Science.gov

Sample records for astronaut extravehicular activity

  1. Astronaut Noriega During Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  2. STS-114 Astronauts Participate in Extra-Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module (MPLM) and the External Stowage Platform-2. In this photograph, astronaut Soichi Noguchi, STS-114 mission specialist representing the Japan Aerospace Exploration Agency (JAXA), participates in the mission's first scheduled session of Extra-Vehicular Activity (EVA). Noguchi and crew mate Stephen K. Robinson (out of frame) completed a demonstration of Shuttle thermal protection repair techniques and enhancements to the ISS's attitude control system during the successful 6 hour, 50 minute space walk.

  3. STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  4. STS-110 Astronaut Jerry Ross Performs Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. In this photograph, Astronaut Jerry L. Ross, mission specialist, anchored on the end of the Canadarm2, moves near the newly installed S0 truss. Astronaut Lee M. E. Morin, mission specialist, (out of frame), worked in tandem with Ross during this fourth and final scheduled session of EVA for the STS-110 mission. The final major task of the space walk was the installation of a beam, the Airlock Spur, between the Quest Airlock and the S0. The spur will be used by space walkers in the future as a path from the airlock to the truss.

  5. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  6. Views of the extravehicular activity of Astronaut Stewart during STS 41-B

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Close up frontal view of Astronaut Robert L. Stewart, mission specialist, as he participates in a extravehicular activity (EVA), a few meters away from the cabin of the shuttle Challenger. The open payload bay is reflected in his helmet visor as he faces the camera. Stewart is wearing the extravehicular mobility unit (EMU) and one of the manned maneuvering units (MMU) developed for this mission.

  7. Computer Analysis of Electromagnetic Field Exposure Hazard for Space Station Astronauts during Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Kelley, James S.; Panneton, Robert B.; Arndt, G. Dickey

    1995-01-01

    In order to estimate the RF radiation hazards to astronauts and electronics equipment due to various Space Station transmitters, the electric fields around the various Space Station antennas are computed using the rigorous Computational Electromagnetics (CEM) techniques. The Method of Moments (MoM) was applied to the UHF and S-band low gain antennas. The Aperture Integration (AI) method and the Geometrical Theory of Diffraction (GTD) method were used to compute the electric field intensities for the S- and Ku-band high gain antennas. As a result of this study, The regions in which the electric fields exceed the specified exposure levels for the Extravehicular Mobility Unit (EMU) electronics equipment and Extravehicular Activity (EVA) astronaut are identified for various Space Station transmitters.

  8. Extravehicular mobility unit training and astronaut injuries

    NASA Technical Reports Server (NTRS)

    Strauss, Samuel; Krog, Ralph L.; Feiveson, Alan H.

    2005-01-01

    BACKGROUND: Astronaut spacewalk training can result in a variety of symptom complaints and possible injuries. This study quantified and characterized signs, symptoms, and injuries resulting from extravehicular activity spacesuit training at NASA's Neutral Buoyancy Laboratory, Johnson Space Center, Houston, TX, immersion facility. METHODS: We identified the frequency and incidence of symptoms by location, mechanisms of injury, and effective countermeasures. Recommendations were made to improve injury prevention, astronaut training, test preparation, and training hardware. At the end of each test, a questionnaire was completed documenting signs and symptoms, mechanisms of injury, and countermeasures. RESULTS: Of the 770 tests, there were 190 in which suit symptoms were reported (24.6%). There were a total of 352 reported suit symptom comments. Of those symptoms, 166 were in the hands (47.16%), 73 were in the shoulders (20.7%), and 40 were in the feet (11.4%). Others ranged from 6.0% to 0.28%, respectively, from the legs, arms, neck, trunk, groin, and head. Causal mechanisms for the hands included moisture and hard glove contacts resulting in fingernail injuries; in the shoulders, hard contact with suit components and strain mechanisms; and in the feet, hard boot contact. The severity of symptoms was highest in the shoulders, hands, and feet. CONCLUSIONS: Most signs and symptoms were mild, self-limited, of brief duration, and were well controlled by available countermeasures. Some represented the potential for significant injury with consequences affecting astronaut health and performance. Correction of extravehicular activity training-related injuries requires a multidisciplinary approach to improve prevention, medical intervention, astronaut training, test planning, and suit engineering.

  9. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral

  10. [Analysis of decompression safety during extravehicular activity of astronauts in the light of probability theory].

    PubMed

    Nikolaev, V P; Katuntsev, V P

    1998-01-01

    Objectives of the study were comparative assessment of the risk of decompression sickness (DCS) in human subjects during shirt-sleeve simulation of extravehicular activity (EVA) following Russian and U.S. protocols, and analysis of causes of the difference between real and simulated EVA decompression safety. To this end, DCS risk during exposure to a sing-step decompression was estimated with an original method. According to the method, DCS incidence is determined by distribution of nucleation efficacy index (z) in the worst body tissues and its critical values (zm) as a function of initial nitrogen tension in these tissues and final ambient pressure post decompression. Gaussian distribution of z values was calculated basing on results of the DCS risk evaluation on the U.S. EVA protocol in an unsuited chamber test with various pre-breath procedures (Conkin et al., 1987). Half-time of nitrogen washout from the worst tissues was presumed to be 480 min. Calculated DCS risk during short-sleeve EVA simulation by the Russian and U.S. protocols with identical physical loading made up 19.2% and 23.4%, respectively. Effects of the working spacesuit pressure, spacesuit rigidity, metabolic rates during operations in EVA space suit, transcutaneous nitrogen exchange in the oxygen atmosphere of space suit, microgravity, analgesics, short compression due to spacesuit leak tests on the eye of EVA are discussed. Data of the study illustrate and advocate for high decompression safety of current Russian and U.S. EVA protocols.

  11. Extravehicular activity technology discipline

    NASA Technical Reports Server (NTRS)

    Webbon, Bruce W.

    1990-01-01

    Viewgraphs on extravehicular activity technology discipline for Space Station Freedom are presented. Topics covered include: extravehicular mobility unit; airlock and EMU support equipment; tools, mobility aids, and workstations; and telerobotic work aids interfaces.

  12. Extravehicular activity space suit interoperability

    NASA Astrophysics Data System (ADS)

    Skoog, A. Ingemar; McBarron, James W.; Severin, Guy I.

    1995-10-01

    The European Agency (ESA) and the Russian Space Agency (RKA) are jointly developing a new space suit system for improved extravehicular activity (EVA) capabilities in support of the MIR Space Station Programme, the EVA Suit 2000. Recent national policy agreements between the U.S. and Russia on planned cooperations in manned space also include joint extravehicular activity (EVA). With an increased number of space suit systems and a higher operational frequency towards the end of this century an improved interoperability for both routine and emergency operations is of eminent importance. It is thus timely to report the current status of ongoing work on international EVA interoperability being conducted by the Committee on EVA Protocols and Operations of the International Academy of Astronautics initialed in 1991. This paper summarises the current EVA interoperability issues to be harmonised and presents quantified vehicle interface requirements for the current U.S. Shuttle EMU and Russian MIR Orlan DMA and the new European/Russian EVA Suit 2000 extravehicular systems. Major critical/incompatible interfaces for suits/mothercraft of different combinations arc discussed, and recommendations for standardisations given.

  13. Metabolic responses to simulated extravehicular activity

    NASA Technical Reports Server (NTRS)

    Williamson, Rebecca C.; Sharer, Peter J.; Webbon, Bruce W.; Rendon, Lisa R.

    1992-01-01

    Automatic control of the liquid cooling garment (LCG) worn by astronauts during extravehicular activity (EVA) would more efficiently regulate astronaut thermal comfort and improve astronaut productivity. An experiment was conducted in which subjects performed exercise profiles on a unique, supine upper body ergometer to elicit physiological and thermal responses similar to those achieved during zero-g EVAs. Results were analyzed to quantify metabolic rate, various body temperatures, and other heat balance parameters. Such data may lead to development of a microprocessor-based system to automatically maintain astronaut heat balance during extended EVAs.

  14. Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-77 TRAINING VIEW --- Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario Runco, mission specialist, prepares to participate in an underwater rehearsal of a contingency Extravehicular Activity (EVA). This type of training routinely takes place in the 25-feet deep pool of the Johnson Space Centers (JSC) Weightless Environment Training Center (WET-F). The training prepares at least two crew members on each flight for procedures to follow outside the spacecraft in event of failure of remote methods to perform various chores.

  15. Extravehicular activity welding experiment

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin

    1989-01-01

    The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.

  16. Metabolic cost of extravehicular activities

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Horrigan, D. J., Jr.

    1974-01-01

    The data on metabolic rates during Skylab extravehicular activities are presented and compared with prior experience during Gemini and Apollo. Difficulties experienced with Gemini extravehicular activities are reviewed. The effect of a pressure suit on metabolic rate is discussed and the life support equipment capabilities of each life support system are reviewed. The methods used to measure metabolic rate, utilizing bioinstrumentation and operational data on the life support system, are described. Metabolic rates are correlated with different activities. Metabolic rates in Skylab were found to be within the capacities of the life support systems and to be similar to the metabolic rates experienced during Apollo lunar 1/6-g extravehicular activities. They were found to range from 100 kcal/h to 500 kcal/h, during both 1/6-g and zero-g extravehicular activities. The average metabolic rates measured during long extravehicular activities were remarkably consistent and appeared to be a function of crew pacing of activity rather than to the effort involved in individual tasks.

  17. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and crewmembers (CMs) ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVA, and provides a historical look at energy expenditure during EVA through the Apollo program.

  18. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2012-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and, as a result, crew members ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVAs, and provides a historical look at energy expenditure during EVAs through the Apollo Program.

  19. Tactile Data Entry for Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.; Olowin, Aaron B.; Hannaford, Blake; Sands, O Scott

    2012-01-01

    In the task-saturated environment of extravehicular activity (EVA), an astronaut's ability to leverage suit-integrated information systems is limited by a lack of options for data entry. In particular, bulky gloves inhibit the ability to interact with standard computing interfaces such as a mouse or keyboard. This paper presents the results of a preliminary investigation into a system that permits the space suit gloves themselves to be used as data entry devices. Hand motion tracking is combined with simple finger gesture recognition to enable use of a virtual keyboard, while tactile feedback provides touch-based context to the graphical user interface (GUI) and positive confirmation of keystroke events. In human subject trials, conducted with twenty participants using a prototype system, participants entered text significantly faster with tactile feedback than without (p = 0.02). The results support incorporation of vibrotactile information in a future system that will enable full touch typing and general mouse interactions using instrumented EVA gloves.

  20. Design of a reusable kinetic energy absorber for an astronaut safety tether to be used during extravehicular activities on the Space Station

    NASA Technical Reports Server (NTRS)

    Borthwick, Dawn E.; Cronch, Daniel F.; Nixon, Glen R.

    1991-01-01

    The goal of this project is to design a reusable safety device for a waist tether which will absorb the kinetic energy of an astronaut drifting away from the Space Station. The safety device must limit the tension of the tether line in order to prevent damage to the astronaut's space suit or to the structure of the spacecraft. The tether currently used on shuttle missions must be replaced after the safety feature has been developed. A reusable tether for the Space Station would eliminate the need for replacement tethers, conserving space and mass. This report presents background information, scope and limitations, methods of research and development, alternative designs, a final design solution and its evaluation, and recommendations for further work.

  1. Metabolic assessments during extra-vehicular activity.

    PubMed

    Osipov YuYu; Spichkov, A N; Filipenkov, S N

    1998-01-01

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha' (ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  2. Metabolic assessments during extra-vehicular activity

    NASA Astrophysics Data System (ADS)

    Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  3. Extravehicular Activity and Planetary Protection

    NASA Technical Reports Server (NTRS)

    Buffington, J. A.; Mary, N. A.

    2015-01-01

    The first human mission to Mars will be the farthest distance that humans have traveled from Earth and the first human boots on Martian soil in the Exploration EVA Suit. The primary functions of the Exploration EVA Suit are to provide a habitable, anthropometric, pressurized environment for up to eight hours that allows crewmembers to perform autonomous and robotically assisted extravehicular exploration, science/research, construction, servicing, and repair operations on the exterior of the vehicle, in hazardous external conditions of the Mars local environment. The Exploration EVA Suit has the capability to structurally interface with exploration vehicles via next generation ingress/egress systems. Operational concepts and requirements are dependent on the mission profile, surface assets, and the Mars environment. This paper will discuss the effects and dependencies of the EVA system design with the local Mars environment and Planetary Protection. Of the three study areas listed for the workshop, EVA identifies most strongly with technology and operations for contamination control.

  4. The Extravehicular Suit Impact Load Attenuation Study for Use in Astronaut Bone Fracture Prediction

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Gilkey, Kelly M.; Sulkowski, Christina M.; Samorezov, Sergey; Myers, Jerry G.

    2011-01-01

    The NASA Integrated Medical Model (IMM) assesses the risk, including likelihood and impact of occurrence, of all credible in-flight medical conditions. Fracture of the proximal femur is a traumatic injury that would likely result in loss of mission if it were to happen during spaceflight. The low gravity exposure causes decreases in bone mineral density which heightens the concern. Researchers at the NASA Glenn Research Center have quantified bone fracture probability during spaceflight with a probabilistic model. It was assumed that a pressurized extravehicular activity (EVA) suit would attenuate load during a fall, but no supporting data was available. The suit impact load attenuation study was performed to collect analogous data. METHODS: A pressurized EVA suit analog test bed was used to study how the offset, defined as the gap between the suit and the astronaut s body, impact load magnitude and suit operating pressure affects the attenuation of impact load. The attenuation data was incorporated into the probabilistic model of bone fracture as a function of these factors, replacing a load attenuation value based on commercial hip protectors. RESULTS: Load attenuation was more dependent on offset than on pressurization or load magnitude, especially at small offsets. Load attenuation factors for offsets between 0.1 - 1.5 cm were 0.69 +/- 0.15, 0.49 +/- 0.22 and 0.35 +/- 0.18 for mean impact forces of 4827, 6400 and 8467 N, respectively. Load attenuation factors for offsets of 2.8 - 5.3 cm were 0.93 +/- 0.2, 0.94 +/- 0.1 and 0.84 +/- 0.5, for the same mean impact forces. Reductions were observed in the 95th percentile confidence interval of the bone fracture probability predictions. CONCLUSIONS: The reduction in uncertainty and improved confidence in bone fracture predictions increased the fidelity and credibility of the fracture risk model and its benefit to mission design and operational decisions.

  5. Information Flow Model of Human Extravehicular Activity Operations

    NASA Technical Reports Server (NTRS)

    Miller, Matthew J.; McGuire, Kerry M.; Feigh, Karen M.

    2014-01-01

    Future human spaceflight missions will face the complex challenge of performing human extravehicular activity (EVA) beyond the low Earth orbit (LEO) environment. Astronauts will become increasingly isolated from Earth-based mission support and thus will rely heavily on their own decision-making capabilities and onboard tools to accomplish proposed EVA mission objectives. To better address time delay communication issues, EVA characters, e.g. flight controllers, astronauts, etc., and their respective work practices and roles need to be better characterized and understood. This paper presents the results of a study examining the EVA work domain and the personnel that operate within it. The goal is to characterize current and historical roles of ground support, intravehicular (IV) crew and EV crew, their communication patterns and information needs. This work provides a description of EVA operations and identifies issues to be used as a basis for future investigation.

  6. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronaut Rex J. Walheim, accompanied by astronaut Steven L. Smith (out of frame) translates along the Destiny laboratory on the International Space Station (ISS) during the third scheduled EVA session. The duo released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm. The STS-110 mission prepared the ISS for future space walks by installing and outfitting the S0 (S-Zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  7. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  8. Extravehicular activity at geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Shields, Nicholas, Jr.; Schulze, Arthur E.; Carr, Gerald P.; Pogue, William

    1988-01-01

    The basic contract to define the system requirements to support the Advanced Extravehicular Activity (EVA) has three phases: EVA in geosynchronous Earth orbit; EVA in lunar base operations; and EVA in manned Mars surface exploration. The three key areas to be addressed in each phase are: environmental/biomedical requirements; crew and mission requirements; and hardware requirements. The structure of the technical tasks closely follows the structure of the Advanced EVA studies for the Space Station completed in 1986.

  9. Extravehicular Activity (EVA) Hardware & Operations Overview

    NASA Technical Reports Server (NTRS)

    Moore, Sandra; Marmolejo, Jose

    2014-01-01

    The objectives of this presentation are to: Define Extravehicular Activity (EVA), identify the reasons for conducting an EVA, and review the role that EVA has played in the space program; Identify the types of EVAs that may be performed; Describe some of the U.S. Space Station equipment and tools that are used during an EVA, such as the Extravehicular Mobility Unit (EMU), the Simplified Aid For EVA Rescue (SAFER), the International Space Station (ISS) Joint Airlock and Russian Docking Compartment 1 (DC-1), and EVA Tools & Equipment; Outline the methods and procedures of EVA Preparation, EVA, and Post-EVA operations; Describe the Russian spacesuit used to perform an EVA; Provide a comparison between U.S. and Russian spacesuit hardware and EVA support; and Define the roles that different training facilities play in EVA training.

  10. Extravehicular Activity (EVA) 101: Constellation EVA Systems

    NASA Technical Reports Server (NTRS)

    Jordan, Nicole C.

    2007-01-01

    A viewgraph presentation on Extravehicular Activity (EVA) Systems is shown. The topics include: 1) Why do we need space suits? 2) Protection From the Environment; 3) Primary Life Support System (PLSS); 4) Thermal Control; 5) Communications; 6) Helmet and Extravehicular Visor Assy; 7) Hard Upper Torso (HUT) and Arm Assy; 8) Display and Controls Module (DCM); 9) Gloves; 10) Lower Torso Assembly (LTA); 11) What Size Do You Need?; 12) Boot and Sizing Insert; 13) Boot Heel Clip and Foot Restraint; 14) Advanced and Crew Escape Suit; 15) Nominal & Off-Nominal Landing; 16) Gemini Program (mid-1960s); 17) Apollo EVA on Service Module; 18) A Bold Vision for Space Exploration, Authorized by Congress; 19) EVA System Missions; 20) Configurations; 21) Reduced Gravity Program; and 22) Other Opportunities.

  11. The exercise and environmental physiology of extravehicular activity

    NASA Technical Reports Server (NTRS)

    Cowell, Stephenie A.; Stocks, Jodie M.; Evans, David G.; Simonson, Shawn R.; Greenleaf, John E.

    2002-01-01

    Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor

  12. The Exercise and Environmental Physiology of Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Cowell, S. A.; Stocks, J. M.; Evans, D. G.; Simonson, S. R.; Greenleaf, J. E.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    Over the history of human expansion into space, extravehicular activity (EVA) has become indispensable for both daily living in weightlessness and for further space exploration. The physiological factors involved in the performance of extensive EVA, necessary for construction and maintenance of the International Space Station and during future human interplanetary missions, require further examination. An understanding of the physiological aspects of exercise and thermoregulation in the EVA environment will help to insure the health, safety, and efficiency of working astronauts. To that end, this review will focus on the interaction of the exercise and environmental aspects of EVA, as well as exercise during spaceflight and ground-based simulations such as bed-rest deconditioning. It will examine inflight exercise thermoregulation, and exercise, muscular strength, supine vs. seated exercise, exercise thermoregulation, and exercise in a hypobaric environment. Due to the paucity of data from controlled human research in this area, it is clear that more scientific studies are needed to insure safe and efficient extravehicular activity.

  13. Advanced Extravehicular Activity Breakout Group Summary

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Perka, Alan; Walz, Carl; Cobb, Sharon; Hanford, Anthony; Eppler, Dean

    2005-01-01

    This viewgraph document summarizes the workings of the Advanced Extravehicular Activity (AEVA) Breakout group in a Martian environment. The group was tasked with: identifying potential contaminants and pathways for AEVA systems with respect to forward and backward contamination; identifying plausible mitigation alternatives and obstacles for pertinent missions; identifying topics that require further research and technology development and discuss development strategies with uncertain Planetary Protection (PP) requirements; Identifying PP requirements that impose the greatest mission/development costs; Identifying PP requirements/topics that require further definition;

  14. STS-64 Mission Onboard Photograph - Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Mark Lee (red stripe on extravehicular activity suit) tests the new backpack called Simplified Aid for EVA Rescue (SAFER), a system designed for use in the event a crew member becomes untethered while conducting an EVA. The Lidar-In-Space Technology Experiment (LITE) is shown in the foreground. The LITE payload employs lidar, which stands for light detection and ranging, a type of optical radar using laser pulses instead of radio waves to study Earth's atmosphere. Unprecedented views were obtained of cloud structures, storm systems, dust clouds, pollutants, forest burning, and surface reflectance. The STS-64 mission marked the first untethered U.S. EVA in 10 years, and was launched on September 9, 1994, aboard the Space Shuttle Orbiter Discovery.

  15. Advanced extravehicular activity systems requirements definition study. Phase 2: Extravehicular activity at a lunar base

    NASA Technical Reports Server (NTRS)

    Neal, Valerie; Shields, Nicholas, Jr.; Carr, Gerald P.; Pogue, William; Schmitt, Harrison H.; Schulze, Arthur E.

    1988-01-01

    The focus is on Extravehicular Activity (EVA) systems requirements definition for an advanced space mission: remote-from-main base EVA on the Moon. The lunar environment, biomedical considerations, appropriate hardware design criteria, hardware and interface requirements, and key technical issues for advanced lunar EVA were examined. Six remote EVA scenarios (three nominal operations and three contingency situations) were developed in considerable detail.

  16. Advanced extravehicular activity systems requirements definition study

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A study to define the requirements for advanced extravehicular activities (AEVA) was conducted. The purpose of the study was to develop an understanding of the EVA technology requirements and to map a pathway from existing or developing technologies to an AEVA system capable of supporting long-duration missions on the lunar surface. The parameters of an AEVA system which must sustain the crewmembers and permit productive work for long periods in the lunar environment were examined. A design reference mission (DRM) was formulated and used as a tool to develop and analyze the EVA systems technology aspects. Many operational and infrastructure design issues which have a significant influence on the EVA system are identified.

  17. Extravehicular activity translation arm (EVATA) study

    NASA Technical Reports Server (NTRS)

    Preiswerk, P. R.; Stammreich, J. R.

    1978-01-01

    The preliminary design of a deployable Extravehicular Activity Translation Arm (EVATA) assembly which will allow an EVA crewman to perform tasks in the vicinity of the External TNK (ET) umbilical doors and to inspect most of the underside of the shuttle spacecraft is reported. The concept chosen for the boom structure was the Astro Extendable Support Structure (ESS) which formed the main structure for the Synthetic Aperture Radar (SAR) Antenna System on the SEASAT A spacecraft. This structure is a deployable triangular truss. A comparison of the EVATA and the SEASAT A ESS is shown. The development of status of the ESS is shown. The satellite configuration, the stowed truss load path, and the envelope deployment sequence for the ESS are also shown.

  18. Astronaut Judith Resnik participates in WETF training

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Judith Resnik participates in extravehicular activity (EVA) training in the Weightless Environment Training Facility (WETF). She is wearing an extravehicular mobility unit (EMU) and is being assisted to don her gloves.

  19. Biomedical Support of U.S. Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Dervay, J. P.; Gillis, D.; McMann, H. J.; Thomas, K. S.

    2007-01-01

    The world's first extravehicular activity (EVA) was performed by A. A. Leonov on March 18, 1965 during the Russian Voskhod-2 mission. The first US EVA was executed by Gemini IV astronaut Ed White on June 3, 1965, with an umbilical tether that included communications and an oxygen supply. A hand-held maneuvering unit (HHMU) also was used to test maneuverability during the brief EVA; however the somewhat stiff umbilical limited controlled movement. That constraint, plus difficulty returning through the vehicle hatch, highlighted the need for increased thermal control and improved EVA ergonomics. Clearly, requirements for a useful EVA were interrelated with the vehicle design. The early Gemini EVAs generated requirements for suits providing micro-meteor protection, adequate visual field and eye protection from solar visual and infrared radiation, gloves optimized for dexterity while pressurized, and thermal systems capable of protecting the astronaut while rejecting metabolic heat during high workloads. Subsequent Gemini EVAs built upon this early experience and included development of a portable environmental control and life support systems (ECLSS) and an astronaut maneuvering unit. The ECLSS provided a pressure vessel and controller with functional control over suit pressure, oxygen flow, carbon dioxide removal, humidity, and temperature control. Gemini EVA experience also identified the usefulness of underwater neutral buoyancy and altitude chamber task training, and the importance of developing reliable task timelines. Improved thermal management and carbon dioxide control also were required for high workload tasks. With the Apollo project, EVA activity was primarily on the lunar surface; and suit durability, integrated liquid cooling garments, and low suit operating pressures (3.75 pounds per square inch absolute [psia] or 25.8 kilopascal [kPa],) were required to facilitate longer EVAs with ambulation and significant physical workloads with average metabolic

  20. An Integrated Extravehicular Activity Research Plan

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Book is already performed annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Research Plan are presented including description of ongoing and planned research activities in the areas of: Benchmarking; Anthropometry and Suit Fit; Sensors; Human

  1. Lithium Iron Phosphate Cell Performance Evaluations for Lunar Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2007-01-01

    Lithium-ion battery cells are being evaluated for their ability to provide primary power and energy storage for NASA s future Exploration missions. These missions include the Orion Crew Exploration Vehicle, the Ares Crew Launch Vehicle Upper Stage, Extravehicular Activities (EVA, the advanced space suit), the Lunar Surface Ascent Module (LSAM), and the Lunar Precursor and Robotic Program (LPRP), among others. Each of these missions will have different battery requirements. Some missions may require high specific energy and high energy density, while others may require high specific power, wide operating temperature ranges, or a combination of several of these attributes. EVA is one type of mission that presents particular challenges for today s existing power sources. The Portable Life Support System (PLSS) for the advanced Lunar surface suit will be carried on an astronaut s back during eight hour long sorties, requiring a lightweight power source. Lunar sorties are also expected to occur during varying environmental conditions, requiring a power source that can operate over a wide range of temperatures. Concepts for Lunar EVAs include a primary power source for the PLSS that can recharge rapidly. A power source that can charge quickly could enable a lighter weight system that can be recharged while an astronaut is taking a short break. Preliminary results of Al23 Ml 26650 lithium iron phosphate cell performance evaluations for an advanced Lunar surface space suit application are discussed in this paper. These cells exhibit excellent recharge rate capability, however, their specific energy and energy density is lower than typical lithium-ion cell chemistries. The cells were evaluated for their ability to provide primary power in a lightweight battery system while operating at multiple temperatures.

  2. Extravehicular Activity training and hardware design considerations

    NASA Technical Reports Server (NTRS)

    Thuot, Pierre J.; Harbaugh, Gregory J.

    1993-01-01

    Designing hardware that can be successfully operated by EVA astronauts for EVA tasks required to assemble and maintain Space Station Freedom requires a thorough understanding of human factors and of the capabilities and limitations of the space-suited astronaut, as well as of the effect of microgravity environment on the crew member's capabilities and on the overhead associated with EVA. This paper describes various training methods and facilities that are being designed for training EVA astronauts for Space Station assembly and maintenance, taking into account the above discussed factors. Particular attention is given to the user-friendly hardware design for EVA and to recent EVA flight experience.

  3. Blood biochemical and cellular changes during decompression and simulated extravehicular activity

    NASA Technical Reports Server (NTRS)

    Jauchem, J. R.; Waligora, J. M.; Johnson, P. C. Jr

    1990-01-01

    Blood biochemical and cellular parameters were measured in human subjects before and after exposure to a decompression schedule involving 6 h of oxygen prebreathing. The exposure was designed to simulate extravehicular activity for 6 h (subjects performed exercise while exposed to 29.6 kPa). There were no significant differences between blood samples from subjects who were susceptible (n = 11) versus those who were resistant (n = 27) to formation of venous gas emboli. Although several statistically significant (P less than 0.05) changes in blood parameters were observed following the exposure (increases in white blood cell count, prothrombin time, and total bilirubin, and decreases in triglycerides, very-low-density lipoprotein cholesterol, and blood urea nitrogen), the changes were small in magnitude and blood factor levels remained within normal clinical ranges. Thus, the decompression schedule used in this study is not likely to result in blood changes that would pose a threat to astronauts during extravehicular activity.

  4. Astronaut Bernard Harris on RMS during EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Bernard A. Harris, Jr., payload commander, watches astronaut C. Michael Foale (out of frame), mission specialist, during the late phases of their shared extravehicular activity (EVA) in the STS-63 Space Shuttle Discovery's cargo bay.

  5. Astronaut Bernard Harris on RMS during EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Bernard A. Harris, Jr., payload commander, standing on a foot restraint attached to the Remote Manipulator System (RMS) arm carries astronaut C. Michael Foale, mission specialist, during their shared extravehicular activity (EVA) in the Space Shuttle Discovery's cargo bay.

  6. Extravehicular activities guidelines and design criteria

    NASA Technical Reports Server (NTRS)

    Brown, N. E.; Dashner, T. R.; Hayes, B. C.

    1973-01-01

    A listing of astronaut EVA support systems and equipment, and the physical, operational, and performance characteristics of each major system are presented. An overview of the major ground based support operations necessary in the development and verification of orbital EVA systems is included. The performance and biomedical characteristics of man in the orbital EV environment are discussed. Major factors affecting astronaut EV work performance are identified and delineated as they relate to EV support systems design. Data concerning the medical and physiological aspects of spaceflight on man are included. The document concludes with an extensive bibliography, and a series of appendices which expand on some of the information presented in the main body.

  7. Apollo experience report: Assessment of metabolic expenditures. [extravehicular activity

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Hawkins, W. R.; Humbert, G. F.; Nelson, L. J.; Vogel, S. J.; Kuznetz, L. H.

    1975-01-01

    A significant effort was made to assess the metabolic expenditure for extravehicular activity on the lunar surface. After evaluation of the real-time data available to the flight controller during extravehicular activity, three independent methods of metabolic assessment were chosen based on the relationship between heart rate and metabolic production, between oxygen consumption and metabolic production, and between the thermodynamics of the liquid-cooled garment and metabolic production. The metabolic assessment procedure is analyzed and discussed. Real-time use of this information by the Apollo flight surgeon is discussed. Results and analyses of the Apollo missions and comments concerning future applications are included.

  8. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    NASA Astrophysics Data System (ADS)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  9. US space flight experience. Physical exertion and metabolic demand of extravehicular activity: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Moore, Thomas P.

    1989-01-01

    A review of physical exertion and metabolic demands of extravehicular activity (EVA) on U.S. astronauts is given. Information is given on EVA during Gemini, Apollo and Skylab missions. It is noted that nominal EVA's should not be overstressful from a cardiovascular standpoint; that manual-intensive EVA's such as are planned for the construction phase of the Space Station can and will be demanding from a muscular standpoint, primarily for the upper extremities; that off-nominal unplanned EVA's can be physically demanding both from an endurance and from a muscular standpoint; and that crewmembers should be physically prepared and capable of performing these EVA's at any time during the mission.

  10. STS-64 Mission Photograph - Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Mark Lee floats freely as he tests the new backpack called the Simplified Aid for EVA Rescue (SAFER) system. SAFER is designed for use in the event a crew member becomes untethered while conducting an EVA. The STS-64 mission marked the first untethered U.S. EVA in 10 years, and was launched on September 9, 1994, aboard the Space Shuttle Orbiter Discovery.

  11. Extravehicular Activity Testing in Analog Environments: Evaluating the Effects of Center of Gravity and Environment on Human Performance

    NASA Technical Reports Server (NTRS)

    Chappell, Steve P.; Gernhardt, Michael L.

    2009-01-01

    Center of gravity (CG) is likely to be an important variable in astronaut performance during partial gravity extravehicular activity (EVA). The Apollo Lunar EVA experience revealed challenges with suit stability and control. The EVA Physiology, Systems and Performance Project (EPSP) in conjunction with the Constellation EVA Systems Project Office have developed plans to systematically understand the role of suit weight, CG and suit pressure on astronaut performance in partial gravity environments. This presentation based upon CG studies seeks to understand the impact of varied CG on human performance in lunar gravity.

  12. Development of the Self-Powered Extravehicular Mobility Unit Extravehicular Activity Data Recorder

    NASA Technical Reports Server (NTRS)

    Bernard, Craig; Hill, Terry R.; Murray, Sean; Wichowski, Robert; Rosenbush, David

    2012-01-01

    The Self-Powered Extravehicular Mobility Unit (EMU) Extravehicular Activity (EVA) Data Recorder (SPEEDR) is a field-programmable gate array (FPGA)-based device designed to collect high-rate EMU Primary Life Support Subsystem (PLSS) data for download at a later time. During EVA, the existing EMU PLSS data downlink capability is one data packet every 2 minutes and is subject to bad packets or loss of signal. Higher-rate PLSS data is generated by the Enhanced Caution and Warning System but is not normally captured or distributed. Access to higher-rate data will increase the capability of EMU anomaly resolution team to pinpoint issues remotely, saving crew time by reducing required call-down Q&A and on-orbit diagnostic activities. With no Space Shuttle flights post Fiscal Year 2011 (FY11), and potentially limited down-mass capability, the ISS crew and ground support personnel will have to be capable of on-orbit operations to maintain, diagnose, repair, and return to service EMU hardware, possibly through 2028. Collecting high-rate EMU PLSS data during both intravehicular activity (IVA) and EVA operations will provide trending analysis for life extension and/or predictive performance. The SPEEDR concept has generated interest as a tool/technology that could be used for other International Space Station subsystems or future exploration-class space suits where hardware reliability/availability is critical and low/variable bandwidth may require store then forward methodology. Preliminary work in FY11 produced a functional prototype consisting of an FPGA evaluation board, custom memory/interface circuit board, and custom software. The SPEEDR concept includes a stand-alone battery that is recharged by a computer Universal Serial Bus (USB) port while data are being downloaded.

  13. Extravehicular Activity Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2011-01-01

    The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an

  14. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    NASA Technical Reports Server (NTRS)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  15. Computational simulation of extravehicular activity dynamics during a satellite capture attempt.

    PubMed

    Schaffner, G; Newman, D J; Robinson, S K

    2000-01-01

    A more quantitative approach to the analysis of astronaut extravehicular activity (EVA) tasks is needed because of their increasing complexity, particularly in preparation for the on-orbit assembly of the International Space Station. Existing useful EVA computer analyses produce either high-resolution three-dimensional computer images based on anthropometric representations or empirically derived predictions of astronaut strength based on lean body mass and the position and velocity of body joints but do not provide multibody dynamic analysis of EVA tasks. Our physics-based methodology helps fill the current gap in quantitative analysis of astronaut EVA by providing a multisegment human model and solving the equations of motion in a high-fidelity simulation of the system dynamics. The simulation work described here improves on the realism of previous efforts by including three-dimensional astronaut motion, incorporating joint stops to account for the physiological limits of range of motion, and incorporating use of constraint forces to model interaction with objects. To demonstrate the utility of this approach, the simulation is modeled on an actual EVA task, namely, the attempted capture of a spinning Intelsat VI satellite during STS-49 in May 1992. Repeated capture attempts by an EVA crewmember were unsuccessful because the capture bar could not be held in contact with the satellite long enough for the capture latches to fire and successfully retrieve the satellite.

  16. Power Subsystem for Extravehicular Activities for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle

    2005-01-01

    The NASA Glenn Research Center has the responsibility to develop the next generation space suit power subsystem to support the Vision for Space Exploration. Various technology challenges exist in achieving extended duration missions as envisioned for future lunar and Mars mission scenarios. This paper presents an overview of ongoing development efforts undertaken at the Glenn Research Center in support of power subsystem development for future extravehicular activity systems.

  17. Requirements for extravehicular activities on the lunar and Martian surfaces

    NASA Technical Reports Server (NTRS)

    Brown, Mariann F.; Schentrup, Susan M.

    1990-01-01

    Basic design reference requirements pertinent to EVA equipment on lunar and martian surfaces are provided. Environmental factors affecting surface EVA are analyzed including gravity, dust, atmospheric conditions, thermal gradients, lightning conditions, and radiation effects, and activities associated with surface EVA are outlined. Environmental and activity effects on EVA equipment are assessed, and emphasis is placed on planetary surface portable life support systems (PLSS), suit development, protection from micrometeoroids, dust, and radiation, food and water supplies, and the extravehicular mobility-unit thermal-control system. Environmental and activity impacts on PLSS design are studied, with focus on base self-sufficiency and reduction in resupply logistics.

  18. Climbing the Extravehicular Activity (EVA) Wall - Safely

    NASA Technical Reports Server (NTRS)

    Fuentes, Jose; Greene, Stacie

    2010-01-01

    The success of the EVA team, that includes the EVA project office, Crew Office, Mission Operations, Engineering and Safety, is assured by the full integration of all necessary disciplines. Safety participation in all activities from hardware development concepts, certification and crew training, provides for a strong partnership within the team. Early involvement of Safety on the EVA team has mitigated risk and produced a high degree of mission success.

  19. Preliminary Work Domain Analysis for Human Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    McGuire, Kerry; Miller, Matthew; Feigh, Karen

    2015-01-01

    A work domain analysis (WDA) of human extravehicular activity (EVA) is presented in this study. A formative methodology such as Cognitive Work Analysis (CWA) offers a new perspective to the knowledge gained from the past 50 years of living and working in space for the development of future EVA support systems. EVA is a vital component of human spaceflight and provides a case study example of applying a work domain analysis (WDA) to a complex sociotechnical system. The WDA presented here illustrates how the physical characteristics of the environment, hardware, and life support systems of the domain guide the potential avenues and functional needs of future EVA decision support system development.

  20. Launch Deployment Assembly Extravehicular Activity Neutral Buoyancy Development Test Report

    NASA Technical Reports Server (NTRS)

    Loughead, T.

    1996-01-01

    This test evaluated the Launch Deployment Assembly (LDA) design for Extravehicular Activity (EVA) work sites (setup, igress, egress), reach and visual access, and translation required for cargo item removal. As part of the LDA design, this document describes the method and results of the LDA EVA Neutral Buoyancy Development Test to ensure that the LDA hardware support the deployment of the cargo items from the pallet. This document includes the test objectives, flight and mockup hardware description, descriptions of procedures and data collection used in the testing, and the results of the development test at the National Aeronautics and Space Administrations (NASA) Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS).

  1. Benefits of advanced space suits for supporting routine extravehicular activity

    NASA Technical Reports Server (NTRS)

    Alton, L. R.; Bauer, E. H.; Patrick, J. W.

    1975-01-01

    Technology is available to produce space suits providing a quick-reaction, safe, much more mobile extravehicular activity (EVA) capability than before. Such a capability may be needed during the shuttle era because the great variety of missions and payloads complicates the development of totally automated methods of conducting operations and maintenance and resolving contingencies. Routine EVA now promises to become a cost-effective tool as less complex, serviceable, lower-cost payload designs utilizing this capability become feasible. Adoption of certain advanced space suit technologies is encouraged for reasons of economics as well as performance.

  2. Design and Certification of the Extravehicular Activity Mobility Unit (EMU) Water Processing Jumper

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie J.; Neumeyer, Derek J.; Lewis, John F.

    2006-01-01

    The Extravehicular Mobility Units (EMUs) onboard the International Space Station (ISS) experienced a failure due to cooling water contamination from biomass and corrosion byproducts forming solids around the EMU pump rotor. The coolant had no biocide and a low pH which induced biofilm growth and corrosion precipitates, respectively. NASA JSC was tasked with building hardware to clean the ionic, organic, and particulate load from the EMU coolant loop before and after Extravehicular Activity (EVAs). Based on a return sample of the EMU coolant loop, the chemical load was well understood, but there was not sufficient volume of the returned sample to analyze particulates. Through work with EMU specialists, chemists, (EVA) Mission Operations Directorate (MOD) representation, safety and mission assurance, astronaut crew, and team engineers, requirements were developed for the EMU Water Processing hardware (sometimes referred to as the Airlock Coolant Loop Recovery [A/L CLR] system). Those requirements ranged from the operable level of ionic, organic, and particulate load, interfaces to the EMU, maximum cycle time, operating pressure drop, flow rate, and temperature, leakage rates, and biocide levels for storage. Design work began in February 2005 and certification was completed in April 2005 to support a return to flight launch date of May 12, 2005. This paper will discuss the details of the design and certification of the EMU Water Processing hardware and its components

  3. Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)

    NASA Technical Reports Server (NTRS)

    Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.

    2007-01-01

    An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.

  4. Optical Breath Gas Sensor for Extravehicular Activity Application

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  5. Physiological and technological considerations for Mars mission extravehicular activity

    NASA Technical Reports Server (NTRS)

    Waligora, James M.; Sedej, Melaine M.

    1986-01-01

    The nature of the suit is a function of the needs of human physiology, the ambient environment outside the suit, and the type of activity to be accomplished while in the suit. The physiological requirements that must be provided for in the Martian Extravehicular Activity (EVA) suit will be reviewed. The influence of the Martian environment on the EVA suit and EVA capabilities is elaborated, and the Martian environment is compared with the lunar environment. The differences that may influence the EVA design are noted. The type, nature, and duration of activities to be done in transit to Mars and on the Martian surface will be evaluated and the impact of these activities on the requirements for EVA systems will be discussed. Furthermore, the interaction between Martian surface transportation systems and EVA systems will be covered. Finally, options other than EVA will be considered such as robotics, nonanthropometric suits, and vehicles with anthropometric extremities or robotic end effectors.

  6. Next-Generation Maneuvering System with Control-Moment Gyroscopes for Extravehicular Activities Near Low-Gravity Objects

    NASA Technical Reports Server (NTRS)

    Carpenter, Michele; Jackson, Kimberly; Cohanim, Babak; Duda, Kevin R.; Rize, Jared; Dopart, Celena; Hoffman, Jeffrey; Curiel, Pedro; Studak, Joseph; Ponica, Dina; RochlisZumbado, Jennifer

    2013-01-01

    Looking ahead to the human exploration of Mars, NASA is planning for exploration of near-Earth asteroids and the Martian moons. Performing tasks near the surface of such low-gravity objects will likely require the use of an updated version of the Manned Maneuvering Unit (MMU) since the surface gravity is not high enough to allow astronauts to walk, or have sufficient resistance to counter reaction forces and torques during movements. The extravehicular activity (EVA) Jetpack device currently under development is based on the Simplified Aid for EVA Rescue (SAFER) unit and has maneuvering capabilities to assist EVA astronauts with their tasks. This maneuvering unit has gas thrusters for attitude control and translation. When EVA astronauts are performing tasks that require ne motor control such as sample collection and equipment placement, the current control system will re thrusters to compensate for the resulting changes in center-of-mass location and moments of inertia, adversely affecting task performance. The proposed design of a next-generation maneuvering and stability system incorporates control concepts optimized to support astronaut tasks and adds control-moment gyroscopes (CMGs) to the current Jetpack system. This design aims to reduce fuel consumption, as well as improve task performance for astronauts by providing a sti er work platform. The high-level control architecture for an EVA maneuvering system using both thrusters and CMGs considers an initial assessment of tasks to be performed by an astronaut and an evaluation of the corresponding human-system dynamics. For a scenario in which the astronaut orbits an asteroid, simulation results from the current EVA maneuvering system are compared to those from a simulation of the same system augmented with CMGs, demonstrating that the forces and torques on an astronaut can be significantly reduced with the new control system actuation while conserving onboard fuel.

  7. Study of CO2 sorbents for extravehicular activity

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1973-01-01

    Portable life support equipment was studied for meeting the requirements of extravehicular activities. Previous studies indicate that the most promising method for performing the CO2 removal function removal function were metallic oxides and/or metallic hydroxides. Mgo, Ag2, and Zno metallic oxides and Mg(OH)2 and Zn(OH)2 metallic hydroxides were studied, by measuring sorption and regeneration properties of each material. The hydroxides of Mg and Zn were not regenerable and the zinc oxide compounds showed no stable form. A silver oxide formulation was developed which rapidly absorbs approximately 95% of its 0.19 Kg CO2 Kg oxide and has shown no sorption or structural degeneration through 22 regenerations. It is recommended that the basic formula be further developed and tested in large-scale beds under simulated conditions.

  8. A simulation system for Space Station extravehicular activity

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose A.; Shepherd, Chip

    1993-01-01

    America's next major step into space will be the construction of a permanently manned Space Station which is currently under development and scheduled for full operation in the mid-1990's. Most of the construction of the Space Station will be performed over several flights by suited crew members during an extravehicular activity (EVA) from the Space Shuttle. Once fully operational, EVA's will be performed from the Space Station on a routine basis to provide, among other services, maintenance and repair operations of satellites currently in Earth orbit. Both voice recognition and helmet-mounted display technologies can improve the productivity of workers in space by potentially reducing the time, risk, and cost involved in performing EVA. NASA has recognized this potential and is currently developing a voice-controlled information system for Space Station EVA. Two bench-model helmet-mounted displays and an EVA simulation program have been developed to demonstrate the functionality and practicality of the system.

  9. Astronaut Russell Schweickart photographed during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot, stands in 'golden slippers' on the Lunar Module 3 porch during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. This photograph was taken from inside the Lunar Module 'Spider'. The Command/Service Module and Lunar Module were docked. Schweickart is wearing an Extravehicular Mobility Unit (EMU).

  10. Extravehicular Activity Operations Concepts Under Communication Latency and Bandwidth Constraints

    NASA Technical Reports Server (NTRS)

    Beaton, Kara H.; Chappell, Steven P.; Abercromby, Andrew F. J.; Miller, Matthew J.; Nawotniak, Shannon Kobs; Hughes, Scott; Brady, Allyson; Lim, Darlene S. S.

    2017-01-01

    The Biologic Analog Science Associated with Lava Terrains (BASALT) project is a multi-year program dedicated to iteratively develop, implement, and evaluate concepts of operations (ConOps) and supporting capabilities intended to enable and enhance human scientific exploration of Mars. This pa-per describes the planning, execution, and initial results from the first field deployment, referred to as BASALT-1, which consisted of a series of 10 simulated extravehicular activities (EVAs) on volcanic flows in Idaho's Craters of the Moon (COTM) National Monument. The ConOps and capabilities deployed and tested during BASALT-1 were based on previous NASA trade studies and analog testing. Our primary research question was whether those ConOps and capabilities work acceptably when performing real (non-simulated) biological and geological scientific exploration under 4 different Mars-to-Earth communication conditions: 5 and 15 min one-way light time (OWLT) communication latencies and low (0.512 Mb/s uplink, 1.54 Mb/s downlink) and high (5.0 Mb/s uplink, 10.0 Mb/s downlink) bandwidth conditions representing the lower and higher limits of technical communication capabilities currently proposed for future human exploration missions. The synthesized results of BASALT-1 with respect to the ConOps and capabilities assessment were derived from a variety of sources, including EVA task timing data, network analytic data, and subjective ratings and comments regarding the scientific and operational acceptability of the ConOp and the extent to which specific capabilities were enabling and enhancing, and are presented here. BASALT-1 established preliminary findings that baseline ConOp, software systems, and communication protocols were scientifically and operationally acceptable with minor improvements desired by the "Mars" extravehicular (EV) and intravehicular (IV) crewmembers, but unacceptable with improvements required by the "Earth" Mission Support Center. These data will provide a

  11. Optical Breath Gas Sensor for Extravehicular Activity Application

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S> ; Chullen, Cinda; Falconi, Eric A.

    2012-01-01

    The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation Portable Life Support System (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen (O2) channel using a vertical cavity surface emitting laser (VCSEL). Both prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Based on the results of the initial instrument development, further prototype development and testing of instruments leveraging the lessons learned were desired. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU. .

  12. The Influence of Robotic Assistance on Reducing Neuromuscular Effort and Fatigue during Extravehicular Activity Glove Use

    NASA Technical Reports Server (NTRS)

    Madden, Kaci E.; Deshpande, Ashish D.; Peters, Benjamin J.; Rogers, Jonathan M.; Laske, Evan A.; McBryan, Emily R.

    2017-01-01

    The three-layered, pressurized space suit glove worn by Extravehicular Activity (EVA) crew members during missions commonly causes hand and forearm fatigue. The Spacesuit RoboGlove (SSRG), a Phase VI EVA space suit glove modified with robotic grasp-assist capabilities, has been developed to augment grip strength in order to improve endurance and reduce the risk of injury in astronauts. The overall goals of this study were to i) quantify the neuromuscular modulations that occur in response to wearing a conventional Phase VI space suit glove (SSG) during a fatiguing task, and ii) determine the efficacy of Spacesuit RoboGlove (SSRG) in reversing the adverse neuromuscular modulations and restoring altered muscular activity to barehanded levels. Six subjects performed a fatigue sequence consisting of repetitive dynamic-gripping interspersed with isometric grip-holds under three conditions: barehanded, wearing pressurized SSG, and wearing pressurized SSRG. Surface electromyography (sEMG) from six forearm muscles (flexor digitorum superficialis (FDS), flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor digitorum (ED), extensor carpi radialis longus (ECRL), and extensor carpi ulnaris (ECU)) and subjective fatigue ratings were collected during each condition. Trends in amplitude and spectral distributions of the sEMG signals were used to derive metrics quantifying neuromuscular effort and fatigue that were compared across the glove conditions. Results showed that by augmenting finger flexion, the SSRG successfully reduced the neuromuscular effort needed to close the fingers of the space suit glove in more than half of subjects during two types of tasks. However, the SSRG required more neuromuscular effort to extend the fingers compared to a conventional SSG in many subjects. Psychologically, the SSRG aided subjects in feeling less fatigued during short periods of intense work compared to the SSG. The results of this study reveal the promise of the SSRG as a

  13. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Sipila, Stephanie A.; Scoville, Zebulon C.; Bowie, Jonathan T.; Buffington, Jesse A.

    2014-01-01

    One of the challenging primary objectives associated with NASA's Asteroid Redirect Crewed Mission (ARCM) is to demonstrate deep space Extravehicular Activity (EVA) and tools and to obtain asteroid samples to return to Earth for further study. Prior Shuttle and International Space Station (ISS) spacewalks have benefited from engineered EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as behavior of the asteroid capture mechanism will complicate EVA translation, tool restraint, and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the Modified Advanced Crew Escape Suit (MACES) suit. This paper will summarize the overall operational concepts for conducting EVAs for the ARCM mission including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, and the results of early development testing of potential EVA tasks.

  14. A human factors evaluation of Extravehicular Activity gloves

    NASA Technical Reports Server (NTRS)

    O'Hara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1989-01-01

    One of the major problems faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human-hand capabilities. NASA has sponsored a program to develop a standardized set of tests designed to assess EVA-gloved hand capabilities in six performance domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based upon an assessment of general human-hand functioning and EVA task requirements, several tests within each performance domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand, an EVA glove without pressure, an EVA glove at operation pressure. Thus, the differential effect on performance of the glove with and without pressure was tested. Bare hand performance was used to 'calibrate' the effects. Ten subjects participated in the test setup as a repeated-measures experimental design. The paper will report the results of the test program.

  15. 2014 Decompression Sickness/Extravehicular Activity Risks Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2014 Decompression Sickness (DCS)/Extravehicular Activity (EVA) Risks Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on November 4 - 5, 2014. The SRP reviewed the updated Evidence Reports for The Risk of Decompression Sickness (from here on referred to as the 2014 DCS Evidence Report) and the Risk of Injury and Compromised Performance due to EVA Operations (from here on referred to as the 2014 EVA Evidence Report), as well as the Research Plans for these Risks. The SRP appreciated the time and effort that the DCS and EVA disciplines put into their review documents and presentations. The SRP felt that the 2014 DCS Evidence Report and the 2014 EVA Evidence Reports were very thorough and addressed the majority of the known DCS and EVA issues. The researchers at NASA Johnson Space Center (JSC) have the knowledge base to deal with the DCS and EVA issues. Overall, the SRP thinks the DCS and EVA research teams have compiled excellent reports which address the majority of the literature and background information.

  16. Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Kesterson, Matthew; Bue, Grant; Trevino, Luis

    2006-01-01

    In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series off tubes through which cooling water is circulated. To better predict the effectiveness of the LCG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained. Currently, increasing the fabric s thermal conductivity along with also examining an increase in the cooling tube conductivity to more efficiently remove the excess heat generated during EVA is being simulated. Initial trials varied cooling water temperature, water flow rate, garment conductivity, tube conductivity, and total number of cooling tubes in the LCVG. Results indicate that the total number of cooling tubes could be reduced to 22 and still achieve the desired heat removal rate of 361 W. Further improvements are being made to the garment network used in the model to account for temperature gradients associated with the spacing of the cooling tubes over the surface of the garment

  17. Surface extra-vehicular activity emergency scenario management: Tools, procedures, and geologically related implications

    NASA Astrophysics Data System (ADS)

    Zea, Luis; Diaz, Alejandro R.; Shepherd, Charles K.; Kumar, Ranganathan

    2010-07-01

    Extra-vehicular activities (EVAs) are an essential part of human space exploration, but involve inherently dangerous procedures which can put crew safety at risk during a space mission. To help mitigate this risk, astronauts' training programs spend substantial attention on preparing for surface EVA emergency scenarios. With the help of two Mars Desert Research Station (MDRS) crews (61 and 65), wearing simulated spacesuits, the most important of these emergency scenarios were examined at three different types of locations that geologically and environmentally resemble lunar and Martian landscapes. These three platforms were analyzed geologically as well as topographically (utilizing a laser range finder with slope estimation capabilities and a slope determination software). Emergency scenarios were separated into four main groups: (1) suit issues, (2) general physiological, (3) attacks and (4) others. Specific tools and procedures were developed to address each scenario. The tools and processes were tested in the field under Mars-analog conditions with the suited subjects for feasibility and speed of execution.

  18. 2014 Decompression Sickness/Extravehicular Activity Risks Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan; Mahon, Richard; Klaus, David; Neuman, Tom; Pilmanis, Andrew; Regis, David

    2014-01-01

    The 2014 Decompression Sickness (DCS)/Extravehicular Activity (EVA) Risks Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on November 4 - 5, 2014. The SRP reviewed the Research Plans for The Risk of Decompression Sickness and the Risk of Injury and Compromised Performance due to EVA Operations, as well as the Evidence Reports for both of these Risks. The SRP found that the NASA DCS/EVA team did an excellent job of presenting their research plans. The SRP considers it critical that NASA proceeds with the high priority tasks identified in this report (DCS1, DCS3, DCS5). The highest priority is to determine the acceptable DCS and hypoxia risk associated with the planned human exploration beyond low Earth orbit. The risk of DCS is highly dependent upon the pressure within the exploration vehicle. If slightly more hypoxia is permitted then (even with the same percentage of oxygen) the pressure within the exploration vehicle can be lowered thus further mitigating the risk of DCS. The second highest priority is to test and validate the recommended 8.2psi/34% O2 atmosphere. Development of procedures and equipment for human exploration missions are very limited until the results of this testing are completed. The SRP also suggests that DCS7 be separated into two Gaps. Gap DCS7 should deal with DCS treatment while a new Gap should be created to deal with the long-term effects of DCS. The SRP also encourages NASA to increase collaboration with other organizations and pool resources where possible. The current NASA DCS/EVA team has the extensive expertise and a wealth of knowledge in this area. The SRP suggests that increased manpower for this team would be highly productive.

  19. Astronaut Richard Gordon returns to hatch of spacecraft following EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., pilot for the Gemini 11 space flight, returns to the hatch of the spacecraft following extravehicular activity (EVA). This picture was taken over the Atlantic Ocean at approximately 160 nautical miles above the earth's surface.

  20. Astronaut Alan Bean works on Modular Equipment Stowage Assembly

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, works at the Modular Equipment Stowage Assembly (MESA) on the Apollo 12 Lunar Module during the mission's first extravehicular activity, EVA-1, on November 19, 1969.

  1. Astronaut Dale Gardner rehearses control of MMU during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC.

  2. Astronauts Harris and Foale ready to egress airlock for EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronauts Bernard A. Harris, Jr., payload commander, (top) and C. Michael Foale, mission specialist, are ready to egress airlock for an extravehicular activity (EVA) during the STS-63 mission on the Space Shuttle Discovery.

  3. Integrated Software Systems for Crew Management During Extravehicular Activity in Planetary Terrain Exploration

    NASA Technical Reports Server (NTRS)

    Kuznetz, Lawrence; Nguen, Dan; Jones, Jeffrey; Lee, Pascal; Merrell, Ronald; Rafiq, Azhar

    2008-01-01

    Initial planetary explorations with the Apollo program had a veritable ground support army monitoring the safety and health of the 12 astronauts who performed lunar surface extravehicular activities (EVAs). Given the distances involved, this will not be possible on Mars. A spacesuit for Mars must be smart enough to replace that army. The next generation suits can do so using 2 software systems serving as virtual companions, LEGACI (Life support, Exploration Guidance Algorithm and Consumable Interrogator) and VIOLET (Voice Initiated Operator for Life support and Exploration Tracking). The system presented in this study integrates data inputs from a suite of sensors into the MIII suit s communications, avionics and informatics hardware for distribution to remote managers and data analysis. If successful, the system has application not only for Mars but for nearer term missions to the Moon, and the next generation suits used on ISS as well. Field tests are conducted to assess capabilities for next generation spacesuits at Johnson Space Center (JSC) as well as the Mars and Lunar analog (Devon Island, Canada). LEGACI integrates data inputs from a suite of noninvasive biosensors in the suit and the astronaut (heart rate, suit inlet/outlet lcg temperature and flowrate, suit outlet gas and dewpoint temperature, pCO2, suit O2 pressure, state vector (accelerometry) and others). In the Integrated Walkback Suit Tests held at NASA-JSC and the HMP tests at Devon Island, communication and informatics capabilities were tested (including routing by satellite from the suit at Devon Island to JSC in Houston via secure servers at VCU in Richmond, VA). Results. The input from all the sensors enable LEGACI to compute multiple independent assessments of metabolic rate, from which a "best" met rate is chosen based on statistical methods. This rate can compute detailed information about the suit, crew and EVA performance using test-derived algorithms. VIOLET gives LEGACI voice activation

  4. Allowable exposure limits for carbon dioxide during extravehicular activity

    NASA Technical Reports Server (NTRS)

    Seter, Andrew J.

    1993-01-01

    The intent was to review the research pertaining to human exposure to carbon dioxide (CO2) and to recommend allowable exposure limits for extravehicular activity (EVA). Respiratory, renal, and gastrointestinal systems may be adversely affected by chronic low dose CO2 exposure. Ventilation was increased 15 percent with 1 percent CO2 and 50 percent with 2 percent CO2. Chronic exposure to less than 2 percent CO2 led to 20 day cycles of uncompensated and compensated respiratory acidosis. Acid-base changes were small. Histopathologic changes in guinea pig lungs have been noted with long term exposure to 1 percent CO2. No changes were seen with exposure to 0.5 percent CO2. Cycling of bone calcium stores with associated changes in blood and urinary calcium levels occurs with long term CO2 exposure. Histologic changes in bone have been noted in guinea pigs exposed to 1 percent CO2. Renal calcification has been noted in guinea pigs with exposure to as low as 0.5 percent CO2. An increase in gastric acidity was noted in subjects with long term exposure to 1 percent CO2. Cardiovascular and neurologic function were largely unaffected. A decrease in the incidence of respiratory, renal, and gastrointestinal disease was noted in submariners coincident with a decrease in ambient CO2 from 1.2 percent to 0.8-0.9 percent. Oxygen (O2) and CO2 stimulate respiration independently and cumulatively. The addition of CO2 to high dose O2 led to the faster onset of seizure activity in mice. Experiments evaluating the physiologic responses to intermittent, repetitive exposures to low dose CO2 and 100 percent O2 mixtures should be performed. A reduction in the current NASA standard for CO2 exposure during EVA of 1 percent (7.6 mmHg) for nominal and 2 percent (15.2 mmHg) for heavy exertion to 0.5 percent (3.8 mmHg) for nominal and 1 percent (7.6 mmHg) for heavy exertion may be prudent. At a minimum, the current NASA standard should not be liberalized.

  5. Benchmarking Evaluation Results for Prototype Extravehicular Activity Gloves

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay; McFarland, Shane

    2012-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of four prototype gloves developed by Flagsuit LLC, Final Frontier Designs, LLC Dover, and David Clark Company as compared to the Phase VI. All of the companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test

  6. An Approach for Performance Assessments of Extravehicular Activity Gloves

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay; Benosn, Elizabeth

    2014-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of two sets of prototype EVA gloves developed ILC Dover and David Clark Company as compared to the Phase VI. Both companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test subjects representing the design-to hand

  7. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Scoville, Zebulon; Sipila, Stephanie; Bowie, Jonathan

    2014-01-01

    NASA's Asteroid Redirect Crewed Mission (ARCM) is challenged with primary mission objectives of demonstrating deep space Extravehicular Activity (EVA) and tools, and obtaining asteroid samples to return to Earth for further study. Although the Modified Advanced Crew Escape Suit (MACES) is used for the EVAs, it has limited mobility which increases fatigue and decreases the crews' capability to perform EVA tasks. Furthermore, previous Shuttle and International Space Station (ISS) spacewalks have benefited from EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, some vehicle interfaces and tools can leverage heritage designs and experience. However, when the crew ventures onto an asteroid capture bag to explore the asteroid and collect rock samples, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as bunching of the fabric bag will complicate EVA translation, tool restraint and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the MACES suit. The proposed concept utilizes expandable booms and integrated features of the asteroid capture bag to position and restrain the crew at the asteroid worksite. These methods enable the capability to perform both finesse, and high load tasks necessary to collect samples for scientific characterization of the asteroid. This paper will explore the design trade space and options that were examined for EVA, the

  8. Integrated model of G189A and Aspen-plus for the transient modeling of extravehicular activity atmospheric control systems

    NASA Technical Reports Server (NTRS)

    Kolodney, Matthew; Conger, Bruce C.

    1990-01-01

    A computerized modeling tool, under development for the transient modeling of an extravehicular activity atmospheric control subsystem is described. This subsystem includes the astronaut, temperature control, moisture control, CO2 removal, and oxygen make-up components. Trade studies evaluating competing components and subsystems to guide the selection and development of hardware for lunar and Martian missions will use this modeling tool. The integrated modeling tool uses the Advanced System for Process Engineering (ASPEN) to accomplish pseudosteady-state simulations, and the general environmental thermal control and life support program (G189A) to manage overall control of the run and transient input output, as well as transient modeling computations and database functions. Flow charts and flow diagrams are included.

  9. Prebreathe Protocol for Extravehicular Activity Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Ross, Jerry; Duncan, Michael

    2008-01-01

    In the performance of EVA by that National Aeronautics and Space Administration (NASA) astronauts, there exists a risk of DCS as the suit pressure is reduced to 4.3 pounds per square inch, absolute (psia) from the International Space Station (ISS) pressure of 14.7 psia. Several DCS-preventive procedures have been developed and implemented. Each of these procedures involve the use of oxygen (O2) prebreathe to effectively washout tissue nitrogen (N2).The management of the ISS Programs convened an expert independent peer review Team to conduct a review of the Decompression Sickness (DCS) risks associated with the Extra Vehicular Activity (EVA) Campout Prebreathe (PB) protocol for its consideration for use on future missions. The major findings and recommendations of the expert panel are: There is no direct experimental data to confirm the potential DCS risks of the Campout PB protocol. However, based on model data, statistical probability, physiology, and information derived from similar PB protocols, there is no compelling evidence to suggest that the Campout PB protocol is less safe than the other NASA approved PB protocols.

  10. 21st Century extravehicular activities: Synergizing past and present training methods for future spacewalking success

    NASA Astrophysics Data System (ADS)

    Moore, Sandra K.; Gast, Matthew A.

    2010-10-01

    Neil Armstrong's understated words, "That's one small step for man, one giant leap for mankind" were spoken from Tranquility Base forty years ago. Even today, those words resonate in the ears of millions, including many who had yet to be born when man first landed on the surface of the moon. By their very nature, and in the true spirit of exploration, extravehicular activities (EVAs) have generated much excitement throughout the history of manned spaceflight. From Ed White's first spacewalk in the June of 1965, to the first steps on the moon in 1969, to the expected completion of the International Space Station (ISS), the ability to exist, live and work in the vacuum of space has stood as a beacon of what is possible. It was NASA's first spacewalk that taught engineers on the ground the valuable lesson that successful spacewalking requires a unique set of learned skills. That lesson sparked extensive efforts to develop and define the training requirements necessary to ensure success. As focus shifted from orbital activities to lunar surface activities, the required skill set and subsequently the training methods changed. The requirements duly changed again when NASA left the moon for the last time in 1972 and have continued to evolve through the SkyLab, Space Shuttle, and ISS eras. Yet because the visits to the moon were so long ago, NASA's expertise in the realm of extra-terrestrial EVAs has diminished. As manned spaceflight again shifts its focus beyond low earth orbit, EVA's success will depend on the ability to synergize the knowledge gained over 40+ years of spacewalking to create a training method that allows a single crewmember to perform equally well, whether performing an EVA on the surface of the Moon, while in the vacuum of space, or heading for a rendezvous with Mars. This paper reviews NASA's past and present EVA training methods and extrapolates techniques from both to construct the basis for future EVA astronaut training.

  11. 21st Century Extravehicular Activities: Synergizing Past and Present Training Methods for Future Spacewalking Success

    NASA Technical Reports Server (NTRS)

    Moore, Sandra K.; Gast, Matthew A.

    2009-01-01

    Neil Armstrong's understated words, "That's one small step for man, one giant leap for mankind." were spoken from Tranquility Base forty years ago. Even today, those words resonate in the ears of millions, including many who had yet to be born when man first landed on the surface of the moon. By their very nature, and in the the spirit of exploration, extravehicular activities (EVAs) have generated much excitement throughout the history of manned spaceflight. From Ed White's first space walk in June of 1965, to the first steps on the moon in 1969, to the expected completion of the International Space Station (ISS), the ability to exist, live and work in the vacuum of space has stood as a beacon of what is possible. It was NASA's first spacewalk that taught engineers on the ground the valuable lesson that successful spacewalking requires a unique set of learned skills. That lesson sparked extensive efforts to develop and define the training requirements necessary to ensure success. As focus shifted from orbital activities to lunar surface activities, the required skill-set and subsequently the training methods, changed. The requirements duly changed again when NASA left the moon for the last time in 1972 and have continued to evolve through the Skylab, Space Shuttle; and ISS eras. Yet because the visits to the moon were so long ago, NASA's expertise in the realm of extra-terrestrial EVAs has diminished. As manned spaceflight again shifts its focus beyond low earth orbit, EVA success will depend on the ability to synergize the knowledge gained over 40+ years of spacewalking to create a training method that allows a single crewmember to perform equally well, whether performing an EVA on the surface of the Moon, while in the vacuum of space, or heading for a rendezvous with Mars. This paper reviews NASA's past and present EVA training methods and extrapolates techniques from both to construct the basis for future EVA astronaut training.

  12. Shoulder Injury Incidence Rates in NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Foy, Millennia; Wear, Mary L.; Van Baalen, Mary

    2014-01-01

    Evaluation of the astronaut shoulder injury rates began with an operational concern at the Neutral Buoyancy Laboratory (NBL) during Extravehicular Activity (EVA) training. An astronaut suffered a shoulder injury during an NBL training run and commented that it was possibly due to a hardware issue. During the subsequent investigation, questions arose regarding the rate of shoulder injuries in recent years and over the entire history of the astronaut corps.

  13. A Pilot Study for Applying an Extravehicular Activity Exercise Prebreathe Protocol to the International Space Station

    NASA Technical Reports Server (NTRS)

    Woodruff, Kristin K.; Johnson, Anyika N.; Lee, Stuart M. C.; Gernhardt, Michael; Schneider, Suzanne M.; Foster, Philip P.

    2000-01-01

    Decompression sickness (DCS) is a serious risk to astronauts performing extravehicular activity (EVA). To reduce this risk, the addition of ten minutes of moderate exercise (75% VO2pk) during prebreathe has been shown to decrease the total prebreathe time from 4 to 2 hours and to decrease the incidence of DCS. The overall purpose of this pilot study was to develop an exercise protocol using flight hardware and an in-flight physical fitness cycle test to perform prebreathe exercise before an EVA. Eleven subjects volunteered to participate in this study. The first objective of this study was to compare the steady-state heart rate (HR) and oxygen consumption (VO2) from a submaximal arm and leg exercise (ALE) session with those predicted from a maximal ALE test. The second objective was to compare the steady-state HR and V02 from a submaximal elastic tube and leg exercise (TLE) session with those predicted from the maximal ALE test. The third objective involved a comparison of the maximal ALE test with a maximal leg-only (LE) test to conform to the in- flight fitness assessment test. The 75% VO2pk target HR from the LE test was significantly less than the target HR from the ALE test. Prescribing exercise using data from the maximal ALE test resulted in the measured submaximal values being higher than predicted VO2 and HR. The results of this pilot study suggest that elastic tubing is valid during EVA prebreathe as a method of arm exercise with the flight leg ergometer and it is recommended that prebreathe countermeasure exercise protocol incorporate this method.

  14. An evaluation of three-dimensional sensors for the extravehicular activity helper/retreiver

    NASA Technical Reports Server (NTRS)

    Magee, Michael

    1993-01-01

    The Extravehicular Activity Retriever/Helper (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, accurate sensing of the operational environment and objects in the environment will therefore be critical. The qualitative and quantitative results of empirical studies of three sensors that are capable of providing three-dimensional information to the EVAHR, but using completely different hardware approaches are documented. The first of these devices is a phase shift laser with an effective operating range (ambiguity interval) of approximately 15 meters. The second sensor is a laser triangulation system designed to operate at much closer range and to provide higher resolution images. The third sensor is a dual camera stereo imaging system from which range images can also be obtained. The remainder of the report characterizes the strengths and weaknesses of each of these systems relative to quality of data extracted and how different object characteristics affect sensor operation.

  15. Results from an Investigation into Extra-Vehicular Activity (EVA) Training Related Shoulder Injuries

    NASA Technical Reports Server (NTRS)

    Johnson, Brian J.; Williams, David R.

    2004-01-01

    The number and complexity of extravehicular activities (EVAs) required for the completion and maintenance of the International Space Station (ISS) is unprecedented. The training required to successfully complete this magnitude of space walks presents a real risk of overuse musculoskeletal injuries to the EVA crew population. There was mounting evidence raised by crewmembers, trainers, and physicians at the Johnson Space Center (JSC) between 1999 and 2002 that suggested a link between training in the Neutral - Buoyancy Lab (NBL) and the several reported cases of shoulder injuries. The short- and long-term health consequences of shoulder injury to astronauts in training as well as the potential mission impact associated with surgical intervention to assigned EVA crew point to this as a critical problem that must be mitigated. Thus, a multi-directorate tiger team was formed in December of 2002 led by the EVA Office and Astronaut Office at the JSC. The primary objectives of this Tiger Team were to evaluate the prevalence of these injuries and substantiate the relationship to training in the NBL with the crew person operating in the EVA Mobility Unit (EMU). Between December 2002 and June of 2003 the team collected data, surveyed crewmembers, consulted with a variety of physicians, and performed tests. The results of this effort were combined with the vast knowledge and experience of the Tiger Team members to formulate several findings and over fifty recommendations. This paper summarizes those findings and recommendations as well as the process by which these were determined. The Tiger Team concluded that training in the NBL was directly linked to several major and minor shoulder injuries that had occurred. With the assistance of JSC flight surgeons, outside consultants, and the lead crewmember/physician on the team, the mechanisms of injury were determined. These mechanisms were then linked to specific aspects of the hardware design, operational techniques, and the

  16. Astronaut William Gregory activates Liquids Mixing Apparatus

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Astronaut William G. Gregory activates Liquids Mixing Apparatus (LMA) vials during STS-67. Other LMAs hang at top on the face of the middeck locker array. The experiments are sponsored under NASA's Space Product Development Program (SPD).

  17. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  18. Astronaut Alan Bean steps from ladder of Lunar Module for EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, steps from the ladder of the Lunar Module to join Astronaut Charles Conrad Jr., commander, in extravehicular activity on November 19, 1969. Astronaut Ricard F. Gordon Jr., command module pilot, remained with the Command/Service Modules in lunar orbit.

  19. Astronaut Richard Gordon practices attaching camera to film EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., prime crew pilot for the Gemini 11 space flight, practices attaching to a Gemini boilerplate a camera which will film his extravehicular activity (EVA) outside the spacecraft. The training exercise is being conducted in the Astronaut Training Building, Kennedy Space Center, Florida.

  20. Astronaut Alan Bean holds Special Environmental Sample Container

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, holds a Special Environmental Sample Container filled with lunar soil collected during the extravehicular activity (EVA) in which Astronauts Charles Conrad Jr., commander, and Bean participated. Connrad, who took this picture, is reflected in the helmet visor of the lunar module pilot.

  1. Astronaut Harrison Schmitt standing next to boulder during third EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed standing next to a huge, split boulder during the third Apollo 17 extravehicular activity (EVA-3) at the Taurus-Littrow landing site on the Moon. Schmitt is the Apollo 17 lunar module pilot. This picture was taken by Astronaut Eugene A. Cernan, commander.

  2. Astronaut Harrison Schmitt retrieving lunar samples during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison Schmitt, Apollo 17 lunar module pilot, with his adjustable sampling scoop, heads for a selected rock on the lunar surface to retrieve the sample for study. The action was photographed by Apollo 17 crew commander, Astronaut Eugene A. Cernan on the mission's second extravehicular activity (EVA-2), at Station 5 (Camelot Crater) at the Taurus-Littrow landing site.

  3. Lunar Roving Vehicle gets speed workout by Astronaut John Young

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle (LRV) gets a speed workout by Astronaut John W. Young in the 'Grand Prix' run during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This view is a frame from motion picture film exposed by a 16mm Maurer camera held by Astronaut Charels M. Duke Jr.

  4. Astronaut Dale Gardner holds up for sale sign after EVA

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  5. Astronaut Charles Duke works at front of Lunar Roving Vehicle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Charles M. Duke Jr., Apollo 16 lunar module pilot, works at front of the Lunar Roving Vehicle (LRV) parked in this rock field at a North Ray crater geological site during the Mission's third extravehicular activity (EVA-3) on April 23, 1972. Astronaut John W. Young, commander, took this picture with a 70mm Hasselblad camera.

  6. Astronauts Scott and Irwin shown on Lunar Roving Vehicle at KSC

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronauts David R. Scott (right), commander, and James B. Irwin, lunar module pilot, are shown on the Lunar Roving Vehicle at the Kennedy Space Center (KSC) during Apollo 15 lunar surface extravehicular activity simlations.

  7. Astronaut Thomas Mattingly performs EVA during Apollo 16 transearth coast

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, performs extravehicular activity (EVA) during the Apollo 16 transearth coast. mattingly is assisted by Astronaut Charles M. Duke Jr., lunar module pilot. Mattingly inspected the SIM bay of the Service Module, and retrieved film from the Mapping and Panoramic cameras. Mattingly is wearing the helmet of Astronaut John W. Young, commander. The helmet's lunar extravehicular visor assembly helped protect Mattingly's eyes frmo the bright sun. This view is a frame from motion picture film exposed by a 16mm Maurer camera.

  8. Task network models in the prediction of workload imposed by extravehicular activities during the Hubble Space Telescope servicing mission

    NASA Technical Reports Server (NTRS)

    Diaz, Manuel F.; Takamoto, Neal; Woolford, Barbara

    1994-01-01

    In a joint effort with Brooks AFB, Texas, the Flight Crew Support Division at JSC has begun a computer simulation and performance modeling program directed at establishing the predictive validity of software tools for modeling human performance during spaceflight. This paper addresses the utility of task network modeling for predicting the workload that astronauts are likely to encounter in extravehicular activities (EVA) during the Hubble Space Telescope (HST) repair mission. The intent of the study was to determine whether two EVA crewmembers and one intravehicular activity (IVA) crewmember could reasonably be expected to complete HST Wide Field/Planetary Camera (WFPC) replacement in the allotted time. Ultimately, examination of the points during HST servicing that may result in excessive workload will lead to recommendations to the HST Flight Systems and Servicing Project concerning (1) expectation of degraded performance, (2) the need to change task allocation across crewmembers, (3) the need to expand the timeline, and (4) the need to increase the number of EVA's.

  9. Astronaut John Young photographed collecting lunar samples

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, is photographed collecting lunar samples near North Ray crater during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This picture was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Young is using the lunar surface rake and a set of tongs. The Lunar Roving Vehicle is parked in the field of large boulders in the background.

  10. Tests of an alternate mobile transporter and extravehicular activity assembly procedure for the Space Station Freedom truss

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Watson, Judith J.; Lake, Mark S.; Bush, Harold G.; Jensen, J. Kermit; Wallsom, Richard E.; Phelps, James E.

    1992-01-01

    Results are presented from a ground test program of an alternate mobile transporter (MT) concept and extravehicular activity (EVA) assembly procedure for the Space Station Freedom (SSF) truss keel. A three-bay orthogonal tetrahedral truss beam consisting of 44 2-in-diameter struts and 16 nodes was assembled repeatedly in neutral buoyancy by pairs of pressure-suited test subjects working from astronaut positioning devices (APD's) on the MT. The truss bays were cubic with edges 15 ft long. All the truss joint hardware was found to be EVA compatible. The average unit assembly time for a single pair of experienced test subjects was 27.6 sec/strut, which is about half the time derived from other SSF truss assembly tests. A concept for integration of utility trays during truss assembly is introduced and demonstrated in the assembly tests. The concept, which requires minimal EVA handling of the trays, is shown to have little impact on overall assembly time. The results of these tests indicate that by using an MT equipped with APD's, rapid EVA assembly of a space station-size truss structure can be expected.

  11. Extra dose due to extravehicular activity during the NASA4 mission measured by an on-board TLD system

    NASA Technical Reports Server (NTRS)

    Deme, S.; Apathy, I.; Hejja, I.; Lang, E.; Feher, I.

    1999-01-01

    A microprocessor-controlled on-board TLD system, 'Pille'96', was used during the NASA4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the extra dose to two astronauts in the course of their extravehicular activity (EVA). For the EVA dose measurements, CaSO4:Dy bulb dosemeters were located in specially designed pockets of the ORLAN spacesuits. During an EVA lasting 6 h, the dose ratio inside and outside Mir was measured. During the EVA, Mir crossed the South Atlantic Anomaly (SAA) three times. Taking into account the influence of these three crossings the mean EVA/internal dose rate ratio was 3.2. Internal dose mapping using CaSO4:Dy dosemeters gave mean dose rates ranging from 9.3 to 18.3 microGy h-1 at locations where the shielding effect was not the same. Evaluation results of the high temperature region of LiF dosemeters are given to estimate the mean LET.

  12. Astronaut Linda Godwin Trains in Weightless Environment Facility (WET-F)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut and mission specialist, Linda Godwin, makes a final check of her respiration system before submersion into a 25 ft deep pool at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Wearing a high fidelity training version of the Extravehicular Mobility Unit (EMU) space suit, Godwin simulated STS-76 Extravehicular Activity (EVA) chores in the pool. Launched aboard the Space Shuttle Atlantis in March of 1996, STS-76 marked the third U.S. Shuttle-Mir docking during which Godwin, along with astronaut and mission specialist Michael R. (Rich) Clifford, performed the first Extravehicular Activity (EVA) during Mir-Shuttle docked operations.

  13. Astronaut Dale Gardner rehearses during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner works to deploy a large stinger device designed for locking onto the orbiting satellites via entering a spent engine's nozzle.

  14. Astronaut Dale Gardner rehearses during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner handles a stinger device to make initial contact with one of the two satellites they will be working with.

  15. Astronaut Russell Schweickart photographed during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot, is photographed from the Command Module 'Gumdrop' during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. The Command and Service Modules are docked with the Lunar Module.

  16. Compilation of Trade Studies for the Constellation Program Extravehicular Activity Spacesuit Power System

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2009-01-01

    This compilation of trade studies performed from 2005 to 2006 addressed a number of power system design issues for the Constellation Program Extravehicular Activity Spacesuit. Spacesuits were required for spacewalks and in-space activities as well as lunar and Mars surface operations. The trades documented here considered whether solar power was feasible for spacesuits, whether spacesuit power generation should be a distributed or a centralized function, whether self-powered in-space spacesuits were better than umbilically powered ones, and whether the suit power system should be recharged in place or replaced.

  17. Astronaut Harrison Schmitt standing next to boulder during third EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed standing next to a huge, split boulder during the third Apollo 17 extravehicular activity (EVA-3) at the Taurus-Littrow landing site on the Moon. The lunar rover, which transported Schmitt and Eugene A. Cernan, mission commander, to this extravehicular station from their Lunar Module, is seen in the background. Schmitt is the Apollo 17 lunar module pilot. The mosaic is made from two frames from Apollo 17 Hasselblad magaine 140.

  18. Use of Variable Pressure Suits, Intermittent Recompression and Nitrox Breathing Mixtures during Lunar Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Abercromby, Andrew F.

    2009-01-01

    This slide presentation reviews the use of variable pressure suits, intermittent recompression and Nitrox breathing mixtures to allow for multiple short extravehicular activities (EVAs) at different locations in a day. This new operational concept of multiple short EVAs requires short purge times and shorter prebreathes to assure rapid egress with a minimal loss of the vehicular air. Preliminary analysis has begun to evaluate the potential benefits of the intermittent recompression, and Nitrox breathing mixtures when used with variable pressure suits to enable reduce purges and prebreathe durations.

  19. The use of decompression to simulate the effect of extravehicular activity on human lymphocyte transformation

    NASA Technical Reports Server (NTRS)

    Meehan, R. T.; Duncan, U.; Neale, L.; Waligora, J.; Taylor, G. R.

    1986-01-01

    Lymphocytes from 35 subjects participating in a chamber study simulating extravehicular activity (EVA) conditions were studied. No significant differences in H3 thymidine uptake between pre chamber and post chamber response to any mitogens autologous plasma, or among circulating mononuclear cells by flow cytometry are observed. The studies could not identify the subjects who developed venous bubbles. Data from eight subjects suggests that acute stress associated with participating in the study augments in vitro lymphocyte proliferation. Results indicate EVA exposure does not greatly influence space-flight induced alterations in immune effector cell function.

  20. Design, development, and fabrication of extravehicular activity tools for support of the transfer orbit stage

    NASA Technical Reports Server (NTRS)

    Albritton, L. M.; Redmon, J. W.; Tyler, T. R.

    1993-01-01

    Seven extravehicular activity (EVA) tools and a tool carrier have been designed and developed by MSFC in order to provide a two fault tolerant system for the transfer orbit stage (TOS) shuttle mission. The TOS is an upper stage booster for delivering payloads to orbits higher than the shuttle can achieve. Payloads are required not to endanger the shuttle even after two failures have occurred. The Airborne Support Equipment (ASE), used in restraining and deploying TOS, does not meet this criteria. The seven EVA tools designed will provide the required redundancy with no impact to the TOS hardware.

  1. Testing and Oxygen Assessment Results for a Next Generation Extravehicular Activity Portable Life Support System Fan

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Rivera, Fatonia L.; Martin, Devin

    2011-01-01

    NASA is designing a next generation Extravehicular Activity (EVA) Portable Life Support System (PLSS) for use in future surface exploration endeavors. To meet the new requirements for ventilation flow at nominal and buddy modes, a fan has been developed and tested. This paper summarizes the results of the performance and life cycle testing efforts conducted at the NASA Johnson Space Center. Additionally, oxygen compatibility assessment results from an evaluation conducted at White Sands Test Facility (WSTF) are provided, and lessons learned and future recommendations are outlined.

  2. Neutral buoyancy test evaluation of hardware and extravehicular activity procedures for on-orbit assembly of a 14 meter precision reflector

    NASA Astrophysics Data System (ADS)

    Heard, Walter L., Jr.; Lake, Mark S.

    1993-02-01

    A procedure that enables astronauts in extravehicular activity (EVA) to perform efficient on-orbit assembly of large paraboloidal precision reflectors is presented. The procedure and associated hardware are verified in simulated Og (neutral buoyancy) assembly tests of a 14 m diameter precision reflector mockup. The test article represents a precision reflector having a reflective surface which is segmented into 37 individual panels. The panels are supported on a doubly curved tetrahedral truss consisting of 315 struts. The entire truss and seven reflector panels were assembled in three hours and seven minutes by two pressure-suited test subjects. The average time to attach a panel was two minutes and three seconds. These efficient assembly times were achieved because all hardware and assembly procedures were designed to be compatible with EVA assembly capabilities.

  3. Neutral buoyancy test evaluation of hardware and extravehicular activity procedures for on-orbit assembly of a 14 meter precision reflector

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Lake, Mark S.

    1993-01-01

    A procedure that enables astronauts in extravehicular activity (EVA) to perform efficient on-orbit assembly of large paraboloidal precision reflectors is presented. The procedure and associated hardware are verified in simulated Og (neutral buoyancy) assembly tests of a 14 m diameter precision reflector mockup. The test article represents a precision reflector having a reflective surface which is segmented into 37 individual panels. The panels are supported on a doubly curved tetrahedral truss consisting of 315 struts. The entire truss and seven reflector panels were assembled in three hours and seven minutes by two pressure-suited test subjects. The average time to attach a panel was two minutes and three seconds. These efficient assembly times were achieved because all hardware and assembly procedures were designed to be compatible with EVA assembly capabilities.

  4. Injury Risk Assessment of Extravehicular Mobility Unit (EMU) Phase VI and Series 4000 Gloves During Extravehicular Activity (EVA) Hand Manipulation Tasks

    NASA Technical Reports Server (NTRS)

    Kilby, Melissa

    2015-01-01

    Functional Extravehicular Mobility Units (EMUs) with high precision gloves are essential for the success of Extravehicular Activity (EVA). Previous research done at NASA has shown that total strength capabilities and performance are reduced when wearing a pressurized EMU. The goal of this project was to characterize the human-space suit glove interaction and assess the risk of injury during common EVA hand manipulation tasks, including pushing, pinching and gripping objects. A custom third generation sensor garment was designed to incorporate a combination of sensors, including force sensitive resistors, strain gauge sensors, and shear force sensors. The combination of sensors was used to measure the forces acting on the finger nails, finger pads, finger tips, as well as the knuckle joints. In addition to measuring the forces, data was collected on the temperature, humidity, skin conductance, and blood perfusion of the hands. Testing compared both the Phase VI and Series 4000 glove against an ungloved condition. The ungloved test was performed wearing the sensor garment only. The project outcomes identified critical landmarks that experienced higher workloads and are more likely to suffer injuries. These critical landmarks varied as a function of space suit glove and task performed. The results showed that less forces were acting on the hands while wearing the Phase VI glove as compared to wearing the Series 4000 glove. Based on our findings, the engineering division can utilize these methods for optimizing the current space suit glove and designing next generation gloves to prevent injuries and optimize hand mobility and comfort.

  5. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Chickasaw Tribal Elder Lee Frazier leads the dedication to the astronauts of STS-113 during the Native American Ceremony at the Rocket Garden in the KSC Visitor Complex. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  6. Astronaut Alan Bean deploys ALSEP during first Apollo 12 EVA on moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, Apollo 12 lunar module pilot, deploys components of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA) on the moon. The photo was made by Astronaut Charles Conrad Jr., Apollo 12 commander, using a 70mm handheld Haselblad camera modified for lunar surface usage.

  7. Astronauts Ross and Helms at CAPCOM station during STS-61 simulations

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronauts Jerry L. Ross and Susan J. Helms are pictured at the Spacecraft Communicators console during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  8. Astronaut Jack Lousma participates in EVA to deploy twin pole solar shield

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, participates in the August 6, 1973 extravehicular activity (EVA) during which he and Astronauts Owen K. Garriott, science pilot, deployed the twin pole solar shield to help shade the Orbital Workshop (OWS). Note the reflection of the Apollo Telescope Mount and the Earth in Lousma's helmet visor.

  9. Astronaut Jack Lousma participates in EVA to deploy twin pole solar shield

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, participates in the August 6, 1973 extravehicular activity (EVA) during which he and Astronaut Owen K. Garriott, science pilot, deployed the twin pole solar shield to help shade the Orbital Workshop (OWS). Note the striking reflection of the Earth in Lousma's helmet visor.

  10. Astronaut James Irwin works at Lunar Roving Vehicle during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, works at the Lunar Roving Vehicle during the first Apollo 15 lunar surface extravehicular activity (EVA-1) at the Hadley-Apennine landing site. The shadow of the Lunar Module 'Falcon' is in the foreground. This view is looking northeast, with Mount Hadley in the background. This photograph was taken by Astronaut David R. Scott, commander.

  11. Astronaut David Scott on slope of Hadley Delta during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, mission commander, with tongs and gnomon in hand, studies a boulder on the slope of Hadley Delta during the Apollo 15 lunar surface extravehicular activity. The Lunar Roving Vehicle (LRV) or Rover is in right foreground. View is looking slightly south of west. 'Bennett Hill' is at extreme right. Astronaut James B. Irwin, lunar module pilot, took this photograph.

  12. Astronaut David Scott on slope of Hadley Delta during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, mission commander, performs a task at the Lunar Roving Vehicle parked on the edge of Hadley Rille during the first Apollo 15 lunar surface extravehicular activity (EVA-1). This photograph was taken by Astronaut James B. Irwin, lunar module pilot, from the flank of St. George Crater. The view is looking north along the rille.

  13. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    NASA Technical Reports Server (NTRS)

    Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar

    2010-01-01

    The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.

  14. Refinement of Optimal Work Envelope for Extra-Vehicular Activity (EVA) Suit Operations

    NASA Technical Reports Server (NTRS)

    Jaramillo, Marcos A.; Angermiller, Bonnie L.; Morency, Richard M.; Rajululu, Sudhakar L.

    2008-01-01

    The purpose of the Extravehicular Mobility Unit (EMU) Work Envelope study is to determine and revise the work envelope defined in NSTS 07700 "System Description and Design Data - Extravehicular Activities" [1], arising from an action item as a result of the Shoulder Injury Tiger Team findings. The aim of this study is to determine a common work envelope that will encompass a majority of the crew population while minimizing the possibility of shoulder and upper arm injuries. There will be approximately two phases of testing: arm sweep analysis to be performed in the Anthropometry and Biomechanics Facility (ABF), and torso lean testing to be performed on the Precision Air Bearing Facility (PABF). NSTS 07700 defines the preferred work envelope arm reach in terms of maximum reach, and defines the preferred work envelope torso flexibility of a crewmember to be a net 45 degree backwards lean [1]. This test served two functions: to investigate the validity of the standard discussed in NSTS 07700, and to provide recommendations to update this standard if necessary.

  15. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    The exploration activities associated with NASA?s goals to return to the Moon, travel to Mars, or explore Near Earth Objects (NEOs) will involve the need for human-supported space and surface extravehicular activities (EVAs). The technology development and human element associated with these exploration missions provide fantastic content to promote science, technology, engineering, and math (STEM). As NASA Administrator Charles F. Bolden remarked on December 9, 2009, "We....need to provide the educational and experiential stepping-stones to inspire the next generation of scientists, engineers, and leaders in STEM fields." The EVA Systems Project actively supports this initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for these missions. This paper summarizes these education and public efforts.

  16. Modified Advanced Crew Escape Suit Intravehicular Activity Suit for Extravehicular Activity Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration

  17. Astronaut Russell Schweickart photographed during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot, operates a 70mm Hasselblad camera during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. The Command/Service Module and the Lunar Module 3 'Spider' are docked. This view was taken form the Command Module 'Gumdrop'. Schweickart, wearing an Extravehicular Mobility Unit (EMU), is standing in 'golden slippers' on the Lunar Module porch. On his back, partially visible, are a Portable Life Support System (PLSS) and an Oxygen Purge System (OPS).

  18. Astronaut Russell Schweickart inside simulator for EVA training

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut Russell L. Schweickart, lunar module pilot of the Apollo 9 (Spacecraft 104/Lunar Module 3/Saturn 504) space mission, is seen inside Chamber 'A', Space Environment Simulation Laboratory, bldg 32, participating in dry run activity in preparpation for extravehicular activity.

  19. Extravehicular Activity Probabilistic Risk Assessment Overview for Thermal Protection System Repair on the Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Canga, Michael A.; Duncan, Gary

    2010-01-01

    The Shuttle Program initiated an Extravehicular Activity (EVA) Probabilistic Risk Assessment (PRA) to assess the risks associated with performing a Shuttle Thermal Protection System (TPS) repair during the Space Transportation System (STS)-125 Hubble repair mission as part of risk trades between TPS repair and crew rescue.

  20. Design of high pressure oxygen filter for extravehicular activity life support system, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, B. A.

    1977-01-01

    The experience of the National Aeronautics and Space Administration (NASA) with extravehicular activity life support emergency oxygen supply subsystems has shown a large number of problems associated with particulate contamination. These problems have resulted in failures of high pressure oxygen component sealing surfaces. A high pressure oxygen filter was designed which would (a) control the particulate contamination level in the oxygen system to a five-micron glass bead rating, ten-micron absolute condition (b) withstand the dynamic shock condition resulting from the sudden opening of 8000 psi oxygen system shutoff valve. Results of the following program tasks are reported: (1) contaminant source identification tests, (2) dynamic system tests, (3) high pressure oxygen filter concept evaluation, (4) design, (5) fabrication, (6) test, and (7) application demonstration.

  1. Extravehicular activities limitations study. Volume 2: Establishment of physiological and performance criteria for EVA gloves

    NASA Technical Reports Server (NTRS)

    Ohara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1988-01-01

    One of the major probelms faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human hand capabilities. This report describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based on an assessment of general human hand functioning and EVA task requirements several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure. A test program was conducted to evaluate the tests using a representative EVA glove. Eleven test subjects participated in a repeated-measures design. The report presents the results of the tests in each capability domain.

  2. Force-endurance capabilities of extravehicular activity (EVA) gloves at different pressure levels

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.; Klute, Glenn K.

    1993-01-01

    The human hand is a very useful multipurpose tool in all environments. However, performance capabilities are compromised considerably when gloves are donned. This is especially true to extravehicular activity (EVA) gloves. The primary intent was to answer the question of how long a person can perform tasks requiring certain levels of exertion. The objective was to develop grip force-endurance relations. Six subjects participated in a factorial experiment involving three hand conditions, three pressure differentials, and four levels of force exertion. The results indicate that, while the force that could be exerted depended on the glove, pressure differential, and the level of exertion, the endurance time at any exertion level depended just on the level of exertion expressed as a percentage of maximum exertion possible at that condition. The impact of these findings for practitioners as well as theoreticians is discussed.

  3. Extravehicular activity compatibility evaluation of developmental hardware for assembly and repair of precision reflectors

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Lake, Mark S.; Bush, Harold G.; Jensen, J. Kermit; Phelps, James E.; Wallsom, Richard E.

    1992-01-01

    This report presents results of tests performed in neutral buoyancy by two pressure-suited test subjects to simulate Extravehicular Activity (EVA) tasks associated with the on-orbit construction and repair of a precision reflector spacecraft. Two complete neutral buoyancy assemblies of the test article (tetrahedral truss with three attached reflector panels) were performed. Truss joint hardware, two different panel attachment hardware concepts, and a panel replacement tool were evaluated. The test subjects found the operation and size of the truss joint hardware to be acceptable. Both panel attachment concepts were found to be EVA compatible, although one concept was judged by the test subjects to be considerably easier to operate. The average time to install a panel from a position within arm's reach of the test subjects was 1 min 14 sec. The panel replacement tool was used successfully to demonstrate the removal and replacement of a damaged reflector panel in 10 min 25 sec.

  4. Investigation of the effects of extravehicular activity (EVA) gloves on performance

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.; Klute, Glenn

    1993-01-01

    The objective was to assess the effects of extravehicular activity (EVA) gloves at different pressures on human hand capabilities. A factorial experiment was performed in which three types of EVA gloves were tested at five pressure differentials. The independent variables tested in this experiment were gender, glove type, pressure differential, and glove make. Six subjects participated in an experiment where a number of dexterity measures, namely time to tie a rope, and the time to assemble a nut and bolt were recorded. Tactility was measured through a two point discrimination test. The results indicate that with EVA gloves strength is reduced by nearly 50 percent, there is a considerable reduction in dexterity, performance decrements increase with increasing pressure differential, and some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand. The implications for the designer are discussed.

  5. A Multi-Purpose Modular Electronics Integration Node for Exploration Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Papale, William; Wichowski, Robert; Rosenbush, David; Hawes, Kevin; Stankiewicz, Tom

    2013-01-01

    As NASA works to develop an effective integrated portable life support system design for exploration Extravehicular activity (EVA), alternatives to the current system s electrical power and control architecture are needed to support new requirements for flexibility, maintainability, reliability, and reduced mass and volume. Experience with the current Extravehicular Mobility Unit (EMU) has demonstrated that the current architecture, based in a central power supply, monitoring and control unit, with dedicated analog wiring harness connections to active components in the system has a significant impact on system packaging and seriously constrains design flexibility in adapting to component obsolescence and changing system needs over time. An alternative architecture based in the use of a digital data bus offers possible wiring harness and system power savings, but risks significant penalties in component complexity and cost. A hybrid architecture that relies on a set of electronic and power interface nodes serving functional models within the Portable Life Support System (PLSS) is proposed to minimize both packaging and component level penalties. A common interface node hardware design can further reduce penalties by reducing the nonrecurring development costs, making miniaturization more practical, maximizing opportunities for maturation and reliability growth, providing enhanced fault tolerance, and providing stable design interfaces for system components and a central control. Adaptation to varying specific module requirements can be achieved with modest changes in firmware code within the module. A preliminary design effort has developed a common set of hardware interface requirements and functional capabilities for such a node based on anticipated modules comprising an exploration PLSS, and a prototype node has been designed assembled, programmed, and tested. One instance of such a node has been adapted to support testing the swingbed carbon dioxide and humidity

  6. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires highly accurate CO2 sensing technology with performance beyond that presently in use on the International Space Station extravehicular mobility unit (EMU). Further, that accuracy needs to be provided over the full operating pressure range of the suit (3 to 25 psia). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) sensor based on infrared absorption spectroscopy is being developed for this purpose by Vista Photonics, Inc. Version 1.0 prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The prototypes were upgraded with more sophisticated communications and faster response times to version 2.0 and delivered to JSC in July 2012. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with an field-programmable gate array microcontroller architecture. Based on the results of the iterative instrument development, further prototype development and testing of instruments were performed leveraging the lessons learned where feasible. The present development extends and upgrades the earlier hardware for the advanced PLSS 2.5 prototypes for testing at JSC. The prototypes provide significantly enhanced accuracy for water vapor measurement and eliminate wavelength drift affecting the earlier versions. Various improvements to the electronics and gas sampling are currently being advanced including the companion development of engineering development units that will ultimately be capable of radiation tolerance. The combination of low power electronics with the performance of a long wavelength

  7. Astronaut Harrison Schmitt standing next to boulder during third EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed standing next to a huge, split boulder at Station 6 (base of North Massif) during the third Apollo 17 extravehicular activity (EVA-3) at the Taurus-Littrow landing site on the Moon. Notice the Lunar Roving Vehicle (LRV) in the left foreground. Schmitt is the Apollo 17 lunar module pilot. This picture was taken by Astronaut Eugene A. Cernan, commander.

  8. Astronauts Hoffman and Musgrave pose in aft flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Two of Endeavour's busy team of astronauts share a rare moment of leisure in the aft flight deck captured by an Electronic Still Camera (ESC). Astronauts Jeffrey A. Hoffman, left, and F. Story Musgrave also are sharing three of the mission's five planned sessions of extravehicular activity (EVA). Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  9. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, participated in the EVA with Lousma. During the EVA the two crewmen deployed the twin pole solar shield to help shade the Orbital Workshop.

  10. Lunar Roving Vehicle gets speed workout by Astronaut John Young

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle (LRV) gets a speed workout by Astronaut John W. Young in the 'Grand Prix' run during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. Note the front wheels of the LRV are off the ground. This view is a frame from motion picture film exposed by a 16mm Maurer camera held by Astronaut Charles M. Duke Jr.

  11. Miniature Tissue Equivalent Proportional Counter dosimeter for active personal radiation monitoring of astronauts

    NASA Astrophysics Data System (ADS)

    Watson Huber, Aubrey

    The accurate measurement of spaceflight crew radiation exposure is of utmost importance. If onboard instrumentation shows that the pre-determined limit for radiation exposure has been met or exceeded during a mission, that mission can be greatly affected by the implementation of precautionary measures, or, in more extreme cases, the crew's health being negatively affected. Large active regional monitors determine real-time radiation risks of the crew during spaceflight, while small passive personal badges detect individual astronaut total exposure levels upon their return to Earth. At present, there are no personal active radiation dosimeters that can assess the continuous radiation risk to individual astronauts during spaceflight. Personal active radiation devices would be ideal for current operations in low-Earth orbit (LEO), as well as upcoming extravehicular activities on the Moon, Mars, or other planetary bodies. This project focused on the miniaturization of the Tissue Equivalent Proportional Counters (TEPCs) presently being utilized on the International Space Station (ISS) and Space Shuttle, enabling them to become personal crew dosimeters. The miniaturized TEPC prototype design has dimensions of 7.6 x 10.1 x 2.54 cm (3 x 4 x 1 in). It is composed of a 3 x 4 array of 1.27 cm (0.5 in) spherical detectors for measurements equivalent to a 4.39 cm (1.73 in) spherical detector, with an additional standalone sphere of diameter 1.27 cm (0.5 in) for taking measurements in high-flux environments. The detector simulates a tissue-equivalent diameter of 2 microns, is sensitive to lineal energies of 0.3 -- 1000 keV/micron, and can measure charged particles and neutrons ranging from 0.01 -- 100 mGy/hr.

  12. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a pre-launch Native American ceremony, Radmilla Cody, the 2001 Miss Navaho Nation, sings the 'Star Spangled Banner' in her native language. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  13. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Chickasaw Dance Troupe performs an Honor Dance for John Herrington's parents during the Native American Ceremony at the Rocket Garden in the KSC Visitor Complex. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  14. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Chickasaw Dance Troupe performs an Honor Dance during the Native American Ceremony at the Rocket Garden in the KSC Visitor Complex. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  15. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  16. Astronaut Alan Bean with subpackages of the ALSEP during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, traverses with the two subpackages of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA). Bean deployed the ALSEP components 300 feet from the Lunar Module (LM). The LM and deployed erectable S-band antenna can be seen in the background.

  17. Television transmission of Astronaut Harrison Schmitt falling during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt loses his balance and heads for a fall during the second Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site, in this black and white reproduction taken from a color television transmission made by the RCA color TV camera mounted on the Lunar Roving Vehicle. Schmitt is the lunar module pilot.

  18. Astronaut Harrison Schmitt participates in simulation aboard KC-135

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt, lunar module pilot of the Apollo 17 lunar landing mission, simulates preparing to deploy the Surface Electrical Properties Experiment during lunar surface extravehicular activity (EVA) simulation training under one-sixth gravity conditions aboard a U.S. Air Force KC-135 aircraft.

  19. Astronaut James Irwin uses scoop during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, uses a scoop in making a trench in the lunar soil during Apollo 15 extravehicular activity (EVA). Mount Hadley rises approximately 14,765 feet (about 4,500 meters) above the plain in the background.

  20. Advanced extravehicular protective systems

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    New technologies are identified and recommended for developing a regenerative portable life support system that provides protection for extravehicular human activities during long duration missions on orbiting space stations, potential lunar bases, and possible Mars landings. Parametric subsystems analyses consider: thermal control, carbon dioxide control, oxygen supply, power supply, contaminant control, humidity control, prime movers, and automatic temperature control.

  1. PLRP-3: Operational Perspectives of Conducting Science-Driven Extravehicular Activity with Communications Latency

    NASA Technical Reports Server (NTRS)

    Miller, Matthew J.; Lim, Darlene S. S.; Brady, Allyson; Cardman, Zena; Bell, Ernest; Garry, Brent; Reid, Donnie; Chappell, Steve; Abercromby, Andrew F. J.

    2016-01-01

    The Pavilion Lake Research Project (PLRP) is a unique platform where the combination of scientific research and human space exploration concepts can be tested in an underwater spaceflight analog environment. The 2015 PLRP field season was performed at Pavilion Lake, Canada, where science-driven exploration techniques focusing on microbialite characterization and acquisition were evaluated within the context of crew and robotic extravehicular activity (EVA) operations. The primary objectives of this analog study were to detail the capabilities, decision-making process, and operational concepts required to meet non-simulated scientific objectives during 5-minute one-way communication latency utilizing crew and robotic assets. Furthermore, this field study served as an opportunity build upon previous tests at PLRP, NASA Desert Research and Technology Studies (DRATS), and NASA Extreme Environment Mission Operations (NEEMO) to characterize the functional roles and responsibilities of the personnel involved in the distributed flight control team and identify operational constraints imposed by science-driven EVA operations. The relationship and interaction between ground and flight crew was found to be dependent on the specific scientific activities being addressed. Furthermore, the addition of a second intravehicular operator was found to be highly enabling when conducting science-driven EVAs. Future human spaceflight activities will need to cope with the added complexity of dynamic and rapid execution of scientific priorities both during and between EVA execution to ensure scientific objectives are achieved.

  2. Experiences with Extra-Vehicular Activities in Response to Critical ISS Contingencies

    NASA Technical Reports Server (NTRS)

    Van Cise, E. A.; Kelly, B. J.; Radigan, J. P.; Cranmer, C. W.

    2016-01-01

    The maturation of the International Space Station (ISS) design from the proposed Space Station Freedom to today's current implementation resulted in external hardware redundancy vulnerabilities in the final design. Failure to compensate for or respond to these vulnerabilities could put the ISS in a posture where it could no longer function as a habitable space station. In the first years of ISS assembly, these responses were to largely be addressed by the continued resupply and Extra-Vehicular Activity (EVA) capabilities of the Space Shuttle. Even prior to the decision to retire the Space Shuttle, it was realized that ISS needed to have its own capability to be able to rapidly repair or replace external hardware without needing to wait for the next cargo resupply mission. As documented in a previous publication, in 2006 development was started to baseline Extra-Vehicular Activity (EVA, or spacewalk) procedures to replace hardware components whose failure would expose some of the ISS vulnerabilities should a second failure occur. This development work laid the groundwork for the onboard crews and the ground operations and engineering teams to be ready to replace any of this failed hardware. In 2010, this development work was put to the test when one of these pieces of hardware failed. This paper will provide a brief summary of the planning and processes established in the original Contingency EVA development phase. It will then review how those plans and processes were implemented in 2010, highlighting what went well as well as where there were deficiencies between theory and reality. This paper will show that the original approach and analyses, though sound, were not as thorough as they should have been in the realm of planning for next worse failures, for documenting Programmatic approval of key assumptions, and not pursuing sufficient engineering analysis prior to the failure of the hardware. The paper will further highlight the changes made to the Contingency

  3. Astronaut David Wolf participates in training for contingency EVA in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged ito a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is displaying the flexibility of his training version of the Shuttle extravehicular mobility unit (EMU) by lifting his arms above his head (31701); Wolf waves to the camera before he is submerged in the WETF (31702).

  4. Introduction to Radiation Issues for International Space Station Extravehicular Activities. Chapter 1

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Saganti, P. B.; Miller, J.; Cucinotta, F. A.

    2003-01-01

    The International Space Station (ISS) provides significant challenges for radiation protection of the crew due to a combination of circumstances including: the extended duration of missions for many crewmembers, the exceptionally dynamic nature of the radiation environment in ISS orbit, and the necessity for numerous planned extravehicular activities (EVA) for station construction and maintenance. Radiation protection requires accurate radiation dose measurements and precise risk modeling of the transmission of high fluxes of energetic electrons and protons through the relatively thin shielding provided by the space suits worn during EVA. Experiments and analyses have been performed due to the necessity to assure complete radiation safety for the EVA crew and thereby ensure mission success. The detailed characterization described of the material and topological properties of the ISS space suits can be used as a basis for design of space suits used in future exploration missions. In radiation protection practices, risk from exposure to ionizing radiation is determined analytically by the level of exposure, the detrimental quality of the radiation field, the inherent radiosensitivity of the tissues or organs irradiated, and the age and gender of the person at the time of exposure. During low Earth orbit (LEO) EVA, the relatively high fluxes of low-energy electrons and protons lead to large variations in exposure of the skin, lens of the eye, and tissues in other shallow anatomical locations. The technical papers in this publication describe a number of ground-based experiments that precisely measure the thickness of the NASA extravehicular mobility unit (EMU) and Russian Zvezda Orlan-M suits using medical computerized tomography (CT) X-ray analysis, and particle accelerator experiments that measure the minimum kinetic energy required by electrons and photons to penetrate major components of the suits. These studies provide information necessary for improving the

  5. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Chickasaw Indian princesses seen here contributed to a pre-launch Native American ceremony at the Rocket Garden in the KSC Visitor Complex by leading a prayer. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  6. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a pre-launch Native American ceremony, Radmilla Cody (right) , the 2001 Miss Navaho Nation, sings the 'Star Spangled Banner' in her native language. With her is her grandmother. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  7. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - An elder of her Navaho tribe, Dorothy Cody shares the stage with her granddaughter Radmilla Cody (not shown), the 2001 Miss Navaho Nation, who is singing the 'Star Spangled Banner' in her native language during a pre-launch Native American ceremony. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  8. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Singer Buffy Sainte-Marie sings during a pre-launch Native American ceremony in the Rocket Garden of the KSC Visitor Complex. She herself is a Cree. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  9. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Chickasaw Indian princesses pose with folk singer Buffy Saint- Marie (center) during a Native American ceremony held in the Rocket Garden in the KSC Visitor Complex. Several days of activities were held at KSC and in Orlando commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  10. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Chickasaw Indian princesses 'sign' the Lord's Prayer during a Native American Ceremony at the Rocket Garden in the KSC Visitor Complex. The princesses are Crystal Underwood, Julie Underwood and Tamela Alexander. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  11. 802.16e System Profile for NASA Extra-Vehicular Activities

    NASA Technical Reports Server (NTRS)

    Foore, Lawrence R.; Chelmins, David T.; Nguyen, Hung D.; Downey, Joseph A.; Finn, Gregory G.; Cagley, Richard E.; Bakula, Casey J.

    2009-01-01

    This report identifies an 802.16e system profile that is applicable to a lunar surface wireless network, and specifically for meeting extra-vehicular activity (EVA) data flow requirements. EVA suit communication needs are addressed. Design-driving operational scenarios are considered. These scenarios are then used to identify a configuration of the 802.16e system (system profile) that meets EVA requirements, but also aim to make the radio realizable within EVA constraints. Limitations of this system configuration are highlighted. An overview and development status is presented by Toyon Research Corporation concerning the development of an 802.16e compatible modem under NASA s Small Business Innovative Research (SBIR) Program. This modem is based on the recommended system profile developed as part of this report. Last, a path forward is outlined that presents an evolvable solution for the EVA radio system and lunar surface radio networks. This solution is based on a custom link layer, and 802.16e compliant physical layer compliant to the identified system profile, and a later progression to a fully interoperable 802.16e system.

  12. Design and control of a hand exoskeleton for use in extravehicular activities

    NASA Technical Reports Server (NTRS)

    Shields, B.; Peterson, S.; Strauss, A.; Main, J.

    1993-01-01

    To counter problems inherent in extravehicular activities (EVA) and complex space operations, an exoskeleton, a unique adaptive structure, has been designed. The exoskeleton fits on the hand and powers the proximal and middle phalanges of the index finger, the middle finger, and the combined ring and little finger. A kinematic analysis of the exoskeleton joints was performed using the loop-closure method. This analysis determined the angular displacement and velocity relationships of the exoskeleton joints. This information was used to determine the output power of the exoskeleton. Three small DC motors (one for each finger) are used to power the exoskeleton. The motors are mounted on the forearm. Power is transferred to the exoskeleton using lead screws. The control system for the exoskeleton measures the contact force between the operator and the exoskeleton. This information is used as the input to drive the actuation system. The control system allows the motor to rotate in both directions so that the operator may close or open the exoskeleton.

  13. Effective Presentation of Metabolic Rate Information for Lunar Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Mackin, Michael A.; Gonia, Philip; Lombay-Gonzalez, Jose

    2010-01-01

    During human exploration of the lunar surface, a suited crewmember needs effective and accurate information about consumable levels remaining in their life support system. The information must be presented in a manner that supports real-time consumable monitoring and route planning. Since consumable usage is closely tied to metabolic rate, the lunar suit must estimate metabolic rate from life support sensors, such as oxygen tank pressures, carbon dioxide partial pressure, and cooling water inlet and outlet temperatures. To provide adequate warnings that account for traverse time for a crewmember to return to a safe haven, accurate forecasts of consumable depletion rates are required. The forecasts must be presented to the crewmember in a straightforward, effective manner. In order to evaluate methods for displaying consumable forecasts, a desktop-based simulation of a lunar Extravehicular Activity (EVA) has been developed for the Constellation lunar suite s life-support system. The program was used to compare the effectiveness of several different data presentation methods.

  14. Stress, Workload and Physiology Demand During Extravehicular Activity: A Pilot Study

    PubMed Central

    Rai, Balwant; Kaur, Jasdeep; Foing, Bernard H

    2012-01-01

    Background: Extravehicular activity (EVA), such as exercise performed under unique environmental conditions, is essential for supporting daily living in weightlessness and for further space exploration like long Mars mission. Aim: The study was planned stress, workload, and physiological demands of simulated Mars exploration. Materials and Methods: In this study, the six-person crew lived (24 hours) for 14 days during a short-term stay at the Mars Desert Research Station. The heart rates, salivary cortisol, workload, peak oxygen uptake or maximal aerobic capacity of the crew are measured before, during and after an EVA. Results: Data for heart rate showed the same trend as peak oxygen uptake or maximal aerobic capacity, with a maximal increase to 85% of peak. The rating of subscale showed a significant increase in EVA as compared to run. Salivary cortisol levels and heart rates were increased in both groups, although significant increased of cortisol levels and heart rates more in EVA as compared to hill running crew members. Conclusion: Further study is required on large scale taken into account of limitations of this study and including other physiological and psychological parameters in Mars analog environment. PMID:22754877

  15. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2010-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new concept of operations will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), the Japan Aerospace Exploration Agency's (JAXA's) H-II Transfer Vehicle (HTV) and the Boeing Delta IV Heavy (DIV-H). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  16. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Blome, Elizabeth; Tetsuya, Sakashita

    2011-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new operations concept will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), and the Japan Aerospace Exploration Agency's (JAXA s) H-II Transfer Vehicle (HTV). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  17. Apollo 16 astronauts in Apollo Command Module Mission Simulator

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).

  18. Astronauts Hoffman and Musgrave monitor Neutral Buoyancy Simulator training

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronauts Jeffrey A. Hoffman (far left) and F. Story Musgrave (second left) monitor a training session from consoles in the control room for the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC). Seen underwater in the NBS on the big screen and the monitors at the consoles is astronaut Thomas D. Akers. The three mission specialists, along with astronaut Kathryn C. Thornton, are scheduled to be involved in a total of five sessions of extravehicular activity (EVA) to service the Hubble Space Telescope (HST) in orbit during the STS-61 mission, scheduled for December 1993.

  19. Human Research Program Human Health Countermeasures Element Extravehicular Activity (EVA) Risk Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Norfleet, William; Harris, Bernard

    2009-01-01

    The Extravehicular Activity (EVA) Risk Standing Review Panel (SRP) was favorably impressed by the operational risk management approach taken by the Human Research Program (HRP) Integrated Research Plan (IRP) to address the stated life sciences issues. The life sciences community at the Johnson Space Center (JSC) seems to be focused on operational risk management. This approach is more likely to provide risk managers with the information they need at the time they need it. Concerning the information provided to the SRP by the EVA Physiology, Systems, and Performance Project (EPSP), it is obvious that a great deal of productive activity is under way. Evaluation of this information was hampered by the fact that it often was not organized in a fashion that reflects the "Gaps and Tasks" approach of the overall Human Health Countermeasures (HHC) effort, and that a substantial proportion of the briefing concerned subjects that, while interesting, are not part of the HHC Element (e.g., the pressurized rover presentation). Additionally, no information was provided on several of the tasks or how they related to work underway or already accomplished. This situation left the SRP having to guess at the efforts and relationship to other elements, and made it hard to easily map the EVA Project efforts currently underway, and the data collected thus far, to the gaps and tasks in the IRP. It seems that integration of the EPSP project into the HHC Element could be improved. Along these lines, we were concerned that our SRP was split off from the other participating SRPs at an early stage in the overall agenda for the meeting. In reality, the concerns of EPSP and other projects share much common ground. For example, the commonality of the concerns of the EVA and exercise physiology groups is obvious, both in terms of what reduced exercise capacity can do to EVA capability, and how the exercise performed during an EVA could contribute to an overall exercise countermeasure prescription.

  20. A vision system planner for increasing the autonomy of the Extravehicular Activity Helper/Retriever

    NASA Technical Reports Server (NTRS)

    Magee, Michael

    1993-01-01

    The Extravehicular Activity Retriever (EVAR) is a robotic device currently being developed by the Automation and Robotics Division at the NASA Johnson Space Center to support activities in the neighborhood of the Space Shuttle or Space Station Freedom. As the name implies, the Retriever's primary function will be to provide the capability to retrieve tools and equipment or other objects which have become detached from the spacecraft, but it will also be able to rescue a crew member who may have become inadvertently de-tethered. Later goals will include cooperative operations between a crew member and the Retriever such as fetching a tool that is required for servicing or maintenance operations. This paper documents a preliminary design for a Vision System Planner (VSP) for the EVAR that is capable of achieving visual objectives provided to it by a high level task planner. Typical commands which the task planner might issue to the VSP relate to object recognition, object location determination, and obstacle detection. Upon receiving a command from the task planner, the VSP then plans a sequence of actions to achieve the specified objective using a model-based reasoning approach. This sequence may involve choosing an appropriate sensor, selecting an algorithm to process the data, reorienting the sensor, adjusting the effective resolution of the image using lens zooming capability, and/or requesting the task planner to reposition the EVAR to obtain a different view of the object. An initial version of the Vision System Planner which realizes the above capabilities using simulated images has been implemented and tested. The remaining sections describe the architecture and capabilities of the VSP and its relationship to the high level task planner. In addition, typical plans that are generated to achieve visual goals for various scenarios are discussed. Specific topics to be addressed will include object search strategies, repositioning of the EVAR to improve the

  1. A fuel cell energy storage system for Space Station extravehicular activity

    NASA Technical Reports Server (NTRS)

    Rosso, Matthew J., Jr.; Adlhart, Otto J.; Marmolejo, Jose A.

    1988-01-01

    The development of a fuel cell energy storage system for the Space Station Extravehicular Mobility Unit (EMU) is discussed. The ion-exchange membrane fuel cell uses hydrogen stored as a metal hydride. Several features of the hydrogen-oxygen fuel cell are examined, including its construction, hydrogen storage, hydride recharge, water heat, water removal, and operational parameters.

  2. Continued Advancement of Supported Liquid Membranes for Carbon Dioxide Control in Extravehicular Activity Applications

    NASA Technical Reports Server (NTRS)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda

    2015-01-01

    The development of a new, robust, portable life support system (PLSS) is a high priority for NASA in order to support longer and safer extravehicular activity (EVA) missions. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. Although the Metal Oxide (MetOx) canister has historically performed very well, it has a finite CO2 adsorption capacity. Therefore, the size and weight of the unit would have to be increased to extend EVA times. Consequently, new CO2 control technologies must be developed in order to meet mission objectives without increasing the size of the PLSS. Recent work has centered on sorbents that can be regenerated during the EVA; however, this strategy increases the system complexity and power consumption. A much simpler approach is to employ a membrane that vents CO2 to space and retains oxygen (O2). A membrane has many advantages over current technology: it is a continuous system with no limit on capacity, it requires no consumables, and it does not need any hardware to switch beds between absorption and regeneration. Unfortunately, conventional gas separation membranes do not have the needed selectivity for use in the PLSS. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous material filled with a liquid that selectively reacts with CO2 over O2. In a recently completed Phase II SBIR project, Reaction Systems, Inc. achieved the required CO2 permeance and selectivity with an SLM in a flat sheet configuration. This paper describes work to convert the SLM into a more compact form and to scale it up to handle more representative process flow rates.

  3. Advanced Supported Liquid Membranes for CO2 Control in Extravehicular Activity Applications

    NASA Technical Reports Server (NTRS)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda

    2014-01-01

    Developing a new, robust, portable life support system (PLSS) is currently a high priority for NASA in order to support longer and safer extravehicular activity (EVA) missions. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. Although the Metal Oxide (MetOx) canister has worked well, it has a finite CO2 adsorption capacity. Consequently, the unit would have to be larger and heavier to extend EVA times. Therefore, new CO2 control technologies must be developed to meet mission objectives without increasing the size of the PLSS. Although recent work has centered on sorbents that can be regenerated during the EVA, this strategy increases the system complexity and power consumption. A simpler approach is to use a membrane that selectively vents CO2 to space. A membrane has many advantages over current technology: it is a continuous system with no theoretical capacity limit, it requires no consumables, and it requires no hardware for switching beds between absorption and regeneration. Unfortunately, conventional gas separation membranes do not have adequate selectivity for use in the PLSS. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a micro porous material filled with a liquid that selectively reacts with CO2 over oxygen (O2). In a current Phase II SBIR project, Reaction Systems has developed a new reactive liquid, which has effectively zero vapor pressure making it an ideal candidate for use in an SLM. The SLM function has been demonstrated with representative pressures of CO2, O2, and water (H2O). In addition to being effective for CO2 control, the SLM also vents moisture to space. Therefore, this project has demonstrated the feasibility of using an SLM to control CO2 in an EVA application. 1 President

  4. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity

    NASA Astrophysics Data System (ADS)

    Skedina, M. A.; Katuntsev, V. P.; Buravkova, L. B.; Naidina, V. P.

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p < 0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  5. Method of Separating Oxygen From Spacecraft Cabin Air to Enable Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2013-01-01

    Extravehicular activities (EVAs) require high-pressure, high-purity oxygen. Shuttle EVAs use oxygen that is stored and transported as a cryogenic fluid. EVAs on the International Space Station (ISS) presently use the Shuttle cryo O2, which is transported to the ISS using a transfer hose. The fluid is compressed to elevated pressures and stored as a high-pressure gas. With the retirement of the shuttle, NASA has been searching for ways to deliver oxygen to fill the highpressure oxygen tanks on the ISS. A method was developed using low-pressure oxygen generated onboard the ISS and released into ISS cabin air, filtering the oxygen from ISS cabin air using a pressure swing absorber to generate a low-pressure (high-purity) oxygen stream, compressing the oxygen with a mechanical compressor, and transferring the high-pressure, high-purity oxygen to ISS storage tanks. The pressure swing absorber (PSA) can be either a two-stage device, or a single-stage device, depending on the type of sorbent used. The key is to produce a stream with oxygen purity greater than 99.5 percent. The separator can be a PSA device, or a VPSA device (that uses both vacuum and pressure for the gas separation). The compressor is a multi-stage mechanical compressor. If the gas flow rates are on the order of 5 to 10 lb (.2.3 to 4.6 kg) per day, the compressor can be relatively small [3 16 16 in. (.8 41 41 cm)]. Any spacecraft system, or other remote location that has a supply of lowpressure oxygen, a method of separating oxygen from cabin air, and a method of compressing the enriched oxygen stream, has the possibility of having a regenerable supply of highpressure, high-purity oxygen that is compact, simple, and safe. If cabin air is modified so there is very little argon, the separator can be smaller, simpler, and use less power.

  6. Advanced Supported Liquid Membranes for CO2 Control in Extravehicular Activity Applications

    NASA Technical Reports Server (NTRS)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda

    2014-01-01

    Developing a new, robust, portable life support system (PLSS) is currently a high priority for NASA in order to support longer and safer extravehicular activity (EVA) missions. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. Although the Metal Oxide (MetOx) canister has worked well, it has a finite CO2 adsorption capacity. Consequently, the unit would have to be larger and heavier to extend EVA times. Therefore, new CO2 control technologies must be developed to meet mission objectives without increasing the size of the PLSS. Although recent work has centered on sorbents that can be regenerated during the EVA, this strategy increases the system complexity and power consumption. A simpler approach is to use a membrane that selectively vents CO2 to space. A membrane has many advantages over current technology: it is a continuous system with no theoretical capacity limit, it requires no consumables, and it requires no hardware for switching beds between absorption and regeneration. Unfortunately, conventional gas separation membranes do not have adequate selectivity for use in the PLSS. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a micro porous material filled with a liquid that selectively reacts with CO2 over oxygen (O2). In a current Phase II SBIR project, Reaction Systems has developed a new reactive liquid, which has effectively zero vapor pressure making it an ideal candidate for use in an SLM. The SLM function has been demonstrated with representative pressures of CO2, O2, and water (H2O). In addition to being effective for CO2 control, the SLM also vents moisture to space. Therefore, this project has demonstrated the feasibility of using an SLM to control CO2 in an EVA application.

  7. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Mesloh, Miranda; Thompson, Shelby; England, Scott; Benson, Liz

    2009-01-01

    With the new vision of space travel aimed at traveling back to the Moon and eventually to Mars, NASA is designing a new spacesuit glove. The purpose of this study was to baseline hand strength while wearing the current Extravehicular Activity (EVA) glove, the Phase VI. By varying the pressure in the glove, hand strength could be characterized as a function of spacesuit pressure. This finding is of extreme importance when evaluating missions that require varying suit pressures associated with different operations within NASA's current human spaceflight program, Constellation. This characterization fed directly into the derivation of requirements for the next EVA glove. This study captured three types of maximum hand strength: grip, lateral pinch, and pulp-2 pinch. All three strengths were measured under varying pressures and compared to a bare-hand condition. The resulting standardized data was reported as a percentage of the bare-hand strength. The first wave of tests was performed while the subjects, four female and four male, were wearing an Extravehicular Mobility Unit (EMU) suit supported by a suit stand. This portion of the test collected data from the barehand, suited unpressurized, and suited pressurized (4.3 psi) conditions. In addition, the effects of the Thermal Micrometeoroid Garment (TMG) on hand strength were examined, with the suited unpressurized and pressurized cases tested with and without a TMG. It was found that, when pressurized and with the TMG, the Phase VI glove reduced applied grip strength to a little more than half of the subject s bare-hand strength. The lateral pinch strength remained relatively constant while the pulp-2 pinch strength actually increased with pressure. The TMG was found to decrease maximum applied grip strength by an additional 10% for both pressurized and unpressurized cases, while the pinch strengths saw little to no change. In developing requirements based on human subjects, it is important to attempt to derive

  8. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Seminole Native American Veterans serve as color guard during a pre-launch Native American ceremony at the Rocket Garden in the KSC Visitor Complex. David Nunez, U.S. Navy, carries the State of Florida Flag; David Stephen Bowers, U.S. Army, carries the Flag of the United States of America; Charles Billie Hiers, U.S. Marine Corps., carries the Seminole Tribe of Florida Flag. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  9. Extravehicular Mobility Unit Training Suit Symptom Study Report

    NASA Technical Reports Server (NTRS)

    Strauss, Samuel

    2004-01-01

    The purpose of this study was to characterize the symptoms and injuries experienced by NASA astronauts during extravehicular activity (space walk) spacesuit training at the Neutral Buoyancy Laboratory at Ellington Field, Houston, Texas. We identified the frequency and incidence rates of symptoms by each general body location and characterized mechanisms of injury and effective countermeasures. Based on these findings a comprehensive list of recommendations was made to improve training, test preparation, and current spacesuit components, and to design the next -generation spacesuit. At completion of each test event a comprehensive questionnaire was produced that documented suit symptom comments, identified mechanisms of injury, and recommended countermeasures. As we completed our study we found that most extravehicular mobility unit suit symptoms were mild, self-limited, and controlled by available countermeasures. Some symptoms represented the potential for significant injury with short- and long-term consequences regarding astronaut health and interference with mission objectives. The location of symptoms and injuries that were most clinically significant was in the hands, shoulders, and feet. Correction of suit symptoms issues will require a multidisciplinary approach to improve prevention, early medical intervention, astronaut training, test planning, and suit engineering.

  10. Astronaut Russell Schweickart wears EMU and PLSS for countdown test

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot of the Apollo 9 prime crew, wears the extravehicular mobility unit (EMU) which he will use during his scheduled Apollo 9 extravehicular activity. In addition to the space suit and bubble helmet, the EMU also includes a portable life support system (PLSS) back pack, an Oxygen Purge System (seen atop the PLSS), and a Remote Control Unit on his chest. When this photograph was taken, Schweickart was suited up to participate in an Apollo 9 Countdown Demonstration Test.

  11. Experiences with Extra-Vehicular Activities in Response to Critical ISS Contingencies

    NASA Technical Reports Server (NTRS)

    Van Cise, E. A.; Kelly, B. J.; Radigan, J. P.; Cranmer, C. W.

    2016-01-01

    The maturation of the International Space Station (ISS) design from the proposed Space Station Freedom to today's current implementation resulted in external hardware redundancy vulnerabilities in the final design. Failure to compensate for or respond to these vulnerabilities could put the ISS in a posture to where it could no longer function as a habitable space station. In the first years of ISS assembly, these responses were to largely be addressed by the continued resupply and Extra-Vehicular Activity (EVA) capabilities of the Space Shuttle. Even prior to the decision to retire the Space Shuttle, it was realized that ISS needed to have its own capability to be able to rapidly repair or replace external hardware without needing to wait for the next cargo resupply mission. As documented in a previous publicatoin5, in 2006 development was started to baseline Extra- Vehicular Activity (EVA, or spacewalk) procedures to replace hardware components whose failure would expose some of the ISS vulnerabilities should a second failure occur. This development work laid the groundwork for the onboard crews and the ground operations and engineering teams to be ready to replace any of this failed hardware. In 2010, this development work was put to the test when one of these pieces of hardware failed. This paper will provide a brief summary of the planning and processes established in the original Contingency EVA development phase. It will then review how those plans and processes were implemented in 2010, highlighting what went well as well as where there were deficiencies between theory and reality. This paper will show that the original approach and analyses, though sound, were not as thorough as they should have been in the realm of planning for next worse failures, for documenting Programmatic approval of key assumptions, and not pursuing sufficient engineering analysis prior to the failure of the hardware. The paper will further highlight the changes made to the

  12. Use of Intermittent Recompression and Nitrox Breathing Mixtures during Lunar Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Gernhardt, M.L.; Abercromby, A.F.

    2009-01-01

    INTRODUCTION: NASA's plans for lunar surface exploration include pressurized suitport rovers that are quickly ingressed and egressed with minimal consumables losses. This capability enables crewmembers to perform multiple short extravehicular activities (EVAs) at different locations in a single day versus a single 8-hr EVA. Modeling work and empirical human and animal data indicate that intermittent recompressions between EVA suit pressure and cabin pressure reduce decompression stress. Savings in crew time and gas losses may also be achieved if the N2 purge is shortened to 2 minutes, achieving 80% O2 (vs. 8 minutes, 95% O2). METHODS: A validated Tissue Bubble Dynamics Model was used to predict decompression stress using 80% and 95% O2 breathing mixtures during 3 x 2-hr EVAs (4.3 PSIA) with 1hr recompressions back to 8.0 PSIA (32% O2) versus a single 8-hr EVA. 15 minutes was spent at 6.0 PSIA before depressurizations to 4.3 PSIA; initial EVA tasks could be performed during this time. Model validation was based on significant prediction (p<0.001) and goodness of fit with 84 cases of DCS in 668 altitude exposures (McFadden s rho-squared=0.214). RESULTS: A 2.2% predicted increase in DCS risk due to the shortened purge is more than compensated for by a predicted 2.5% reduction in DCS risk due to intermittent recompression. 15 minutes at 80% O2, 6.0 PSIA prior to a 4.3 PSIA EVA prevents supersaturation in the brain and spinal cord (5-10 minute half-time compartments) and reduces tissue tensions in 40 min compartments, where most of the body s inert gas is located, to approximately the same levels (4.39 vs 4.00 PSIA) as achieved during a 40 min 95% O2 prebreathe at 10.2 PSIA. CONCLUSIONS: Intermittent recompressions between lunar EVAs may enable reductions in suit purge and prebreathe requirements, decompression stress, and/or suit operating pressures.

  13. Li-Ion Battery and Supercapacitor Hybrid Design for Long Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2013-01-01

    With the need for long periods of extravehicular activities (EVAs) on the Moon or Mars or a near-asteroid, the need for long-performance batteries has increased significantly. The energy requirements for the EVA suit, as well as surface systems such as rovers, have increased significantly due to the number of applications they need to power at the same time. However, even with the best state-of-the-art Li-ion batteries, it is not possible to power the suit or the rovers for the extended period of performance. Carrying a charging system along with the batteries makes it cumbersome and requires a self-contained power source for the charging system that is usually not possible. An innovative method to charge and use the Li-ion batteries for long periods seems to be necessary and hence, with the advent of the Li-ion supercapacitors, a method has been developed to extend the performance period of the Li-ion power system for future exploration applications. The Li-ion supercapacitors have a working voltage range of 3.8 to 2.5 V, and are different from a traditional supercapacitor that typically has a working voltage of 1 V. The innovation is to use this Li-ion supercapacitor to charge Liion battery systems on an as-needed basis. The supercapacitors are charged using solar arrays and have battery systems of low capacity in parallel to be able to charge any one battery system while they provide power to the application. Supercapacitors can safely take up fast charge since the electrochemical process involved is still based on charge separation rather than the intercalation process seen in Li-ion batteries, thus preventing lithium metal deposition on the anodes. The lack of intercalation and eliminating wear of the supercapacitors allows for them to be charged and discharged safely for a few tens of thousands of cycles. The Li-ion supercapacitors can be charged from the solar cells during the day during an extended EVA. The Liion battery used can be half the capacity

  14. Astronaut hazard during free-flight polar EVA

    NASA Technical Reports Server (NTRS)

    Hall, W. N.

    1985-01-01

    Extravehicular Activity (EVA) during Shuttle flights planned for the late 1980's includes several factors which together may constitute an astronaut hazard. Free-flight EVA is planned whereas prior United States Earth orbit EVA has used umbilical tethers carrying communications, coolant, and oxygen. EVA associated with missions like LANDSAT Retrieval will be in orbits through the auroral oval where charging of spacecraft may occur. The astronaut performing free flight EVA constitutes an independent spacecraft. The astronaut and the Shuttle make up a system of electrically isolated spacecraft with a wide disparity in size. Unique situations, such as the astronaut being in the wake of the Shuttle while traversing an auroral disturbance, could result in significant astronaut and Shuttle charging. Charging and subsequent arc discharge are important because they have been associated with operating upsets and even satellite failure at geosynchronous orbit. Spacecraft charging theory and experiments are examined to evaluate charging for Shuttle size spacecraft in the polar ionosphere.

  15. Astronaut John Young drives Lunar Roving Vehicle to final parking place

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, drives the Lunar Roving Vehicle (LRV) to its final parking place near the end of the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. Astronaut Charles M. Duke Jr., lunar module pilot, took this photograph looking southward. The flank of Stone Mountain can be seen on the horizon at left.

  16. Astronaut John Young leaps from lunar surface as he salutes U.S. flag

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. flag during the first Apollo 16 extravehicular activity (EVA-1) on the Moon, as seen in this reproduction taken from a color transmission made by the color TV camera mounted on the Lunar Roving Vehicle. Astronaut Charles M. Duke Jr., lunar module pilot, is standing in the background.

  17. Astronaut John Young at LRV prior to deployment of ALSEP during first EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of Apollo 16, is at the Lunar Roving Vehicle (LRV), just prior to deployment of the Apollo Lunar Surface Experiment Package (ALSEP) during the first extravehicular activity (EVA-1), on April 21, 1972. Note Ultraviolet Camera/Spectrometer at right of Lunar Module (LM) ladder. Also note pile of protective/thermal foil under the U.S. flag on the LM which the astronauts pulled away to get to the Modular Equipment Stowage Assembly (MESA) bay.

  18. Astronaut John Young reaches for tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, reaches for tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. This view is looking south from the base of Stone Mountain.

  19. Astronaut John Young replaces tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, replaces tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Smoky Mountain, with the large Ravine crater on its flank, is in the left background. This view is looking northeast.

  20. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  1. Development of a prototype movement assistance system for extravehicular activity gloves

    NASA Astrophysics Data System (ADS)

    Hill, Tyler N.

    Spacesuits utilized a rubberized layer of material to contain a pressurized atmosphere to facilitate respiration and maintain the physiologic functions of the astronaut residing within. However, the elasticity of the material makes it resistant to deformation increasing the amount of work required during movement. This becomes particularly fatiguing for the muscle groups controlling the motion of the hands and fingers. To mitigate this a robotic system was proposed and developed. The system built upon previous concepts and prototypes discovered through research efforts. It utilized electric motors to pull the index, ring, and middle fingers of the right hand closed, ideally overcoming the resistive force posed by the pressurized elastic material. The effect of the system was determined by comparing qualitative and quantitative data obtained during activities conducted with and without it within a glove box. It was found that the system was able to offload some of this elastic force though several characteristics of the design limited the full potential this device offered. None the less, the project was met with success and provides a solid platform for continued research and development.

  2. Astronaut Harrison Schmitt next to deployed U.S. flag on lunar surface

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison Schmitt, Apollo 17 lunar module pilot, is photographed next to the U.S. flag during extravehicular activity (EVA) of NASA's final lunar landing mission in the Apollo series. The photo was taken at the Taurus-Littrow landing site. The highest part of the flag appears to point toward our planet earth in the distant background.

  3. Underwater EVA training in the WETF with astronaut Robert L. Stewart

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Underwater extravehicular activity (EVA) training in the weightless environment training facility (WETF) with astronaut Robert L. Stewart. Stewart is simulating a planned EVA using the mobile foot restraint device and a one-G version of the Canadian-built remote manipulator system.

  4. Astronauts Joseph Allen rides cherry picker over stowage area/work station

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Joseph P. Allen rides a cherry picker over to a stowage area/work station to wrap up extravehicular activity (EVA) duties above Earth. The cherry picker is a union of the mobile foot restraint and the remote manipulator system (RMS), controlled from inside Discovery's cabin. The Westar VI/PAM-D satellite is pictured secured in Discovery's cargo bay.

  5. Non-Invasive UWB Sensing of Astronauts' Breathing Activity

    PubMed Central

    Baldi, Marco; Cerri, Graziano; Chiaraluce, Franco; Eusebi, Lorenzo; Russo, Paola

    2015-01-01

    The use of a UWB system for sensing breathing activity of astronauts must account for many critical issues specific to the space environment. The aim of this paper is twofold. The first concerns the definition of design constraints about the pulse amplitude and waveform to transmit, as well as the immunity requirements of the receiver. The second issue concerns the assessment of the procedures and the characteristics of the algorithms to use for signal processing to retrieve the breathing frequency and respiration waveform. The algorithm has to work correctly in the presence of surrounding electromagnetic noise due to other sources in the environment. The highly reflecting walls increase the difficulty of the problem and the hostile scenario has to be accurately characterized. Examples of signal processing techniques able to recover breathing frequency in significant and realistic situations are shown and discussed. PMID:25558995

  6. Non-invasive UWB sensing of astronauts' breathing activity.

    PubMed

    Baldi, Marco; Cerri, Graziano; Chiaraluce, Franco; Eusebi, Lorenzo; Russo, Paola

    2014-12-30

    The use of a UWB system for sensing breathing activity of astronauts must account for many critical issues specific to the space environment. The aim of this paper is twofold. The first concerns the definition of design constraints about the pulse amplitude and waveform to transmit, as well as the immunity requirements of the receiver. The second issue concerns the assessment of the procedures and the characteristics of the algorithms to use for signal processing to retrieve the breathing frequency and respiration waveform. The algorithm has to work correctly in the presence of surrounding electromagnetic noise due to other sources in the environment. The highly reflecting walls increase the difficulty of the problem and the hostile scenario has to be accurately characterized. Examples of signal processing techniques able to recover breathing frequency in significant and realistic situations are shown and discussed.

  7. View of astronaut Jack Lousma in the Shuttle spacesuits (EMU) at bldg 29

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Portrait view of astronaut Jack Lousma in the Extravehicular Mobility Unit (EMU) at bldg 29 Weightless Environment Training Facility (WETF). He is wearing the full extravehicular mobility unit and is standing on platform about to be lowered into the water.

  8. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives in Fiscal Year 2011

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Jennings, Mallory A.; Lamberth, Erika Guillory

    2012-01-01

    NASA's goals to send humans beyond low Earth orbit will involve the need for a strong engineering workforce. Research indicates that student interest in science, technology, engineering, and math (STEM) areas is on the decline. According to the Department of Education, the United States President has mandated that 100,000 educators be trained in STEM over the next decade to reduce this trend. NASA has aligned its Education and Public Outreach (EPO) initiatives to include emphasis in promoting STEM. The Extravehicular Activity (EVA) Systems Project Office at the NASA Johnson Space Center actively supports this NASA initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for exploration missions. This paper summarizes the EVA Systems EPO efforts and metrics from fiscal year 2011.

  9. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives in Fiscal Year 2011

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Lamberth, Erika Guillory

    2011-01-01

    NASA's goals to send humans beyond low Earth orbit will involve the need for a strong engineering workforce. Research indicates that student interest in science, technology, engineering, and math (STEM) areas is on the decline. According to the Department of Education, the United States President has mandated that 100,000 educators be trained in STEM over the next decade to reduce this trend. NASA has aligned its Education and Public Outreach (EPO) initiatives to include emphasis in promoting STEM. The Extravehicular Activity (EVA) Systems Project Office at the NASA Johnson Space Center actively supports this NASA initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for exploration missions. This paper summarizes the EVA Systems EPO efforts and metrics from fiscal year 2011.

  10. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Extravehicular Activity Applications

    NASA Technical Reports Server (NTRS)

    Wickham, David T. (Inventor); Gleason, Kevin J. (Inventor); Cowley, Scott W. (Inventor)

    2015-01-01

    There is disclosed a portable life support system with a component for removal of at least one selected gas. In an embodiment, the system includes a supported liquid membrane having a first side and a second side in opposition to one another, the first side configured for disposition toward an astronaut and the second side configured for disposition toward a vacuum atmosphere. The system further includes an ionic liquid disposed between the first side and the second side of the supported liquid membrane, the ionic liquid configured for removal of at least one selected gas from a region housing the astronaut adjacent the first side of the supported liquid membrane to the vacuum atmosphere adjacent the second side of the supported liquid membrane. Other embodiments are also disclosed.

  11. The Effects of Terrain and Navigation on Human Extravehicular Activity Walkback Performance on the Moon

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Stroud, Leah C.; Schaffner, Grant; Glass, Brian J.; Lee, Pascal C.; Jones, Jeff A.; Gernhardt, Michael L.

    2008-01-01

    Results of the EVA Walkback Test showed that 6 male astronauts were able to ambulate 10 km on a level treadmill while wearing a prototype EVA suit in simulated lunar gravity. However, the effects of lunar terrain, topography, and real-time navigation on ambulation performance are unknown. Primary objective: To characterize the effect of lunar-like terrain and navigation on VO2 and distance traveled during an unsuited 10 km (straight-line distance) ambulatory return in earth gravity.

  12. Conceptual design of an astronaut hand anthropometry device

    NASA Technical Reports Server (NTRS)

    Mcmahan, Robert

    1993-01-01

    In a microgravity environment, fluid equalizes throughout the body, causing the upper body to swell. This causes the hands to swell which can cause problems for astronauts trying to do work in pressurized EVA (extravehicular activity) gloves. To better design these gloves, accurate measurements of the astronauts swollen hands are needed. Five concepts were developed in this report from an original field of 972 possible concepts. These five concepts were based on mold impression, ultrasound, laser topography, white light photography, and video imaging. From a decision matrix based on nine weighted criteria, the video imaging technique was found to be the best design to pursue.

  13. Exercise-training protocols for astronauts in microgravity

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bulbulian, R.; Bernauer, E. M.; Haskell, W. L.; Moore, T.

    1989-01-01

    Based on physical working requirements for astronauts during intra- and extravehicular activity and on the findings from bed-rest studies that utilized exercise training as a countermeasure for the reduction of aerobic power, deterioration of muscular strength and endurance, decrements in mood and cognitive performance, and possibly for bone loss, two exercise protocols are proposed. One assumes that, during microgravity, astronaut exercise physiological functions should be maintained at 100 percent of ground-based levels. The other assumes that maximal aerobic power in flight can be reduced by 10 percent of the ground-based level.

  14. Astronaut Harrison Schmitt collects lunar rake samples during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt collects lunar rake samples at Station 1 during the first Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site. This picture was taken by Astronaut Eugene Cernan, Apollo 17 commander. Schmitt is the lunar module pilot. The lunar rake, an Apollo lunar geology hand tool, is used to collect discrete samples of rocks and rock chips ranging in size from one-half inch (1.3 cm) to one inch (2.5 cm).

  15. Astronaut tool development: An orbital replaceable unit-portable handhold

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.

    1989-01-01

    A tool to be used during astronaut Extra-Vehicular Activity (EVA) replacement of spent or defective electrical/electronic component boxes is described. The generation of requirements and design philosophies are detailed, as well as specifics relating to mechanical development, interface verifications, testing, and astronaut feedback. Findings are presented in the form of: (1) a design which is universally applicable to spacecraft component replacement, and (2) guidelines that the designer of orbital replacement units might incorporate to enhance spacecraft on-orbit maintainability and EVA mission safety.

  16. Astronaut John Young leaps from lunar surface to salute flag

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. Flag at the Descartes landing site during the first Apollo 16 extravehicular activity (EVA-1). Astronaut Charles M. Duke Jr., lunar module pilot, took this picture. The Lunar Module (LM) 'Orion' is on the left. The Lunar Roving Vehicle is parked beside the LM. The object behind Young in the shade of the LM is the Far Ultraviolet Camera/Spectrograph. Stone Mountain dominates the background in this lunar scene.

  17. Astronaut James Irwin keeps Lunar Roving Vehicle from sliding downhill

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, holds the Lunar Roving Vehicle from sliding downhill during the second Apollo 15 lunar surface extravehicular activity. Apparently, both of the Rover's rear wheels are off the ground. The Rover was parked facing downhill on a 15 to 20 degree slope. Astronaut David R. Scott, commander, took this photograph. Scott was performing other tasks while Irwin held the Rover. They were parked at a 'fresh' crater on the Apennine Front (Hadley Delta Mountain) slope. In the foreground a lunar rake lies atop a mound.

  18. Advanced Extravehicular Mobility Unit Informatics Software Design

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.

  19. Challenges in the development of the shuttle extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Mcmann, H. J.; Mcbarron, J. W., II

    1985-01-01

    The development of the Shuttle extravehicular mobility unit (EMU) has required significant technology advances in the design of the astronaut life support system and space-suit assembly. The life support system and space-suit assemblies are integrated into a single system and optimized for the primary function of supporting astronaut extravehicular operations. Rather than accommodating a limited, male-only astronaut population, the EMU must satisfy size requirements for both males and females with a minimum of sized parts. In addition, the Shuttle EMU has been designed to implement Space Shuttle Program philosophy of long operating life and mission reuse capability to minimize program lifetime cost. The advancement in life support system and space-suit technology achieved by the development of the Shuttle extravehicular mobility unit (EMU) is illustrated by comparison with the requirements for and the design features of the Apollo EMU.

  20. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Chickasaw Dance troupe member Tim Harjo (second from left) leads Joyce and James Herrington in a dance honoring their son, STS-113 Mission Specialist John Herrington. The dance was part of a Native American ceremony at the Rocket Garden in the KSC Visitor Complex commemorating Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission.

  1. Astronaut Frank Culbertson takes notes about mission activity on flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On Discovery's aft flight deck, Astronaut Frank L. Culbertson Jr., mission commander, takes notes about mission activity. Culbertson is wearing sun glasses to block sun glare from the overhead window.

  2. A life devoted to astronautics. Dr. Olgierd Wołczek (1922-1982)—Biographical remarks and scientific activity in astronautics and space physics

    NASA Astrophysics Data System (ADS)

    Subotowicz, M.

    Dr. Olgierd Wołczek died in August, 1982 in Warsaw. From 1971 he edited the scientific-popular Polish bimonthly Astronautyka and also, from 1973, the scientific journal of the Polish Astronautical Society (PAS) "Postȩpy Astronautyki" (Progresses in Astronautics). He was one of the founders of PAS (1954), then its General Secretary for 10 years, and later the deputy of the President of PAS for 15 years. He was very active also in the field of the scientific research in astronautics and space physics. The scope and width of his knowledge can be seen in his 22 books and 34 papers on astronautics and space physics, 10 books and 14 papers on nuclear physics and other subjects. He published also several hundred papers in popular journals, and took part several hundred times in radio and television programmes. His PhD-degree (1963) was based on his research in nuclear spectroscopy. But astronautics became the main interest and aim of his life. He was corresponding member of the IAA in Paris, and a member of several IAA and IAF committees, spoke at more than 20 IAF Congresses and was an honorary member of several foreign astronautical societies. Dealing with almost all astronautics and space physics on popular level, his scientific activity of qualitative character can be placed in four subjects: (1) nuclear energy in rocketry; (2) impact of astronautics on science, our civilization and mankind; various non-selected problems in astronautics; (3) evolution of matter in the Universe; planetology; (4) life in the Universe. During his several last years Dr. Wołczek was dealing mainly with subjects (3) and (4). Scientific papers of Dr. Wołczek according to the above classification are reviewed. A full list of Dr. Wołczek's scientific papers are included.

  3. STS-111 Astronaut Perrin Performs Extra Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).

  4. Astronaut Dunbar adjusts CCA before donning EMU helmet in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Astronaut Bonnie J. Dunbar, wearing extravehicular mobility unit (EMU), adjusts the communications carrier assembly (CCA) ('Snoopy' cap) microphones before donning EMU helmet. Dunbar is preparing for an underwater simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. When fully suited, Dunbar will be lowered into the pool to rehearse planned and contingency extravehicular activities (EVAs). NOTE: Since this photograph was taken, Dunbar has been named as the payload commander (PLC) for STS-50 United States Microgravity Laboratory 1 (USML-1) mission aboard Columbia, Orbiter Vehicle (OV) 102.

  5. Proton and Electron Threshold Energy Measurements for Extravehicular Activity Space Suits. Chapter 2

    NASA Technical Reports Server (NTRS)

    Moyers, M. F.; Nelson, G. D.; Saganti, P. B.

    2003-01-01

    Construction of ISS will require more than 1000 hours of EVA. Outside of ISS during EVA, astronauts and cosmonauts are likely to be exposed to a large fluence of electrons and protons. Development of radiation protection guidelines requires the determination of the minimum energy of electrons and protons that penetrate the suits at various locations. Measurements of the water-equivalent thickness of both US. and Russian EVA suits were obtained by performing CT scans. Specific regions of interest of the suits were further evaluated using a differential range shift technique. This technique involved measuring thickness ionization curves for 6-MeV electron and 155-MeV proton beams with ionization chambers using a constant source-to-detector distance. The thicknesses were obtained by stacking polystyrene slabs immediately upstream of the detector. The thicknesses of the 50% ionizations relative to the maximum ionizations were determined. The detectors were then placed within the suit and the stack thickness adjusted until the 50% ionization was reestablished. The difference in thickness between the 50% thicknesses was then used with standard range-energy tables to determine the threshold energy for penetration. This report provides a detailed description of the experimental arrangement and results.

  6. Astronaut Charles M. Duke, Jr., in shadow of Lunar Module behind ultraviolet camera

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Charles M. Duke, Jr., lunar module pilot, stands in the shadow of the Lunar Module (LM) behind the ultraviolet (UV) camera which is in operation. This photograph was taken by astronaut John W. Young, mission commander, during the mission's second extravehicular activity (EVA-2). The UV camera's gold surface is designed to maintain the correct temperature. The astronauts set the prescribed angles of azimuth and elevation (here 14 degrees for photography of the large Magellanic Cloud) and pointed the camera. Over 180 photographs and spectra in far-ultraviolet light were obtained showing clouds of hydrogen and other gases and several thousand stars. The United States flag and Lunar Roving Vehicle (LRV) are in the left background. While astronauts Young and Duke descended in the Apollo 16 Lunar Module (lm) 'Orion' to explore the Descartes highlands landing site on the Moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (csm) 'Casper' in lunar orbit.

  7. Human performance profiles for planetary analog extra-vehicular activities: 120 day and 30 day analog missions

    NASA Astrophysics Data System (ADS)

    Swarmer, Tiffany M.

    Understanding performance factors for future planetary missions is critical for ensuring safe and successful planetary extra-vehicular activities (EVAs). The goal of this study was to gain operational knowledge of analog EVAs and develop biometric profiles for specific EVA types. Data was collected for a 120 and 30 day analog planetary exploration simulation focusing on EVA type, pre and post EVA conditions, and performance ratings. From this five main types of EVAs were performed: maintenance, science, survey/exploratory, public relations, and emergency. Each EVA type has unique characteristics and performance ratings showing specific factors in chronological components, environmental conditions, and EVA systems that have an impact on performance. Pre and post biometrics were collected to heart rate, blood pressure, and SpO2. Additional data about issues and specific EVA difficulties provide some EVA trends illustrating how tasks and suit comfort can negatively affect performance ratings. Performance decreases were noted for 1st quarter and 3rd quarter EVAs, survey/exploratory type EVAs, and EVAs requiring increased fine and gross motor function. Stress during the simulation is typically higher before the EVA and decreases once the crew has returned to the habitat. Stress also decreases as the simulation nears the end with the 3rd and 4th quarters showing a decrease in stress levels. Operational components and studies have numerous variable and components that effect overall performance, by increasing the knowledge available we may be able to better prepare future crews for the extreme environments and exploration of another planet.

  8. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Mr. and Mrs. Sean O'Keefe (center) pose with officials of the Chickasaw Nation. Second from left is Lt. Gov. Jefferson Keel with his wife, Carol (far left). Second from right is Gov. Bill Anoatubby with his wife, Janice (far right). STS-113 Mission Specialist John Herrington is a tribally enrolled Chickasaw and the world's first Native American astronaut. Kennedy Space Center hosted more than 350 Native Americans in STS-113 prelaunch events surrounding the historic mission assignment of Herrington.

  9. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During an administrator's briefing at the IMAX 2 theatre, Lt. Gov. Jefferson Keel of the Chickasaw Nation (far left) presents a blanket with the seal of the Chickasaw Nation to NASA Administrator Sean O'Keefe (second from right). Next to O'Keefe is Chickasaw Gov. Bill Anoatubby. Next to Gov. Keel is Mrs. Laura O'Keefe. STS-113 Mission Specialist John Herrington is a tribally enrolled Chickasaw and the world's first Native American astronaut. Kennedy Space Center hosted more than 350 Native Americans in STS-113 prelaunch events surrounding the historic mission assignment of Herrington.

  10. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99 in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text chat communications, manipulation of procedureschecklists, cataloguingannotating images, scientific note taking, human-robot interaction, and control of suit andor other EVA systems.

  11. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants' mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99% in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text "chat" communications, manipulation of procedures/checklists, cataloguing/annotating images, scientific note taking, human-robot interaction, and control of suit and/or other EVA systems.

  12. Emergency medical support system for extravehicular activity training held at weightless environment test building (WETS) of the Japan Aerospace Exploration Agency (JAXA) : future prospects and a look back over the past decade.

    PubMed

    Nakajima, Isao; Tachibana, Masakazu; Ohashi, Noriyoshi; Imai, Hiroshi; Asari, Yasushi; Matsuyama, Shigenori

    2011-12-01

    The Japan Aerospace Exploration Agency (JAXA) provides extravehicular activity (EVA) training to astronauts in a weightless environment test building (WETS) located in Tsukuba City. For EVA training, Tsukuba Medial Center Hospital (TMCH) has established an emergency medical support system, serving as operations coordinator. Taking the perspective of emergency physicians, this paper provides an overview of the medical support system and examines its activities over the past decade as well as future issues. Fortunately, no major accident has occurred during the past 10 years of NBS. Minor complaints (external otitis, acute otitis media, transient dizziness, conjunctival inflammation, upper respiratory inflammation, dermatitis, abraded wounds, etc.) among the support divers have been addressed onsite by attending emergency physicians. Operations related to the medical support system at the WETS have proceeded smoothly for the former NASDA and continue to proceed without event for JAXA, providing safe, high-quality emergency medical services. If an accident occurs at the WETS, transporting the patient by helicopter following initial treatment by emergency physicians can actually exacerbate symptoms, since the procedure exposes a patient who was recently within a hyperbaric environment to the low-pressure environment involved in air transportation. If a helicopter is used, the flight altitude should be kept as low as possible by taking routes over the river.

  13. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  14. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  15. An Interactive Astronaut-Robot System with Gesture Control

    PubMed Central

    Liu, Jinguo; Luo, Yifan; Ju, Zhaojie

    2016-01-01

    Human-robot interaction (HRI) plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA) have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM) is employed to recognize hand gestures and particle swarm optimization (PSO) algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL) have been selected and used to test and validate the performance of the proposed system. PMID:27190503

  16. An Interactive Astronaut-Robot System with Gesture Control.

    PubMed

    Liu, Jinguo; Luo, Yifan; Ju, Zhaojie

    2016-01-01

    Human-robot interaction (HRI) plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA) have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM) is employed to recognize hand gestures and particle swarm optimization (PSO) algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL) have been selected and used to test and validate the performance of the proposed system.

  17. Alterations in the heart rate and activity rhythms of three orbital astronauts on a space mission

    NASA Astrophysics Data System (ADS)

    Liu, Zhizhen; Wan, Yufeng; Zhang, Lin; Tian, Yu; Lv, Ke; Li, Yinghui; Wang, Chunhui; Chen, Xiaoping; Chen, Shanguang; Guo, Jinhu

    2015-01-01

    Environmental factors in space are dramatically different from those on Earth. The spaceflight environment has been known to influence human physiology and behavior on orbital missions. In this study, we investigated alterations in the diurnal rhythms of activity and heart rate of three Chinese astronauts on a space mission. An analysis of the heart rate data showed a significant decrease in heart rate amplitudes during flight in all three subjects. The heart rate amplitudes of all the three astronauts were significantly dampened during flight, and the minimum as well as the maximum value of heart rate increased after flight. A phase shift in heart rate was observed in one of the three astronauts after flight. These results demonstrate the influence of spaceflight on heart physiology and function. In addition, a significant decrease in body trunk activity and rhythmicity occurred during flight, demonstrating that the spaceflight environment disturbs motion adaptation and diurnal activity rhythms.

  18. Alterations in the heart rate and activity rhythms of three orbital astronauts on a space mission.

    PubMed

    Liu, Zhizhen; Wan, Yufeng; Zhang, Lin; Tian, Yu; Lv, Ke; Li, Yinghui; Wang, Chunhui; Chen, Xiaoping; Chen, Shanguang; Guo, Jinhu

    2015-01-01

    Environmental factors in space are dramatically different from those on Earth. The spaceflight environment has been known to influence human physiology and behavior on orbital missions. In this study, we investigated alterations in the diurnal rhythms of activity and heart rate of three Chinese astronauts on a space mission. An analysis of the heart rate data showed a significant decrease in heart rate amplitudes during flight in all three subjects. The heart rate amplitudes of all the three astronauts were significantly dampened during flight, and the minimum as well as the maximum value of heart rate increased after flight. A phase shift in heart rate was observed in one of the three astronauts after flight. These results demonstrate the influence of spaceflight on heart physiology and function. In addition, a significant decrease in body trunk activity and rhythmicity occurred during flight, demonstrating that the spaceflight environment disturbs motion adaptation and diurnal activity rhythms.

  19. Astronaut Neil Armstrong participates in simulation of moon's surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, deploys a lunar surface television camera during lunar surface simulation training in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission.

  20. Your Students Can Be Rocket Scientists! A Galaxy of Great Activities about Astronauts, Gravity, and Motion.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1994-01-01

    Presents activities for a springtime Space Day that can teach students about astronauts, gravity, and motion. Activities include creating a paper bag spacecraft to study liftoff and having students simulate gravity's effects by walking in various manners and recording pulse rates. A list of resources is included. (SM)

  1. Advanced extravehicular mobility unit study

    NASA Technical Reports Server (NTRS)

    Elkins, W.

    1982-01-01

    Components of the advanced extravehicular mobility unit (suit) are described. Design considerations for radiation protection, extravehicular operational pressure, mobility effects, tool/glove/effector, anthropometric definition, lighting, and equipment turnaround are addressed.

  2. Telecast of Astronaut Neil Armstrong descending ladder to surface of the moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, descends the ladder of the Apollo 11 Lunar Module prior to making the first step by man on the moon. This view is a black and white reproduction taken from a telecast by the Apollo 11 lunar surface camera during extravehicular activity. The black bar running through the center of the picture is an anamoly in the television ground data system at the Goldstone Tracking Station.

  3. Astronaut Jack Lousma hooks up cable for rate gyro six pack during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, hooks up a 23 ft. 2 in. connecting cable for the rate gyro six pack during extravehicular activity (EVA) on August 24, 1973, as senn in this photographic reproduction taken from a color television tranmsission made by a TV camera aboard the Skylab space station in Earth orbit. The rate gyros were mounted inside the Multiple Docking Adapter opposite the Apollo Telescope Mount control and display console.

  4. Continued Development of the Rapid Cycle Amine (RCA) System for Advanced Extravehicular Activity Systems

    NASA Technical Reports Server (NTRS)

    Papale, William; Chullen, Cinda; Campbell, Colin; Conger, Bruce; McMillin, Summer; Jeng, Frank

    2014-01-01

    Development activities related to the Rapid Cycle Amine (RCA) Carbon Dioxide (CO2) and Humidity control system have progressed to the point of integrating the RCA into an advanced Primary Life Support System (PLSS 2.0) to evaluate the interaction of the RCA among other PLSS components in a ground test environment. The RCA 2.0 assembly (integrated into PLSS 2.0) consists of a valve assembly with commercial actuator motor, a sorbent canister, and a field-programmable gate array (FPGA)-based process node controller. Continued design and development activities for RCA 3.0 have been aimed at optimizing the canister size and incorporating greater fidelity in the valve actuator motor and valve position feedback design. Further, the RCA process node controller is envisioned to incorporate a higher degree of functionality to support a distributed PLSS control architecture. This paper will describe the progression of technology readiness levels of RCA 1.0, 2.0 and 3.0 along with a review of the design and manufacturing successes and challenges for 2.0 and 3.0 units. The anticipated interfaces and interactions with the PLSS 2.0/2.5/3.0 assemblies will also be discussed.

  5. Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA Medical Operations

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Fuglesang, Christer; Reiter, Thomas; Damann, Volker; Tognini, Michel

    2010-04-01

    Since the early times of human spaceflight radiation has been, besides the influence of microgravity on the human body, recognized as a main health concern to astronauts and cosmonauts. The radiation environment that the crew experiences during spaceflight differs significantly to that found on earth due to particles of greater potential for biological damage. Highly energetic charged particles, such as protons, helium nuclei ("alpha particles") and heavier ions up to iron, originating from several sources, as well as protons and electrons trapped in the Earth's radiation belts, are the main contributors. The exposure that the crew receives during a spaceflight significantly exceeds exposures routinely received by terrestrial radiation workers. The European Space Agency's (ESA) Astronaut Center (EAC) in Cologne, Germany, is home of the European Astronaut Corps. Part of the EAC is the Crew Medical Support Office (CMSO or HSF-AM) responsible for ensuring the health and well-being of the European Astronauts. A sequence of activities is conducted to protect astronauts and cosmonauts health, including those aiming to mitigate adverse effects of space radiation. All health related activities are part of a multinational Medical Operations (MedOps) concept, which is executed by the different Space Agencies participating in the human spaceflight program of the International Space Station (ISS). This article will give an introduction to the current measures used for radiation monitoring and protection of astronauts and cosmonauts. The operational guidelines that shall ensure proper implementation and execution of those radiation protection measures will be addressed. Operational hardware for passive and active radiation monitoring and for personal dosimetry, as well as the operational procedures that are applied, are described.

  6. Composite materials for the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V.; Tello, Hector M.

    1992-01-01

    The extravehicular mobility unit (EMU), commonly known as the astronaut space suit assembly (SSA) and primary life support system (PLSS), has evolved through the years to incorporate new and innovative materials in order to meet the demands of the space environment. The space shuttle program which is seeing an increasing level of extravehicular activity (EVA), also called space walks, along with interest in an EMU for Lunar-Mars missions means even more demanding conditions are being placed on the suit and PLSS. The project for this NASA-ASEE Summer Program was to investigate new materials for these applications. The focus was to emphasize the use of composite materials for every component of the EMU to enhance the properties while reducing the total weight of the EMU. To accomplish this, development of new materials called fullerene reinforced materials (FRM's) was initiated. Fullerenes are carbon molecules which when added to a material significantly reduce the weight of that material. The Faculty Fellow worked directly on the development of the fullerene reinforced materials. A chamber for fullerene production was designed and assembled and first generation samples were processed. He also supervised with the JSC Colleague, a study of composite materials for the EMU conducted by the student participant in the NASA-ASEE Program, Hector Tello a Rice University graduate student, and by a NASA Aerospace Technologist (Materials Engineer) Evelyne Orndoff, in the Systems Engineering Analysis Office (EC7), also a Rice University graduate student. Hector Tello conducted a study on beryllium and Be alloys and initiated a study of carbon and glass reinforced composites for space applications. Evelyne Orndoff compiled an inventory of the materials on the SSA. Ms. Orndoff also reviewed SSA material requirements and cited aspects of the SSA design where composite materials might be further considered. Hector Tello spent part of his time investigating the solar radiation

  7. Redesign of the Extravehicular Mobility Unit Airlock Cooling Loop Recovery Assembly

    NASA Technical Reports Server (NTRS)

    Steele, John; Elms, Theresa; Peyton, Barbara; Rector, Tony; Jennings, Mallory A.

    2016-01-01

    During EVA (Extravehicular Activity) 23 aboard the ISS (International Space Station) on 07/16/2013 an episode of water in the EMU (Extravehicular Mobility Unit) helmet occurred, necessitating a termination of the EVA (Extravehicular Activity) shortly after it began. The root cause of the failure was determined to be ground-processing short-comings of the ALCLR (Airlock Cooling Loop Recovery) Ion Beds which led to various levels of contaminants being introduced into the Ion Beds before they left the ground. The Ion Beds were thereafter used to scrub the failed EMU cooling water loop on-orbit during routine scrubbing operations. The root cause investigation identified several areas for improvement of the ALCLR Assembly which have since been initiated. Enhanced washing techniques for the ALCLR Ion Bed have been developed and implemented. On-orbit cooling water conductivity and pH analysis capability to allow the astronauts to monitor proper operation of the ALCLR Ion Bed during scrubbing operation is being investigation. A simplified means to acquire on-orbit EMU cooling water samples have been designed. Finally, an inherently cleaner organic adsorbent to replace the current lignite-based activated carbon, and a non-separable replacement for the separable mixed ion exchange resin are undergoing evaluation. These efforts are undertaken to enhance the performance and reduce the risk associated with operations to ensure the long-term health of the EMU cooling water circuit.

  8. Redesign of the Extravehicular Mobility Unit Airlock Cooling Loop Recovery Assembly

    NASA Technical Reports Server (NTRS)

    Steele, John; Elms, Theresa; Peyton, Barbara; Rector, Tony; Jennings, Mallory

    2016-01-01

    During EVA (Extravehicular Activity) 23 aboard the ISS (International Space Station) on 07/16/2013 an episode of water in the EMU (Extravehicular Mobility Unit) helmet occurred, necessitating a termination of the EVA (Extravehicular Activity) shortly after it began. The root cause of the failure was determined to be ground-processing short-comings of the ALCLR (Airlock Cooling Loop Recovery) Ion Beds which led to various levels of contaminants being introduced into the Ion Beds before they left the ground. The Ion Beds were thereafter used to scrub the failed EMU cooling water loop on-orbit during routine scrubbing operations. The root cause investigation identified several areas for improvement of the ALCLR Assembly which have since been initiated. Enhanced washing techniques for the ALCLR Ion Bed have been developed and implemented. On-orbit cooling water conductivity and pH analysis capability to allow the astronauts to monitor proper operation of the ALCLR Ion Bed during scrubbing operation is being investigated. A simplified means to acquire on-orbit EMU cooling water samples has been designed. Finally, an inherently cleaner organic adsorbent to replace the current lignite-based activated carbon, and a non-separable replacement for the separable mixed ion exchange resin are undergoing evaluation. These efforts are undertaken to enhance the performance and reduce the risk associated with operations to ensure the long-term health of the EMU cooling water circuit.

  9. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia's (STS-87) first ever Extravehicular Activity (EVA), astronaut Takao Doi works with a 156-pound crane carried onboard for the first time. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the Space Station. This crane device is designed to aid future space walkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier Doi, an international mission specialist representing Japan, and astronaut Winston E. Scott, mission specialist, had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations after completing a contingency EVA to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).

  10. Improvement of the extravehicular activity suit for the MIR orbiting station program.

    PubMed

    Severin, G; Abramov, I; Svertshek, V; Stoklitsky, A

    1996-09-01

    Since 1977, EVA suits of the semi-rigid type have been used to support sorties from Russian orbiting stations. Currently, within the MIR station program, the Orlan-DMA, the latest modification of the Orlan semi-rigid EVA suit is used by crewmembers. Quite some experience has been gained by Russia in operations of the Orlan type suits. It has proved the advantages of the EVA suit of a semi-rigid configuration, featuring donning/doffing through a hinged backpack door with a built-in life support system. Meanwhile there were some wishes and comments from the crewmembers addressed to the enclosure design and some LSS components. Currently a number of ways and methods are being developed to improve operational characteristics of the suit as well as to enhance its reliability and lifetime. The forthcoming EVAs to be performed by the STS-MIR crewmembers and future EVAs from the common airlock of the International Space Station Alpha make implementation of the planned improvements even more consistent. The paper analyzes the experience gained in the Orlan-DMA operation and discusses planned improvements in light of the forthcoming activities. In particular the Orlan enhancement program is aimed to make the donning/doffing easier, enhance enclosure mobility, improve the condensate removal unit, increase the CCC (Contamination Control Cartridge) operation time and simplify the onboard subsystem design concept.

  11. Improvement of the extravehicular activity suit for the MIR orbiting station program

    NASA Astrophysics Data System (ADS)

    Severin, G.; Abramov, I.; Svertshek, V.; Stoklitsky, A.

    1996-09-01

    Since 1977, EVA suits of the semi-rigid type have been used to support sorties from Russian orbiting stations. Currently, within the MIR station program, the Orlan-DMA, the latest modification of the Orlan semi-rigid EVA suit is used by crewmembers. Quite some experience has been gained by Russia in operations of the Orlan type suits. It has proved the advantages of the EVA suit of a semi-rigid configuration, featuring donning/doffing through a hinged backpack door with a built-in life support system. Meanwhile there were some wishes and comments from the crewmembers addressed to the enclosure design and some LSS components. Currently a number of ways and methods are being developed to improve operational characteristics of the suit as well as to enhance its reliability and lifetime. The forthcoming EVAs to be performed by the STS-MIR crewmembers and future EVAs from the common airlock of the International Space Station Alpha make implementation of the planned improvements even more consistent. The paper analyzes the experience gained in the Orlan-DMA operation and discusses planned improvements in light of the forthcoming activities. In particular the Orlan enhancement program is aimed to make the donning/doffing easier, enhance enclosure mobility, improve the condensate removal unit, increase the CCC (Contamination Control Cartridge) operation time and simplify the onboard subsystem design concept.

  12. Astronaut John Young looks over a boulder at Station no. 13 during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, looks over a large boulder at Station No. 13 during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This was the site of the permanently shadowed soil sample which was taken from a hole extending under overhanging rock. Astronaut Charles M. Duke Jr., lunar module pilot, took this photograph. Concerning Young's reaching under the big rock, Duke remarked: 'You do that in west Texas and you get a rattlesnake!'

  13. President Nixon and Dr. Paine Wait to Meet Apollo 11 Astronauts

    NASA Technical Reports Server (NTRS)

    1969-01-01

    President Richard M. Nixon and Dr. Thomas O. Paine, NASA Administrator, watch Apollo 11 astronauts Neil A. Armstrong, Michael Collins and Buzz Aldrin Jr., walk from the recovery helicopter to the Mobile Quarantine Facility aboard the U.S.S. Hornet. The President later congratulated the astronauts by microphone, speaking through a window of the quarantine trailer. During the eight-day space mission, Armstrong and Aldrin explored the Moon's surface and brought back rock samples for scientists to study. Collins piloted the command module in the lunar orbit during their 22-hour stay on the moon. The extravehicular activity lasted more than two hours.

  14. Astronaut David Scott gives salute beside U.S. flag during EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, commander, gives a military salute while standing beside the deployed U.S. flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module 'Falcon' is partially visible on the right. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about 3 statute miles) away. This photograph was taken by Astronaut James B. Irwin, Lunar Module pilot.

  15. Astronaut James Irwin works at Lunar Roving Vehicle during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, works at the Lunar Roving Vehicle during the first Apollo 15 lunar surface extravehicular activity (EVA-1) at the Hadley-Apennine landing site. A portion of the Lunar Module 'Falcon' is on the left. The undeployed Laser Ranging Retro Reflector (LR-3) lies atop the LM's MOdulear Equipment Stowage Assembly (MESA). This view is looking slightly west of south. Hadley Delta and the Apennine Front are in the background to the left. St. George crater is approximately 5 kilometers (about 3 statute miles) in the distance behind Irwin's head. This photograph was taken by Astronaut David R. Scott, Apollo 15 commander.

  16. Astronaut James Irwin gives salute beside U.S. flag during EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, gives a military salute while standing beside the deployed U.S. flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module 'Falcon' is partially visible on the right. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about 3 statute miles) away. This photograph was taken by Astronaut David R. Scott, Apollo 15 commander.

  17. Astronaut Scott Carpenter in Hanger S crew quarters during suiting activity

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Astronaut M. Scott Carpenter, prime pilot for the Mercury-Atlas 7 flight, is seen in Hanger S crew quarters during a preflight suiting activity at Cape Canaveral, Florida. He is assisted in suiting by technician Al Rochford. In this view, Carpenter is fully suited and is having his gloves adjusted.

  18. Comparison of V-4 and V-5 Exercise/Oxygen Prebreathe Protocols to Support Extravehicular Activity in Microgravity

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Vann, R. D.; Gernhardt, M. L.; Conkin, Johnny

    2007-01-01

    The Prebreathe Reduction Program (PRP) used exercise during oxygen prebreathe to reduce necessary prebreathe time prior to depressurizing to work in a 4.3 psi suit during extravehicular activity (EVA). Initial testing produced a two-hour protocol incorporating ergometry exercise and a 30 min cycle of depress/repress to 10.2 psi where subjects breathed 26.5% oxygen/balance nitrogen (Phase II - 10 min at 75% peak oxygen consumption [VO2 peak] followed by 40 min intermittent light exercise [ILE] [approx. 5.8 mL-per kilogram- per minute], then 50 min of rest). The Phase II protocol (0/45 DCS) was approved for operations and has been used on 40 EVAs, providing significant time savings compared to the standard 4 h resting oxygen prebreathe. The Phase V effort focused on performing all light in-suit exercise. Two oxygen prebreathe protocols were tested sequentially: V-4) 160 min prebreathe with 150 min of continuous ILE. The entire protocol was completed at 14.7 psi. All exercise involved upper body effort. Exercise continued until decompression. V-5) 160 min prebreathe with 140 min of ILE - first 40 min at 14.7 psi, then 30 min at 10.2 psi (breathing 26.5% oxygen) after a 20 min depress, simulating a suit donning period. Subjects were then repressed to 14.7 psi and performed another 50 min of lower body ILE, followed by 50 min rest before decompression. The V-4 protocol was rejected with 3 DCS/6 person-exposures. Initial V-5 testing has produced 0 DCS/11 person-exposures (ongoing trials). The difference in DCS rate was significant (Fisher Exact p=0.029). The observations of DCS were significantly lower in early V-5 trials than in V-4 trials. Additional studies are required to evaluate the relative contribution of the variables in exercise distribution, the 10.2 psi depress/repress component, pre-decompression rest, or possible variation in total oxygen consumption.

  19. Extravehicular Activity Testing in Analog Environments: Evaluating the Effects of Center of Gravity and Environment on Human Performance

    NASA Technical Reports Server (NTRS)

    Gernhardt, M.L.; Chappell, S.P.

    2009-01-01

    The EVA Physiology, Systems and Performance (EPSP) Project is performing tests in different analog environments to understand human performance during Extravehicular Activity (EVA) with the aim of developing more safe and efficient systems for lunar exploration missions and the Constellation Program. The project is characterizing human EVA performance in studies using several test beds, including the underwater NASA Extreme Environment Mission Operations (NEEMO) and Neutral Buoyancy Laboratory (NBL) facilities, JSC fs Partial Gravity Simulator (POGO), and the NASA Reduced Gravity Office (RGO) parabolic flight aircraft. Using these varied testing environments, NASA can gain a more complete understanding of human performance issues related to EVA and the limitations of each testing environment. Tests are focused on identifying and understanding the EVA system factors that affect human performance such as center of gravity (CG), inertial mass, ground reaction forces (GRF), suit weight, and suit pressure. The test results will lead to the development of lunar EVA systems operations concepts and design requirements that optimize human performance and exploration capabilities. METHODS: Tests were conducted in the NBL and during NEEMO missions in the NOAA Aquarius Habitat. A reconfigurable back pack with repositionable mass was used to simulate Perfect, Low, Forward, High, Aft and NASA Baseline CG locations. Subjects performed simulated exploration tasks that included ambulation, kneel and recovery, rock pick-up, and shoveling. Testing using POGO, that simulates partial gravity via pneumatic weight offload system and a similar reconfigurable rig, is underway for a subset of the same tasks. Additionally, test trials are being performed on the RGO parabolic flight aircraft. Subject performance was assessed using a modified Cooper-Harper scale to assess operator compensation required to achieve desired performance. All CG locations are based on the assumption of a

  20. Labeled cutaway line drawing of Shuttle Extravehicular Mobility Unit (EMU)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Labeled cutaway line drawing of the Shuttle extravehicular mobility unit (EMU) identifies its various components and equipment. The portable life support system (PLSS) and protective layers of fabric (thermal micrometeoroid garment (TMG)) incorporated in this extravehicular activity (EVA) space suit are shown.

  1. The MATROSHKA experiment: results and comparison from extravehicular activity (MTR-1) and intravehicular activity (MTR-2A/2B) exposure.

    PubMed

    Berger, Thomas; Bilski, Paweł; Hajek, Michael; Puchalska, Monika; Reitz, Günther

    2013-12-01

    Astronauts working and living in space are exposed to considerably higher doses and different qualities of ionizing radiation than people on Earth. The multilateral MATROSHKA (MTR) experiment, coordinated by the German Aerospace Center, represents the most comprehensive effort to date in radiation protection dosimetry in space using an anthropomorphic upper-torso phantom used for radiotherapy treatment planning. The anthropomorphic upper-torso phantom maps the radiation distribution as a simulated human body installed outside (MTR-1) and inside different compartments (MTR-2A: Pirs; MTR-2B: Zvezda) of the Russian Segment of the International Space Station. Thermoluminescence dosimeters arranged in a 2.54 cm orthogonal grid, at the site of vital organs and on the surface of the phantom allow for visualization of the absorbed dose distribution with superior spatial resolution. These results should help improve the estimation of radiation risks for long-term human space exploration and support benchmarking of radiation transport codes.

  2. Considerations in prescribing preflight aerobic exercise for astronauts

    NASA Technical Reports Server (NTRS)

    Frey, Mary Anne Bassett

    1987-01-01

    The physiological effects of prolonged exposure to weightlessness are discussed together with the effects of aerobic exercise on human characteristics affected by weightlessness. It is noted that, although early data on orthostatic intolerance after spaceflight led to a belief that a high level of aerobic fitness for astronauts was detrimental to orthostatic tolerance on return to earth, most of the data available today do not suport this contention. Aerobic fitness was found to be beneficial to cardiovascular function and to mental performance; therefore, it may be important in performing extravehicular activities during flight.

  3. Astronaut Harrison Schmitt collects lunar rake samples during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt collects lunar rake samples at Station 1 during the first Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site. This picture was taken by Astronatu Eugene Cernan, Apollo 17 commander. Schmitt is the lunar module pilot. The lunar rake, An Apollo lunar geology hand tool, is used to collect discrete samples of rocks and rock chips ranging in size from one-half inch (1.3 cm) to one inch (2.5 cm).

  4. Television transmission of Astronaut Harrison Schmitt with geophone module

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt is seen anchoring the geophone module with a flag during the first Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site, in this black and white reproduction taken from a color television transmission made by the RCA color TV camera mounted on the Lunar Roving Vehicle. Schmitt is the lunar module pilot. The geophone module is part of the Lunar Seismic profiling Experiment (S-203), a component of the Apollo Lunar Surface Experiments Package (ALSEP).

  5. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Lousma is at the Apollo Telescope Mount EVA work station assembling one of the two 55-foot long sectionalized poles for the twin pole solar shield which was deployed to help cool the Orbital Workshop. Part of the Airlock Module's thermal/meteoroid curtain is in the left foreground.

  6. Astronaut Neil Armstrong during thermovacuum training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, commander of the Apollo 11 lunar landing mission, is photographed during thermovacuum training in Chamber B of the Space Environment Simulation Laboratory, Building 32, Manned Spacecraft Center. He is wearing an Extravehicular Mobility Unit. The training simulated lunar surface vacuum and thermal conditions during astronaut operations outside the Lunar Module on the moon's surface. The mirror was used to reflect solar light.

  7. Extravehicular mobility unit thermal simulator

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.; Phillips, M. A.

    1973-01-01

    The analytical methods, thermal model, and user's instructions for the SIM bay extravehicular mobility unit (EMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the crewman performing a command module extravehicular activity during transearth coast. It accounts for conductive, convective, and radiative heat transfer as well as fluid flow and associated flow control components. The program is a derivative of the Apollo lunar surface EMU digital simulator. It has the operational flexibility to accept card or magnetic tape for both the input data and program logic. Output can be tabular and/or plotted and the mission simulation can be stopped and restarted at the discretion of the user. The program was developed for the NASA-JSC Univac 1108 computer system and several of the capabilities represent utilization of unique features of that system. Analytical methods used in the computer routine are based on finite difference approximations to differential heat and mass balance equations which account for temperature or time dependent thermo-physical properties.

  8. Astronauts David Griggs and Jeff Hoffman in Egress training

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut David Griggs, wearing an extravehicular mobility unit (EMU), practices emergency egress from the space shuttle during an underwater test in the Weightless Environment Training Facility (WETF) (26473); Griggs (left) and Astronaut Jeff Hoffman train for egress in the WETF (26474).

  9. A Noninvasive Miniaturized-Wireless Laser-Doppler Fiber-Optic Sensor for Understanding Distal Fingertip Injuries in Astronauts

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Jones, Jeffrey A.; Pollonini, Luca; Rodriquez, Mikael; Opperman, Roedolph; Hochstein, Jason

    2009-01-01

    During extra-vehicular activities (EVAs) or spacewalks astronauts over use their fingertips under pressure inside the confined spaces of gloves/space suits. The repetitive hand motion is a probable cause for discomfort and injuries to the fingertips. We describe a new wireless fiber-optic probe that can be integrated inside the astronaut glove for noninvasive blood perfusion measurements in distal fingertips. In this preliminary study, we present blood perfusion measurements while performing hand-grip exercises simulating the use of space tools.

  10. STS-111 Astronaut Chang-Diaz Performs Extra Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valery G. Korzun, commander; and Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Franklin R. Chang-Diaz participates in the first scheduled session of extra vehicular activity (EVA) for the STS-111 mission. During the space walk, Chang-Diaz and Perrin attached a Power and Data Grapple Fixture onto the ISS's P6 Truss, setting the stage for the future relocation of the P6. The next major task was to remove Service Module Debris Panels from Space Shuttle Endeavour's payload bay and attach them to their temporary location on Pressurized Mating Adapter 1 (PMA-1). The space walkers also removed thermal blankets to prepare the MBS for installation onto the station's Mobile Transporter (MT).

  11. Carbon Monoxide Accumulation in the Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Norcrosss, J. R.; Alexander, D. J.; Sanders, R. W.; Makowski, M. S.

    2016-01-01

    Introduction: Life support technology in large closed systems like submarines and space stations catalyzes carbon monoxide (CO) to carbon dioxide, which is easily removed. However, in a small system like the Extravehicular Mobility Unit (EMU), spacesuit, CO from exogenous (contaminated oxygen (O (sub 2) supply) and endogenous (human metabolism) sources will accumulate in the free suit volume. The free volume becomes a sink for CO that is rebreathed by the astronaut. The accumulation through time depends on many variables: the amount absorbed by the astronaut, the amount produced by the astronaut (between 0.28 and 0.34 ?moles per hour per kilogram)[1], the amount that enters the suit from contaminated O (sub 2), the amount removed through suit leak, the free volume of the suit, and the O (sub 2) partial pressure[2], just to list a few. Contamination of the EMU O (sub 2) supply with no greater than 1 part per million CO was the motivation for empirical measurements from CO pulse oximetry (SpCO) as well as mathematical modeling of the EMU as a rebreather for CO. Methods: We developed a first-order differential mixing equation as well as an iterative method to compute CO accumulation in the EMU. Pre-post measurements of SpCO (Rad-57, Masimo Corporation) from EMU ground training and on-orbit extravehicular activities (EVAs) were collected. Results: Initial modeling without consideration of the astronaut as a sink but only the source of CO showed that after 8 hours breathing 100 percent O (sub 2) with a 10 milliliter per minute (760 millimeters Hg at 21 degrees Centigrade standard) suit leak, an endogenous production rate of 0.23 moles per hour per kilogram for a 70 kilogram person with 42 liters (1.5 cubic feet) free suit volume resulted in a peak CO partial pressure (pCO) of 0.047 millimeters Hg at 4.3 pounds per square inch absolute (222 millimeters Hg). Preliminary results based on a 2008 model[3] with consideration of the astronaut as a sink and source of CO

  12. The Evolution of Extravehicular Activity Operations to Lunar Exploration Based on Operational Lessons Learned During 2009 NASA Desert RATS Field Testing

    NASA Technical Reports Server (NTRS)

    Bell, Ernest R., Jr.; Welsh, Daren; Coan, Dave; Johnson, Kieth; Ney, Zane; McDaniel, Randall; Looper, Chris; Guirgis, Peggy

    2010-01-01

    This paper will present options to evolutionary changes in several philosophical areas of extravehicular activity (EVA) operations. These areas will include single person verses team EVAs; various loss of communications scenarios (with Mission Control, between suited crew, suited crew to rover crew, and rover crew A to rover crew B); EVA termination and abort time requirements; incapacitated crew ingress time requirements; autonomous crew operations during loss of signal periods including crew decisions on EVA execution (including decision for single verses team EVA). Additionally, suggestions as to the evolution of the make-up of the EVA flight control team from the current standard will be presented. With respect to the flight control team, the major areas of EVA flight control, EVA Systems and EVA Tasks, will be reviewed, and suggested evolutions of each will be presented. Currently both areas receive real-time information, and provide immediate feedback during EVAs as well as spacesuit (extravehicular mobility unit - EMU) maintenance and servicing periods. With respect to the tasks being performed, either EMU servicing and maintenance, or the specific EVA tasks, daily revising of plans will need to be able to be smoothly implemented to account for unforeseen situations and findings. Many of the presented ideas are a result of lessons learned by the NASA Johnson Space Center Mission Operations Directorate operations team support during the 2009 NASA Desert Research and Technology Studies (Desert RATS). It is important that the philosophy of both EVA crew operations and flight control be examined now, so that, where required, adjustments can be made to a next generation EMU and EVA equipment that will complement the anticipated needs of both the EVA flight control team and the crews.

  13. Defining the Relationship Between Biomarkers of Oxidation and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Stenger, Michael B.; Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative damage and inflammation can accelerate the development of atherosclerosis.

  14. Astronaut Sellers Performs STS-112 EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard Side Integrated Truss Structure (S1) and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. In this photograph, Astronaut Piers J. Sellers uses both a handrail on the Destiny Laboratory and a foot restraint on the Space Station Remote Manipulator System or Canadarm2 to remain stationary while performing work at the end of the STS-112 mission's second space walk. A cloud-covered Earth provides the backdrop for the scene.

  15. STS-49 ASEM activities illustrated with PLAID computer graphics

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) activities are illustrated with PLAID computer graphics. The multipurpose experiment support structure (MPESS) grappled by the remote manipulator system (RMS) end effector is positioned over OV-105's payload bay (PLB) as extravehicular mobility unit (EMU) suited crewmembers attach MPESS to ASEM truss structure with 'legs'. One astronaut, floating, works near the top of the structure while the second astronaut works at a payload retention latch assembly (PLRA) on the starboard sill. The empty INTELSAT perigee stage cradle structure is seen in the aft PLB.

  16. Status of the Redesign of the Extravehicular Mobility Unit Airlock Cooling Loop Recovery Assembly

    NASA Technical Reports Server (NTRS)

    Steele, John; Arnold, Dane; Peyton, Barbara; Rector, Tony; Jennings, Mallory

    2017-01-01

    During EVA (Extravehicular Activity) 23 aboard the ISS (International Space Station) on 07/16/2013 an episode of water in the EMU (Extravehicular Mobility Unit) helmet occurred, necessitating a termination of the EVA (Extravehicular Activity) shortly after it began. The root cause of the failure was determined to be ground-processing short-comings of the ALCLR Ion Beds which led to various levels of contaminants being introduced into the Ion Beds before they left the ground. The Ion Beds were thereafter used to perform on-orbit routine scrubbing operations for the EMU cooling water loop which led to the failure. The root cause investigation identified several areas for improvement of the ALCLR Assembly which have since been initiated. Enhanced washing techniques for the ALCLR Ion Bed have been developed and implemented. On-orbit cooling water conductivity and pH analysis capability to allow the astronauts to monitor proper operation of the ALCLR Ion Bed during scrubbing operation have been investigated and are being incorporated. A simplified means to acquire on-orbit EMU cooling water samples has been designed as well. Finally, an inherently cleaner organic adsorbent to replace the current lignite-based activated carbon, and a non-separable replacement for the separable mixed ion exchange resin have been selected. These efforts are being undertaken to enhance the performance and reduce the risk associated with operations to ensure the long-term health of the EMU cooling water circuit. The intent of this paper is to provide an update of the effort to re-design the ALCLR (Airlock Cooling Loop Recovery) hardware. Last year, this effort was in the early stages of concept development and test which was reported in ICES Paper ICES-2016-221. Those phases are now complete and the final outcomes, as well as plans to build and field the hardware, are being reported on.

  17. Exploiting orbital effects for short-range extravehicular transfers

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Baughman, David

    1993-01-01

    The problem studied in this paper is that of using Simplified Aid for Extravehicular Activity (EVA) Rescue (SAFER) to carry out efficient short-range transfers from the payload bay of the Space Shuttle Orbiter to the vicinity of the underside of the vehicle, for instance for inspection and repair of thermal tiles or umbilical doors. Trajectories are shown to exist, for the shuttle flying noise forward and belly down, that take the astronaut to the vicinity of the underside with no thrusting after the initial push-off. However, these trajectories are too slow to be of practical interest, as they take roughly an hour to execute. Additionally, they are quite sensitive to errors in the initial push-off rates. To overcome both of these difficulties, trajectories are then studied which include a single in-flight impulse of small magnitude ( in the range 0.1 - 0.4 fps). For operational simplicity, this impulse is applied towards the Orbiter at the moment when the line-of -sight of the EVA crewmember is tangential to the underside of the vehicle. These trajectories are considerably faster than the non-impulsive ones: transit times of less than 10 minutes are achievable. Furthermore, the man-in-the-loop feedback scheme used for impulse timing greatly reduces the sensitivity to initial velocity errors. Finally, similar one-impulse trajectories are also shown to exist for the Orbiter in a gravity-gradient attitiude.

  18. Skylab Astronauts' Neutral Buoyancy Simulator Training

    NASA Technical Reports Server (NTRS)

    1970-01-01

    After the end of the Apollo missions, NASA's next adventure into space was the marned spaceflight of Skylab. Using an S-IVB stage of the Saturn V launch vehicle, Skylab was a two-story orbiting laboratory, one floor being living quarters and the other a work room. The objectives of Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. At the Marshall Space Flight Center (MSFC), astronauts and engineers spent hundreds of hours in an MSFC Neutral Buoyancy Simulator (NBS) rehearsing procedures to be used during the Skylab mission, developing techniques, and detecting and correcting potential problems. The NBS was a 40-foot deep water tank that simulated the weightlessness environment of space. This photograph shows astronaut Ed Gibbon (a prime crew member of the Skylab-4 mission) during the neutral buoyancy Skylab extravehicular activity training at the Apollo Telescope Mount (ATM) mockup. One of Skylab's major components, the ATM was the most powerful astronomical observatory ever put into orbit to date.

  19. [Space radiation doses in the anthropomorphous phantom in space experiment "Matryeshka-R" and spacesuit "Orlan-M" during extravehicular activity].

    PubMed

    Kartashov, D A; Petrov, V M; Kolomenskiĭ, A V; Akatov, Iu A; Shurshakov, V A

    2010-01-01

    Russian space experiment "Matryeshka-R" was conducted in 2004-2005 to study dose distribution in the body of anthropomorphous phantom inserted in a spacesuit imitating container mounted on outer surface of the ISS Service module (experiment "Matryeshka"). The objective was to compare doses inside the phantom in the container to human body donned in spacesuit "Orlan-M" during extravehicular activity (EVA). The shielding function was calculated using the geometric model, specification of the phantom shielded by the container, "Orlan-M" description, and results of ground-based estimation of shielding effectiveness by gamma-raying. Doses were calculated from the dose attenuation curves obtained for galactic cosmic rays, and the AE-8/AP-8 models of electron and proton flows in Earth's radiation belt. Calculated ratios of equivalent doses in representative points of the body critical organs to analogous doses in phantom "Matryeshka" H(ORLAN-M)/H(Matryeshka) for identical radiation conditions vary with organs and solar activity in the range from 0.1 to 1.8 with organs and solar activity. These observations should be taken into account when applying Matryeshka data to the EVA conditions.

  20. Characterization of the Radiation Shielding Properties of U.S. and Russian Extravehicular Activity Suits. Chapter 4

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Benton, E. V.; Frank, A. L.

    2003-01-01

    Reported herein are results from the Eril Research, Inc. (ERI) participation in the JSC-sponsored study characterizing the radiation shielding properties of the two types of space suit that astronauts are wearing during the EVA on-orbit assembly of ISS. Measurements using passive detectors were carried out to assess the shielding properties of the U.S. EMU Suit and the Russian Orlan-M suit during irradiations of the suits and a tissue-equivalent phantom to monoenergetic proton and electron beams at LLUMC. During irradiations of 6 MeV electrons and 60 MeV protons, absorbed dose as a function of depth was measured using TLDs exposed behind swatches of the two suit materials and inside the two EVA helmets. Considerable reduction in electron dose was measured behind all suit materials in exposures to 6 MeV electrons. Slowing of the proton beam in the suit materials led to an increase in dose measured in exposures to 60 MeV protons. During 232 MeV proton irradiations, measurements were made with TLDs and CR-39 PNTDs at five organ locations inside a tissue-equivalent phantom, exposed both with and without the two EVA suits. The EVA helmets produce a 13% to 27% reduction in total dose and a 0% to 25% reduction in dose equivalent when compared to measurements made in the phantom head alone. Differences in dose and dose equivalent between the suit and non-suit irradiations for the lower portions of the two EVA suits tended to be smaller. Proton-induced target fragmentation was found to be a significant source of increased dose equivalent, especially within the two EVA helmets, and average quality factor inside the EMU and Orlan-M helmets was 2% to 14% greater than that measured in the bare phantom head.

  1. Fifteen-minute Extravehicular Activity Prebreathe Protocol Using NASA's Exploration Atmosphere (8.2 psia/ 34% 02)

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Gernhardt, Michael L.; Conkin, Johnny

    2013-01-01

    A TBDM DCS probability model based on an existing biophysical model of inert gas bubble growth provides significant prediction and goodness-of-fit with 84 cases of DCS in 668 human altitude exposures. 2. Model predictions suggest that 15-minute O2 prebreathe protocols used in conjunction with suit ports and an 8.2 psi, 34% O2, 66% N2 atmosphere may enable rapid EVA capability for future exploration missions with the risk of DCS = 12%. ? EVA could begin immediately at 6.0 psi, with crewmembers decreasing suit pressure to 4.3 psi after completing the 15-minute in-suit prebreathe. 3. Model predictions suggest that intermittent recompression during exploration EVA may reduce decompression stress by 1.8% to 2.3% for 6 hours of total EVA time. Savings in gas consumables and crew time may be accumulated by abbreviating the EVA suit N2 purge to 2 minutes (20% N2) compared with 8 minutes (5% N2) at the expense of an increase in estimated decompression risk of up to 2.4% for an 8-hour EVA. ? Increased DCS risk could be offset by IR or by spending additional time at 6 psi at the beginning of the EVA. ? Savings of 0.48 lb of gas and 6 minutes per person per EVA corresponds to more than 31 hours of crew time and 1800 lb of gas and tankage under the Constellation lunar architecture. 6. Further research is needed to characterize and optimize breathing mixtures and intermittent recompression across the range of environments and operational conditions in which astronauts will live and work during future exploration missions. 7. Development of exploration prebreathe protocols will begin with definition of acceptable risk, followed by development of protocols based on models such as ours, and, ultimately, validation of protocols through ground trials before operational implementation.

  2. Study to evaluate the effect of EVA on payload systems. Volume 1: Executive summary. [project planning of space missions employing extravehicular activity as a means of cost reduction

    NASA Technical Reports Server (NTRS)

    Patrick, J. W.; Kraly, E. F.

    1975-01-01

    Programmatic benefits to payloads are examined which can result from the routine use of extravehicular activity (EVA) during space missions. Design and operations costs were compared for 13 representative baseline payloads to the costs of those payloads adapted for EVA operations. The EVA-oriented concepts developed in the study were derived from these baseline concepts and maintained mission and program objectives as well as basic configurations. This permitted isolation of cost saving factors associated specifically with incorporation of EVA in a variety of payload designs and operations. The study results were extrapolated to a total of 74 payload programs. Using appropriate complexity and learning factors, net EVA savings were extrapolated to over $551M for NASA and U.S. civil payloads for routine operations. Adding DOD and ESRO payloads increases the net estimated savings of $776M. Planned maintenance by EVA indicated an estimated $168M savings due to elimination of automated service equipment. Contingency problems of payloads were also analyzed to establish expected failure rates for shuttle payloads. The failure information resulted in an estimated potential for EVA savings of $1.9 B.

  3. Overview of Umbilical Extravehicular Activity (EVA) Interfaces in Life Support Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie J.; Jordan, Nicole C.; Barido, Richard A.

    2007-01-01

    Extravehicular Activities (EVAs) for manned spacecraft vehicles have been performed for contingencies and nominal operations numerous times throughout history. This paper will investigate how previous U.S. manned spacecraft vehicles provided life support to crewmembers performing the EVA. Specifically defined are umbilical interfaces with respect to crewmember cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal. As historical data is available, the need for planned versus contingency EVAs in previous vehicles as well as details for a nominal EVA day versus a contingency EVA day will be discussed. The hardware used to provide the cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal, and the general functions of that hardware, will also be detailed, as information is available. The Crew Exploration Vehicle (CEV or Orion) EVA interfaces will be generically discussed to provide a glimpse of how similar they are to the EVA interfaces in previous vehicles. Conclusions on strategies that should be used for CEV based on previous spacecraft EVA interfaces will be made in the form of questions and recommendations.

  4. Shuttle Astronauts Play Chess

    NASA Video Gallery

    STS-134 astronauts Greg Johnson and Greg Chamitoff ponder their next move for the Earth vs. Space chess match. The shuttle crew members also discuss their activities aboard the International Space ...

  5. Astronaut Norman E. Thagard is briefed on array of tools for EVA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Astronaut Norman E. Thagard is briefed on the array of tools for extravehicular activity by James McBride, a crew trainer. An array of special tools is lined up on the table in front of them. Some of the tools include, bottom row from right to left, allen wrench with extension, diagonal cutters, a hammer, drive ratchet with hex socket extension, contingency strut wrench, forceps, bolt puller, and compound cable cutters. Above the hammer is a pair of french hooks, and a remote manipulator rope reel. Above the diagonal cutters is a power drive unit disconnect.

  6. Interviews with the Apollo lunar surface astronauts in support of planning for EVA systems design

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.; Eppler, Dean B.; Morrow, Daniel G.

    1994-01-01

    Focused interviews were conducted with the Apollo astronauts who landed on the moon. The purpose of these interviews was to help define extravehicular activity (EVA) system requirements for future lunar and planetary missions. Information from the interviews was examined with particular attention to identifying areas of consensus, since some commonality of experience is necessary to aid in the design of advanced systems. Results are presented under the following categories: mission approach; mission structure; suits; portable life support systems; dust control; gloves; automation; information, displays, and controls; rovers and remotes; tools; operations; training; and general comments. Research recommendations are offered, along with supporting information.

  7. Astronaut David Scott watching hammer and feather fall to lunar surface

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, Apollo 15 commander, watches a geological hammer and a feather hit the lunar surface simultaneously in a test of Galileo's law of motion concerning falling bodies, as seen in this color reproduction taken from a transmission made by the RCA color television camera mounted on the Lunar Roving Vehicle. Scott released the hammer from his right hand and the feather from his left at the same instant. This experiment occured toward the end of the third and final lunar surface extravehicular activity.

  8. Economic value analysis of the return from the Korean astronaut program and the science culture diffusion activity in Korea

    NASA Astrophysics Data System (ADS)

    Yi, Soyeon; Jang, Hyun-Jin; Lee, Hyo Suk; Yu, Jong-Phil; Kim, Soyeon; Lee, Joohee; Hur, Hee-Young

    2013-06-01

    In this study, we analyze the economic effects from the Korean Astronaut Program (KAP) and the subsequent Science Culture Diffusion Activity (SCDA). Korea has had a huge practical effect on the development of science and technology and has increased international awareness of Korea by producing Korea's first astronaut. There has also been a large, ripple effect on space related industries. In addition, the KAP has exercised a far-reaching influence on Korean society and culture by boosting all science and engineering and inspiring national pride. After the KAP, astronauts' outreach activities, such as lectures for the general public; interviews on television, newspapers and magazines; participating in children's science camps; and distributing publications and DVDs about astronaut program for general public, were instituted for diffusing science culture. Thus, positive effects such as the promotion of Korea's level of technology, student interest in science and engineering fields, and the expansion of the industrial base were reinforced after the KAP. This study is aimed at evaluating the economic significance and the value of return through analyzing the effects of the KAP and the subsequent Science Culture Diffusion Activity.

  9. The astronaut and the banana peel: An EVA retriever scenario

    NASA Technical Reports Server (NTRS)

    Shapiro, Daniel G.

    1989-01-01

    To prepare for the problem of accidents in Space Station activities, the Extravehicular Activity Retriever (EVAR) robot is being constructed, whose purpose is to retrieve astronauts and tools that float free of the Space Station. Advanced Decision Systems is at the beginning of a project to develop research software capable of guiding EVAR through the retrieval process. This involves addressing problems in machine vision, dexterous manipulation, real time construction of programs via speech input, and reactive execution of plans despite the mishaps and unexpected conditions that arise in uncontrolled domains. The problem analysis phase of this work is presented. An EVAR scenario is used to elucidate major domain and technical problems. An overview of the technical approach to prototyping an EVAR system is also presented.

  10. STS-104 Onboard Photograph-Astronaut in the ISS Airlock

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronaut James F. Reilly participated in the first ever space walk to egress from the International Space Station (ISS) by utilizing the newly-installed Joint Airlock Quest. The Joint Airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a cornecting bulkhead and hatch. Once installed and activated, the ISS Airlock becomes the primary path for ISS space walk entry and departure for U.S. spacesuits, which are known as Extravehicular Mobility Units (EMUs). In addition, it is designed to support the Russian Orlan spacesuit for extravehicular activity (EVA). The Joint Airlock is 20-feet long, 13- feet in diameter and weighs 6.5 tons. It was built at the Marshall Space Flight Center (MSFC) by the Space Station prime contractor Boeing. The ISS Airlock has two main components: a crew airlock and an equipment airlock for storing EVA and EVA preflight preps. The Airlock was launched on July 21, 2001 aboard the Space Shuttle Orbiter Atlantis for the STS-104 mission.

  11. Astronaut C. Gordon Fullerton in donning/doffing exercise experiences

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut C. Gordon Fullerton, STS-3 pilot, experiences free fall while taking part in a suit donning/doffing exercise aboard a KC-135 'zero-gravity' aircraft. Fullerton is wearing an extravehicular mobility unit (EMU) complete with gloves and helmet.

  12. Astronaut Neil Armstrong participates in lunar surface siumlation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Suited Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, participates in lunar surface simulation training on April 18, 1969, in bldg 9, Manned Spacecraft Center (MSC). Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he simulates scooping up a lunar surface sample.

  13. Astronaut Neil Armstrong participates in lunar surface simulation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface simulation training on April 18, 1969 in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he is standing on Lunar Module mockup foot pad preparing to ascend steps.

  14. Astronaut Neil Armstrong participates in lunar surface siumlation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface siumlation training on April 18, 1969 in bldg 9, Manned Spacecraft Center (MSC). Armstrong is prime crew commander of the Apollo 11 lunar landing mission. Here, he is opening a sample return container. At the right is the Modular Equipment Stowage Assembly (MESA) and the Lunar Module Mockup.

  15. Astronaut David Scott practicing for Gemini 8 EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut David R. Scott practicing for Gemini 8 extravehicular acitivity (EVA) in bldg 4 of the Manned Spacecraft Center on the air bearing floor. He is wearing the the Hand-Held Maneuvering Unit which he will use during the EVA.

  16. Astronaut C. Gordon Fullerton in suit donning/doffing exercise

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut C. Gordon Fullerton, STS-3 pilot, takes part in a suit donning/doffing exercise aboard a KC-135 'zero-gravity' aircraft. Mission Specialist William F. Fisher, far left, holds a mirror to assist Fullerton with hose and cable linkups to his suit. Fullerton is wearing an extravehicular mobility unit (EMU) minus gloves and helmet.

  17. Astronaut Linda Godwin during contingency EVA training in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Linda M. Godwin, payload commander, prepares to donn her helmet before being submerged in a 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). STS-59 crewmembers are using the WETF to train for contingency space walks for the shuttle Endeavour mission. Godwin is wearing the extravehicular mobility unit (EMU), communication carrier assembly (CCA) but no helmet.

  18. Astronaut Linda Godwin during contingency EVA training in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Linda M. Godwin, payload commander, prepares to be submerged in a 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). STS-59 crewmembers are using the WETF to train for contingency space walks for the shuttle Endeavour mission. Godwin is standing on the platform in the full extravehicular mobility unit (EMU).

  19. STS-49 Astronaut By Mission Peculiar Equipment Support Structure (MPESS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. In this onboard photo, astronaut Thomas Akers is positioned near the Mission Peculiar Equipment Support Structure (MPESS) in the cargo bay. The MPESS, developed by Marshall Space Flight Center, was used to support experiments.

  20. Extravehicular Space Suit Bearing Technology Development Research

    NASA Astrophysics Data System (ADS)

    Pang, Yan; Liu, Xiangyang; Guanghui, Xie

    2017-03-01

    Pressure bearing has been acting an important role in the EVA (extravehicular activity) suit as a main mobility component. EVA suit bearing has its unique traits on the material, dustproof design, seal, interface, lubrication, load and performance. This paper states the peculiarity and development of the pressure bearing on the construction design element, load and failure mode, and performance and test from the point view of structure design. The status and effect of EVA suit pressure bearing is introduced in the paper. This analysis method can provide reference value for our country’s EVA suit pressure bearing design and development.

  1. Astronaut John Young on rim of Plum crater gathering lunar rock samples

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, stands on the rim of Plum crater while collecting lunar rock samples at Station No.1 during the first Apollo 16 extravehicular activity (EVA-1) at the Descartes landing site. This scene, looking eastward, was photographed by Astronaut Charles M. Duke Jr., lunar module pilot. The small boulder in the center foreground was chip sampled by the crewmen. Plum crater is 40 meters in diameter and 10 meters deep. The Lunar Roving Vehicle is parked on the far rim of the crater. The gnomon, which is used as a photographic reference to establish local vertical sun angle, scale, and lunar color, is deployed in the center of the picture. Young holds a geological hammer in his right hand.

  2. Astronaut John Young stands at ALSEP deployment site during first EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, stands at the Apollo Lunar Surface Experiments Package (ALSEP) deployment site during the first Apollo 16 extravehicular activity (EVA-1) at the Descartes landing site. The components of the ALSEP are in the background. The lunar surface drill is just behind and to the right of Young. The drill's rack and bore stems are to the left. The three sensor Lunar Surface Magnetometer is beyond the rack. The dark object in the right background is the Radioisotope Thermoelectric Generator (RTG). Between the RTG and the drill is the Heat Flow Experiment. A part of the Central Station is at the right center edge of the picture. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot.

  3. An investigation of conformable antennas for the astronaut backpack communication system

    NASA Technical Reports Server (NTRS)

    Long, Stuart A.; Jackson, David R.; Williams, Jeffery T.; Wilton, Donald R.

    1988-01-01

    During periods of extravehicular activity it is obviously important that communication and telemetry systems continue to function independently of the astronaut. A system of antennas must therefore be designed that will provide the necessary isotropic coverage using circular polarization over both the transmit and receive frequency bands. To avoid the inherent physical limitations to motion that would be incurred with any sort of protruding antenna, it is necessary that the radiator be essentially flush-mounted or conformable to the structure on which it is attached. Several individual antenna elements are needed for the desired coverage. Both the particular elements chosen and their location determine the ultimate radiation pattern of the overall system. For these reasons a two-fold research plan was undertaken. First, individual elements were investigated and designed. Then various mounting locations were considered and the radiation patterns were predicted taking into account the effects of the astronaut's backpack.

  4. Shoulder Injuries in US Astronauts Related to EVA Suit Design

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; McCulloch, P.; Van Baalen, Mary; Minard, Charles; Watson, Richard; Blatt, T.

    2011-01-01

    Introduction: For every one hour spent performing extravehicular activity (EVA) in space, astronauts in the US space program spend approximately six to ten hours training in the EVA spacesuit at NASA-Johnson Space Center's Neutral Buoyancy Lab (NBL). In 1997, NASA introduced the planar hard upper torso (HUT) EVA spacesuit which subsequently replaced the existing pivoted HUT. An extra joint in the pivoted shoulder allows increased mobility but also increased complexity. Over the next decade a number of astronauts developed shoulder problems requiring surgical intervention, many of whom performed EVA training in the NBL. This study investigated whether changing HUT designs led to shoulder injuries requiring surgical repair. Methods: US astronaut EVA training data and spacesuit design employed were analyzed from the NBL data. Shoulder surgery data was acquired from the medical record database, and causal mechanisms were obtained from personal interviews Analysis of the individual HUT designs was performed as it related to normal shoulder biomechanics. Results: To date, 23 US astronauts have required 25 shoulder surgeries. Approximately 48% (11/23) directly attributed their injury to training in the planar HUT, whereas none attributed their injury to training in the pivoted HUT. The planar HUT design limits shoulder abduction to 90 degrees compared to approximately 120 degrees in the pivoted HUT. The planar HUT also forces the shoulder into a forward flexed position requiring active retraction and extension to increase abduction beyond 90 degrees. Discussion: Multiple factors are associated with mechanisms leading to shoulder injury requiring surgical repair. Limitations to normal shoulder mechanics, suit fit, donning/doffing, body position, pre-existing injury, tool weight and configuration, age, in-suit activity, and HUT design have all been identified as potential sources of injury. Conclusion: Crewmembers with pre-existing or current shoulder injuries or certain

  5. Biological dosimetry in Russian and Italian astronauts

    NASA Astrophysics Data System (ADS)

    Greco, O.; Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M.; Scampoli, P.; Snigiryova, G.; Obe, G.

    Large uncertainties are associated with estimates of equivalent dose and cancer risk for crews of longterm space missions. Biological dosimetry in astronauts is emerging as a useful technique to compare predictions based on quality factors and risk coefficients with actual measurements of biological damage in-flight. In the present study, chromosomal aberrations were analyzed in one Italian and eight Russian cosmonauts following missions of different duration on the MIR and the international space station (ISS). We used the technique of fluorescence in situ hybridization (FISH) to visualize translocations in chromosomes 1 and 2. In some cases, an increase in chromosome damage was observed after flight, but no correlation could be found between chromosome damage and flight history, in terms of number of flights at the time of sampling, duration in space and extra-vehicular activity. Blood samples from one of the cosmonauts were exposed in vitro to 6 MeV X-rays both before and after the flight. An enhancement in radiosensitivity induced by the spaceflight was observed.

  6. Maintaining Adequate Carbon Dioxide Washout for an Advanced Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Navarro, Moses; Conger, Bruce; Korona, Adam; McMillin, Summer; Norcross, Jason; Swickrath, Mike

    2013-01-01

    Over the past several years, NASA has realized tremendous progress in technology development that is aimed at the production of an Advanced Extravehicular Mobility Unit (AEMU). Of the many functions provided by the spacesuit and portable life support subsystem within the AEMU, delivering breathing gas to the astronaut along with removing the carbon dioxide (CO2) remains one of the most important environmental functions that the AEMU can control. Carbon dioxide washout is the capability of the ventilation flow in the spacesuit helmet to provide low concentrations of CO2 to the crew member to meet breathing requirements. CO2 washout performance is a critical parameter needed to ensure proper and sufficient designs in a spacesuit and in vehicle applications such as sleep stations and hygiene compartments. Human testing to fully evaluate and validate CO2 washout performance is necessary but also expensive due to the levied safety requirements. Moreover, correlation of math models becomes challenging because of human variability and movement. To supplement human CO2 washout testing, a breathing capability will be integrated into a suited manikin test apparatus to provide a safe, lower cost, stable, easily modeled alternative to human testing. Additionally, this configuration provides NASA Johnson Space Center (JSC) the capability to evaluate CO2 washout under off-nominal conditions that would otherwise be unsafe for human testing or difficult due to fatigue of a test subject. Testing has been under way in-house at JSC and analysis has been initiated to evaluate whether the technology provides sufficient performance in ensuring that the CO2 is removed sufficiently and the ventilation flow is adequate for maintaining CO2 washout in the AEMU spacesuit helmet of the crew member during an extravehicular activity. This paper will review recent CO2 washout testing and analysis activities, testing planned in-house with a spacesuit simulator, and the associated analytical work

  7. Failure Analysis Results and Corrective Actions Implemented for the Extravehicular Mobility Unit 3011 Water in the Helmet Mishap

    NASA Technical Reports Server (NTRS)

    Steele, John; Metselaar, Carol; Peyton, Barbara; Rector, Tony; Rossato, Robert; Macias, Brian; Weigel, Dana; Holder, Don

    2015-01-01

    Water entered the Extravehicular Mobility Unit (EMU) helmet during extravehicular activity (EVA) no. 23 aboard the International Space Station on July 16, 2013, resulting in the termination of the EVA approximately 1 hour after it began. It was estimated that 1.5 liters of water had migrated up the ventilation loop into the helmet, adversely impacting the astronaut's hearing, vision, and verbal communication. Subsequent on-board testing and ground-based test, tear-down, and evaluation of the affected EMU hardware components determined that the proximate cause of the mishap was blockage of all water separator drum holes with a mixture of silica and silicates. The blockages caused a failure of the water separator degassing function, which resulted in EMU cooling water spilling into the ventilation loop, migrating around the circulating fan, and ultimately pushing into the helmet. The root cause of the failure was determined to be ground-processing shortcomings of the Airlock Cooling Loop Recovery (ALCLR) Ion Filter Beds, which led to various levels of contaminants being introduced into the filters before they left the ground. Those contaminants were thereafter introduced into the EMU hardware on-orbit during ALCLR scrubbing operations. This paper summarizes the failure analysis results along with identified process, hardware, and operational corrective actions that were implemented as a result of findings from this investigation.

  8. Female Astronauts

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Astronauts Dr. N. Jan Davis (left) and Dr. Mae C. Jemison (right) were mission specialists on board the STS-47 mission. Born on November 1, 1953 in Cocoa Beach, Florida, Dr. N. Jan Davis received a Master degree in Mechanical Engineering in 1983 followed by a Doctorate in Engineering from the University of Alabama in Huntsville in 1985. In 1979 she joined NASA Marshall Space Flight Center as an aerospace engineer. A veteran of three space flights, Dr. Davis has logged over 678 hours in space since becoming an astronaut in 1987. She flew as a mission specialist on STS-47 in 1992 and STS-60 in 1994, and was the payload commander on STS-85 in 1997. In July 1999, she transferred to the Marshall Space Flight Center, where she became Director of Flight Projects. Dr. Mae C. Jemison, the first African-American woman in space, was born on October 17, 1956 in Decatur, Alabama but considers Chicago, Illinois her hometown. She received a Bachelor degree in Chemical Engineering (and completed the requirements for a Bachelor degree in African and Afro-American studies) at Stanford University in 1977, and a Doctorate degree in medicine from Cornell University in 1981. After receiving her doctorate, she worked as a General Practitioner while attending graduate engineering classes in Los Angeles. She was named an astronaut candidate in 1987, and flew her first flight as a science mission specialists on STS-47, Spacelab-J, in September 1992, logging 190 hours, 30 minutes, 23 seconds in space. In March 1993, Dr. Jemison resigned from NASA, thought she still resides in Houston, Texas. She went on to publish her memoirs, Find Where the Wind Goes: Moments from My Life, in 2001. The astronauts are shown preparing to deploy the lower body negative pressure (LBNP) apparatus in this 35mm frame taken in the science module aboard the Earth-orbiting Space Shuttle Endeavor. Fellow astronauts Robert L. Gibson (Commander), Curtis L. Brown (Junior Pilot), Mark C. Lee (Payload Commander), Jay Apt

  9. Occlusion, sternocleidomastoid muscle activity, and body sway: a pilot study in male astronauts.

    PubMed

    Sforza, Chiarella; Tartaglia, Gianluca M; Solimene, Umberto; Morgun, Valery; Kaspranskiy, Rustem R; Ferrario, Virgilio F

    2006-01-01

    The modifications induced by microgravity on the coordinated patterns of movement of the head, trunk, and limbs are reported on extensively. However, apparently there is little data on the masticatory muscles. In normal gravitational conditions, information from the neck and stomatognathic apparatus play a role in maintaining the body's balance and equilibrium. The current pilot study used normal gravity conditions to investigate the hypothesis of a functional coupling between occlusion and neck muscles and body postural oscillations. The immediate effect of modified occlusal surfaces on the contraction pattern of the sternocleidomastoid muscles during maximum voluntary clenching and on the oscillation of the center of foot pressure was analyzed in 11 male astronauts (aged 31-54 yrs). All subjects were healthy and free from pathologies of the neck and stomatognathic apparatus. Occlusal splints were prepared using impressions of their dental arches. The splints were modeled on the mandibular arch, had only posterior contacts, and were modified to obtain a more symmetric, standardized contraction of the masseter and temporalis muscles during teeth clenching. Surface EMG activity of the sternocleidomastoid muscles was recorded during a maximal voluntary clench with and without the splint. Sternocleidomastoid potentials were standardized as percent of the mean potentials recorded during a maximum contralateral rotation of the head, and the symmetry of the EMG waves of left- and right-side muscles was measured. Body sway was assessed with and without the splint, either with eyes open or closed. The variations of the center of foot pressure were analyzed through bivariate analysis, and the area of the 90% standard ellipse was computed. Within each visual condition (eyes open or closed), the difference between the areas of oscillation measured with and without the splint was computed. Muscular activity was more symmetric with the splint. The area of oscillation of the

  10. Probabilistic Assessment of Radiation Risk for Astronauts in Space Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; DeAngelis, Giovanni; Cucinotta, Francis A.

    2009-01-01

    Accurate predictions of the health risks to astronauts from space radiation exposure are necessary for enabling future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons, (less than 100 MeV); and galactic cosmic rays (GCR), which include protons and heavy ions of higher energies. While the expected frequency of SPEs is strongly influenced by the solar activity cycle, SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, phi. The risk of radiation exposure from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection, including determining the shielding and operational requirements for astronauts and hardware. To support the probabilistic risk assessment for EVAs, which would be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of time within a solar cycle using a nonhomogeneous Poisson model to fit the historical database of measurements of protons with energy > 30 MeV, (phi)30. The resultant organ doses and dose equivalents, as well as effective whole body doses for acute and cancer risk estimations are analyzed for a conceptual habitat module and a lunar rover during defined space mission periods. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning to manage radiation risks for space exploration.

  11. Interplanetary proton flux and solar wind conditions for different solar activities interacting with spacecraft and astronauts in space

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus

    2014-01-01

    The goal of this research is to determine the interplanetary proton flux and solar wind conditions by using data from several satellites such as Advanced Composition Explorer (ACE), Geostationary Operational Environmental Satellites (GOES) in particular GOES 9, GOES 11, GOES 12, GOES 13, and Solar Heliospheric Observatory (SOHO) to determine proton flux in different solar wind conditions. The data from above satellites were used to determine space weather conditions in which the goals are to evaluate proton fluxes for four periods of solar cycle activity: a solar cycle 23/24 minimum (2008), close to a solar cycle 22/23 minimum (1997), with intermediate activity (2011) and for about maximum activity for the cycle 23 (2003), to compare data of two period of solar cycle in 2003 and 2008 (Max vs. Min), to compare data of two period of solar cycle in 1997 and 2008 (Min vs. Min), to compare soft X-ray flux from SOHO with proton 1-10 MeV flux from GOES 9 for strong flare in 1997. To conclude the above evaluations are being used to determine the interaction between the space weather conditions and the following consequences of these conditions important for astronautics and everyday human activity: 1- Satellite and Spacecraft charging, 2-Dangerous conditions for onboard electronics and astronauts during strong solar flare events, and 3- Total Electron Content (TEC), Global Positioning System (GPS), and radio communication problems related to solar activity.

  12. Atrial Arrhythmias in Astronauts - Summary of a NASA Summit

    NASA Technical Reports Server (NTRS)

    Barr, Yael R.; Watkins, Sharmila D.; Polk, J. D.

    2010-01-01

    Background and Problem Definition: To evaluate NASA s current standards and practices related to atrial arrhythmias in astronauts, Space Medicine s Advanced Projects Section at the Johnson Space Center was tasked with organizing a summit to discuss the approach to atrial arrhythmias in the astronaut cohort. Since 1959, 11 cases of atrial fibrillation, atrial flutter, or supraventricular tachycardia have been recorded among active corps crewmembers. Most of the cases were paroxysmal, although a few were sustained. While most of the affected crewmembers were asymptomatic, those slated for long-duration space flight underwent radiofrequency ablation treatment to prevent further episodes of the arrhythmia. The summit was convened to solicit expert opinion on screening, diagnosis, and treatment options, to identify gaps in knowledge, and to propose relevant research initiatives. Summit Meeting Objectives: The Atrial Arrhythmia Summit brought together a panel of six cardiologists, including nationally and internationally renowned leaders in cardiac electrophysiology, exercise physiology, and space flight cardiovascular physiology. The primary objectives of the summit discussions were to evaluate cases of atrial arrhythmia in the astronaut population, to understand the factors that may predispose an individual to this condition, to understand NASA s current capabilities for screening, diagnosis, and treatment, to discuss the risks associated with treatment of crewmembers assigned to long-duration missions or extravehicular activities, and to discuss recommendations for prevention or management of future cases. Summary of Recommendations: The summit panel s recommendations were grouped into seven categories: Epidemiology, Screening, Standards and Selection, Treatment of Atrial Fibrillation Manifesting Preflight, Atrial Fibrillation during Flight, Prevention of Atrial Fibrillation, and Future Research

  13. Apollo Project - Astronaut Roger Chaffee

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Roger Chaffee on the Reduced Gravity Walking Simulator located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. A.W. Vigil, described the simulator as follows: 'When the astronauts land on the moon they will be in an unfamiliar environment involving, particularly, a gravitational field only one-sixth as strong as on earth. A novel method of simulating lunar gravity has been developed and is supported by a puppet-type suspension system at the end of a long pendulum. A floor is provided at the proper angle so that one-sixth of the subject's weight is supported by the floor with the remainder being supported by the suspension system. This simulator allows almost complete freedom in vertical translation and pitch and is considered to be a very realistic simulation of the lunar walking problem. For this problem this simulator suffers only slightly from the restrictions in lateral movement it puts on the test subject. This is not considered a strong disadvantage for ordinary walking problems since most of the motions do, in fact, occur in the vertical plane. However, this simulation technique would be severely restrictive if applied to the study of the extra-vehicular locomotion problem, for example, because in this situation complete six degrees of freedom are rather necessary. This technique, in effect, automatically introduces a two-axis attitude stabilization system into the problem. The technique could, however, be used in preliminary studies of extra-vehicular locomotion where, for example, it might be assumed that one axis of the attitude control system on the astronaut maneuvering unit may have failed.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 377; A.W. Vigil, 'Discussion of Existing

  14. Astronautics: Past, present and future

    NASA Astrophysics Data System (ADS)

    Maksimov, A. I.

    2016-10-01

    The article deals with the beginning and evolution of astronautics in XX-XXI centuries. The great attention is paid to the contribution of private companies to the further expansion of the mankind space activities in the past few decades.

  15. Astronaut Heidemarie M. Stefanyshyn-Piper During STS-115 Training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Attired in a training version of the Extravehicular Mobility Unit (EMU) space suit, STS-115 astronaut and mission specialist, Heidemarie M. Stefanyshyn-Piper, is submerged into the waters of the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center for training in preparation for the STS-115 mission. Launched on September 9, 2006, the STS-115 mission continued assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4.

  16. Astronaut Heidemarie M. Stefanyshyn-Piper During STS-115 Training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Attired in a training version of the Extravehicular Mobility Unit (EMU) space suit, STS-115 astronaut and mission specialist, Heidemarie M. Stefanyshyn-Piper, is about to begin a training session in the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center in preparation for the STS-115 mission. Launched on September 9, 2006, the STS-115 mission continued assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4.

  17. Astronauts Exercising in Space Video

    NASA Technical Reports Server (NTRS)

    2001-01-01

    To minimize the effects of weightlessness and partial gravity, astronauts use several counter measures to maintain health and fitness. One counter measure is exercise to help reduce or eliminate muscle atrophy and bone loss, and to improve altered cardiovascular function. This video shows astronauts on the International Space Station (ISS) using the stationary Cycle/ Ergometer Vibration Isolation System (CVIS), the Treadmill Vibration Isolation System (TVIS), and the resistance exercise device. These technologies and activities will be crucial to keeping astronauts healthy and productive during the long missions to the Moon. Mars, and beyond.

  18. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  19. Results of On-Orbit Testing of an Extra-Vehicular Infrared Camera Inspection System

    NASA Technical Reports Server (NTRS)

    Howell, Patricia A.; Cramer, K. Elliott

    2007-01-01

    This paper will discuss an infrared camera inspection system that has been developed to allow astronauts to demonstrate the ability to inspect reinforced carbon-carbon (RCC) components on the space shuttle as part of extra-vehicular activities (EVA) while in orbit. Presented will be the performance of the EVA camera system coupled with solar heating for inspection of damaged RCC specimens and NDE standards. The data presented was acquired during space shuttle flights STS-121 and STS-115 as well during a staged EVA from the ISS. The EVA camera system was able to detect flatbottom holes as small as 2.54cm in diameter with 25% material loss. Results obtained are shown to be comparable to ground-based thermal inspections performed in the laboratory using the same camera and simulated solar heating. Data on both the time history of the specimen temperature and the ability of the inspection system to image defects due to impact will likewise be presented.

  20. Astronaut training manual

    NASA Technical Reports Server (NTRS)

    Coleman, E. A.

    1980-01-01

    Scientific information from previous space flights, space medicine, exercise physiology, and sports medicine was used to prepare a physical fitness manual suitable for use by members of the NASA astronaut population. A variety of scientifically valid exercise programs and activities suitable for the development of physical fitness are provided. Programs, activities, and supportive scientific data are presented in a concise, easy to read format so as to permit the user to select his or her mode of training with confidence and devote time previously spent experimenting with training routines to preparation for space flight. The programs and activities included were tested and shown to be effective and enjoyable.

  1. Astronaut Henry W. Harsfield, Jr. in suit donning/doffing exercise

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut Henry W. Harsfield, Jr., STS-4 pilot, takes part in a suit donning/doffing exercise aboard a KC-135 'zero-gravity' aircraft. Mission Specialist William F. Fisher, far left, stands ready to assist in the exercise. Hartsfield is wearing an extravehicular mobility unit (EMU) minus gloves and helmet.

  2. Astronaut Story Musgrave during final stages of exercise in the WETF

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Astronaut Story Musgrave, STS-6 mission specialist, checks a sequence list on his spacesuit during the final stages of suit-donning exercise in the weightless environment test facility (WETF). He is wearing the full extravehicular mobility unit (EMU), including helmet and gloves and is strapped in to the platform for movement into the water.

  3. Multiphoton tomography of astronauts

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  4. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  5. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  6. STS-57 astronauts Low and Wisoff perform DTO 1210 EVA in OV-105's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During STS-57 extravehicular activity (EVA), Mission Specialist (MS) and Payload Commander (PLC) G. David Low (foreground) and MS3 Peter J.K. Wisoff work along the port side sill longeron in the payload bay (PLB) of the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105. Low will secure a portable foot restraint (PFR) (manipulator foot restraint (MFR)) to the remote manipulator system (RMS) end effector (deployed behind the two astronauts) using a PFR attachment device (PAD). This EVA, designated Detailed Test Objective (DTO) 1210, included evaluation of procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. Visible in OV-105's PLB are (front to back) the SPACEHAB-01 module (Commercial Middeck Augmentation Module (CMAM)), the Superhelium Onorbit Transfer (SHOOT) liquid helium dewar assembly, and the European Retrievable Carrier (EURECA) spacecraft. The scene is backdropped against the Earth's surface.

  7. Astronaut Virgil Grissom and Astronaut John Glenn

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Virgil Grissom chats with Astronaut John Glenn prior to entering the Liberty Bell 7 capsule for the MR-4 Mission. The MR-4 mission was the second manned suborbital flight using the Mercury-Redstone booster, which was developed by the Marshall Space Flight Center.

  8. Probabilistic Assessment of Cancer Risk for Astronauts on Lunar Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2009-01-01

    During future lunar missions, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon transit. NASA s new lunar program anticipates that up to 15% of crew time may be on EVA, with minimal radiation shielding. For the operational challenge to respond to events of unknown size and duration, a probabilistic risk assessment approach is essential for mission planning and design. Using the historical database of proton measurements during the past 5 solar cycles, a typical hazard function for SPE occurrence was defined using a non-homogeneous Poisson model as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions ranging from the 5th to 95th percentile of particle fluences for a specified mission period were simulated. Organ doses corresponding to particle fluences at the median and at the 95th percentile for a specified mission period were assessed using NASA s baryon transport model, BRYNTRN. The cancer fatality risk for astronauts as functions of age, gender, and solar cycle activity were then analyzed. The probability of exceeding the NASA 30- day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated. Future work will involve using this probabilistic risk assessment approach to SPE forecasting, combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.

  9. Astronaut Scott Carpenter

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Astronaut Scott Carpenter, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. Boosted by the Mercury-Atlas vehicle, the MA-7 mission made the second marned orbital flight by the United States, and carried Astronaut Carpenter aboard Aurora 7 spacecraft to orbit the Earth three times.

  10. European astronaut selected for the third Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    1998-08-01

    The STS-104 crew will rendezvous with the orbiting Hubble Space Telescope, which is the size of a city bus, capture it using the Shuttle's Canadian robot arm and secure it in Columbia's payload bay. Then, working in teams of two, the four astronauts will leave the Shuttle's pressurised cabin and venture into the payload bay, performing a variety of tasks that will improve the productivity and reliability of the telescope. The four astronauts will perform a series of six "extravehicular" activities in the open space environment. Such activities are commonly called spacewalks, but this term does little justice to the considerable physical and mental efforts that astronauts need to make in doing the very demanding work involved. The Shuttle commander and pilot for this flight have not yet been appointed, but the four designated mission specialists begin training for the STS-104 mission immediately. "The ambitious nature of this mission, with its six spacewalks, made it important for the payload crew to begin training as early as possible," said David C. Leestma, NASA Director of Flight Crew Operations at the Johnson Space Center in Houston, to which Claude Nicollier is on resident assignment from ESA's European Astronaut Centre in Cologne, Germany, the home base of the European astronaut corps. The Hubble Space Telescope was launched into orbit in April 1990. It is one of the most capable optical telescopes available to astronomers today, producing images and spectral observations at the forefront of astronomy. The European Space Agency contributed a 15 share to the development of Hubble. One of the five scientific instruments on board, the Faint Object Camera, was built by a European industrial consortium made up of British Aerospace, Dornier and Matra under a contract with the European Space Agency. The solar arrays which provide Hubble with electrical power were manufactured by British Aerospace and Dornier. In its eight years of operation, the telescope has not

  11. The Astronaut-Athlete: Optimizing Human Performance in Space.

    PubMed

    Hackney, Kyle J; Scott, Jessica M; Hanson, Andrea M; English, Kirk L; Downs, Meghan E; Ploutz-Snyder, Lori L

    2015-12-01

    It is well known that long-duration spaceflight results in deconditioning of neuromuscular and cardiovascular systems, leading to a decline in physical fitness. On reloading in gravitational environments, reduced fitness (e.g., aerobic capacity, muscular strength, and endurance) could impair human performance, mission success, and crew safety. The level of fitness necessary for the performance of routine and off-nominal terrestrial mission tasks remains an unanswered and pressing question for scientists and flight physicians. To mitigate fitness loss during spaceflight, resistance and aerobic exercise are the most effective countermeasure available to astronauts. Currently, 2.5 h·d, 6-7 d·wk is allotted in crew schedules for exercise to be performed on highly specialized hardware on the International Space Station (ISS). Exercise hardware provides up to 273 kg of loading capability for resistance exercise, treadmill speeds between 0.44 and 5.5 m·s, and cycle workloads from 0 and 350 W. Compared to ISS missions, future missions beyond low earth orbit will likely be accomplished with less vehicle volume and power allocated for exercise hardware. Concomitant factors, such as diet and age, will also affect the physiologic responses to exercise training (e.g., anabolic resistance) in the space environment. Research into the potential optimization of exercise countermeasures through use of dietary supplementation, and pharmaceuticals may assist in reducing physiological deconditioning during long-duration spaceflight and have the potential to enhance performance of occupationally related astronaut tasks (e.g., extravehicular activity, habitat construction, equipment repairs, planetary exploration, and emergency response).

  12. Designing Interfaces for Astronaut Autonomy in Space

    NASA Technical Reports Server (NTRS)

    Hillenius, Steve

    2015-01-01

    As we move towards human deep space missions, astronauts will no longer be able to say, Houston, we have a problem. The restricted contact with mission control because of the incredible distance from Earth will require astronauts to make autonomous decisions. How will astronauts take on the roles of mission control? This is an area of active research that has far reaching implications for the future of distant spaceflight. Come to this talk to hear how we are using design and user research to come up with innovative solutions for astronauts to effectively explore the Moon, Mars, and beyond.

  13. A direct-interface, fusible heat sink for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis; Webbon, B. W.

    1990-01-01

    Astronaut cooling during extravehicular activity is a critical design issue in developing a portable life support system that meets the requirements of a space station mission. Some of the requirements are that the cooling device can be easily regenerable and nonventing during operation. In response to this, a direct-interface, fusible heat sink prototype with freezable quick-disconnects was developed. A proof-of-concept prototype was constructed and tested that consists of an elastic container filled with normal tap water and having two quick-disconnects embedded in a wall. These quick-disconnects are designed so that they may be frozen with the ice and yet still be joined to the cooling system, allowing an immediate flow path. The inherent difficulties in a direct-interface heat sink have been overcome, i.e., (1) establishing an initial flow path; (2) avoiding low-flow freeze-up; and (3) achieving adequate heat-transfer rates at the end of the melting process. The requirements, design, fabrication, and testing are discussed.

  14. Radiological health risks to astronauts from space activities and medical procedures

    NASA Technical Reports Server (NTRS)

    Peterson, Leif E.; Nachtwey, D. Stuart

    1990-01-01

    Radiation protection standards for space activities differ substantially from those applied to terrestrial working situations. The levels of radiation and subsequent hazards to which space workers are exposed are quite unlike anything found on Earth. The new more highly refined system of risk management involves assessing the risk to each space worker from all sources of radiation (occupational and non-occupational) at the organ level. The risk coefficients were applied to previous space and medical exposures (diagnostic x ray and nuclear medicine procedures) in order to estimate the radiation-induced lifetime cancer incidence and mortality risk. At present, the risk from medical procedures when compared to space activities is 14 times higher for cancer incidence and 13 times higher for cancer mortality; however, this will change as the per capita dose during Space Station Freedom and interplanetary missions increases and more is known about the risks from exposure to high-LET radiation.

  15. Radiological health risks to astronauts from space activities and medical procedures

    SciTech Connect

    Paterson, L.E.; Nachtwey, D.S.

    1990-08-01

    Radiation protection standards for space activities differ substantially from those applied to terrestrial working situations. The levels of radiation and subsequent hazards to which space workers are exposed are quite unlike anything found on Earth. The new more highly refined system of risk management involves assessing the risk to each space worker from all sources of radiation (occupational and non-occupational) at the organ level. The risk coefficients were applied to previous space and medical exposures (diagnostic x ray and nuclear medicine procedures) in order to estimate the radiation-induced lifetime cancer incidence and mortality risk. At present, the risk from medical procedures when compared to space activities is 14 times higher for cancer incidence and 13 times higher for cancer mortality; however, this will change as the per capita dose during Space Station Freedom and interplanetary missions increases and more is known about the risks from exposure to high-LET radiation.

  16. From model rockets to spacewalks: an astronaut physician's journey and the science of the United States' space program.

    PubMed

    Parazynski, Scott E

    2006-01-01

    From simple childhood dreams to their fulfillment, this presentation chronicles the author's life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can be accomplished in the microgravity of space. NASA's efforts to develop inspection and repair capabilities in the aftermath of the Columbia tragedy are also covered, as are the nation's plans for returning to the Moon and continuing on to Mars as part of the Vision for Space Exploration (VSE).

  17. From Model Rockets to Spacewalks: an Astronaut Physician’s Journey and the Science of the United States’ Space Program*

    PubMed Central

    Parazynski, Scott E

    2006-01-01

    From simple childhood dreams to their fulfillment, this presentation chronicles the author’s life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can be accomplished in the microgravity of space. NASA’s efforts to develop inspection and repair capabilities in the aftermath of the Columbia tragedy are also covered, as are the nation’s plans for returning to the Moon and continuing on to Mars as part of the Vision for Space Exploration (VSE). PMID:18528479

  18. Astronaut Thomas Stafford and Snoopy

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Thomas P. Stafford, commander of the Apollo 10 lunar orbit mission, takes time out from his preflight training activities to have his picture made with Snoopy, the character from Charles Schulz's syndicated comic strip, 'Peanuts'. During the Apollo 10 lunar orbit operations the Lunar Module will be called Snoopy when it is separated from the Command/Service Modules.

  19. NASA Astronaut Occupational Surveillance Program and Lifetime Surveillance of Astronaut Health, LSAH, Astronaut Exposures and Risk in the Terrestrial and Spaceflight Environment

    NASA Technical Reports Server (NTRS)

    Keprta, Sean R.; Tarver, William; Van Baalen, Mary; McCoy, Torin

    2015-01-01

    United States Astronauts have a very unique occupational exposure profile. In order to understand these risks and properly address them, the National Aeronautics and Atmospheric Administration, NASA, originally created the Longitudinal Study of Astronaut Health, LSAH. The first LSAH was designed to address a variety of needs regarding astronaut health and included a 3 to 1 terrestrial control population in order to compare United States "earth normal" disease and aging to that of a microgravity exposed astronaut. Over the years that program has been modified, now termed Lifetime Surveillance of Astronaut Health, still LSAH. Astronaut spaceflight exposures have also changed, with the move from short duration shuttle flights to long duration stays on international space station and considerable terrestrial training activities. This new LSAH incorporates more of an occupational health and medicine model to the study of occupationally exposed astronauts. The presentation outlines the baseline exposures and monitoring of the astronaut population to exposures, both terrestrial, and in space.

  20. Antenna Design Considerations for the Advanced Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Bakula, Casey J.; Theofylaktos, Onoufrios

    2015-01-01

    NASA is designing an Advanced Extravehicular Mobility Unit (AEMU)to support future manned missions beyond low-Earth orbit (LEO). A key component of the AEMU is the communications assembly that allows for the wireless transfer of voice, video, and suit telemetry. The Extravehicular Mobility Unit (EMU) currently used on the International Space Station (ISS) contains a radio system with a single omni-directional resonant cavity antenna operating slightly above 400 MHz capable of transmitting and receiving data at a rate of about 125 kbps. Recent wireless communications architectures are calling for the inclusion of commercial wireless standards such as 802.11 that operate in higher frequency bands at much higher data rates. The current AEMU radio design supports a 400 MHz band for low-rate mission-critical data and a high-rate band based on commercial wireless local area network (WLAN) technology to support video, communication with non-extravehicular activity (EVA) assets such as wireless sensors and robotic assistants, and a redundant path for mission-critical EVA data. This paper recommends the replacement of the existing EMU antenna with a new antenna that maintains the performance characteristics of the current antenna but with lower weight and volume footprints. NASA has funded several firms to develop such an antenna over the past few years, and the most promising designs are variations on the basic patch antenna. This antenna technology at UHF is considered by the authors to be mature and ready for infusion into NASA AEMU technology development programs.

  1. Data Mining Activity for Bone Discipline: Calculating a Factor of Risk for Hip Fracture in Long-Duration Astronauts

    NASA Technical Reports Server (NTRS)

    Ellman, R.; Sibonga, J. D.; Bouxsein, M. L.

    2010-01-01

    The factor-of-risk (Phi), defined as the ratio of applied load to bone strength, is a biomechanical approach to hip fracture risk assessment that may be used to identify subjects who are at increased risk for fracture. The purpose of this project was to calculate the factor of risk in long duration astronauts after return from a mission on the International Space Station (ISS), which is typically 6 months in duration. The load applied to the hip was calculated for a sideways fall from standing height based on the individual height and weight of the astronauts. The soft tissue thickness overlying the greater trochanter was measured from the DXA whole body scans and used to estimate attenuation of the impact force provided by soft tissues overlying the hip. Femoral strength was estimated from femoral areal bone mineral density (aBMD) measurements by dual-energy x-ray absorptiometry (DXA), which were performed between 5-32 days of landing. All long-duration NASA astronauts from Expedition 1 to 18 were included in this study, where repeat flyers were treated as separate subjects. Male astronauts (n=20) had a significantly higher factor of risk for hip fracture Phi than females (n=5), with preflight values of 0.83+/-0.11 and 0.36+/-0.07, respectively, but there was no significant difference between preflight and postflight Phi (Figure 1). Femoral aBMD measurements were not found to be significantly different between men and women. Three men and no women exceeded the theoretical fracture threshold of Phi=1 immediately postflight, indicating that they would likely suffer a hip fracture if they were to experience a sideways fall with impact to the greater trochanter. These data suggest that male astronauts may be at greater risk for hip fracture than women following spaceflight, primarily due to relatively less soft tissue thickness and subsequently greater impact force.

  2. Full Mission Astronaut Radiation Exposure Assessments for Long Duration Lunar Surface Missions

    NASA Technical Reports Server (NTRS)

    Adamczyk, Anne; Clowdsley, Martha; Qualls, Garry; Blattnig, Steve; Lee, Kerry; Fry, Dan; Stoffle, Nicholas; Simonsen, Lisa; Slaba, Tony; Walker, Steven; Zapp, Edward

    2011-01-01

    Risk to astronauts due to ionizing radiation exposure is a primary concern for missions beyond Low Earth Orbit (LEO) and will drive mission architecture requirements, mission timelines, and operational practices. For short missions, radiation risk is dominated by the possibility of a large Solar Particle Event (SPE). Longer duration missions have both SPE and Galactic Cosmic Ray (GCR) risks. SPE exposure can contribute significantly toward cancer induction in combination with GCR. As mission duration increases, mitigation strategies must address the combined risks from SPE and GCR exposure. In this paper, full mission exposure assessments were performed for the proposed long duration lunar surface mission scenarios. In order to accomplish these assessments, previously developed radiation shielding models for a proposed lunar habitat and rover were utilized. End-to-End mission exposure assessments were performed by first calculating exposure rates for locations in the habitat, rover, and during Extra-Vehicular Activities (EVA). Subsequently, total mission exposures were evaluated for the proposed timelines. Mission exposure results, assessed in terms of effective dose, are presented for the proposed timelines and recommendations are made for improved astronaut shielding and safer operational practices.

  3. Safeguarding the Health of the NASA Astronaut Community: the Need for Expanded Medical Monitoring for Former NASA Astronauts Under the Astronaut Occupational Health Program

    NASA Technical Reports Server (NTRS)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2016-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential latent health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging communities are necessary for astronauts to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography), as opposed to conditions resulting directly from the astronaut occupation; and increased breadth of monitoring services will improve the understanding of occupational health risks and longitudinal health of the astronaut community, past, present, and future. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of expanding existing medical monitoring under the Astronaut Occupational Health program for former NASA astronauts.

  4. Materials considerations in the design of a metal-hydride heat pump for an advanced extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Liebert, B. E.

    1986-01-01

    A metal-hydride heat pump (HHP) has been proposed to provide an advanced regenerable nonventing thermal sink for the liquid-cooled garment worn during an extravehicular activity (EVA). The conceptual design indicates that there is a potential for significant advantages over the one presently being used by shuttle crew personnel as well as those that have been proposed for future use with the space station. Compared to other heat pump designs, a HHP offers the potential for extended use with no electrical power requirements during the EVA. In addition, a reliable, compact design is possible due to the absence of moving parts other than high-reliability check valves. Because there are many subtleties in the properties of metal hydrides for heat pump applications, it is essential that a prototype hydride heat pump be constructed with the selected materials before a committment is made for the final design. Particular care must be given to the evaporator heat exchanger worn by the astronaut since the performance of hydride heat pumps is generally heat transfer limited.

  5. Extravehicular Mobility Unit (EMU) / International Space Station (ISS) Coolant Loop Failure and Recovery

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Cole, Harold; Cronin, Gary; Gazda, Daniel B.; Steele, John

    2006-01-01

    Following the Colombia accident, the Extravehicular Mobility Units (EMU) onboard ISS were unused for several months. Upon startup, the units experienced a failure in the coolant system. This failure resulted in the loss of Extravehicular Activity (EVA) capability from the US segment of ISS. With limited on-orbit evidence, a team of chemists, engineers, metallurgists, and microbiologists were able to identify the cause of the failure and develop recovery hardware and procedures. As a result of this work, the ISS crew regained the capability to perform EVAs from the US segment of the ISS.

  6. Colonoscopy Screening in the US Astronaut Corps

    NASA Technical Reports Server (NTRS)

    Masterova, K.; Van Baalen, M.; Wear, M. L.; Murray, J.; Schaefer, C.

    2016-01-01

    Historically, colonoscopy screenings for astronauts have been conducted to ensure that astronauts are in good health for space missions. This data has been identified as being useful for determining appropriate occupational surveillance targets and requirements. Colonoscopies in the astronaut corps can be used for: (a) Assessing overall colon health, (b) A point of reference for future tests in current and former astronauts, (c) Following-up and tracking rates of colorectal cancer and polyps; and (d) Comparison to military and other terrestrial populations. In 2003, medical screening requirements for the active astronaut corps changed to require less frequent colonoscopies. Polyp removal during a colonoscopy is an intervention that prevents the polyp from potentially developing into cancer and decreases the individual's risk for colon cancer.

  7. Space Life Sciences Directorate's Position on the Physiological Effects of Exposing the Crewmemeber to Low-Voltage Electrical Hazards During Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas; Kramer, Leonard; Mikatarian, Ron; Polk, James; Duncan, Michael; Koontz, Steven

    2010-01-01

    The models predict that, for low voltage exposures in the space suit, physiologically active current could be conducted across the crew member causing catastrophic hazards. Future work with Naval Health Research Center Detachment Directed Energy Bio-effects Laboratory is being proposed to analyze additional current paths across the human torso and upper limbs. These models may need to be verified with human studies.

  8. Independent Orbiter Assessment (IOA): Analysis of the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Raffaelli, Gary G.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Extravehicular Mobility Unit (EMU) hardware. The EMU is an independent anthropomorphic system that provides environmental protection, mobility, life support, and communications for the Shuttle crewmember to perform Extravehicular Activity (EVA) in Earth orbit. Two EMUs are included on each baseline Orbiter mission, and consumables are provided for three two-man EVAs. The EMU consists of the Life Support System (LSS), Caution and Warning System (CWS), and the Space Suit Assembly (SSA). Each level of hardware was evaluated and analyzed for possible failure modes and effects. The majority of these PCIs are resultant from failures which cause loss of one or more primary functions: pressurization, oxygen delivery, environmental maintenance, and thermal maintenance. It should also be noted that the quantity of PCIs would significantly increase if the SOP were to be treated as an emergency system rather than as an unlike redundant element.

  9. Astronauts' menu problem.

    NASA Technical Reports Server (NTRS)

    Lesso, W. G.; Kenyon, E.

    1972-01-01

    Consideration of the problems involved in choosing appropriate menus for astronauts carrying out SKYLAB missions lasting up to eight weeks. The problem of planning balanced menus on the basis of prepackaged food items within limitations on the intake of calories, protein, and certain elements is noted, as well as a number of other restrictions of both physical and arbitrary nature. The tailoring of a set of menus for each astronaut on the basis of subjective rankings of each food by the astronaut in terms of a 'measure of pleasure' is described, and a computer solution to this problem by means of a mixed integer programming code is presented.

  10. Full Mission Astronaut Radiation Exposure Assessments for Long Duration Lunar Surface Missions

    NASA Technical Reports Server (NTRS)

    Adamczyk, Anne M.; Clowdsley, Martha S.; Qualls, Garry D.; Blattnig, Steve B.; Lee, Kerry T.; Fry, Dan J.; Stoffle, Nicholas N.; Simonsen, Lisa C.; Slaba, Tony C.; Walker, Steven A.; Zapp, Edward N.

    2010-01-01

    Risk to astronauts due to ionizing radiation exposure is a primary concern for missions beyond Low Earth Orbit (LEO) and will drive mission architecture requirements, mission timelines, and operational practices. Both galactic cosmic ray (GCR) and solar particle event (SPE) environments pose a risk to astronauts for missions beyond LEO. The GCR environment, which is made up of protons and heavier ions covering a broad energy spectrum, is ever present but varies in intensity with the solar cycle, while SPEs are sporadic events, consisting primarily of protons moving outward through the solar system from the sun. The GCR environment is more penetrating and is more difficult to shield than SPE environments, but lacks the intensity to induce acute effects. Large SPEs are rare, but they could result in a lethal dose, if adequate shielding is not provided. For short missions, radiation risk is dominated by the possibility of a large SPE. Longer missions also require planning for large SPEs; adequate shielding must be provided and operational constraints must allow astronauts to move quickly to shielded locations. The dominant risk for longer missions, however, is GCR exposure, which accumulates over time and can lead to late effects such as cancer. SPE exposure, even low level SPE exposure received in heavily shielded locations, will increase this risk. In addition to GCR and SPE environments, the lunar neutron albedo resulting mainly from the interaction of GCRs with regolith will also contribute to astronaut risk. Full mission exposure assessments were performed for proposed long duration lunar surface mission scenarios. In order to accomplish these assessments, radiation shielding models were developed for a proposed lunar habitat and rover. End-to-End mission exposure assessments were performed by first calculating exposure rates for locations in the habitat, rover, and during extra-vehicular activities (EVA). Subsequently, total mission exposures were evaluated for

  11. Advanced Extravehicular Activity Pressure Garment Requirements Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2014-01-01

    The NASA Johnson Space Center advanced pressure garment technology development team is addressing requirements development for exploration missions. Lessons learned from the Z-2 high fidelity prototype development have reiterated that clear low-level requirements and verification methods reduce risk to the government, improve efficiency in pressure garment design efforts, and enable the government to be a smart buyer. The expectation is to provide requirements at the specification level that are validated so that their impact on pressure garment design is understood. Additionally, the team will provide defined verification protocols for the requirements. However, in reviewing exploration space suit high level requirements there are several gaps in the team's ability to define and verify related lower level requirements. This paper addresses the efforts in requirement areas such as mobility/fit/comfort and environmental protection (dust, radiation, plasma, secondary impacts) to determine the by what method the requirements can be defined and use of those methods for verification. Gaps exist at various stages. In some cases component level work is underway, but no system level effort has begun, in other cases no effort has been initiated to close the gap. Status of ongoing efforts and potential approaches to open gaps are discussed.

  12. Extravehicular Activity Systems: 1994-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for the space suit of the future, specifically for productive work on planetary surfaces. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  13. Extravehicular Activity (EVA) Microbial Swab Tool

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2015-01-01

    When we send humans to search for life on Mars, we'll need to know what we brought with us versus what may already be there. To ensure our crewed spacecraft meet planetary protection requirements--and to protect our science from human contamination--we'll need to know whether micro-organisms are leaking/venting from our ships and spacesuits. This is easily done by swabbing external vents and surfaces for analysis, but there was no US EVA tool for that job. NASA engineers developed an EVA-compatible swab tool that can be used to collect data on current hardware, which will influence eventual Mars life support and EVA hardware designs.

  14. Astronaut John Young's Career

    NASA Video Gallery

    John Young served as a NASA astronaut for over four decades, flying on Gemini, Apollo and the Space Shuttle. He walked on the moon during Apollo 16 in 1972 and commanded the first shuttle mission, ...

  15. Astronauts Practice Station Spacewalk

    NASA Video Gallery

    Astronauts Cady Coleman and Suni Williams conduct an underwater practice spacewalk session at Johnson Space Center’s Neutral Buoyancy Laboratory. The session was used to help International Space St...

  16. Building An Astronaut Core

    NASA Video Gallery

    Train to improve the strength in your abdominal and back muscles by performing the "Commander Crunch" and "Pilot Plank" exercises. The Train Like an Astronaut project uses the excitement of explora...

  17. ISS Update: Astronaut's Perspective

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews veteran NASA astronaut Cady Coleman about what it's like to receive visitors on the International Space Station as well as her other experience...

  18. Preparing for space - EVA training at the European Astronaut Centre

    NASA Astrophysics Data System (ADS)

    Bolender, Hans; Stevenin, Hervé; Bessone, Loredana; Torres, Antonio

    2006-11-01

    The European Astronaut Centre has developed an Extra Vehicular Activity (EVA) training course for ESA astronauts to bridge the gap between their scuba diving certification and the spacesuit qualification provided by NASA. ESA astronauts André Kuipers and Frank De Winne have already completed this "EVA Pre-Familiarisation Training Programme" before their training at NASA. In June 2006, an international crew of experienced EVA astronauts approved the course as good preparation for suited EVA training; they recommended that portions of it be used to help maintain EVA proficiency for astronauts.

  19. Shuttle crew station astronaut interfaces. [human factors engineering

    NASA Technical Reports Server (NTRS)

    Franklin, G. C.

    1978-01-01

    The current shuttle orbiter configuration and its crew module and payload bay accomodations for work and off duty activities are described. The capability of the remote manipulator system and provisions to support extravehicular activities are examined with emphasis on flight crew activities for orbital flight tests and for early operational space transportation system flights. Facilities used to verify crew interfaces are also described.

  20. Astronaut Atop Canadarm-2

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission's third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter's heat-shielding tiles located on the craft's underbelly. Never before had any repairs been done to an orbiter while still in space. Back dropped by the blackness of space and Earth's horizon, astronaut Stephen K. Robinson, STS-114 mission specialist, is anchored to a foot restraint on the extended ISS's Canadarm-2.

  1. Advanced Extravehicular Protective System (AEPS) study

    NASA Technical Reports Server (NTRS)

    Williams, J. L.; Webbon, B. W.; Copeland, R. J.

    1972-01-01

    A summary is presented of Advanced Extravehicular Protective Systems (AEPS) for the future missions beyond Skylab in earth orbit, on the lunar surface, and on the Martian surface. The study concentrated on the origination of regenerable life support concepts for use in portable extravehicular protective systems, and included evaluation and comparison with expendable systems, and selection of life support subsystems. The study was conducted in two phases. In the first phase, subsystem concepts for performing life support functions in AEPS which are regenerable or partially regenerable were originated, and in addition, expendable subsystems were considered. Parametric data for each subsystem concept were evolved including subsystem weight and volume, power requirement, thermal control requirement; base regeneration equipment weight and volume, requirement. The second phase involved an evaluation of the impact of safety considerations involving redundant and/or backup systems on the selection of the regenerable life support subsystems. In addition, the impact of the space shuttle program on regenerable life support subsystem development was investigated.

  2. Metabolic changes observed in astronauts

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Cintron, N. M.; Krauhs, J. M.

    1991-01-01

    Results of medical experiments with astronauts reveal rapid loss of volume (2 l) from the legs and a transient early increase in left ventricular volume index. These findings indicate that, during space flight, fluid is redistributed from the legs toward the head. In about 2 days, total body water decreases 2 to 3 percent. Increased levels of plasma renin activity and antidiuretic hormone while blood sodium and plasma volume are reduced suggest that space flight-associated factors are influencing the regulatory systems. In addition to fluid and electrolyte loss, Skylab astronauts lost an estimated 0.3 kg of protein. Endocrine factors, including increased cortisol and thyroxine and decreased insulin, are favorable for protein catabolism. The body appears to adapt to weightlessness at some physiologic cost. Readaptation to earth's gravity at landing becomes another physiologic challenge.

  3. Suitport extra-vehicular access facility

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Inventor)

    1989-01-01

    In a system for entering and leaving a space station, a bulkhead divides the module into an antechamber and an airlock. A space suit has a portable life support system (PLSS) interface on its back. The suit is removably attached to the bulkhead by the interface at a hatch in the bulkhead. A PLSS is detachably mounted in the hatch cover, which is pivotally mounted to move away from the hatch to allow an astronaut to enter the suit through the open hatch and the PLSS interface. After entering the suit, the astronaut closes the hatch and attaches the PLSS to the suit by the operating control to which the glove portion of the suit is attached. The astronaut initiates pumpdown of the airlock with the control. When the pumpdown is complete, the astronaut opens the hatch, disconnects the PLSS from the hatch cover, pivots the pressure vessels of the control to one side on their supports, disconnects the glove portions from the pressure vessels and goes EVA.

  4. Thermal control extravehicular life support system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of a comprehensive study which defined an Extravehicular Life Support System Thermal Control System (TCS) are presented. The design of the prototype hardware and a detail summary of the prototype TCS fabrication and test effort are given. Several heat rejection subsystems, water management subsystems, humidity control subsystems, pressure control schemes and temperature control schemes were evaluated. Alternative integrated TCS systems were studied, and an optimum system was selected based on quantitative weighing of weight, volume, cost, complexity and other factors. The selected subsystem contains a sublimator for heat rejection, bubble expansion tank for water management, a slurper and rotary separator for humidity control, and a pump, a temperature control valve, a gas separator and a vehicle umbilical connector for water transport. The prototype hardware complied with program objectives.

  5. Skylab extravehicular mobility unit thermal simulator

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.; Phillips, M. A.

    1974-01-01

    The analytical methods, thermal model, and user's instructions for the Skylab Extravehicular Mobility Unit (SEMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the SEMU on the NASA-JSC Univac 1108 computer system. It accounts for conductive, convective, and radiant heat transfer as well as fluid flow and special component characterization. The program provides thermal performance predictions for a 967 node thermal model in one thirty-sixth (1/36) of mission time when operated at a calculating interval of three minutes (mission time). The program has the operational flexibility to: (1) accept card or magnetic tape data input for the thermal model describing the SEMU structure, fluid systems, crewman and component performance, (2) accept card and/or magnetic tape input of internally generated heat and heat influx from the space environment, and (3) output tabular or plotted histories of temperature, flow rates, and other parameters describing system operating modes.

  6. Assessments of astronaut effectiveness

    NASA Technical Reports Server (NTRS)

    Rose, Robert M.; Helmreich, Robert L.; Fogg, Louis; Mcfadden, Terry J.

    1993-01-01

    This study examined the reliability and convergent validity of three methods of peer and supervisory ratings of the effectiveness of individual NASA astronauts and their relationships with flight assignments. These two techniques were found to be reliable and relatively convergent. Seniority and a peer-rated Performance and Competence factor proved to be most closely associated with flight assignments, while supervisor ratings and a peer-rated Group Living and Personality factor were found to be unrelated. Results have implications for the selection and training of astronauts.

  7. Efforts to Reduce International Space Station Crew Maintenance for the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Etter, David; Rector, Tony; Boyle, Robert; Vandezande, Christopher

    2013-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with on-orbit ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post-Shuttle 6-year service life.

  8. Extravehicular Crewman Work System (ECWS) study program. Volume 2: Construction

    NASA Technical Reports Server (NTRS)

    Wilde, R. C.

    1980-01-01

    The construction portion of the Extravehicular Crewman Work System Study defines the requirements and selects the concepts for the crewman work system required to support the construction of large structures in space.

  9. STS-113 Astronauts Work on Port One (P1) Truss on International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 16th American assembly flight and 112th overall American flight to the International Space Station (ISS) launched on November 23, 2002 from Kennedy's launch pad 39A aboard the Space Shuttle Orbiter Endeavor STS-113. Mission objectives included the delivery of the Expedition Six Crew to the ISS, the return of Expedition Five crew back to Earth, and the installation and activation of the Port 1 Integrated Truss Assembly (P1). The first major component installed on the left side of the Station, the P1 truss provides an additional three External Thermal Control System radiators. Weighing in at 27,506 pounds, the P1 truss is 45 feet (13.7 meters) long, 15 feet (4.6 meters) wide, and 13 feet (4 meters) high. Three space walks, aided by the use of the Robotic Manipulator Systems of both the Shuttle and the Station, were performed in the installation of P1. In this photograph, astronauts Michael E. Lopez-Alegria (above) and John B. Herrington (below) work on the newly installed P1 truss during the mission's second scheduled session of extravehicular activity. The space walk lasted 6 hours, 10 minutes. The end effector of the Canadarm2 or Space Station Remote Manipulator System (SSRMS) and Earth's horizon are visible in the bottom of frame.

  10. Astronaut Stephen Oswald and fellow crew members on middeck

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Stephen S. Oswald (center), STS-67 mission commander, is seen with two of his fellow crew members and an experiment which required a great deal of his time on the middeck of the Earth orbiting Space Shuttle Endeavour. Astronaut John M. Grunsfeld inputs mission data on a computer while listening to a cassette. Astronaut William G. Gregory (right edge of frame), pilot, consults a check list. The Middeck Active Control Experiment (MACE), not in use here, can be seen in upper center.

  11. Astronauts James Lovell and Frank Borman during preflight physical

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Dr. Charles A. Berry, Chief of the Manned Spacecraft Center (MSC) Medical Programs, checks Astronaut James A. Lovell Jr., Gemini 7 prime crew pilot, follwoing workout on exercise machine. Results will be compared with those obtained during space flight for evaluation (60602); Astronaut Frank Borman, Gemini 7 command pilot, sits as two scalp electrodes are attached to his head. The electrodes will allow doctors to record electrical activity of the astronaut's cerebral cortex during periods of weightlessness (60603).

  12. A new method of measuring the stiffness of astronauts' EVA gloves

    NASA Astrophysics Data System (ADS)

    Mousavi, Mehdi; Appendino, Silvia; Battezzato, Alessandro; Bonanno, Alberto; Chen Chen, Fai; Crepaldi, Marco; Demarchi, Danilo; Favetto, Alain; Pescarmona, Francesco

    2014-04-01

    Hand fatigue is one of the most important problems of astronauts during their missions to space. This fatigue is due to the stiffness of the astronauts' gloves known as Extravehicular Activity (EVA) gloves. The EVA glove has a multilayered, bulky structure and is pressurized against the vacuum of space. In order to evaluate the stiffness of EVA gloves, different methods have been proposed in the past. In particular, the effects of wearing an EVA glove on the performance of the hands have been published by many researchers to represent the stiffness of the EVA glove. In this paper, a new method for measuring the stiffness of EVA gloves is proposed. A tendon-actuated finger probe is designed and used as an alternative to the human index finger in order to be placed inside an EVA glove and measure its stiffness. The finger probe is equipped with accelerometers, which work as tilt sensors, to measure the angles of its phalanges. The phalanges are actuated by applying different amount of torque using the tendons of the finger probe. Moreover, a hypobaric glove box is designed and realized to simulate the actual operating pressure of the EVA glove and to measure its stiffness in both pressurized and non-pressurized conditions. In order to prove the right performance of the proposed finger probe, an Orlam-DM EVA glove is used to perform a number of tests. The equation of stiffness for the PIP joint of this glove is extracted from the results acquired from the tests. This equation presents the torque required to flex the middle phalanx of the glove. Then, the effect of pressurization on the stiffness is highlighted in the last section. This setup can be used to measure the stiffness of different kinds of EVA gloves and allows direct, numerical comparison of their stiffness.

  13. Modeling Acute Health Effects of Astronauts from Exposure to Large Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2011-01-01

    In space exploration outside the Earth s geomagnetic field, radiation exposure from solar particle events (SPE) presents a health concern for astronauts, that could impair their performance and result in possible failure of the mission. Acute risks are of special concern during extra-vehicular activities because of the rapid onset of SPE. However, most SPEs will not lead to acute risks but can lead to mission disruption if accurate projection methods are not available. Acute Radiation Sickness (ARS) is a group of clinical syndromes developing acutely (within several seconds to 3 days) after high dose whole-body or significant partial-body ionizing radiation exposures. The manifestation of these syndromes reflects the disturbance of physiological processes of various cellular groups damaged by radiation. Hematopoietic cells, skin, epithelium, intestine, and vascular endothelium are among the most sensitive tissues of human body to ionizing radiation. Most ARS symptoms are directly related to these tissues and other systems (nervous, endocrine, and cardiovascular, etc.) with coupled regulations. Here we report the progress in bio-mathematical models to describe the dose and time-dependent early human responses to ionizing radiation. The responses include lymphocyte depression, granulocyte modulation, fatigue and weakness syndrome, and upper gastrointestinal distress. The modest dose and dose-rates of SPEs are predicted to lead to large sparing of ARS, however detailed experimental data on a range of proton dose-rates for organ doses from 0.5 to 2 Gy is needed to validate the models. We also report on the ARRBOD code that integrates the BRYNTRN and SUMDOSE codes, which are used to estimate the SPE organ doses for astronauts under various space travel scenarios, with our models of ARS. The more recent effort is to provide easy web access to space radiation risk assessment using the ARRBOD code.

  14. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  15. Astronaut Harrison Schmitt uses scoop to retrieve lunar samples during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison Schmitt, Apollo 17 lunar module pilot, uses an adjustable sampling scoop to retrieve lunar samples during the second Apollo 17 extravehicular activity (EVA-2), at Station 5 at the Taurus-Littrow landing site. A gnomon is atop the large rock in the foreground. The gnomon is a stadia rod mounted on a tripod, and serves as an indicator of the gravitational vector and provides accurate vertical reference and calibrated length for determining size and position of objects in near-field photographs. The color scale of blue, orange and green is used to accurately determine color for photography. The rod of it is 18 inches long. The scoop Dr. Schmitt is using is 11 3/4 inches long and is attached to a tool extension which adds a potential 30 inches of length to the scoop. The pan portion, obscured in this view, has a flat bottom, flanged on both sides with a partial cover on the top. It is used to retrieve sand, dust and lunar samples too small for the tongs. The pa

  16. Astronaut's organ doses inferred from measurements in a human phantom outside the international space station.

    PubMed

    Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Facius, Rainer; Hajek, Michael; Petrov, Vladislav; Puchalska, Monika; Zhou, Dazhuang; Bossler, Johannes; Akatov, Yury; Shurshakov, Vyacheslav; Olko, Pawel; Ptaszkiewicz, Marta; Bergmann, Robert; Fugger, Manfred; Vana, Norbert; Beaujean, Rudolf; Burmeister, Soenke; Bartlett, David; Hager, Luke; Pálfalvi, József; Szabó, Julianna; O'Sullivan, Denis; Kitamura, Hisashi; Uchihori, Yukio; Yasuda, Nakahiro; Nagamatsu, Aiko; Tawara, Hiroko; Benton, Eric; Gaza, Ramona; McKeever, Stephen; Sawakuchi, Gabriel; Yukihara, Eduardo; Cucinotta, Francis; Semones, Edward; Zapp, Neal; Miller, Jack; Dettmann, Jan

    2009-02-01

    Space radiation hazards are recognized as a key concern for human space flight. For long-term interplanetary missions, they constitute a potentially limiting factor since current protection limits for low-Earth orbit missions may be approached or even exceeded. In such a situation, an accurate risk assessment requires knowledge of equivalent doses in critical radiosensitive organs rather than only skin doses or ambient doses from area monitoring. To achieve this, the MATROSHKA experiment uses a human phantom torso equipped with dedicated detector systems. We measured for the first time the doses from the diverse components of ionizing space radiation at the surface and at different locations inside the phantom positioned outside the International Space Station, thereby simulating an extravehicular activity of an astronaut. The relationships between the skin and organ absorbed doses obtained in such an exposure show a steep gradient between the doses in the uppermost layer of the skin and the deep organs with a ratio close to 20. This decrease due to the body self-shielding and a concomitant increase of the radiation quality factor by 1.7 highlight the complexities of an adequate dosimetry of space radiation. The depth-dose distributions established by MATROSHKA serve as benchmarks for space radiation models and radiation transport calculations that are needed for mission planning.

  17. Astronaut Ross Approaches Assembly Concept for Construction of Erectable Space Structure (ACCESS)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross, perched on the Manipulator Foot Restraint (MFR) approaches the erected ACCESS. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  18. Evaluation of Hardware and Procedures for Astronaut Assembly and Repair of Large Precision Reflectors

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Heard, Walter L., Jr.; Watson, Judith J.; Collins, Timothy J.

    2000-01-01

    A detailed procedure is presented that enables astronauts in extravehicular activity (EVA) to efficiently assemble and repair large (i.e., greater than 10m-diameter) segmented reflectors, supported by a truss, for space-based optical or radio-frequency science instruments. The procedure, estimated timelines, and reflector hardware performance are verified in simulated 0-g (neutral buoyancy) assembly tests of a 14m-diameter, offset-focus, reflector test article. The test article includes a near-flight-quality, 315-member, doubly curved support truss and 7 mockup reflector panels (roughly 2m in diameter) representing a portion of the 37 total panels needed to fully populate the reflector. Data from the tests indicate that a flight version of the design (including all reflector panels) could be assembled in less than 5 hours - less than the 6 hours normally permitted for a single EVA. This assembly rate essentially matches pre-test predictions that were based on a vast amount of historical data on EVA assembly of structures produced by NASA Langley Research Center. Furthermore, procedures and a tool for the removal and replacement of a damaged reflector panel were evaluated, and it was shown that EVA repair of this type of reflector is feasible with the use of appropriate EVA crew aids.

  19. Extravehicular activities limitations study. Volume 1: Physiological limitations to extravehicular activity in space

    NASA Technical Reports Server (NTRS)

    Furr, Paul A.; Monson, Conrad B.; Santoro, Robert L.; Sears, William J.; Peterson, Donald H.; Smith, Malcolm

    1988-01-01

    This report contains the results of a comprehensive literature search on physiological aspects of EVA. Specifically, the topics covered are: (1) Oxygen levels; (2) Optimum EVA work; (3) Food and Water; (4) Carbon dioxide levels; (5) Repetitive decompressions; (6) Thermal, and (7) Urine collection. The literature was assessed on each of these topics, followed by statements on conclusions and recommended future research needs.

  20. Miniaturized Autonomous Extravehicular Robotic Camera (Mini AERCam)

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2001-01-01

    The NASA Johnson Space Center (JSC) Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a low-volume, low-mass free-flying camera system . AERCam project team personnel recently initiated development of a miniaturized version of AERCam known as Mini AERCam. The Mini AERCam target design is a spherical "nanosatellite" free-flyer 7.5 inches in diameter and weighing 1 0 pounds. Mini AERCam is building on the success of the AERCam Sprint STS-87 flight experiment by adding new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving enhanced capability in a smaller package depends on applying miniaturization technology across virtually all subsystems. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion system , rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides beneficial on-orbit views unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by EVA crewmembers.

  1. Materials Assessment of Components of the Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Olivas, John D.; Barrera, Enrique V.

    1996-01-01

    Current research interests for Extravehicular Mobility Unit (EMU) design and development are directed toward enhancements of the Shuttle EMU, implementation of the Mark 3 technology for Shuttle applications, and development of a next generation suit (the X suit) which has applications for prolonged space flight, longer extravehicular activity (EVA), and Moon and Mars missions. In this research project two principal components of the EMU were studied from the vantage point of the materials and their design criteria. An investigation of the flexible materials which make up the lay-up of materials for abrasion and tear protection, thermal insulation, pressure restrain, etc. was initiated. A central focus was on the thermal insulation. A vacuum apparatus for measuring the flexibility of the materials was built to access their durability in vacuum. Plans are to include a Residual Gas Analyzer on the vacuum chamber to measure volatiles during the durability testing. These tests will more accurately simulate space conditions and provide information which has not been available on the materials currently used on the EMU. Durability testing of the aluminized mylar with a nylon scrim showed that the material strength varied in the machine and transverse directions. Study of components of the EMU also included a study of the EMU Bearing Assemblies as to materials selection, engineered materials, use of coatings and flammability issues. A comprehensive analysis of the performance of the current design, which is a stainless steel assembly, was conducted and use of titanium alloys or engineered alloy systems and coatings was investigated. The friction and wear properties are of interest as are the general manufacturing costs. Recognizing that the bearing assembly is subject to an oxygen environment, all currently used materials as well as titanium and engineered alloys were evaluated as to their flammability. An aim of the project is to provide weight reduction since bearing

  2. STS-57 astronauts Low and Wisoff perform DTO 1210 EVA in OV-105's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Mission Specialist 3 (MS3) Peter J.K. Wisoff (bottom), wearing an extravehicular mobility unit (EMU), works with the antenna on the European Retrievable Carrier (EURECA) while MS and Payload Commander (PLC) G. David Low, on the remote manipulator system (RMS) arm, hovers above. The two astronauts were conducting Detailed Test Objective (DTO) 1210 procedures in the payload bay of Endeavour, Orbiter Vehicle (OV) 105. Low, also suited in an extravehicular mobility unit (EMU), is anchored to the RMS (RMS) via a portable foot restraint (PFR) (manipulator foot restraint (MFR)). The PFR is attached to the RMS end effector via a PFR attachment device (PAD). DTO 1210 results will assist in refining several procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. Visible in OV-105's payload bay (PLB) are the open spacelab (SL) tunnel adapter EV hatch (foreground), SPACEHAB-01 (Commercial Middeck Augmentation Module (CMAM)) (foreground), and the t

  3. Astronaut Charles Conrad trims hair of Astronaut Paul Weitz

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., Skylab 2 commander, trims the hair of Astronaut Paul J. Weitz, Skylab 2 pilot, during the 28-day Skylab 2 mission in Earth orbit. They are in the crew quarters wardroom of the Orbital Workshop of the Skylab 1 and 2 space station. Weitz is holding a vacuum hose in his right hand. This picture was taken by Scientist-Astronaut Joseph P. Kerwin, Skylab 2 science pilot.

  4. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murray, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered a hazardous duty for NASA astronauts. This places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies. The purpose of this paper is to document the comprehensive EVA training data set that was compiled from multiple sources by the Lifetime Surveillance of Astronaut Health (LSAH) epidemiologists to investigate musculoskeletal injuries. The EVA training dataset does not contain any medical data, rather it only documents when EVA training was performed, by whom and other details about the session. The first activities practicing EVA maneuvers in water were performed at the Neutral Buoyancy Simulator (NBS) at the Marshall Spaceflight Center in Huntsville, Alabama. This facility opened in 1967 and was used for EVA training until the early Space Shuttle program days. Although several photographs show astronauts performing EVA training in the NBS, records detailing who performed the training and the frequency of training are unavailable. Paper training records were stored within the NBS after it was designated as a National Historic Landmark in 1985 and closed in 1997, but significant resources would be needed to identify and secure these records, and at this time LSAH has not pursued acquisition of these early training records. Training in the NBS decreased when the Johnson Space Center in Houston, Texas, opened the Weightless Environment Training Facility (WETF) in 1980. Early training records from the WETF consist of 11 hand-written dive logbooks compiled by individual workers that were digitized at the request of LSAH. The WETF was integral in the training for Space Shuttle EVAs until its closure in 1998. The Neutral Buoyancy Laboratory (NBL) at the Sonny Carter Training Facility near JSC

  5. Skylab-4 Mission Onboard Photograph - Astronaut Ed Gibson at Work

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This Skylab-4 mission onboard photograph shows Astronaut Ed Gibson at the complex control and display console for the Apollo Telescope Mount solar telescopes located in the Skylab Multiple Docking Adapter. Astronauts watched the Sun, and photographed and recorded the solar activities, such as the birth of a solar flare.

  6. Astronauts Clown Around in Space

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts are clowning around in space in this STS-51A onboard photo. Astronaut Gardner, holds a 'For Sale' sign after the retrieval of two malfunctioning satellites; the Western Union Telegraph Communication Satellite (WESTAR VI); and the PALAPA-B2 Satellite. Astronaut Allen, who is standing on the RMS (Remote Manipulator System) is reflected in Gardner's helmet visor. The 51A mission launched aboard the Space Shuttle Discovery on November 8, 1984.

  7. Astronauts Clown Around in Space

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts are clowning around in space in this STS-51A onboard photo. Astronaut Gardner, holds a 'For Sale' sign after the retrieval of two malfunctioning satellites; the Western Union Telegraph Communication Satellite (WESTAR VI); and the PALAPA-B2 Satellite. Astronaut Allen, who is standing on the Remote Manipulator System (RMS) is reflected in Gardner's helmet visor. The 51A mission launched aboard the Space Shuttle Discovery on November 8, 1984.

  8. Manned exploration and exploitation of solar system: Passive and active shielding for protecting astronauts from ionizing radiation-A short overview

    NASA Astrophysics Data System (ADS)

    Spillantini, Piero

    2014-11-01

    In deep space manned missions for the exploration and exploitation of celestial bodies of Solar System astronauts are not shielded by the terrestrial magnetic field and must be protected against the action of Solar Cosmic Rays (SCRs) and Galactic Cosmic Rays (GCRs). SCRs are sporadically emitted, and in very rare but possible events, their fluence can be so high to be lethal to a unprotected crew. Their relatively low energy allows us to conceive fully passive shields, also if active systems can somewhat reduce the needed mass penalty. GCRs continuously flow without intensity peaks, and are dangerous to the health and operability of the crew in long duration (>1year) missions. Their very high energy excludes the possible use of passive systems, so that recourse must be made to electromagnetic fields for preventing ionizing particles to reach the habitat where astronauts spend most of their living and working time. A short overview is presented of the many ideas developed in last decades of last century; ideas are mainly based on very intense electrostatic shields, flowing plasma bubbles, or enormous superconducting coil systems for producing high magnetic fields. In the first decade of this century the problem began to be afforded in more realistic scenarios, taking into account the present and foreseeable possibilities of launchers (payload mass, diameter and length of the shroud of the rocket, etc.) and of assembling and/or inflating structures in space. Driving parameters are the volume of the habitat to be protected and the level of mitigation of the radiation dose to be guaranteed to the crew. Superconducting magnet systems based on multi-solenoid complexes or on one huge magnetic torus surrounding the habitat are being evaluated for defining the needed parameters: masses, mechanical structures for supporting the huge magnetic forces, needed equipments and safety systems. Technological tests are in preparation or planned for improving density of the current

  9. Astronaut health monitoring

    NASA Astrophysics Data System (ADS)

    Inscore, Frank; Shende, Chetan; Gift, Alan; Maksymiuk, Paul; Farquharson, Stuart

    2006-10-01

    Extended weightlessness causes numerous deleterious changes in human physiology, including space motion sickness, cephalad fluid shifts, reduced immune response, and breakdown of muscle tissue with subsequent loss of bone mass and formation of renal stones. Furthermore, these physiological changes also influence the metabolism of drugs used by astronauts to minimize these deleterious effects. Unfortunately, the changes in human physiology in space are also reflected in drug metabolism, and current pre-flight analyses designed to set dosage are inadequate. Furthermore, current earth-based analytical laboratory methods that employ liquid or gas chromatography for separation and fluorescence or mass spectrometry for trace detection are labor intensive, slow, massive, and not cost-effective for operation in space. In an effort to overcome these instrument limitations we have been developing a sampling device to both separate these drugs and metabolites from urine, and generate surface-enhanced Raman (SER) spectra. The detailed molecular vibrational information afforded by Raman scattering allows chemical identification, while the surface-enhancement increases sensitivity by six or more orders of magnitude and allows detection of nanogram per milliliter concentrations. Generally no more than 1 milliliter of sample is required and complete analysis can be performed in 5 minutes using a portable, light-weight Raman spectrometer. Here we present the SER analysis of several drugs used by astronauts measured in synthetic urine and reconstituted urine.

  10. Neuropsychological Testing of Astronauts

    NASA Technical Reports Server (NTRS)

    Flynn, Christopher; Vander Ark, Steve; Eksuzian, Daniel; Sipes, Walter; Kane, Robert; Vanderploeg, Rodney; Retzlaff, Paul; Elsmore, Tim; Moore, Jeffrey

    2004-01-01

    The Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) is a computer program that administers a battery of five timed neuro-cognitive tests. WinSCAT was developed to give astronauts an objective and automated means of assessing their cognitive functioning during space flight, as compared with their own baseline performances measured during similar prior testing on the ground. WinSCAT is also intended for use by flight surgeons to assess cognitive impairment after exposure of astronauts to such cognitive assaults as head trauma, decompression sickness, and exposure to toxic gas. The tests were selected from among a group of tests, denoted the Automated Neuropsychological Assessment Metrics, that were created by the United States Navy and Army for use in evaluating the cognitive impairment of military personnel who have been subjected to medication or are suspected to have sustained brain injuries. These tests have been validated in a variety of clinical settings and are now in the public domain. The tests are presented in a Microsoft Windows shell that facilitates administration and enables immediate reporting of test scores in numerical and graphical forms.

  11. Astronaut Owen Garriott trims hair of Astronaut Alan Bean

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, trims the hair of Astronaut Alan L. Bean, commander, in this on-board photograph from the Skylab Orbital Workshop (OWS). Bean holds a vacuum hose to gather in loose hair.

  12. Astronaut Sunita L. Williams Submerges Into Waters of the Neutral Buoyancy Laboratory (NBL)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Astronauts Sunita L. Williams, Expedition 14 flight engineer, and Robert L. Curbeam (partially obscured), STS-116 mission specialist, are about to be submerged in the waters of the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center. Williams and Curbeam are attired in training versions of the Extravehicular Mobility Unit (EMU) space suit. SCUBA-equipped divers are in the water to assist the crew members in their rehearsal intended to help prepare them for work on the exterior of the International Space Station (ISS).

  13. Meeting the Grand Challenge of Protecting Astronauts Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.

    2016-01-01

    This report describes the research completed during 2011 for the NASA Innovative Advanced Concepts (NIAC) project. The research is motivated by the desire to safely send humans in deep space missions and to keep radiation exposures within permitted limits. To this end current material shielding, developed for low earth orbit missions, is not a viable option due to payload and cost penalties. The active radiation shielding is the path forward for such missions. To achieve active space radiation shielding innovative large lightweight gossamer space structures are used. The goal is to deflect enough positive ions without attracting negatively charged plasma and to investigate if a charged Gossamer structure can perform charge deflections without significant structural instabilities occurring. In this study different innovative configurations are explored to design an optimum active shielding. In addition, to establish technological feasibility experiments are performed with up to 10kV of membrane charging, and an electron flux source with up to 5keV of energy and 5mA of current. While these charge flux energy levels are much less than those encountered in space, the fundamental coupled interaction of charged Gossamer structures with the ambient charge flux can be experimentally investigated. Of interest are, will the EIMS remain inflated during the charge deflections, and are there visible charge flux interactions. Aluminum coated Mylar membrane prototype structures are created to test their inflation capability using electrostatic charging. To simulate the charge flux, a 5keV electron emitter is utilized. The remaining charge flux at the end of the test chamber is measured with a Faraday cup mounted on a movable boom. A range of experiments with this electron emitter and detector were performed within a 30x60cm vacuum chamber with vacuum environment capability of 10-7 Torr. Experiments are performed with the charge flux aimed at the electrostatically inflated

  14. Astronaut Sally Ride records some pre-launch activites at KSC

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Sally K. Ride, mission specialist for STS-7, records some of the prelaunch activity for STS-6 at the Kennedy Space Center (KSC). Astronaut William B. Lenoir, STS-5 mission specialist, is at left. Others pictured include Richard W. Nygren (center), Chief of the Vehicle Integration Section of the Operations Division at JSC; and Astronaut William F. Fisher, second right.

  15. Educating Astronauts About Conservation Biology

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2001-01-01

    This article reviews the training of astronauts in the interdisciplinary work of conservation biology. The primary responsibility of the conservation biologist at NASA is directing and supporting the photography of the Earth and maintaining the complete database of the photographs. In order to perform this work, the astronauts who take the pictures must be educated in ecological issues.

  16. Universal values of Canadian astronauts

    NASA Astrophysics Data System (ADS)

    Brcic, Jelena; Della-Rossa, Irina

    2012-11-01

    Values are desirable, trans-situational goals, varying in importance, that guide behavior. Research has demonstrated that universal values may alter in importance as a result of major life events. The present study examines the effect of spaceflight and the demands of astronauts' job position as life circumstances that affect value priorities. We employed thematic content analysis for references to Schwartz's well-established value markers in narratives (media interviews, journals, and pre-flight interviews) of seven Canadian astronauts and compared the results to the values of National Aeronautics and Space Administration (NASA) and Russian Space Agency (RKA) astronauts. Space flight did alter the level of importance of Canadian astronauts' values. We found a U-shaped pattern for the values of Achievement and Tradition before, during, and after flight, and a linear decrease in the value of Stimulation. The most frequently mentioned values were Achievement, Universalism, Security, and Self-Direction. Achievement and Self Direction are also within the top 4 values of all other astronauts; however, Universalism was significantly higher among the Canadian astronauts. Within the value hierarchy of Canadian astronauts, Security was the third most frequently mentioned value, while it is in seventh place for all other astronauts. Interestingly, the most often mentioned value marker (sub-category) in this category was Patriotism. The findings have important implications in understanding multi-national crew relations during training, flight, and reintegration into society.

  17. Acute urinary retention among astronauts.

    PubMed

    Stepaniak, Philip C; Ramchandani, Suneil R; Jones, Jeffrey A

    2007-04-01

    Although acute urinary retention (AUR) is not commonly thought of as a life-threatening condition, its presentation in orbit can lead to a number of medical complications that could compromise a space mission. We report on a middle-aged astronaut who developed urinary retention during two spaceflights. On the first mission of note, the astronaut initially took standard doses of promethazine and scopolamine before launch, and developed AUR immediately after entering orbit. For the first 3 d, the astronaut underwent intermittent catheterizations with a single balloon-tipped catheter. Due to the lack of iodine solution on board and the need for the astronaut to complete certain duties without interruption, the catheter was left in place for a total of 4 d. Although the ability to void returned after day 7, a bout of AUR reemerged on day 10, 1 d before landing. On return to Earth, a cystometrogram was unremarkable. During the astronaut's next mission, AUR again recurred for the first 24 h of microgravity exposure, and the astronaut was subsequently able to void spontaneously while in space. This report details the presentation of this astronaut, the precautions that were taken for space travel subsequent to the initial episode of AUR, and the possible reasons why space travel can predispose astronauts to urinary retention while in orbit. The four major causes of AUR--obstructive, pharmacologic, psychogenic, and neurogenic-are discussed, with an emphasis on how these may have played a role in this case.

  18. The European Astronaut Centre prepares for International Space Station operations.

    PubMed

    Messerschmid, E; Haignere, J P; Damian, K; Damann, V

    2004-04-01

    The European Space Agency (ESA) contribution to the International Space Station (ISS) goes much beyond the delivery of hardware like the Columbus Laboratory, its payloads and the Automated Transfer Vehicles. ESA Astronauts will be members of the ISS crew. ESA, according to its commitments as ISS international partner, will be responsible to provide training on its elements and payloads to all ISS crewmembers and medical support for ESA astronauts. The European Astronaut Centre (EAC) in Cologne has developed over more than a decade into the centre of expertise for manned space activities within ESA by contributing to a number of important co-operative spaceflight missions. This role will be significantly extended for ISS manned operations. Apart from its support to ESA astronauts and their onboard operations, EAC will have a key role in training all ISS astronauts on ESA elements and payloads. The medical support of ISS crew, in particular of ESA astronauts has already started. This paper provides an overview on status and further plans in building up this homebase function for ESA astronauts and on the preparation towards Training Readiness for ISS crew training at EAC, Cologne. Copyright 2001 by the European Space Agency. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Released to IAF/IAA/AIAA to publish in all forms.

  19. Space Shuttle Era: Astronaut Support Personnel

    NASA Video Gallery

    Astronauts rely on other astronauts on launch day to help them get rady for liftoff and the misison ahead. The helpful cadre are known formally as Astronaut Support Personnel but are called ASPs or...

  20. Revolutionary Design for Astronaut Exploration — Beyond the Bio-Suit System

    NASA Astrophysics Data System (ADS)

    Newman, Dava J.; Canina, Marita; Trotti, Guillermo L.

    2007-01-01

    The Bio-Suit System is designed to revolutionize human space exploration by providing enhanced astronaut extravehicular activity (EVA) locomotion and performance based on the concepts of a `second skin' capability. The novel Bio-Suit concept provides an overall exploration system realized through symbiotic relationships between a suite of advanced technologies, creative design, human modeling and analysis, and new mission operations techniques. By working at the intersection of engineering, design, life sciences and operations, new emergent capabilities and interrelationships result for applications to space missions, medical rehabilitation, and extreme sports activities. In many respects, the Bio-Suit System mimics Nature (biomimetics). For example, the second skin is capable of augmenting our biological skin by providing mechanical counter-pressure. We have designed and tested prototypes that prove mechanical counter-pressure feasibility. The `epidermis' of our second skin suit is patterned from 3D laser scans that incorporate human skin strain field maps for maximum mobility and natural movements, while requiring minimum energy expenditure for exploration tasks. We provide a technology roadmap for future design, pressure production and technology investments for the Bio-Suit System. Woven into the second skin are active materials to enhance human performance as well as to provide necessary performance metrics (i.e., energy expenditure). Wearable technologies will be embedded throughout the Bio-Suit System to place the explorer in an information-rich environment enabling real-time mission planning, prediction, and visualization. The Bio-Suit System concept augments human capabilities by coupling human and robotic abilities into a hybrid of the two, to the point where the explorer is hardly aware of the boundary between innate human performance and robotic activities.

  1. Skylab-3 Mission Onboard Photograph - Astronaut Bean on Ergometer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This Skylab-3 onboard photograph shows Astronaut Allen Bean on the ergometer, breathing into the metabolic analyzer. Skylab's Metabolic Activity experiment (M171), a medical evaluation facility, was designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer.

  2. Is Autonomic Modulation Different between European and Chinese Astronauts?

    PubMed Central

    Liu, Jiexin; Li, Yongzhi; Verheyden, Bart; Chen, Shanguang; Chen, Zhanghuang; Gai, Yuqing; Liu, Jianzhong; Gao, Jianyi; Xie, Qiong; Yuan, Ming; Li, Qin; Li, Li; Aubert, André E.

    2015-01-01

    Purpose The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences. Methods Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions). Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability. Results Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts. Conclusion Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc. PMID:25799561

  3. Mission X: Train Like an Astronaut Challenge

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  4. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the foreward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). This ASMU exerperiment is being done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  5. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the forward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). This ASMU exerperiment is being done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  6. Astronaut Joseph Kerwin takes blood sample from Astronaut Charles Conrad

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Joseph P. Kerwin (right), Skylab 2 science pilot and a doctor of medicine, takes a blood sample from Astronaut Charles Conrad Jr., Sylab 2 commander, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the Skylab 1 and 2 space station cluster in Earth orbit. The blood sampling was part of the Skylab Hematology and Immunology Experiment M110 series.

  7. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  8. Dose limits for astronauts

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    2000-01-01

    Radiation exposures to individuals in space can greatly exceed natural radiation exposure on Earth and possibly normal occupational radiation exposures as well. Consequently, procedures limiting exposures would be necessary. Limitations were proposed by the Radiobiological Advisory Panel of the National Academy of Sciences/National Research Council in 1970. This panel recommended short-term limits to avoid deterministic effects and a single career limit (of 4 Sv) based on a doubling of the cancer risk in men aged 35 to 55. Later, when risk estimates for cancer had increased and were recognized to be age and sex dependent, the NCRP, in Report No. 98 in 1989, recommended a range of career limits based on age and sex from 1 to 4 Sv. NCRP is again in the process of revising recommendations for astronaut exposure, partly because risk estimates have increased further and partly to recognize trends in limiting radiation exposure occupationally on the ground. The result of these considerations is likely to be similar short-term limits for deterministic effects but modified career limits.

  9. Astronauts Working in Spacelab

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie captures astronaut Jan Davis and her fellow crew members working in the Spacelab, a versatile laboratory carried in the Space Shuttle's cargo bay for special research flights. Its various elements can be combined to accommodate the many types of scientific research that can best be performed in space. Spacelab consisted of an enclosed, pressurized laboratory module and open U-shaped pallets located at the rear of the laboratory module. The laboratory module contained utilities, computers, work benches, and instrument racks to conduct scientific experiments in astronomy, physics, chemistry, biology, medicine, and engineering. Equipment, such as telescopes, antennas, and sensors, is mounted on pallets for direct exposure to space. A 1-meter (3.3-ft.) diameter aluminum tunnel, resembling a z-shaped tube, connected the crew compartment (mid deck) to the module. The reusable Spacelab allowed scientists to bring experiment samples back to Earth for post-flight analysis. Spacelab was a cooperative venture of the European Space Agency (ESA) and NASA. ESA was responsible for funding, developing, and building Spacelab, while NASA was responsible for the launch and operational use of Spacelab. Spacelab missions were cooperative efforts between scientists and engineers from around the world. Teams from NASA centers, universities, private industry, government agencies and international space organizations designed the experiments. The Marshall Space Flight Center was NASA's lead center for monitoring the development of Spacelab and managing the program.

  10. Astronaut-induced disturbances in microgravity.

    PubMed

    Newman, D J; Tryfonidis, M; van Schoor, M C

    1997-01-01

    This Note describes the dynamic load sensors (DLS) spaceflight experiment that measured middeck astronaut-induced disturbances during the 14-day STS-62 Space Shuttle mission in March 1994. The DLS experiment was flown in conjunction with the reflight of the Middeck 0-Gravity Dynamics Experiment (MODE). The objective of MODE was to investigate effects of the microgravity environment on large space structures. Where Skylab experiments focused on measuring the forces exerted during vigorous soaring activities, the DLS experiment quantified the reaction forces and moments exerted by the crew going about their normal on-orbit activities. The objective of this Note is to present DLS force data and frequency analysis that characterize astronaut-induced loads during spaceflight.

  11. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  12. Astronaut Steve Swanson Visits Goddard

    NASA Video Gallery

    On Tuesday, 3 March 2015, a special guest visited NASA Goddard Space Flight Center during his time back on Earth. Steven Swanson, NASA astronaut, intrigued the audience by highlighting his adventur...

  13. Astronauts Practice Station Spacewalk Underwater

    NASA Video Gallery

    Astronauts Robert Satcher Jr. and Rick Sturckow conduct an underwater practice spacewalk session at Johnson Space Center’s Neutral Buoyancy Laboratory. The session was used to help International Sp...

  14. Train Like an Astronaut Educational Outreach

    NASA Technical Reports Server (NTRS)

    Garcia, Yamil L.; Lloyd, Charles; Reeves, Katherine M.; Abadie, Laurie J.

    2012-01-01

    In an effort to reduce the incidence of childhood obesity, the National Aeronautics and Space Administration (NASA), capitalizing on the theme of human spaceflight developed two educational outreach programs for children ages 8-12. To motivate young "fit explorers," the Train Like an Astronaut National (TLA) program and the Mission X: Train Like an Astronaut International Fitness Challenge (MX) were created. Based on the astronauts' physical training, these programs consist of activities developed by educators and experts in the areas of space life sciences and fitness. These Activities address components of physical fitness. The educational content hopes to promote students to pursue careers in science, technology, engineering, and math (STEM) fields. At the national level, in partnership with First Lady Michelle Obama's Let?s Move! Initiative, the TLA program consists of 10 physical and 2 educational activities. The program encourages families, schools, and communities to work collaboratively in order to reinforce in children and their families the importance of healthy lifestyle habits In contrast, the MX challenge is a cooperative outreach program involving numerous space agencies and other international partner institutions. During the six-week period, teams of students from around the world are challenged to improve their physical fitness and collectively accumulate points by completing 18 core activities. During the 2011 pilot year, a t otal of 137 teams and more than 4,000 students from 12 countries participated in the event. MX will be implemented within 24 countries during the 2012 challenge. It is projected that 7,000 children will "train like an astronaut".

  15. Efforts to Reduce International Space Station Crew Maintenance Time in the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    NASA Technical Reports Server (NTRS)

    Etter,David; Rector, Tony; Boyle, robert; Zande, Chris Vande

    2012-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR - Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post- Shuttle 6-year service life.

  16. Space Station: Improving NASA's planning for external maintenance. Report to the Chair, Government Activities and Transportation Subcommittee, Committee on Government Operations, and House of Representatives

    NASA Astrophysics Data System (ADS)

    1992-07-01

    In 1996, NASA plans to begin assembly of the international Space Station Freedom in low earth orbit. One of the greatest challenges facing NASA will be maintaining the Space Station's external components throughout the assembly period and over its anticipated 30-year life using astronauts to perform extravehicular activity (EVA). The amount of EVA that can be performed is limited, and the activity is inherently risky, given the harsh environment of space. The United States General Accounting Office (GAO) review of NASA's efforts to determine the Space Station's EVA maintenance requirements and its plans to meet those requirements is presented.

  17. A Communication Architecture for an Advanced Extravehicular Mobile Unit

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 1.0 subsystem for the Advanced Extravehicular Mobility Unit (AEMU). The following systems are described in detail: Caution Warning and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS subsystem being developed at Glenn Research Center (GRC).

  18. Apollo experience report: Development of the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Lutz, C. C.; Stutesman, H. L.; Carson, M. A.; Mcbarron, J. W., II

    1975-01-01

    The development and performance history of the Apollo extravehicular mobility unit and its major subsystems is described. The three major subsystems, the pressure garment assembly, the portable life-support system, and the oxygen purge system, are defined and described in detail as is the evolutionary process that culminated in each major subsystem component. Descriptions of ground-support equipment and the qualification testing process for component hardware are also presented.

  19. Protecting the Health of Astronauts: Enhancing Occupational Health Monitoring and Surveillance for Former NASA Astronauts to Understand Long-Term Outcomes of Spaceflight-Related Exposures

    NASA Technical Reports Server (NTRS)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2017-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. A better understanding of the individual, population, and mission impacts of astronaut occupational exposures is critical to providing clinical care, targeting occupational surveillance efforts, and planning for future space exploration. The ability to characterize the risk of latent health conditions is a significant component of this understanding. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA-Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential long-term health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging populations are necessary to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography); and expanded monitoring will increase NASA's ability to better characterize conditions resulting from astronaut occupational exposures. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of e an Astronaut Occupational Health program to include expanded medical monitoring of former NASA astronauts. Increasing the breadth of monitoring services will ultimately enrich the existing evidence base of occupational health risks

  20. STS-110 Astronaut Morin Totes S0 Keel Pins During EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hovering in space some 240 miles above the blue and white Earth, STS-110 astronaut M.E. Morin participates in his first ever and second of four scheduled space walks for the STS-110 mission. He is seen toting one of the S0 (S-Zero) keel pins which were removed from their functional position on the truss and attached on the truss' exterior for long term stowage. The 43-foot-long, 27,000 pound S0 truss was the first of 9 segments that will make up the International Space Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. The mission completed the installations and preparations of the S0 truss and the Mobile Transporter within four space walks. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission was launched April 8, 2002 and returned to Earth April 19, 2002.

  1. Modeling the acute health effects of astronauts from exposure to large solar particle events.

    PubMed

    Hu, Shaowen; Kim, Myung-Hee Y; McClellan, Gene E; Cucinotta, Francis A

    2009-04-01

    Radiation exposure from Solar Particle Events (SPE) presents a significant health concern for astronauts for exploration missions outside the protection of the Earth's magnetic field, which could impair their performance and result in the possibility of failure of the mission. Assessing the potential for early radiation effects under such adverse conditions is of prime importance. Here we apply a biologically based mathematical model that describes the dose- and time-dependent early human responses that constitute the prodromal syndromes to consider acute risks from SPEs. We examine the possible early effects on crews from exposure to some historically large solar events on lunar and/or Mars missions. The doses and dose rates of specific organs were calculated using the Baryon radiation transport (BRYNTRN) code and a computerized anatomical man model, while the hazard of the early radiation effects and performance reduction were calculated using the Radiation-Induced Performance Decrement (RIPD) code. Based on model assumptions we show that exposure to these historical events would cause moderate early health effects to crew members inside a typical spacecraft or during extra-vehicular activities, if effective shielding and medical countermeasure tactics were not provided. We also calculate possible even worse cases (double intensity, multiple occurrences in a short period of time, etc.) to estimate the severity, onset and duration of various types of early illness. Uncertainties in the calculation due to limited data on relative biological effectiveness and dose-rate modifying factors for protons and secondary radiation, and the identification of sensitive sites in critical organs are discussed.

  2. Philosophy on astronaut protection: Perspective of an astronaut

    SciTech Connect

    Baker, E.

    1997-04-30

    There are significant differences in the risks during the launch of a spacecraft, its journey, and its subsequent return to earth, as contrasted to the risks of latent cancers that may develop as a result of the associated radiation exposures. Once the spacecraft has landed, following a successful mission, the risks of accidental death are over. The risks of latent cancers, however, will remain with the astronauts for the rest of their lives. The same may be true for many of the effects of the space environment, including microgravity. Compounding the problem with respect to radiation are the large uncertainties accompanying the estimates of the associated latent cancer risks. In addition to radiation doses received as a result of being exposed in space, astronauts have received significant does of radiation in conjunction with medical examinations and experiments conducted to obtain data on the effects of the space environment on humans. The experiments were considered to be a part of the {open_quotes}job{close_quotes} of being an astronaut, and the resulting doses were included in the medical records. Following this approach, the accompanying doses were counted against the career limits being imposed on each astronaut. As a result, volunteering for such experiments could cause an earlier termination of the career of an astronaut than would otherwise have occurred and add to the total radiation exposure, thereby increasing one`s risk of subsequent illness. Through cooperative efforts, these does have been significantly reduced in recent years. In fact, one of the outcomes of these efforts has been the incorporation of the ALARA concept into the radiation protection program for the astronauts. The fact that a space mission has a range of risks, including some that are relatively large, is no justification for failing to reduce the accompanying radiation risk.

  3. Colonoscopy Screening in the US Astronaut Corps

    NASA Technical Reports Server (NTRS)

    Masterova, K.; Van Baalen, M.; Wear, M. L.; Murray, J.; Schaefer, C.

    2016-01-01

    BACKGROUND: Historically, colonoscopy screenings for astronauts have been conducted to ensure that astronauts are in good health for space missions. Recently this historical data has been identified as being useful for developing an occupational surveillance requirement. It can be used to assess overall colon health and to have a point of reference for future tests in current and former astronauts, as well as to follow-up and track rates of colorectal cancer and polyps. These rates can be compared to military and other terrestrial populations. In 2003, the active astronaut colonoscopy requirements changed to require less frequent colonoscopies. Since polyp removal during a colonoscopy is an intervention that prevents the polyp from potentially developing into cancer, the procedure decreases the individual's risk for colon cancer. The objective of this study is to evaluate the possible effect of increased follow-up times between colonoscopies on the number and severity of polyps identified during the procedures among both current and former NASA astronauts. Initial results and forward work regarding astronaut colonoscopy screenings will be presented. METHODS: A retrospective study of all colonoscopy procedures performed on NASA astronauts between 1962 and 2015 (both during active career and retirement) was conducted by review of the JSC Clinic Electronic Medical Record and Lifetime Surveillance of Astronaut Health (LSAH) database for colonoscopy screening procedures and pathology reports. The timeframe of interest was from the time of selection into the Astronaut Corps through May 2015 or death. For each colonoscopy report, the following data were captured: date of procedure, age at time of procedure, reason for procedure, quality of bowel prep, completion of procedure and/or reason for termination of procedure, findings of procedure, subsequent treatment (if any), recommended follow-up interval, actual follow up interval, family history of polyps or colon cancer

  4. Evidence-Based Approach to the Analysis of Serious Decompression Sickness with Application to EVA Astronauts

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny

    2001-01-01

    It is important to understand the risk of serious hypobaric decompression sickness (DCS) in order to develop procedures and treatment responses to mitigate the risk. Since it is not ethical to conduct prospective tests about serious DCS with humans, the necessary information was gathered from 73 published reports. We hypothesize that a 4-hr 100% oxygen (O2) prebreathe results in a very low risk of serious DCS, and test this through analysis. We evaluated 258 tests containing information from 79,366 exposures in attitude chambers. Serious DCS was documented in 918 men during the tests. Serious DCS are signs and symptoms broadly classified as Type II DCS. A risk function analysis with maximum likelihood optimization was performed to identify significant explanatory variables, and to create a predictive model for the probability of serious DCS [P(serious DCS)]. Useful variables were Tissue Ratio, the planned time spent at altitude (T(sub alt)), and whether or not repetitive exercise was performed at altitude. Tissue Ratio is P1N2/P2, where P1N2 is calculated nitrogen (N2) pressure in a compartment with a 180-min half-time for N2 pressure just before ascent, and P2 is ambient pressure after ascent. A prebreathe and decompression profile Shuttle astronauts use for extravehicular activity (EVA) includes a 4-hr prebreathe with 100% O2, an ascent to P2 = 4.3 lb per sq. in. absolute, and a T(sub alt) = 6 hr. The P(serious DCS) is: 0.0014 (0.00096 - 0.00196, 95% confidence interval) with exercise and 0.00025 (0.00016 - 0.00035) without exercise. Given 100 Shuttle EVAs to date and no report of serious DCS, the true risk is less than 0.03 with 95% confidence (Binomial Theorem). It is problematic to estimate the risk of serious DCS since it appears infrequently, even if the estimate is based on thousands of altitude chamber exposures. The true risk to astronauts may lie between the extremes of the confidence intervals (0.00016 - 0.00196) since the contribution of other factors

  5. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the foreward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). He is wearing a pressure suit for this run of the M509 experiment, but other ASMU tests are done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  6. Extravehicular Crewman Work System (ECWS) study program. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Wilde, R. C.

    1980-01-01

    The Extravehicular Crewman Work System (ECWS) requirements for manned support of space construction and satellite service are defined. Characteristics of structures and satellites are described. Requirements for extravehicular tasks and support equipment are defined. Equipment concepts are presented and evaluated for extravehicular life support, spacesuit, and work aids. Preliminary design of recommended ECWS equipment concepts and new technology developments required for their implementation are discussed.

  7. Astronaut Gordon Cooper After Recovery

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut Gordon Cooper leaves the Faith 7 (MA-9) spacecraft after a successful recovery operation. The MA-9 mission, the last flight of the Mercury Project, was launched on May 15, 1963, orbited the Earth 22 times, and lasted for 1-1/2 days.

  8. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia (STS-87) mid-deck, Leonid Kadenyuk, Ukrainian payload specialist, works with the Brassica rapa plants being grown for the Collaborative Ukrainian Experiment (CUE). Kadenyuk joined five astronauts for 16-days in Earth-orbit in support of the United States Microgravity Payload 4 (USMP-4) mission.

  9. Origins of astronautics in Switzerland

    NASA Technical Reports Server (NTRS)

    Wadlis, A.

    1977-01-01

    Swiss contributions to astronautics are recounted. Scientists mentioned include: Bernoulli and Euler for their early theoretical contributions; the balloonist, Auguste Piccard; J. Ackeret, for his contributions to the study of aerodynamics; the rocket propulsion pioneer, Josef Stemmer; and the Swiss space scientists, Eugster, Stettbacker, Zwicky, and Schurch.

  10. Liquid pump for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1972-01-01

    The Apollo portable life support system water-recirculation pump used for astronaut cooling is described. The problems associated with an early centrifugal pump and how these problems were overcome by the use of a new diaphragm pump are discussed. Performance comparisons of the two pump designs are given. Developmental problems and flight results with the diaphragm pump are discussed.

  11. NUNDO: a numerical model of a human torso phantom and its application to effective dose equivalent calculations for astronauts at the ISS.

    PubMed

    Puchalska, Monika; Bilski, Pawel; Berger, Thomas; Hajek, Michael; Horwacik, Tomasz; Körner, Christine; Olko, Pawel; Shurshakov, Vyacheslav; Reitz, Günther

    2014-11-01

    The health effects of cosmic radiation on astronauts need to be precisely quantified and controlled. This task is important not only in perspective of the increasing human presence at the International Space Station (ISS), but also for the preparation of safe human missions beyond low earth orbit. From a radiation protection point of view, the baseline quantity for radiation risk assessment in space is the effective dose equivalent. The present work reports the first successful attempt of the experimental determination of the effective dose equivalent in space, both for extra-vehicular activity (EVA) and intra-vehicular activity (IVA). This was achieved using the anthropomorphic torso phantom RANDO(®) equipped with more than 6,000 passive thermoluminescent detectors and plastic nuclear track detectors, which have been exposed to cosmic radiation inside the European Space Agency MATROSHKA facility both outside and inside the ISS. In order to calculate the effective dose equivalent, a numerical model of the RANDO(®) phantom, based on computer tomography scans of the actual phantom, was developed. It was found that the effective dose equivalent rate during an EVA approaches 700 μSv/d, while during an IVA about 20 % lower values were observed. It is shown that the individual dose based on a personal dosimeter reading for an astronaut during IVA results in an overestimate of the effective dose equivalent of about 15 %, whereas under an EVA conditions the overestimate is more than 200 %. A personal dosemeter can therefore deliver quite good exposure records during IVA, but may overestimate the effective dose equivalent received during an EVA considerably.

  12. Train Like an Astronaut

    NASA Video Gallery

    This lesson is a physical and inquiry-based approach to human health and fitness on Earth and in space. Students can participate in physical activities modeled after the real-life physical requirem...

  13. Hall Opens Doors to Astronaut Heroes

    NASA Video Gallery

    Space shuttle astronauts Bonnie Dunbar, Curt Brown and Eileen Collins joined an elite group of American space heroes as they were inducted into the U.S. Astronaut Hall of Fame on April 20, during a...

  14. Official portrait of astronaut Robert C. Springer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Official portrait of astronaut Robert C. Springer, United Stated Marine Corps (USMC) Colonel, member of Astronaut Class 9 (1980), and mission specialist. Springer wears launch and entry suit (LES) while holding helmet.

  15. Astronaut Office Scheduling System Software

    NASA Technical Reports Server (NTRS)

    Brown, Estevancio

    2010-01-01

    AOSS is a highly efficient scheduling application that uses various tools to schedule astronauts weekly appointment information. This program represents an integration of many technologies into a single application to facilitate schedule sharing and management. It is a Windows-based application developed in Visual Basic. Because the NASA standard office automation load environment is Microsoft-based, Visual Basic provides AO SS developers with the ability to interact with Windows collaboration components by accessing objects models from applications like Outlook and Excel. This also gives developers the ability to create newly customizable components that perform specialized tasks pertaining to scheduling reporting inside the application. With this capability, AOSS can perform various asynchronous tasks, such as gathering/ sending/ managing astronauts schedule information directly to their Outlook calendars at any time.

  16. Latent Herpes Viruses Reactivation in Astronauts

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Pierson, Duane L.

    2008-01-01

    Space flight has many adverse effects on human physiology. Changes in multiple systems, including the cardiovascular, musculoskeletal, neurovestibular, endocrine, and immune systems have occurred (12, 32, 38, 39). Alterations in drug pharmacokinetics and pharmacodynamics (12), nutritional needs (31), renal stone formation (40), and microbial flora (2) have also been reported. Evidence suggests that the magnitude of some changes may increase with time in space. A variety of changes in immunity have been reported during both short (.16 days) and long (>30 days) space missions. However, it is difficult to determine the medical significance of these immunological changes in astronauts. Astronauts are in excellent health and in superb physical condition. Illnesses in astronauts during space flight are not common, are generally mild, and rarely affect mission objectives. In an attempt to clarify this issue, we identified the latent herpes viruses as medically important indicators of the effects of space flight on immunity. This chapter demonstrates that space flight leads to asymptomatic reactivation of latent herpes viruses, and proposes that this results from marked changes in neuroendocrine function and immunity caused by the inherent stressfullness of human space flight. Astronauts experience uniquely stressful environments during space flight. Potential stressors include confinement in an unfamiliar, crowded environment, isolation, separation from family, anxiety, fear, sleep deprivation, psychosocial issues, physical exertion, noise, variable acceleration forces, increased radiation, and others. Many of these are intermittent and variable in duration and intensity, but variable gravity forces (including transitions from launch acceleration to microgravity and from microgravity to planetary gravity) and variable radiation levels are part of each mission and contribute to a stressful environment that cannot be duplicated on Earth. Radiation outside the Earth

  17. Astronautics in an integrating world

    NASA Astrophysics Data System (ADS)

    Hansson, A.

    If Astronautics is to survive it is necessary to introduce a space transportation system that is designed not on political assessment but on engineering. It is also necessary to establish an international certification unit and separate security issues. With such a framework, it should be possible to look forward to space industrialisation as the fourth industrialisation via space power and tourism in Low Earth Orbit. This would follow the integration already at hand from space based communication.

  18. Teacher-Astronaut out to Lift Academic Sights of Students

    ERIC Educational Resources Information Center

    Trotter, Andrew

    2007-01-01

    The space shuttle Endeavour, slated to begin an 11-day mission August 7, will carry an educational payload that includes two "growth chambers" loaded with basil and lettuce seeds, and a list of activities to be led by teacher-turned-astronaut Barbara R. Morgan. The activities targeted to K-12 students are add-ons to the shuttle crew's primary…

  19. Methodology for astronaut reconditioning research.

    PubMed

    Beard, David J; Cook, Jonathan A

    2017-01-01

    Space medicine offers some unique challenges, especially in terms of research methodology. A specific challenge for astronaut reconditioning involves identification of what aspects of terrestrial research methodology hold and which require modification. This paper reviews this area and presents appropriate solutions where possible. It is concluded that spaceflight rehabilitation research should remain question/problem driven and is broadly similar to the terrestrial equivalent on small populations, such as rare diseases and various sports. Astronauts and Medical Operations personnel should be involved at all levels to ensure feasibility of research protocols. There is room for creative and hybrid methodology but careful systematic observation is likely to be more achievable and fruitful than complex trial based comparisons. Multi-space agency collaboration will be critical to pool data from small groups of astronauts with the accepted use of standardised outcome measures across all agencies. Systematic reviews will be an essential component. Most limitations relate to the inherent small sample size available for human spaceflight research. Early adoption of a co-operative model for spaceflight rehabilitation research is therefore advised.

  20. Pharmacological Issues for Astronauts

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.

    2010-01-01

    Medication-induced side effects, called untoward effects by pharmacologists, can be a problem with any medication. Few therapies are perfectly specific for the desired physiological activity; rather they act on multiple biological targets and result in multiple physiological effects. There are several strategies that are employed to prevent, alleviate or counteract medication-induced side effects. The administered dose may be optimized to the lowest possible amount that provides the desired therapeutic effect, with the expectation that untoward effects will be minimized by a lower dose. Empirical trials of different therapies for a particular medical problem may be used in the hopes of finding a drug with minimal side effects for a particular patient, or at least of finding a set of side effects that the patient considers tolerable. If these two strategies have been exhausted, it may be possible to administer another medication to block or ameliorate side effects. A recent search of published scientific literature has revealed that there are medications used in spaceflight that seem to be associated with a significant number of reports of untoward effects. To prevent future medical problems and to improve the well-being and productivity of crew members, it would be best to eliminate (or at least reduce) untoward effects. Reports from the literature will be examined, with the aim of identifying a strategy for reducing untoward effects.

  1. Astronauts Alan Bean and Charles Conrad on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn Five launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. In this photograph, one of the astronauts on the Moon's surface is holding a container of lunar soil. The other astronaut is seen reflected in his helmet. Apollo 12 safely returned to Earth on November 24, 1969.

  2. An Astronaut's View of Jewel-toned Lakes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronauts onboard the International Space Station often observe small, otherwise unnoticed water bodies on the ground due to their unusual colors. For example, the Little Blue Run Dam and reservoir is located in western Pennsylvania, just south of the Ohio River. It is owned by Pennsylvania Power Company and used for industrial sludge impoundment. The materials suspended in the water give it a striking, turquoise color. Another lake with color linked commercial activity is Lake Gribben, just southeast of Palmer in Michigan's Upper Peninsula. Iron ore is extracted from New Richmond Mine visible just north of the lake. Images ISS004-E-10472 (Little Blue Run, April 4, 2002) and ISS004-E-10319 (Gribben, April 22, 2002) were provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth

  3. Astronautics and Aeronautics: A Chronology, 1996-2000

    NASA Technical Reports Server (NTRS)

    Lewis, Marieke; Swanson, Ryan

    2009-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in United States and foreign aeronautics and astronautics. It covers the years 1996 through 2000. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  4. Astronautics and Aeronautics: A Chronology, 2001-2005

    NASA Technical Reports Server (NTRS)

    Ivey, William Noel; Lewis, Marieke

    2010-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in U.S. and foreign aeronautics and astronautics. It covers the years 2001 through 2005. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  5. Shuttle extravehicular activity signal processor pulse amplitude modulation decommutator

    NASA Technical Reports Server (NTRS)

    Noble, D. E.; Conrad, W. M.

    1974-01-01

    To provide data with long-term stability and accuracy, the pulse amplitude modulation (PAM) decommutator was synchronized to the PAM-return to zero wavetrain, and each channel was sampled with a common sample and hold circuit and digitized sequentially. The digital value of each channel was then scaled by the digital value of the calibration channels. The corrected digital value of each channel was stored for one complete frame and then transferred to the multiplexer-demultiplexer at a high rate in one block of serial digital data. A test model was built to demonstrate this design approach taken for the PAM decom and performance data was provided. The accuracies obtained with various signal to noise ratios are shown.

  6. Magnetic resonance imaging as a tool for extravehicular activity analysis

    NASA Technical Reports Server (NTRS)

    Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.

    1992-01-01

    The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.

  7. Advanced Extra-Vehicular Activity Pressure Garment Requirements Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Aitchison, Lindsay; Rhodes, Richard

    2015-01-01

    The NASA Johnson Space Center advanced pressure garment technology development team is addressing requirements development for exploration missions. Lessons learned from the Z-2 high fidelity prototype development have reiterated that clear low-level requirements and verification methods reduce risk to the government, improve efficiency in pressure garment design efforts, and enable the government to be a smart buyer. The expectation is to provide requirements at the specification level that are validated so that their impact on pressure garment design is understood. Additionally, the team will provide defined verification protocols for the requirements. However, in reviewing exploration space suit high level requirements there are several gaps in the team's ability to define and verify related lower level requirements. This paper addresses the efforts in requirement areas such as mobility/fit/comfort and environmental protection (dust, radiation, plasma, secondary impacts) to determine the method by which the requirements can be defined and use of those methods for verification. Gaps exist at various stages. In some cases component level work is underway, but no system level effort has begun; in other cases no effort has been initiated to close the gap. Status of on-going efforts and potential approaches to open gaps are discussed.

  8. Development and Test of Robotically Assisted Extravehicular Activity Gloves

    NASA Technical Reports Server (NTRS)

    Rogers, Jonathan M.; Peters, Benjamin J.; Laske, Evan A.; McBryan, Emily R.

    2017-01-01

    Over the past two years, the High Performance EVA Glove (HPEG) project under NASA's Space Technology Mission Directorate (STMD) funded an effort to develop an electromechanically-assisted space suit glove. The project was a collaboration between the Johnson Space Center's Software, Robotics, and Simulation Division and the Crew and Thermal Systems division. The project sought to combine finger actuator technology developed for Robonaut 2 with the softgoods from the ILC Phase VI EVA glove. The Space Suit RoboGlove (SSRG) uses a system of three linear actuators to pull synthetic tendons attached to the glove's fingers to augment flexion of the user's fingers. To detect the user's inputs, the system utilizes a combination of string potentiometers along the back of the fingers and force sensitive resistors integrated into the fingertips of the glove cover layer. This paper discusses the development process from initial concepts through two major phases of prototypes, and the results of initial human testing. Initial work on the project focused on creating a functioning proof of concept, designing the softgoods integration, and demonstrating augmented grip strength with the actuators. The second year of the project focused on upgrading the actuators, sensors, and software with the overall goal of creating a system that moves with the user's fingers in order to reduce fatigue associated with the operation of a pressurized glove system. This paper also discusses considerations for a flight system based on this prototype development and address where further work is required to mature the technology.

  9. Extra-Vehicular Activity (EVA) glove evaluation test protocol

    NASA Technical Reports Server (NTRS)

    Hinman-Sweeney, E. M.

    1994-01-01

    One of the most critical components of a space suit is the gloves, yet gloves have traditionally presented significant design challenges. With continued efforts at glove development, a method for evaluating glove performance is needed. This paper presents a pressure-glove evaluation protocol. A description of this evaluation protocol, and its development is provided. The protocol allows comparison of one glove design to another, or any one design to bare-handed performance. Gloves for higher pressure suits may be evaluated at current and future design pressures to drive out differences in performance due to pressure effects. Using this protocol, gloves may be evaluated during design to drive out design problems and determine areas for improvement, or fully mature designs may be evaluated with respect to mission requirements. Several different test configurations are presented to handle these cases. This protocol was run on a prototype glove. The prototype was evaluated at two operating pressures and in the unpressurized state, with results compared to bare-handed performance. Results and analysis from this test series are provided, as is a description of the configuration used for this test.

  10. Using Optimization to Improve NASA Extravehicular Activity Planning

    DTIC Science & Technology

    2012-09-01

    9  Figure 3.  Truss ORU Map (from NASA, 2010c) ............................................................12  Figure 4.  Basic travelling...salesman problem network ....................................................23  Figure 5.  EVA planning problem as an asymmetric TSP network ...24  Figure 6.  EVA planning problem as a shortest path network with stages .......................26  Figure 7

  11. Visual perception and grasping for the extravehicular activity robot

    NASA Technical Reports Server (NTRS)

    Starks, Scott A.

    1989-01-01

    The development of an approach to the visual perception of object surface information using laser range data in support of robotic grasping is discussed. This is a very important problem area in that a robot such as the EVAR must be able to formulate a grasping strategy on the basis of its knowledge of the surface structure of the object. A description of the problem domain is given as well as a formulation of an algorithm which derives an object surface description adequate to support robotic grasping. The algorithm is based upon concepts of differential geometry namely, Gaussian and mean curvature.

  12. Extravehicular Activity (EVA) Power, Avionics, and Software (PAS) 101

    NASA Technical Reports Server (NTRS)

    Irimies, David

    2011-01-01

    EVA systems consist of a spacesuit or garment, a PLSS, a PAS system, and spacesuit interface hardware. The PAS system is responsible for providing power for the suit, communication of several types of data between the suit and other mission assets, avionics hardware to perform numerous data display and processing functions, and information systems that provide crewmembers data to perform their tasks with more autonomy and efficiency. Irimies discussed how technology development efforts have advanced the state-of-the-art in these areas and shared technology development challenges.

  13. Astronaut Harrison Schmitt seated in Lunar Roving Vehicle during EVA-3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed seated in the Lunar Roving Vehicle (LRV) at Station 9 (Van Serg Crater) during the third Apollo 17 extrvehicular activity (EVA-3) at the Taurus-Littrow landing site. This photograph was taken by Astronaut Eugene A. Cernan, crew commander.

  14. Pharmacologic considerations for Shuttle astronauts

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.; Bungo, Michael W.

    1991-01-01

    Medication usage by crewmembers in the preflight and inflight mission periods is common in the Shuttle Program. The most common medical reports for which medication is used are: space motion sickness (SMS), sleeplessness, headache, and backache. A number of medications are available in the Shuttle Medical Kit to treat these problems. Currently, astronauts test all frequently used medications before mission assignment to identify potential side-effects, problems related to performance, personal likes/dislikes, and individual therapeutic effect. However, microgravity-induced changes in drug pharmacokinetics, in combination with multiple operational factors, may significantly alter crewmember responses inflight. This article discusses those factors that may impact pharmacologic efficacy during Shuttle missions.

  15. Astronaut Health Participant Summary Application

    NASA Technical Reports Server (NTRS)

    Johnson, Kathy; Krog, Ralph; Rodriguez, Seth; Wear, Mary; Volpe, Robert; Trevino, Gina; Eudy, Deborah; Parisian, Diane

    2011-01-01

    The Longitudinal Study of Astronaut Health (LSAH) Participant Summary software captures data based on a custom information model designed to gather all relevant, discrete medical events for its study participants. This software provides a summarized view of the study participant s entire medical record. The manual collapsing of all the data in a participant s medical record into a summarized form eliminates redundancy, and allows for the capture of entire medical events. The coding tool could be incorporated into commercial electronic medical record software for use in areas like public health surveillance, hospital systems, clinics, and medical research programs.

  16. Astronaut Photography of Coral Reefs

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Noordeloos, Marco

    2001-01-01

    Astronaut photographs of tropical coastal areas may contain information on submerged features, including coral reefs, up to depths of about 15 m in clear waters. Previous research efforts have shown that astronaut photographs can aid in estimating coral reef locations and extent on national, regional and global scales, and allow characterization of major geomorphological rim and lagoon features (Andrefouet et al. 2000, in preparation). They can be combined with traditional satellite data to help distinguish between clouds and lagoon features such as pinnacles (Andrefouet and Robinson, in review). Furthermore, astronaut photographs may provide reef scientists and managers with information on the location and extent of river plumes and sediment run off, or facilitate identification of land cover types, including mangroves (Webb et al., in press). Photographs included in the section were selected based on several criteria. The primary consideration of the editors was that the photographs represent a worldwide distribution of coral reefs, have extremely low visual interference by cloud cover, and display a spatial scale reasonable for examining reef-related features. Once photographs were selected, they were digitized from 2nd generation copies. The color and contrast were hand corrected to an approximation of natural color (required to account for spectral differences between photographs due to the color sensitivities of films used, and differences in sun angle and exposure of the photographs). None of the photographs shown here have been georeferenced to correct them to a map projection and scale. Any distortions in features due to slightly oblique look angles when the photographs were taken through spacecraft windows remain. When feasible, near vertical photographs have been rotated so that north is toward the top. An approximate scale bar and north arrow have added using distinctive features on each photograph with reference to a 1:1,000,000 scale navigation chart

  17. Astronauts Capture Moon Illusion Photo

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Many odd looking moon photos have been captured over the years by astronauts aboard the International Space Station. Even so, this photograph, taken by the crew over Russia on May 11, 2003, must have come as a surprise. The moon which is really a quarter of a million miles away, appears to be floating inside the Earth's atmosphere. The picture is tricky because of its uneven lighting. With the sun's elevation angle at only 6 degrees, night is falling on the left side of the image while it is still broad daylight on the right side. This gradient of sunlight is the key to the illusion.

  18. The measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1972-01-01

    Cosmic radiation doses to the crews of the Apollo 14, 15, and 16 missions of 142 + or - 80, 340 + or - 80, and 210 + or - 130 mR respectively were calculated from the specific activities of Na-22 and Na-24 in the postflight urine specimens of the astronauts. The specific activity of Fe-59 was higher in the urine than in the feces of the Apollo 14 and 15 astronauts, and a possible explanation is given. The concentrations of K-40, K-42, Cr-51, Co-60, and Cs-137 in the urine are also reported for these astronauts. The radiation doses received by pilots and navigators flying high altitude missions during the solar flare of March 27 to 30, 1972 were calculated from the specific activity of Na-24 in their urine. These values are compared with the expected radiation dose calculated from the known shape and intensity of the proton spectrum and demonstrate the magnitude of atmospheric shielding. The concentrations of Na, K, Rb, Cs, Fe, Co, Ag, Zn, Hg, As, Sb, Se, and Br were measured in the urine specimens from the Apollo 14 and 15 astronauts by neutron activation analysis. The mercury and arsenic levels were much higher than expected.

  19. Astronaut Jack Lousma with part of Inflight Medical Support System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, reaches into a medical kit, part of the Inflight Medical Support System (IMSS), during training for the second manned Skylab Earth-orbital mission. This activity took place in the Orbital Workshop (OWS) trainer in the Mission Simulation and Training Facility at JSC.

  20. Exposure fluctuations of astronauts due to orientation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Wood, James S.; Qualls, Gary; Atwell, William; Shinn, Judy L.; Simonsen, Lisa C.

    1993-01-01

    The dose incurred in an anisotropic environment depends on the orientation of the astronaut's body relative to the direction of the radiation field. The fluctuations in exposure of specific organs due to astronaut orientation are found to be a factor of 2 or more in a typical space habitation module and typical space radiations. An approximation function is found that overestimates astronaut exposure in most cases studied and is recommended as a shield design guide for future space missions.

  1. Exposure fluctuations of astronauts due to orientation

    SciTech Connect

    Wilson, J.W.; Nealy, J.E.; Wood, J.S.; Qualls, G.; Atwell, W.; Shinn, J.L.; Simonsen, L.C.

    1993-09-01

    The dose incurred in an anisotropic environment depends on the orientation of the astronaut's body relative to the direction of the radiation field. The fluctuations in exposure of specific organs due to astronaut orientation are found to be a factor of 2 or more in a typical space habitation module and typical space radiations. An approximation function is found that overestimates astronaut exposure in most cases studied and is recommended as a shield design guide for future space missions.

  2. Astronaut 'Checks In' From Space Station

    NASA Video Gallery

    NASA astronaut and International Space Station Commander Doug Wheelock became the first person to "check in" from space Friday using the mobile social networking application Foursquare. Wheelock's ...

  3. Geoscience Training for NASA Astronaut Candidates

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Evans, C. A.; Bleacher, J. E.; Graff, T. G.; Zeigler, R.

    2017-01-01

    After being selected to the astronaut office, crewmembers go through an initial two year training flow, astronaut candidacy, where they learn the basic skills necessary for spaceflight. While the bulk of astronaut candidate training currently centers on the multiple subjects required for ISS operations (EVA skills, Russian language, ISS systems, etc.), training also includes geoscience training designed to train crewmembers in Earth observations, teach astronauts about other planetary systems, and provide field training designed to investigate field operations and boost team skills. This training goes back to Apollo training and has evolved to support ISS operations and future exploration missions.

  4. Adaptive response studies may help choose astronauts for long-term space travel

    NASA Astrophysics Data System (ADS)

    Mortazavi, S.

    of radiation, e.g. high doses during unpredictable solar flares and coronal mass ejections (CMEs) or extravehicular activities. Screening the adaptive response of candidates for long-term space missions will help to identify individuals who not only show low radiation susceptibility but also demonstrate high radioadaptive response. In selected individuals, chronic exposure to elevated levels of space radiation during a long-term mission can considerably decrease their radiation susceptibility and protect them against the unpredictable exposure to sudden and dramatic increase in flux due to solar flares and CMEs.

  5. Astronauts Hart and Crippen pose with MMU

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Terry J. Hart, 41-C mission specialist, poses with a mockup of the manned maneuvering unit (MMU) in the JSC mockup and integration laboratory (29463); Astronaut Robert L. Crippen, 41-C crew commander, poses with a ground training version of the MMU in the JSC mockup and integration laboratory (29464).

  6. Recovery of Gemini 4 spacecraft and astronauts

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Recovery of Gemini 4 spacecraft and astronauts. Views include Astronaut James A. McDivitt, command pilot of the Gemini 4 space flight, sitting in life raft awaiting pickup by helicopter from the recovery ship, the aircraft carrier U.S.S. Wasp (33490); Navy frogmen stand on the flotation collar of the Gemini 4 spacecraft during recovery operations (33491).

  7. Robonaut: A Robotic Astronaut Assistant

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.; Diftler, Myron A.

    2001-01-01

    NASA's latest anthropomorphic robot, Robonaut, has reached a milestone in its capability. This highly dexterous robot, designed to assist astronauts in space, is now performing complex tasks at the Johnson Space Center that could previously only be carried out by humans. With 43 degrees of freedom, Robonaut is the first humanoid built for space and incorporates technology advances in dexterous hands, modular manipulators, lightweight materials, and telepresence control systems. Robonaut is human size, has a three degree of freedom (DOF) articulated waist, and two, seven DOF arms, giving it an impressive work space for interacting with its environment. Its two, five fingered hands allow manipulation of a wide range of tools. A pan/tilt head with multiple stereo camera systems provides data for both teleoperators and computer vision systems.

  8. Astronaut Clothing for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Poritz, Darwin H.; Orndoff, Evelyne; Kaspranskiy, Rustem R.; Schesinger, Thilini; Byrne, Vicky

    2016-01-01

    Astronaut clothes for exploration missions beyond low Earth orbit need to satisfy several challenges not met by the currently-used mostly-cotton clothing. A laundering system is not expected to be available, and thus soiled garments must be trashed. Jettisoning waste does not seem feasible at this time. The cabin oxygen concentration is expected to be higher than standard, and thus fabrics must better resist ignition and burning. Fabrics need to be identified that reduce logistical mass, that can be worn longer before disposal, that are at least as comfortable as cotton, and that resist ignition or that char immediately after ignition. Human factors and psychology indicate that crew well-being and morale require a variety of colors and styles to accommodate personal identity and preferences. Over the past four years, the Logistics Reduction Project under NASA's Advanced Exploration Systems Program has sponsored the Advanced Clothing System Task to conduct several ground studies and one ISS study. These studies have evaluated length of wear and personal preferences of commercially-available exercise- and routine-wear garments made from several fabrics (cotton, polyester, Merino wool, and modacrylic), woven and knitted. Note that Merino wool and modacrylic char like cotton in ambient air, while polyester unacceptably melts. This paper focuses on the two components of an International Space Station study, onboard and on the ground, with astronauts and cosmonauts. Fabrics were randomized to participants. Length of wear was assessed by statistical survival analysis, and preference by exact binomial confidence limits. Merino wool and modacrylic t-shirts were worn longer on average than polyester t-shirts. Interestingly, self-assessed preferences were inconsistent with length-of-wear behavior, as polyester was preferred to Merino wool and modacrylic.

  9. Extravehicular mobility unit subcritical liquid oxygen storage and supply system

    NASA Technical Reports Server (NTRS)

    Anderson, John; Martin, Timothy; Hodgson, ED

    1992-01-01

    The storage of life support oxygen in the Extravehicular Mobility Unit in the liquid state offers some advantages over the current method of storing the oxygen as a high pressure gas. Storage volume is reduced because of the increased density associated with liquid. The lower storage and operating pressures also reduce the potential for leakage or bursting of the storage tank. The potential for combustion resulting from adiabatic combustion of the gas within lines and components is substantially reduced. Design constraints on components are also relaxed due to the lower system pressures. A design study was performed to determine the requirements for a liquid storage system and prepare a conceptual design. The study involved four tasks. The first was to identify system operating requirements that influence or direct the design of the system. The second was to define candidate storage system concepts that could possibly satisfy the requirements. An evaluation and comparison of the candidate concepts was conducted in the third task. The fourth task was devoted to preparing a conceptual design of the recommended storage system and to evaluate concerns with integration of the concept into the EMU. The results are presented.

  10. Space radiation and cataracts in astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Jones, J.; Iszard, G.; Murrey, J.; Djojonegro, B.; Wear, M.

    2001-01-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts.

  11. Space radiation and cataracts in astronauts.

    PubMed

    Cucinotta, F A; Manuel, F K; Jones, J; Iszard, G; Murrey, J; Djojonegro, B; Wear, M

    2001-11-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts.

  12. Changes in monocyte functions of astronauts.

    PubMed

    Kaur, Indreshpal; Simons, Elizabeth R; Castro, Victoria A; Ott, C Mark; Pierson, Duane L

    2005-11-01

    As part of the systematic evaluation of the innate immune system for long duration missions, this study focused on the antimicrobial functions of monocytes in astronauts participating in spaceflight. The study included four space shuttle missions and 25 astronauts. Nine non-astronauts served as controls. Blood specimens were collected 10 days before launch, within 3h after landing, and again 3 days after landing. The number of monocytes did not differ significantly over the interval sampled in both the astronaut or control groups. However, following 5-11 days of spaceflight, the astronauts' monocytes exhibited reductions in ability to engulf Escherichia coli, elicit an oxidative burst, and degranulate. The phagocytic index was significantly reduced following spaceflight when compared to control values. This reduction in phagocytosis was accompanied by changes in the expression of two surface markers involved in phagocytosis, CD32 and CD64. Levels of cortisol, epinephrine, and norepinephrine after spaceflight did not increase over preflight values.

  13. Astronaut Frank Borman in suiting trailer during prelaunch countdown

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Frank Borman, command pilot of the Gemini 7 space flight, talks with Astronaut Alan Shepard, Chief, MSC Astronaut Office, in the suiting up trailer at Launch Complex 16, during the Gemini 7 prelaunch countdown.

  14. Behind the Scenes: Astronauts Keep Trainers in BBQ Bliss

    NASA Video Gallery

    In this episode of NASA Behind the Scenes, astronaut Mike Massimino talks with astronaut Terry Virts as well as Stephanie Turner, one of the people who keeps the astronaut corps in line. Mass also ...

  15. Apollo 12 Astronauts Wave Upon Entering the Mobile Quarantine Facility

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Aboard the recovery ship, USS Hornet, Apollo 12 astronauts wave to the crowd as they enter the mobile quarantine facility. The recovery operation took place in the Pacific Ocean after the splashdown of the Command Module capsule. Navy para-rescue men recovered the capsule housing the 3-man Apollo 12 crew. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  16. Astronaut Richard F. Gordon Aboard Command Module Yankee Clipper

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is a view of astronaut Richard F. Gordon attaching a high resolution telephoto lens to a camera aboard the Apollo 12 Command Module (CM) Yankee Clipper. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Apollo 12 safely returned to Earth on November 24, 1969.

  17. Carotid Intima Media Thickness in the Astronaut Corps: Association to Spacecraft

    NASA Technical Reports Server (NTRS)

    Suffredini, John; Locke, James; Johnston, Smith; Charvat, Jacqueline; Young, Millennia; Garcia, Kathleen; Sargsyan, Ashot E.; Tarver, William

    2017-01-01

    Background: Carotid Intima Media Thickness (CIMT) has been demonstrated to be predictive of future cardiovascular events. Within various populations, radiation exposure, stress, and physical confinement have all been linked to an increased CIMT. Recent research discovered CIMT was significantly increased in ten long duration astronauts from pre-flight to four days post flight. The relationship between spaceflight and CIMT is not understood and trends in CIMT within the larger astronaut population are unknown. Methods: In 2010, CIMT was offered as part of the astronaut annual exam at the JSC Flight Medicine Clinic using a standardized CIMT screening protocol and professional sonographers. Between 2010 and 2016, CIMT measurements were collected on 213 NASA astronauts and payload specialists. The values used in this retrospective chart review are the mean of the CIMT from the right and left. Spaceflight exposure was categorized based on the total number of days spent in space at the time of the ground-based ultrasound (0, 1-29, 30-100, 101-200, =200). Linear regression with generalized estimating equations were used to estimate the association between spaceflight exposures and CIMT. Results: 530 studies were completed among 213 astronauts with a mean of 2.5 studies (range 1-6) per astronaut over the six year period. As in other populations, CIMT was significantly associated with age; however, gender was not. While there was no significant direct correlation between total spaceflight exposure and CIMT found, astronauts with 30-100 spaceflight days and astronauts with greater than 100 spaceflight days had significantly increased CIMT over astronauts who had never flown (p=0.002 and p=<0.0001 respectively) after adjustment for age. Conclusion: Further work is needed to fully understand CIMT and its association to spaceflight. Current occupational surveillance activities are under way to study CIMT values in conjunction with other cardiovascular risk factors among

  18. Preflight and In-Flight Exercise Conditions for Astronauts on the International Space Station

    NASA Technical Reports Server (NTRS)

    Guilliams, Mark E.; Nieschwitz, Bruce; Hoellen, David; Loehr, Jim

    2011-01-01

    The physiological demands of spaceflight require astronauts to have certain physical abilities. They must be able to perform routine and off-nominal physical work during flight and upon re-entry into a gravity environment to ensure mission success, such as an Extra Vehicular Activity (EVA) or emergency egress. To prepare the astronauts for their mission, a Wyle Astronaut Strength Conditioning and Rehabilitation specialist (ASCR) works individually with the astronauts to prescribe preflight strength and conditioning programs and in-flight exercise, utilizing Countermeasure Systems (CMS) exercise hardware. PURPOSE: To describe the preflight and in-flight exercise programs for ISS crewmembers. METHODS: Approximately 2 years before a scheduled launch, an ASCR is assigned to each astronaut and physical training (PT) is routinely scheduled. Preflight PT of astronauts consists of carrying out strength, aerobic and general conditioning, employing the principles of periodization. Exercise programs are prescribed to the astronauts to account for their individual fitness levels, planned mission-specific tasks, areas of concern, and travel schedules. Additionally, astronauts receive instruction on how to operate CMS exercise hardware and receive training for microgravity-specific conditions. For example, astronauts are scheduled training sessions for the International Space Station (ISS) treadmill (TVIS) and cycle ergometer (CEVIS), as well as the Advanced Resistive Exercise Device (ARED). In-flight programs are designed to maintain or even improve the astronauts pre-flight levels of fitness, bone health, muscle strength, power and aerobic capacity. In-flight countermeasure sessions are scheduled in 2.5 h blocks, six days a week, which includes 1.5 h for resistive training and 1 h for aerobic exercise. CONCLUSIONS: Crewmembers reported the need for more scheduled time for preflight training. During flight, crewmembers have indicated that the in-flight exercise is sufficient

  19. Measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1973-01-01

    A cosmic radiation dose to the Apollo 17 crew of 1.3 R was calculated from the specific activities of Na-24 in their postflight urine specimens. The specific activities of K-42, Cr-51, Co60, and Sb-124, introduced by injection into the astronauts, are extremely high in these specimens. The Fe-59 and Cs-137 levels are also reported and appear to be normal. The concentrations of Na, K, Rb, Cs, Ca, Sr, Ba, Cr, Fe, Co, Ag, Au, Zn, Cd, Hg, Sn, As, Sb, Se, Br, Sc, La, Sm, Eu, Tb, Hf, Ta, and Th were measured in urine specimens from the Apollo 17 astronauts by neutron activation analysis. Strontium, barium, gold, cadmium, lanthanum, samarium, europium, terbium, thorium, and tin are reported for the first time. The concentrations or excretion rates of bromine and the alkali metals exhibit singificantly reduced postflight levels and are generally lower than values observed for previous missions. Chromium concentrations reflect radiochromium injections.

  20. Training of astronauts in laboratory-aircraft under weightless conditions for work in space

    NASA Technical Reports Server (NTRS)

    Khrunov, Y. V.; Chekidra, I. F.; Kolosov, I. A.

    1975-01-01

    Analyses of occupational activities of astronauts in laboratory-aircraft flights simulating weightlessness conditions permit the development of training methods and optimization of the interaction of man with various spacecraft designs.

  1. Ecological Landscape Classification Using Astronaut Photography

    NASA Astrophysics Data System (ADS)

    Stefanov, W. L.; Castle, J. V.

    2006-12-01

    Digital astronaut photography acquired from the International Space Station is a potentially useful dataset for ecologic, geologic, and land use/land cover studies as it varies greatly in resolution (6 m/pixel minimum) and temporal frequency (minimum 1 day repeat cycle). The entire digital astronaut dataset is freely available from http://eol.jsc.nasa.gov. The dataset includes imagery from 1961 to present, and includes data for much of the Earth's surface. The National Science Foundation's Long Term Ecological Research (LTER) Network provides an ideal framework for assessment of the quantitative potential of digital astronaut photography. The Network of 26 sites represent a wide range of biomes including temperate and tropical forest, deserts, grasslands, tundra, and urban human-dominated ecosystems. This wide range of sites provides an excellent database for comparison of digital astronaut photography with remotely sensed data (i.e. Landsat) as well as field-based validation and measurement data. Used with remotely-sensed satellite and airborne data, digital astronaut photography can increase the temporal resolution of observed variables such as land cover, land use change, vegetation dynamics, and surface soil processes. In contrast to traditional narrow bandwidth remote sensing instruments, digital astronaut photography is acquired using off-the-shelf digital cameras sensitive to the visible red, green, and blue wavelengths; decisions to acquire imagery are made on-the-fly by the astronaut. The wide bandpasses of the camera make traditional classification approaches difficult as discrete spectral information is not typically obtained. We apply a multilevel, object-oriented image segmentation approach to high resolution digital astronaut photography of LTER sites representing a range of continental and island biomes. This approach emphasizes spatial relationships of similar pixels in addition to spectral information. Results include comparison of classification

  2. An expert system for astronaut scientists

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1991-01-01

    A novel application of expert system technology is developed for real-time advice to an astronaut during the performance of a crew intensive experiment. The provision of an on-board computer expert, containing much of the reasoning base of the real Principal Investigator, will permit the astronaut to act more as a scientist co-worker in future Spacelab and Space Station missions. The long duration of flight increments and the large number of experiments envisioned for Space Station Freedom make the increase in astronaut productivity particularly valuable. A first version of the system was evaluated on the ground during the recent Spacelab SLS-1 flight.

  3. How Can ``Weightless'' Astronauts be Weighed?

    NASA Astrophysics Data System (ADS)

    Carnicer, Jesus; Reyes, Francisco; Guisasola, Jenaro

    2012-01-01

    In introductory physics courses, within the context of studying Newton's laws, it is common to consider the problem of a body's ``weight'' when it is in free fall. The solution shows that the ``weight'' is zero1 and this leads to a discussion of the concept of weight.2,3 There are permanent free-fall situations such as astronauts in a spacecraft orbiting the Earth, for example, the International Space Station. However, it is important for an astronaut's health to control any variations in his/her body mass while on the orbiting spacecraft. This paper examines the following scenario: How can astronauts be weighed while in free fall?

  4. Metabolomic and Genomic Markers of Atherosclerosis as Related to Oxidative Stress, Inflammation, and Vascular Function in Twin Astronauts

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Rana, Brinda K.; Stenger, Michael B.; Sears, Dorothy D.; Smith, Scott M.; Macias, Brandon R.; Hargens, Alan R.; Sharma, Kumar; De Vivo, Immaculata

    2016-01-01

    Background: Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. Astronauts participating in long-duration missions may be at an increased risk of oxidative stress and inflammatory damage due to radiation, psychological stress, altered physical activity, nutritional insufficiency, and hyperoxia during extravehicular activity. By studying one identical twin during his 1-year ISS mission and one ground-based twin, this work extends a current NASA-funded investigation to determine whether these spaceflight factors contribute to an accelerated progression of atherosclerosis. This study of twins affords a unique opportunity to examine the spaceflight-related atherosclerosis risk independent of the confounding factors associated with different genotypes. Purpose: The purpose of this investigation is to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and determine if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. These physiological and biochemical data will be extended by using an exploratory approach to investigate the relationship between intermediate phenotypes and risk factors for atherosclerosis and the metabolomic signature from plasma and urine samples. Since metabolites are often the indirect products of gene expression, we will simultaneously assess gene expression and DNA methylation in leukocytes. Hypothesis: We predict that the space-flown twin will experience elevated biomarkers of oxidative stress and inflammatory damage, altered arterial structure and function, accelerated telomere shortening, dysregulation of genes associated with oxidative stress and inflammation, and a metabolic profile shift that is associated with elevated

  5. Defining the Relationship between Biomarkers of Oxidative and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts during and after Long-duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Westby, Christian M.; Stenger, Michael B.; Smith, Scott M.; Zwart, Sara; Ploutz-Snyder, Robert J.; Platts, Steven H.

    2014-01-01

    Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative damage and inflammation can accelerate the development of atherosclerosis. PURPOSE The purpose of this investigation is to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and investigate if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. This is the first study to propose assessing atherosclerotic risk using biochemical, structural, and functional measures before, during, and immediately after spaceflight, and structural and functional measures for up to 5 years after landing. METHODS We will study 12 astronauts before, during, and up to 5 years after long-duration ISS missions. A panel of biomarkers of oxidative and inflammatory stress will be measured twice before flight, early (flight days 15 and 60) and late (2 weeks before landing) during the mission, and early in the postflight recovery phase (approx 3 days after landing). Arterial structure and vascular compliance will be measured at the same times and also at 1, 3, and 5 years after landing (surveillance). Arterial function will be measured using the same preflight, postflight, and surveillance schedule as arterial structure and vascular compliance measures, but will not be measured inflight. Biomarkers, some of which we have previously shown to be elevated with spaceflight, will be measured in venous blood samples and 24-h

  6. Astronautical Hygiene - A New Discipline to Protect the Health of Astronauts Working in Space

    NASA Astrophysics Data System (ADS)

    Cain, J. R.

    This paper outlines the rationale for a new scientific discipline namely astronautical hygiene. Astronautical hygiene is an applied science that utilises a knowledge of space toxicology, space medicine, astronautics, occupational hygiene etc. to identify the hazards, assess the exposure risks to health, and thereby determine the measures to mitigate exposure to protect the health of astronauts during living and working in space. This paper describes the nature of the hazards (i.e. physical, chemical, microbial and psychological) encountered during space flight. It discusses exposure risk assessment and the use of sampling techniques to assess astronaut health risks. This paper then discusses the measures used to mitigate exposure to the exposure hazards during space exploration. A case study of the application of the principles of astronautical hygiene to control lunar dust exposure is then described.

  7. Aeronautics. An Educator's Guide with Activities in Science, Mathematics, and Technology Education: What Pilot, Astronaut, or Aeronautical Engineer didn't Start out with a Toy Glider?

    NASA Technical Reports Server (NTRS)

    Biggs, Pat (Editor); Huetter, Ted (Editor)

    1998-01-01

    Welcome to the exciting world of aeronautics. The term aeronautics originated in France, and was derived from the Greek words for "air" and "to sail." It is the study of flight and the operation of aircraft. This educator guide explains basic aeronautical concepts, provides a background in the history of aviation, and sets them within the context of the flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They have been developed by NASA Aerospace Education Services Program specialists, who have successfully used them in countless workshops and student programs around the United States. The activities encourage students to explore the nature of flight, and experience some real-life applications of mathematics, science, and technology. The subject of flight has a wonderful power to inspire learning.

  8. NASA Now: Path of an Astronaut

    NASA Video Gallery

    Mike Foreman is one of the shuttle astronauts who has lived and worked on the ISS. He flew on space shuttle Endeavour in March of 2008, and he returned to the station in on space shuttle Atlantis i...

  9. Portrait of Astronaut Richard F. Gordon Jr.

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of Astronaut Richard F. Gordon Jr., Prime Crew Command Module Pilot of the Apollo 12 Lunar Landing Mission, in his space suit minus the helmet. He is standing outside beside a mock-up of the Lunar Lander.

  10. Astronaut Neil Armstrong participates in simulation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission SImulator in the Kennedy Space Center's Flight Crew Training Building.

  11. Portrait of Astronaut Alan L. Bean

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of Astronaut Alan L. Bean, Prime Crew Lunar Module Pilot of the Apollo 12 Lunar Landing Mission, in his space suit minus the helmet. He is standing outside beside a mock-up of the Lunar Lander.

  12. Students Speak With NASA Astronaut Mario Runco

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, NASA astronaut Mario Runco participates in a Digital Learning Network (DLN) event with students in the Newell School District in Ne...

  13. Students Speak With NASA Astronaut Mike Foreman

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center NASA astronaut Mike Foreman participates in a Digital Learning Network (DLN) event with fifth grade students at Berry Elementary Sch...

  14. Astronaut Doug Wheelock Speaks with Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Doug Wheelock participates in a Digital Learning Network (DLN) event with students at Clark Creek STEM Academy in Acwo...

  15. Students Speak With NASA Astronaut Scott Kelly

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, NASA astronaut Scott Kelly participates in a Digital Learning Network (DLN) event with students in the Galena Park Independent Scho...

  16. Astronaut Alvin Drew Speaks With Phoenix Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Alvin Drew participates in a Digital Learning Network (DLN) event with students at Monterey Park in Phoenix. The DLN c...

  17. Philadelphia Eagles Honor NASA Astronaut Chris Ferguson

    NASA Video Gallery

    NASA astronaut Chris Ferguson returned to his hometown on Nov. 7 to serve as the Philadelphia Eagles' Honorary Captain during the NFL's "Monday Night Football" game. The Eagles hosted the Chicago B...

  18. Official portrait of astronaut Guy S. Gardner

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Official portrait of Guy S. Gardner, United States Air Force Colonel, member of Astronaut Class 9 (1980), and space shuttle pilot. Gardner wears a launch and entry suit (LES) with the helmet displayed on his left.

  19. Astronaut Bernard Harris monitors Spacehab experiments

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Bernard A. Harris Jr., a physician and STS-63 payload commander, monitors several Spacehab-3 experiments which occupy locker space on the Space Shuttle Discovery's middeck. The Spacehab-3 module is located in the cargo bay.

  20. Astronaut Suni Williams on Value of Education

    NASA Video Gallery

    In this public service announcement, NASA astronaut Suni Williams stresses the importance of studying science, technology, engineering and math. What you learn in school today will help you reach f...