiation doses and cancer mortality risks following required medical radiation exposures are presented herein for representative male and female astronaut careers. Calculation of the excess cancer mortality risk was performed by adapting NASA s operational risk assessment model. Averages for astronaut height, weight, number of space missions and age at selection into the astronaut corps were used as inputs to the NASA risk model. Conclusion: The results show that the level of excess cancer mortality imposed by all required medical procedures over an entire astronaut s career is approximately the same as that resulting from a single short duration space flight (i.e. space shuttle mission). In short the summation of all medical procedures involving ionizing radiation should have no impact on the number of missions an astronaut can fly over their career. Learning Objectives: 1. The types of diagnostic medical exams which astronauts are subjected to will be presented. 2. The level of radiation dose and excess mortality risk to the average male and female astronaut will be presented.

  11. Guido von Pirquet: Austrian pioneer of astronautics

    NASA Technical Reports Server (NTRS)

    Sykora, F.

    1977-01-01

    The works of Guido von Pirquet, Austrian pioneer of rocketry, were assessed. Major emphasis was given to Pirquet's calculation of the route to Venus which in fact was followed by the first Russian rocket to Venus. Of interest also is Pirquet's valuable construction of a space station and his analysis of interstellar space flight.

  12. MSFC Skylab neutral buoyancy simulator

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of a neutral buoyancy simulator for developing extravehicular activity systems and for training astronauts in weightless activities is discussed. The construction of the facility and the operations are described. The types of tests and the training activities conducted in the simulator are reported. Photographs of the components of the simulator and actual training exercises are included.

  13. Assessments of astronaut effectiveness

    NASA Technical Reports Server (NTRS)

    Rose, Robert M.; Helmreich, Robert L.; Fogg, Louis; Mcfadden, Terry J.

    1993-01-01

    This study examined the reliability and convergent validity of three methods of peer and supervisory ratings of the effectiveness of individual NASA astronauts and their relationships with flight assignments. These two techniques were found to be reliable and relatively convergent. Seniority and a peer-rated Performance and Competence factor proved to be most closely associated with flight assignments, while supervisor ratings and a peer-rated Group Living and Personality factor were found to be unrelated. Results have implications for the selection and training of astronauts.

  14. Antibodies to myofibril antigens in cosmonauts after spaceflights

    NASA Technical Reports Server (NTRS)

    Tashpulatov, R. Y.; Danilova, T. A.; Lesnyak, A. T.; Legenkov, V. I.; Znamenskiy, V. S.; Dedyuyeva, Y. Y.

    1980-01-01

    Serum samples obtained from 15 astronauts before and after spaceflights were studied with the use of the indirect immunofluorescent method. In seven astronauts antibodies to different elements of the human heart muscle appeared after flights. Strong and very strong luminescence of the elements of heart muscle tissue was detected in the astronauts after the third space flight. In a study of the sera on sections of bovine heart muscle tissue the reactions of the sera taken before and after flight were found to show no essential differences.

  15. Post Flight Reconditioning for US Astronauts Returning from the International Space Station

    NASA Technical Reports Server (NTRS)

    Nieschwitz, Bruce; Guilliams, Mark E.; Hoellen, David; Loehr, Jim

    2011-01-01

    Prior to spaceflight, each astronaut undergoes medical requirement testing to establish a preflight baseline for physiologic functions. Astronauts returning from the International Space Station can experience deficits in all or some of the following areas: aerobic capacity, muscular strength, power, endurance, stamina, bone, balance, agility, coordination, orthostatic tolerances, proprioception, neurovestibular function and flexibility. These losses occur from living in microgravity and are consistent with deficits seen in terrestrial, de-conditioning individuals. Since 2001, the Astronaut Strength, Conditioning and Rehabilitation (ASCR) specialists have administered a reconditioning program, focusing on all deficits, which improves the physical condition of all returning astronauts. In most cases, astronauts have reached or surpassed their preflight physical condition. Purpose: This presentation will describe and explain the postflight reconditioning program for returning astronauts. Methods: The postflight reconditioning program is designed to stress the body systems that affect the following: aerobic capacity, muscular strength, power, endurance, stamina, bone, balance, agility, coordination, orthostatic tolerances, proprioception, neurovestibular function and flexibility. Postflight reconditioning begins on landing day, is scheduled for two hours per day, 7 days a week for 45 days and is tailored to the specific needs of the astronaut. Initially the program focuses on basic ambulation, cardiovascular endurance, strength, balance, flexibility and proprioception. The program advances through 45 days and specific attention is given to each astronaut s overall condition, testing results, medical status, and assigned duties after their mission. Conclusion: Astronauts will experience noticeable deficits in their physical condition after living in microgravity for an extended length of time. After completing postflight reconditioning, it is shown that astronauts have regained, and in most cases improved upon, their preflight baseline condition.

  16. Preflight and In-Flight Exercise Conditions for Astronauts on the International Space Station

    NASA Technical Reports Server (NTRS)

    Guilliams, Mark E.; Nieschwitz, Bruce; Hoellen, David; Loehr, Jim

    2011-01-01

    The physiological demands of spaceflight require astronauts to have certain physical abilities. They must be able to perform routine and off-nominal physical work during flight and upon re-entry into a gravity environment to ensure mission success, such as an Extra Vehicular Activity (EVA) or emergency egress. To prepare the astronauts for their mission, a Wyle Astronaut Strength Conditioning and Rehabilitation specialist (ASCR) works individually with the astronauts to prescribe preflight strength and conditioning programs and in-flight exercise, utilizing Countermeasure Systems (CMS) exercise hardware. PURPOSE: To describe the preflight and in-flight exercise programs for ISS crewmembers. METHODS: Approximately 2 years before a scheduled launch, an ASCR is assigned to each astronaut and physical training (PT) is routinely scheduled. Preflight PT of astronauts consists of carrying out strength, aerobic and general conditioning, employing the principles of periodization. Exercise programs are prescribed to the astronauts to account for their individual fitness levels, planned mission-specific tasks, areas of concern, and travel schedules. Additionally, astronauts receive instruction on how to operate CMS exercise hardware and receive training for microgravity-specific conditions. For example, astronauts are scheduled training sessions for the International Space Station (ISS) treadmill (TVIS) and cycle ergometer (CEVIS), as well as the Advanced Resistive Exercise Device (ARED). In-flight programs are designed to maintain or even improve the astronauts pre-flight levels of fitness, bone health, muscle strength, power and aerobic capacity. In-flight countermeasure sessions are scheduled in 2.5 h blocks, six days a week, which includes 1.5 h for resistive training and 1 h for aerobic exercise. CONCLUSIONS: Crewmembers reported the need for more scheduled time for preflight training. During flight, crewmembers have indicated that the in-flight exercise is sufficient, but would like more reliable and capable hardware.

  17. View of MS Mastracchio participating in EVA 2 during STS-118/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-08-13

    S118-E-06969 (13 Aug. 2007) --- Astronaut Rick Mastracchio, STS-118 mission specialist, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk, Mastracchio and astronaut Dave Williams (out of frame), mission specialist representing the Canadian Space Agency, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  18. View of MS Williams installing the new CMG during Expedition 15/STS-118 EVA 2

    NASA Image and Video Library

    2007-08-13

    ISS015-E-22358 (13 Aug. 2007) --- Astronaut Dave Williams, STS-118 mission specialist representing the Canadian Space Agency, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk Williams and astronaut Rick Mastracchio (out of frame), mission specialist, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  19. View of MS Mastracchio participating in EVA 2 during STS-118/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-08-13

    S118-E-06968 (13 Aug. 2007) --- Astronaut Rick Mastracchio, STS-118 mission specialist, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk, Mastracchio and astronaut Dave Williams (out of frame), mission specialist representing the Canadian Space Agency, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  20. View of MS Williams installing the new CMG during Expedition 15/STS-118 EVA 2

    NASA Image and Video Library

    2007-08-13

    ISS015-E-22371 (13 Aug. 2007) --- Astronaut Dave Williams, STS-118 mission specialist representing the Canadian Space Agency, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk, Williams and astronaut Rick Mastracchio (out of frame), mission specialist, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  1. View of MS Williams installing the new CMG during Expedition 15/STS-118 EVA 2

    NASA Image and Video Library

    2007-08-13

    ISS015-E-22355 (13 Aug. 2007) --- Astronaut Dave Williams, STS-118 mission specialist representing the Canadian Space Agency, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk Williams and astronaut Rick Mastracchio (out of frame), mission specialist, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  2. View of MS Williams installing the new CMG during Expedition 15/STS-118 EVA 2

    NASA Image and Video Library

    2007-08-13

    ISS015-E-22364 (13 Aug. 2007) --- Astronaut Dave Williams, STS-118 mission specialist representing the Canadian Space Agency, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk, Williams and astronaut Rick Mastracchio (out of frame), mission specialist, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  3. View of MS Mastracchio as he makes his way to the ESP2 during EVA 2

    NASA Image and Video Library

    2007-08-13

    S118-E-07019 (13 Aug. 2007) --- Astronaut Rick Mastracchio, STS-118 mission specialist, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk, Mastracchio and astronaut Dave Williams (out of frame), mission specialist representing the Canadian Space Agency, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  4. KSC-03PD-1756

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), stands next to the Japanese Experiment Module after its arrival at Port Canaveral, Fla. Built by the Tsukuba Space Center near Tokyo, the pressurized module is the first element of the JEM, Japans primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

  5. Astronaut Training in the Neutral Buoyancy Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This photograph shows an STS-61 astronaut training for the Hubble Space Telescope (HST) servicing mission (STS-61) in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.

  6. STS-119 Extravehicular Activity (EVA) 1 Arnold in Extravehicular Mobility Unit (EMU)

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041104 (19 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Arnold and astronaut Steve Swanson (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays. The blackness of space and Earth?s horizon provide the backdrop for the scene.

  7. Orthostatic Hypotension After Long-Duration Space Flight: NASA's Experiences from the International Space Station

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Feiveson, Alan H.; Stenger, Michael B.; Stein, Sydney P.; Platts, Steven H.

    2011-01-01

    Our laboratory previously reported that the incidence of orthostatic hypotension (OH) was greater after long- than short-duration spaceflight in astronauts who participated in Mir Space Station and Space Shuttle missions. To confirm and extend these findings, we retrospectively examined tilt test data from International Space Station (ISS) and Shuttle astronauts. We anticipated that the proportion of ISS astronauts experiencing OH would be high on landing day and the number of days to recover greater after long- than short-duration missions. Methods: Twenty ISS and 66 Shuttle astronauts participated in 10-min 80? head-up tilt tests 10 d before launch (L-10), on landing day (R+0) or 1 d after landing (R+1). Data from 5 ISS astronauts tested on R+0 or R+1 who used non-standard countermeasures were excluded. Many astronauts repeated the test 3 d (R+3) after landing. Fisher?s Exact Test was used to compare the ability of ISS and Shuttle astronauts to complete the tilt test on R+0. Cox regression was used to identify cardiovascular parameters that were associated with test completion across all tests, and mixed model analysis was used to compare the change and recovery rates between ISS and Shuttle astronauts. In these analyses, ISS data from R+0 and R+1 were pooled to provide sufficient statistical power. Results: The proportion of astronauts who completed the tilt test on R+0 without OH was less in ISS than in Shuttle astronauts (p=0.03). On R+0, only 2 of 6 ISS astronauts completed the test compared to 53 of 66 (80%) Shuttle astronauts. However, 8 of 9 ISS astronauts completed the test on R+1. On R+3, 13 of 15 (87%) of the ISS and 19 of 19 (100%) of the Shuttle astronauts completed the 10-min test. An index comprised of stroke volume and diastolic blood pressure provided a very good prediction of overall tilt survival. This index was altered by spaceflight similarly for both groups soon after landing (pooled R+0 and R+ 1), but ISS astronauts did not recover at the same rate as Shuttle astronauts (p=0.007). Conclusions: The proportion of ISS astronauts who could not complete the tilt test on R+0 due to OH (4 of 6) is similar to that reported in astronauts who flew on Mir (5 of 6). Further, cardiovascular parameters most closely associated with OH recover more slowly after long- compared to short-duration spaceflight.

  8. Large ORU/ Crane evaluations conducted during first EVA of STS-87 (DTO 671)

    NASA Image and Video Library

    1997-11-25

    STS087-718-073 (19 November ? 5 December 1997) --- On the Space Shuttle Columbia's first ever spacewalk (EVA), astronaut Winston E. Scott works with a simulated battery and 156-pound crane carried onboard for the first time this trip of Columbia. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the ISS. This crane device is designed to aid future spacewalkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier, astronauts Takao Doi (at the base of the crane, out of frame at right), an international mission specialist representing Japan, and Winston E. Scott had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations, long ago manifest for this mission, after completing a contingency spacewalk to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).

  9. Reilly working on ISS construction during STS-117 EVA1

    NASA Image and Video Library

    2007-06-12

    ISS015-E-11858 (11 June 2007) --- Astronauts Jim Reilly and John "Danny" Olivas (visible among Reilly's helmet reflections), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  10. The ideas of K. E. Tsiolkovsky on orbital space stations

    NASA Technical Reports Server (NTRS)

    Kolchenko, I. A.; Strazheva, I. V.

    1977-01-01

    The concepts presented by K. E. Tsiolkovsky concerning the construction of orbital space stations are cited. Tsiolkovsky, a Russian scientist and founder of astronautics, substantiated these ideas at the end of the 19th and beginning of the 20th century. Considered settlements outside the earth were proposed feasible using solar energy. The substance of numerous asteroids would be used as construction materials for space settlements and rockets. Extraordinary farsightedness was shown by Tsiolkovsky when comparisons of his projects with those of modern orbital stations are made.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-11

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).

  12. Foundations of Space Biology and Medicine. Volume 3: Space Medicine and Biotechnology

    NASA Technical Reports Server (NTRS)

    Calvin, M. (Editor); Gazenko, O. G. (Editor)

    1975-01-01

    The results of medical and biological research in space are presented. Specific topics discussed include: methods of providing life support systems for astronauts, characteristics of integrated life support systems, protection against adverse factors of space flight, selection and training of astronauts, and future space biomedical research.

  13. Results of the psychiatric, select-out evaluation of US astronaut applications

    NASA Technical Reports Server (NTRS)

    Faulk, D. M.; Santy, P. A.; Holland, A. W.; Marsh, R.

    1992-01-01

    The psychiatric exclusion criteria for astronauts are based on NASA Medical Psychiatric Standards for space flight. Until recently, there were no standardized methods to evaluate disqualifying psychopathology in astronaut applicants. Method: One hundred and six astronaut applicants who had passed the intitial screening were evaluated for Axis 1 and Axis 2 DSM-3-R diagnoses using the NASA structured psychiatric interview. The interview consisted of three parts: (1) an unstructured portion for obtaining biographical and historical information, (2) the schedule for effective disorders-lifetime version (SASDL), specially modified to include all disqualifying Axis 1 mental disorders; and, (3) the personality assessment schedule (PAS) also modified to evaluate for Axis 2 disorders. Results: Nine of 106 candidates (8.5 percent) met diagnostic criteria for six Axis 1 disorders (including V code) or Axis 2 disorders. Two of these disorders were disqualifying for the applicants. 'Near' diagnoses (where applicants met at least 50 percent of the listed criteria) were assessed to demonstrate that clinicians using the interview were able to overcome applicants' reluctance to report symptomatomatology. Conclusion: The use of the NASA structured interview was effective in identifying past and present psychopathology in a group of highly motivated astronaut applicants. This was the first time a structured psychiatric interview had been used in such a setting for this purpose.

  14. Compression Stockings May Ameliorate Orthostatic Intolerance in Astronauts After Short-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Lee, Stuart M. C.; Westby, Christian M.; Ribeiro, L. Christine; Stenger, Michael B.

    2011-01-01

    Orthostatic intolerance following spaceflight has been observed since the early days of manned spaceflight, and no countermeasure has been 100% effective. During re-entry NASA astronauts currently wear an inflatable anti-gravity suit (AGS) which compresses the legs and abdomen, but this device is uncomfortable and loses effectiveness upon egress from the Space Shuttle. We previously reported that foot-to-thigh, gradient compression stockings were comfortable and effective during standing after Shuttle missions. More recently we showed in a ground-based model of spaceflight that the addition of splanchnic compression to the foot-to-thigh compression stockings, creating foot-to-breast high compression, improved orthostatic tolerance in hypovolemic subjects to a level similar to the AGS. Purpose: To evaluate a new three-piece, foot-to-breast high gradient compression garment as a countermeasure to post-spaceflight orthostatic intolerance. Methods: Fourteen astronauts completed this experiment (7 control, 7 treatment) following Space Shuttle missions lasting 12-16 days. Treatment subjects were custom-fitted for a three-piece, foot-to-breast high compression garment consisting of shorts and foot-to-thigh stockings. The garments were constructed to provide 55 mmHg compression at the ankle and decreased gradually to 15 mmHg over the abdomen. Orthostatic testing occurred 30 days before flight (without garments) and 2 hours after flight (with garments for treatment group only) on landing day. Blood pressure (BP) and heart rate (HR) were acquired for 2 minutes while the subject lay prone and then for 3.5 minutes after the subject stood. Data are reported as mean +/- SE. Results: The compression garment successfully prevented the tachycardia and hypotension typically seen post-spaceflight. On landing day, treatment subjects had a smaller change in HR (11+/-1 vs. 21+/-4 beats/min, p< or =0.05) and no decrease in systolic BP (2+/-4 vs. -9+/-2 mmHg, p< or =0.05). Garments also received good comfort ratings and were relatively easy to don. Conclusion: In this small group of astronauts, foot-to-breast high gradient compression garments seem to have prevented these negative effects of spaceflight on the cardiovascular responses to standing.

  15. Mission Specialist (MS) Ride sleeps in airlock

    NASA Image and Video Library

    1983-06-24

    STS007-26-1438 (18-24 June 1983) --- Astronaut Sally K. Ride, mission specialist, was captured at her sleep station in the Space Shuttle Challenger's middeck by a fellow crew member using a 35mm camera. This method of sleep is just one used by the 20 astronauts who have now flown aboard NASA's first two Space Shuttle Orbiters. Some astronauts choose to sleep in various positions with either their feet or upper bodies or both anchored and others elect to use the sleep restraint device demonstrated here by Dr. Ride.

  16. Essays on the History of Rocketry and Astronautics: Proceedings of the Third through the Sixth History Symposia of the International Academy of Astronautics, volume 1

    NASA Technical Reports Server (NTRS)

    Hall, R. C. (Editor)

    1977-01-01

    This two volume publication presents the proceedings of the third through sixth history symposia of the International Academy of Astronautics. Thirty-nine papers are divided into four categories: (1) Early Solid Propellant Rocketry; (2) Rocketry and Astronautics: Concepts, Theory, and Analyses after 1880; (3) The Development of Liquid and Solid Propellant Rockets from 1880 to 1945; and (4) Rocketry and Astronautics after 1945. Categories 1 and 2 will be found in volume 1 and the remainder in volume 2. Among other diciplines, Rocketry and Astronautics encompasses the physical and engineering sciences including fluid mechanics, thermodynamics, vibration theory, structural mechanics, and celestial mechanics. Papers presented in these two volumes range from those of empirical experimenters who used the time-honored cut and try methods to scientists wielding theoretical principles. The work traces the coupling of the physical and engineering sciences, industrial advances, and state support that produced the awesome progress in rocketry and astronautics for the most part within living memory. The proceedings of the four symposia present in these two volumes contain information on the work of leading investigators and their associates carried out in the first two-thirds of the twentieth century.

  17. M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    NASA Technical Reports Server (NTRS)

    Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; Mcfaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart

    1989-01-01

    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hangar, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.

  18. M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    NASA Astrophysics Data System (ADS)

    Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; McFaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart

    1989-05-01

    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hanger, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.

  19. Carotid Intima Media Thickness in the Astronaut Corps: Association to Spacecraft

    NASA Technical Reports Server (NTRS)

    Suffredini, John; Locke, James; Johnston, Smith; Charvat, Jacqueline; Young, Millennia; Garcia, Kathleen; Sargsyan, Ashot E.; Tarver, William

    2017-01-01

    Background: Carotid Intima Media Thickness (CIMT) has been demonstrated to be predictive of future cardiovascular events. Within various populations, radiation exposure, stress, and physical confinement have all been linked to an increased CIMT. Recent research discovered CIMT was significantly increased in ten long duration astronauts from pre-flight to four days post flight. The relationship between spaceflight and CIMT is not understood and trends in CIMT within the larger astronaut population are unknown. Methods: In 2010, CIMT was offered as part of the astronaut annual exam at the JSC Flight Medicine Clinic using a standardized CIMT screening protocol and professional sonographers. Between 2010 and 2016, CIMT measurements were collected on 213 NASA astronauts and payload specialists. The values used in this retrospective chart review are the mean of the CIMT from the right and left. Spaceflight exposure was categorized based on the total number of days spent in space at the time of the ground-based ultrasound (0, 1-29, 30-100, 101-200, =200). Linear regression with generalized estimating equations were used to estimate the association between spaceflight exposures and CIMT. Results: 530 studies were completed among 213 astronauts with a mean of 2.5 studies (range 1-6) per astronaut over the six year period. As in other populations, CIMT was significantly associated with age; however, gender was not. While there was no significant direct correlation between total spaceflight exposure and CIMT found, astronauts with 30-100 spaceflight days and astronauts with greater than 100 spaceflight days had significantly increased CIMT over astronauts who had never flown (p=0.002 and p=<0.0001 respectively) after adjustment for age. Conclusion: Further work is needed to fully understand CIMT and its association to spaceflight. Current occupational surveillance activities are under way to study CIMT values in conjunction with other cardiovascular risk factors among astronauts as compared to the general population.

  20. STS-128 EVA 3 Node 3 Tranquility Avionics Cable Routing OPS

    NASA Image and Video Library

    2009-09-05

    S128-E-007720 (5 Sept. 2009) --- NASA astronaut John “Danny” Olivas (left) and European Space Agency astronaut Christer Fuglesang, both STS-128 mission specialists, participate in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, one-minute spacewalk, Olivas and Fuglesang deployed the Payload Attachment System (PAS), replaced the Rate Gyro Assembly #2, installed two GPS antennae and did some work to prepare for the installation of Node 3 next year. During connection of one of two sets of avionics cables for Node 3, one of the connectors could not be mated. This cable and connector were wrapped in a protective sleeve and safed. All other cables were mated successfully.

  1. View of STS-129 MS3 Foreman during EVA2

    NASA Image and Video Library

    2009-11-21

    S129-E-007789 (21 Nov. 2009) --- Astronaut Mike Foreman, STS-129 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, eight-minute spacewalk, Foreman and astronaut Randy Bresnik (out of frame), mission specialist, installed a Grappling Adaptor to On-Orbit Railing Assembly, or GATOR, on the Columbus laboratory. GATOR contains a ship-tracking antenna system and a HAM radio antenna. They relocated a floating potential measurement unit that gauges electric charges that build up on the station, deployed a Payload Attach System on the space-facing side of the Starboard 3 truss segment and installed a wireless video system that allows spacewalkers to transmit video to the station and relay it to Earth.

  2. Behnken and Foreman during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007838 (21 March 2008) --- Astronauts Robert L. Behnken (top) and Mike Foreman, both STS-123 mission specialists, participate in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and Foreman replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  3. Behnken and Foreman during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007839 (21 March 2008) --- Astronauts Mike Foreman (foreground) and Robert L. Behnken, both STS-123 mission specialists, participate in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Foreman and Behnken replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-19

    Eight days of construction resumed on the International Space Station (ISS), as STS-117 astronauts and mission specialists and the Expedition 15 crew completed installation of the second and third starboard truss segments (S3 and S4). Back dropped by our colorful Earth, its newly expanded configuration is revealed as pilot Lee Archambault conducts a fly around upon departure from the station on June 19, 2007.

  5. STS-116 Crewmembers Curbeam and Williams work near P6 SAW during EVA 3

    NASA Image and Video Library

    2006-12-17

    S116-E-06603 (16 Dec. 2006) --- Astronauts Robert L. Curbeam, Jr., (red stripes), STS-116 mission specialist, and Sunita L. Williams, Expedition 14 flight engineer, work near the International Space Station's left P6 solar array wing during the mission's third planned session of extravehicular activity (EVA) as construction resumes on the International Space Station.

  6. STS-116 Crewmembers Curbeam and Williams work near P6 SAW during EVA 3

    NASA Image and Video Library

    2006-12-17

    S116-E-06606 (16 Dec. 2006) --- Astronauts Robert L. Curbeam, Jr., (red stripes), STS-116 mission specialist, and Sunita L. Williams, Expedition 14 flight engineer, work near the International Space Station's left P6 solar array wing during the mission's third planned session of extravehicular activity (EVA) as construction resumes on the International Space Station.

  7. Wisconsin's study of manned Mars missions

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design group focused on three topics: (1) Extravehicular Activities, (2) Sample Return Missions, and (3) Structural and Construction Considerations of a Manned Mars Habitat. Extravehicular Activities permit a Mars based astronaut to exit the habitat and perform mission activities in the harsh Mars environment. Today's spacesuit gloves are bulky, hard to manipulate and fatiguing. A mechanical assistance mechanism has been developed for the glove that will reduce user fatigue and increase the duration of EVA's. Oxygen supply systems are also being developed for the EVA astronaut. A scuba type system of tanked breathing air proves to be the most efficient system for short duration EVA's. A system that extracts the oxygen from atmospheric carbon dioxide can provide oxygen for long duration FVA's. Sample Return Missions require that samples be taken from several sites. Transportation considerations are addressed and two transportation schemes are proposed. The first scheme involves a lighter than air balloon. This system provides excellent range. The second design is a rover that uses tracks rather than wheels. Track rovers perform well in soft, sandy conditions. Engineering aspects of a habitat and domed greenhouse were investigated and plans for the habitat have been made. A configuration has been established and construction details have been made.

  8. STS-61B Astronaut Ross During ACCESS Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, VA and the Marshall Space Flight Center (MSFC), ACCESS and EASE were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross was working on the ACCESS experiment during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  9. STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  10. STS-61B Astronauts Ross and Spring Work on Experimental Assembly of Structures in Extravehicular

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). This STS-61B onboard photo depicts astronauts Ross and Spring working on EASE. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  11. STS-61B Astronaut Ross During ACCESS Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. In this STS-61B onboard photo, astronaut Ross was working on the ACCESS experiment during an Extravehicular Activity (EVA).

  12. Historical Study of Radiation Exposures and the Incidence of Cataracts in Astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Iszard, G.; Feiveson, A.; Peterson, L. E.; Hardy, D.; Marak, L.; Tung, W.; Wear, M.; Chylack, L. T., Jr.

    2004-01-01

    For over 35 years, astronauts in low Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons, heavy ions, and secondary neutrons. We reviewed the radiation exposures received by astronauts in space and on Earth, and presented results from the first epidemiological study of cataract incidence in the astronauts. Our data suggested an increased risk for cataracts from space radiation exposures. Using parametric survival analysis and the maximum likelihood method, we estimated the dose-response and age distribution for cataract incidence in astronauts by space radiation. Considering the high-LET dose contributions on specific space missions as well as data from animal studies with neutrons and heavy ions, suggested a linear response with no dose-threshold for cataracts. However, there are unanswered questions related to the importance and the definition of clinically significant cataracts commonly used in radiation protection, especially in light of epidemiological data suggesting that the probability that sub-clinical cataracts will progress is highly dependent on the age at which cataracts appear. We briefly describe a new study that will address the measurement of cataract progression-rates in astronauts and a ground-based comparison group.

  13. Historical Study of Radiation Exposures and the Incidence of Cataracts in Astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Iszard, G.; Feiveson, A.; Peterson, L. E.; Hardy, D.; Marak, L.; Tung, W.; Wear, M.; Chylack, L. T., Jr.

    2004-01-01

    For over 35 years, astronauts in low Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons, heavy ions, and secondary neutrons. We reviewed the radiation exposures received by astronauts in space and on Earth, and presented results from the first epidemiological study of cataract incidence in the astronauts. Our data suggested an increased risk for cataracts from space radiation exposures*. Using parametric survival analysis and the maximum likelihood method, we estimated the dose-response and age distribution for cataract incidence in astronauts by space radiation. Considering the high-LET dose contributions on specific space missions as well as data from animal studies with neutrons and heavy ions, suggested a linear response with no dose-threshold for cataracts. However, there are unanswered questions related to the importance and the definition of "clinically significant" cataracts commonly used in radiation protection, especially in light of epidemiological data suggesting that the probability that "sub-clinical" cataracts will progress is highly dependent on the age at which cataracts appear. We briefly describe a new study that will address the measurement of cataract progression-rates in astronauts and a ground-based comparison group.

  14. Olivas working on ISS construction during STS-117 EVA1

    NASA Image and Video Library

    2007-06-12

    ISS015-E-11830 (11 June 2007) --- Astronauts John "Danny" Olivas and Jim Reilly (out of frame), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4. A blue and white Earth provided the backdrop for the scene.

  15. Olivas working on ISS construction during STS-117 EVA1

    NASA Image and Video Library

    2007-06-12

    ISS015-E-11831 (11 June 2007) --- Astronauts John "Danny" Olivas and Jim Reilly (out of frame), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4. A blue and white Earth provided the backdrop for the scene.

  16. Management of Asymptomatic Renal Stones in Astronauts

    NASA Technical Reports Server (NTRS)

    Reyes, David; Locke, James

    2016-01-01

    Introduction: Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The risks for renal stone formation in astronauts due to bone loss and hypercalcuria are unknown. Astronauts have a stone risk which is about the same as commercial aviation pilots, which is about half that of the general population. However, proper management of this condition is still crucial to mitigate health and mission risks in the spaceflight environment. Methods: An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was done. The NASA Flight Medicine Clinic's electronic medical record and Longitudinal Survey of Astronaut Health were also reviewed. Using this work, a screening and management algorithm was created that takes into consideration the unique operational environment of spaceflight. Results: Renal stone screening and management guidelines for astronauts were created based on accepted standards of care, with consideration to the environment of spaceflight. In the proposed algorithm, all astronauts will receive a yearly screening ultrasound for renal calcifications, or mineralized renal material (MRM). Any areas of MRM, 3 millimeters or larger, are considered a positive finding. Three millimeters approaches the detection limit of standard ultrasound, and several studies have shown that any stone that is 3 millimeters or less has an approximately 95 percent chance of spontaneous passage. For mission-assigned astronauts, any positive ultrasound study is followed by low-dose renal computed tomography (CT) scan, and flexible ureteroscopy if CT is positive. Other specific guidelines were also created. Discussion: The term "MRM" is used to account for small areas of calcification that may be outside the renal collecting system, and allows objectivity without otherwise constraining the diagnostic and treatment process for potentially very small calcifications of uncertain significance. However, a small asymptomatic MRM or stone within the renal collecting system may become symptomatic, and so affect launch and flight schedules, cause incapacitation during flight, and ultimately require medical evacuation. For exploration class missions, evacuation is unlikely. The new screening and management algorithm allows better management of mission risks, and will define the true incidence of renal stones in U.S. astronauts. This information will be used to refine future screening, countermeasures and treatment methods; and will also inform the needed capabilities to be flown on exploration-class missions.

  17. Latent Herpes Viral Reactivation in Astronauts

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mehta, S. K.; Stowe, R.

    2008-01-01

    Latent viruses are ubiquitous and reactivate during stressful periods with and without symptoms. Latent herpes virus reactivation is used as a tool to predict changes in the immune status in astronauts and to evaluate associated health risks. Methods: Viral DNA was detected by real time polymerase chain reaction in saliva and urine from astronauts before, during and after short and long-duration space flights. Results and Discussion: EpsteinBarr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivated, and viral DNA was shed in saliva (EBV and VZV) or urine (CMV). EBV levels in saliva during flight were 10fold higher than baseline levels. Elevations in EBV specific CD8+ T-cells, viral antibody titers, and specific cytokines were consistent with viral reactivation. Intracellular levels of cytokines were reduced in EBVspecific Tcells. CMV, rarely present in urine of healthy individuals, was shed in urine of 27% of astronauts during all phases of spaceflight. VZV, not found in saliva of asymptomatic individuals, was found in saliva of 50% of astronauts during spaceflight and 35 days after flight. VZV recovered from astronaut saliva was found to be live, infectious virus. DNA sequencing demonstrated that the VZV recovered from astronauts was from the common European strain of VZV. Elevation of stress hormones accompanied viral reactivation indicating involvement of the hypothalmic-pituitary-adrenal and sympathetic adrenal-medullary axes in the mechanism of viral reactivation in astronauts. A study of 53 shingles patients found that all shingles patients shed VZV DNA in their saliva and the VZV levels correlated with the severity of the disease. Lower VZV levels in shingles patients were similar to those observed in astronauts. We proposed a rapid, simple, and cost-effective assay to detect VZV in saliva of patients with suspected shingles. Early detection of VZV infection allows early medical intervention.

  18. Astronaut Alan Shepard using MET during geological training in Mexico

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Astronaut Alan B. Shepard Jr., commander of the Apollo 14 lunar landing mission, takes a piece of equipment from the Modular Equipment Transporter (MET) during geological and lunar surface simulation training training in the Pinacate volcanic area of northwestern Sonora, Mexico. The MET has been nicknamed 'Rickshaw' after its shape and method of propulsion.

  19. Analogue Simulation of human and psychosocial factors for MoonMars bases

    NASA Astrophysics Data System (ADS)

    Davidová, Lucie; Foing, Bernard

    2017-04-01

    Several courageous plans regarding future human space exploration have been proposed. Both main future targets, ESA's Moon village, as well as journey to Mars represent huge challenge for humans. Appropriate research on psychological aspects of humans in extreme conditions is needed. Analogue simulations represent valuable source of information that help us to understand how to provide an adequate support to astronauts in specific conditions of isolation and limited resources. The psychosocial investigation was designed to builds on combination of several methods based on subjective as well as objective assessments, namely observation, sociomapping, content analysis of interviews etc. Research on several simulations provided lessons learned and various insights. The attention was paid particularly to the interpersonal interactions among crew members, intragroup as well as intergroup communication, cooperation, and performance. This comprehensive approach enables early detection of hidden structures and potential insufficiencies of an astronaut team. The sociomapping of interpersonal communication as well as analysis of interviews with participants revealed insufficiencies especially in communication between the analogue astronauts and mission control. Another important finding was gain by investigation of the relationship between the astronaut crew and mission control. Astronauts low trust to mission control can have a great negative impact to the performance and well-being of astronauts. The findings of the psychosocial studies are very important for designing astronaut training and planning future mission.

  20. Development of the Next Generation Type Water Recovery System

    NASA Astrophysics Data System (ADS)

    Oguchi, Mitsuo; Tachihara, Satoru; Maeda, Yoshiaki; Ueoka, Terumi; Soejima, Fujito; Teranishi, Hiromitsu

    According to NASA, an astronaut living on the International Space Station (ISS) requires approximately 7 kg of water per day. This includes 2 kg of drinking water as well as sanitary fresh water for hand washing, gargling, etc. This water is carried to the space station from the earth, so when more people are staying on the space station, or staying for a longer period of time, the cost of transporting water increases. Accordingly, water is a valuable commodity, and restrictions are applied to such activities as brushing teeth, washing hair, and washing clothes. The life of an astronaut in space is not necessarily a healthy one. JAXA has experience in the research of water recovery systems. Today, utilizing knowledge learned through experiences living on the space station and space shuttles, and taking advantage of the development of new materials for device construction, it is possible to construct a new water recovery system. Therefore, JAXA and New Medican Tech Corporation (NMT) have created a system for collaborative development. Based on the technologies of both companies, we are proceeding to develop the next generation of water recovery devices in order to contribute to safe, comfortable, and healthy daily life for astronauts in space. The goal of this development is to achieve a water purification system based on reverse osmosis (RO) membranes that can perform the following functions. • Preprocessing that removes ammonia and breaks down organic matter contained in urine. • Post-processing that adds minerals and sterilizes the water. • Online TOC measurement for monitoring water quality. • Functions for measuring harmful substances. The RO membrane is an ultra-low-pressure type membrane with a 0.0001 micron (0.1 nanometer) pore size and an operating pressure of 0.4 to 0.6 MPa. During processing with the RO membrane, nearly all of the minerals contained in the cleaned water are removed, resulting in water that is near the quality of deionized water, so minerals consisting of natural components are added. In regard to techniques for removing the ammonia content of urine, past research has studied methods such as vapor compression and membrane distillation, but these methods have involved problems such as a high level of power consumption and ammonia gas contaminating the water. Therefore, in this research and development project, we examined the direct dissociation of the ammonia. For this research and development project, improvements have been made to hypochlorous acid dissociation processing technology, and in preliminary tests, ammonia at a level of 1000 ppm can be completely dissociated in 70 minutes. As such, the outlook is good for achieving the target specifications of the device being developed.

  1. Greenhouses and their humanizing synergies

    NASA Astrophysics Data System (ADS)

    Haeuplik-Meusburger, Sandra; Paterson, Carrie; Schubert, Daniel; Zabel, Paul

    2014-03-01

    Greenhouses in space will require advanced technical systems of automatic watering, soil-less cultivation, artificial lighting, and computerized observation of plants. Functions discussed for plants in space habitats include physical/health requirements and human psychology, social cohesion, as well as the complex sensorial benefits of plants for humans. The authors consider the role of plants in long-term space missions historically since 1971 (Salyut 1) and propose a set of priorities to be considered within the design requirements for greenhouses and constructed environments given a range of benefits associated with plant-human relationships. They cite recent research into the use of greenhouses in extreme environments to reveal the relative importance of greenhouses for people living in isolated locations. Additionally, they put forward hypotheses about where greenhouses might factor into several strata of human health. In a recent design-in-use study of astronauts' experiences in space habitats discussed in Architecture for Astronauts (Springer Press 2011) it was found that besides the basic advantages for life support there are clearly additional "side benefits" for habitability and physical wellbeing, and thus long-term mission success. The authors have composed several key theses regarding the need to promote plant-human relationships in space, including areas where synergy and symbiosis occur. They cite new comprehensive research into the early US Space Program to reveal where programmatic requirements could be added to space architecture to increase the less quantifiable benefits to astronauts of art, recreation, and poetic engagement with their existential condition of estrangement from the planet. Specifically in terms of the technological requirements, the authors propose the integration of a new greenhouse subsystem component into space greenhouses—the Mobile Plant Cultivation Subsystem—a portable, personal greenhouse that can be integrated functionally into future greenhouse constructions in space.

  2. Cardiovascular Disease Outcomes Among the NASA Astronaut Corps

    NASA Technical Reports Server (NTRS)

    Charvat, Jacqueline M.; Lee, Stuart M. C.; Wear, Mary L.; Stenger, Michael B.; Van Baalen, Mary

    2018-01-01

    BACKGROUND: Acute effects of spaceflight on the cardiovascular system have been studied extensively, but the combined chronic effects of spaceflight and aging are not well understood. Preparation for and participation in spaceflight activities are associated with changes in the cardiovascular system such as decreased carotid artery distensibility and decreased ventricular mass which may lead to an increased risk of cardiovascular disease. Additionally, astronauts who travel into space multiple times or for longer durations may be at an increased risk across their lifespan. To that end, the purpose of this study was to determine the incidence of common cardiovascular disease (CVD) outcomes among the NASA astronaut corps during their active career and through retirement. METHODS: Cardiovascular disease outcomes were defined as reports of any of the following: myocardial infarction (MI), revascularization procedures (coronary artery bypass graft surgery [CABG] or percutaneous coronary intervention [PCI]), hypertension, stroke or transient ischemic attack [TIA], heart failure, or total CVD (as defined by the AHA - combined outcome of MI, Angina Pectoris, heart failure, stroke, and hypertension). Each outcome was identified individually from review of NASA's Electronic Medical Record (EMR), EKG reports, and death certificates using ICD-9 codes as well as string searches of physician notes of astronaut exams that occurred between 1959 and 2016. RESULTS: Of 338 NASA astronauts selected as of 2016, 9 reported an MI, 12 reported a revascularization procedure, (7 PCI and 5 CABG), 4 reported Angina (without MI), 5 reported heart failure, 9 reported stroke/TIA, and 96 reported hypertension. Total CVD was reported in 105 astronauts. No astronaut who had an MI or revascularization procedure flew a spaceflight mission following the event. All MI, revascularization, and stroke events occurred in male astronauts. When reviewing astronaut ECG reports, abnormal ECG reports were found in only 8% of records (n=430) and mainly among retired astronauts (82%), with marked sinus bradycardia being the reason for the abnormal classification.

  3. MRI-Based Computational Fluid Dynamics in Experimental Vascular Models: Toward the Development of an Approach for Prediction of Cardiovascular Changes During Prolonged Space Missions

    NASA Technical Reports Server (NTRS)

    Spirka, T. A.; Myers, J. G.; Setser, R. M.; Halliburton, S. S.; White, R. D.; Chatzimavroudis, G. P.

    2005-01-01

    A priority of NASA is to identify and study possible risks to astronauts health during prolonged space missions [l]. The goal is to develop a procedure for a preflight evaluation of the cardiovascular system of an astronaut and to forecast how it will be affected during the mission. To predict these changes, a computational cardiovascular model must be constructed. Although physiology data can be used to make a general model, a more desirable subject-specific model requires anatomical, functional, and flow data from the specific astronaut. MRI has the unique advantage of providing images with all of the above information, including three-directional velocity data which can be used as boundary conditions in a computational fluid dynamics (CFD) program [2,3]. MRI-based CFD is very promising for reproduction of the flow patterns of a specific subject and prediction of changes in the absence of gravity. The aim of this study was to test the feasibility of this approach by reconstructing the geometry of MRI-scanned arterial models and reproducing the MRI-measured velocities using CFD simulations on these geometries.

  4. STS-109 Astronaut Michael J. Massimino Peers Into Window of Shuttle During EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-109 Astronauts Michael J. Massimino and James H. Newman were making their second extravehicular activity (EVA) of their mission when astronaut Massimino, mission specialist, peered into Columbia's crew cabin during a brief break from work on the Hubble Space Telescope (HST). The HST is latched down just a few feet behind him in Columbia's cargo bay. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the Hubble Space Telescope (HST). STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  5. EVA 2 - Tani on S1 truss.

    NASA Image and Video Library

    2007-10-28

    S120-E-007003 (28 Oct. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Tani and astronaut Scott Parazynski (out of frame), STS-120 mission specialist, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later.

  6. EVA 2 - Parazynski outfitting Node 2

    NASA Image and Video Library

    2007-10-28

    S120-E-007080 (28 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Parazynski and astronaut Daniel Tani (out of frame), Expedition 16 flight engineer, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later.

  7. EVA 2 - Tani on S1 truss

    NASA Image and Video Library

    2007-10-28

    S120-E-007119 (28 Oct. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Tani and astronaut Scott Parazynski (out of frame), STS-120 mission specialist, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later.

  8. View of STS-129 MS2 Bresnik during EVA2

    NASA Image and Video Library

    2009-11-21

    S129-E-007227 (21 Nov. 2009) --- Astronaut Randy Bresnik (near the Columbus laboratory), STS-129 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, eight-minute spacewalk, Bresnik and astronaut Mike Foreman (out of frame), mission specialist, installed a Grappling Adaptor to On-Orbit Railing Assembly, or GATOR, on the Columbus laboratory. GATOR contains a ship-tracking antenna system and a HAM radio antenna. They relocated a floating potential measurement unit that gauges electric charges that build up on the station, deployed a Payload Attach System on the space-facing side of the Starboard 3 truss segment and installed a wireless video system that allows spacewalkers to transmit video to the station and relay it to Earth.

  9. View of STS-129 MS2 Bresnik during EVA2

    NASA Image and Video Library

    2009-11-21

    S129-E-007762 (21 Nov. 2009) --- Astronaut Randy Bresnik (near the Columbus laboratory), STS-129 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, eight-minute spacewalk, Bresnik and astronaut Mike Foreman (out of frame), mission specialist, installed a Grappling Adaptor to On-Orbit Railing Assembly, or GATOR, on the Columbus laboratory. GATOR contains a ship-tracking antenna system and a HAM radio antenna. They relocated a floating potential measurement unit that gauges electric charges that build up on the station, deployed a Payload Attach System on the space-facing side of the Starboard 3 truss segment and installed a wireless video system that allows spacewalkers to transmit video to the station and relay it to Earth.

  10. View of STS-129 MS2 Bresnik during EVA2

    NASA Image and Video Library

    2009-11-21

    S129-E-007756 (21 Nov. 2009) --- Astronaut Randy Bresnik (near the Columbus laboratory), STS-129 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, eight-minute spacewalk, Bresnik and astronaut Mike Foreman (out of frame), mission specialist, installed a Grappling Adaptor to On-Orbit Railing Assembly, or GATOR, on the Columbus laboratory. GATOR contains a ship-tracking antenna system and a HAM radio antenna. They relocated a floating potential measurement unit that gauges electric charges that build up on the station, deployed a Payload Attach System on the space-facing side of the Starboard 3 truss segment and installed a wireless video system that allows spacewalkers to transmit video to the station and relay it to Earth.

  11. Linnehan and Foreman on EVA 2 - during Expedition 16 / STS-123 Joint Operations

    NASA Image and Video Library

    2008-03-16

    S123-E-006786 (15/16 March 2008) --- Astronaut Rick Linnehan, STS-123 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and astronaut Mike Foreman (out of frame), mission specialist, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System. The blackness of space and Earth's horizon provide the backdrop for the scene.

  12. ASCAN Helms sets up tent during survival training at Fairchild AFB

    NASA Technical Reports Server (NTRS)

    1990-01-01

    1990 Group 13 Astronaut Candidate (ASCAN) Susan J. Helms gathers pine branches to create bedding under a tent she has constructed from a parachute. Helms, along with her classmates, is participating in wilderness survival training at Fairchild Air Force Base (AFB) Spokane, Washington. The training was conducted in the mountain forests of Washington from 08-26-90 through 08-30-90.

  13. The Floating Potential Probe (FPP) taken during the third EVA of STS-97

    NASA Image and Video Library

    2000-12-07

    STS097-376-029 (7 December 2000) --- Space walking Endeavour astronauts topped off their scheduled space walk activities with an image of an evergreen tree placed atop the P6 solar array structure, the highest point in their construction project. They then took this photo of the "tree" before returning to the shirt-sleeve environment of the Space Shuttle Endeavour.

  14. The relationship of NASA occupational medicine and environmental health with the Advisory Center on Toxicology

    NASA Technical Reports Server (NTRS)

    Wands, R. C.

    1969-01-01

    Preventive measures of occupational medicine and industrial hygiene are coordinated to identify toxicities of industrial products and safety standards in manned space flight applications. Emphasized is the off-gassing of construction materials in spacecraft with the resulting contamination of the cabin atmosphere and the establishment of criteria for the quality of drinking water for astronauts during Gemini and Apollo programs.

  15. Around Marshall

    NASA Image and Video Library

    1999-07-17

    Outside of Building 4200 at Marshall Space Flight Center, a courtyard was constructed in memory of Dr. Wernher von Braun and his contributions to the U. S. Space program. In the middle of the courtyard a fountain was built. The fountain was made operational prior to the 30th arniversary celebration of the Apollo 11 lunar landing. Attending the dedication ceremony were visiting Apollo astronauts and NASA's Safety and Assurance Director Rothenberg.

  16. Fountain Dedication

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Outside of Building 4200 at Marshall Space Flight Center, a courtyard was constructed in memory of Dr. Wernher von Braun and his contributions to the U. S. Space program. In the middle of the courtyard a fountain was built. The fountain was made operational prior to the 30th arniversary celebration of the Apollo 11 lunar landing. Attending the dedication ceremony were visiting Apollo astronauts and NASA's Safety and Assurance Director Rothenberg.

  17. ASCAN Helms sets up tent during survival training at Fairchild AFB

    NASA Image and Video Library

    1990-09-24

    1990 Group 13 Astronaut Candidate (ASCAN) Susan J. Helms gathers pine branches to create bedding under a tent she has constructed from a parachute. Helms, along with her classmates, is participating in wilderness survival training at Fairchild Air Force Base (AFB) Spokane, Washington. The training was conducted in the mountain forests of Washington from 08-26-90 through 08-30-90.

  18. Heart Rate Monitor

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the mid 70's, NASA saw a need for a long term electrocardiographic electrode suitable for use on astronauts. Heart Rate Inc.'s insulated capacitive electrode is constructed of thin dielectric film applied to stainless steel surface, originally developed under a grant by Texas Technical University. HRI, Inc. was awarded NASA license and continued development of heart rate monitor for use on exercise machines for physical fitness and medical markets.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-19

    Eight days of construction resumed on the International Space Station (ISS), as STS-117 astronauts and mission specialists and the Expedition 15 crew completed installation of the second and third starboard truss segments (S3 and S4). Back dropped by the blackness of space, its newly expanded configuration is revealed as pilot Lee Archambault conducts a fly around upon departure from the station on June 19, 2007.

  20. Astronaut Bone Medical Standards Derived from Finite Element (FE) Models of QCT Scans from Population Studies

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Feiveson, A. H.

    2014-01-01

    This work was accomplished in support of the Finite Element [FE] Strength Task Group, NASA Johnson Space Center [JSC], Houston, TX. This group was charged with the task of developing rules for using finite-element [FE] bone-strength measures to construct operating bands for bone health that are relevant to astronauts following exposure to spaceflight. FE modeling is a computational tool used by engineers to estimate the failure loads of complex structures. Recently, some engineers have used this tool to characterize the failure loads of the hip in population studies that also monitored fracture outcomes. A Directed Research Task was authorized in July, 2012 to investigate FE data from these population studies to derive these proposed standards of bone health as a function of age and gender. The proposed standards make use of an FE-based index that integrates multiple contributors to bone strength, an expanded evaluation that is critical after an astronaut is exposed to spaceflight. The current index of bone health used by NASA is the measurement of areal BMD. There was a concern voiced by a research and clinical advisory panel that the sole use of areal BMD would be insufficient to fully evaluate the effects of spaceflight on the hip. Hence, NASA may not have a full understanding of fracture risk, both during and after a mission, and may be poorly estimating in-flight countermeasure efficacy. The FE Strength Task Group - composed of principal investigators of the aforementioned population studies and of FE modelers -donated some of its population QCT data to estimate of hip bone strength by FE modeling for this specific purpose. Consequently, Human Health Countermeasures [HHC] has compiled a dataset of FE hip strengths, generated by a single FE modeling approach, from human subjects (approx.1060) with ages covering the age range of the astronauts. The dataset has been analyzed to generate a set of FE strength cutoffs for the following scenarios: a) Qualify an applicant for astronaut candidacy, b) Qualify an astronaut for a long-duration (LD) mission, c) Qualify a veteran LD astronaut for a second LD mission, and d) Establish a non-permissible, minimum hip strength following a given mission architecture. This abstract will present the FE-based standards accepted by the FE Strength Task Group for its recommendation to HHC in January 2015.

  1. Risk of Skin Cancer from Space Radiation. Chapter 11

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; George, Kerry A.; Wu, Hong-Lu

    2003-01-01

    We review the methods for estimating the probability of increased incidence of skin cancers from space radiation exposure, and describe some of the individual factors that may contribute to risk projection models, including skin pigment, and synergistic effects of combined ionizing and UV exposure. The steep dose gradients from trapped electrons, protons, and heavy ions radiation during EVA and limitations in EVA dosimetry are important factors for projecting skin cancer risk of astronauts. We estimate that the probability of increased skin cancer risk varies more than 10-fold for individual astronauts and that the risk of skin cancer could exceed 1 % for future lunar base operations for astronauts with light skin color and hair. Limitations in physical dosimetry in estimating the distribution of dose at the skin suggest that new biodosimetry methods be developed for responding to accidental overexposure of the skin during future space missions.

  2. Extravehicular Activity training and hardware design considerations

    NASA Technical Reports Server (NTRS)

    Thuot, Pierre J.; Harbaugh, Gregory J.

    1993-01-01

    Designing hardware that can be successfully operated by EVA astronauts for EVA tasks required to assemble and maintain Space Station Freedom requires a thorough understanding of human factors and of the capabilities and limitations of the space-suited astronaut, as well as of the effect of microgravity environment on the crew member's capabilities and on the overhead associated with EVA. This paper describes various training methods and facilities that are being designed for training EVA astronauts for Space Station assembly and maintenance, taking into account the above discussed factors. Particular attention is given to the user-friendly hardware design for EVA and to recent EVA flight experience.

  3. Thyroid Function Changes Related to Use of Iodinated Water in United States Space Program

    NASA Technical Reports Server (NTRS)

    McMonigal, Kathleen A.; Braverman, Lewis E.; Dunn, John T.; Stanbury, John B.; Wear, Mary L.; Hamm, Peggy B.; Sauer, Richard L.; Billica, Roger D.; Pool, Sam L.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has used iodination as a method of microbial disinfection of potable water systems in United States spacecraft and long-duration habitability modules. A review of the effects on the thyroid following consumption o iodinated water by NASA astronauts was conducted. Pharmacological doses of iodine consumed by astronauts transiently decreased thyroid function, as reflected in serum TSH values. Although the adverse effects of excess iodine consumption in susceptible individuals are well documented, exposure to high doses of iodine during space flight did not result in a statistically significant increase in long-term thyroid disease in the astronaut population.

  4. Medically induced amenorrhea in female astronauts.

    PubMed

    Jain, Varsha; Wotring, Virginia E

    2016-01-01

    Medically induced amenorrhea can be achieved through alterations in the normal regulatory hormones via the adoption of a therapeutic agent, which prevents menstrual flow. Spaceflight-related advantages for medically induced amenorrhea differ according to the time point in the astronaut's training schedule. Pregnancy is contraindicated for many pre-flight training activities as well as spaceflight, therefore effective contraception is essential. In addition, the practicalities of menstruating during pre-flight training or spaceflight can be challenging. During long-duration missions, female astronauts have often continuously taken the combined oral contraceptive pill to induce amenorrhea. Long-acting reversible contraceptives (LARCs) are safe and reliable methods used to medically induce amenorrhea terrestrially but as of yet, not extensively used by female astronauts. If LARCs were used, daily compliance with an oral pill is not required and no upmass or trash would need disposal. Military studies have shown that high proportions of female personnel desire amenorrhea during deployment; better education has been recommended at recruitment to improve uptake and autonomous decision-making. Astronauts are exposed to similar austere conditions as military personnel and parallels can be drawn with these results. Offering female astronauts up-to-date, evidence-based, comprehensive education, in view of the environment in which they work, would empower them to make informed decisions regarding menstrual suppression while respecting their autonomy.

  5. The exercise and environmental physiology of extravehicular activity

    NASA Technical Reports Server (NTRS)

    Cowell, Stephenie A.; Stocks, Jodie M.; Evans, David G.; Simonson, Shawn R.; Greenleaf, John E.

    2002-01-01

    Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor strength, and a 15-20% decrease in lower-body aerobic exercise capacity. Changes in EVA support systems and training based on a greater understanding of the physiological aspects of exercise in the EVA environment will help to insure the health, safety, and efficiency of working astronauts.

  6. The exercise and environmental physiology of extravehicular activity.

    PubMed

    Cowell, Stephenie A; Stocks, Jodie M; Evans, David G; Simonson, Shawn R; Greenleaf, John E

    2002-01-01

    Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor strength, and a 15-20% decrease in lower-body aerobic exercise capacity. Changes in EVA support systems and training based on a greater understanding of the physiological aspects of exercise in the EVA environment will help to insure the health, safety, and efficiency of working astronauts.

  7. Space architecture monograph series. Volume 4: Genesis 2: Advanced lunar outpost

    NASA Technical Reports Server (NTRS)

    Fieber, Joseph P.; Huebner-Moths, Janis; Paruleski, Kerry L.; Moore, Gary T. (Editor)

    1991-01-01

    This research and design study investigated advanced lunar habitats for astronauts and mission specialists on the Earth's moon. Design recommendations are based on environmental response to the lunar environment, human habitability (human factors and environmental behavior research), transportability (structural and materials system with least mass), constructability (minimizing extravehicular time), construction dependability and resilience, and suitability for NASA launch research missions in the 21st century. The recommended design uses lunar lava tubes, with construction being a combination of Space Station Freedom derived hard modules and light weight Kevlar laminate inflatable structures. The proposed habitat includes research labs and a biotron, crew quarters and crew support facility, mission control, health maintenance facility, maintenance work areas for psychological retreat, privacy, and comtemplation. Furniture, specialized equipment, and lighting are included in the analysis and design. Drawings include base master plans, construction sequencing, overall architectural configuration, detailed floor plans, sections and axonometrics, with interior perspectives.

  8. Reilly working on ISS construction during STS-117 EVA1

    NASA Image and Video Library

    2007-06-12

    ISS015-E-11870 (11 June 2007) --- Astronauts Jim Reilly and John "Danny" Olivas (visible among Reilly's helmet reflections), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4. The crew cabin and nose of Space Shuttle Atlantis docked to the station is visible in the background.

  9. Space construction engineering - A new career field

    NASA Technical Reports Server (NTRS)

    Hagler, T.

    1979-01-01

    Opportunities for engineers in the design and construction of future large space structures are outlined. Possible space structures for the 1980's include a large mirror to reflect sunlight to earth for night lighting, an antenna for a personal communications system, a deep space communications relay system and a large passive radiometer to measure soil moisture. Considerations in the design of such structures include the lack of gravity, allowing structures to be built with much less supporting weight, the cost of transportation to orbit, leading to the use of aluminum or composite materials stored on reels and attached to a beam builder, and the required surface accuracy in the presence of thermal stresses. Construction factors to consider include the use of astronauts and remote manipulators in assembly, both of which have been demonstrated to be feasible.

  10. Initial Incidence of White Matter Hyperintensities on MRI in Astronauts

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Sherman, Paul; McGuire, Steve; Kochunov, Peter

    2016-01-01

    Introduction: Previous literature has described the increase in white matter hyperintensity (WMH) burden associated with hypobaric exposure in the U-2 and altitude chamber operating personnel. Although astronauts have similar hypobaric exposure pressures to the U2 pilot population, astronauts have far fewer exposures and each exposure would be associated with a much lower level of decompression stress due to rigorous countermeasures to prevent decompression sickness. Therefore, we postulated that the WMH burden in the astronaut population would be less than in U2 pilots. Methods: Twenty-one post-flight de-identified astronaut MRIs (5 mm slice thickness FLAIR sequences) were evaluated for WMH count and volume. The only additional data provided was an age range of the astronauts (43-57) and if they had ever performed an EVA (13 yes, 8 no). Results: WMH count in these 21 astronaut MRI was 21.0 +/- 24.8 (mean+/- SD) and volume was 0.382 +/- 0.602 ml, which was significantly higher than previously published results for the U2 pilots. No significant differences between EVA and no EVA groups existed. Age range of astronaut population is not directly comparable to the U2 population. Discussion: With significantly less frequent (sometimes none) and less stressful hypobaric exposures, yet a much higher incidence of increased WMH, this indicates the possibility of additional mechanisms beyond hypobaric exposure. This increase unlikely to be attributable just to the differences in age between astronauts and U2 pilots. Forward work includes continuing review of post-flight MRI and evaluation of pre to post flight MRI changes if available. Data mining for potential WMH risk factors includes collection of age, sex, spaceflight experience, EVA hours, other hypobaric exposures, hyperoxic exposures, radiation, high performance aircraft experience and past medical history. Finally, neurocognitive and vision/eye results will be evaluated for any evidence of impairment linked to increased WMH.

  11. Menstrual Cycle Control in Female Astronauts and the Associated Risk of Venous Thromboembolism

    NASA Technical Reports Server (NTRS)

    Jain, Varsha; Wotring, Virginia

    2015-01-01

    Venous thromboembolism (VTE) is a common and serious condition affecting approximately 1-2 per 1000 people in the USA every year. There have been no documented case reports of VTE in female astronauts during spaceflight in the published literature. Some female astronauts use hormonal contraception to control their menstrual cycles and it is currently unknown how this affects their risk of VTE. Current terrestrial risk prediction models do not account for the spaceflight environment and the physiological changes associated with it. We therefore aim to estimate a specific risk score for female astronauts who are taking hormonal contraception for menstrual cycle control, to deduce whether they are at an elevated risk of VTE. A systematic review of the literature was conducted in order to identify and quantify known terrestrial risk factors for VTE. Studies involving analogues for the female astronaut population were also reviewed, for example, military personnel who use the oral contraceptive pill for menstrual suppression. Well known terrestrial risk factors, for example, obesity or smoking would not be applicable to our study population as these candidates would have been excluded during astronaut selection processes. Other risk factors for VTE include hormonal therapy, lower limb paralysis, physical inactivity, hyperhomocysteinemia, low methylfolate levels and minor injuries, all of which potentially apply to crew members LSAH data will be assessed to identify which of these risk factors are applicable to our astronaut population. Using known terrestrial risk data, an overall estimated risk of VTE for female astronauts using menstrual cycle control methods will therefore be calculated. We predict this will be higher than the general population but not significantly higher requiring thromboprophylaxis. This study attempts to delineate what is assumed to be true of our astronaut population, for example, they are known to be a healthy fit cohort of individuals, and combine physiological impacts of spaceflight (cephalic fluid shifts, lower limb inactivity) to understand specific risks associated with hormonal contraception.

  12. Enhanced Monocular Visual Odometry Integrated with Laser Distance Meter for Astronaut Navigation

    PubMed Central

    Wu, Kai; Di, Kaichang; Sun, Xun; Wan, Wenhui; Liu, Zhaoqin

    2014-01-01

    Visual odometry provides astronauts with accurate knowledge of their position and orientation. Wearable astronaut navigation systems should be simple and compact. Therefore, monocular vision methods are preferred over stereo vision systems, commonly used in mobile robots. However, the projective nature of monocular visual odometry causes a scale ambiguity problem. In this paper, we focus on the integration of a monocular camera with a laser distance meter to solve this problem. The most remarkable advantage of the system is its ability to recover a global trajectory for monocular image sequences by incorporating direct distance measurements. First, we propose a robust and easy-to-use extrinsic calibration method between camera and laser distance meter. Second, we present a navigation scheme that fuses distance measurements with monocular sequences to correct the scale drift. In particular, we explain in detail how to match the projection of the invisible laser pointer on other frames. Our proposed integration architecture is examined using a live dataset collected in a simulated lunar surface environment. The experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:24618780

  13. Swanson works on the P6 Truss during EVA 2

    NASA Image and Video Library

    2007-06-14

    S117-E-07332 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-11

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Rick Mastracchio and Canada Space Agency's Dave Williams (out of frame), participated in the first session of Extra Vehicular Activity (EVA) for the mission. During the 6 hour, 17 minute space walk, the two attached the Starboard 5 (S5) segment of truss, retracted the forward heat rejecting radiator from the Port 6 (P6) truss, and performed several get ahead tasks.

  15. KSC-07pd2660

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- STS-122 crew members get a close look at shuttle equipment from inside the payload bay of space shuttle Atlantis. The crew comprises six astronauts: Commander Stephen Frick, Pilot Alan Poindexter and Mission Specialists Rex Walheim, Stanley Love, Leland Melvin and Hans Schlegel, who represents the European Space Agency. A seventh astronaut is Leopold Eyharts, also with the ESA, who will join the Expedition 16 crew as flight engineer on the International Space Station. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  16. KSC-07pd2658

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- STS-122 crew members get a close look at shuttle equipment from inside the payload bay of space shuttle Atlantis. The crew comprises six astronauts: Commander Stephen Frick, Pilot Alan Poindexter and Mission Specialists Rex Walheim, Stanley Love, Leland Melvin and Hans Schlegel, who represents the European Space Agency. A seventh astronaut is Leopold Eyharts, also with the ESA, who will join the Expedition 16 crew as flight engineer on the International Space Station. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  17. KSC-07pd2659

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- STS-122 crew members get a close look at shuttle equipment from inside the payload bay of space shuttle Atlantis. The crew comprises six astronauts: Commander Stephen Frick, Pilot Alan Poindexter and Mission Specialists Rex Walheim, Stanley Love, Leland Melvin and Hans Schlegel, who represents the European Space Agency. A seventh astronaut is Leopold Eyharts, also with the ESA, who will join the Expedition 16 crew as flight engineer on the International Space Station. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  18. A mobile transporter concept for EVA assembly of future spacecraft

    NASA Technical Reports Server (NTRS)

    Watson, Judith J.; Bush, Harold G.; Heard, Walter L., Jr.; Lake, Mark S.; Jensen, J. Kermit

    1990-01-01

    This paper details the ground test program for the NASA Langley Research Center Mobile Transporter concept. The Mobile Transporter would assist EVA astronauts in the assembly of the Space Station Freedom. 1-g and simulated O-g (neutral buoyancy) tests were conducted to evaluate the use of the Mobile Transporter. A three-bay (44 struts) orthogonal tetrahedral truss configuration with a 15-foot-square cross section was repeatedly assembled by a single pair of pressure suited test subjects working from the Mobile Transporter astronaut positioning devices. The average unit assembly time was 28 seconds/strut. The results of these tests indicate that the use of a Mobile Transporter for EVA assembly of Space Station size structure is viable and practical. Additionally, the Mobile Transporter could be used to construct other spacecraft such as the submillimeter astronomical laboratory, space crane, and interplanetary (i.e., Mars and lunar) spacecraft.

  19. Scott and Doi conduct tool evaluations during second EVA of STS-87

    NASA Image and Video Library

    1997-12-03

    STS087-341-036 (3 Dec. 1997) --- Backdropped against a dark Earth and a light blue horizon, astronaut Takao Doi (right), international mission specialist representing Japan's National Space Development Agency (NASDA), works with a crane while astronaut Winston E. Scott looks on. This second extravehicular activity (EVA) of the mission continued the evaluation of techniques and hardware to be used in constructing the International Space Station (ISS). Near Scott can be seen the representation of a small Orbital Replacement Unit (ORU) in the grasp of the 156-pound crane operated by Doi. A similar crane could be used to transport various sized ORU’s from translation carts on the exterior of the ISS to various worksites on the truss structure. This view was captured, on 35mm film, by a crew mate in the shirt sleeve environment of the Space Shuttle Columbia's cabin. The SPARTAN-201 satellite is in its stowed position at frame center.

  20. Mars Robotics in the Elementary School

    NASA Astrophysics Data System (ADS)

    Bonett, D.

    2003-05-01

    Kenneth E. Little Elementary is a public school grades Pre-K to 5th in Bacliff, Texas. It has an ethnically diverse population of one-thousand boys and girls. It is a Title 1 school with eighty-six percent of the students receiving free or reduced meals. K.E. Little has a large at-risk population with a thirty-three percent transition rate. The Young Astronauts @ K.E. Little is an on-going afterschool space science program in it's third year of operation. Thirty students,fourth and fifth grade, were involved in our spring robotics program. Each co-operative group was assigned a LEGO robotics kit to inventory,organize, and familiarize themselves with. Each team made decisions, by consensus, concerning the robots design and capabilities. Students used the Dell Computer Lab on campus to program their robots. Although time did not permit the construction of a simulated Martian landscape, future Young Astronauts will continue this project in January 2004.

  1. 2nd EVA - Tani on P6 Truss

    NASA Image and Video Library

    2007-10-28

    S120-E-007038 (28 Oct. 2007) --- Astronaut Daniel Tani (top center), Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Tani and astronaut Scott Parazynski (out of frame), STS-120 mission specialist, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later. The moon is visible at lower center.

  2. A Simple Engineering Analysis of Solar Particle Event High Energy Tails and Their Impact on Vehicle Design

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Walker, Steven A.; Clowdsley, Martha S.

    2016-01-01

    The mathematical models for Solar Particle Event (SPE) high energy tails are constructed with several di erent algorithms. Since limited measured data exist above energies around 400 MeV, this paper arbitrarily de nes the high energy tail as any proton with an energy above 400 MeV. In order to better understand the importance of accurately modeling the high energy tail for SPE spectra, the contribution to astronaut whole body e ective dose equivalent of the high energy portions of three di erent SPE models has been evaluated. To ensure completeness of this analysis, simple and complex geometries were used. This analysis showed that the high energy tail of certain SPEs can be relevant to astronaut exposure and hence safety. Therefore, models of high energy tails for SPEs should be well analyzed and based on data if possible.

  3. Resiman during Expedition 16/STS-123 EVA 1

    NASA Image and Video Library

    2008-03-14

    ISS016-E-032705 (13/14 March 2008) --- Astronaut Garrett Reisman, Expedition 16 flight engineer, uses a digital camera to expose a photo of his helmet visor during the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. Also visible in the reflections in the visor are various components of the station, the docked Space Shuttle Endeavour and a blue and white portion of Earth. During the seven-hour and one-minute spacewalk, Reisman and astronaut Rick Linnehan (out of frame), STS-123 mission specialist, prepared the Japanese logistics module-pressurized section (JLP) for removal from Space Shuttle Endeavour's payload bay; opened the Centerline Berthing Camera System on top of the Harmony module; removed the Passive Common Berthing Mechanism and installed both the Orbital Replacement Unit (ORU) tool change out mechanisms on the Canadian-built Dextre robotic system, the final element of the station's Mobile Servicing System.

  4. Linnehan during Expedition 16/STS-123 EVA 3

    NASA Image and Video Library

    2008-03-18

    ISS016-E-033024 (17/18 March 2008) --- Astronaut Rick Linnehan, STS-123 mission specialist, uses a digital camera to expose a photo of his helmet visor during the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. Also visible in the reflections in the visor are various components of the station, the docked Space Shuttle Endeavour and a blue and white portion of Earth. During the 6-hour, 53-minute spacewalk, Linnehan and astronaut Robert L. Behnken (out of frame), mission specialist, installed a spare-parts platform and tool-handling assembly for Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM). Among other tasks, they also checked out and calibrated Dextre's end effector and attached critical spare parts to an external stowage platform. The new robotic system is scheduled to be activated on a power and data grapple fixture located on the Destiny laboratory on flight day nine.

  5. An ethical duty: Let astronautical development unfold - to make the people more secure

    NASA Astrophysics Data System (ADS)

    Bernasconi, Marco C.

    2014-11-01

    In examining alternative space-development models, one observes that Heinlein postulated the first Moon flight as the outcome of the focused action of an individual - building upon an ample commercial aerospace transportation infrastructure. The same technological basis and entrepreneurial drive would then sustain a fast human and economic expansion on three new planets. Instead, historically, humans reached the Moon thanks to a "Faustian bargain" between astronautical developers and governments. This approach brought the early Apollo triumphs, but it also created the presumption of this method as the sole one for enabling space development. Eventually, the application of this paradigm caused the decline of the astronautical endeavor. Thus, just as conventional methods became unable to sustain the astronautical endeavor, space development appeared as vital, e.g., to satisfy the people's basic needs (metabolic resources, energy, materials, and space), as shown elsewhere. Such an endeavor must grow from actions generating new wealth through commercial activities to become self-supporting. Acquisition and distribution of multiform space resources call, however, for a sound ethical environment, as predatory governments can easily forfeit those resources. The paper begins the search for means apt to maintain a societal environment suited for this purpose. Among numerous initiatives needed, dissemination of factual information and moral-right education support take a central position: In fact, the vital condition for true Astronautics - a vast increase in actual respect of moral rights - can also become its best consequence, as the prosperity from the space arena empowers the people, making them materially safer and more secure in their fundamental moral rights.

  6. Tracking Historical NASA EVA Training: Lifetime Surveillance of Astronaut Health (LSAH) Development of the EVA Suit Exposure Tracker (EVA SET)

    NASA Technical Reports Server (NTRS)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Lee, Lesley R.; Wear, Mary L.; Van Baalen, Mary

    2017-01-01

    During a spacewalk, designated as extravehicular activity (EVA), an astronaut ventures from the protective environment of the spacecraft into the vacuum of space. EVAs are among the most challenging tasks during a mission, as they are complex and place the astronaut in a highly stressful environment dependent on the spacesuit for survival. Due to the complexity of EVA, NASA has conducted various training programs on Earth to mimic the environment of space and to practice maneuvers in a more controlled and forgiving environment. However, rewards offset the risks of EVA, as some of the greatest accomplishments in the space program were accomplished during EVA, such as the Apollo moonwalks and the Hubble Space Telescope repair missions. Water has become the environment of choice for EVA training on Earth, using neutral buoyancy as a substitute for microgravity. During EVA training, an astronaut wears a modified version of the spacesuit adapted for working in water. This high fidelity suit allows the astronaut to move in the water while performing tasks on full-sized mockups of space vehicles, telescopes, and satellites. During the early Gemini missions, several EVA objectives were much more difficult than planned and required additional time. Later missions demonstrated that "complex (EVA) tasks were feasible when restraints maintained body position and underwater simulation training ensured a high success probability".1,2 EVA training has evolved from controlling body positioning to perform basic tasks to complex maintenance of the Hubble Space Telescope and construction of the International Space Station (ISS). Today, preparation is centered at special facilities built specifically for EVA training, such as the Neutral Buoyancy Laboratory (NBL) at NASA's Johnson Space Center ([JSC], Houston) and the Hydrolab at the Gagarin Cosmonaut Training Centre ([GCTC], Star City, outside Moscow). Underwater training for an EVA is also considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness and barotrauma as well as various musculoskeletal disorders from working in the spacesuit. The medical, operational and research communities over the years have requested access to EVA training data to better understand the risks. As a result of these requests, epidemiologists within the Lifetime Surveillance of Astronaut Health (LSAH) team have compiled records from numerous EVA training venues to quantify the exposure to EVA training. The EVA Suit Exposure Tracker (EVA SET) dataset is a compilation of ground-based training activities using the extravehicular mobility unit (EMU) in neutrally buoyant pools to enhance EVA performance on orbit. These data can be used by the current ISS program and future exploration missions by informing physicians, researchers, and operational personnel on the risks of EVA training in order that future suit and mission designs incorporate greater safety. The purpose of this technical report is to document briefly the various facilities where NASA astronauts have performed EVA training while describing in detail the EVA training records used to generate the EVA SET dataset.

  7. Space hands-on universe telescope and orbiting wide-angle light-collector telescope to be built on the Japanese experiment module exposure facility of the international space station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y.; Ebisuzaki, T.; Pennypacker, C.

    1999-01-01

    A concept study to build great observatories on, and deploy from, the ISS is presented. Use of the ISS infra-structure including robotic arms and astronauts{close_quote} EVA would permit a construction of very large optical telescopes. We envisage that the second phase of the ISS after its initial construction can landmark a new era for both ISS and Space Sciences. Ultimately, this study would plan a 10-or 20-meter class space telescope. For its first step, we envisioned an immediate extension of the Exposed Facility of ISS for building a {open_quotes}Work-bench{close_quotes} for this purpose. Initial activities can begin with two modest-sized telescopesmore » soon after the ISS construction. These early missions being studied are space Hands-On Universe Telescope (SHOUT) and Orbiting Wide-angle Light-collector (OWL). SHOUT is a 1-m telescope for science education. It will be built and adjusted on the exposure module of the Japanese Experiment Module (JEM) of the International Space Station by using a robotic arm and the EVA of astronauts. We also seek the possibility to release it from ISS after its perfection on orbit, so that it is free from the vibrations and gas contaminations on and around the ISS. SHOUT is an engineering prototype of 10-m Space Telescope (Space SUBARU Telescope). It would be scaled from the Space-SUBARU telescope so that the testing with the SHOUT would warrant the required specifications for the 10-meter Space-SUBARU construction on the ISS. The goal of the test with the SHOUT is to warrant a spatial resolution of 0.01 arc-seconds using the active/adaptive optics. It will test the following three major engineering challenges: (1) active/adaptive optics in space; (2) building of large structures by astronauts; and (3) release of a spacecraft from ISS to a free-flying orbit. The present feasibility study for the next generation great observatories that are to be built on the JEM Exposure Facility (EF) has been already funded by the Japan Space Forum, under the auspices of the National Space Development Agency (NASDA) of Japan. Included in this study are SHOUT, Space SUBARU telescope as well as OWL, Large Area gamma-ray Telescope (LAGT), and Space Submilimeter and Infrared Telescope (S-SIT). {copyright} {ital 1999 American Institute of Physics.}« less

  8. Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts

    NASA Technical Reports Server (NTRS)

    Stowe, R. P.; Pierson, D. L.; Barrett, A. D.

    2001-01-01

    OBJECTIVE: The objective of this study was to determine the effects of stress and spaceflight on levels of neuroendocrine hormones and Epstein-Barr virus (EBV)-specific antibodies in astronauts. METHODS: Antiviral antibody titers and stress hormones were measured in plasma samples collected from 28 astronauts at their annual medical exam (baseline), 10 days before launch (L-10), landing day (R+0), and 3 days after landing (R+3). Urinary stress hormones were also measured at L-10 and R+0. RESULTS: Significant increases (p <.01) in EBV virus capsid antigen antibodies were found at all three time points (L-10, R+0, and R+3) as compared with baseline samples. Anti-EBV nuclear antigen antibodies were significantly decreased at L-10 (p <.05) and continued to decrease after spaceflight (R+0 and R+3, p <.01). No changes were found in antibodies to the nonlatent measles virus. The 11 astronauts who showed evidence of EBV reactivation had significant increases in urinary epinephrine and norepinephrine as compared with astronauts without EBV reactivation. CONCLUSION: These findings indicate that physical and psychological stresses associated with spaceflight resulted in decreased virus-specific T-cell immunity and reactivation of EBV.

  9. Risky Business: The Science and Art of Radiation Risk Communication in the High Risk Context of Space Travel

    NASA Technical Reports Server (NTRS)

    Elgart, Shona Robin; Shavers, Mark; Huff, Janice; Patel, Zarana; Semones, Edward

    2016-01-01

    Successfully communicating the complex risks associated with radiation exposure is a difficult undertaking; communicating those risks within the high-risk context of space travel is uniquely challenging. Since the potential risks of space radiation exposure are not expected to be realized until much later in life, it is hard to draw comparisons between other spaceflight risks such as hypoxia and microgravity-induced bone loss. Additionally, unlike other spaceflight risks, there is currently no established mechanism to mitigate the risks of incurred radiation exposure such as carcinogenesis. Despite these challenges, it is the duty of the Space Radiation Analysis Group (SRAG) at NASA's Johnson Space Center to provide astronauts with the appropriate information to effectively convey the risks associated with exposure to the space radiation environment. To this end, astronauts and their flight surgeons are provided with an annual radiation risk report documenting the astronaut's individual radiation exposures from space travel, medical, and internal radiological procedures throughout the astronaut's career. In an effort to improve this communication and education tool, this paper critically reviews the current report style and explores alternative report styles to define best methods to appropriately communicate risk to astronauts, flight surgeons, and management.

  10. The Twins Study: NASA's First Foray into 21st Century Omics Research

    NASA Technical Reports Server (NTRS)

    Kundrot, C. E.; Shelhamer, M.; Scott, G. B. I.

    2015-01-01

    The full array of 21st century omics-based research methods should be intelligently employed to reduce the health and performance risks that astronauts will be exposed to during exploration missions beyond low Earth Orbit. In March of 2015, US Astronaut Scott Kelly will launch to the International Space Station for a one year mission while his twin brother, Mark Kelly, a retired US Astronaut, remains on the ground. This situation presents an extremely rare flight opportunity to perform an integrated omics-based demonstration pilot study involving identical twin astronauts. A group of 10 principal investigators has been competitively selected, funded, and teamed together to form the Twins Study. A very broad range of biological function are being examined including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. The plans for the Twins Study and an overview of initial results will be described as well as the technological and ethical issues raised for such spaceflight studies. An anticipated outcome of the Twins Study is that it will place NASA on a trajectory of using omics-based information to develop precision countermeasures for individual astronauts.

  11. Project Exodus

    NASA Technical Reports Server (NTRS)

    Bryant, Rodney (Compiler); Dillon, Jennifer (Compiler); Grewe, George (Compiler); Mcmorrow, Jim (Compiler); Melton, Craig (Compiler); Rainey, Gerald (Compiler); Rinko, John (Compiler); Singh, David (Compiler); Yen, Tzu-Liang (Compiler)

    1990-01-01

    A design for a manned Mars mission, PROJECT EXODUS is presented. PROJECT EXODUS incorporates the design of a hypersonic waverider, cargo ship and NIMF (nuclear rocket using indigenous Martian fuel) shuttle lander to safely carry out a three to five month mission on the surface of Mars. The cargo ship transports return fuel, return engine, surface life support, NIMF shuttle, and the Mars base to low Mars orbit (LMO). The cargo ship is powered by a nuclear electric propulsion (NEP) system which allows the cargo ship to execute a spiral trajectory to Mars. The waverider transports ten astronauts to Mars and back. It is launched from the Space Station with propulsion provided by a chemical engine and a delta velocity of 9 km/sec. The waverider performs an aero-gravity assist maneuver through the atmosphere of Venus to obtain a deflection angle and increase in delta velocity. Once the waverider and cargo ship have docked the astronauts will detach the landing cargo capsules and nuclear electric power plant and remotely pilot them to the surface. They will then descend to the surface aboard the NIMF shuttle. A dome base will be quickly constructed on the surface and the astronauts will conduct an exploratory mission for three to five months. They will return to Earth and dock with the Space Station using the waverider.

  12. [Possibility of exacerbation of allergy by lunar regolith].

    PubMed

    Horie, Masanori; Kambara, Tatsunori; Kuroda, Etsushi; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2012-09-01

    Japan, U.S.A. and other foreign space agencies have plans for the construction of a lunar base and long-term stay of astronauts on the moon. The surface of the moon is covered by a thick layer of soil that includes fine particles called "lunar regolith", which is formed by meteorite impact and space weathering. Risk assessment of particulate matter on the moon is important for astronauts working in microgravity on the moon. However, there are few investigations about the biological influences of lunar regolith. Especially, there is no investigation about allergic activity to lunar regolith. The main chemical components of lunar regolith are SiO2, Al2O3, CaO, FeO, etc. Of particular interest, approximately 50% of lunar regolith consists of SiO2. There is a report that the astronauts felt hay fever-like symptoms from the inhalation of the lunar regolith. Yellow sand, whose chemical components are similar to lunar regolith, enhances allergenic reactions, suggesting the possibility that lunar regolith has an adjuvant-like activity. Although intraperitoneal administration of lunar regolith with ovalbumin to mouse did not show enhancement of allergenic reactions, further evaluation of lunar regolith's potential to exacerbate the effects of allergies is essential for development of the moon.

  13. Monte-Carlo Simulations of Heavy Ions Track Structures and Applications

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francia A.

    2013-01-01

    In space, astronauts are exposed to protons, high ]energy heavy (HZE) ions that have a high charge (Z) and energy (E), and secondary radiation, including neutrons and recoil nuclei produced by nuclear reactions in spacecraft walls or in tissue. The astronauts can only be partly shielded from these particles. Therefore, on travelling to Mars, it is estimated that every cell nucleus in an astronaut fs body would be hit by a proton or secondary electron (e.g., electrons of the target atoms ionized by the HZE ion) every few days and by an HZE ion about once a month. The risks related to these heavy ions are not well known and of concern for long duration space exploration missions. Medical ion therapy is another situation where human beings can be irradiated by heavy ions, usually to treat cancer. Heavy ions have a peculiar track structure characterized by high levels of energy ]deposition clustering, especially in near the track ends in the so ]called eBragg peak f region. In radiotherapy, these features of heavy ions can provide an improved dose conformation with respect to photons, also considering that the relative biological effectiveness (RBE) of therapeutic ions in the plateau region before the peak is sufficiently low. Therefore, several proton and carbon ion therapy facilities are under construction at this moment

  14. Informal science education at Science City

    NASA Astrophysics Data System (ADS)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  15. Communications among elements of a space construction ensemble

    NASA Technical Reports Server (NTRS)

    Davis, Randal L.; Grasso, Christopher A.

    1989-01-01

    Space construction projects will require careful coordination between managers, designers, manufacturers, operators, astronauts, and robots with large volumes of information of varying resolution, timeliness, and accuracy flowing between the distributed participants over computer communications networks. Within the CSC Operations Branch, we are researching the requirements and options for such communications. Based on our work to date, we feel that communications standards being developed by the International Standards Organization, the CCITT, and other groups can be applied to space construction. We are currently studying in depth how such standards can be used to communicate with robots and automated construction equipment used in a space project. Specifically, we are looking at how the Manufacturing Automation Protocol (MAP) and the Manufacturing Message Specification (MMS), which tie together computers and machines in automated factories, might be applied to space construction projects. Together with our CSC industrial partner Computer Technology Associates, we are developing a MAP/MMS companion standard for space construction and we will produce software to allow the MAP/MMS protocol to be used in our CSC operations testbed.

  16. Automation of PCXMC and ImPACT for NASA Astronaut Medical Imaging Dose and Risk Tracking

    NASA Technical Reports Server (NTRS)

    Bahadori, Amir; Picco, Charles; Flores-McLaughlin, John; Shavers, Mark; Semones, Edward

    2011-01-01

    To automate astronaut organ and effective dose calculations from occupational X-ray and computed tomography (CT) examinations incorporating PCXMC and ImPACT tools and to estimate the associated lifetime cancer risk per the National Council on Radiation Protection & Measurements (NCRP) using MATLAB(R). Methods: NASA follows guidance from the NCRP on its operational radiation safety program for astronauts. NCRP Report 142 recommends that astronauts be informed of the cancer risks from reported exposures to ionizing radiation from medical imaging. MATLAB(R) code was written to retrieve exam parameters for medical imaging procedures from a NASA database, calculate associated dose and risk, and return results to the database, using the Microsoft .NET Framework. This code interfaces with the PCXMC executable and emulates the ImPACT Excel spreadsheet to calculate organ doses from X-rays and CTs, respectively, eliminating the need to utilize the PCXMC graphical user interface (except for a few special cases) and the ImPACT spreadsheet. Results: Using MATLAB(R) code to interface with PCXMC and replicate ImPACT dose calculation allowed for rapid evaluation of multiple medical imaging exams. The user inputs the exam parameter data into the database and runs the code. Based on the imaging modality and input parameters, the organ doses are calculated. Output files are created for record, and organ doses, effective dose, and cancer risks associated with each exam are written to the database. Annual and post-flight exposure reports, which are used by the flight surgeon to brief the astronaut, are generated from the database. Conclusions: Automating PCXMC and ImPACT for evaluation of NASA astronaut medical imaging radiation procedures allowed for a traceable and rapid method for tracking projected cancer risks associated with over 12,000 exposures. This code will be used to evaluate future medical radiation exposures, and can easily be modified to accommodate changes to the risk calculation procedure.

  17. The Design, Planning and Control of Robotic Systems in Space

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1996-01-01

    In the future, robotic systems will be expected to perform important tasks in space, in orbit and in planetary exploration. In orbit, current technology requires that tasks such as the repair, construction and maintenance of space stations and satellites be performed by astronaut Extra Vehicular Activity (EVA). Eliminating, the need for astronaut EVA through the use of space manipulators would greatly reduce both mission costs and hazards to astronauts. In planetary exploration, cost and logistical considerations clearly make the use of autonomous and telerobotic systems also very attractive, even in cases where an astronaut explorer might be in the area. However, such applications introduce a number of technical problems not found in conventional earth-bound industrial robots. To design useful and practical systems to meet the needs of future space missions, substantial technical development is required, including in the areas of the design, control and planning. The objectives of this research program were to develop such design paradigms and control and planning algorithms to enable future space robotic systems to meet their proposed mission objectives. The underlying intellectual focus of the program is to construct a set of integrated design, planning and control techniques based on an understanding of the fundamental mechanics of space robotic systems. This work was to build upon the results obtained in our previous research in this area supported by NASA Langley Research Center in which we have made important contributions to the area of space robotics. This program was proposed and accepted as a three year research program, a period of time necessary to make the type of fundamental developments to make a significant contributions to space robotics. Unfortunately, less than a year into the program it became clear that the NASA Langley Research Center would be forced by budgetary constraints to essentially leave this area of research. As a result, the total funding we received under this grant represented approximately one year of the original, proposed and approved, funding. For some time, there was substantial uncertainty that even this very reduced level of funding would be provided. The spending of the reduced available funds was spread just over two years to provide the support to permit the MS students who had joined the program to receive their master's degree and terminate their studies in this area.

  18. Design and Construction of a Modular Lunar Base

    NASA Astrophysics Data System (ADS)

    Grandl, Dipl. Ing Werner

    DESIGN and CONSTRUCTION of a MODULAR LUNAR BASE Purpose: The Lunar Base Design Study is a concept for the return of humans from 2020 to the end of the century. Structure: The proposed lunar station is built of 6 cylindrical modules, each one 17 m long and 6 m in diameter. Each module is made of aluminium sheets and trapezoidal aluminium sheeting and has a weight (on earth) of approx.10.2 tonnes, including the interior equipment and furnishing. The outer wall of the cylinders is built as a double-shell system, stiffened by radial bulkheads. 8 astronauts or scientists can live and work in the station, using the modules as follows: -1 Central Living Module -2 Living Quater Modules, with private rooms for each person -1 Laboratory Module for scientific research and engineering -1 Airlock Module, containing outdoor equipment, space suits, etc. -1 Energy Plant Module, carrying solar panels a small nuclear reactor and antennas for communication. Shielding: To protect the astronauts micrometeorites and radiation, the caves between the two shells of the outer wall are filled with a 0.6 m thick layer or regolith in situ by a small teleoperated digger vehicle. Using lunar material for shielding the payload for launching can be minimized. Launch and Transport: For launching a modified ARIANE 5 launcher or similar US, Russian, Chinese or Indian rockets can be used. For the flight from Earth Orbit to Lunar Orbit a "Space-Tug", which is deployed in Earth Orbit, can be used. To land the modules on the lunar surface a "Teleoperated Rocket Crane" has been developed by the author. This vehicle will be assembled in lunar orbit and is built as a structural framework, carrying rocket engines, fuel tanks and teleoperated crawlers to move the modules on the lunar surface. To establish this basic stage of the Lunar Base 11 launches are necessary: -1 Lunar Orbiter, a small manned spaceship (3 astronauts) -1 Manned Lander and docking module for the orbiter -1 Teleoperated Rocket Crane -6 Lunar Base Modules -1 machinery, teleoperated digger and excavator vehicle, etc. -1 scientific equipment, Lunar Rover, etc. Future: Due to its modular design the LUNAR BASE can be enlarged in stages, finally becom-ing an "urban structure" for dozens of astronauts, scientists and even tourists, always using similar launchers and machinery with current technoloy. Werner Grandl

  19. Comparison of methods for individualized astronaut organ dosimetry: Morphometry-based phantom library versus body contour autoscaling of a reference phantom

    NASA Astrophysics Data System (ADS)

    Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.

    2017-11-01

    One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation when compared to the UF/NCI Computational Phantom Library.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-13

    STS-117 astronauts and mission specialists Patrick Forrester and Steven Swanson (out of frame), participated in the second Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two removed all of the launch locks holding the 10 foot wide solar alpha rotary joint in place and began the solar array retraction. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4).

  1. Swanson moves to the S3/S4 Truss during STS-117 EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07264 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-11

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Rick Mastracchio and Canada Space Agency representative Dave Williams (out of frame), participated in the first session of Extra Vehicular Activity (EVA) for the mission. During the 6 hour, 17 minute space walk, the two attached the Starboard 5 (S5) segment of truss, retracted the forward heat rejecting radiator from the Port 6 (P6) truss, and performed several get ahead tasks.

  3. Forrester works at the P6 Truss during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-14

    S117-E-07313 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  4. Forrester works at the P6 Truss during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-14

    S117-E-07315 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  5. Forrester moves to the S3/S4 Truss during STS-117 EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07258 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  6. Whitson during Expedition 16 EVA 10/Alpha

    NASA Image and Video Library

    2007-11-09

    ISS016-E-010001 (9 Nov. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the spacewalk Whitson and cosmonaut Yuri I. Malenchenko (out of frame), flight engineer representing Russia's Federal Space Agency, prepared for the relocation of the Pressurized Mating Adapter 2 (PMA-2) and the subsequent move of the new Harmony node to its permanent ISS home.

  7. Whitson during Expedition 16 EVA 10/Alpha

    NASA Image and Video Library

    2007-11-09

    ISS016-E-009989 (9 Nov. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the spacewalk Whitson and cosmonaut Yuri I. Malenchenko (out of frame), flight engineer representing Russia's Federal Space Agency, prepared for the relocation of the Pressurized Mating Adapter 2 (PMA-2) and the subsequent move of the new Harmony node to its permanent ISS home.

  8. Malenchenko during Expedition 16 EVA 10/Alpha

    NASA Image and Video Library

    2007-11-09

    ISS016-E-009981 (9 Nov. 2007) --- Cosmonaut Yuri I. Malenchenko, Expedition 16 flight engineer representing Russia's Federal Space Agency, participates in a session of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the spacewalk Malenchenko and astronaut Peggy A. Whitson (out of frame), commander, prepared for the relocation of the Pressurized Mating Adapter 2 (PMA-2) and the subsequent move of the new Harmony node to its permanent ISS home.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2007-10-30

    Astronaut Doug Wheelock, STS-120 mission specialist, participated in the third scheduled session of extravehicular activity (EVA) as construction continued on the International Space Station (ISS). During a 7-hour and 8-minute space walk, Wheelock and mission specialist Scott Parazynski (out of frame), installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks.

  10. Integration of the Shuttle RMS/CBM Positioning Virtual Environment Simulation

    NASA Technical Reports Server (NTRS)

    Dumas, Joseph D.

    1996-01-01

    Constructing the International Space Station, or other structures, in space presents a number of problems. In particular, payload restrictions for the Space Shuttle and other launch mechanisms prohibit assembly of large space-based structures on Earth. Instead, a number of smaller modules must be boosted into orbit separately and then assembled to form the final structure. The assembly process is difficult, as docking interfaces such as Common Berthing Mechanisms (CBMS) must be precisely positioned relative to each other to be within the "capture envelope" (approximately +/- 1 inch and +/- 0.3 degrees from the nominal position) and attach properly. In the case of the Space Station, the docking mechanisms are to be positioned robotically by an astronaut using the 55-foot-long Remote Manipulator System (RMS) robot arm. Unfortunately, direct visual or video observation of the placement process is difficult or impossible in many scenarios. One method that has been tested for aligning the CBMs uses a boresighted camera mounted on one CBM to view a standard target on the opposing CBM. While this method might be sufficient to achieve proper positioning with considerable effort, it does not provide a high level of confidence that the mechanisms have been placed within capture range of each other. It also does nothing to address the risk of inadvertent contact between the CBMS, which could result in RMS control software errors. In general, constraining the operator to a single viewpoint with few, if any, depth cues makes the task much more difficult than it would be if the target could be viewed in three-dimensional space from various viewpoints. The actual work area could be viewed by an astronaut during EVA; however, it would be extremely impractical to have an astronaut control the RMS while spacewalking. On the other hand, a view of the RMS and CBMs to be positioned in a virtual environment aboard the Space Shuttle orbiter or Space Station could provide similar benefits more safely and conveniently with little additional cost. In order to render and view the RMS and CBMs in a virtual world, the position and orientation of the end effector in three-dimensional space must be known with a high degree of accuracy. A precision video alignment sensor has been developed which can determine the position and orientation of the controlled element relative to the target CBM within approximately one-sixteenth inch and 0.07 angular degrees. Such a sensor could replace or augment the boresighted camera mentioned above. The computer system used to render the virtual world and the position tracking systems which might be used to monitor the user's movements (in order to adjust the viewpoint in virtual space) are small enough to carry to orbit. Thus, such a system would be feasible for use in constructing structures in space.

  11. Freeze Tolerant Radiator for an Advanced EMU

    NASA Technical Reports Server (NTRS)

    Copeland, Robert J.; Elliott, Jeannine; Weislogel, Mark

    2004-01-01

    During an Extravehicular Activity (EVA), the astronaut s metabolic heat and the heat produced by the Portable Life Support Unit (PLSS) must be rejected. This heat load is currently rejected by a sublimator, which vents up to eight pounds of water each EVA. However, for advanced space missions of the future, water venting to space needs to be minimized because resupply impacts from earth will be prohibitive. If this heat load could be radiated to space from the PLSS, which has enough surface area to radiate most of the heat, the amount of water now vented could be greatly reduced. Unfortunately, a radiator rejects heat at a relatively constant rate, but the astronauts generate a variable heat load depending on how hard they are working. Without a way to vary the heat removal rate, the astronaut would experience cold discomfort or even frostbite. A proven method allowing a radiator to be turned-down is to sequentially allow tubes that carry the heat transfer fluid to the radiator to freeze. A drawback of current freezable radiators using this method is that they are far to heavy for use on a PLSS, because they use heavy construction to prevent the tubes from bursting as they freeze and thaw. This creates the need for a large radiator to reject most of the heat but with a lightweight tube that doesn t burst as it freezes and thaws. The new freezable radiator for the Extravehicular Mobility Unit (EMU) has features to accommodate the expansion of the radiator fluid when it freezes, and still have the high tube to fin conductance needed to minimize the number and weight of the tubes. Radiator fluid candidates are water and a propylene glycol-water mixture. This design maintains all materials within their elastic limits so that large volume changes can be achieved without breaking the tube. This concept couples this elastic expansion with an extremely lightweight, extremely high conductivity carbon fiber fin that can carry the heat needed to thaw a frozen tube. By using most of the exposed surface area of the PLSS as a radiator, the system can reject about 75% of the highest heat load, and reduce the loss of water through sublimation by a factor of four. The proposed radiator and a small water tank can be no heavier than the current system.

  12. TBS (Trabecular Bone Score) Expands Understanding of Spaceflight Effects on the Lumbar Spine of Long-Duration Astronauts

    NASA Technical Reports Server (NTRS)

    Smith, Scott A.; Watts, Nelson; Hans, Didier; LeBlanc, Adrian; Spector, Elisabeth; King, Lisa; Sibonga, Jean

    2014-01-01

    Bone loss due to long-duration spaceflight has been characterized by both DXA and QCT serial scans. It is unclear if these spaceflight-induced changes in bone mineral density (BMD) and structure result in increased fracture incidence. NASA astronauts currently fly 5 to 6-month missions on the International Space Station (ISS) and at least one 12-month mission is planned. While NASA has measured areal BMD (by DXA) and volumetric BMD (by QCT) and has estimated hip strength (by finite element models of QCT data, no method has yet been used to examine bone micro-architecture from lumbar spine (LS). DXA scans are routinely performed pre- and postflight on all ISS astronauts to follow BMD changes associated with spaceflight. Trabecular Bone Score (TBS) is a relatively new method that measures grey-scale-level texture information extracted from LS DXA images and correlates with 3D parameters of bone micro-architecture. We evaluated the ability of LS TBS to discriminate changes in astronauts who have flown on ISS missions and to determine if TBS can provide additional information compared to DXA. Methods: Lumbar Spine (L1-4) DXA scans from 51 astronauts (mean age, 47 +/- 4 yrs) were divided into 3 groups based on the exercise regimens performed onboard the ISS. "Pre-ARED" (exercise using a load-limited resistive exercise device, <300 lb), "ARED" (exercise with a high-load resistive exercise device, up to 600 lb) and "Bisphos+ARED" group (ARED exercise and a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch). DXA scans were performed and analyzed on a Hologic Discovery W using the same technician for the pre- and post-flight scans. LSC for the LS in our laboratory is 0.025 g/sq. cm. TBS was performed at the Mercy Hospital, Cincinnati, Ohio on a similar Hologic computer. Data were analyzed using a paired, 2-tailed Student's t-test for the difference between pre- and postflight means. Percent change and % change per month are noted. Interpretation: Our data suggest that: TBS and DXA both detected significant decrements in the LS in these pre- ARED astronauts, not unexpected given the insufficient loads provided by this early exercise device. TBS did not detect significant changes in the ARED or Bisphos+ARED groups while DXA did detect significant changes in the ARED astronauts. These findings suggest that DXA and TBS are detecting independent effects of bone loss interventions tested in ISS astronauts in space, which may be due to distinct effects of interventions on mineral content of separate cortical vs. trabecular bone. Conclusion: TBS, in conjunction with DXA BMD, may provide additional insight into the nature of changes (or lack thereof) in the microstructure of trabecular bone and the areal BMD of vertebral bodies.

  13. Latent Virus Reactivation: From Space to Earth

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Reactivation of latent viruses is a recognized consequence of decreased immunity. More recently viral reactivation has been identified as an important in vivo indicator of clinically relevant immune changes. Viral reactivation can be determined quickly and easily by the presence of virus in saliva and other body fluids. Real-time polymerase chain reaction (PCR) is a highly sensitive and specific molecular method to detect the presence of specific viral DNA. Studies in astronauts demonstrated that herpes simplex virus type 1(HSV-1), Epstein-Barr Virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate at rates above normal during and after spaceflight in response to moderately decreased T-cell immunity. This technology was expanded to patients on Earth beginning with human immune deficiency virus (HIV) immuno-compromised patients. The HIV patients shed EBV in saliva at rates 9-fold higher than observed in astronauts demonstrating that the level of EBV shedding reflects the severity of impaired immunity. Whereas EBV reactivation is not expected to produce serious effects in astronauts on missions of 6 months or less, VZV reactivation in astronauts could produce shingles. Reactivation of live, infectious VZV in astronauts with no symptoms was demonstrated in astronauts during and after spaceflight. We applied our technology to study VZV-induced shingles in patients. In a study of 54 shingles patients, we showed salivary VZV was present in every patient on the day antiviral (acyclovir) treatment was initiated. Pain and skin lesions decreased with antiviral treatment. Corresponding decreases in levels of VZV were also observed and accompanied recovery. Although the level of VZV in shingles patients before the treatment was generally higher than those found in astronauts, lower range of VZV numbers in shingles patients overlapped with astronaut s levels. This suggests a potential risk of shingles to astronauts resulting from reactivation of VZV. In another clinical study of 25 shingles patients, PCR technology detected VZV in the serum and peripheral blood mononuclear cells of all 25 patients demonstrating for the first time that viremia is a common manifestation of herpes shingles.

  14. Thyroid function changes related to use of iodinated water in the U.S. Space Program.

    PubMed

    McMonigal, K A; Braverman, L E; Dunn, J T; Stanbury, J B; Wear, M L; Hamm, P B; Sauer, R L; Billica, R D; Pool, S L

    2000-11-01

    The National Aeronautics and Space Administration (NASA) has used iodination as a method of microbial disinfection of potable water systems in U.S. spacecraft and long-duration habitability modules. A review of thyroid function tests of NASA astronauts who had consumed iodinated water during spaceflight was conducted. Thyroid function tests of all past and present astronauts were reviewed. Medical records of astronauts with a diagnosis of thyroid disease were reviewed. Iodine consumption by space crews from water and food was determined. Serum thyroid-stimulating hormone (TSH) and urinary iodine excretion from space crews were measured following modification of the Space Shuttle potable water system to remove most of the iodine. Mean TSH significantly increased in 134 astronauts who had consumed iodinated water during spaceflight. Serum TSH, and urine iodine levels of Space Shuttle crewmembers who flew following modification of the potable water supply system to remove iodine did not show a statistically significant change. There was no evidence supporting association between clinical thyroid disease and the number of spaceflights, amount of iodine consumed, or duration of iodine exposure. It is suggested that pharmacological doses of iodine consumed by astronauts transiently decrease thyroid function, as reflected by elevated serum TSH values. Although adverse effects of excess iodine consumption in susceptible individuals are well documented, exposure to high doses of iodine during spaceflight did not result in a statistically significant increase in long-term thyroid disease in the astronaut population.

  15. Occupational-Specific Strength Predicts Astronaut-Related Task Performance in a Weighted Suit.

    PubMed

    Taylor, Andrew; Kotarsky, Christopher J; Bond, Colin W; Hackney, Kyle J

    2018-01-01

    Future space missions beyond low Earth orbit will require deconditioned astronauts to perform occupationally relevant tasks within a planetary spacesuit. The prediction of time-to-completion (TTC) of astronaut tasks will be critical for crew safety, autonomous operations, and mission success. This exploratory study determined if the addition of task-specific strength testing to current standard lower body testing would enhance the prediction of TTC in a 1-G test battery. Eight healthy participants completed NASA lower body strength tests, occupationally specific strength tests, and performed six task simulations (hand drilling, construction wrenching, incline walking, collecting weighted samples, and dragging an unresponsive crewmember to safety) in a 48-kg weighted suit. The TTC for each task was recorded and summed to obtain a total TTC for the test battery. Linear regression was used to predict total TTC with two models: 1) NASA lower body strength tests; and 2) NASA lower body strength tests + occupationally specific strength tests. Total TTC of the test battery ranged from 20.2-44.5 min. The lower body strength test alone accounted for 61% of the variability in total TTC. The addition of hand drilling and wrenching strength tests accounted for 99% of the variability in total TTC. Adding occupationally specific strength tests (hand drilling and wrenching) to standard lower body strength tests successfully predicted total TTC in a performance test battery within a weighted suit. Future research should couple these strength tests with higher fidelity task simulations to determine the utility and efficacy of task performance prediction.Taylor A, Kotarsky CJ, Bond CW, Hackney KJ. Occupational-specific strength predicts astronaut-related task performance in a weighted suit. Aerosp Med Hum Perform. 2018; 89(1):58-62.

  16. KSC-05PD-1265

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. This locker reveals a long-lost spacesuit recently uncovered at the Cape Canaveral Air Force Station (CCAFS) in Florida. A recent venture into a long-locked room at CCAFS uncovered interesting artifacts of a bygone era: retired space suits from Americans who trained in the 1960s to be astronauts aboard an Air Force orbiting reconnaissance laboratory. Two security officers were doing a check of a facility at Launch Complex 5/6 blockhouse. NASA Special Agent Dan E. Oakland and Security Manager Henry Butler, who is with Delaware North Parks and Resorts, the company that oversees the museum, discovered a locked room. Space suits from the Air Forces planned Manned Orbiting Laboratory (MOL) program were found in the room Begun in 1964, the MOL program was an Air Force initiative that would have sent Air Force astronauts to a space station in a Gemini capsule. After spending a few weeks in orbit, the crew would undock and return to Earth. A test launch from Complex 40 on Nov. 30, 1966, of a MOL was conducted with an unmanned Gemini capsule. The MOL was constructed from tankage of a Titan II rocket. The operational MOL was planned to be launched into a polar orbit from Vandenberg Air Force Base in California. The Air Force abandoned the program in 1969, but the program produced a great deal of technological development, and three groups of military officers trained to be MOL astronauts. When the program was cancelled, seven of the younger astronauts were transferred to the agencys human space flight program and went on to have standout careers. Among them were Robert Crippen, pilot of the first Space Shuttle mission, and Richard H. 'Dick' Truly, who later became NASA Administrator.

  17. KSC-05PD-1267

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. This is Launch Complex 5/6 blockhouse, now a museum at the Cape Canaveral Air Force Station (CCAFS) in Florida, where long-lost space suits were found. A recent venture into a long-locked room at CCAFS uncovered interesting artifacts of a bygone era: retired space suits from Americans who trained in the 1960s to be astronauts aboard an Air Force orbiting reconnaissance laboratory. Two security officers were doing a check of a facility at Launch Complex 5/6 blockhouse. NASA Special Agent Dan E. Oakland and Security Manager Henry Butler, who is with Delaware North Parks and Resorts, the company that oversees the museum, discovered a locked room. Space suits from the Air Forces planned Manned Orbiting Laboratory (MOL) program were found in the room Begun in 1964, the MOL program was an Air Force initiative that would have sent Air Force astronauts to a space station in a Gemini capsule. After spending a few weeks in orbit, the crew would undock and return to Earth. A test launch from Complex 40 on Nov. 30, 1966, of a MOL was conducted with an unmanned Gemini capsule. The MOL was constructed from tankage of a Titan II rocket. The operational MOL was planned to be launched into a polar orbit from Vandenberg Air Force Base in California. The Air Force abandoned the program in 1969, but the program produced a great deal of technological development, and three groups of military officers trained to be MOL astronauts. When the program was cancelled, seven of the younger astronauts were transferred to the agencys human space flight program and went on to have standout careers. Among them were Robert Crippen, pilot of the first Space Shuttle mission, and Richard H. 'Dick' Truly, who later became NASA Administrator.

  18. KSC-05PD-1266

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. NASA Special Agent Dan Oakland holds up a long-lost spacesuit recently uncovered at the Cape Canaveral Air Force Station (CCAFS) in Florida. A recent venture into a long-locked room at CCAFS uncovered interesting artifacts of a by-gone era: retired space suits from Americans who trained in the 1960s to be astronauts aboard an Air Force orbiting reconnaissance laboratory. Two security officers were doing a check of a facility at Launch Complex 5/6 blockhouse. Oakland and Security Manager Henry Butler, who is with Delaware North Parks and Resorts, the company that oversees the museum, discovered a locked room. Space suits from the Air Forces planned Manned Orbiting Laboratory (MOL) program were found in the room Begun in 1964, the MOL program was an Air Force initiative that would have sent Air Force astronauts to a space station in a Gemini capsule. After spending a few weeks in orbit, the crew would undock and return to Earth. A test launch from Complex 40 on Nov. 30, 1966, of a MOL was conducted with an unmanned Gemini capsule. The MOL was constructed from tankage of a Titan II rocket. The operational MOL was planned to be launched into a polar orbit from Vandenberg Air Force Base in California. The Air Force abandoned the program in 1969, but the program produced a great deal of technological development, and three groups of military officers trained to be MOL astronauts. When the program was cancelled, seven of the younger astronauts were transferred to the agencys human space flight program and went on to have standout careers. Among them were Robert Crippen, pilot of the first Space Shuttle mission, and Richard H. 'Dick' Truly, who later became NASA Administrator.

  19. KSC-05PD-1274

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. This is Launch Complex 5/6 blockhouse, now a museum at the Cape Canaveral Air Force Station (CCAFS) in Florida, where long-lost spacesuits were found. A recent venture into a long-locked room at CCAFS uncovered interesting artifacts of a bygone era: retired space suits from Americans who trained in the 1960s to be astronauts aboard an Air Force orbiting reconnaissance laboratory. Two security officers were doing a check of a facility at Launch Complex 5/6 blockhouse. NASA Special Agent Dan E. Oakland and Security Manager Henry Butler, with Delaware North Parks and Resorts, which oversees the museum, discovered a locked room. Space suits from the Air Forces planned Manned Orbiting Laboratory (MOL) program were found in the room Begun in 1964, the MOL program was an Air Force initiative that would have sent Air Force astronauts to a space station in a Gemini capsule. After spending a few weeks in orbit, the crew would undock and return to Earth. A test launch from Complex 40 on Nov. 30, 1966, of a MOL was conducted with an unmanned Gemini capsule. The MOL was constructed from tankage of a Titan II rocket. The operational MOL was planned to be launched into a polar orbit from Vandenberg Air Force Base in California. The Air Force abandoned the program in 1969, but the program produced a great deal of technological development, and three groups of military officers trained to be MOL astronauts. When the program was cancelled, seven of the younger astronauts were transferred to the agencys human space flight program and went on to have standout careers. Among them were Robert Crippen, pilot of the first Space Shuttle mission, and Richard H. 'Dick' Truly, who later became NASA Administrator.

  20. Application of virtual reality for crew mental health in extended-duration space missions

    NASA Astrophysics Data System (ADS)

    Salamon, Nick; Grimm, Jonathan M.; Horack, John M.; Newton, Elizabeth K.

    2018-05-01

    Human exploration of the solar system brings a host of environmental and engineering challenges. Among the most important factors in crew health and human performance is the preservation of mental health. The mental well-being of astronaut crews is a significant issue affecting the success of long-duration space missions, such as habitation on or around the Moon, Mars exploration, and eventual colonization of the solar system. If mental health is not properly addressed, these missions will be at risk. Upkeep of mental health will be especially difficult on long duration missions because many of the support systems available to crews on shorter missions will not be available. In this paper, we examine the use of immersive virtual reality (VR) simulations to maintain healthy mental states in astronaut crews who are removed from the essential comforts typically associated with terrestrial life. Various methods of simulations and their administration are analyzed in the context of current research and knowledge in the fields of psychology, medicine, and space sciences, with a specific focus on the environment faced by astronauts on long-term missions. The results of this investigation show that virtual reality should be considered a plausible measure in preventing mental state deterioration in astronauts, though more work is needed to provide a comprehensive view of the effectiveness and administration of VR methods.

  1. A Method for Estimating Costs and Benefits of Space Assembly and Servicing By Astronauts and Robots

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.; Benfield, Mark (Technical Monitor)

    2002-01-01

    One aspect of designing future space missions is to determine whether Space Assembly and Servicing (SAS) is useful and, if so, what combination of robots and astronauts provides the most effective means of accomplishing it. Certain aspects of these choices, such as the societal value of developing the means for humans to live in space, do not lend themselves to quantification. However, other SAS costs and benefits can be quantified in a manner that can help select the most cost-effective SAS approach. Any space facility, whether it is assembled and serviced or not, entails an eventual replacement cost due to wear and obsolescence. Servicing can reduce this cost by limiting replacement to only failed or obsolete components. However, servicing systems, such as space robots, have their own logistics cost, and astronauts can have even greater logistics requirements. On the other hand, humans can be more capable than robots at performing dexterous and unstructured tasks, which can reduce logistics costs by allowing a reduction in mass of replacement components. Overall, the cost-effectiveness of astronaut SAS depends on its efficiency; and, if astronauts have to be wholly justified by their servicing usefulness, then the serviced space facility has to be large enough to fully occupy them.

  2. Medically induced amenorrhea in female astronauts

    PubMed Central

    Jain, Varsha; Wotring, Virginia E

    2016-01-01

    Medically induced amenorrhea can be achieved through alterations in the normal regulatory hormones via the adoption of a therapeutic agent, which prevents menstrual flow. Spaceflight-related advantages for medically induced amenorrhea differ according to the time point in the astronaut’s training schedule. Pregnancy is contraindicated for many pre-flight training activities as well as spaceflight, therefore effective contraception is essential. In addition, the practicalities of menstruating during pre-flight training or spaceflight can be challenging. During long-duration missions, female astronauts have often continuously taken the combined oral contraceptive pill to induce amenorrhea. Long-acting reversible contraceptives (LARCs) are safe and reliable methods used to medically induce amenorrhea terrestrially but as of yet, not extensively used by female astronauts. If LARCs were used, daily compliance with an oral pill is not required and no upmass or trash would need disposal. Military studies have shown that high proportions of female personnel desire amenorrhea during deployment; better education has been recommended at recruitment to improve uptake and autonomous decision-making. Astronauts are exposed to similar austere conditions as military personnel and parallels can be drawn with these results. Offering female astronauts up-to-date, evidence-based, comprehensive education, in view of the environment in which they work, would empower them to make informed decisions regarding menstrual suppression while respecting their autonomy. PMID:28725726

  3. Systems engineering studies of lunar base construction

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.

    1991-01-01

    Many ingenious concepts have been proposed for lunar base construction, but few systematic studies exist which relate time-consistent lunar base construction technologies and the choice of lunar base approach with the long-term SEI objectives - i.e., lunar indigenous base construction and Mars Exploration equipment development. To fill this gap, CSC has taken a two-pronged approach. First, the Center undertook basic geotechnical investigations of lunar soil, fabrication of a scale prototype of a lunar construction crane, a multi-robot construction team laboratory experiment, and a preliminary design of lunar base structures. Second, during Jun. and Jul. 1991 two lunar base construction systems engineering studies were accomplished - a 'near term lunar base' study, and a 'far-term lunar base' study. The goals of these studies were to define the major lunar base construction research problems in consistent technology/construction frameworks, and to define design requirements for construction equipment such as a lunar crane and a regolith mover. The 'near-term lunar base' study examined three different construction concepts for a lunar base comprised of pre-fabricated, pre-tested, Space Station Freedom-type modules, which would be covered with regolith shielding. Concept A used a lunar crane for unloading and transportation; concept B, a winch and cart; and concept C, a walker to move the modules from the landing site to the base site and assemble them. To evaluate the merits of each approach, calculations were made of mass efficiency measure, source mass, reliability, far-term base mass, Mars base mass, and base assembly time. The model thus established was also used to define the requirements for crane speed and regolith mover m(sup 3)/sec rates. A major problem addressed is how to 'mine' the regolith and stack it over the habitats as shielding. To identify when the cost of using indigenous lunar materials to construct the base exceeds the cost of development and delivery of the equipment for processing lunar materials, a study of construction of a candidate sintered regolith 'far term lunar base' was undertaken. A technique was devised for casting slabs of sintered (basaltic) regolith and assembling these into a hemispherical (or geodesic) dome. The major problem occurs with the inner liner. At 14.7 psi and 20 percent oxygen internal atmosphere, the entire structure is in tension, even with the regolith load. Also, another study has indicated that at 14.7 psi major resupply of air will be needed because of leakage, and astronauts may have to engage in extensive pre-breathing and post-breathing for extravehicular activity (EVA) tasks, thus detracting from useful mission work time. An alternative is to operate part of the base at, say, 5 psi and 70 percent oxygen, or to equip the astronauts with hard suits at 8.3 psi or greater. All of these choices directly influence base design and construction techniques.

  4. Forrester works on the S1/S3 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-14

    S117-E-07217 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  5. Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-13

    S117-E-07190 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  6. Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-13

    S117-E-07289 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  7. Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-13

    S117-E-07286 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  8. CCP Boeing/ULA Crew Access Arm Emergency Evacuation Water Test

    NASA Image and Video Library

    2016-03-23

    Water sprays on the Crew Access Arm during a deluge systems test March 23 at a construction yard near NASA's Kennedy Space Center in Florida. The arm is being tested before being installed on Space Launch Complex 41 Crew Access Tower later this year. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.

  9. Malenchenko and Whitson during Expedition 16 EVA 10/Alpha

    NASA Image and Video Library

    2007-11-09

    ISS016-E-009992 (9 Nov. 2007) --- Astronaut Peggy A. Whitson (right), Expedition 16 commander; and cosmonaut Yuri I. Malenchenko, flight engineer representing Russia's Federal Space Agency, participate in a session of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the spacewalk Whitson and Malenchenko prepared for the relocation of the Pressurized Mating Adapter 2 (PMA-2) and the subsequent move of the new Harmony node to its permanent ISS home.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-15

    Construction resumed on the International Space Station (ISS), as STS-117 astronauts and mission specialists Jim Reilly (on robotic arm), and John “Danny” Olivas joined forces with their colleagues inside the Shuttle and station, and controllers in Houston, to complete the delicate process of folding an older solar array, Port 6 (P6), so that it can be moved from its temporary location to its permanent home during an upcoming Fall scheduled Shuttle mission. The EVA lasted nearly 8 hours.

  11. Design of a reusable kinetic energy absorber for an astronaut safety tether to be used during extravehicular activities on the Space Station

    NASA Technical Reports Server (NTRS)

    Borthwick, Dawn E.; Cronch, Daniel F.; Nixon, Glen R.

    1991-01-01

    The goal of this project is to design a reusable safety device for a waist tether which will absorb the kinetic energy of an astronaut drifting away from the Space Station. The safety device must limit the tension of the tether line in order to prevent damage to the astronaut's space suit or to the structure of the spacecraft. The tether currently used on shuttle missions must be replaced after the safety feature has been developed. A reusable tether for the Space Station would eliminate the need for replacement tethers, conserving space and mass. This report presents background information, scope and limitations, methods of research and development, alternative designs, a final design solution and its evaluation, and recommendations for further work.

  12. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) greets former astronaut Story Musgrave (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also seated on the dais are, from left, former astronaut and Senator John H. Glenn, astronaut and Associate Director (Technical) of the Johnson Space Center John W. Young, and former astronaut Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Musgrave are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) greets former astronaut Story Musgrave (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also seated on the dais are, from left, former astronaut and Senator John H. Glenn, astronaut and Associate Director (Technical) of the Johnson Space Center John W. Young, and former astronaut Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Musgrave are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  13. NASA/DoD Aerospace Knowledge Diffusion Research Project. Report Number 20. The Use of Selected Information Products and Services by U.S. Aerospace Engineers and Scientists: Results of Two Surveys.

    DTIC Science & Technology

    1994-02-01

    within and between organizations. The technical report has been defined etymologically , according to report content and method (U.S. Department of...number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5...the application of your work? (Circle ONLY one number) 1 AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3

  14. Food and water supply

    NASA Technical Reports Server (NTRS)

    Popov, I. G.

    1975-01-01

    Supplying astronauts with adequate food and water on short and long-term space flights is discussed based on experiences gained in space flight. Food consumption, energy requirements, and suitability of the foodstuffs for space flight are among the factors considered. Physicochemical and biological methods of food production and regeneration of water from astronaut metabolic wastes, as well as wastes produced in a closed ecological system, or as a result of technical processes taking place in various spacecraft systems are suggested for long-term space flights.

  15. ASTRONAUTICS INFORMATION. OPEN LITERATURE SURVEY, VOLUME III, NO. 2 (ENTRIES 30,202-30,404)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-02-01

    <>15:014925. An annotated list of references on temperature control of satellite and space vehicles is presented. Methods and systems for maintaining vehicles within tolerable temperature bounds while operating outside planetary atmospheres are outlined. Discussions of the temperature environment in space and how it might affect vehicle operation are given. Re-entry heating problems are not included. Among the sources used were: Engineering Index, Applied Science and Technology Index, Astronautics Abstracts, PAL uniterm index, ASTIA, and LMSD card catalog. (auth)

  16. STS-4 post flight crew debriefing in JSC conference room

    NASA Technical Reports Server (NTRS)

    1982-01-01

    STS-4 Commander Ken Mattingly and Pilot Henry Hartsfield discuss mission events with astronauts and administrators during a post flight crew debriefing held in a JSC conference room. Seated around the conference table clockwise (from lower left) are astronaut William B. Lenoir, Hartsfield, Mattingly, astronaut Robert F. Overmyer, astronaut S. David Griggs, astronaut Karol J. Bobko, astronaut John W. Young, administrator George W. Abbey, and astronaut Vance D. Brand. On the perimeter of the room are astronaut George D. Nelson (left) and astronaut Francis (Dick) Scobee (right).

  17. KSC-98pc419

    NASA Image and Video Library

    1998-03-25

    KENNEDY SPACE CENTER, FLA. -- John F. Kennedy Jr., editor-in-chief of George Magazine, greets invited guests at the Home Box Office (HBO) and Imagine Entertainment premiere of the 12-part miniseries "From the Earth to the Moon" at Kennedy Space Center (KSC). The series was filmed in part on location at KSC and dramatizes the human aspects of NASA's efforts to launch Americans to the Moon. The miniseries highlights NASA's Apollo program and the events leading up to and including the six successful missions to the Moon. A special 500-seat theater was constructed next to the Apollo/Saturn V Center for the KSC premiere showing. Speakers at the event included KSC Director Roy Bridges (at right); Jeff Bewkes, chairman and CEO for HBO; and John F. Kennedy Jr. Also attending the event, which featured the episode entitled "1968," were Buzz Aldrin, Apollo 11 astronaut, and Al Worden, Apollo 15 astronaut. The original miniseries event, created for HBO by actor Tom Hanks and Imagine Entertainment, will premiere on HBO beginning April 5, 1998

  18. KSC-98pc420

    NASA Image and Video Library

    1998-03-25

    KENNEDY SPACE CENTER, FLA. -- John F. Kennedy Jr., editor-in-chief of George Magazine, speaks with members of the national media at the Home Box Office (HBO) and Imagine Entertainment premiere of the 12-part miniseries "From the Earth to the Moon" at Kennedy Space Center (KSC). The series was filmed in part on location at KSC and dramatizes the human aspects of NASA's efforts to launch Americans to the Moon. The miniseries highlights NASA's Apollo program and the events leading up to and including the six successful missions to the Moon. A special 500-seat theater was constructed next to the Apollo/Saturn V Center for the KSC premiere showing. Speakers at the event included KSC Director Roy Bridges (at right); Jeff Bewkes, chairman and CEO for HBO; and John F. Kennedy Jr. Also attending the event, which featured the episode entitled "1968," were Buzz Aldrin, Apollo 11 astronaut, and Al Worden, Apollo 15 astronaut. The original miniseries event, created for HBO by actor Tom Hanks and Imagine Entertainment, will premiere on HBO beginning April 5, 1998

  19. A direct-interface fusible heat sink for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis; Webbon, B. W.

    1990-01-01

    Astronaut cooling during extravehicular activity is a critical design issue in developing a portable life support system that meets the requirements of a space station mission. Some the requirements are that the cooling device can be easily regenerable and nonventing during operation. In response to this, a direct-interface, fusible heat sink prototpye with freezable quick-disconnects was developed. A proof-of-concept prototype was constructed and tested that consists of an elastic container filled with normal tap water and having two quick-disconnects embedded in a wall. These quick-disconnects are designed so that they may be frozen with the ice and yet still be joined to the cooling system, allowing an immediate flow path. The inherent difficulties in a direct-interface heat sink have been overcome, i.e., (1) establishing an initial flow path; (2) avoiding low-flow freeze-up; and (3) achieving adequate heat-transfer rates at the end of the melting process. The requirements, design, fabrication, and testing are discussed.

  20. A direct-interface, fusible heat sink for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis; Webbon, B. W.

    1990-01-01

    Astronaut cooling during extravehicular activity is a critical design issue in developing a portable life support system that meets the requirements of a space station mission. Some of the requirements are that the cooling device can be easily regenerable and nonventing during operation. In response to this, a direct-interface, fusible heat sink prototype with freezable quick-disconnects was developed. A proof-of-concept prototype was constructed and tested that consists of an elastic container filled with normal tap water and having two quick-disconnects embedded in a wall. These quick-disconnects are designed so that they may be frozen with the ice and yet still be joined to the cooling system, allowing an immediate flow path. The inherent difficulties in a direct-interface heat sink have been overcome, i.e., (1) establishing an initial flow path; (2) avoiding low-flow freeze-up; and (3) achieving adequate heat-transfer rates at the end of the melting process. The requirements, design, fabrication, and testing are discussed.

  1. Mathematical model to estimate risk of calcium-containing renal stones

    NASA Technical Reports Server (NTRS)

    Pietrzyk, R. A.; Feiveson, A. H.; Whitson, P. A.

    1999-01-01

    BACKGROUND/AIMS: Astronauts exposed to microgravity during the course of spaceflight undergo physiologic changes that alter the urinary environment so as to increase the risk of renal stone formation. This study was undertaken to identify a simple method with which to evaluate the potential risk of renal stone development during spaceflight. METHOD: We used a large database of urinary risk factors obtained from 323 astronauts before and after spaceflight to generate a mathematical model with which to predict the urinary supersaturation of calcium stone forming salts. RESULT: This model, which involves the fewest possible analytical variables (urinary calcium, citrate, oxalate, phosphorus, and total volume), reliably and accurately predicted the urinary supersaturation of the calcium stone forming salts when compared to results obtained from a group of 6 astronauts who collected urine during flight. CONCLUSIONS: The use of this model will simplify both routine medical monitoring during spaceflight as well as the evaluation of countermeasures designed to minimize renal stone development. This model also can be used for Earth-based applications in which access to analytical resources is limited.

  2. Astronaut candidate strength measurement using the Cybex 2 and the LIDO Multi-Joint 2 dynamometers

    NASA Technical Reports Server (NTRS)

    Carroll, Amy E.; Wilmington, Robert P.

    1992-01-01

    The Anthropometry and Biomechanics Laboratory in the man-Systems division at NASA's Johnson Space Center has as one of its responsibilities the anthropometry and strength measurement data collection of astronaut candidates. The anthropometry data is used to ensure that the astronaut candidates are within the height restrictions for space vehicle and space suit design requirements, for example. The strength data is used to help detect abnormalities or isolate injuries to muscle groups that could jeopardize the astronauts safety. The Cybex II Dynamometer has been used for strength measurements from 1985 through 1991. The Cybex II was one of the first instruments of its kind to measure strength and similarity of muscle groups by isolating the specific joint of interest. In November 1991, a LIDO Multi-Joint II Dynamometer was purchased to upgrade the strength measurement data collection capability of the Anthropometry and Biomechanics Laboratory. The LIDO Multi-Joint II Dynamometer design offers several advantages over the Cybex II Dynamometer including a more sophisticated method of joint isolation and a more accurate and efficient computer based data collection system.

  3. Extravehicular activity training and hardware design consideration

    NASA Technical Reports Server (NTRS)

    Thuot, P. J.; Harbaugh, G. J.

    1995-01-01

    Preparing astronauts to perform the many complex extravehicular activity (EVA) tasks required to assemble and maintain Space Station will be accomplished through training simulations in a variety of facilities. The adequacy of this training is dependent on a thorough understanding of the task to be performed, the environment in which the task will be performed, high-fidelity training hardware and an awareness of the limitations of each particular training facility. Designing hardware that can be successfully operated, or assembled, by EVA astronauts in an efficient manner, requires an acute understanding of human factors and the capabilities and limitations of the space-suited astronaut. Additionally, the significant effect the microgravity environment has on the crew members' capabilities has to be carefully considered not only for each particular task, but also for all the overhead related to the task and the general overhead associated with EVA. This paper will describe various training methods and facilities that will be used to train EVA astronauts for Space Station assembly and maintenance. User-friendly EVA hardware design considerations and recent EVA flight experience will also be presented.

  4. Extravehicular activity training and hardware design consideration.

    PubMed

    Thuot, P J; Harbaugh, G J

    1995-07-01

    Preparing astronauts to perform the many complex extravehicular activity (EVA) tasks required to assemble and maintain Space Station will be accomplished through training simulations in a variety of facilities. The adequacy of this training is dependent on a thorough understanding of the task to be performed, the environment in which the task will be performed, high-fidelity training hardware and an awareness of the limitations of each particular training facility. Designing hardware that can be successfully operated, or assembled, by EVA astronauts in an efficient manner, requires an acute understanding of human factors and the capabilities and limitations of the space-suited astronaut. Additionally, the significant effect the microgravity environment has on the crew members' capabilities has to be carefully considered not only for each particular task, but also for all the overhead related to the task and the general overhead associated with EVA. This paper will describe various training methods and facilities that will be used to train EVA astronauts for Space Station assembly and maintenance. User-friendly EVA hardware design considerations and recent EVA flight experience will also be presented.

  5. KSC-2011-8094

    NASA Image and Video Library

    2011-11-30

    CAPE CANAVERAL, Fla. – The mobile launcher, or ML, negotiates the 4.2-mile stretch of crawlerway between Launch Pad 39B and the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Data on the ML collected from structural and functional engineering tests during its two-week stay on the pad will be used in the next phases of construction. The 355-foot-tall ML structure, which took about two years to construct, will be modified by NASA’s 21st Century Ground Systems Program to support NASA’s Space Launch System, the heavy-lift rocket that will launch astronauts into deep space on future exploration missions. For more information, visit http://www.nasa.gov/exploration/systems/sls. Photo credit: NASA/Cory Huston

  6. Researching Seeds: Films, Sanitation Methods, Microbiological Growth, Viability, and Selection for New Crops

    NASA Technical Reports Server (NTRS)

    Padgett, Niki; Smith, Trent

    2018-01-01

    A major factor in long-term human exploration of the solar system is crop growth in microgravity. Space crops can provide fresh, nutritious food to supplement diets for astronauts. Important factors impacting space plant growth and consumption are water delivery to root zone in microgravity, sanitation methods for microbiological safety, plant responses to light quality/spectrum, and identifying optimal edible plants suitable for growth on the International Space Station (ISS). Astronauts growing their own food on the ISS provides necessary data for crop production for long duration deep space missions. The seed film project can be used in Advanced Plant Habitat and Veggies that are currently being utilized on the ISS.

  7. Eugen Sänger: Eminent space pioneer

    NASA Astrophysics Data System (ADS)

    Kerstein, Aleksander; Matko, Drago

    2007-12-01

    In international literature on astronautics, three main space pioneers are mentioned: Konstantin E. Tsiolkovsky, Robert H. Goddard and Hermann Oberth. There are other two space pioneers that are very rarely mentioned: Robert Esnault-Pelterie and Eugen Sänger. Pelterie is known particularly in Europe, and Sänger is mentioned in the second half of the 20th century normally only in connection with space shuttle flights. Taking a look at Sänger's work and heritage, it is obvious that he greatly influenced the development of astronautics in terms of purely theoretical dissertations on achievable limits of space research as well as in terms of technical approaches to achieving the short- and long-term goals of astronautics, and in terms of setting tasks for organizing mankind to achieve these goals. Sänger's book "The Technology of Rocket Flight" was the first study based not only on basic research, but also on the applied research that he conducted and the findings of which he published in various papers. Sänger was clearly connected with and influenced the development of two experimental research groups in the US in the 1930s, which resulted in two of the most significant companies in the US in the 1950s that manufactured liquid propellant rocket engines. Basic and applied research in the field of space planes resulted in construction of rocket planes such as the US space shuttle and Soviet Buran shuttle. Sänger's research on subsonic and supersonic ramjets in combination with a turbojet engine provided a basis for developing this promising propulsion for use in subsequent space planes designed for flights into low Earth orbits. His pioneering work on the photon rocket represents human achievements in reaching almost unimaginable limits of space research. By striving for a peaceful international approach to space research, Sänger participated in establishing the non-governmental organization IAF (International Astronautical Federation) and realized his idea that space research is a concern for all mankind. He was therefore appointed the first president of the IAF. The paper presents how Sänger influenced the development of rocket technology and astronautics, which definitely ranks him with the first three space pioneers.

  8. Behnken and Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065714 (14 Feb. 2010) --- NASA astronauts Robert Behnken (right) and Nicholas Patrick, both STS-130 mission specialists, participate in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and Patrick connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  9. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008964 (11 April 2010) --- NASA astronauts Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  10. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021561 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  11. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021569 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  12. Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065733 (14 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Patrick and Robert Behnken (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  13. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021562 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  14. Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065734 (14 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Patrick and Robert Behnken (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  15. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008710 (11 April 2010) --- NASA astronauts Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  16. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008704 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  17. Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065736 (14 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Patrick and Robert Behnken (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  18. Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065735 (14 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Patrick and Robert Behnken (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  19. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008953 (11 April 2010) --- NASA astronauts Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  20. Behnken and Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065710 (14 Feb. 2010) --- NASA astronauts Robert Behnken (right) and Nicholas Patrick, both STS-130 mission specialists, participate in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and Patrick connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  1. Behnken and Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065725 (14 Feb. 2010) --- NASA astronauts Robert Behnken (right) and Nicholas Patrick, both STS-130 mission specialists, participate in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and Patrick connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  2. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021558 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  3. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008708 (11 April 2010) --- NASA astronaut Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  4. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008700 (11 April 2010) --- NASA astronaut Rick Mastracchio (bottom) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  5. Operational experience and design recommendations for teleoperated flight hardware

    NASA Technical Reports Server (NTRS)

    Burgess, T. W.; Kuban, D. P.; Hankins, W. W.; Mixon, R. W.

    1988-01-01

    Teleoperation (remote manipulation) will someday supplement/minimize astronaut extravehicular activity in space to perform such tasks as satellite servicing and repair, and space station construction and servicing. This technology is being investigated by NASA with teleoperation of two space-related tasks having been demonstrated at the Oak Ridge National Lab. The teleoperator experiments are discussed and the results of these experiments are summarized. The related equipment design recommendations are also presented. In addition, a general discussion of equipment design for teleoperation is also presented.

  6. View of Swanson working on the S3 Truss for STS-117 EVA2 during Joint Operations with Expedition 15

    NASA Image and Video Library

    2007-06-14

    ISS015-E-12063 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  7. Swanson and Forrester prepare to retract the P6 Truss STBD 2B SAW during EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07246 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (at left, partially out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  8. Leaders break ground for INFINITY

    NASA Image and Video Library

    2008-11-20

    Community leaders from Mississippi and Louisiana break ground for the new INFINITY at NASA Stennis Space Center facility during a Nov. 20 ceremony. Groundbreaking participants included (l to r): Gottfried Construction representative John Smith, Mississippi Highway Commissioner Wayne Brown, INFINITY board member and Apollo 13 astronaut Fred Haise, Stennis Director Gene Goldman, Studio South representative David Hardy, Leo Seal Jr. family representative Virginia Wagner, Hancock Bank President George Schloegel, Mississippi Rep. J.P. Compretta, Mississippi Band of Choctaw Indians representative Charlie Benn and Louisiana Sen. A.G. Crowe.

  9. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut John H. Glenn (at podium) presents former astronaut Robert "Hoot" Gibson (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen (left), and former astronauts Sally K. Ride and Daniel Brandenstein (right), both inducted into the Hall of Fame today. Also being inducted is Space Shuttle astronaut Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut John H. Glenn (at podium) presents former astronaut Robert "Hoot" Gibson (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen (left), and former astronauts Sally K. Ride and Daniel Brandenstein (right), both inducted into the Hall of Fame today. Also being inducted is Space Shuttle astronaut Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  10. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Frederick H. (Rick) Hauck (standing right) congratulates former astronaut Daniel Brandenstein (standing center) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Frederick H. (Rick) Hauck (standing right) congratulates former astronaut Daniel Brandenstein (standing center) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  11. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (right) presents former astronaut Sally K. Ride (standing center) at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais are, from left, former astronauts John H. Glenn, Gordon Cooper, Buzz Aldrin, and Walter Cunningham, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (right) presents former astronaut Sally K. Ride (standing center) at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais are, from left, former astronauts John H. Glenn, Gordon Cooper, Buzz Aldrin, and Walter Cunningham, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  12. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (standing right) congratulates former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, Buzz Aldrin, Walter Cunningham, Edgar B. Mitchell, and Fred W. Haise, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (standing right) congratulates former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, Buzz Aldrin, Walter Cunningham, Edgar B. Mitchell, and Fred W. Haise, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  13. TBS (Trabecular Bone Score) Expands Understanding of Spaceflight Effects on the Lumbar Spine of Long Duration Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Smith, Scott A.; Hans, Didier; LeBlanc, Adrian; Spector, Elisabeth; Evans, Harlan; King, Lisa

    2014-01-01

    Background: Bone loss due to long-duration spaceflight has been characterized by both DXA and QCT serial scans. It is unclear if these spaceflight-induced changes in bone mineral density and structure result in increased fracture incidence. NASA astronauts currently fly on 5-6-month missions on the International Space Station (ISS) and at least one 12-month mission is planned. While NASA has measured areal BMD (by DXA) and volumetric BMD (by QCT), and has estimated hip strength (by finite element models of QCT data, no method has yet been used to examine bone microarchitecture from lumbar spine (LS). DXA scans are routinely performed pre- and post-flight on all ISS astronauts to follow BMD changes associated with space flight. Trabecular Bone Score (TBS) is a relatively new method that measures grey-scale-level texture information extracted from lumbar spine DXA images and correlates with 3D parameters of bone micro-architecture. We evaluated the ability of LS TBS to discriminate changes in astronauts who have flown on ISS missions and to determine if TBS can provide additional information compared to DXA. Methods: LS (L1-4) DXA scans from 51 astronauts (mean age, 47 +/- 4) were divided into 3 groups based on the exercise regimes performed while onboard the ISS. Pre-ARED (exercise using a load-limited resistive exercise device, <300lb), ARED (exercise with a high-load resistive exercise device, up to 600lb) and a Bisphos group (ARED exercise and a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch). DXA scans were performed and analyzed on a Hologic Discovery W using the same technician for the pre- and postflight scans. LSC for the LS in our laboratory is 0.025 g/cm2. TBS was performed at the Mercy Hospital, Cincinnati, Ohio on a similar Hologic computer. TBS precision was calculated from 16 comparable test subjects (0.0XX g/cm2). Data were preliminary analyzed using a paired, 2-tailed t-test for the difference between pre- and postflight means.

  14. Astronaut Corps, STS-4 vehicle integration test team and other personnel

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Members of the JSC astronaut corps., STS-4 vehicle integration test team (VITT) and other personnel pose for a photograph at the completion of a countdown demonstration test (CDDT) at Launch pad 39A, Kennedy Space Center. Participants are, from the left: Wilbur J. Etbauer, engineer with the VITT; Mission Specialist/Astronaut James D. van Hoften; Terry Stanford, engineer from JSC's flight operations directorate; Mission Specialist/Astronaut Steven A. Hawley; Astronaut Richard N. Richards; Astronaut Michael J. Smith; Richard W. Nygren, head of the VITT; Mission Specialist/Astronaut Kathryn D. Sullivan; Astronaut Henry W. Hartsfield Jr., STS-4 pilot; Mary Haynes, a co-op student participating with the VITT; Astronaut Thomas K. Mattingly II., STS-4 commander; and Astronaut Donald E. Williams.

  15. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    NASA Astrophysics Data System (ADS)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  16. Getting to the Heart of Cardiovascular Risk Assessment in Astronauts for Exploration Class Missions

    NASA Technical Reports Server (NTRS)

    Elgart, S. R.; Shavers, M. R.; Chappell, L.; Milder, C. M.; Huff, J. L.; Semones, E. J.; Simonsen, L. C.; Patel, Z. S.

    2017-01-01

    Since the beginning of manned spaceflight, NASA has recognized the potential risk of cardiovascular decrements due to stressors in the space environment. Of particular concern is the effect of space radiation on cardiovascular disease since astronauts will be exposed to higher levels of galactic cosmic rays outside the Earth's protective magnetosphere. To date, only a few studies have examined the effects of heavy ion radiation on cardiovascular disease, and at lower, space-relevant doses, the association between radiation exposure and cardiovascular pathology is more varied and unclear. Furthermore, other spaceflight conditions such as microgravity, circadian shifts, and confinement stress pose unique challenges in estimating the health risks that can be attributed to exposure to ionizing radiations. In this work, we review age, cause of mortality, and radiation exposure amongst early NASA astronauts in selection groups and discuss the limitations of assessing such a cohort when attempting to characterize the risk of space flight, including stressors such as space radiation and microgravity exposure, on cardiovascular health. METHODS: NASA astronauts in selection groups 1-7 were chosen and the comparison population was white men of the same birth cohort as drawn from data from the CDC Wonder Database and CDC National Center for Health Statistics Life Tables. Cause of death information was obtained from the Lifetime Surveillance of Astronaut Health program and deceased astronauts were classified based on ICD-10 codes: ischemic heart disease (IHD), stroke, cancer, acute occupational events, non-NASA accidents, and other/unknown. Expected years of life left and expected age at death were calculated for the cohort. RESULTS AND CONCLUSIONS: There were 32 deaths in this early astronaut population, 12 of which were due to accidents or acute occupational events that impacted lifespan considerably. The average age at death from these causes is 30 years lower than the average expected 70 years of age in the general population. Remarkably, all 41 living early astronauts outlived our calculated expected age at death for members of their birth cohort; furthermore, 13 of the 20 deceased astronauts who did not die in NASA/non-NASA accidents exceeded this age. There was no difference in IHD between the astronaut cohort and the comparison population; therefore, it is not possible to associate IHD mortality with radiation in that astronaut cohort. As NASA looks toward future exploration-class missions, early astronaut cohorts provide a convenient option for assessing these risks and for developing mitigation strategies. However, many challenges still exist when assessing such limited evidence, including small cohort size, health and lifestyle confounders (such as smoking and drinking), the high accident mortality rate, and the fact that many of these astronauts are still alive, outliving many of their birth-cohort peers. Future analysis should include a longitudinal study, monitoring cases as they occur in the cohort. As this cohort is currently followed-up over time, and as more IHD cases are anticipated in a population of this age, this type of study is not as resource-intensive as would normally be the case.

  17. Carotid and Femoral Artery Intima-Media Thickness During 6 Months of Spaceflight.

    PubMed

    Arbeille, Philippe; Provost, Romain; Zuj, Kathryn

    2016-05-01

    The objective was to determine the effects of 6 mo of microgravity exposure on conduit artery diameter and wall thickness. Diagnostic images of the common carotid artery (CC) and superficial femoral artery (FA) were obtained using echography which astronauts performed on themselves after receiving minimal training in the use of ultrasound imaging. Echographic video was recorded using a volume capture method directed by a trained sonographer on the ground through videoconferencing. Vessel properties were later assessed by processing the downlinked video. Data were collected from 10 astronauts who performed the echographic video capture at the beginning of the spaceflight (day 15) and near the end of the spaceflight (day 115 to 165). In-flight and postflight measurements were compared to preflight assessments. No significant changes with spaceflight were found for CC and FA diameter. Intima-media thickness (IMT) of the CC was found to be significantly increased (12% ± 4) in all astronauts during the spaceflight (early and late flight) and remained elevated 4 d after returning to Earth. Similarly, FA IMT was increased during the flight but returned to preflight levels 4 d postflight. The experiment demonstrated that, using the volume capture method of echography, untrained astronauts were able to capture enough echographic data to display vessel images of good quality for analysis. The increase in both CC and FA IMT during the flight suggest an adaptation to microgravity and to the confined environment of spaceflight which deserves further investigation.

  18. Development of Methods to Evaluate Safer Flight Characteristics

    NASA Technical Reports Server (NTRS)

    Basciano, Thomas E., Jr.; Erickson, Jon D.

    1997-01-01

    The goal of the proposed research is to begin development of a simulation that models the flight characteristics of the Simplified Aid For EVA Rescue (SAFER) pack. Development of such a simulation was initiated to ultimately study the effect an Orbital Replacement Unit (ORU) has on SAFER dynamics. A major function of this program will be to calculate fuel consumption for many ORUs with different masses and locations. This will ultimately determine the maximum ORU mass an astronaut can carry and still perform a self-rescue without jettisoning the unit. A second primary goal is to eventually simulate relative motion (vibration) between the ORU and astronaut. After relative motion is accurately modeled it will be possible to evaluate the robustness of the control system and optimize performance as needed. The first stage in developing the simulation is the ability to model a standardized, total, self-rescue scenario, making it possible to accurately compare different program runs. In orbit an astronaut has only limited data and will not be able to follow the most fuel efficient trajectory; therefore, it is important to correctly model the procedures an astronaut would use in orbit so that good fuel consumption data can be obtained. Once this part of the program is well tested and verified, the vibration (relative motion) of the ORU with respect to the astronaut can be studied.

  19. A novel variable-gravity simulation method: potential for astronaut training.

    PubMed

    Sussingham, J C; Cocks, F H

    1995-11-01

    Zero gravity conditions for astronaut training have traditionally used neutral buoyancy tanks, and with such tanks hypogravity conditions are produced by the use of supplemental weights. This technique does not allow for the influence of water viscosity on any reduced gravity exercise regime. With a water-foam fluid produced by using a microbubble air flow together with surface active agents to prevent bubble agglomeration, it has been found possible to simulate a range of gravity conditions without the need for supplemental weights and additionally with a substantial reduction in the resulting fluid viscosity. This new technique appears to have application in improving the simulation environment for astronaut training under the reduced gravity conditions to be found on the moon or on Mars, and may have terrestrial applications in patient rehabilitation and exercise as well.

  20. GEMINI-TITAN-8 - PRELAUNCH ACTIVITY

    NASA Image and Video Library

    1966-03-16

    S66-24439 (16 March 1966) --- The Gemini-8 prime crew, along with several fellow astronauts, have a hearty breakfast of steak and eggs on the morning of the Gemini-8 launch. Seated clockwise around the table, starting at lower left, are Donald K. Slayton, Manned Spaceflight Center (MSC) Assistant Director for Flight Crew Operations; astronaut Neil A. Armstrong, Gemini-8 command pilot; scientist-astronaut F. Curtis Michel; astronaut R. Walter Cunningham; astronaut Alan B. Shepard Jr. (face obscured), Chief, MSC Astronaut Office; astronaut David R. Scott, Gemini-8 pilot; and astronaut Roger B. Chaffee. Photo credit: NASA

  1. Identifying the "Right Stuff": An Exploration-Focused Astronaut Job Analysis

    NASA Technical Reports Server (NTRS)

    Barrett, J. D.; Holland, A. W.; Vessey, W. B.

    2015-01-01

    Industrial and organizational (I/O) psychologists play a key role in NASA astronaut candidate selection through the identification of the competencies necessary to successfully engage in the astronaut job. A set of psychosocial competencies, developed by I/O psychologists during a prior job analysis conducted in 1996 and updated in 2003, were identified as necessary for individuals working and living in the space shuttle and on the International Space Station (ISS). This set of competencies applied to the space shuttle and applies to current ISS missions, but may not apply to longer-duration or long-distance exploration missions. With the 2015 launch of the first 12- month ISS mission and the shift in the 2020s to missions beyond low earth orbit, the type of missions that astronauts will conduct and the environment in which they do their work will change dramatically, leading to new challenges for these crews. To support future astronaut selection, training, and research, I/O psychologists in NASA's Behavioral Health and Performance (BHP) Operations and Research groups engaged in a joint effort to conduct an updated analysis of the astronaut job for current and future operations. This project will result in the identification of behavioral competencies critical to performing the astronaut job, along with relative weights for each of the identified competencies, through the application of job analysis techniques. While this job analysis is being conducted according to job analysis best practices, the project poses a number of novel challenges. These challenges include the need to identify competencies for multiple mission types simultaneously, to evaluate jobs that have no incumbents as they have never before been conducted, and working with a very limited population of subject matter experts. Given these challenges, under the guidance of job analysis experts, we used the following methods to conduct the job analysis and identify the key competencies for current and potential future missions.

  2. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert "Hoot" Gibson (at podium) addresses the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen and former astronaut John H. Glenn. Also being inducted with Gibson are Space Shuttle astronauts Daniel Brandenstein, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert "Hoot" Gibson (at podium) addresses the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen and former astronaut John H. Glenn. Also being inducted with Gibson are Space Shuttle astronauts Daniel Brandenstein, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  3. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) applauds former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, and Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) applauds former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, and Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  4. Safeguarding the Health of the NASA Astronaut Community: the Need for Expanded Medical Monitoring for Former NASA Astronauts Under the Astronaut Occupational Health Program

    NASA Technical Reports Server (NTRS)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2016-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential latent health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging communities are necessary for astronauts to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography), as opposed to conditions resulting directly from the astronaut occupation; and increased breadth of monitoring services will improve the understanding of occupational health risks and longitudinal health of the astronaut community, past, present, and future. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of expanding existing medical monitoring under the Astronaut Occupational Health program for former NASA astronauts.

  5. NASA Astronaut Occupational Surveillance Program and Lifetime Surveillance of Astronaut Health, LSAH, Astronaut Exposures and Risk in the Terrestrial and Spaceflight Environment

    NASA Technical Reports Server (NTRS)

    Keprta, Sean R.; Tarver, William; Van Baalen, Mary; McCoy, Torin

    2015-01-01

    United States Astronauts have a very unique occupational exposure profile. In order to understand these risks and properly address them, the National Aeronautics and Atmospheric Administration, NASA, originally created the Longitudinal Study of Astronaut Health, LSAH. The first LSAH was designed to address a variety of needs regarding astronaut health and included a 3 to 1 terrestrial control population in order to compare United States "earth normal" disease and aging to that of a microgravity exposed astronaut. Over the years that program has been modified, now termed Lifetime Surveillance of Astronaut Health, still LSAH. Astronaut spaceflight exposures have also changed, with the move from short duration shuttle flights to long duration stays on international space station and considerable terrestrial training activities. This new LSAH incorporates more of an occupational health and medicine model to the study of occupationally exposed astronauts. The presentation outlines the baseline exposures and monitoring of the astronaut population to exposures, both terrestrial, and in space.

  6. Survey and Chase: A New Method of Observations For The Michigan Orbital Debris Survey Telescope (MODEST)

    NASA Technical Reports Server (NTRS)

    Abercromby, Kira J.; Seitzer, Patrick; Rodriquez, Heather M.; Barker, Edwin S.; Matney, Mark J.

    2006-01-01

    For more than 40 years astronauts have been observing Earth, taking photographs or digital images from their spacecraft. Today, a robust program of observation from the International Space Station (ISS) has yielded hundreds of thousands of images of the Earth s surface collected since 2001. Seeing Earth through the eyes of an astronaut is exciting to the general public, and the images are popular in classrooms. Because the ISS has an orbital inclination of 51.6 degrees (the north-south limits of the orbit are at 51.6 degrees latitude), high latitude observations are common. Some of the most striking images collected include views of polar phenomena. Astronauts routinely pass above brilliant red and green aurora; view high, wispy clouds at the top of the atmosphere; or look down on glaciers and floating ice rafts. These images, framed and captured by humans, are easily interpreted by students and teachers. Astronaut observations provide a way to visualize complicated polar phenomena and communicate about them to students of all ages. Over the next two years, astronauts aboard the ISS will formally focus their observations on polar phenomena as participants in the International Polar Year (IPY). Imagery acquisition from the ISS will be coordinated with other IPY scientists staging studies and field campaigns on the ground. The imagery collected from the ISS will be cataloged and served on NASA s web-based database of images, http://eol.jsc.nasa.gov . The website allows investigators, students and teachers to search through the imagery, assemble image datasets, and download the imagery and the metadata. We display some of the most spectacular examples of polar imagery and demonstrate NASA s database of astronaut images of Earth.

  7. Spaceflight-induced changes in white matter hyperintensity burden in astronauts.

    PubMed

    Alperin, Noam; Bagci, Ahmet M; Lee, Sang H

    2017-11-21

    To assess the effect of weightlessness and the respective roles of CSF and vascular fluid on changes in white matter hyperintensity (WMH) burden in astronauts. We analyzed prespaceflight and postspaceflight brain MRI scans from 17 astronauts, 10 who flew a long-duration mission on the International Space Station (ISS) and 7 who flew a short-duration mission on the Space Shuttle. Automated analysis methods were used to determine preflight to postflight changes in periventricular and deep WMH, CSF, and brain tissue volumes in fluid-attenuated inversion recovery and high-resolution 3-dimensional T1-weighted imaging. Differences between cohorts and associations between individual measures were assessed. The short-term reversibility of the identified preflight to postflight changes was tested in a subcohort of 5 long-duration astronauts who had a second postflight MRI scan 1 month after the first postflight scan. Significant preflight to postflight changes were measured only in the long-duration cohort and included only the periventricular WMH and ventricular CSF volumes. Changes in deep WMH and brain tissue volumes were not significant in either cohort. The increase in periventricular WMH volume was significantly associated with an increase in ventricular CSF volume (ρ = 0.63, p = 0.008). A partial reversal of these increases was observed in the long-duration subcohort with a 1-month follow-up scan. Long-duration exposure to microgravity is associated with an increase in periventricular WMH in astronauts. This increase was linked to an increase in ventricular CSF volume documented in ISS astronauts. There was no associated change in or abnormal levels of WMH volumes in deep white matter as reported in U-2 high-altitude pilots. © 2017 American Academy of Neurology.

  8. Astronaut Mario Runco in EMU during training in WETF

    NASA Image and Video Library

    1995-07-26

    S95-15847 (26 July 1995) --- Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario Runco Jr., mission specialist, prepares to participate in an underwater rehearsal of a contingency Extravehicular Activity (EVA). This type of training routinely takes place in the 25-feet deep pool of the Johnson Space Center's (JSC) Weightless Environment Training Center (WET-F). The training prepares at least two crew members on each flight for procedures to follow outside the spacecraft in event of failure of remote methods to perform various chores.

  9. STS-49 MS Akers in OV-105's payload bay during ASEM procedures

    NASA Image and Video Library

    1992-05-14

    STS049-77-023 (14 May 1992) --- Astronaut Thomas D. Akers joins three struts together, as fourth period of extravehicular activity (EVA) proceeds in the Space Shuttle Endeavour's cargo bay. The purpose of the final EVA on this nine-day mission was the evaluation of Assembly of Station by EVA Methods (ASEM). The scene was recorded on 70mm film by a fellow crew member in the Space Shuttle's cabin. Astronaut Kathryn C. Thornton (out of frame) joined Akers on the 7 1/2 hour EVA.

  10. NASA/DoD Aerospace Knowledge Diffusion Research Project. Report Number 19. The U. S. Government Technical Report and the Transfer of Federally Funded Aerospace R&D: An Analysis of Five Studies

    DTIC Science & Technology

    1994-01-01

    defined etymologically , according to report content and method (U.S. Department of Defense, 1964); behaviorally, according to the influence on the reader...SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5 LIFE SCIENCES 10 OTHER (specify) 63. IsANYof...YOUR work? (Circle ONLY one number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4

  11. A Boon for Bone Research

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA studies for astronaut health in long-term space missions led to the development of the Mechanical Response Tissue Analyzer (MRTA), a research tool for astronaut disuse, osteoporosis and related bone disorders among the general population. Ames Research Center and Stanford University generated a workable device and with Gait Scan, Inc., refined and commercialized it. The MRTA is a portable dsinstrument that measures the bending stiffness of bones using electrically-induced vibration and detects and analyzes the frequencies of the resonating bone. Unlike some other methods, the MRTA uses no radiation and is fast, simple and relatively inexpensive.

  12. Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-77 TRAINING VIEW --- Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario Runco, mission specialist, prepares to participate in an underwater rehearsal of a contingency Extravehicular Activity (EVA). This type of training routinely takes place in the 25-feet deep pool of the Johnson Space Centers (JSC) Weightless Environment Training Center (WET-F). The training prepares at least two crew members on each flight for procedures to follow outside the spacecraft in event of failure of remote methods to perform various chores.

  13. Design and Construction of Manned Lunar Base

    NASA Astrophysics Data System (ADS)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under the condition of the same volume it has less weight than rigid module, but based on durable, high hermetic, low density and elastic modulus advanced materials. 3.The construction habitation has high expansibility and various configurations by using in situ resources as construction materials, but this technique is difficult to implement since it involves deep exploitation of lunar resources. Aiming at different missions' objects and development periods, three different patterns talked above can be chosen as the scheme of lunar base habitation establishments. But each of them is too simple to adapt high-level lunar base during a long period. Thereby, based on the design of rigid module and flexible module, this paper brings out an assumed scheme of an integrated lunar base, and the exterior part of lunar base is built by using construction technique. The design of lunar base follows the principle of crew-robot coordinated exploration, which functions automatically in a long period and short period with attention by astronauts. The technique characteristics are as follows: life period ≥ 8 years; 6 astronauts; single lunar surface mission period ≥ 3 months. The inner main body of integrated manned lunar base consists of habitation module, laboratory module and support module. In order to afford security and comfortableness, the habitation module provides astronauts kitchen, bedroom, gymnasium, toilet, and so on. The laboratory module is used for science experiments, which involves plant cultivation devices and animal cultivation devices of bioregenerative life support system. The communication system, main computer, central control system and backup powers are arranged in the support module. For convenience of outside working and emergency rescue, every module with two exports is connected with other modules or lunar rovers. In order to solve the problems of waste treatment, atmosphere/water regeneration and food supply, this paper designed a bioregenerative life support system based on physical/chemic-regenerative life support system, which includes microbial waste treatment system, plants cultivation system and animal-protein production system. Energy is another important aspect needs to be solved when building lunar base habitation. The steps of lunar base building process are divided into lunar surface landing, transport, unloading, assembly and construction. Thus the activity systems including lunar lander, lunar chain block, various lunar rovers, robots and 3D printing machine are needed while building a lunar base. For the sake of enough power support for these facilities, the integrated manned lunar base will use solar + nuclear energy plus regenerative fuel cell together with 180kW power to satisfy the requirement of power supply. Besides these two questions talked above, the lunar base habitation also needs to solve the problem of lunar dust protection. Lunar dust grains are sharp and have electrostatic adsorption, which means this kind of dust may damage the functions of spacesuit, lunar rover and other equipments, and it may cause diseases if breathed by astronauts, consequently, lunar dust protection and cleaning mechanism needs to be founded and the anti-dust, automatic dust removal and self-cleaning materials need to be used. At last, this paper puts forward corresponding advices about building lunar base by using international collaboration. Out of question, the construction of lunar base is a huge project, it is very hard to be accomplished by any country alone since lots of uncertain complications exist there. By this token, international collaboration is a certain development direction, and lots of aerospace countries have already achieved the breakout of correlation key technologies, in order to avoid unnecessary waste, the dispersive advantageous resources need to be combined together.

  14. Recommendations from NASA's Operational and Research Musculoskeletal Summit

    NASA Technical Reports Server (NTRS)

    Jones, J. A.; Johnson-Throop, K. A.; Scheuring, R. A.; Walton, M. E.; Davis-Street, J. E.; Smaka, T.; McCulley, P. A.; Jones, J. A.; Stokes, C. R.; Parker, K. K.; hide

    2006-01-01

    Introduction: Continuously evolving medical standards of care, limited crew training time, and the inherent constraints of space flight necessitate regular revisions of the mission medical support infrastructure and methodology. A three-day Operational and Research Musculoskeletal Summit was held to review NASA s current strategy for preflight health maintenance and injury screening, risk mitigation for musculoskeletal injuries or syndromes, treatment methods during flight, and research topics to mitigate risks to astronaut health. The Summit also undertook consideration of the best evidence-based terrestrial musculoskeletal practices to recommend their adaptation for use in space. Methods: The types and frequencies of musculoskeletal injuries sustained by short- and long-duration astronauts were obtained from the Longitudinal Study of Astronaut Health. The Summit panel was comprised of experts from the clinical and research communities, as well as representatives from NASA Headquarters, the Astronaut corps, and the offices of JSC Medical Operations, JSC Human Adaptation and Countermeasures, Glenn Research Center Human Research, and Astronaut Strength Conditioning and Rehabilitation. Before the summit, panelists participated in a Web-based review of NASA s Space Medical Conditions List (SMCL). Results: The Summit generated seventy-five operational and research recommendations to the NASA Office of Space Medicine, including changes to the SMCL and to the musculoskeletal section of the ISS debrief questionnaire. From these recommendations, seven were assigned highest value and priority, and could be immediately adopted for the exploration architecture. Discussion: Optimized exercise and conditioning to improve performance and forestall musculoskeletal damage on orbit were the primary area of focus. Special attention was paid to exercise timing and muscle group specificity. The panel s recommendations are currently in various stages of consideration or integration into the ISS and Exploration programs. This effort serves to enhance the on-orbit system so comprehensive treatment can be delivered in a more effective and standardized manner.

  15. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Daniel Brandenstein (standing right) is presented to the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Daniel Brandenstein (standing right) is presented to the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  16. KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

    NASA Image and Video Library

    2003-05-30

    KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

  17. KSC-2011-7779

    NASA Image and Video Library

    2011-11-15

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the mobile launcher (ML) is being prepared for its move aboard a crawler-transporter from next to Kennedy's Vehicle Assembly Building to Launch Pad 39B, a distance of 4.2 miles. Data on the ML will be collected from structural and functional engineering tests and used for the next phases of construction. The 355-foot-tall ML, which took about two years to construct, is being modified to support NASA's Space Launch System (SLS), the heavy-lift rocket that will launch astronauts farther into space than ever before. SLS will also create high-quality jobs here at home, and provide the cornerstone for America's future human space exploration efforts. For more information on SLS, visit http://www.nasa.gov/sls. Photo credit: NASA/Kim Shiflett

  18. KSC-2011-7777

    NASA Image and Video Library

    2011-11-15

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the mobile launcher (ML) is being prepared for its move aboard a crawler-transporter from next to Kennedy's Vehicle Assembly Building to Launch Pad 39B, a distance of 4.2 miles. Data on the ML will be collected from structural and functional engineering tests and used for the next phases of construction. The 355-foot-tall ML, which took about two years to construct, is being modified to support NASA's Space Launch System (SLS), the heavy-lift rocket that will launch astronauts farther into space than ever before. SLS will also create high-quality jobs here at home, and provide the cornerstone for America's future human space exploration efforts. For more information on SLS, visit http://www.nasa.gov/sls. Photo credit: NASA/Kim Shiflett

  19. 50th Anniversary of the World's First Extraterrestrial Sample Receiving Laboratory: The Apollo Program's Lunar Receiving Laboratory

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Allton, J. H.; Zeigler, R. A.; McCubbin, F. M.

    2017-01-01

    The Apollo program's Lunar Receiving Laboratory (LRL), building 37 at NASA's Manned Spaceflight Center (MSC), now Johnson Space Center (JSC), in Houston, TX, was the world's first astronaut and extraterrestrial sample quarantine facility (Fig. 1). It was constructed by Warrior Construction Co. and Warrior-Natkin-National at a cost of $8.1M be-tween August 10, 1966 and June 26, 1967. In 1969, the LRL received and curated the first collection of extra-terrestrial samples returned to Earth; the rock and soil samples of the Apollo 11 mission. This year, the JSC Astromaterials Acquisition and Curation Office (here-after JSC curation) celebrates 50 years since the opening of the LRL and its legacy of laying the foundation for modern curation of extraterrestrial samples.

  20. KSC-2011-7778

    NASA Image and Video Library

    2011-11-15

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the mobile launcher (ML) is being prepared for its move aboard a crawler-transporter from next to Kennedy's Vehicle Assembly Building to Launch Pad 39B, a distance of 4.2 miles. Data on the ML will be collected from structural and functional engineering tests and used for the next phases of construction. The 355-foot-tall ML, which took about two years to construct, is being modified to support NASA's Space Launch System (SLS), the heavy-lift rocket that will launch astronauts farther into space than ever before. SLS will also create high-quality jobs here at home, and provide the cornerstone for America's future human space exploration efforts. For more information on SLS, visit http://www.nasa.gov/sls. Photo credit: NASA/Kim Shiflett

  1. KSC-2011-7780

    NASA Image and Video Library

    2011-11-15

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the mobile launcher (ML) is being prepared for its move aboard a crawler-transporter from next to Kennedy's Vehicle Assembly Building to Launch Pad 39B, a distance of 4.2 miles. Data on the ML will be collected from structural and functional engineering tests and used for the next phases of construction. The 355-foot-tall ML, which took about two years to construct, is being modified to support NASA's Space Launch System (SLS), the heavy-lift rocket that will launch astronauts farther into space than ever before. SLS will also create high-quality jobs here at home, and provide the cornerstone for America's future human space exploration efforts. For more information on SLS, visit http://www.nasa.gov/sls. Photo credit: NASA/Kim Shiflett

  2. A performance comparison of the IBM RS/6000 and the Astronautics ZS-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W.M.; Abraham, S.G.; Davidson, E.S.

    1991-01-01

    Concurrent uniprocessor architectures, of which vector and superscalar are two examples, are designed to capitalize on fine-grain parallelism. The authors have developed a performance evaluation method for comparing and improving these architectures, and in this article they present the methodology and a detailed case study of two machines. The runtime of many programs is dominated by time spent in loop constructs - for example, Fortran Do-loops. Loops generally comprise two logical processes: The access process generates addresses for memory operations while the execute process operates on floating-point data. Memory access patterns typically can be generated independently of the data inmore » the execute process. This independence allows the access process to slip ahead, thereby hiding memory latency. The IBM 360/91 was designed in 1967 to achieve slip dynamically, at runtime. One CPU unit executes integer operations while another handles floating-point operations. Other machines, including the VAX 9000 and the IBM RS/6000, use a similar approach.« less

  3. A Flexible Method for Producing F.E.M. Analysis of Bone Using Open-Source Software

    NASA Technical Reports Server (NTRS)

    Boppana, Abhishektha; Sefcik, Ryan; Myers, Jerry G.; Lewandowski, Beth

    2016-01-01

    Individuals who experience decreases in load-bearing bone densities can be subject to a higher risk of bone fracture during daily activity. Astronauts may lose up to nine percent of their load-bearing bone density for every month they spend in space [1]. Because of this, specialized countermeasures reduce percent loss in bone density and reduce fracture risk upon returning to Earth. Astronauts will typically not be at risk for fracture during spaceflight, because of the lesser loads experienced in microgravity conditions. However, once back on Earth, astronauts have an increased risk for bone fracture as a result of weakened bone and return to 1G conditions [2]. It is therefore important to understand the significance of any bone density loss in addition to developing exercises in an attempt to limit losses in bone strength. NASA seeks to develop a deeper understanding of fracture risk through the development of a computational bone strength model to assess the bone fracture risk of astronauts pre-flight and post-flight. This study addresses the several key processes needed to develop such strength analyses using medical image processing and finite element modeling.

  4. Relationships between orientation, movement and posture in weightlessness: Preliminary ethological observations

    NASA Astrophysics Data System (ADS)

    Tafforin, Carole

    Weightlessness in man induces changes in astronaut orientations and consequently in his patterns of movements and postures. An ethological method has been used to describe the "overall" spontaneous behaviour of astronauts as seen from video recordings made during Space Flights. The work has consisted in analysing the relationships between orientation, movement and posture as an indication of a motor adaptative reorganization in such a situation. The results obtained lead us to consider three different aspects: (1) Orientation references. The astronaut orientates himself with reference to the Space Shuttle's internal structure; the increase of visual activity confirms the choice of the retinal vertical as frame of reference. (2) Motor coordination. The main data reveals a decrease in motor stereotypies by the diversity of motor acts observed and the importance of the link between orientation and posture described as follows: slightly inclined forward position, with legs flexed at about 135°. (3) Cognitive references. There appears to be a new organization of the cognitive image of the body scheme, the missing vestibular information being supplied by peripheral vision instead which could play a role in the astronaut's perception of his own movement.

  5. Heating and Cooling Efficiency for Homes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Over 40 years ago, NASA developed Radiant Barrier technology to protect astronauts in the Apollo Program from temperatures that ranged from 250 F above to 400 F below zero Fahrenheit. This feat in temperature control technology enabled the astronauts to work inside the Apollo Command Module wearing short-sleeve shirts, with temperatures similar to those of a regular business office. The Radiant Barrier has been applied to virtually all spacecraft since then, including unmanned spacecraft with delicate instruments that need protection from temperature extremes. It is also applied to the astronauts space suits, protecting them during space walks. Made of aluminized polymer film, the Radiant Barrier both bars and lets in heat to maintain a consistent temperature in an environment where ordinary insulation methods will not suffice. The aluminization of the material provides a reflective surface that keeps more than 95 percent of the radiated energy in space from reaching the spacecraft s interior. In space suits, the thin and flexible material reflects the astronauts body heat back to them for warmth, while at the same time reflecting the sun s radiation away from them to keep them cool. Using conventional insulation, a space suit would have required a 7-foot-thick protective layer.

  6. Astronaut Mary Ellen Weber with BDS

    NASA Image and Video Library

    1995-08-08

    STS070-301-025 (13-22 July 1995) --- Astronaut Mary Ellen Weber works with a syringe related to the Bioreactor Development System (BDS). The almost weightless state of space travel provides life science researchers with the opportunity to grow cells into three-dimensional tissue pieces that are not achievable using conventional tissue culture methods on Earth. At specified times during the STS-70 mission, crew members injected color producing substances to document fluid movement in the reactor, and various-sized beads to estimate the tissue size that could be supported in the Bioreactor. The photo was among NASA's first release of still photography from the STS-70 mission. The mission was launched from the Kennedy Space Center (KSC) on July 13, 1995, and ended when Discovery landed on Runway 33 there on July 22, 1995. The crew members were astronauts Terence T. (Tom) Henricks, commander; Kevin R. Kregel, pilot; and Donald A. Thomas, Nancy J. Currie and Weber, all mission specialists.

  7. The Astronaut-Athlete: Optimizing Human Performance in Space.

    PubMed

    Hackney, Kyle J; Scott, Jessica M; Hanson, Andrea M; English, Kirk L; Downs, Meghan E; Ploutz-Snyder, Lori L

    2015-12-01

    It is well known that long-duration spaceflight results in deconditioning of neuromuscular and cardiovascular systems, leading to a decline in physical fitness. On reloading in gravitational environments, reduced fitness (e.g., aerobic capacity, muscular strength, and endurance) could impair human performance, mission success, and crew safety. The level of fitness necessary for the performance of routine and off-nominal terrestrial mission tasks remains an unanswered and pressing question for scientists and flight physicians. To mitigate fitness loss during spaceflight, resistance and aerobic exercise are the most effective countermeasure available to astronauts. Currently, 2.5 h·d, 6-7 d·wk is allotted in crew schedules for exercise to be performed on highly specialized hardware on the International Space Station (ISS). Exercise hardware provides up to 273 kg of loading capability for resistance exercise, treadmill speeds between 0.44 and 5.5 m·s, and cycle workloads from 0 and 350 W. Compared to ISS missions, future missions beyond low earth orbit will likely be accomplished with less vehicle volume and power allocated for exercise hardware. Concomitant factors, such as diet and age, will also affect the physiologic responses to exercise training (e.g., anabolic resistance) in the space environment. Research into the potential optimization of exercise countermeasures through use of dietary supplementation, and pharmaceuticals may assist in reducing physiological deconditioning during long-duration spaceflight and have the potential to enhance performance of occupationally related astronaut tasks (e.g., extravehicular activity, habitat construction, equipment repairs, planetary exploration, and emergency response).

  8. Moon manned missions radiation safety analysis

    NASA Astrophysics Data System (ADS)

    Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process has been realized through minimization of mass along all phases of a mission scenario, in terms of time frame (dates, transfer time length and trajectory, radiation environment), equipment (vehicles, in terms of shape, volume, onboard material choice, size and structure), location (if in space, on the surface, inside or outside a certain habitats), crew characteristics (number, gender, age, tasks) and performance required (spacecraft and habitat volumes), radiation exposure annual and career limit constraint (from NCRP 132), and implementation of the ALARA principle (shelter from the occurrence of Solar Particle Events). On the lunar surface the most important contribution to radiation exposure is given by background Galactic Cosmic Rays (GCR) particles, mostly protons, alpha particles, and some heavy ions, and by locally induced particles, mostly neutrons, created by the interaction between GCR and surface material and emerging from below the surface due to backscattering processes. In this environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with long-term shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in full detail (e.g., shape, thickness, materials, etc) with considerations of various shielding strategies. In this first analysis all the shape considered are cylindrical or composed of combination of cylinders. Moreover, a radiation safety analysis of more future possible habitats like lava tubes has been also performed.

  9. KSC-2012-2726

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke inducts shuttle astronaut Kevin Chilton into the U.S. Astronaut Hall of Fame Class of 2012 during the induction ceremony. Shuttle astronauts Franklin Chang Diaz and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  10. KSC-2012-2731

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke inducts shuttle astronaut Charlie Precourt into the U.S. Astronaut Hall of Fame Class of 2012 during the induction ceremony. Shuttle astronauts Franklin Chang Diaz and Kevin Chilton also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  11. Results of the ESA study on psychological selection of astronaut applicants for Columbus missions I: Aptitude testing

    NASA Astrophysics Data System (ADS)

    Fassbender, Christoph; Goeters, Klaus-Martin

    European participation in the Space Station Freedom brought about new challenges for the psychological selection of astronaut candidates, particularly in respect to specific demands of long duration space flights. For this reason existing selection criteria and methods were reassessed. On these grounds a study was undertaken applying a unique composition of aptitude tests to a group of 97 ESA scientists and engineers who are highly comparable to the expected astronaut applicants with respect to age and education. The tests assessed operational aptitudes such as logical reasoning, memory function, perception, spatial orientation, attention, psychomotor function, and multiple task capacity. The study goals were: 1) Verification of psychometric qualities and applicability of tests in a normative group; 2) Search for culture-fair tests by which multi-national groups can be examined; 3) Identification of test methods which consider general and special operational demands of long duration space flights. Based on the empirical findings a test battery was arranged for use in the selection of ESA astronaut applicants. Results showed that 16 out of the 18 employed tests have good psychometric qualities and differentiate reliably in the special group of testees. The meta structure of the test battery as described by a factorial analysis is presented. Applicability of tests was generally high. Tests were culture-fair, however, a relation between English language skills and test results was identified. Since most item material was language-free, this was explained with the importance of English language skills for the understanding of test instructions. Solutions to this effect are suggested.

  12. Study of Odours and taste for Space Food

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Space Agriculture Task Force; Nakata, Seiichi; Teranishi, Masaaki; Sone, Michihiko; Nakashima, Tsutomu; Hamajima, Nobuyuki; Ito, Yoshihiro

    2012-07-01

    The sense of taste and smell come under some kind of influences in the space environment. In the space, the astronaut was changed their food habits from light taste and smell food to like strong taste and smells food. When an astronaut live in the space comes to have weak bone like osteoporosis. It may become the physiologic condition like the old man on the earth. Therefore this study performed fact-finding of the smell and the taste in the old man on the earth as test bed of astronaut in space. Based on this finding, it was intended to predict the taste and the olfactory change of the astronaut in the space. The study included 179 males and 251 females aged 30-90 years in Yakumo Town, Hokkaido, Japan. Odours were tested using a ``standard odours by odour stick identification''method of organoleptic testing. Taste were tested using a ``standard taste by taste disc identification'' method of chemical testing. Correct answers for identification odours consisted of average 6.0±3.0 in male subjects and average 6.9±2.8 in female subjects. Correct answers for identification of sweet taste consisted of 81% males and 87% females, salty taste consisted of 86% males and 91%, sour taste consisted of 75% males and 78% females, bitter taste consisted of 76% males and 88% females. It became clear that overall approximately 20% were in some kind of abnormality in sense of smell and taste. I want to perform the investigation that continued more in future.

  13. JSC Astronaut corps, STS-3 vehicle integration test team and others

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Members of the JSC astronaut corps, STS-3 vehicle integration test (VIT) team and other personnel pose for photograph at the completion of a countdown demonstration test (CDDT) and safety briefings at Launch Pad 39A, Kennedy Space Center. Participants are, from the left, Wilbur J. Etbauer, engineer with the VIT team; George W.S. Abbey, Director of Flight Operations at JSC; Astronaut John H. Young, Chief of the Astronaut Office at JSC; Jack Fleming of Rockwell International; Mission Specialist-Astronaut John M. Lounge; Astronaut Daniel C. Brandenstein; Mission Specialist-Astronaut James D. Van Hoften; Astronauts C. Gordon Fullerton and Jack Lousma, prime crew for STS-3; Olan J. Bertrand, VIT team member; Mission Specialist-Astronaut Kathryn D. Sullivan; Richard W. Nygren, head of the VIT team; and Astronaut Donald E. Williams. The Columbia is obscured by its service structure on Launch Pad 39A in the background. Part of slide-wire emergency escape system is visible in the picture.

  14. Prevalence of Sleep Deficiency and Hypnotic Use Among Astronauts Before, During and After Spaceflight: An Observational Study

    PubMed Central

    Barger, Laura K.; Flynn-Evans, Erin E.; Kubey, Alan; Walsh, Lorcan; Ronda, Joseph M.; Wang, Wei; Wright, Kenneth P.; Czeisler, Charles A.

    2014-01-01

    Background Sleep deprivation and fatigue are common subjective complaints among astronauts. We conducted the first large-scale evaluation of objectively-estimated sleep of astronauts on both short- and long-duration spaceflight missions. Methods Allnon-Russian crewmembers assigned to space shuttle flights with inflight experiments from July 2001 until July 2011 or ISS Expeditions from 2006 –2011 were eligible to participate. We objectively assessed, via wrist actigraphy and daily logs, sleep-wake timing of 64 astronauts on 80 Space Shuttle missions, encompassing 26 Space Transportation System flights (1,063 inflight days), and 21 astronauts on the International Space Station (ISS) (3,248 inflight days) and, for each astronaut, during two Earth-based data-collection intervals prior to and one following spaceflight (4,013 ground-based days). Findings Astronauts attempted and obtained significantly less actigraphically-estimated sleep per night on space shuttle missions (7·35 ± 0·47 and 5·96 ± 0·56 hours, respectively), in the 11-days before spaceflight (7·35 ± 0·51 and 6·04 ± 0·72 hours, respectively) and even three months before spaceflight (7·40 ± 0·59 and 6·29 ± 0·67 hours, respectively) than they did upon their return to Earth (8·01 ± 0·78 and 6·74 ± 0·91 hours, respectively) (p < 0·0001 for each) Astronauts on ISS missions also obtained significantly less sleep three months prior (6.41 ± 0.65), in the 11 days prior (5.86 ± 0.94) and during spaceflight (6.09 ± 0.67 hours), as compared to the first week post-mission (6.95 ± 1.04 hours; p < 0·0001). Seventy-eight percent (61/78) of shuttle mission-crewmembers reported taking a dose of sleep-promoting medications on 52% of nights (500/963) and 2 doses on 17% of nights during flight (87/500); 75% of ISS crewmembers (12/16) reported using sleep-promoting medications. Interpretation Sleep deficiency in astronauts was prevalent not only during space shuttle and ISS missions, but also throughout a 3-month pre-flight training interval. Despite chronic sleep curtailment, sleeping pill use was pervasive during spaceflight. As chronic sleep loss produces performance decrements, these findings highlight the need for development of effective counter measures to promote sleep. Funding The study was supported by NASA cooperative agreement NCC 9–119. Drs. Czeisler and Barger received support from the NSBRI (HFP01601). PMID:25127232

  15. Minimizing EVA Airlock Time and Depress Gas Losses

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Lafuse, Sharon A.

    2008-01-01

    This paper describes the need and solution for minimizing EVA airlock time and depress gas losses using a new method that minimizes EVA out-the-door time for a suited astronaut and reclaims most of the airlock depress gas. This method consists of one or more related concepts that use an evacuated reservoir tank to store and reclaim the airlock depress gas. The evacuated tank can be an inflatable tank, a spent fuel tank from a lunar lander descent stage, or a backup airlock. During EVA airlock operations, the airlock and reservoir would be equalized at some low pressure, and through proper selection of reservoir size, most of the depress gas would be stored in the reservoir for later reclamation. The benefit of this method is directly applicable to long duration lunar and Mars missions that require multiple EVA missions (up to 100, two-person lunar EVAs) and conservation of consumables, including depress pump power and depress gas. The current ISS airlock gas reclamation method requires approximately 45 minutes of the astronaut s time in the airlock and 1 KW in electrical power. The proposed method would decrease the astronaut s time in the airlock because the depress gas is being temporarily stored in a reservoir tank for later recovery. Once the EVA crew is conducting the EVA, the volume in the reservoir would be pumped back to the cabin at a slow rate. Various trades were conducted to optimize this method, which include time to equalize the airlock with the evacuated reservoir versus reservoir size, pump power to reclaim depress gas versus time allotted, inflatable reservoir pros and cons (weight, volume, complexity), and feasibility of spent lunar nitrogen and oxygen tanks as reservoirs.

  16. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James Lovell makes the opening remarks at the induction ceremony of four Space Shuttle astronauts into the U.S. Astronaut Hall of Fame. Being inducted are Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James Lovell makes the opening remarks at the induction ceremony of four Space Shuttle astronauts into the U.S. Astronaut Hall of Fame. Being inducted are Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  17. STS-114: Multi-Cut Profiles and Mission Overviews

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Profiles of the seven crewmembers of the STS-114 Discovery are shown. Eileen Collins, Commander, talks about her fascination with flying as a young child and her eagerness to have someone teach her to fly at age 19. Her eagerness and hard work earned her a master's in operations research from Stanford University in 1986 and a master's in space systems management from Webster University in 1989. Jim Kelly, Pilot, talks about his desire to become an astronaut at a very young age. Charles Camarda, Mission Specialist, always wanted to become an astronaut and earned a Bachelor's degree in aerospace engineering from Polytechnic Institute of Brooklyn in 1974, a Master's in engineering Science from George Washington University in 1980 and a doctorate in aerospace engineering from Virginia Polytechnic Institute and State University in 1990. Wendy Lawrence, Mission Specialist decided that she wanted to become an astronaut when she saw the first man to walk on the moon. Soichi Noguchi, Mission Specialist from JAXA expresses that people like scientists, doctors and engineers could fly and he also wanted to venture into spaceflight. Steve Robinson, Mission Specialist says that he was fascinated with things that flew as a child and wanted to make things fly. Australian born Andrew Thomas, Mission Specialist wanted to become an astronaut as a young boy but never realized that he would fulfill his dream. The crewmember profiles end with an overview of the STS-114 Discovery mission. Paul Hill, Lead Flight Director talks about the main goal of the STS-114 mission which is to demonstrate that changes to the Orbiter and flight procedures are good and the second goal is to finish construction of the International Space Station. Sergei Krikalev, Commander talks about increasing the capability of the International Space Station, Jim Kelly discusses the work that is being performed in the external tank, Andy Thomas talks about procedures done to stop foam release and Soichi Noguchi discusses his duty to film the external tank after separation.

  18. Around Marshall

    NASA Image and Video Library

    1972-01-01

    This is a cutaway illustration of the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC ). The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing. Here, engineers, designers, and astronauts performed various tests to develop basic concepts, preliminary designs, final designs, and crew procedures. The NBS was constructed of welded steel with polyester-resin coating. The water tank was 75-feet (22.9- meters) in diameter, 40-feet (12.2-meters) deep, and held 1.32 million gallons of water. Since it opened for operation in 1968, the NBS had supported a number of successful space missions, such as the Skylab, Solar Maximum Mission Satellite, Marned Maneuvering Unit, Experimental Assembly of Structures in Extravehicular Activity/Assembly Concept for Construction of Erectable Space Structures (EASE/ACCESS), the Hubble Space Telescope, and the Space Station. The function of the MSFC NBS was moved to the larger simulator at the Johnson Space Center and is no longer operational.

  19. KSC-2012-2721

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke inducts shuttle astronaut Franklin Chang Diaz into the U.S. Astronaut Hall of Fame Class of 2012. At the podium to the left, is CNN correspondent and Master of Ceremonies John Zarrella. Also inducted into the Hall of Fame were shuttle astronauts Kevin Chilton and Charlie Precourt. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  20. KSC-2012-2722

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, space shuttle astronaut and U.S. Astronaut Hall of Fame Class of 2012 inductee Franklin Chang Diaz at right shares a humorous moment with Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke during the induction ceremony. Shuttle astronauts Kevin Chilton and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  1. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008878 (11 April 2010) --- NASA astronauts Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process. The thin line of Earth's atmosphere appears in frame center.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-01

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Dave Williams, representing the Canadian Space Agency, participated in the fourth and final session of Extra Vehicular Activity (EVA). During the 5 hour space walk, Williams and Expedition 15 engineer Clay Anderson (out of frame) installed the External Wireless Instrumentation System Antenna, attached a stand for the shuttle robotic arm extension boom, and retrieved the two Materials International Space Station Experiments (MISSE) for return to Earth. MISSE collects information on how different materials weather in the environment of space.

  3. Integrated human-machine intelligence in space systems.

    PubMed

    Boy, G A

    1992-07-01

    This paper presents an artificial intelligence approach to integrated human-machine intelligence in space systems. It discusses the motivations for Intelligent Assistant Systems in both nominal and abnormal situations. The problem of constructing procedures is shown to be a very critical issue. In particular, keeping procedural experience in both design and operation is critical. We suggest what artificial intelligence can offer in this direction. Some crucial problems induced by this approach are discussed in detail. Finally, we analyze the various roles that would be shared by both astronauts, ground operators, and the intelligent assistant system.

  4. STS-106 Expedition 2 Crew Interview: Jim Voss

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 2 (the second resident crew of the International Space Station) Flight Engineer Jim Voss is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the Space Shuttle mission and goals, including information on the spacewalks and transfer of Expedition crews, and discusses his upcoming stay on the International Space Station (ISS). Voss gives his thoughts on the international cooperation needed to successfully construct the ISS and some of the scientific experiments that will take place on the station.

  5. Expedition 2 Crew Interview: Susan Helms

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 2 (the second resident crew of the International Space Station) Flight Engineer Susan Helms is seen being interviewed. She answers questions about her inspiration to become an astronaut and her career path. She gives details on the Space Shuttle mission and goals, including information on the spacewalks and transfer of Expedition crews, and discusses her upcoming stay on the International Space Station (ISS). Helms gives her thoughts on the international cooperation needed to successfully construct the ISS and some of the scientific experiments that will take place on the station.

  6. NOSL experiment support

    NASA Technical Reports Server (NTRS)

    Brook, M.

    1986-01-01

    An optical lightning detector was constructed and flown, along with Vinton cameras and a Fairchild Line Scan Spectrometer, on a U-2 during the summer of 1979. The U-2 lightning data was obtained in daylight, and was supplemented with ground truth taken at Langmuir Laboratory. Simulations were prepared as required to establish experiment operating procedures and science training for the astronauts who would operate the Night/Day Optical Survey of Thunderstorm Lightning (NOSL) equipment during the STS-2 NOSL experiment on the Space Shuttle. Data was analyzed and papers were prepared for publication.

  7. Reilly on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-12

    S117-E-06910 (11 June 2007) --- Astronauts Jim Reilly (center frame) and John "Danny" Olivas (out of frame), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  8. Reilly and Olivas on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-11

    S117-E-06886 (11 June 2007) --- Astronauts Jim Reilly (center frame) and John "Danny" Olivas (bottom right), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  9. Reilly and Olivas on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-11

    S117-E-06878 (11 June 2007) --- Astronauts Jim Reilly (center frame) and John "Danny" Olivas (bottom center), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  10. Reilly and Olivas on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-11

    S117-E-06899 (11 June 2007) --- Astronauts Jim Reilly (left) and John "Danny" Olivas (bottom right), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  11. Forrester prepares to retract the P6 Truss STBD SAW during EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07232 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester, seen here perched on the mobile foot restraint connected to the Canadian-built remote manipulator system (RMS), and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  12. View of Mastracchio and Williams on EVA 1 during STS-118/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-08-11

    S118-E-06281 (11 Aug. 2007) --- Astronauts Rick Mastracchio (left) and Canadian Space Agency's Dave Williams, both STS-118 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction continues on the International Space Station. During the 6-hour, 17-minute spacewalk Mastracchio and Williams attached the Starboard 5 (S5) segment of the station's truss, retracted the forward heat-rejecting radiator from the station's Port 6 (P6) truss, and performed several get-ahead tasks.

  13. NASA's Student Glovebox: An Inquiry-Based Technology Educator's Guide

    NASA Technical Reports Server (NTRS)

    Rosenberg, Carla B.; Rogers, Melissa J. B.

    2000-01-01

    A glovebox is a sealed container with built-in gloves. Astronauts perform small experiments and test hardware inside of them. Gloveboxes have flown on NASA's space shuttles and on the Russian space station Mir. The International Space Station (ISS) will have a permanent glovebox on the U.S. laboratory, Destiny. This document contains cursory technical information on gloveboxes and glovebox experiments and is intended for use by middle school educators and students. Information is provided on constructing a model glovebox as well as realistic cut-outs to be pasted on the model.

  14. Reilly and Olivas on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-11

    S117-E-06896 (11 June 2007) --- Astronauts Jim Reilly (bottom) and John "Danny" Olivas (top right), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  15. Olivas and Reilly participating in EVA during Expedition/STS-117 Joint Operations

    NASA Image and Video Library

    2007-06-11

    ISS015-E-12926 (11 June 2007) --- Astronauts Jim Reilly (right) and John "Danny" Olivas, both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction continues on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  16. KSC-06pd2359

    NASA Image and Video Library

    2006-10-14

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-116 Pilot William Oefelein checks the cockpit window of Discovery as part of a Crew Equipment Interface Test (CEIT). A CEIT allows astronauts to become familiar with equipment and hardware they will use on the mission. STS-116 will be mission No. 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/Kim Shiflett

  17. KSC-06pd2358

    NASA Image and Video Library

    2006-10-14

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-116 Commander Mark Polansky checks the cockpit window of Discovery as part of a Crew Equipment Interface Test (CEIT). A CEIT allows astronauts to become familiar with equipment and hardware they will use on the mission. STS-116 will be mission No. 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/Kim Shiflett

  18. KSC-06pd2357

    NASA Image and Video Library

    2006-10-14

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-116 Commander Mark Polansky checks the cockpit window as part of a Crew Equipment Interface Test (CEIT). A CEIT allows astronauts to become familiar with equipment and hardware they will use on the mission. STS-116 will be mission No. 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/Kim Shiflett

  19. KSC-06pd2360

    NASA Image and Video Library

    2006-10-14

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-116 Pilot William Oefelein checks the cockpit window of Discovery as part of a Crew Equipment Interface Test (CEIT). A CEIT allows astronauts to become familiar with equipment and hardware they will use on the mission. STS-116 will be mission No. 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/Kim Shiflett

  20. STS-115 crew visits SSC

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Commander Brent Jett (center) talks with employees and visitors at NASA Stennis Space Center. The astronauts of NASA's STS-115 space shuttle mission visited SSC in south Mississippi to share highlights of their 12-day mission and to thank SSC employees for the reliability of the space shuttle's main engines, which helped propel Space Shuttle Atlantis into orbit. STS-115's other crewmembers are (from left) Mission Specialists Joe Tanner, Dan Burbank, Heidemarie Stefanyshyn-Piper and Steve MacLean of the Canadian Space Agency. The mission launched Sept. 9, 2006, resuming construction of the International Space Station.

  1. Bidirectional Drive-And-Brake Mechanism

    NASA Technical Reports Server (NTRS)

    Swan, Scott A.

    1991-01-01

    Vehicle that crawls along monorail combines features of both bicycle and railroad handcar. Bidirectional drive-and-brake mechanism includes selectable-pawl-and-ratchet overrunning clutch (drive mechanism) and mating stationary and rotating conical surfaces pressing against each other (brake mechanism). Operates similarly to bicycle drive-and-brake mechanism except limits rotation of sprocket in both directions and brakes at both limits. Conceived for use by astronaut traveling along structure in outer space, concept also applied on Earth to make very small railraod handcars or crawling vehicles for use on large structures, in pipelines under construction, or underwater.

  2. Cardiac Monitor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under contract to Johnson Space Center, the University of Minnesota developed the concept of impedance cardiography as an alternative to thermodilution to access astronaut heart function in flight. NASA then contracted Space Labs, Inc. to construct miniature space units based on this technology. Several companies then launched their own impedance cardiography, including Renaissance Technologies, which manufactures the IQ System. The IQ System is 5 to 17 times cheaper than thermodilution, and features the signal processing technology called TFD (Time Frequency Distribution). TFD provides three- dimensional distribution of the blood circulation force signals, allowing visualization of changes in power, frequency and time.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-15

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist Rick Mastracchio was anchored on the foot restraint of the Canadarm2 as he participated in the third session of Extra Vehicular Activity (EVA) for the mission. Assisting Mastracchio was Expedition 15 flight engineer Clay Anderson (out of frame). During the 5 hour, 28 minute space walk, the two relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) truss to the Port 1 (P1) truss, installed a new transponder on P1 and retrieved the P6 transponder.

  4. COMPARISON OF ORGAN DOSES IN HUMAN PHANTOMS: VARIATIONS DUE TO BODY SIZE AND POSTURE.

    PubMed

    Feng, Xu; Xiang-Hong, Jia; Qian, Liu; Xue-Jun, Yu; Zhan-Chun, Pan; Chun-Xin, Yang

    2017-04-20

    Organ dose calculations performed using human phantoms can provide estimates of astronauts' health risks due to cosmic radiation. However, the characteristics of such phantoms strongly affect the estimation precision. To investigate organ dose variations with body size and posture in human phantoms, a non-uniform rational B-spline boundary surfaces model was constructed based on cryosection images. This model was used to establish four phantoms with different body size and posture parameters, whose organs parameters were changed simultaneously and which were voxelised with 4 × 4 × 4 mm3 resolution. Then, using Monte Carlo transport code, the organ doses caused by ≤500 MeV isotropic incident protons were calculated. The dose variations due to body size differences within a certain range were negligible, and the doses received in crouching and standing-up postures were similar. Therefore, a standard Chinese phantom could be established, and posture changes cannot effectively protect astronauts during solar particle events. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-07

    Inside the Space Shuttle Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the Remote Manipulator System (RMS) on the crew cabin's aft flight deck to assist fellow astronauts during the STS-109 mission Extra Vehicular Activities (EVA). The RMS was used to capture the telescope and secure it into Columbia's cargo bay. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the Hubble Space Telescope (HST). The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built. STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  6. John F. Kennedy, Jr., speaks to the media at KSC's HBO premiere 'From the Earth to the Moon.'

    NASA Technical Reports Server (NTRS)

    1998-01-01

    John F. Kennedy, Jr., editor-in-chief of George Magazine, speaks with members of the national media at the Home Box Office (HBO) and Imagine Entertainment premiere of the 12-part miniseries 'From the Earth to the Moon' at Kennedy Space Center (KSC). The series was filmed in part on location at KSC and dramatizes the human aspects of NASA's efforts to launch Americans to the Moon. The miniseries highlights NASA's Apollo program and the events leading up to and including the six successful missions to the Moon. A special 500-seat theater was constructed next to the Apollo/Saturn V Center for the KSC premiere showing. Speakers at the event included KSC Director Roy Bridges (at right); Jeff Bewkes, chairman and CEO for HBO; and John F. Kennedy, Jr. Also attending the event, which featured the episode entitled '1968,' were Buzz Aldrin, Apollo 11 astronaut, and Al Worden, Apollo 15 astronaut. The original miniseries event, created for HBO by actor Tom Hanks and Imagine Entertainment, will premiere on HBO beginning April 5, 1998.

  7. John F. Kennedy, Jr., speaks to invited guests at KSC's HBO premiere 'From the Earth to the Moon.'

    NASA Technical Reports Server (NTRS)

    1998-01-01

    John F. Kennedy, Jr., editor-in-chief of George Magazine, greets invited guests at the Home Box Office (HBO) and Imagine Entertainment premiere of the 12-part miniseries 'From the Earth to the Moon' at Kennedy Space Center (KSC). The series was filmed in part on location at KSC and dramatizes the human aspects of NASA's efforts to launch Americans to the Moon. The miniseries highlights NASA's Apollo program and the events leading up to and including the six successful missions to the Moon. A special 500- seat theater was constructed next to the Apollo/Saturn V Center for the KSC premiere showing. Speakers at the event included KSC Director Roy Bridges (at right); Jeff Bewkes, chairman and CEO for HBO; and John F. Kennedy, Jr. Also attending the event, which featured the episode entitled '1968,' were Buzz Aldrin, Apollo 11 astronaut, and Al Worden, Apollo 15 astronaut. The original miniseries event, created for HBO by actor Tom Hanks and Imagine Entertainment, will premiere on HBO beginning April 5, 1998.

  8. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-11

    On the Space Shuttle Columbia's mid deck, the STS-109 crew of seven pose for the traditional in-flight portrait. From the left (front row), are astronauts Nancy J. Currie, mission specialist; Scott D. Altman, mission commander; and Duane G. Carey, pilot. Pictured on the back row from left to right are astronauts John M. Grunsfield, payload commander; and Richard M. Lirneham, James H. Newman, and Michael J. Massimino, all mission specialists. The 108th flight overall in NASA's Space Shuttle Program, the STS-109 mission launched March 1, 2002, and lasted 10 days, 22 hours, and 11 minutes. The goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST). Using Columbia's robotic arm, the telescope was captured and secured on a work stand in Columbia's payload bay where four members of the crew performed five space walks to complete system upgrades to the HST. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit.

  9. KENNEDY SPACE CENTER, FLA. - Center Director and former astronaut Roy D. Bridges, Jr., (holding scissors) cuts the ribbon at a ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. Invited guests and dignitaries look on, such as former astronauts Edgar D. Mitchell on Bridges' left and James Lovell on his right. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Center Director and former astronaut Roy D. Bridges, Jr., (holding scissors) cuts the ribbon at a ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. Invited guests and dignitaries look on, such as former astronauts Edgar D. Mitchell on Bridges' left and James Lovell on his right. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  10. Pilot Kent Rominger compacts trash container

    NASA Image and Video Library

    1995-11-05

    STS073-356-018 (20 October - 5 November 1995) --- Astronaut Kent V. Rominger, pilot, demonstrates an age-old trash-compacting method on the middeck of the Earth-orbiting Space Shuttle Columbia. Following a meal, Rominger had collected the residue wrappers, etc. and filled a plastic bag. Following his compacting maneuvers, Rominger went on to deposit the sack into a temporary trash-stowage area beneath the middeck. Making his first flight into space, Rominger joined four other NASA astronauts and two guest researchers for more than two weeks' research in support of the United States Microgravity Laboratory (USML-2) mission.

  11. HRP Data Accessibility Current Status

    NASA Technical Reports Server (NTRS)

    Sams, Clarence

    2009-01-01

    Overview of talk: a) Content of Human Life Science data; b) Data archive structure; c) Applicable legal documents and policies; and d) Methods for data access. Life Science Data Archive (LSDA) contains research data from NASA-funded experiments, primarily data from flight experiments and ground analog data collected at NASA facilities. Longitudinal Study of Astronaut Health (LSAH) contains electronic health records (medical data) of all astronauts, including mission data. Data are collected for clinical purposes. Clinical data are analyzed by LSAH epidemiologists to identify trends in crew health and implement changes in pre-, in-, or post-flight medical care.

  12. STS-47 crewmembers eat on OV-105's middeck using chopsticks

    NASA Image and Video Library

    1992-09-20

    STS047-31-009 (12-20 Sept 1992) --- Two NASA astronauts prepare to try their hand at a new method of eating an in-space meal as chopsticks are called upon by a third crew member. Pictured left to right, are Curtis L. Brown, Jr., pilot; payload specialist Mamoru Mohri representing Japan's National Space Development Agency (NASDA); and Robert L. Gibson, mission commander. Several months of training, as well as the eight-days of sharing research on the Spacelab-J mission, allowed the astronauts and payload specialist to learn a great deal about the two cultures.

  13. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS mission, DXA BMD and TBS are detecting different effects of ARED exercise and of ARED + Bisphosphonate on the lumbar spine of astronauts. There is emerging evidence associating reduced TBS with terrestrial metabolic bone disorders where a TBS <1.200 is associated with "degraded" while > 1.350 is associated with "normal." However, it is not possible to conclude how the spaceflight-induced changes in TBS increase risk for vertebral fractures in the astronaut or if changes in body composition of the trunk region could be an indirect method of assessing exercise effect on bone microarchitecture. More importantly, this pilot analysis demonstrates a new, minimal risk approach for monitoring changes to vertebral bone microarchitecture. This method could help assess the combined skeletal effects of spaceflight with the effects of aging in the astronaut after return to Earth.

  14. Colonoscopy Screening in the US Astronaut Corps

    NASA Technical Reports Server (NTRS)

    Masterova, K.; Van Baalen, M.; Wear, M. L.; Murray, J.; Schaefer, C.

    2016-01-01

    BACKGROUND: Historically, colonoscopy screenings for astronauts have been conducted to ensure that astronauts are in good health for space missions. Recently this historical data has been identified as being useful for developing an occupational surveillance requirement. It can be used to assess overall colon health and to have a point of reference for future tests in current and former astronauts, as well as to follow-up and track rates of colorectal cancer and polyps. These rates can be compared to military and other terrestrial populations. In 2003, the active astronaut colonoscopy requirements changed to require less frequent colonoscopies. Since polyp removal during a colonoscopy is an intervention that prevents the polyp from potentially developing into cancer, the procedure decreases the individual's risk for colon cancer. The objective of this study is to evaluate the possible effect of increased follow-up times between colonoscopies on the number and severity of polyps identified during the procedures among both current and former NASA astronauts. Initial results and forward work regarding astronaut colonoscopy screenings will be presented. METHODS: A retrospective study of all colonoscopy procedures performed on NASA astronauts between 1962 and 2015 (both during active career and retirement) was conducted by review of the JSC Clinic Electronic Medical Record and Lifetime Surveillance of Astronaut Health (LSAH) database for colonoscopy screening procedures and pathology reports. The timeframe of interest was from the time of selection into the Astronaut Corps through May 2015 or death. For each colonoscopy report, the following data were captured: date of procedure, age at time of procedure, reason for procedure, quality of bowel prep, completion of procedure and/or reason for termination of procedure, findings of procedure, subsequent treatment (if any), recommended follow-up interval, actual follow up interval, family history of polyps or colon cancer, and other significant items or discrepancies. The population consisted of 338 astronauts: 52 females, 286 males. Of these, 56 were deceased, and 11 astronauts had no record of any colonoscopies. Because of a screening requirement change in 2003, analyses were conducted to determine if there were differences between the two time periods. One-sided Wilcoxon rank sum tests were used to identify statistically significant differences between the two time periods. RESULTS: There was a combined total of 1,964 colonoscopy screenings identified. The average follow-up intervals between colonoscopies were indeed longer after the screening requirement change than before the change. The mean follow-up interval pre -2003 was 3.59 years, while post-2003 it increased to 4.35 years. The statistical significance of this difference was confirmed using a one sided Wilcoxon rank sum test which yielded p<.001. Colonoscopies performed after the requirement change tended to have a higher incidence and greater severity of polyps. From pre-2003 to post-2003 the percentage of colonoscopy procedures yielding no polyps decreased from 83.77% to 74.70%. Not only did post-2003 procedures yield more polyp findings, but the polyps recorded were more often of severe pathology. Before 2003 3.62% of colonoscopy findings were polyps of the hyperplastic type (the least severe polyp type) and only 3.35% were of greater severity. Post-2003, 4.21% of findings were hyperplastic polyps while 11.44% were of greater severity. Upon the investigation of other possible contributing factors to these results, we also found that mean age post-2003 was 54.55 years which was significantly higher than during the pre-2003 timeframe (47.32 years). This was observed with a one-sided Wilcoxon rank sum test, resulting in a p<0.001. The increased average age of astronauts could also be a contributing factor to the greater number of polyps found since the risk of developing polyps increases with age. Further work is needed to better understand the increased incidence and greater severity of polyps found in astronaut colonoscopy outcomes.

  15. KSC-2013-2072

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Charmin Charlie Duke speaks at the ceremony during which Bonnie Dunbar, Curt Brown and Eileen Collins were inducted into the U.S. Astronaut Hall of Fame. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  16. KSC-03PD-2020

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) applauds former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, and Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert 'Hoot' Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  17. Estimating carbon monoxide exposure

    NASA Technical Reports Server (NTRS)

    Edgerley, R. H.

    1971-01-01

    Method predicts effects of carbon monoxide on astronauts confined in spacecraft cabin atmospheres. Information on need for low toxicity level also applies to confined spaces. Benefits are applicable to industry and public health.

  18. Protecting the Health of Astronauts: Enhancing Occupational Health Monitoring and Surveillance for Former NASA Astronauts to Understand Long-Term Outcomes of Spaceflight-Related Exposures

    NASA Technical Reports Server (NTRS)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2017-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. A better understanding of the individual, population, and mission impacts of astronaut occupational exposures is critical to providing clinical care, targeting occupational surveillance efforts, and planning for future space exploration. The ability to characterize the risk of latent health conditions is a significant component of this understanding. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA-Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential long-term health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging populations are necessary to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography); and expanded monitoring will increase NASA's ability to better characterize conditions resulting from astronaut occupational exposures. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of e an Astronaut Occupational Health program to include expanded medical monitoring of former NASA astronauts. Increasing the breadth of monitoring services will ultimately enrich the existing evidence base of occupational health risks to astronauts. Such an expansion would therefore improve the understanding of the health of the astronaut population as a whole, and the ability to identify, mitigate, and manage such risks in preparation for deep space exploration missions.

  19. Recommended Methods for Monitoring Skeletal Health in Astronauts to Distinguish Specific Effects of Prolonged Spaceflight

    NASA Technical Reports Server (NTRS)

    Vasadi, Lukas J.; Spector, Elizabeth R.; Smith, Scott A.; Yardley, Gregory L.; Evans, Harlan J.; Sibonga, Jean D.

    2016-01-01

    NASA uses areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) to monitor skeletal health in astronauts after typical 180-day spaceflights. The osteoporosis field and NASA, however, recognize the insufficiency of DXA aBMD as a sole surrogate for fracture risk. This is an even greater concern for NASA as it attempts to expand fracture risk assessment in astronauts, given the complicated nature of spaceflight-induced bone changes and the fact that multiple 1-year missions are planned. In the past decade, emerging analyses for additional surrogates have been tested in clinical trials; the potential use of these technologies to monitor the biomechanical integrity of the astronaut skeleton will be presented. OVERVIEW: An advisory panel of osteoporosis policy-makers provided NASA with an evidence-based assessment of astronaut biomedical and research data. The panel concluded that spaceflight and terrestrial bone loss have significant differences and certain factors may predispose astronauts to premature fractures. Based on these concerns, a proposed surveillance program is presented which a) uses Quantitative Computed Tomography (QCT) scans of the hip to monitor the recovery of spaceflight-induced deficits in trabecular BMD by 2 years after return, b) develops Finite Element Models [FEM] of QCT data to evaluate spaceflight effect on calculated hip bone strength and c) generates Trabecular Bone Score [TBS] from serial DXA scans of the lumbar spine to evaluate the effect of age, spaceflight and countermeasures on this novel index of bone microarchitecture. SIGNIFICANCE: DXA aBMD is a widely-applied, evidence-based predictor for fractures but not applicable as a fracture surrogate for premenopausal females and males <50 years. Its inability to detect structural parameters is a limitation for assessing changes in bone integrity with and without countermeasures. Collective use of aBMD, TBS, QCT, and FEM analysis for astronaut surveillance could accommodate NASA's aggressive schedule for risk definition and inform a NASA-developed model which assesses the probability of overloading bones during mechanically-loaded mission tasks and possibly for physical activities after return to Earth.

  20. Jump-Down Performance Alterations after Space Flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements in astronauts abilities to maintain balance and achieve a postural stability upon landing from a jump early after flight. However, the jump landing adaptation process often begins after the first jump with full recovery of most performance parameters within days after space flight. As expected, performance of ISS astronauts on the first day after flight was similar to that of Shuttle crewmembers on landing day.

  1. Haughton-Mars Project (HMP)/NASA 2006 Lunar Medical Contingency Simulation: An Overview

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.; Hodgson, E.; Sullivan, P.; Wilkinson, N.

    2006-01-01

    Medical requirements are currently being developed for NASA's space exploration program. Lunar surface operations for crews returning to the moon will be performed on a daily basis to conduct scientific research and construct a lunar habitat. Inherent to aggressive surface activities is the potential risk of injury to crew members. To develop an evidence-base for handling medical contingencies on the lunar surface, a simulation project was conducted using the moon-Mars analog environment at Devon Island, Nunavut, high Canadian Arctic. A review of the Apollo lunar surface activities and personal communications with Apollo lunar crew members provided a knowledge base of plausible scenarios that could potentially injure an astronaut during a lunar extravehicular activity. Objectives were established to 1) demonstrate stabilization, field extraction and transfer an injured crew member to the habitat and 2) evaluate audio, visual and biomedical communication capabilities with ground controllers at multiple mission control centers. The simulation project s objectives were achieved. Among these objectives were 1) extracting a crew member from a sloped terrain by a two-member team in a 1-g analog environment, 2) establishing real-time communication to multiple space centers, 3) providing biomedical data to flight controllers and crew members, and 4) establishing a medical diagnosis and treatment plan from a remote site. The simulation project provided evidence for the types of equipment and methods needed for planetary space exploration. During the project, the crew members were confronted with a number of unexpected scenarios including environmental, communications, EVA suit, and navigation challenges. These trials provided insight into the challenges of carrying out a medical contingency in an austere environment. The knowledge gained from completing the objectives of this project will be incorporated into the exploration medical requirements involving an incapacited astronaut on the lunar surface.

  2. KENNEDY SPACE CENTER, FLA. The Astronaut Hall of Fame is dedicated to telling the stories of America’s astronauts. It features the world’s largest collection of personal astronaut mementos plus historic spacecrafts and training simulators. The Hall of Fame is part of the KSC Visitor Complex.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. The Astronaut Hall of Fame is dedicated to telling the stories of America’s astronauts. It features the world’s largest collection of personal astronaut mementos plus historic spacecrafts and training simulators. The Hall of Fame is part of the KSC Visitor Complex.

  3. Optical Coherence Tomography Analysis of the Optic Nerve Head and Surrounding Structures in Long-Duration International Space Station Astronauts.

    PubMed

    Patel, Nimesh; Pass, Anastas; Mason, Sara; Gibson, Charles R; Otto, Christian

    2018-02-01

    After long-duration spaceflight, morphological changes in the optic nerve head (ONH) and surrounding tissues have been reported. To develop methods to quantify ONH and surrounding tissue changes using preflight and postflight optical coherence tomographic scans of the ONH region. Two separate analyses were done on retrospective data, with the first comparing a preflight group with a control group, followed by preflight to postflight analysis. All astronaut data were collected on the same instrument and maintained by the National Aeronautics and Space Administration (NASA) Lifetime Surveillance of Astronaut Health. Control data were all collected at the University of Houston. Participants were 15 astronauts who had previously been on an approximately 6-month long-duration mission and had associated preflight and postflight ONH scans. The control group consisted of 43 individuals with no history of ocular pathology or microgravity exposure. Development of algorithms and data analysis were performed between 2012 and 2015. The optical coherence tomography data were analyzed using custom MATLAB programs (MathWorks) in which the Bruch membrane opening (BMO) was manually delineated and used as a reference for all morphological measures. The retinal pigment epithelium (RPE) position 2 mm from the center of the BMO was used to calculate the BMO height. Global and quadrant total retinal thickness and retinal nerve fiber layer (RNFL) thickness were calculated for elliptical annular regions referenced to the BMO. The standard circumpapillary circular scan was used to quantify RNFL and choroidal thickness. Among 15 astronauts (mean [SD] age at preflight evaluation, 48.7 [4.0] years) in this retrospective study, the BMO was recessed in preflight astronauts compared with healthy controls and deepened after long-duration microgravity exposure (median change, -9.9 μm; 95% CI of difference, -16.3 to 3.7 μm; P = .03). After long-duration missions, there was an increase in total retinal thickness to 1000 μm and RNFL to 500 μm from the BMO. Circumpapillary RNFL thickness increased by a median of 2.9 μm (95% CI of difference, 1.1-4.4 μm; P < .01), and there was no change in choroidal thickness (median change, 9.3 μm; 95% CI of difference, -12.1 to 19.6 μm; P = .66). After long-duration microgravity exposure, there are disc edema-like changes in the morphology of the ONH and surrounding tissue. The methods developed to analyze the ONH and surrounding tissue can be useful for assessing longitudinal changes and countermeasures in astronauts, as well as potentially for terrestrial disc edema causes.

  4. Method and data evaluation at NASA endocrine laboratory. [Skylab 3 experiments

    NASA Technical Reports Server (NTRS)

    Johnston, D. A.

    1974-01-01

    The biomedical data of the astronauts on Skylab 3 were analyzed to evaluate the univariate statistical methods for comparing endocrine series experiments in relation to other medical experiments. It was found that an information storage and retrieval system was needed to facilitate statistical analyses.

  5. SIMULATED COUNTDOWN TRAINING ACTIVITIES - STS-3 - KSC

    NASA Image and Video Library

    1982-03-17

    S82-28457 (19 Feb. 1982) --- Member of the JSC astronaut corps., STS-3 vehicle integration test (VIT) team and other personnel pose for a photograph at the completion of a countdown demonstration test (CDDT) and safety briefings at Launch Pad 39A, Kennedy Space Center (KSC). Participants are, from the left, Wilbur J. Etbauer, engineer with the VIT team; George W. S. Abbey, director of flight operations at JSC; astronaut John W. Young, chief of the astronaut office at JSC; Jack Fleming of Rockwell International; mission specialist-astronaut John M. Lounge; astronaut Daniel C. Brandenstein; mission specialist-astronaut James D. Van Hoften; astronauts C. Gordon Fullerton and Jack Lousma, prime crew for STS-3; Olan J. Bertrand, VIT team member; mission specialist-astronaut Kathryn D. Sullivan; Richard W. Nygren, head of the VIT team; and astronaut Donald E. Williams. The space shuttle Columbia is obscured by its service structure on Launch Pad 39A in the background. Part of slide-wire type emergency escape system is visible in the picture. Photo credit: NASA

  6. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    NASA Technical Reports Server (NTRS)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  7. Consideration in selecting crops for the human-rated life support system: a linear programming model

    NASA Astrophysics Data System (ADS)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  8. KSC-2013-2071

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Kennedy Space Center Director and Hall of Famer Robert Cabana speaks during the U.S. Astronaut Hall of Fame 2013 induction ceremony. Curt Brown, Eileen Collins and Bonnie Dunbar were inducted into the U.S. Astronaut Hall of Fame. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  9. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, actor and Master of Ceremonies Lance Henriksen (at podium) introduces four newly inducted Space Shuttle astronauts to the audience at their induction ceremony into the U.S. Astronaut Hall of Fame. From left center, they are Story Musgrave, Sally K. Ride, Daniel Brandenstein, and Robert "Hoot" Gibson. Also standing, left, is former astronaut James A. Lovell. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, actor and Master of Ceremonies Lance Henriksen (at podium) introduces four newly inducted Space Shuttle astronauts to the audience at their induction ceremony into the U.S. Astronaut Hall of Fame. From left center, they are Story Musgrave, Sally K. Ride, Daniel Brandenstein, and Robert "Hoot" Gibson. Also standing, left, is former astronaut James A. Lovell. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  10. KENNEDY SPACE CENTER, FLA. - Former astronaut James Lovell addresses the audience at a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Former astronaut James Lovell addresses the audience at a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  11. Astronaut mass measurement using linear acceleration method and the effect of body non-rigidity

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Li, LuMing; Hu, ChunHua; Chen, Hao; Hao, HongWei

    2011-04-01

    Astronaut's body mass is an essential factor of health monitoring in space. The latest mass measurement device for the International Space Station (ISS) has employed a linear acceleration method. The principle of this method is that the device generates a constant pulling force, and the astronaut is accelerated on a parallelogram motion guide which rotates at a large radius to achieve a nearly linear trajectory. The acceleration is calculated by regression analysis of the displacement versus time trajectory and the body mass is calculated by using the formula m= F/ a. However, in actual flight, the device is instable that the deviation between runs could be 6-7 kg. This paper considers the body non-rigidity as the major cause of error and instability and analyzes the effects of body non-rigidity from different aspects. Body non-rigidity makes the acceleration of the center of mass (C.M.) oscillate and fall behind the point where force is applied. Actual acceleration curves showed that the overall effect of body non-rigidity is an oscillation at about 7 Hz and a deviation of about 25%. To enhance body rigidity, better body restraints were introduced and a prototype based on linear acceleration method was built. Measurement experiment was carried out on ground on an air table. Three human subjects weighing 60-70 kg were measured. The average variance was 0.04 kg and the average measurement error was 0.4%. This study will provide reference for future development of China's own mass measurement device.

  12. Results of an International Space Crew Debrief

    NASA Technical Reports Server (NTRS)

    Santy, P. A.; Holland, A. W.; Looper, L.; Marcondes-North, R.

    1992-01-01

    In order to identify potential multi-cultural and multinational problems for future International Space Station Freedom crew, a crew debrief questionnaire was developed for U.S. astronauts who flew on shuttle missions with one or more crew members from other countries. Methods: From 1981-90, a total of 20 U.S. astronauts flew on international space missions. Debriefs were mailed to all 20 with instructions not to identify themselves or their specific mission. The debrief focused primarily on preflight training and post flight incidents of misunderstanding, miscommunication, and interpersonal friction among crewmembers. Astronauts were also asked to rate the impact of the incident to the mission (low, medium, high). Results: Ten astronauts responded, but only nine responses were able to be scored, for a return rate of 45 percent. 42 incidents were reported, 9 in the preflight period, 26 inflight, and 7 in the postflight period. Most of the incidents were rated at a low or medium impact, but 5 of the inflight incidents were rated at a 'high' mission impact. A number of causes for the problems were listed, and are discussed. Conclusions: The debrief respondents provide useful and timely recommendations on preflight training which might help facilitate the integration of multinational crews and prevent multi-cultural or multinational factors from interfering with mission operations.

  13. Astronaut Mark Linenger measures height of Astronaut Mark Lee during DSO

    NASA Image and Video Library

    1994-09-15

    STS064-05-020 (9-20 Sept. 1994) --- Astronaut Mark C. Lee gets his height measured by astronaut Jerry M. Linenger as part of a daily in-flight routine supporting a medical Detailed Supplementary Objective (DSO). Astronaut Richard N. Richards, STS-64 mission commander, looks on in the background. This study was designed to collect information about back pain and height changes experienced by astronauts during flight. Crew members participating in this DSO are required to record height measurements and long back-pain symptoms daily. As an ongoing program, this DSO will gather data from 30 astronauts who spend more than eight consecutive days in space. Photo credit: NASA or National Aeronautics and Space Administration

  14. Extravehicular mobility unit training and astronaut injuries

    NASA Technical Reports Server (NTRS)

    Strauss, Samuel; Krog, Ralph L.; Feiveson, Alan H.

    2005-01-01

    BACKGROUND: Astronaut spacewalk training can result in a variety of symptom complaints and possible injuries. This study quantified and characterized signs, symptoms, and injuries resulting from extravehicular activity spacesuit training at NASA's Neutral Buoyancy Laboratory, Johnson Space Center, Houston, TX, immersion facility. METHODS: We identified the frequency and incidence of symptoms by location, mechanisms of injury, and effective countermeasures. Recommendations were made to improve injury prevention, astronaut training, test preparation, and training hardware. At the end of each test, a questionnaire was completed documenting signs and symptoms, mechanisms of injury, and countermeasures. RESULTS: Of the 770 tests, there were 190 in which suit symptoms were reported (24.6%). There were a total of 352 reported suit symptom comments. Of those symptoms, 166 were in the hands (47.16%), 73 were in the shoulders (20.7%), and 40 were in the feet (11.4%). Others ranged from 6.0% to 0.28%, respectively, from the legs, arms, neck, trunk, groin, and head. Causal mechanisms for the hands included moisture and hard glove contacts resulting in fingernail injuries; in the shoulders, hard contact with suit components and strain mechanisms; and in the feet, hard boot contact. The severity of symptoms was highest in the shoulders, hands, and feet. CONCLUSIONS: Most signs and symptoms were mild, self-limited, of brief duration, and were well controlled by available countermeasures. Some represented the potential for significant injury with consequences affecting astronaut health and performance. Correction of extravehicular activity training-related injuries requires a multidisciplinary approach to improve prevention, medical intervention, astronaut training, test planning, and suit engineering.

  15. KSC-2012-2719

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke speaks during the U.S. Astronaut Hall of Fame induction ceremony. Space shuttle astronauts Franklin Chang Diaz, Kevin Chilton and Charlie Precourt were inducted into the Hall of Fame Class of 2012. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  16. KENNEDY SPACE CENTER, FLA. - Center Director and former astronaut Roy D. Bridges, Jr., (holding scissors) cuts the ribbon at a ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. Invited guests and dignitaries look on, such as former astronauts Edgar D. Mitchell on Bridges' left and James Lovell (hand up) and Buzz Aldrin on his right. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Center Director and former astronaut Roy D. Bridges, Jr., (holding scissors) cuts the ribbon at a ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. Invited guests and dignitaries look on, such as former astronauts Edgar D. Mitchell on Bridges' left and James Lovell (hand up) and Buzz Aldrin on his right. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  17. Return to Flying Duties Following Centrifuge or Vibration Exposures

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Clarke, Jonathan; Jones, Jeffrey A.

    2009-01-01

    Introduction: In an effort to determine the human performance limits for vibration in spacecraft being developed by NASA, astronauts were evaluated during a simulated launch profile in a centrifuge/vibration environment and separate vibration-only simulation. Current USAF and Army standards for return to flight following centrifuge exposures require 12-24 hours to pass before a crewmember may return to flying duties. There are no standards on vibration exposures and return to flying duties. Based on direct observation and provocative neurological testing of the astronauts, a new standard for return to flying duties following centrifuge and/or vibration exposures was established. Methods: 13 astronaut participants were exposed to simulated launch profiles in a + 3.5 Gx bias centrifuge/vibration environment and separately on a vibration table at the NASA-Ames Research Center. Each subject had complete neurological evaluations pre- and post-exposure for the centrifuge/vibration runs with the NASA neurological function rating scale (NFRS). Subjects who participated in the vibration-only exposures had video oculography performed with provocative maneuvers in addition to the NFRS. NFRS evaluations occurred immediately following each exposure and at 1 hour post-run. Astronauts who remained symptomatic at 1 hour had repeat NFRS performed at 1 hour intervals until the crewmember was asymptomatic. Results: Astronauts in the centrifuge/vibration study averaged a 3-5 point increase in NFRS scores immediately following exposure but returned to baseline 3 hours post-run. Subjects exposed to the vibration-only simulation had a 1-3 point increase following exposure and returned to baseline within 1-2 hours. Pre- and post- vibration exposure video oculography did not reveal any persistent ocular findings with provocative testing 1 hour post-exposure. Discussion: Based on direct observations and objective measurement of neurological function in astronauts following simulated launch profiles, asymptomatic individuals are allowed to return to flying duties within 3 hours following centrifuge/vibration and 2 hours after vibration-only exposures.

  18. Changes in Jump-Down Performance After Space Flight: Short- and Long-Term Adaptation

    NASA Technical Reports Server (NTRS)

    Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.

    2010-01-01

    INTRODUCTION Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares the jump strategies used by astronauts before and after flight, the changes to those strategies within a test session, and the recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS Six astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high. A force plate measured the ground reaction forces and center-of-pressure displacement from the landings. Muscle activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS AND CONCLUSION Many of the astronauts tested were unable to maintain balance on their first postflight jump landing but recovered by the third jump, showing a learning progression in which the performance improvement could be attributed to adjustments of strategy on takeoff, landing, or both. Takeoff strategy changes were evident in air time (time between takeoff and landing), which was significantly reduced after flight, and also in increased asymmetry in foot latencies on takeoff. Landing modifications were seen in changes in ground reaction force curves. The results demonstrate astronauts adaptive capabilities and full performance recovery within days after flight.

  19. Physical examination during space flight

    NASA Technical Reports Server (NTRS)

    Harris, B. A. Jr; Billica, R. D.; Bishop, S. L.; Blackwell, T.; Layne, C. S.; Harm, D. L.; Sandoz, G. R.; Rosenow, E. C. 3rd

    1997-01-01

    OBJECTIVE: To develop techniques for conducting a physical examination in microgravity and to describe and document the physiologic changes noted with use of a modified basic physical examination. DESIGN: On the basis of data gathered from physical examinations on KC-135 flights, three physical variables were assessed serially in astronauts during two shuttle missions (of 8- and 10-day duration, respectively). Preflight, in-flight, and postflight examinations were conducted by trained physician-astronauts or flight surgeons, who used this modified examination. MATERIAL AND METHODS: Five male and two female crewmembers participated in the "hands-on" physical examination of all physiologic systems except the genitourinary system. Level of edema, intensity of bowel sounds, and peripheral reflexes were assessed and graded. RESULTS: This investigation identified unique elements of a physical examination performed during space flight that will assist in the development of standard methods for conducting examinations of astronauts in weightlessness. In addition, demonstrable changes induced by microgravity were noted in most physiologic systems examined. CONCLUSION: The data support the hypothesis that the microgravity examination differs from that conducted on earth or in a 1g environment. In addition, alterations in the physiologic response can be detected with use of hands-on technique. These data are invaluable in the development of optimal medical care for humans in space.

  20. The paradoxical effect of long instructions on negative affect and performance: When, for whom and why do they backfire?

    NASA Astrophysics Data System (ADS)

    Goemaere, Sophie; Beyers, Wim; De Muynck, Gert-Jan; Vansteenkiste, Maarten

    2018-06-01

    For reasons of bureaucracy and safety, astronauts on the International Space Station are provided with excruciatingly detailed instructions and a lack of decision-making power, even for simple routine tasks. Besides being time-consuming, many astronauts report feelings of demotivation, irritation, and even defiance when confronted with this working method. Anecdotic evidence suggests that this method leads to situations where astronauts read instructions diagonally or avoid checking in with mission support, thereby ironically increasing the risk of error making. There is a need to consider under which circumstances, for whom, and why the provision of long instructions could be detrimental for well-being and performance. An experimental study with LEGO assembly tasks examined whether length of instructions (i.e. short versus long) and task complexity (simple vs. complex) impact negative affect, motivational experiences and performance of participants (N = 113, Mage = 18.75 ± 2.46 years). Long instructions for simple tasks provoked greater feelings of irritation, diminished the perceived value of instructions, and negatively influenced productivity and accuracy. The negative effect of long instructions on irritation was explained via decreased perceived value. Additionally, the effect of length of instructions on irritation differed for participants high versus those low in need for achievement.

  1. The First Joint Report of the General Thomas P. Stafford Task Force and the Academician Vladimir F. Utkin Advisory Expert Council on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In October 1992, the National Aeronautics and Space Administration (NASA) and the Russian Space Agency (RSA) formally agreed to conduct a fundamentally new program of human cooperation in space. The 'Shuttle-Mir Program' encompassed combined astronaut-cosmonaut activities on the Shuttle, Soyuz Test Module(TM), and Mir station spacecraft. At that time, NASA and RSA limited the project to: the STS-60 mission carrying the first Russian cosmonaut to fly on the U.S. Space Shuttle; the launch of the first U.S. astronaut on the Soyuz vehicle for a multi-month mission as a member of a Mir crew; and the change-out of the U.S.-Russian Mir crews with a Russian crew during a Shuttle rendezvous and docking mission with the Mir Station. The objectives of the Phase 1 Program are to provide the basis for the resolution of engineering and technical problems related to the implementation of the ISS and future U.S.-Russian cooperation in space. This, combined with test data generated during the course of the Shuttle flights to the Mir station and extended joint activities between U.S. astronauts and Russian cosmonauts aboard Mir, is expected to reduce the technical risks associated with the construction and operation of the ISS. Phase 1 will further enhance the ISS by combining space operations and joint space technology demonstrations. Phase 1 also provides early opportunities for extended U.S. scientific and research activities, prior to utilization of the ISS.

  2. Developing Tests of Visual Dependency

    NASA Technical Reports Server (NTRS)

    Kindrat, Alexandra N.

    2011-01-01

    Astronauts develop neural adaptive responses to microgravity during space flight. Consequently these adaptive responses cause maladaptive disturbances in balance and gait function when astronauts return to Earth and are re-exposed to gravity. Current research in the Neuroscience Laboratories at NASA-JSC is focused on understanding how exposure to space flight produces post-flight disturbances in balance and gait control and developing training programs designed to facilitate the rapid recovery of functional mobility after space flight. In concert with these disturbances, astronauts also often report an increase in their visual dependency during space flight. To better understand this phenomenon, studies were conducted with specially designed training programs focusing on visual dependency with the aim to understand and enhance subjects ability to rapidly adapt to novel sensory situations. The Rod and Frame test (RFT) was used first to assess an individual s visual dependency, using a variety of testing techniques. Once assessed, subjects were asked to perform two novel tasks under transformation (both the Pegboard and Cube Construction tasks). Results indicate that head position cues and initial visual test conditions had no effect on an individual s visual dependency scores. Subjects were also able to adapt to the manual tasks after several trials. Individual visual dependency correlated with ability to adapt manual to a novel visual distortion only for the cube task. Subjects with higher visual dependency showed decreased ability to adapt to this task. Ultimately, it was revealed that the RFT may serve as an effective prediction tool to produce individualized adaptability training prescriptions that target the specific sensory profile of each crewmember.

  3. Astronaut Preflight Cardiovascular Variables Associated with Vascular Compliance are Highly Correlated with Post-Flight Eye Outcome Measures in the Visual Impairment Intracranial Pressure (VIIP) Syndrome Following Long Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Otto, Christian; Ploutz-Snyder, R.

    2015-01-01

    The detection of the first VIIP case occurred in 2005, and adequate eye outcome measures were available for 31 (67.4%) of the 46 long duration US crewmembers who had flown on the ISS since its first crewed mission in 2000. Therefore, this analysis is limited to a subgroup (22 males and 9 females). A "cardiovascular profile" for each astronaut was compiled by examining twelve individual parameters; eleven of these were preflight variables: systolic blood pressure, pulse pressure, body mass index, percentage body fat, LDL, HDL, triglycerides, use of anti-lipid medication, fasting serum glucose, and maximal oxygen uptake in ml/kg. Each of these variables was averaged across three preflight annual physical exams. Astronaut age prior to the long duration mission, and inflight salt intake was also included in the analysis. The group of cardiovascular variables for each crew member was compared with seven VIIP eye outcome variables collected during the immediate post-flight period: anterior-posterior axial length of the globe measured by ultrasound and optical biometry; optic nerve sheath diameter, optic nerve diameter, and optic nerve to sheath ratio- each measured by ultrasound and magnetic resonance imaging (MRI), intraocular pressure (IOP), change in manifest refraction, mean retinal nerve fiber layer (RNFL) on optical coherence tomography (OCT), and RNFL of the inferior and superior retinal quadrants. Since most of the VIIP eye outcome measures were added sequentially beginning in 2005, as knowledge of the syndrome improved, data were unavailable for 22.0% of the outcome measurements. To address the missing data, we employed multivariate multiple imputation techniques with predictive mean matching methods to accumulate 200 separate imputed datasets for analysis. We were able to impute data for the 22.0% of missing VIIP eye outcomes. We then applied Rubin's rules for collapsing the statistical results across our 200 multiply imputed data sets to assess the canonical correlation between the eye outcomes and the twelve astronaut cardiovascular variables available for all 31 subjects. Results: A highly significant canonical correlation was observed among the canonical solutions (p<.00001), with an average best canonical correlation of.97. The results suggest a strong association between astronauts' measures of cardiovascular health and the seven eye outcomes of the VIIP syndrome used in this analysis. Furthermore, the "joint test" revealed a significant difference in cardiovascular profile between male and female astronauts (Prob > F = 0.00001). Overall, female astronauts demonstrated a significantly healthier cardiovascular status. Individually, the female astronauts had significantly healthier profiles on seven of twelve cardiovascular variables than the men (p values ranging from <0.0001 to <0.05). Male astronauts did not demonstrate significantly healthier values on any of the twelve cardiovascular variables measured

  4. Results of the ESA study on psychological selection of astronaut candidates for Columbus missions II: Personality assessment

    NASA Astrophysics Data System (ADS)

    Goeters, Klaus-Martin; Fassbender, Christoph

    A unique composition of personality assessment methods was applied to a group of 97 ESA scientists and engineers. This group is highly comparable to real astronaut candidates with respect to age and education. The list of used tests includes personality questionnaires, problem solving in groups as well as a projective technique. The study goals were: 1. Verification of psychometric qualities and applicability of tests to the target group; 2. Search for culture-fair tests by which multi-national European groups can be examined; 3. Identification of test methods by which the adaptability of the candidates to the psycho-social stress of long-duration space flights can be assessed. Based on the empirical findings, a test battery was defined which can be used in the selection of ESA space personnel.

  5. Psychophysiological monitoring of operator's emotional stress in aviation and astronautics.

    PubMed

    Simonov, P V; Frolov, M V; Ivanov, E A

    1980-01-01

    The level of emotional stress depending on the power of motivation and the estimation by the subject of the probability (possibility) of goal achievement, largely influences the operator's skill performance (that of a pilot, controller, astronaut). A decrease in the emotional tonus leads to drowsiness, lack of vigilance, missing of significant signals, and to slower reactions. The extremely high stress level disorganizes the activity, complicates it with a trend toward untimely acts and reactions to the insignificant signals (false alarms). The best methods to monitor the degree of the operator's emotional state during his skill performance are the integral estimation of the changes in heart-rate and T-peak amplitude, as well as the analysis of spectral and intonational characteristics of the human voice during radio conversation. These methods were tested on paratroopers, pilots in civil aviation, and airport controllers.

  6. Monitors Track Vital Signs for Fitness and Safety

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Have you ever felt nauseous reading a book in the back seat of a car? Or woken from a deep sleep feeling disoriented, unsure which way is up? Momentary mixups like these happen when the sensory systems that track the body's orientation in space become confused. (In the case of the backseat bookworm, the conflict arises when the reader s inner ear, part of the body s vestibular system, senses the car s motion while her eyes are fixed on the stationary pages of the book.) Conditions like motion sickness are common on Earth, but they also present a significant challenge to astronauts in space. Human sensory systems use the pull of gravity to help determine orientation. In the microgravity environment onboard the International Space Station, for example, the body experiences a period of confusion before it adapts to the new circumstances. (In space, even the body s proprioceptive system, which tells the brain where the arms and legs are oriented without the need for visual confirmation, goes haywire, meaning astronauts sometimes lose track of where their limbs are when they are not moving them.) This Space Adaptation Syndrome affects a majority of astronauts, even experienced ones, causing everything from mild disorientation to nausea to severe vomiting. "It can be quite debilitating," says William Toscano, a research scientist in NASA s Ames Research Center Psychophysiology Laboratory, part of the Center s Human Systems Integration Division. "When this happens, as you can imagine, work proficiency declines considerably." Since astronauts cannot afford to be distracted or incapacitated during critical missions, NASA has explored various means for preventing and countering motion sickness in space, including a range of drug treatments. Many effective motion sickness drugs, however, cause undesirable side effects, such as drowsiness. Toscano and his NASA colleague, Patricia Cowings, have developed a different approach: Utilizing biofeedback training methods, the pair can teach astronauts, military pilots, and others susceptible to motion sickness to self-regulate their own physiological responses and suppress the unpleasant symptoms. This NASA-patented method invented by Cowings is called the Autogenic Feedback Training Exercise (ATFE), and several studies have demonstrated its promise

  7. KSC-2013-2077

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Curt Brown listens as he is being introduced for induction into the U.S. Astronaut Hall of Fame AHOF. Brown, a veteran of six spaceflights, began his career with NASA in 1987 as a pilot and has logged more than 1,383 hours in space. Brown’s missions aboard the space shuttle include STS-47, STS-66, STS-77, STS-85, STS-95 and STS-103. Shuttle astronauts Eileen Collins and Bonnie Dunbar also were inducted into the AHOF. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  8. KSC-2013-2076

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Bonnie Dunbar speaks after being inducted into the U.S. Astronaut Hall of Fame AHOF. Dunbar received NASA’s Outstanding Leadership Award in 1993 and NASA’s Exceptional Service Medal in 1998 and 1991. During her career with NASA, she served as a mission specialist and a payload commander. Dunbar logged 1,208 hours in space, and her spaceflights include STS 61-A, STS-32, STS-50, STS-71 and STS-89. Shuttle astronauts Curt Brown and Eileen Collins also were inducted into the AHOF. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  9. Characterizing Fractures Across the Astronaut Corps: Preliminary Findings from Population-Level Analysis

    NASA Technical Reports Server (NTRS)

    Rossi, Meredith M.; Charvat, Jacqueline; Sibonga, Jean; Sieker, Jeremy

    2017-01-01

    Despite evidence of bone loss during spaceflight and operational countermeasures to mitigate this loss, the subsequent risk of fracture among astronauts is not known. The physiologic process of diminished bone density and bone recovery during or following spaceflight is multifactorial. Such factors as age, sex, fracture history, and others may combine to increase fracture risk among astronauts. As part of the 2016 Bone Research and Clinical Advisory Panel (RCAP), the authors analyzed data collected on 338 NASA astronauts to describe the demographics, bone-relevant characteristics, and fracture history of the astronaut population. The majority of the population are male (n=286, 84.6%), have flown at least one mission (n=306, 90.5%), and were between the ages of 30 and 49 at first mission (n=296, 96.7% of those with at least one mission). Of the 338 astronauts, 241 (71.3%) experienced a fracture over the course of their lifetime. One hundred and five (43.5%) of these 241 astronauts only experienced a fracture prior to being selected into the Astronaut Corps, whereas 53 (22.0%) only experienced a fracture after selection as an astronaut. An additional 80 astronauts (33.2%) had both pre- and post-selection fractures. The remaining 3 astronauts had a fracture of unknown date, which could not be categorized as pre- or post-selection. Among the 133 astronauts with at least one post-selection fracture, males comprised 90.2% (n=120) compared to 84.5% of the entire Corps, and females accounted for 9.8% (n=13) compared to 15.4% of the Corps. Ninety-seven of the 133 astronauts with post-selection fractures (72.9%) had one fracture event, 22 (16.5%) had two fractures, and 14 (10.5%) had three or more fractures. Some astronauts with multiple fractures suffered these in a single event, such as an automobile accident. The 133 astronauts with a post-selection fracture accounted for a total of 188 fracture events. One hundred and four (78.2%) of astronauts with post-selection fractures experienced those fractures following their first mission (mean 12.7 +/- 11.1 years following first mission; range 14.0 days - 50.6 years). Additional analyses are ongoing and include examination of fracture history, skeletal site, mechanism, and type of fracture, age at time of fracture, time from spaceflight to fracture, as well as multivariable analysis comparing fracture events to non-events. The results of such analyses may reveal trends in risk factors for fracture among the astronaut corps that have yet to be systematically described through a corps-wide approach.

  10. Astronaut Owen Garriott trims hair of Astronaut Alan Bean

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, trims the hair of Astronaut Alan L. Bean, commander, in this on-board photograph from the Skylab Orbital Workshop (OWS). Bean holds a vacuum hose to gather in loose hair.

  11. ESA Astronaut Andreas Mogensen and NASA astronaut Randy Bresnik during NEEMO 19 communications training with instructors

    NASA Image and Video Library

    2014-08-21

    Date: 08-21-14 Location: Bldg 36, 131 Subject: ESA Astronaut Andreas Mogensen and NASA astronaut Randy Bresnik during NEEMO 19 communications training with instructors Marcum Reagan and Barbara Janoiko Photographer: James Blair

  12. Astronaut Bobko assists Astronaut Peterson prior to underwater training

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Astronaut Karol J. Bobko, left, STS-6 pilot, assists Astronaut Donald H. Peterson, STS-6 mission specialist, prior to underwater training session in the weightless environment training facility. Peterson is wearing the extravehicular mobility unit minus the helmet and gloves.

  13. Evident Biological Effects of Space Radiation in Astronauts

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2004-01-01

    Though cancer risks are the primary concern for astronauts exposed to space radiation and a number of astronauts have developed cancer, identifying a direct association or cause of disease has been somewhat problematic due to a lack of statistics and a lack of an appropriate control group. However, several bio,logical effects observed in astronauts are believed to be primarily due to exposure to space radiation. Among those are, light flashes experienced by astronauts from early missions, cataract development in the crewmembers and excess chromosome aberrations detected in astronauts' lymphocytes postmission. The space radiation environment and evident biological effects will be discussed.

  14. KSC-2012-2720

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke spoke during the U.S. Astronaut Hall of Fame induction ceremony and recognized former shuttle launch director Bob Sieck. Space shuttle astronauts Franklin Chang Diaz, Kevin Chilton and Charlie Precourt were inducted into the Hall of Fame Class of 2012. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  15. Skylab

    NASA Image and Video Library

    1973-05-01

    This photograph was taken during testing of an emergency procedure to free jammed solar array panels on the Skylab workshop. A metal strap became tangled over one of the folded solar array panels when Skylab lost its micrometeoroid shield during the launch. This photograph shows astronauts Schweickart and Gibson in the Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS) using various cutting tools and methods developed by the MSFC to free the jammed solar wing. Extensive testing and many hours of practice in simulators such as the NBS tank helped prepare the Skylab crewmen for extravehicular performance in the weightless environment. This huge water tank simulated the weightless environment that the astronauts would encounter in space.

  16. STS-49 MS Akers handles strut during ASEM procedures in OV-105's payload bay

    NASA Image and Video Library

    1992-05-14

    STS049-77-028 (14 May 1992) --- Astronaut Thomas D. Akers, STS-49 mission specialist, grabs a strut device as fourth period of extravehicular activity (EVA) gets underway in the Space Shuttle Endeavour's cargo bay. Akers is positioned near the Multi-purpose Support Structure (MPESS). The purpose of the final EVA on this nine-day mission was the evaluation of Assembly of Station by EVA Methods (ASEM). The scene was recorded on 70mm film by a fellow crew member in the space shuttle's cabin. Astronaut Kathryn C. Thornton (out of frame) joined Akers on the 7 1/2 hour EVA.

  17. A combined TLD/emulsion method of sampling dosimetry applied to Apollo missions

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1979-01-01

    A system which simplifies the complex monitoring methods used to measure the astronaut's radiation exposure in space is proposed. The excess dose equivalents of trapped protons and secondary neutrons, protons, and alpha particles from local nuclear interactions are determined and a combined thermoluminescent dosimeter (TLD)/nuclear emulsion method which measures the absorbed dose with thermoluminescent dosimeter chips is presented.

  18. Representation of the Physiological Factors Contributing to Postflight Changes in Functional Performance Using Motion Analysis Software

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2010-01-01

    Astronauts experience changes in multiple physiological systems due to exposure to the microgravity conditions of space flight. To understand how changes in physiological function influence functional performance, a testing procedure has been developed that evaluates both astronaut postflight functional performance and related physiological changes. Astronauts complete seven functional and physiological tests. The objective of this project is to use motion tracking and digitizing software to visually display the postflight decrement in the functional performance of the astronauts. The motion analysis software will be used to digitize astronaut data videos into stick figure videos to represent the astronauts as they perform the Functional Tasks Tests. This project will benefit NASA by allowing NASA scientists to present data of their neurological studies without revealing the identities of the astronauts.

  19. KSC-2013-2070

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, agency Administrator Charles Bolden speaks at the ceremony during which Bonnie Dunbar, Curt Brown and Eileen Collins were inducted into the U.S. Astronaut Hall of Fame. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  20. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    A space suit's mobility is critical to an astronaut's ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. Mobility can be broken down into two parts: range of motion (ROM) and torque. These two measurements describe how the suit moves and how much force it takes to move. Two methods were chosen to define mobility requirements for the Constellation Space Suit Element (CSSE). One method focuses on range of motion and the second method centers on joint torque. A joint torque test was conducted to determine a baseline for current advanced space suit joint torques. This test utilized the following space suits: Extravehicular Mobility Unit (EMU), Advanced Crew Escape Suit (ACES), I-Suit, D-Suit, Enhanced Mobility (EM)- ACES, and Mark III (MK-III). Data was collected data from 16 different joint movements of each suit. The results were then reviewed and CSSE joint torque requirement values were selected. The focus of this paper is to discuss trends observed during data analysis.

Top